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Abstract: Flavor effects can have a significant impact on the final estimate of
the lepton (and therefore baryon) asymmetry in scenarios of leptogenesis. It is
therefore necessary to account fully for this flavor dynamics in the relevant trans-
port equations that describe the production (and washout) of the asymmetry.
Doing so can both open up and restrict viable regions of parameter space relative
to the predictions of more approximate calculations. In this review, we identify
the regimes in which flavor effects can be relevant and illustrate their impact in a
number of phenomenological models. These include type I and type II seesaw em-
beddings, and low-scale resonant scenarios. In addition, we provide an overview
of the semi-classical and field-theoretic methods that have been developed to
capture flavor effects in a consistent way.
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1. Introduction

The realization of the importance of flavor effects [1–6] represents one of the most

significant developments in leptogenesis since its original proposal [7] as a viable

mechanism for generating the observed baryon asymmetry of the Universe. The

flavor effects to which we refer can be associated with either of the following:

(i) Non-vanishing off-diagonal elements in the charged-lepton Yukawa cou-

plings and their couplings to the mediator of the relevant L-violating Wein-

berg operator.

(ii) Non-vanishing coherences in the off-diagonal elements of the particle num-

ber densities of species carrying flavor quantum numbers.

The former are a property of the renormalized Lagrangian of the model and arise

from misalignment of the flavor and mass eigenbases; the latter are a property of the

primordial plasma and arise from the quantum statistical mechanics of a system with

particle mixing. Throughout this review, we will refer to flavor effects arising from

the contribution of additional heavy, right-handed (RH) neutrino species as heavy-

neutrino flavor effects and to those related to charged-lepton flavors as charged-

lepton flavor effects, and we will see that a general description must take both into
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account. For earlier reviews that discuss the issue of flavor effects in leptogenesis,

see, e.g., Refs. [8–11].

Coherences amongst the charged-lepton flavors play an important role in the

dynamics of the washout of the asymmetry, and this is of particular importance

for high-scale scenarios such as thermal leptogenesis. On the other hand, coher-

ences amongst the heavy-neutrino flavors have an important effect on the source of

CP asymmetry due to oscillations. Whilst oscillations are suppressed for hierarchi-

cal heavy-neutrino mass spectra, they become important when the heavy-neutrino

masses become quasi-degenerate, and this has significant implications for scenarios

of resonant leptogenesis, discussed further in Chapter [12] of this review. Successful

leptogenesis can, in fact, be driven entirely by oscillations through the ARS mecha-

nism [13], and these scenarios are discussed in detail in Chapter [14] of this review.

In certain regimes, accounting systematically for all relevant flavor effects can both

enhance and suppress the final asymmetry compared to treatments in which they

are only partially captured. Moreover, aside from their impacts upon the generated

asymmetry, flavor effects can be key to realising scenarios of leptogenesis that are

directly testable at current and near-future experiments both at the energy and

intensity frontiers.

There have been significant efforts in the literature to develop theoretical frame-

works and calculational techniques that allow flavor effects to be captured in a

systematic way. These efforts span both first-principles field-theoretic and more

phenomenologically-inspired semi-classical approaches. The former are based on

the Kadanoff-Baym formalism [15, 16], itself embedded within the Schwinger-

Keldysh [17, 18] closed-time-path approach of non-equilibrium field theory. The

latter — often referred to as the density matrix formalism [19–22] — can be de-

rived at the operator level by means of the Liouville-von Neumann and Heisenberg

equations. A more comprehensive overview of recent developments in field-theoretic

approaches is provided in the companion Chapter [12].

The outline of this review is as follows. In Sec. 2, we discuss the regimes in which

flavor effects are relevant. We then provide a brief overview of calculational methods

that can account for these effects in the relevant transport equations that describe

the production of the asymmetry. Having summarized the necessary theoretical

tools, we proceed to illustrate the importance of flavor effects in the context of a

number of phenomenological models. In Sec. 3, we consider thermal leptogenesis in

the type I seesaw scenario; in Sec. 4, we move on to low-scale scenarios of resonant

leptogenesis; and finally, in Sec. 5, we discuss type II seesaw models. We briefly

outline the relevance of flavor effects in other models in Sec. 6, and our conclusions

are presented in Sec. 7.

2. Flavor effects and calculational methods

In this section, and before proceeding to discuss the role of flavor effects in particular

scenarios of leptogenesis, we first review the regimes in which flavor effects are
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important. We will also briefly outline the frameworks that allow these flavor effects

to be captured fully in the Boltzmann-like equations that describe the generation

of the asymmetry. We will discuss two in particular: semi-classical methods based

on the so-called density matrix formalism [22] and field-theoretic approaches based

on the Kadanoff-Baym formalism [15, 16].

2.1. Flavored regimes

The Lagrangian

L = LSM,hβ=0 + iNRk /∂NRk

−
(
hβ `β φ eRβ + λαk `α φ

cNRk +
1

2
N c
RkMkNRk + h.c.

)
(1)

selects the mass eigenstates of the charged leptons as a preferred basis. However, in

order to understand flavor effects in leptogenesis and how they can be neglected at

very high temperatures, we would like to use the freedom of basis transformations

among the lepton doublets `. Therefore, we promote the Standard Model (SM)

Yukawa couplings to a matrix, viz. hβ `β φ eRβ → hαβ `α φ eRβ , where hαβ is di-

agonal in the flavor basis. Whilst we use the same symbol for the flavor-covariant

matrix and the vector in the fixed flavor basis, it will be clear from the context to

which object is referred. In addition, we have explicitly identified the chirality of the

right-handed singlets NRk in order to distinguish them from the physical Majorana

fields N = N c, discussed later (see Sec. 3).

Flavor-sensitive rates in the early Universe should scale as |hαα|2T , where T

is the temperature. These are suppressed by a phase-space factor also involving

gauge couplings [23] because the leading processes at high temperature are two-by-

two scatterings involving gauge-boson radiation, cf. Eq. (33) and Eq. (34). These

rates are to be compared with the Hubble rate H, which scales as H ∼ T 2/MPl,

where MPl is the Planck mass. Doing so implies that flavor-sensitive processes

are out of equilibrium above and in equilibrium below a certain temperature. The

equilibration temperatures for various SM processes, relevant for flavor and spec-

tator effects in leptogenesis, as well as in other cosmological scenarios, are shown

in Fig. 1. It should be noted, however, that the ranges are only indicative because

loopholes can easily be found. For example, and as discussed in Sec. 4, a scenario

with largely hierarchical RH-neutrino Yukawa couplings can be constructed where

the partial decoherence of correlations involving the τ flavor is important even when

leptogenesis occurs at a low temperature due to comparably light RH neutrinos and

a resonantly-enhanced CP asymmetry.

However, barring extra symmetries or tuning in the type I seesaw-model, the

standard picture of flavored regimes is as follows: Suppose first that leptogenesis

occurs at temperatures below 109 GeV from the decay of the lightest RH neutrinoN1

(see Sec. 3.2 for more details). In general, the decay creates a coherent superposition

of all three lepton-doublet flavors e, µ and τ . These superpositions can be described
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Fig. 1. Ranges of equilibration temperature for various SM processes, i.e. for the strong and weak
sphalerons (green), as well as quark (red) and lepton (blue) Yukawa interactions. The bands range

from TX to 20TX , with TX denoting the equilibration temperature, at which the particular rate

coincides with the Hubble rate. Figure taken from Ref. [24].

by off-diagonal elements that appear either in a description based on two-point

correlation functions in the Schwinger-Keldysh formalism or within a matrix of

number densities based on an operator formalism. Nevertheless, the flavor-sensitive

rates will lead to a rapid decay of these off-diagonal correlations such that they can

be ignored. It is therefore most suitable to simply remain in the mass eigenbasis

where the Yukawa couplings of the charged leptons are diagonal.

Next, consider the opposite regime, where leptogenesis occurs at temperatures

above 1014 GeV. If we remain in the mass eigenbasis, we can no longer ignore the

flavor correlations, which amounts to a calculational inconvenience. The latter can,

however, be removed by a flavor transformation of the doublet leptons, such that

N1 only couples to one of the doublet leptons in the new basis:u⊥1

u⊥2

u‖

 λe1 λe2 λe3
λµ1 λµ2 λµ3

λτ1 λτ2 λτ3

 =

 0 × ×
0 × ×
× × ×

 , (2)

where × denotes a non-vanishing entry,

u‖ =

(
λe1, λµ1, λτ1

)√∑
|λα1|2

(3)

and u⊥1,2 are unit vectors perpendicular to u‖, as well as to one another. In this

description, we only need to consider the flavor aligned with u‖ and can ignore the

⊥ flavors altogether because no asymmetry is generated within these in the first

place.
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Finally, consider the narrow regime between τ and µ equilibration (around

1011 GeV), where we suitably transform u⊥
u‖

( 0 0 1 )

 λe1 λe2 λe3
λµ1 λµ2 λµ3

λτ1 λτ2 λτ3

 =

 0 × ×
× × ×
λτ1 λτ2 λτ3

 , (4)

in which

u‖ =
(λe1, λµ1, 0 )√
|λe1|2 + |λµ1|2

, u⊥ =
(λµ1, −λe1, 0 )√
|λe1|2 + |λµ1|2

. (5)

In this setup, asymmetries are produced within the τ flavor and the flavor aligned

with u‖, and there are no correlations amongst these because any such correlations

are destroyed by interactions mediated by hτ . No asymmetries are generated in the

flavor aligned with u⊥, which can therefore be ignored.

This leaves open the questions of how to deal with intermediate regimes and

whether the above procedures can be obtained as limiting cases of a more general

approach that allows to treat flavor effects throughout the entire temperature range.

This will be addressed in Sec. 2.2.

2.2. Calculational methods

In order to calculate the final lepton asymmetry, we need to describe the evolution

of integrated particle number densities, n ≡ n(t), in the expanding Universe [25,

26]. This evolution is described semi-classically by coupled systems of Boltzmann

equations, which take the general form

ṅA + 3HnA = CA[{f}] , (6)

where ˙ indicates a derivative with respect to cosmic time t and H is the Hubble

rate. The subscript A is a multi-index, which labels all species and their quantum

numbers, i.e. flavor, spin/helicity, isospin and so on. For our present discussions, the

most important of these will be flavor. The terms on the left-hand side of Eq. (6)

are the so-called drift terms, which include the effect of the cosmological expansion,

and the CA[{f}] on the right-hand side of Eq. (6) are the collision terms. The latter

depend, in general, on the phase-space distribution functions fA, which we define

below. The remainder of this section will be concerned with the derivation of these

collision terms in the flavored regime, where we must carefully treat the quantum-

mechanical effects of particle mixing. Further discussion of the treatment of these

effects in the context of resonant leptogenesis can be found in Chapter [12] of this

review.

The first step in obtaining the requisite systems of Boltzmann-like equations is

to determine what it is that we aim to count. These are the distribution functions

fA ≡ fA(p,X, t): the densities of particles in phase space. Throughout what follows,

we assume spatial homogeneity, such that the distribution functions depend only

on time t and three-momentum p. Given a single scalar degree of freedom, the
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distribution function is straightforwardly related to the number operator, itself built

out of the canonical creation and annihilation operators â†(p) and â(p). Working

in the interaction picture, we have

f(t,p) ≡
〈
n̂(p)

〉
t
≡ 1

V
tr ρ̂(t)â†(p)â(p) , (7)

where ρ̂(t) is the density operator (tr ρ(t) = 1) and V = (2π)3δ(3)(0) is the three-

volume of the system. In the presence of multiple flavors, we might be tempted to

add to these distribution functions a flavor index, i say, such that

fi(t,p) ≡
〈
n̂i(p)

〉
t
≡ 1

V
tr ρ̂(t)â†i (p)âi(p) . (8)

However, in the presence of particle mixing, such an extension is incomplete, and

we must introduce matrices of distribution functions that count both the diagonal

densities of individual flavors but also the coherences between those different flavors:

fij(t,p) ≡
〈
n̂ij(p)

〉
t
≡ 1

V
tr ρ̂(t)â†j(p)âi(p) . (9)

More generally, it may be necessary to count other individual quantum numbers, for

example, helicity, as well as the corresponding coherences. The integrated number

densities are of the form

nXij(t) =
∑
q

∫
d3p

(2π)3
fXij,q(p, t) , (10)

where X labels the particle species and the sum over q includes all additional quan-

tum numbers that we do not wish to track explicitly.

It is clear now what the relevant multi-indices A and B are in Eq. (6); they run

over the particle species of interest and their corresponding flavor structure. Hence,

the coupled Boltzmann equations for the fermionic species are

ṅNij + 3HnNij = Cij [{f, f̄}] , (11a)

ṅ`αβ + 3Hn`αβ = Cαβ [{f, f̄}] , (11b)

plus the CP-conjugate expressions, describing the evolution of the conjugate densi-

ties n̄N and n̄`. We turn our attention now to the collision terms.

We may proceed in one of two ways: semi-classically via the Liouville-von Neu-

mann and Heisenberg equations, or field-theoretically via the so-called Kadanoff-

Baym formalism. Whilst the former approach is less technically involved, the latter

has the advantage that all quantum effects are, in principle, incorporated system-

atically without external prescription.

2.2.1. Semi-classical approach

The aim of semi-classical approaches is to find consistent means for supplementing

systems of Boltzmann equations with ingredients that involve some level of resum-

mation. In this way, one intends to capture the pertinent quantum effects, whilst
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avoiding the technicalities of first-principles field-theoretic treatments. An introduc-

tion to semi-classical approaches for the simplest scenario of thermal leptogenesis

is provided in Chapter [27] of this review.

We outline here the basics of the so-called density matrix formalism [19–22],

which yields rate equations for the integrated matrices of number densities

in Eq. (10). The derivation that follows is based on Ref. [28], and we will work

in the interaction picture. Therein, we recall that the creation and annihilation

operators evolve subject to the free part of the Hamiltonian Ĥ0 via the (interaction-

picture form of the) Heisenberg equation of motion and that the density operator

evolves subject to the interaction part of the Hamiltonian Ĥ int via the Liouville-von

Neumann equation.

Introducing the matrix of number operators n̂ij(t,p) corresponding to Eq. (10),

the time-derivatives of the respective densities can be written

dnij(t,p)

dt
=

d

dt
tr
{
ρ̂(t) n̂ij(t,p)

}
= tr

{
ρ̂(t)

d n̂ij(t,p)

dt
+

d ρ̂(t)

dt
n̂ij(t,p)

}
.

(12)

By means of the Heisenberg equation of motion, the first term on the right-hande

side of Eq. (12) can be written

tr

{
ρ̂(t)

d n̂ij(t,p)

dt

}
= i〈[Ĥ0, n̂ij(t,p)]〉t , (13)

and it describes flavor oscillations. For the second term on the right-hand side of

Eq. (12), we first recast the usual form of the Liouville-von Neumann equation

d ρ̂(t)

dt
= − i[Ĥ int(t), ρ̂(t)] (14)

as a Volterra integral equation of the second kind, i.e.

ρ̂(t) = ρ̂(0) − i

∫ t

0

dt′ [Ĥ int(t′), ρ̂(t′)] . (15)

Proceeding by successive substitution to second order in the interaction Hamiltonian

and subsequently differentiating with respect to time, we obtain

d ρ̂(t)

dt
= − i[Ĥ int(t), ρ̂(0)] −

∫ t

0

dt′ [Ĥ int(t), [Ĥ int(t′), ρ̂(t′)]] . (16)

For the models and particle species of interest to us, the first term on the right-hand

side of Eq. (16) is zero. The second term gives rise to the leading collision terms,

and, by putting everything together, we obtain the exact evolution equation

dnij(t,p)

dt
= i〈[Ĥ0, n̂ij(t,p)]〉t −

∫ t

0

dt′ 〈[Ĥ int(t′), [Ĥ int(t), n̂ij(t,p)]]〉t′ . (17)

At this point, we emphasise the presence of the non-Markovian memory integral

over ρ(t′), which depends on the complete history of the evolution.

By assuming (i) that the time-scales for the microscopic QFT processes and sta-

tistical evolution are well separated, and (ii) that momentum correlations built up by
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a collision are lost before the next collision (molecular chaos), we can make a Marko-

vian (or Wigner-Weisskopf [29]) approximation of Eq. (17) (see, e.g., Ref. [28]).

Doing so, yields the Markovian master equation

dnij(t,p)

dt
= i〈[Ĥ0, n̂ij(t,p)]〉t−

1

2

∫ +∞

−∞
dt′ 〈[Ĥ int(t′), [Ĥ int(t), n̂ij(t,p)]]〉t . (18)

Notice that the Markovian approximation has led to the extension of the limits of

time-integration and the change of time argument t′ → t in the density operator,

thereby neglecting memory effects.

Whilst it is now a matter of course to find the explicit form of the oscillation

and collision terms for a given Hamiltonian, it is clear that the right-hand side of

Eq. (18) is truncated at second order in the interaction Hamiltonian. Moreover,

in making the Markovian approximation, we have also neglected dispersive self-

energy corrections. Hence, in order to capture any relevant non-perturbative effects

in the resulting rate equations, we need to supplement the finite-order calculation

with resummed quantities by some effective means. This process may be motivated

by considering scattering matrix elements (in the case of the collision terms) or

from finite-temperature field theory calculations (in the case of the thermal-mass

corrections).

However, as is the case for any effective description, it is necessary to ensure that

important field-theoretic properties are preserved, e.g. unitarity, CPT invariance,

gauge invariance and so on, and significant effort has been devoted to this in the

literature (see, e.g., Ref. [8]). For instance, in resonant scenarios (see Sec. 4 and

Chapter [12]), it is necessary to resum the self-energies of the heavy neutrinos in

order to regulate the resonant enhancement of the CP asymmetry. In this case, we

need systematic methods for dealing with the resummation of transition amplitudes

involving intermediate unstable states. Moreover, these unstable states will likely be

subject to particle mixing. Lastly, we must avoid the double counting of processes

contributing to the statistical evolution [25]. For example, if we include decays,

inverse decays and two-to-two scatterings in the collision terms, we must be careful

to deal with what happens when the scattering is mediated by an on-resonance s-

channel exchange of the unstable particle. This problem can be evaded by employing

so-called Real Intermediate State (RIS) subtraction [25] (see also Chapter [27]).

Rate equations can also be derived from first principles using the field-theoretic

approaches that we will describe in the next subsection. Whilst this technology su-

persedes density matrix formalisms, semi-classical approaches remain of significant

utility, and it is worth noting that many of the results reviewed in Sec. 3, Sec. 4

and Sec. 5 have been derived by these means.

2.2.2. Field-theoretic approach

The program of field-theoretic approaches is to derive the fluid equations that are

used in phenomenological studies of leptogenesis from first principles of quantum

field theory. As a starting point, we may choose the Schwinger-Dyson equations
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on the Schwinger-Keldysh closed time path (CTP) [17, 18], which contain the full

content of the theory. Specifically, no truncations in the interactions or the quantum

statistical state need to be made in their formulation. As a particular consequence,

the evolution of the system is reversible prior to further truncations. The Schwinger-

Dyson equations are formulated in terms of n-point functions and make no reference

to an operator-based formalism. In fact, within statistical quantum field theory,

they are most often derived in the functional formalism for the n-particle irreducible

effective action [30]. Nonetheless, it is important to keep in mind that within a

perturbative expansion, the tree-level two-point functions can be straightforwardly

constructed in the operator formalism via the density matrix, cf. Refs. [31–33],

which may be useful in order to see how semi-classical and field-theoretic methods

can be related. Further discussions of this point can be found in Chapter [12] of

this review.

For the problem of leptogenesis, the following controlled approximations can be

applied in order to reduce the Schwinger-Dyson equations to a system of quantum

Boltzmann equations suitable for phenomenological studies:

• Due to the smallness of the RH-neutrino Yukawa couplings λ, a perturbative

truncation of the Schwinger-Dyson equations is appropriate for leptogene-

sis. Even more robust is an expansion based on the two-particle-irreducible

effective action that readily resums one-loop corrections to the Green’s func-

tions that otherwise exhibit unphysical divergences, as occurs, for instance,

for the fully mass-degenerate limit of resonant leptogenesis, as well as for

the t-channel contribution to the production of relativistic RH neutrinos.

• Another important truncation lies within neglecting the full higher-order

quantum correlations, i.e. those present within n-point functions for n > 2,

as well as among different species of particles. In principle, all higher-

order correlations can be reconstructed from the two-particle-irreducible

two-point Green’s functions, but, in practice, the full information is lost

because the backreaction of the RH neutrinos on the lepton and Higgs dou-

blets is neglected, up to an effective description through kinetic equilibrium

distributions with chemical potentials.

In addition, the two-point functions will, in general, contain correlations be-

tween particles that share the same conserved quantum numbers, i.e. members of

a flavor multiplet. This is of relevance for leptogenesis in that it can affect the RH

neutrinos, as well as the charged leptons. Flavor correlations of RH neutrinos lead

to a contribution to the CP-violating source for leptogenesis (see the detailed discus-

sions in the chapters on resonant leptogenesis [12] and ARS leptogenesis [14]), while

correlations among the doublet leptons are at the core of the flavor effects and their

importance for the washout of the lepton asymmetries, which are in the main focus

of the present chapter. Therefore, in this section, we account for flavor-correlations
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in the charged leptons only.a

An overview of the Schwinger-Keldysh CTP formalism is given in Sec. 3 of the

accompanying Chapter [12] on resonant leptogenesis. Its application to leptogenesis

is discussed in detail in Refs. [34–40], and this present section relies particularly

on Ref. [41]. Our present starting point is the Schwinger-Dyson equation for the

flavored left-handed (LH) lepton propagator:

i/∂xS
fg
`αβ(x, y) = fδfgδαβδ

(4)(x− y)PR +
∑
h

∫
d4w Σ/

fh
`αγ(x,w)Shg`γβ(w, y) . (19)

The lower Greek indices are for active lepton flavor, the upper latin indices indicate

the CTP branches ±, and PL,R are the left- and right-chiral projectors.

Switching to Wigner space, truncating at leading order in gradients and taking

appropriate linear combinations, one obtains(
/k − /Σ

H
` ∓ /Σ

A
`

)
SA,R` = PR , (20a)

i

2
/∂S<,>` + (/k − /Σ

H
` )S<,>` − /Σ

<,>
` SH` =

1

2

(
/Σ
>
` S

<
` − /Σ

<
` S

>
`

)
, (20b)

where the superscripts R and A indicate retarded and advanced boundary con-

ditions, respectively. We have also defined the linear combinations /Σ
A
` ≡ (/Σ

A
` −

/Σ
R
` )/(2i), /Σ

H
` ≡ (/Σ

A
` + /Σ

R
` )/2 with analogous definitions for the propagators S`.

The Wigner-space two-point functions (here, the propagators S` and self-energies
/Σ`) are understood to be functions of the four-momentum k and the average co-

ordinate X = (x + y)/2 upon which the partial derivative is acting. In order to

understand the physical content of these equations, it is useful to note that S`(k,X)

describes particle properties for k0 > 0 and anti-particle properties for k0 < 0. We

refer to the accompanying Chapter [12], where more aspects of the Wigner transfor-

mation and the gradient expansion are reviewed. Note that when comparing with

that reference, the definitions for the various two-point functions on the closed time

path made here may differ by factors of i and 2.

It is of conceptual interest and an important consistency check to understand

the solutions to this system of equations. It turns out that we may represent the

tree-level propagators as

iS<`αβ = − 2SA`
[
θ(k0)f`αβ(k) − θ(−k0)(11αβ − f̄`αβ(−k))

]
, (21a)

iS>`αβ = − 2SA`
[
− θ(k0)(11αβ − f`αβ(k)) + θ(−k0)f̄`αβ(−k)

]
, (21b)

where

SA` = πPL/kPRδ
(
k2
)
, (22)

and f`αβ and f̄`αβ are the elements of the matrices of distribution functions for

the charged leptons (unbarred) and anti-leptons (barred). At this point, one may
aCorrelations in the RH neutrinos are then still generated through wave-function corrections at
one-loop order. For RH-neutrino correlations, particular care must be taken in order to avoid

over-counting issues (see Sec. 4.2).
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wonder how finite-width effects from absorptive corrections, as well as the dispersive

shifts to the various pole masses in the flavor-mixing system at finite temperature,

come into the game. In principle, in order to recover these effects, one has to resum

the gradients to all orders [42, 43]. Fortunately, since the lepton doublets are weakly

coupled, this only amounts to perturbatively-suppressed kinematic corrections for

the individual reactions.

Assuming spatial homogeneity and taking i times the Hermitian part of the

Kadanoff-Baym equation, Eq. (20b), we find that the remaining relevant information

can be isolated in the kinetic equation

i∂ηiγ
0S<,>` −

[
k · γγ0 + ΣH` γ

0, iγ0S<,>`

]
−
[
iΣ<,>` γ0, γ0SH`

]
= − 1

2

(
iC` + iC†`

)
, (23)

with the collision term

C` = iΣ>` iS
<
` − iΣ<` iS

>
` . (24)

For brevity, we have used a fixed flavor basis where the charged leptons are mass

diagonal in the electroweak symmetry-broken phase. The flavor-covariant general-

ization can be found in Ref. [41]. Moreover, we assume here spatial homogeneity,

such that there is no dependence on Xi for i = 1, 2, 3. In addition, to account

for the expansion of the Universe, we use a parametrization where X0 = η is the

conformal time.

It turns out that in the parametric regime relevant for leptogenesis, oscillations

among the charged-lepton flavors are effectively frozen in. In order to explain this

effect, we decompose the fluid equations into particle and anti-particle distributions,

as well as number densities

n`αβ =

∫
d3k

(2π)3
f`αβ(k) = −

∫
d3k

(2π)3

∫ ∞
0

dk0

2π
tr
[
iγ0S<`αβ

]
, (25a)

n̄`αβ =

∫
d3k

(2π)3
f̄`αβ(k) =

∫
d3k

(2π)3

∫ 0

−∞

dk0

2π
tr
[
iγ0S>`αβ

]
. (25b)

Note that in view of including flavor effects, n` counts the charge density within

one component of the SU(2)L doublet of SM leptons only (in contrast to, e.g.,

the quantity nL used in the accompanying Chapters [12] and [27]). This way,

compensating factors that would appear in the equations describing the reactions

with the right-handed charged leptons of the SM can be avoided.

Integrating over the four momentum of the lepton doublets brings us from a

kinetic to a fluid description. Avoiding the technical details, we will simply present
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the resulting fluid equations:

∂δn`αβ
∂η

= − i∆ωeff
`αβδn`αβ −

∑
γ

[Wαγδn`γβ + δn∗`γαW
∗
βγ ]

+ Sαβ − Γbl(δn`αβ + δn̄`αβ) − Γfl
`αβ , (26a)

∂δn̄`αβ
∂η

= + i∆ωeff
`αβδn̄`αβ −

∑
γ

[Wαγδn̄`γβ + δn̄∗`γαW
∗
βγ ]

− Sαβ − Γbl(δn`αβ + δn̄`αβ) − Γ
fl

`αβ , (26b)

and discuss their physical content and relation to Eq. (23). The details of the

evaluation of the particular terms can be found in Ref. [41].

First, we discuss the kinetic aspects. Notice that we have expressed this equation

in terms of the deviations of the lepton and anti-lepton number densities (δn` and

δn̄`) from their equilibrium values. One can show that for these quantities, the com-

mutator term involving SH` in Eq. (23) (which is essentially an inhomogeneous term)

drops out [42]. The remaining commutator term involving ΣH` potentially gives rise

to flavor oscillations due to the thermal masses of the charged leptons. Only flavor-

sensitive terms are relevant here. (Specifically, there are no direct oscillation effects

due to the flavor-blind gauge interactions, which give rise to a contribution to the

effective mass that is proportional to the identity matrix in flavor space.) Upon

momentum averaging, the oscillation effects are therefore described by

∆ωeff
`αβ(η) =

∫
d3k

(2π)3

12 e|k|/T

T 3(e|k|/T + 1)2

(
hαh

∗
βT

2

16|k|

)
. (27)

Next, we turn to the collisional contributions, where we can identify the washout

rate

Wαβ = λα1λ
∗
β1

∫
d3k

(2π)32|k|
d3p

(2π)32
√

p2 + (a(η)M1)2

d3q

(2π)32|q|

× (2π)4δ(4)(p− k − q)k · p
[
fN1(p) + fφ(q)

] 12 e|k|/T

T 3(e|k|/T + 1)2
. (28)

Here, the integration variables are understood to be conformal momenta, such that

the physical momenta are, e.g., given by k/a(η), where a(η) is the scale factor

of the Friedmann-Lemâıtre-Robertson-Walker metric. Similarly, T is a conformal

temperature, and the physical temperature is T/a(η).

The CP-violating source term consists of a vertex and a wave-function contri-

bution:

Sαβ = S
(v)
αβ + S

(wf)
αβ , (29)
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where

S
(v)
αβ = − i

∑
j 6= 1

(λα1λγ1λ
∗
γjλ
∗
βj − λαjλγjλ∗γ1λ

∗
β1)

×
∫

d3k

(2π)32|k|
d3p

(2π)32
√

p2 +M2
1

d3q

(2π)32|q|
(2π)4δ(4)(p− k − q)

× kµ
M1

16πMj
Kµj(p, q)

[
1− f`(k) + fφ(q)

]
, (30)

and

S
(wf)
αβ = 8 i

∑
j 6= 1

[(
λα1λγ1λ

∗
γjλ
∗
βj − λαjλγjλ∗γ1λ

∗
β1

)
+
(
λα1λ

∗
γ1λγjλ

∗
βj − λαjλ∗γjλγ1λ

∗
β1

)] ∫ d3p

(2π)32
√

p2 +M2
1

Σ̂Nµ(p)Σ̂µN (p) .

(31)

Here, duplicate indices other than j are summed over according to the Einstein

convention. We have chosen to present these contributions in integral form in order

to highlight the structure of the thermal cuts and the pertaining quantum statistical

effects, as well as to facilitate comparison with the companion Chapters [12, 14, 27].

The expression for the vertex function Kµj(p, q) can be found in Chapter [27], and

Σ̂µN (p) =
1

2

∫
d3k

(2π)32|k|
d3q

(2π)32|q|
(2π)4δ(4)(p− k − q) pµ

[
1− f eq

` (k) + f eq
φ (q)

]
,

(32)

which relates to the expression from Chapter [27] as Σ̂Nµ(p) = Lµ(p)/2. We choose

this different normalization in order to highlight the symmetry of the internal (cut)

and external phase space of the CTP Feynman diagrams, as well as to make con-

nection with the discussion on ARS leptogenesis in the accompanying Chapter [14].

It is of interest to comment on the CP-odd combinations of Yukawa couplings

that appear in Eq. (30) and Eq. (31). The combination in Eq. (30) and in the first

term in round brackets in Eq. (31) arises due to lepton number violating contribu-

tions mediated by the Majorana mass M . In contrast, the second term in round

brackets in Eq. (31) is lepton number conserving but lepton flavor violating, where

the total lepton number conservation can be easily seen when taking the trace over

the flavor indices α and β of the charged leptons. Yet, lepton flavor violation in

the type I seesaw model is only mediated by the RH neutrinos. Therefore, the

different washout rates for the particular active lepton flavors (provided the latter

are distinguishable from rates that are mediated by SM Yukawa couplings) can lead

to a net lepton asymmetry even when starting only from the lepton number con-

serving contribution to the source. This has important consequences: Firstly, in

case lepton number violation is suppressed for some reason, flavor effects can still

lead to a sizable or even enhanced lepton asymmetry, as occurs for ARS leptogen-

esis, cf. the accompanying Chapter [14] on this topic. Secondly, since all the active
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lepton flavors are summed over, the trace of the lepton number violating source

is apparently independent of the weak basis transformation implied by the PMNS

matrix. Therefore, unflavored leptogenesis is independent of the Dirac and Majo-

rana phases in the PMNS matrix. In turn, once flavor effects are important, the

outcome of leptogenesis depends, in general, on the PMNS phases, but we should

be aware that extra “high-energy” phases will contribute [1–3]. For a decomposi-

tion of lepton number conserving versus lepton number violating sources in terms

of effective decay asymmetries, see Eq. (66) of the present chapter.

Finally, we turn to the last two terms in Eq. (26), which may be categorized as

lepton number conserving dissipative effects. Flavor-blind contributions are me-

diated by gauge interactions and are described by Γbl ∼ g4T , where g stands

collectively for the weak and weak-hypercharge couplings. The relative signs are

discussed carefully in Ref. [41]. The physical content is, however, that loss terms

in, say, leptons and their flavor correlations tend to be compensated by gain terms

from anti-leptons. This has an important consequence for the frustration of flavor

oscillations, which we discuss below. The leading flavor-sensitive term is evaluated

to be [41]

Γfl
`αβ = +

1

2
tr

∞∫
0

dk0

2π

∫
d3k

(2π)3

(
Cfl
`αβ(k) + Cfl†

`αβ(k)
)

= γfl
(
hαh

∗
γδn`γβ + δn†`αγhγh

∗
β − hαδnRαh

∗
αδαβ − hαδn

†
Rαh

∗
αδαβ

)
,

(33a)

Γ
fl

`αβ = − 1

2
tr

0∫
−∞

dk0

2π

∫
d3k

(2π)3

(
Cfl
`αβ(k) + Cfl†

`αβ(k)
)

= γfl
(
hαh

∗
γδn̄`γβ + δn̄†`αγhγh

∗
β − hαδn̄Rαh

∗
αδαβ − hαδn̄

†
Rαh

∗
αδαβ

)
,

(33b)

where no summation over α and β is performed.b This rate describes the direct

damping of the off-diagonal correlations because these appear in the loss terms while

the gain terms are diagonal in the flavor basis. Note that, in order to conserve

baryon-minus-lepton number in the SM sector, we have to supplement our network

of equations with one for the right-handed charged leptons, which can be considered

as a spectator process that we omit here for brevity. The relevant fluid equations

for the right-handed charged leptons are presented in Ref. [41]. The scattering

processes leading to flavor decoherence are dominated by thermal effects because

tree-level 1 ↔ 2 reactions among massless particles mediated by the SM Yukawa

bHere, we have taken the right-handed charged leptons to live in their flavor basis, which we can

always do without the need to rotate other couplings. This is, of course, different for the doublet
leptons, which have SM Yukawa coupling, as well as couplings to RH neutrinos, that cannot be

simultaneously diagonalized. A flavor-covariant description of the right-handed charged leptons is
presented in Ref. [41].
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couplings are kinematically suppressed. A logarithmic enhancement occurs due to

t channel divergences from fermion exchange that is regulated by Landau damping

and Debye screening. From these considerations, one can compute the rate [23]

γfl = γfl(φ)δ` + γfl(`)δ` + γfl(R)δ` + γfl
vertex

= 1.32× 10−3 × h2
tT + 3.72× 10−3 ×GT + 8.31× 10−4 ×G(logG−1)T

+ 4.74× 10−3 × g2
1T + 1.67× 10−3 × g2

1(log g−2
1 )T + 1.7× 10−3GT ,

(34)

where G = 1
2 (3g2

2 + g2
1). In the SM, one may take γfl = 5 × 10−3T , where a mild

dependence of the numerical factor on the temperature scale due to the running

couplings may be neglected in view of other uncertainties. Note that this value for

γfl coincides with what had been used in the literature before a detailed calculation

was available [1, 44].

We now turn our attention to the frustration of flavor oscillations. Close to

equilibrium, the term with Γbl = O(g4T ) imposes the constraint

δn`αβ = − δn̄`αβ . (35)

This means that gauge interactions force opposite chemical potentials, and this

condition generalizes to a matrix form in the presence of flavor coherences. Now,

due to the opposite sign for particles and anti-particles in the oscillation term of

the kinetic equations, Eq. (26), it turns out that a large Γbl effectively frustrates

flavor oscillations. To explain this, we consider the system of equations

d

dt
δg(t) = − i∆ω δg(t) − Γ

[
δg(t) + δḡ(t)

]
, (36a)

d

dt
δḡ(t) = + i∆ω δḡ(t) − Γ

[
δḡ(t) + δg(t)

]
. (36b)

For flavored leptogenesis, the order of magnitude of the parameters are as follows:

Γ = Γbl ∼ g4T , ∆ω ∼ h2
τ,µT � Γ , (37)

where we should take the τ or µ Yukawa coupling depending on which of these

dominates the mass splitting of the flavors under consideration. Since g4 � h2
τ,µ,

there are eigenmodes with short decay times τs = 1/(Γ +
√

Γ2 −∆ω2) ≈ 1/(2Γ)

and long decay times τl = 1/(Γ −
√

Γ2 −∆ω2) ≈ 2Γ/∆ω2. The corresponding

eigenvectors are

δgs,l = δg +
− i∆ω ±

√
Γ2 −∆ω2

Γ
δḡ ≈ δg ±

(
1∓ i∆ω

Γ

)
δḡ , (38)

with

δgs,l(t) = δgs,l(0) e−t/τs,l . (39)

The short mode δgs ≈ δg+δḡ thus rapidly approaches zero due to pair annihilations,

leading to an effective constraint

δg ∼ −
(

1− i∆ω
Γ

)
δḡ . (40)
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The opposite signs in front of the ∆ω term in Eq. (36) are crucial because they

imply that the source of the oscillations in

d

dt

[
δg(t) − δḡ(t)

]
= − i∆ω

[
δg(t) + δḡ(t)

]
, (41)

is damped due to the flavor-blind gauge interactions.

The interplay of the flavor-blind interactions with the flavored oscillation term

leads to the slow decay of the long mode. The rate for this effect is, however,

much smaller than the direct damping rate from flavor-dependent scatterings,

∆ωeff2
/Γbl ∼ h4

τ,µg
−4
2 T � Γfl ∼ g2

2h
2
τT , since hτ,µ � g3

2 . Therefore, it is a suitable

approximation to neglect the oscillations and the damping due to flavor-blind inter-

actions altogether, accounting only for the direct damping from flavor-dependent

scatterings. While, for leptogenesis, we are in the parametric regime where ∆ω � Γ

and flavor oscillations are overdamped and frustrated, this is not expected to be

true for general systems of flavor mixing at finite temperature, where flavor oscil-

lations and damping due to the interplay with flavor-blind scatterings mediated by

gauge interactions may be quantitatively important.

In conclusion, we have shown that the CTP framework leads to a fluid de-

scription in the form of Eq. (26), where the terms involving ∆ωeff and Γbl can be

neglected. In this approximation, we can then perform the obvious simplification

of taking the difference between the equations for δn` and δn̄` such that we ob-

tain a single equation for n∆` = δn` − δn̄`. At that stage, we have obtained then

fluid equations for the LH charged leptons that can be applied to the fully flavored

and unflavored, as well as intermediate regimes. The flavor damping Γfl leads to

the decay of off-diagonal correlations. Provided the damping is large, we obtain

the commonly used fully-flavored description by simply deleting the off-diagonal

components of the fluid equation.

3. Flavor phenomenology of leptogenesis in the

type I seesaw mechanism

In this section, we discuss the importance of flavor effects in minimal scenarios

of leptogenesis embedded within the type I seesaw scenario, wherein the SM La-

grangian is extended by introducing NN RH Majorana neutrinos that are assumed

to be produced thermally in the early Universe. Moreover, we highlight how lepto-

genesis can play an important role in testing high-energy seesaw models especially

when flavor effects are taken into account.

Assuming a hierarchical RH neutrino spectrum, if one neglects completely the

flavor composition of leptons produced by the decays of heavy RH neutrinos (unfla-

vored assumption), the dominant contribution to the final asymmetry comes from

the lightest RH neutrinos (N1-dominated scenario), barring a special region of pa-

rameter space where the next-to-lightest RH neutrinos’ contribution dominates

(N2-dominated scenario). On the other hand, when charged-lepton flavor effects

are taken into account, the region of parameter space where the next-to-lightest
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RH neutrinos’ contribution dominates gets significantly larger (N2-dominated sce-

nario). In some cases, the heaviest of the RH neutrinos, usually N3, might also give

a non-negligible contribution, as long as there is not a too strong mass hierarchy

suppressing their CP asymmetries.

The RH-neutrino Yukawa couplings λ and Majorana mass term M are such

that, after spontaneous symmetry breaking, we can write the neutrino mass terms

in a basis where both charged-lepton and Majorana mass matrices are diagonal (the

flavor basis):

− Lνm = νLαmDαiNRi +
1

2
N c
RiMiNRi + h.c. , (42)

where α ∈ {e, µ, τ}, i ∈ {1, . . . , N} and mD = v λ/
√

2 is the neutrino Dirac mass

matrix generated by the Higgs vev v. In the seesaw limit, M � mD, the mass

spectrum splits into a set of heavy (Majorana, almost RH) neutrinos Ni = NRi +

N c
Ri + (mD/M)(νLi + νcLi) with masses (almost) coinciding with the eigenvalues

Mi of the Majorana mass matrix and into a set of light (Majorana, almost LH)

neutrinos νi = νLi + νcLi − (mD/M)(NRi + N c
Ri) with masses given by the seesaw

formula

Dm = U†ν mDM
−1mT

D U
∗
ν , (43)

where the diagonalizing matrix Uν is the leptonic mixing (PMNS) matrix and we

have defined Dm ≡ diag(m1,m2,m3).

Neutrino mixing experiments measure two mass-squared differences. For the

atmospheric neutrino mass scale, global analyses find [45] matm ≡
√
m 2

3 −m 2
1 =

(50.5 ± 0.04) meV, and for the solar neutrino mass scale msol = (8.6 ± 0.1) meV,

defined as msol ≡
√
m 2

2 −m 2
1 for normally-ordered neutrino masses (NO) and as

msol ≡
√
m 2

3 −m 2
2 for inverse-ordered neutrino masses (IO), where we are adopting

the convention m1 ≤ m2 ≤ m3. See the accompanying Chapter [46] for a review of

the current status of the data on neutrino masses and lepton mixing.

For NO, the leptonic mixing matrix can be parametrized in the usual way in

terms of three mixing angles θ12, θ23 and θ13, one CP-violating Dirac phase δ, and

two CP-violating Majorana phases α and β:

Uν =

 c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13

s12 s23 − c12 c23 s13 e
iδ −c12 s23 − s12 c23 s13 e

iδ c23 c13

 diag
(
1, eiα, eiβ

)
.

(44)

In order to account for different orderings, it is convenient to relabel the neutrino

masses in a way that m′1 < m′2 < m′3 with 1′ = 1 , 2′ = 2 and 3′ = 3 for NO, and

1′ = 3, 2′ = 1 and 3′ = 2 for IO. In this primed basis, the leptonic mixing matrix

for IO changes as

U (IO)
ν = U (NO)

ν

 0 1 0

0 0 1

1 0 0

 . (45)
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However, in order to simplify the notation, we will omit the primed indexes. Global

analyses of results from the neutrino oscillation experiments find the following best

fit values (1σ errors and 3σ intervals) for the mixing angles and the leptonic Dirac

phase δ in the case of NO [45]:

θ13 = 8.45◦ ± 0.15◦ [8.0◦, 9.0◦] , (46a)

θ12 = 33◦ ± 1◦ [30◦, 36◦] , (46b)

θ23 = 41◦ ± 1◦ [38◦, 51.65◦] , (46c)

δ = − 0.62π ± 0.2π [− 1.24π, 0.17π] . (46d)

It is interesting that there is already an excluded interval δ /∈ [0.17π, 0.76π] at 3σ

and that sin δ ≥ 0 is excluded at 2σ, favouring sin δ < 0 (in Ref. [47], a lower

statistical significance is found). A confirmation of the exclusion of sin δ = 0 would

imply the discovery of CP violation in neutrino oscillations, a very interesting (and

favourable) result for leptogenesis; we will come back to this point. There are no

experimental constraints on the Majorana phases α and β.

There is no signal from neutrinoless double beta (0νββ) decay experiments,

and this therefore places an upper bound on the effective 0νββ neutrino mass

mee ≡ |mνee|. Currently, the most stringent reported upper bound comes from

the KamLAND-Zen collaboration, finding mee ≤ (61–165) meV at 90% C.L. [48]

(for other recent results, see Refs. [49–51]), where the range accounts for nuclear

matrix element uncertainties (see the discussion in Chapter [46]).

Cosmological observations place an upper bound on the sum of the neu-

trino masses. The Planck Collaboration obtains a robust stringent upper bound∑
imi . 170 meV at 95%C.L. [52] that, taking into account the experimental

determination of the solar and atmospheric neutrino mass scales from neutrino-

oscillation experiments, translates into an upper bound on the lightest neutrino

mass m1 . 50 (42) meV for NO (IO).

3.1. Vanilla leptogenesis

We will be particularly interested in phenomenological scenarios where the asym-

metry is produced in the so-called strong washout regime. This occurs when the

RH-neutrino inverse decays are in equilibrium during a certain interval of temper-

atures [Tin, Tout] centred approximately about T ∼ Mi, efficiently washing out any

asymmetry produced while T & Tout [53]. Moreover, if one assumes a hierarchical

RH-neutrino spectrum or is, in any case, not in the resonant regime, and if flavor ef-

fects are neglected, one obtains an N1-dominated scenario for most of the parameter

space. In this case, the asymmetry can be described to a reasonable approximation

by a very simple set of Boltzmann rate (i.e. momentum-integrated) equations (see
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the accompanying Chapter [27] for more details):

dYN1

dz
= −D1 (YN1

− Y eq
N1

) , (47a)

dYB−L
dz

= − ε1D1 (YN1
− Y eq

N1
) − [∆W (z) +W ID

1 (z)]YB−L , (47b)

written here in terms of the yieldsc

YN1
≡ nN1

s
and YB−L =

∑
α

Y∆α
, (48)

where

Y∆α
≡ Y∆B/3−Lα =

1

3
Y∆B − Y∆`α − Y∆eRα , (49)

s = 2π2g∗T
3/45 is the entropy density of the g∗ effective degrees of freedom and we

have defined z ≡M1/T . The N1 total CP asymmetry ε1 is defined as

ε1 ≡
Γ1 − Γ̄1

Γ1 + Γ̄1
, (50)

where Γ1 ≡
∑
α Γ1α is the N1 decay rate into leptons and Γ̄1 ≡

∑
α Γ̄1α is the

N1 decay rate into anti-leptons and we have defined Γ1α ≡ Γ(N1 → `αφ) and

Γ̄1α ≡ Γ(N1 → ¯̀
αφ̄). A perturbative calculation from the interference of tree-level

with one-loop self-energy and vertex diagrams gives [54]

ε1 =
1

8π

∑
j 6= 1

Im
[
(λ†λ)2

1j

]
(λ†λ)11

ξ

(
1,
M2
j

M2
1

)
, (51)

where

ξ(b, x) =
√
x

[
1 +

b

1− x
− (1 + x) ln

(
1 + x

x

)]
. (52)

The (dimensionless) decay term D1 and the washout term from inverse decays W ID
1

are given respectively by

D1(z) ≡ Γ1 + Γ̄1

H z
= K1 z

〈
1

γ1

〉
(53)

and

W ID
1 (z) ≡ 1

2

ΓID
1 + Γ̄ID

1

H z
=

1

4
K1K1(z) z3 , (54)

where K1 is the total decay parameter defined as

K1 ≡
(Γ1 + Γ̄1)T = 0

HT =M1

, (55)

cAn alternative and simplifying option to variables YX is to normalize the abundance of any quan-
tity X to the number of RH neutrinos in ultra-relativistic equilibrium, defining NX ≡ nX/neq

N (z �
1). The two definitions are related by

NX(z) =
g∗

gN1

8π4

135ζ(3)
YX(z) =

YX(z)

Y eq
N1

(z = 0)
.
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with H being the expansion rate of the Universe. Finally, the averaged dilution

factor, in terms of the modified Bessel functions of the second kind, is given by

〈1/γ1〉 = K1(z)/K2(z).

The final B − L asymmetry is simply given by

Y∞B−L = −Y eq
N1

(0) ε1 κ
∞(K1,m1) , (56)

where κ∞(K1,m1) is the total final efficiency factor that can be calculated in the

case of an initial thermal N1 abundance as

κ∞(K1,m1) ' κ(K1,m1) ≡ κ(K1) exp

[
− ω

zB

M1

1010 GeV

∑
im

2
i

eV2

]
, (57)

with

κ(K1) ≡ 2

K1 zB(x)

[
1− exp

(
− 1

2
K1 zB(K1)

)]
(58)

and ω ' 0.186. The exponential term is an effect of the ∆L = 2 washout term

∆W . In the case of an initially vanishing N1 abundance, the expression is more

complicated and is the sum of a negative and a positive contribution. In any case, in

the strong washout regime, realised for K1 & 3, there is no dependence on the initial

N1 abundance. This is because the asymmetry is generated within quite a narrow

interval of temperatures centred at Tlep ≡M1/zB1, where zB1 ≡ zB(K1) = O(0.1),

when the RH neutrinos are fully non-relativistic. All the asymmetry generated at

higher temperatures, in the relativistic regime, and depending on the initial N2-

abundance, is efficiently washed out [55]. This strongly reduces the theoretical

uncertainties, since, in the relativistic regime, many different effects, most of which

are not well under control, have to be taken into account in the calculation of the

asymmetry.

Finally, the baryon-to-photon number ratio can be calculated in a very simple

way from the the final B − L asymmetry:

ηB = asph

n∞B−L
nrec
γ

' 0.01
Y∞B−L
Y eq
N1

(0)
, (59)

where asph ' 1/3 is the fraction of B−L asymmetry that goes into a baryon asym-

metry when sphaleron processes [56] are in equilibrium (occurring approximately in

the temperature range 1012 GeV & T & 100 GeV). For successful leptogenesis, the

result obtained for ηB must reproduce the experimental value extracted from CMB

temperature anisotropies. The Planck Collaboration has recently found [57]

ηCMB
B = (6.10± 0.04) × 10−10 . (60)

An interesting feature of this simple picture is that both the RH-neutrino abundance

and the washout of the asymmetry are described just by the efficiency factor. This

depends only on the decay parameter K1 and, quite interestingly, on the neutrino

masses, which can be parametrized entirely in terms of m1, when the measured
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values of the mass-squared differences are combined. The total decay parameter

can then be re-expressed in terms of the Dirac mass matrix as

K1 =
(m†DmD)11

M1m?
=

m̃1

m?
, (61)

where m̃1 ≡ (m†DmD)11/M1 is the effective neutrino mass and

m? ≡
16π5/2√g∗

3
√

5

v2

MPl
' 1.08 meV (62)

is the equilibrium neutrino mass. For most of the seesaw parameter space and

barring fine-tuned cancellations in the seesaw formula, one has m̃1 ' msol – matm

corresponding to K1 ∼ 10 – 50. For these values of K1, most of the produced

asymmetry is washed out, since one has κ(K1) ∼ 1/K1.2
1 ∼ 10−3 – 10−2. However,

successful leptogenesis can still be attained for |ε1| ∼ 10−6 – 10−5. At the same

time, for these large values of K1, the value of κ(K1) is independent of the initial

N1 abundance. They also imply a washout of a pre-existing asymmetry Y pre,0
B−L as

large as ∼ 1, since its relic final value is given by

Y pre,∞
B−L = e−

3π
8 K1 Y pre,0

B−L , (63)

which is therefore exponentially suppressed. This result is due to the interesting

experimental finding msol,matm ∼ 10m?, a coincidence that might be regarded

as a phenomenological indication of strong thermal leptogenesis, wherein the final

asymmetry is independent of the initial conditions. Notice that any asymmetry

generated by the heavier RH neutrinos, and in particular by the N2’s, will be

exponentially washed out and can be neglected.

Barring fine-tuned cancellations in the seesaw formula, one obtains the upper

bound [58]

|ε1| . 10−6 M1

1010 GeV

matm

m1 +m3
. (64)

This upper bound on the CP asymmetry implies an upper bound on the fi-

nal asymmetry, and the condition of successful leptogenesis yields a lower bound

M1 & 109 GeV [58, 59]. A more precise value depends on the assumed initial N1

abundance. In the case of strong washout, for K1 & 3, there is no such dependence,

and one finds M1 & 3 × 109 GeV. The lower bound on M1 implies a lower bound

on the reheat temperature of the Universe Treh & 1 × 109 GeV. Within gravity-

mediated supersymmetric models, this lower bound might be incompatible with

the upper bound from avoidance of gravitino over-production [60–62]. However,

the latest constraints on supersymmetric models from the LHC strongly relieve the

tension, since they favor large values of the gravitino mass above a TeV, making the

upper bound more relaxed, Treh . 1010 GeV, and reconcilable with thermal lepto-

genesis. Allowing for very strong fine-tuning in the seesaw relation, the lower bound

can be relaxed if M2 6= M3 due to an extra term in the the total CP asymmetry

that does not respect the upper bound Eq. (64) and that is suppressed by a factor

(M1/M2)2 [63, 64].
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3.2. Flavor effects in the N1-dominated scenario

The vanilla leptogenesis scenario and the rate equations in Eq. (47a) and Eq. (47b)

rely on the implicit assumption that leptons produced from the decays of the RH

neutrinos do not lose their coherence in flavor space prior to inverse decays that

would otherwise fully wash out the asymmetry produced by the decays. If one

depicts the asymmetry produced in the decays in the flavor space of the three

charged leptons, this is equivalent to saying that decays and inverse decays all

occur along one definite flavor direction, and flavor effects are, therefore, absent in

practice. This is the unflavored approximation.d

However, this picture is highly over-simplified, and a proper account of flavor ef-

fects can strongly affect the final value of the asymmetry. Within the N1-dominated

scenario, the source of flavor effects is given by the interactions of the charged lep-

tons [1, 65], described by −L`Y = h ¯̀φ eR. It results from the fact that the charged-

lepton and neutrino Yukawa coupling matrices, respectively h and λ, are, in general,

not diagonal in the same basis. Therefore, charged-lepton interactions occurring be-

tween decays and inverse decays will tend to break the coherent propagation of the

leptons produced in N1 decays before their inverse decays [55]. Charged-lepton

interactions are, of course, strongly flavor-dependent, since the eigenvalues of h

are very hierarchical: hτ � hµ � he. This implies that tau interactions, with

rate Γτ ' 8 × 10−3 h2
τ T are the strongest ones and are effective when Γτ & ΓID

for M1 . 5 × 1011 GeV. On the other hand, muon interactions are effective for

Γµ ' 10−3 h2
τ T & ΓID, implying M1 . 5 × 108 GeV. In this way, we have three

important flavor regimes, determined by the mass of the lightest RH neutrino M1,

as follows.

3.2.1. Unflavored regime: M1 � 5× 1011 GeV

As discussed earlier, all charged-lepton interactions can be neglected. One then

recovers the unflavored regime, where charged-lepton effects have negligible impact.

3.2.2. Two-flavor regime: 5× 108 GeV�M1 � 5× 1011 GeV

Leptons of type `1, produced by the N1 decays, can be described in their inverse

decay as an incoherent mixture of a τ component and an e + µ component, which

we indicate by τ⊥1 . The flavor composition is then determined by the probabilities

P1α ≡ |〈`1|α〉|2, with α = τ, τ⊥1 and such that P1τ + P1τ⊥
1

= 1. One can do the

same for the anti-leptons, introducing probabilities P̄1α. At tree level, the `1 and
¯̀
1 quantum states are CP-conjugates of each other. However, when loop effects are

considered, one has P1α 6= P̄1α.
dThis is sometimes called the one-flavored approximation. However, this can be misleading, es-

pecially when heavy-neutrino flavors are introduced, and we prefer to refer to it as the unflavored
approximation. Also notice that in the limit of no washout, corresponding to the case when inverse

decays are never in equilibrium, there is no real difference between an unflavored description and
a flavored one.
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The yields for the asymmetry in the two flavors τ and τ⊥1 , respectively Y∆τ
and

Y∆
τ⊥1

, have to be tracked separately, and we enter a so-called two-flavor regime. If

we indicate the tree-level probabilities with P 0
1α, their inverse-decay washout term

is then reduced, compared to W ID
1 , by a factor P 0

1α = (Γ1α + Γ̄1α)/(Γ1 + Γ̄1). The

kinetic equation for the total asymmetry in the unflavored regime, Eq. (47b), is now

replaced by two equations: one for Y∆τ
and one for Y∆

τ⊥1
. The RH-neutrino kinetic

equation remains unchanged, and the relevant set of Boltzmann equations is

dYN1

dz
= −D1 (YN1

− Y eq
N1

) , (65a)

dY∆τ

dz
= − ε1τ D1 (YN1

− Y eq
N1

) − P 0
1τ W1 Y∆τ

, (65b)

dY∆
τ⊥1

dz
= − ε1τ⊥

1
D1 (YN1

− Y eq
N1

) − P 0
1τ⊥

1
W1 Y∆

τ⊥1
, (65c)

where we have introduced the flavored CP asymmetries (α = e, µ, τ), given by [54]

ε1α =
1

8π(λ†λ)11

∑
j 6= 1

{
Im
[
λ∗α1λαj(λ

†λ)1j

]
ξ

(
1,
M2
j

M2
1

)

+
M2

1

M2
1 −M2

j

Im
[
λ∗α1λαj(λ

†λ)j1

]}
, (66)

and defined ε1τ⊥
1
≡ ε1e + ε1µ and P 0

1τ⊥
1
≡ P 0

1e + P 0
1µ.e The loop function ξ(b, x)

is defined in Eq. (52) (see also Chapter [27]). If the `1 and ¯̀
1 quantum states

were simply CP-conjugates of each other, the flavored CP asymmetries would just

be given by ε1α = P 0
1α ε1. As mentioned above, this holds at tree level, but loop

contributionsf generate a mismatch [2] ∆P1α ≡ P1α − P̄1α, so that the flavored CP

asymmetries get additional contributions. We then have

ε1α =
P1α + P̄1α

2
ε1 +

∆P1α

2
(67)

and note that ∆P1τ + ∆P1τ⊥
1

= 0.

The solution for the final asymmetry is a quite trivial generalization of the result

obtained in the unflavored case (see Sec. 3.1). One has

Y∞B−L = Y∞∆τ
+ Y∞∆

τ⊥1
, (68)

with Y∆τ
/Y eq

N1
(0) ' − ε1τ κ(K1τ ) and Y∆

τ⊥1
/Y eq

N1
(0) ' − ε1τ⊥

1
κ(K1τ ). Barring fine-

tuning in the seesaw formula, the total final asymmetry can then be written as [64]

Y∞B−L/Y
eq
N1

(0) ' −Nfl ε1 κ(K1) +
∆P1τ

2

[
κ(K1τ⊥

1
)− κ(K1τ )

]
, (69)

where Nfl is an effective number of flavors with value between 1, when there is no

washout at all (K1 � 1) and the unflavored result is recovered, and 2, the number
eSince ε1 =

∑
α ε1α, one can indeed verify that the expression for ε1 in Eq. (51) is recovered after

summing over α in Eq. (66).
fThey must necessarily be considered, since the CP asymmetries are generated by the interference
of tree-level and one-loop graphs. One would, of course, have ε1 = ε1α = 0 at tree level.
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of flavors. This expression shows that large deviations from the unflavored case can

arise only in the presence of washout, if ∆P1α 6= 0 and κ(K1τ⊥
1

) − κ(K1τ ) 6= 0.

For this reason, the lower bound on M1 and on Treh in the limit of no washout

are not changed by flavor effects. It should also be said that, allowing for some

fine-tuning in the seesaw formula, the flavored CP asymmetries can be enhanced

by unbounded extra terms that are suppressed by M1/M2. With some mild fine-

tuning, and without a too strongly hierarchical spectrum, one can relax the lower

bounds on M1 and on Treh to ∼ 108 GeV [64].

The most extreme case of deviation from the unflavored case is realised when

ε1 = 0, implying conservation of total lepton number [2]. Even in this case, if the

second term is large enough, one can attain successful leptogenesis [4, 5, 66–70].

The CP violation then stems uniquely from low-energy phases, although certain

conditions on the high-energy parameters still have to be verified. Therefore, the

measurement of CP-violating values of low-energy phases is not a sufficient (nor

a necessary) condition for successful leptogenesis. However, the discovery of CP

violation at low energies, in particular of a CP-violating value of the Dirac phase, as

now supported by the data, would, of course, be a very important conceptual result,

not least of all because CP violation at low energies is, in general, accompanied by

CP violation at high energies.g

3.2.3. Three-flavor regime: M1 � 5× 108 GeV

In this case, the muon interaction rate is large enough at the asymmetry production

that also the leptonic quantum states τ⊥1 produced by the N1 decays decohere before

they inverse decay. One therefore has to calculate separately the electron asymmetry

Y∆e and the muon asymmetry Y∆µ in addition to the tau asymmetry Y∆τ , thereby

realising a three-flavor regime.

The set of kinetic equations are easily generalized and will comprise three ki-

netic equations: one for each flavor asymmetry Y∆α
. However, in this case, the

asymmetries are, barring a quasi-degenerate RH-neutrino spectrum or fine-tuning

in the seesaw formula, too small to have successful leptogenesis. For this reason,

the two-flavor regime is, in general, more significant.h

3.3. Density matrix equation

The unflavored regime and the two-(or three-)flavor regimes are asymptotic limits of

a more general physical picture where, at the inverse decay, not all leptonic quantum
gImposing a discrete flavor symmetry, this would not be true: one could have CP-violating values

of the low-energy phases with no CP violation at high energies. However, a flavor symmetry has
to be broken, and even a very small breaking would be sufficient to generate enough CP violation

at high energies to produce the correct asymmetry. Implications of flavor and CP symmetries in
leptogenesis are discussed in detail in Chapter [46].
hIn a supersymmetric case, the transition between the two- and the three-flavor regimes occurs
at M1 ' 5 × 108 (1 + tan2 β) GeV [1]. One can then have successful leptogenesis even in the

three-flavor regime.
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states |`1〉 are either a coherent superposition or an incoherent admixture but there

is a coexistence of both states. In this intermediate regime, a useful statistical

description is provided by a density matrix equation [1, 6, 41, 65, 71]. In this

more general approach, all abundances are replaced by matrices in (charged-lepton)

flavor space. The density matrix equation is then flavor invariant upon rotations in

(charged-lepton) flavor space (see the discussions in Sec. 4.1). In the limit where one

interaction dominates over all others in flavor space, the density matrix equation

asymptotically reproduces the Boltzmann equations that we discussed above. In

the intermediate regime, it manages to give a description of the transition between

two different flavor regimes. For example, we can consider the important transition

between the unflavored and the two-flavor regimes. In this case, the only charged-

lepton interactions that we can consider are the tau interactions.

When gauge interactions are taken into account, they force the matrix for the

sum of leptons and anti-leptons to be given approximately by Y `+
¯̀

αβ = 2Y eq
` δαβ .

This leads to the following (closed) equation for the B − L density matrix [65, 71]

d[YB−L]αβ
dz

= − ε
(1)
αβ D1 (YN1

− Y eq
N1

) − 1

2
W1

{
P0(1), YB−L

}
αβ

− Γτ
H z

[σ1]αβ [YB−L]αβ , (70)

specialized in the (two) charged-lepton flavor basis τ − τ⊥1 . In this equation, ε
(1)
αβ is

the CP asymmetry matrix for N1 decays that feeds the source term, P0(1)
αβ is the

tree-level flavor projector along the `1 direction and σ1 is the Pauli matrix.

As expected, the two-flavor regime is recovered in the limit Γτ/(Hz)�W1 (or,

equivalently, Γτ � ΓID
1 +Γ̄ID

1 ), when all leptons `1 experience a tau interaction before

inverse decaying. In this limit, the third term on the right-hand side of Eq. (70)

efficiently damps the off-diagonal terms, and one immediately recovers the kinetic

equations, Eq. (65).

The unflavored limit is more tricky, and there is even an interesting twist. First

of all, one can neglect tau lepton interactions. This is equivalent to neglecting the

term ∝ Γτ in Eq. (70). The density matrix equation in the unflavored limit then

becomes

d[YB−L]αβ
dz

= − ε(1)
αβ D1 (YN1

− Y eq
N1

) − 1

2
W1

{
P0(1), YB−L

}
αβ

. (71)

Taking the trace of this equation, one immediately finds the usual equation for

YB−L in the unflavored regime, Eq. (47b).

At the same time, after some easy steps, one can also find an equation for the

difference

d
(
Y∆ττ − Y∆

τ⊥1 τ⊥1

)
dz

= − ∆P1τ D1 (YN1 − Y
eq
N1

)

− 1

2
W1

(
Y∆ττ − Y∆

τ⊥1 τ⊥1

)
, (72)
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with solution

Y∆ττ
− Y∆

τ⊥1 τ⊥1
= −Y eq

N1
(0) ∆P1τ κ(K1/2) , (73)

so that, for the leptonic asymmetries, one has

Y∞∆ττ
' P 0

1τ Y
∞
B−L −

1

2
Y eq
N1

(0) ∆P1τ κ(K1/2) , (74a)

Y∞∆
τ⊥1 τ⊥1

' P 0
1τ⊥

1
Y∞B−L +

1

2
Y eq
N1

(0) ∆P1τ κ(K1/2) . (74b)

The second terms on the right-hand sides of the two expressions are the so-called

phantom terms. In the N1-dominated scenario, with no further dynamical stage

after the N1 production, they cannot leave any detectable trace since they cancel

out in the final YB−L and, therefore, in ηB . However, as we will discuss in the next

subsection, when heavy-neutrino flavor effects are also taken into account, their

exact cancellation at the production can be removed afterwards. In this case, they

would give a contribution to the final expression for the baryon asymmetry.

3.4. Flavor coupling

In the Boltzmann equations for the flavored regimes in Sec. 3.2, the evolution of the

flavored asymmetries is independent of each other. For example, in the case of the

N1-dominated and two fully-flavored regime, one has that the equations for Y∆τ

and Y∆
τ⊥1

are decoupled (see Eq. (65)). The dynamics of the two asymmetries are

then independent of one another, and one can say that the two flavors are thermally

uncoupled.

There are, however, different effects (spectator processes) that are able to couple

the dynamics of the two flavors [64, 65, 72, 73]. The most important one is the Higgs

asymmetry. Since the Higgs doublet carries hypercharge, the φ’s couple to leptons

and the φ̄’s couple to anti-leptons. On the other hand, the Higgs asymmetry is

clearly unflavored.

Suppose, for example, that the asymmetry is entirely produced in the tau flavor

and not in the τ⊥1 flavor. The asymmetry created in the former will necessarily

be accompanied by an opposite Higgs asymmetry. This, however, through inverse

decays, will then necessarily induce an asymmetry also in the τ⊥1 flavor, even though

we have assumed that there is no source term in this flavor. Therefore, the Higgs

asymmetry couples the dynamics of the two flavors, thereby realising a kind of

thermal contact between them such that the asymmetry in one flavor induces an

asymmetry in the other flavor. In addition to the Higgs asymmetry, one has also

to consider that sphaleron processes are able to transfer the asymmetry initially

injected into lepton doublets and Higgs bosons to all other particles, including

quarks (indeed creating a baryon asymmetry). A lepton asymmetry created in a

specific flavor can then induce asymmetries in the other flavors through baryon

asymmetries, analogously to what we have seen for the Higgs asymmetry.
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It should be noticed how, in this case, the inverse decays, which have so far

only played the role of washout processes, can actually generate an asymmetry

in one flavor, although this is possible only if there is a source term injecting an

asymmetry in another flavor from the start. The Boltzmann equations in the two-

flavor regime, Eq. (65), then get modified in the following way:

dYN1

dz
= −D1 (YN1

− Y eq
N1

) , (75a)

dY∆
τ⊥1

dz
= − ε1τ⊥

1
D1 (YN1

− Y eq
N1

) − P 0
1τ⊥

1
W1

∑
α= τ⊥

1 ,τ

C
(2)

τ⊥
1 α

Y∆α
, (75b)

dY∆τ

dz
= − ε1τ D1 (YN1

− Y eq
N1

) − P 0
1τ W1

∑
α= τ⊥

1 ,τ

C(2)
τα Y∆α

. (75c)

The flavor coupling matrix C(2) is given by the sum of two contributions,

Cαβ = C`αβ + Cφαβ , (76)

the first one connecting the asymmetry in the lepton doublets and the second con-

necting the asymmetry in the Higgs bosons. It relates the asymmetries stored in

the lepton doublets and Higgs bosons to the Y∆α
’s, and one can see how it acts in

a way that the asymmetry in a flavor β 6= α influences the asymmetry α through

the washout terms. Imposing chemical equilibrium conditions among the different

asymmetries, one finds

C`(2) =

(
417/589 − 120/589

− 30/589 390/589

)
and Cφ(2) =

(
164/589 224/589

164/589 224/589

)
, (77)

whose sum yields

C(2) ≡

(
C

(2)

τ⊥
1 τ

⊥
1

C
(2)

τ⊥
1 τ

C
(2)

ττ⊥
1

C
(2)

τ⊥
1 τ

⊥
1

)
=

(
581/589 104/589

194/589 614/589

)
. (78)

In the three-flavor regime, the Boltzmann equations for each flavored asymmetry,

taking into account the flavor coupling matrix, become

dY∆α

dz
= − ε1αD1 (YN1

− Y eq
N1

) − P 0
1α

∑
β= e,µ,τ

C
(3)
αβ W

ID
1 Y∆β

. (79)

The flavor coupling matrices in the three-flavor regime are given by

C`(3) =

 151/179 − 20/179 − 20/179

− 25/358 344/537 − 14/537

− 25/358 − 14/537 344/537

 (80)

and

Cφ(3) =

 37/179 52/179 52/179

37/179 52/179 52/179

37/179 52/179 52/179

 , (81)
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whose sum yields

C(3) ≡

C
(3)
ee C

(3)
eµ C

(3)
eτ

C
(3)
µe C

(3)
µµ C

(3)
µτ

C
(3)
τe C

(3)
τµ C

(3)
ττ

 =

 188/179 32/179 32/179

49/358 500/537 142/537

49/358 142/537 500/537

 . (82)

In an N1-dominated scenario, the correction to the final asymmetry from accounting

for flavor coupling is at most 40% [74]. We will see, however, that the modification

introduced by flavor coupling can be much larger in an N2-dominated scenario, and

it can even make completely new regions of parameter space accessible.

3.5. Heavy-neutrino flavors

The impact of charged-lepton flavor effects on the N1-dominated scenario is quite

important, but, in different cases, it only provides a correction, as we discussed

following Eq. (69). For example, the lower bounds on M1 and Treh in the N1-

dominated scenario do not change. The reason is that they are saturated in the limit

of no washout, when flavor effects are irrelevant. However, when heavy-neutrino

flavor effects are also considered, their interplay opens up many new opportunities

for leptogenesis scenarios, some of which can be realised within certain categories

of models embedding the type I seesaw mechanism.

The first clear consequence of heavy-neutrino flavor effects is that the final asym-

metry receives a contribution from the decays of the different RH neutrino species.

If we consider for definiteness the case of three RH neutrino species, one can sim-

ply write ηB =
∑
i=1,2,3 η

(i)
B . The first thing to notice is that each contribution

is non-vanishing only if the mass Mi . z
(i)
B Treh, where z

(i)
B is the particular value

of Mi/Treh about which the asymmetry is generated. From this point of view, a

straightforward condition that can be imposed for the validity of the N1-dominated

scenario is to have M2 & Treh. However, in general, the next-to-lightest RH-neutrino

mass M2 is below the reheat temperature and, in this case, the N2’s are also pro-

duced in the thermal bath and can potentially contribute to the final asymmetry.

As we said, if charged-lepton flavor effects are neglected, the N2 contribution

would be exponentially suppressed by the N1 washout as exp(−3πK1/8) and since,

given the measured values of msol and matm, one typically has K1 � 1, the possibil-

ity to have an N2-dominated scenario is relegated to a special region of parameters

in which K1 . 1 [75]. There is, however, an important caveat to this result. If

the N1 washout occurs at temperatures T ∼ M1 . T out
sph , where T out

sph is the out-of-

equilibrium temperature of sphaleron processes, it has no effect, since it will wash

out the lepton asymmetry but not the baryon asymmetry [76]. This is a possibility

to be taken into account. However, even in the case M1 & T off
sph, when charged-

lepton flavor effects are considered, the washout from the lightest RH neutrino does

not necessarily act along the flavor where the asymmetry is produced, and some

part might survive and contribute to the observed asymmetry (or even explain it).

First, suppose that M1 � 5 × 108 MeV. In this case, the N1 washout acts

along the three (orthogonal) charged-lepton flavor directions. One has then to
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consider separately the asymmetry produced in the three charged-lepton flavors,

obtaining [77]

Y∞B−L =
∑
α

Y∆α(T &M1) e−
3π
8 K1α , (83)

where Y∆α
(T &M1) are the flavored asymmetries produced prior to the N1

washout. One can see that the exponential suppression of the three terms is given

by the flavored decay parameters that can be much more easily . 1 than the total

decay parameter K1 =
∑
αK1α. In this way, the asymmetry produced before the

lightest RH-neutrino washout can more easily survive in a particular flavor.

If both the production of the asymmetry and the N1 washout occur in the same

flavor regime and above 5×108 GeV, i.e. either in the unflavored or in the two-flavor

regimes, then there is another effect to be considered that reduces the effectiveness

of the N1 washout: the projection effect [65, 78]. This will only act along the flavor

component that is parallel either to `1, in the unflavored regime, or to `τ⊥
1

, in the

two-flavor regime. The asymmetry in the orthogonal flavor to `1 or τ⊥1 cannot be

washed out. Both effects have then to be taken into account.

Within a density matrix formalism, accounting for heavy-neutrino flavor effects

basically corresponds to having interactions acting on additional flavor directions.

The density matrix equation, Eq. (70), then generalizes to [71]

d[YB−L]αβ
dz

= − ε(1)
αβ D1 (YN1

− Y eq
N1

) − 1

2
W1

{
P(1)0, YB−L

}
αβ

− ε
(2)
αβ D2 (YN2 − Y

eq
N2

) − 1

2
W2

{
P(2)0, YB−L

}
αβ

− ε
(3)
αβ D3 (YN3 − Y

eq
N3

) − 1

2
W3

{
P(3)0, YB−L

}
αβ

− Γτ

1 0 0

0 0 0

0 0 0

 ,

1 0 0

0 0 0

0 0 0

 , YB−L


αβ

− Γµ

0 0 0

0 1 0

0 0 0

 ,

0 0 0

0 1 0

0 0 0

 , YB−L


αβ

, (84)

where we have extended the definitions of all quantities introduced for N1 to the two

heavier RH neutrinos N2 and N3. Clearly, in a general case, all terms on the right-

hand side compete with each other in making lepton quantum states collapse along

a particular direction in flavor space and its orthogonal one. However, assuming a

hierarchical RH-neutrino spectrum, the different stages of asymmetry production

and washout from each RH neutrino species occur sequentially, proceeding from the

heaviest to the lightest one.

In this case, the equation now has different possible limits described by different

sets of Boltzmann equations. Each limit is realised differently, depending on how

the set of values {M1,M2,M3} is arranged in the three different flavor regimes

(unflavored, two-flavor and three-flavor):
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(a) There are three different cases for both N1 and N2 in the three-flavor regime

(M2,M1 � 5× 108 GeV).

(b) One has three more cases for only N1 in the three-flavor regime (M1 �
5 × 108 GeV). This is the N2-dominated scenario to which we will give

special consideration in the next subsection.

(c) There are three cases for the lightest RH neutrino in the two-flavor regime

with 5× 1011 GeV�M1 � 5× 108 GeV.

(d) Finally, there is the case when all three RH neutrinos are in the unflavored

regime, with Mi � 5× 1011 GeV.

3.5.1. N2-dominated scenario and strong thermal leptogenesis

Out of all these 10 possible mass patterns, the three in (b) have a special interest.

The asymmetry produced from N1 is insufficient to reproduce the observed value

and, therefore, this has to be reproduced by the next-to-lightest RH neutrinos. The

two scenarios with N2 in the two-flavor regime are the only ones that can realise

strong thermal leptogenesis, where the final asymmetry is independent of the initial

conditions. Within the unflavored assumption, as we discussed, the only condition

one has to impose is simply K1 � 1, and this is strongly supported by the neutrino

mixing data, since msol,matm ∼ 10m?. However, when flavor effects are considered,

a possible large pre-existing asymmetry can now avoid more easily the washout from

the RH neutrinos. An easy way to wash out a large pre-existing asymmetry in all

three flavors is to have N1 in the three-flavor regime and all three K1α � 1 [78].

However, in this way, one cannot attain successful leptogenesis, since the lightest

RH-neutrino production is insufficient and the asymmetry from the two heavier RH

neutrinos is also washed out together with the pre-existing one.

The only possibility to achieve successful strong thermal leptogenesis is within

a tau N2-dominated scenario [79]. In this case, a pre-existing tau asymmetry is

washed out by N2 inverse decays already in the two-flavor regime (requiring K2τ �
1), when the tau flavor is already detected. At the end of the N2-washout stage, the

N2 out-of-equilibrium decays produce a tau asymmetry, which is the one that must

reproduce the observed asymmetry. Finally, at the N1 washout, the pre-existing

electron and muon asymmetries are also washed out (requiring K1µ,K1e � 1),

while the tau asymmetry produced by the N2-decays survives (requiring K1τ . 1)

and explains the observed baryon asymmetry.

As we will see, this seemingly special set of conditions for successful strong

thermal leptogenesis can be realised within a well-motivated class of models. More-

over, it is interesting that it implies a lower bound on the lightest neutrino mass

m1 & 10 meV [80], with the precise value depending logarithmically on the initial

value of the pre-existing asymmetry.

Within the N2-dominated scenario, with 5× 1011 GeV�M2 � 5× 108 GeV�
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M1, if one neglects flavor coupling, the final asymmetry can be calculated using

Y∞B−L =
∑

α= e,µ,τ

Y∞∆α
, (85)

with

Y∞∆e
' − Y eq

N1
(0)

[
K2e

K2τ⊥
2

ε2τ⊥
2
κ(K2τ⊥

2
)

+

(
ε2e −

K2e

K2τ⊥
2

ε2τ⊥
2

)
κ(K2τ⊥

2
/2)

]
e−

3π
8 K1e , (86a)

Y∞∆µ
' − Y eq

N1
(0)

[
K2µ

K2τ⊥
2

ε2τ⊥
2
κ(K2τ⊥

2
)

+

(
ε2µ −

K2µ

K2τ⊥
2

ε2τ⊥
2

)
κ(K2τ⊥

2
/2)

]
e−

3π
8 K1µ , (86b)

Y∞∆τ
' − Y eq

N1
(0)ε2τ κ(K2τ ) e−

3π
8 K1τ . (86c)

This expression takes into account phantom terms but neglects flavor coupling.

Including flavor coupling, two additional terms should also be taken into account,

and these can become dominant in certain cases [81]. These terms contribute to an

α flavor asymmetry despite being proportional to the β 6= α flavored CP asymmetry.

Although these terms are proportional to small off-diagonal numerical coefficients

in the flavor coupling matrix, they can in some models open up new regions of

parameter space. Therefore, whilst flavor coupling is a correction within the N1-

dominated scenario, it can become crucial within the N2-dominated scenario.

3.6. Low-energy neutrino parameters

Imposing successful leptogenesis is equivalent to constraining the seesaw parameter

space and, very interestingly, it involves those heavy-neutrino parameters that we

cannot test in low-energy neutrino experiments. If the masses Mi are well above the

TeV scale then they also evade all collider constraints. Therefore, leptogenesis pro-

vides a unique way to place constraints on these parameters and ideally one would

like to over-constrain the seesaw parameter space by combining leptogenesis with

low-energy neutrino experimental data. In this way, leptogenesis can be regarded

as a very high energy “experiment” able to give us information on the physics at

very high energies embedding the seesaw mechanism.

This ambitious strategy encounters, however, a clear difficulty, since the number

of seesaw parameters to be tested is much higher than the experimental constraints.

The seesaw parameter space contains 18 additional parameters: 3 RH-neutrino

masses and 15 additional parameters in the Dirac mass matrix. A convenient way

to parameterize the Dirac mass matrix in the seesaw limit is the orthogonal param-

eterization [82]

mD = Uν D
1/2
m ΩD

1/2
M , (87)
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following from the seesaw formula, Eq. (43). In this way, the 15 parameters in the

Dirac mass matrix are re-expressed through the 9 low-energy neutrino parameters

(3 light neutrino masses and 6 parameters in Uν), the 3 Mi and 6 parameters in the

orthogonal matrix Ω.i This parametrization is model independent, meaning that it

works for any model embedding the type I seesaw models and allows to take into

account automatically the low-energy neutrino experimental information.

The orthogonal matrix Ω encodes information on the 3 lifetimes and the 3 to-

tal CP asymmetries of the RH neutrinos. Low-energy neutrino experiments alone

cannot test the seesaw mechanism. The baryon-to-photon number ratio calculated

from leptogenesis, ηlep
B , depends on all 18 seesaw parameters, in general. Model

independently, leptogenesis is then clearly insufficient to over-constrain the seesaw

parameter and, in general, it does not produce testable model-independent predic-

tions. However, a few things might help in reducing the number of independent

parameters:

• Successful leptogenesis might be satisfied only about peaks, i.e. only for

very special regions in parameter space that can correspond to testable

constraints on some low-energy neutrino parameters.

• Some of the parameters might cancel out in the calculation of ηlep
B .

• One might impose some cosmologically-motivated condition to be re-

spected, such as the strong thermal leptogenesis (independence of the initial

conditions) or, even stronger, that one of the heavy RH neutrino species is

the dark matter candidate.

• We might add phenomenological constraints from particle physics, such as

collider signatures, charged LFV, EDM’s, etc.

• The seesaw might be embedded within a model that implies conditions on

mD and Mi.

3.6.1. Upper bound on neutrino masses in the unflavored regime

In Eq. (57) for the efficiency factor in the unflavored regime, the exponential factor

is an effect of ∆L = 2 washout processes. If this is combined with the upper bound

in Eq. (64) on the total CP asymmetry from the successful leptogenesis condition,

one finds an upper bound m1 . 0.1 eV [53, 83] in addition to the lower bound on

M1. Interestingly, this is now confirmed by the current cosmological upper bound

placed by the Planck Collaboration [52]. This upper bound is also very interesting,

since it provides an example of how, despite our starting from 18 parameters, the

successful leptogenesis condition, which constrains only one combination of them,

can indeed produce testable constraints. The reason is that the final asymmetry

in the unflavored approximation does not depend on the 6 parameters in U , since

this cancels out in ε1, or on the 6 parameters associated with the two heavier RH
iThe fact that on the right-hand side one has 18 parameters and on the left-hand side 15 parameters
of course means that 3 parameters on the right-hand side, e.g. the three RN-neutrino masses Mi,

have to be regarded as independent of the 15 parameters in mD.
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neutrinos. There are only 6 parameters left (m1,matm,msol,M1,Ω
2
11), out of which

two are measured, thereby leaving only 4 free parameters. The asymmetry, however,

has a peak strongly suppressed by the value of m1, due mainly to the exponential

suppression from ∆L = 2 washout processes in Eq. (57). The latter is the origin of

the upper bound on m1.

Notice that the upper bound is saturated at values M1 ∼ 1013 GeV and, there-

fore, it still holds when flavor effects are included in the unflavored regime. In the

two-flavor regime, due to the fact that the flavored CP asymmetries respect a more

relaxed upper bound than the total, and since the washout can be reduced, the up-

per bound on m1 is relaxed. However, within the validity of the two-flavor regime,

it is still m1 . O(0.1 eV). A calculation based on a density matrix formalism should

merge the upper bounds calculated within the flavored regimes where Boltzmann

equations hold. One expects some relaxation but not much above 0.1 eV [64]. In

the N2-dominated scenario, the upper bound on m1 is much looser, and one can

have solutions for m1 as large as 1 eV.

3.7. SO(10)-inspired leptogenesis

In the unflavored case, imposing so-called SO(10)-inspired conditions, which essen-

tially corresponds to assuming that the neutrino Dirac mass matrix does not differ

too much from the up-quark mass matrix, prevents successful leptogenesis, since

M1 � 109 GeV and, at the same time, an N2 contribution is efficiently washed

out. However, when flavor effects are considered, the N2 asymmetry can escape

the N1 washout for a set of solutions that yield successful leptogenesis. Typically,

the final asymmetry is in the tau flavor [84]. Interestingly, this set of solutions re-

quires certain constraints on the low-energy neutrino parameters [85]. For example,

the lightest neutrino mass cannot be below ' 1 meV, i.e. one expects some devi-

ation from the hierarchical limit, although we do not know any experimental way

to test this lower bound fully at present. It should be added that SO(10)-inspired

leptogenesis also strongly favors normally-ordered neutrino masses and that, for

m1 ' msol ' 10 meV, it is allowed only for θ23 in the first octant. Recently, it

has been noticed [86] that for the current favored values of δ ∼ −π/2, the effec-

tive Majorana mass mee of 0νββ decay cannot be too much lower than ∼ 10 meV.

Scatter plots of the solutions in the plane mee versus m1 are shown in the left panel

of Fig. 2. Yellow points indicate the dominant tau solutions (the orange points are

obtained in the approximation VL = I), and green points indicate some marginal

muon solutions, which are now almost entirely excluded by the cosmological upper

bound on m1. If such values of δ are confirmed then 0νββ experiments will be able

to test SO(10)-inspired leptogenesis fully in the coming years.

It is possible to find very accurate expressions for all important quantities nec-

essary to calculate the asymmetry in SO(10)-inspired leptogenesis. We refer the

reader to Refs. [86, 87] for a detailed discussion. Here, we just give some basic

hints and results. The first step is that the Dirac mass matrix can be diagonalized
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Fig. 2. Scatter plots of the solutions projected on the shown planes: mee versus δ (left) and
δ versus θ23 (right). The yellow points are obtained imposing just successful SO(10)-inspired

solutions while the blue points are a subset imposing in addition the strong thermal leptogenesis
condition (orange and light blue points are for VL = I). Figure taken from Ref. [86].

by means of two unitary transformations VL and UR, acting respectively on the

left-handed and right-handed neutrino fields:

mD = V †L DmD UR , (88)

where we have defined DmD ≡ diag(mD1,mD2,mD3). If one plugs this expres-

sion into the seesaw formula, Eq. (43), one finds M−1 = URD
−1
M UT

R, where

M−1 ≡ D−1
mD VL Uν Dm U

T
ν V

T
L D−1

mD is the inverse of the Majorana mass matrix

in the Yukawa basis (where mD is diagonal). Assuming mD3 � mD2 � mD1, one

can find accurate analytic expressions both for the RH-neutrino mixing matrix UR
and for the RH-neutrino masses Mi. For example, for the RH-neutrino masses, one

finds

M1 ' α2
1

m2
up

|(m̃ν)11|
, M2 ' α2

2

m2
charm

m1m2m3

|(m̃ν)11|
|(m̃−1

ν )33|
, M3 ' α2

3 m
2
top |(m̃−1

ν )33| ,

(89)

where we have defined (α1, α2, α3) ≡ (mD1/mup,mD2/mcharm,mD3/mtop) and

m̃ν ≡ VLmν V
T
L . In this way, one arrives at a full analytic expression

ηB(mν ;αi, VL), allowing an analytic understanding of all constraints on low-energy

neutrino parameters.

3.7.1. Strong thermal SO(10)-inspired solution

As we discussed, when flavor effects are taken into account, there is only one scenario

of (successful) leptogenesis allowing for independence of the initial conditions: the

tau N2-dominated scenario, where the asymmetry is produced by the N2 decays
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in the tau flavor [79]. As we have seen, the conditions are quite special, since

it is required that a large pre-existing asymmetry be washed out by the lightest

RH neutrino in the electron and muon flavors. The next-to-lightest RH neutrinos

both wash out a large pre-existing tau asymmetry and also produce the observed

asymmetry in the same tau flavor, escaping the lightest RH-neutrino washout.

It is then highly non-trivial that this quite special set of conditions can be realised

by a subset of the SO(10)-inspired solutions satisfying successful leptogenesis [88].

For this subset, the constraints are quite stringent and they pin down a well-defined

solution: the strong thermal SO(10)-inspired solution. This is characterized by a

non-vanishing reactor mixing angle, normally-ordered neutrino masses, an atmo-

spheric mixing angle in the first octant and δ in the fourth quadrant (sin δ < 0 and

cos δ > 0). In addition, the lightest neutrino mass has to be within a fairly narrow

range of values about m1 ' 20 meV, corresponding to a sum of neutrino masses

— the quantity tested by cosmological observations —
∑
imi ' 95 meV, implying

a deviation from the normal-hierarchy prediction of
∑
imi ' 60 meV, detectable

during the coming years. At the same time, the solution also predicts a 0νββ signal

with mee ' 0.8m1 ' 16 meV. In light of the latest experimental results discussed

earlier, this solution is quite intriguing, since, in addition to relying on the same

moderately strong washout as vanilla leptogenesis and due to the fact that both the

solar and atmospheric scales are ∼ 10 meV — the leptogenesis conspiracy [64] — it

has also correctly predicted a non-vanishing reactor mixing angle and is currently

in very good agreement with the best-fit parameters from neutrino-mixing experi-

ments. (To our knowledge, it is the only model that has truly predicted sin δ < 0.)

Notice that the possibility to have a large pre-existing asymmetry prior to the onset

of leptogenesis at the large reheat temperatures required is quite a plausible possi-

bility, so that the assumption of strong thermal leptogenesis should be regarded as

a reasonable setup. (In particular, one could have a traditional GUT baryogenesis

followed by leptogenesis.)

It is also possible to consider a supersymmetric framework for SO(10)-inspired

leptogenesis [76]. In this case, the most important modification to be taken into

account is that the critical values for M1, which set the transition from one flavor

regime to another, are enhanced by a factor 1 + tan2 β and, for sufficiently large

values of tanβ, the production might occur in a three-flavor regime rather than

in a two-flavor regime. This typically goes in the direction of enhancing the final

asymmetry, since the washout at the production is reduced.

3.7.2. Realistic models

A first example of realistic models satisfying SO(10)-inspired conditions and able

to fit all lepton and quark mass and mixing parameters are, as one might expect,

SO(10) models. A specific example is given by renormalizable SO(10) models for

which the Higgs fields belong to 10-, 120-, 126-dim representations, yielding specific

mass relations among the various fermion mass matrices. Recently, reasonable fits
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have been obtained that typically point to a compact RH-neutrino spectrum with

all RH-neutrino masses falling in the two-flavor regime. This compact-spectrum so-

lution implies, however, huge fine-tuned cancellations in the seesaw formula. Even

so, fits realising the N2-dominated scenario have been obtained [89, 90], and, in

this case, there is no fine-tuning in the seesaw formula. Note that SO(10)-inspired

conditions can also be realised beyond SO(10) models. For example, a Pati-Salam

model combined with A4 and Z5 discrete symmetries has recently been proposed,

satisfying SO(10)-inspired conditions and also successful SO(10)-inspired leptoge-

nesis [91]. On the other hand, a realistic model realising strong thermal SO(10)-

inspired leptogenesis has not yet been found.

4. Flavor and low-scale resonant leptogenesis

When the mass splitting of two of the heavy neutrinos is small compared to their

widths, self-energy effects on the CP asymmetry can dominate and the CP viola-

tion can be resonantly enhanced [54, 92–98] (see also [56]). This allows for the scale

of successful leptogenesis to be lowered to energies in the TeV range [99], mak-

ing resonant leptogenesis (RL) [100] directly testable at current and near-future

experiments. A comprehensive discussion of RL is provided in the accompanying

Chapter [12], and we focus here only on the importance of flavor effects in these

low-scale models.

The rate equations in the preceding section are covariant under flavor transfor-

mations of the SM lepton doublets. However, they are specifically written in the

RH-neutrino mass eigenbasis. Therefore, it is natural to ask: is it possible to write

rate equations that are fully flavor-covariant, also maintaining flavor-covariance at

each stage of the calculation?

This question, in addition to being of conceptual interest, has practical con-

sequences for RL. As we will see below, amongst other things, flavor covariance

requires us to take into account quantum coherences between different flavors; in

the resonant regime, the RH neutrinos are quasi-degenerate and thus one can expect

that their quantum coherences may play a significant role. Resonant leptogenesis

allows the successful construction of low-scale models of leptogenesis and, at such

low scales, one would naively expect to be in the fully-flavored regime discussed in

Sec. 2.1 for the charged leptons, where their flavor decoherence has already taken

place. However, when studying low-scale models of leptogenesis, one is particu-

larly interested in their testability, i.e. in their observable effects at current and

near-future experiments. As will be clear from the example discussed below, in low-

scale models with observable signatures, at least some of the Yukawa couplings are

sufficiently large that their effect will partially recreate coherences in the charged-

lepton sector [28, 101]. Hence, a fully flavor-covariant treatment [28, 101–104],

which will describe coherences in both the charged-lepton and RH-neutrino sectors,

is of particular and quantitative importance in low-scale testable models of resonant

leptogenesis.
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4.1. Flavor covariance

The lepton-doublet and RH-neutrino field operators `α and NRk transform under

flavor rotations U(N`)⊗ U(NN ) as follows:j

`α → `′α = V β
α `β , `†α → `†′α = V αβ`

†β , (90a)

NRk → N ′Rk = U l
k NRl, N†kR → N†′kR = UklN

†l
R , (90b)

where V β
α ∈ U(N`) and U l

k ∈ U(NN ). Here and in the following, we adopt a flavor-

covariant notation in which lower (upper) indices denote covariant (contravariant)

transformation properties. In this notation, the relevant part of the Lagrangian

in Eq. (1) can be written as

− LN = λ k
α `

α
φcNRk +

1

2
N c
Rk[MN ]klNRl + h.c. , (91)

which is invariant under flavor transformations if the Yukawa couplings and Majo-

rana mass matrix transform as spurions:

λ k
α → λ′ kα = V β

α Ukl λ
l
β , (92a)

[MN ]kl → [M ′N ]kl = Ukm U ln [MN ]mn . (92b)

In order to maintain flavor covariance at all stages, the plane-wave decompositions

of the field operators are written in a manifestly flavor-covariant way [28], e.g.

`α(x) =
∑

s= +,−

∫
p

[(
2E`(p)

)−1/2
] β

α

×
([
e−ip·x

] γ

β
[u(p, s)] δ

γ bδ(p, s) +
[
eip·x

] γ

β
[v(p, s)] δ

γ d†δ(p, s)
)
, (93)

where [E2
` (p)] β

α = p2δ β
α + [M†`M`]

β
α , with M` being the charged-lepton mass

matrix, here generically taken as non-vanishing. We see that flavor covariance

requires the Dirac four-spinors [u(p, s)] δ
γ and [v(p, s)] δ

γ to transform as rank-2

tensors in flavor space, since they are solutions of the Dirac equation, which is

matrix-valued in flavor space.

Equation (93) shows that the creation and annihilation operators for particles

(b†α, bα), and anti-particles (d†α, dα) need to transform in conjugate representations,

in order to have flavor covariance. Therefore, relations such as the ordinary charge

conjugation C and the Majorana condition for the RH neutrinos, which relate parti-

cle and anti-particle operators, cannot be valid in an arbitrary flavor basis. Instead,

one is forced to consider generalized C transformations, denoted C̃, which involve a

unitary matrix Gαβ ≡ [V ∗V †]αβ , describing the rotations to and from the basis in

which the “standard” C-transformations are defined:k

bα(p, s)c̃ ≡ Gαβ bβ(p, s)c = Gαβ Gβγ dγ(p, s) = dα(p, s) . (94)

Analogously, the Majorana condition for the RH neutrinos involves a matrix Gkl,

which can be taken equal to the identity in the mass eigenbasis. Notice also the
jSo as to avoid confusion, we do not suppress the † on Hermitian-conjugate fields as in Ref. [28].
kWe emphasise that the C-transformations are defined only up to an arbitrary complex phase.
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order of flavor indices, dictated by flavor covariance, in the definition of the number

densities:

[n`]
β
α ∼ 〈b†β bα〉 , [n̄`]

β
α ∼ 〈d†α dβ〉 , (95)

which implies that n` and n̄` are C̃-conjugate quantities: nc̃` = n̄T` , where T denotes

the matrix transpose. Analogously, the RH-neutrino number densities are defined

as

[nN ] lk ∼ 〈a†l ak〉 , [n̄N ] lk ∼ Gkm[nN ] m
n Gnl , (96)

and nc̃N = n̄TN . Thus, we can define number densities with definite C̃P-

transformation properties:

nN =
1

2

(
nN + n̄N

)
, n∆N = nN − n̄N , n∆` = n` − n̄` . (97)

Notice that the C̃P-odd n∆N is purely imaginary and off-diagonal in the RH-

neutrino mass eigenbasis, i.e. it encodes the CP-violating coherences present in

the RH-neutrino sector. Instead, the C̃P-even nN describes the RH neutrino pop-

ulations and C̃P-even coherences, and n∆` is nothing other than the matrix of

asymmetries in the LH charged leptons.

4.2. Rate equations

The requirement of flavor covariance and the definite C̃P-properties of the number

densities introduced in Sec. 4.1 fix the form of the flavor-covariant generalization of

the rate equations (cf. Chapter [27]). For the moment, let us extract the C̃P-even

and -odd parts of the various rates as

γXY ≡ γ(X → Y ) + γ(X̄ → Ȳ ) , δγXY ≡ γ(X → Y )− γ(X̄ → Ȳ ) . (98)

We will discuss the physical issues related to C̃P violation in the rates later on. The

Majorana nature of the RH neutrinos causes the appearance of real and imaginary

parts of the rates in their rate equations that need to be defined conveniently in a

covariant manner [28], and we will denote them here by a tilde.

With these considerations, the general form of the rate equations describing RH-

neutrino oscillations, decays, inverse decays, ∆L = 2 scatterings and charged-lepton

decoherence processes is [28]:
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HN s

z

d[Y N ] lk
dz

= − i s
2

[
EN , Y∆N

] l

k
+
[
R̃e(γN`φ)

] l
k

− 1

2Y eq
N

{
Y N , R̃e(γN`φ)

} l

k
, (99a)

HN s

z

d[Y∆N ] lk
dz

= − 2 i s
[
EN , Y N

] l

k
+ 2 i

[
Ĩm(δγN`φ)

] l
k

− i

Y eq
N

{
Y N , Ĩm(δγN`φ)

} l

k
− 1

2Y eq
N

{
Y∆N , R̃e(γN`φ)

} l

k
,

(99b)

HN s

z

d[Y∆`]
β
α

dz
= − [δγN`φ]

β

α
+

[Y N ] kl
Y eq
N

[δγN`φ]
β l

α k
+

[Y∆N ] kl
2Y eq

N

[γN`φ]
β l

α k

− 1

3

{
Y∆`, γ

`φ
`c̃φc̃

+ γ`φ`φ

} β

α
− 2

3
[Y∆`]

ε
δ [γ`φ

`c̃φc̃
− γ`φ`φ ]

δ β

ε α

− 2

3

{
Y∆`, γdec

} β

α
+ [δγback

dec ] β
α , (99c)

where z is defined in terms of the temperature T and heavy-neutrino mass scale M

as z ≡ M/T (see Chapter [27]). The generalized real and imaginary parts of an

Hermitian matrix A are defined via

[R̃e(A)] β
α ≡ 1

2

(
A β
α + GαλA

λ
µ Gµβ

)
, (100a)

[Ĩm(A)] β
α ≡ 1

2i

(
A β
α − GαλA

λ
µ Gµβ

)
. (100b)

These rate equations have been written in terms of the yields (see Chapter [27])

Y N (z) ≡ nN (z)

s(z)
, Y∆N (z) ≡ n∆N (z)

s(z)
, Y∆`(z) ≡

n∆`(z)

s(z)
. (101)

While the form of the rate equations is essentially dictated by flavor covariance,

it can be obtained explicitly by a semiclassical analysis [28] and a field-theoretic

Kadanoff-Baym treatment [102].

The necessary appearance of rates that carry high-rank structure in flavor space,

e.g. [γN`φ]
β l

α k
, can be understood in terms of partial cuts of the “thermal” self-energies

(cf. Sec. 2.2.2) by means of a generalization of the optical theorem [28], where the

cut is weighted by the matrix number density. For example, the inverse decay terms

can be obtained directly from the cuts shown in Fig. 3, allowing us to extract the

thermally-averaged rates (cf. Chapter [27])

[γ(N → `φ)]
β l
α k = [γ(`c̃φc̃ → N)]

β l

α k =

∫
N`φ

g`gφ(2pN · p`)λ†βkλ
l
α , (102a)

[γ(N → `c̃φc̃)]
β l

α k = [γ(`φ→ N)]
β l
α k =

∫
N`φ

g`gφ(2pN · p`)[λc̃]†βk[λc̃] l
α , (102b)
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ℓ

φ

N †l Nk

[λc̃] l
α [λc̃]†βk

y
N †l(pN , sN )

φ(pφ)

ℓα(pℓ, sℓ)

[λc̃] l
α

nφ(pφ)[nℓ(pℓ, sℓ)] Nk(pN , sN )

φ†(pφ)

ℓ†β(pℓ, sℓ)

[λc̃]†βk

(a) The in-medium inverse heavy-neutrino decay: nφ[n`]
α
β [γ(`φ→ N)] β l

α k .

φc̃

ℓc̃

Nl N †k

λ†β
l

λ k
α

y
Nl(pN , sN )

φc̃†(pφ)

[ℓc̃(pℓ, sℓ)]
†β

λ†β
l

n̄φ(pφ)[n̄ℓ(pℓ, sℓ)]
α

β N †k(pN , sN )

φc̃(pφ)

[ℓc̃(pℓ, sℓ)]α

λ k
α

(b) The in-medium inverse heavy-neutrino decay: n̄φ[n̄`]
α
β [γ(`c̃φc̃ → N)] β l

α k .

Fig. 3. Diagrammatic representation of the 2→ 1 processes, illustrating the origin of the four-

index rates from the unitarity cuts of the thermal heavy-neutrino self-energies [28]. Notice that

the shaded region of the cut appears to the left. Diagrams adapted from Ref. [28].

where the left-hand equalities follow from CPT, g` and gφ are respectively the

degeneracy factors of the internal degrees of freedom of the charged-lepton and

Higgs doublets, and we employ the short-hand notation∫
N`φ

≡
∫

d3pN
(2π)32EN (pN )

d3p`
(2π)32E`(p`)

d3pφ
(2π)32Eφ(pφ)

× (2π)4δ(4)(pN − p` − pφ)e−p
0
N/T (103)
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for the thermally-averaged phase-space integrals. In this way, we obtain

[γN`φ]
β l

α k
=

M4

π2z

K1(z)

16π

(
λ†βkλ

l
α + [λc̃]†βk[λc̃] l

α

)
, (104)

where K1(z) is the first-order modified Bessel function of the second kind.

In order to identify the physical origin of each of the terms in these rate equa-

tions, it is helpful to consider their flavor structure and, specifically, whether they

arise from commutators or anti-commutators in flavor space.

The first term on each of the right-hand sides of Eq. (99a) and Eq. (99b) orig-

inates from a commutator in flavor space. Working, for instance, in the mass

eigenbasis, it is clear that these terms source CP asymmetry only when non-zero

flavor correlations are encoded in the off-diagonal elements of the matrix number

densities. Since these terms are non-zero only in the presence of such a misalign-

ment, they predominantly capture the coherent oscillations between heavy-neutrino

flavors. These terms are of statistical origin, and we emphasise that they would be

absent in a flavor-diagonal treatment.

The remaining terms instead arise from anti-commutators in flavor space and

persist in the flavor-diagonal limit. (The terms that do not explicitly carry braces

began as anti-commutators involving the equilibrium number densities, which are

taken to be diagonal in flavor space.) With the exception of the decoherence term,

which will be described shortly, the anti-commutator structure predominantly cap-

tures the effect of mixing between the heavy-neutrino flavors. The terms involving

γN`φ and δγN`φ together describe decays and inverse decays. The terms involving γ`φ`φ
and γ`φ

`c̃φc̃
describe ∆L = 2 scatterings. In order to avoid double counting, the

procedure of RIS subtraction [25] has been applied to these rate equations, as dis-

cussed in the accompanying Chapter [27], with the necessary inclusion of thermal

corrections [28]. Finally, the decoherence term [δγback
dec ] β

α [28] (cf. Ref. [1]) accounts

for processes mediated by the charged-lepton Yukawa couplings, which act in com-

petition with the processes mediated by the heavy-neutrino Yukawa couplings. The

former tend to decohere the charged leptons into their mass eigenbasis, whereas the

latter tend to regenerate charged-lepton coherences.

The physically distinct sources of CP asymmetry from oscillations and mixing

can also be isolated by considering the sequence of heavy-neutrino production, prop-

agation and subsequent decay. The contribution from mixing is associated with the

heavy-neutrino production and decay processes, and the contribution from oscilla-

tions is associated with the in-medium propagation of the heavy neutrinos. The

former is generated predominantly by the interference of the (T = 0) one-loop and

tree-level processes, capturing the usual ε- and ε′-type CP violation. The latter is

contained in the thermal part of the intermediate heavy-neutrino propagator and

is captured at leading order in the semi-classical rate equations by the presence of

the commutator terms.

In the hierarchical limit, the source of CP asymmetry is dominated by mixing. A

semi-classical analysis of flavor-diagonal Boltzmann equations is then sufficient, and
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the source of asymmetry can be treated by means of effective or resummed Yukawa

couplings (see Ref. [100]). In the quasi-degenerate limit, oscillations become im-

portant, and we need also to keep track of the evolution of the off-diagonal flavor

correlations, resulting in a non-vanishing contribution from the commutator term.

Whilst it is clear that both mixing and oscillations contribute to the asymmetry in

the quasi-degenerate regime, it remains an open question as to how to account con-

sistently for both sources without under- or over-counting the final asymmetry. In

semi-classical approaches, it has been claimed [28] that both the commutator term

and resummed Yukawa couplings should be included. This has also been argued in

a field-theoretic approach [102] based on the interaction picture [32, 33] (see also

the discussion in Chapter [12]). Conversely, in other field-theoretic approaches, it

has been claimed [105] that both sources are captured by the average mass shell

approximation for the flavor-off-diagonal heavy-neutrino Wigner functions. The

material difference amounts to a possible factor of 2 in the final asymmetry [102].

The main obstacle to resolving this debate is the technical difficulty of making di-

rect comparisons between different approaches in the strong washout regime and in

the presence of cosmological expansion.

A direct comparison was made in the weak washout regime and on a static and

stationary background in Ref. [106] (see also the discussion in Chapter [12] of this

review). In this idealized setting, the sources of CP violation were studied in a field-

theoretic approach, based on the Kadanoff-Baym formalism (in both interaction-

and Heisenberg-picture descriptions), by analysing the effective shell structure of

the would-be non-equilibrium heavy-neutrino propagators of a toy scalar model.

Whilst both mixing and oscillation contributions can be identified — the former

living on the quasi-particle mass shells and the latter living on an intermediate

average mass shell — one also finds additional terms that can be interpreted as the

destructive interference between these contributions. In the hierarchical limit, the

oscillation and interference terms are suppressed, such that the quasi-particle mass

shells dominate and a flavor-diagonal semi-classical analysis with resummed Yukawa

couplings is appropriate. In the fully degenerate limit, the destructive interference

is complete (see also Ref. [107]), and one finds zero asymmetry, as expected. In the

problematic, quasi-degenerate limit, the degree of cancellation was shown [106] to

depend strongly on the distribution of particle number between the different flavors

and is therefore model- and washout-dependent (i.e. dependent upon the choice of

initial conditions in the weak washout regime). If the asymmetry is distributed

evenly between the different flavors (corresponding to symmetric initial conditions

in the weak washout regime), the impact of the destructive interference is more

severe, and there is a significant suppression of the mixing source. If this result is

extrapolated to the strong washout regime, the form of the CP source then agrees

with the average mass shell approximation employed in Ref. [105]. Instead, if a

particular diagonal element of the number density dominates (corresponding to

asymmetric initial conditions in the weak washout regime), the interference does
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not significantly impact the magnitude of the mixing term. One then finds that both

the mixing and oscillation sources contribute additively to the final asymmetry up

to a maximum factor of 2 enhancement when compared with taking only one source

into account.

We should, however, be careful in extrapolating the latter observations to the

strong washout regime and an expanding background. Whilst it is the case that one

diagonal element of the heavy-neutrino number densities dominates in the attrac-

tor limit of the scenario considered in Ref. [28], the behavior of the aforementioned

destructive interference in the strong washout regime and the degree to which it

is correctly captured remains an area of active discussion. In semi-classical ap-

proaches, the destructive interference is, at least in part, captured by ensuring that

the regulator of the final asymmetry (obtained through consistent resummation of

the effective Yukawa couplings) vanishes appropriately in the CP-conserving limit.

4.3. Phenomenological aspects

As already mentioned in the introduction, the flavor effects captured in the fully

flavor-covariant treatment are both of qualitative and quantitative importance in

testable leptogenesis models. In this section, we illustrate this with a minimal model

of low-scale resonant τ -genesis (RLτ ) in which the lepton asymmetry is generated

from and protected in a single lepton flavor ` = τ [108, 109]. The Dirac Yukawa

couplings involving electron and muon flavors in Eq. (91) remain sizable, thus giving

rise to potentially observable predictions for lepton number and flavor violation at

both energy and intensity frontiers [28, 101, 109].

Within the minimal RL` setup, the heavy-neutrino sector possesses an O(NN )

symmetry at some high energy scale µX , i.e. MN (µX) = MI. The small mass

splitting, as required for successful RL, can then be generated naturally at the

phenomenologically relevant low-energy scale by renormalization group (RG) run-

ning effects induced by the Yukawa couplings λ k
α , i.e. MN (M) = MI + ∆MRG

N ,

where [109]

∆MRG
N ' − M

8π2
ln
(µX
M

)
Re[λ†(µX) · λ(µX)] . (105)

However, it turns out that this minimal scenario is not viable due to a no-go theo-

rem [101], which ensures that the leptonic asymmetry vanishes identically at O(λ4).

To avoid this, we include a new source of flavor breaking ∆MN , which is not aligned

with ∆MRG
N . Thus, the relevant heavy-neutrino mass matrix for our case is given

by

MN = MI + ∆MRG
N + ∆MN , (106)

which goes into the type I seesaw formula for the light neutrino mass matrix [110–

114]

Mν ' −
v2

2
λ ·M−1

N · λT . (107)
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For the purpose of our illustration, we consider three RH neutrinos (i.e. NN = 3)

and the following diagonal form for ∆MN :

∆MN = diag(∆M1,∆M2/2,−∆M2/2) , (108)

where ∆M2 6= ∆M1 is needed to make the light neutrino mass matrix Mν

in Eq. (107) rank-2, thus allowing us to fit successfully the low-energy neutrino

oscillation data.

As for the Yukawa coupling matrix λ, we consider an RLτ model that possesses

a leptonic symmetry U(1)` and protects the lightness of the LH neutrino masses.

In this scenario, the Yukawa couplings λ k
α have the following structure [99, 108]:

λ =

0 a e−iπ/4 a eiπ/4

0 b e−iπ/4 b eiπ/4

0 c e−iπ/4 c eiπ/4

 + δλ . (109)

In order to protect the τ asymmetry from excessive washout and simultaneously

allow for large couplings in the electron and muon sectors so as to have experi-

mentally observable effects, we take |c| � |a|, |b| ≈ 10−3 − 10−2. The leptonic

flavor-symmetry-breaking matrix is taken to be

δλ =

ςe 0 0

ςµ 0 0

ςτ 0 0

 . (110)

To leading order in the symmetry-breaking parameters of ∆MN and δλ, the tree-

level light-neutrino mass matrix, given by Eq. (107), becomes

Mν '
v2

2M

 ∆M
M a2 − ς2e ∆M

M ab− ςeςµ −ςeςτ
∆M
M ab− ςeςµ ∆M

M b2 − ς2µ −ςµςτ
−ςeςτ −ςµςτ −ς2τ

 , (111)

where ∆M = −i∆M2 and we have neglected subdominant terms ∆M
M c × (a, b, c).

Inverting this expression, we determine the following model parameters appearing

in the Yukawa coupling matrix (109):

a2 =
2M

v2

(
Mν,11 −

M2
ν,13

Mν,33

)
M

∆M
, b2 =

2M

v2

(
Mν,22 −

M2
ν,23

Mν,33

)
M

∆M
,

ς2e = −2M

v2

M2
ν,13

Mν,33
, ς2µ = −2M

v2

M2
ν,23

Mν,33
, ς2τ = −2M

v2
Mν,33 . (112)

Therefore, the Yukawa coupling matrix in the RLτ model can be fixed completely

in terms of the heavy-neutrino mass scale M and the input parameters c and ∆M2,

apart from the light-neutrino oscillation parameters, which determine the elements

of Mν from the diagonalization equation Mν = Uνdiag(mν1
,mν2,mν3

)UT
ν , where

Uν is the usual PMNS mixing matrix (see Eq. (44)).

For numerical purposes, we choose a normal hierarchy of light neutrino masses,

with the lightest mass mν1
= 0, and use the best-fit values of the oscillation param-

eters (mass-squared differences and mixing angles) from a recent global fit [115].
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Table 1. The numerical values of the free parameters for three
chosen benchmark points in our RL model. The parameters

a, b, ςe,µ,τ have been derived using Eq. (112).

Input Parameter BP1 BP2 BP3

M 400 GeV 2000 GeV 400 GeV

∆M1/M −5× 10−5 −5× 10−5 −5× 10−5

∆M2/M 1.1× 10−9 5× 10−9 10−8

c 2× 10−7 2× 10−7 2× 10−7

full

ℓ diag.

0.1 10.05 0.5 5
10-11

10-10

10-9

TC/T

Y
Δ
ℓ

BP1BP2

BP3

Fig. 4. Total lepton asymmetry Y∆` as a function of the inverse temperature, obtained using the

fully flavor-covariant formalism (solid curves) for three benchmark points. For comparison, we

also show the corresponding predictions as obtained using the Boltzmann equations diagonal in
charged-lepton flavors (dashed curves), which overestimate the final asymmetry in all three cases.

The vertical line shows the critical temperature TC beyond which the lepton asymmetry is frozen
out due to the exponential suppression of the electroweak sphaleron transition rate.

For illustration, we choose δ = 0 and φ1 = π, φ2 = π for the Dirac and Majorana

phases, respectively. To demonstrate the flavor dynamics of our RLτ model, we

select three benchmark points, as listed in Table 1. The results for the total lep-

ton asymmetry in each case are shown in Fig. 4. The “bump” in each case is due

to an interplay between the heavy-neutrino coherence and charged-lepton decoher-

ence effects [28]. We find that the final lepton asymmetry obtained using the fully

flavor-covariant treatment is smaller than that obtained from the solution of the

Boltzmann equations diagonal in the charged-lepton flavor by up to a factor of 5.

This clearly demonstrates the quantitative importance of the flavor effects captured

by the flavor-covariant formalism.

The impact of flavor effects is further illustrated in Fig. 5. The solid curves

show the total lepton asymmetry obtained from the fully flavor-covariant Boltzmann

equations for very different initial conditions. It is reassuring to see that the final
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full

ℓ diag.

N diag.

diag.

1 100.3 3
10-11

10-10

10-9

M /T

±
Y
Δ
ℓ

-YΔ ℓ

obs

-YΔ ℓ

+YΔ ℓ

Y
Nin

=
0

Y
Δ
ℓ

in
=
10

-
6

TC

Fig. 5. Total lepton asymmetry Y∆` as a function of the inverse temperature, obtained using

the fully flavor-covariant formalism (black solid curve) versus that obtained using the Boltzmann

equations diagonal in charged-lepton flavor (green dot-dashed), heavy-neutrino flavor (red dashed)
and both (blue dotted). The yellow and grey solid curves show the total asymmetry in the

flavor-covariant treatment for different initial conditions. The horizontal line corresponds to the
lepton asymmetry that reproduces the observed baryon asymmetry. The vertical line shows the

critical temperature TC beyond which the lepton asymmetry is frozen out due to the exponential

suppression of the electroweak sphaleron transition rate.

Table 2. The low-energy predictions for three chosen benchmark points in the RL model.
Observable BP1 BP2 BP3 Current Upper Limit (90% CL)

BR(µ→ eγ) 3.9× 10−13 1.2× 10−15 4.7× 10−15 4.2× 10−13 [MEG] [116]
BR(τ → µγ) 3.2× 10−23 1.7× 10−25 7.0× 10−24 4.4× 10−8 [PDG] [117]

BR(τ → eγ) 1.2× 10−23 6.5× 10−26 2.6× 10−24 3.3× 10−8 [PDG] [117]

BR(µ→ 3e) 1.9× 10−14 1.5× 10−16 2.3× 10−16 1.0× 10−12 [PDG] [117]

RTi
µ−e 5.9× 10−13 1.9× 10−16 7.1× 10−15 6.1× 10−13 [SINDRUM II] [118]

RAu
µ−e 6.4× 10−13 2.8× 10−17 7.1× 10−15 7.0× 10−13 [SINDRUM II] [119]

RPb
µ−e 4.5× 10−13 1.2× 10−17 7.1× 10−15 4.6× 10−11 [SINDRUM II] [120]

〈mββ〉 (meV) 3.8× 10−9 3.8× 10−9 3.8× 10−9 61− 165 [KamLAND-Zen] [48]

asymmetry is independent of any pre-existing initial abundance — a hallmark of RL

models [99]. The dotted (blue), dashed (red) and dot-dashed (green) curves show

the corresponding predictions from the solution of Boltzmann equations diagonal in

both heavy-neutrino and charged-lepton flavors, only in the heavy-neutrino flavor,

and only in the charged-lepton flavor, respectively. It is clear that none of the fully

or partially diagonal rate equations are capable of capturing all flavor effects in

a consistent manner, which necessitates the use of the flavor-covariant treatment.

For this particular example, we have chosen δ = −π/2, as mildly favored by the

recent T2K data [121], and φ1 = π, φ2 = 0 for the PMNS CP phases in order to

reproduce the observed baryon asymmetry in the flavor-covariant treatment. The
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other input parameters in this example are M = 250 GeV, ∆M1/M = − 5× 10−5,

∆M2/M = 1.5× 10−9 and c = 2.8× 10−7.

As mentioned earlier, apart from explaining the matter-anti-matter asymmetry

puzzle, the low-scale RL models offer the attractive possibility of being tested in

various laboratory experiments at both energy and intensity frontiers. The bench-

mark scenarios shown in Table 1, having TeV-scale heavy neutrinos, can be probed

at the LHC via multilepton final states [122]. Note that, due to the small mass

splitting between the three heavy neutrinos, the same-sign dilepton signal at the

LHC will be suppressed. However, the opposite-sign dilepton or trilepton signals

can be useful in probing these scenarios. As for the low-energy probes at the in-

tensity frontier, the model predictions for various low-energy observables are given

in Table 2, along with the current experimental limits at 90% C.L. For details of

the theoretical calculations, see, e.g., Ref. [28]. The 0νββ rate is suppressed in this

case for the same reason as the suppression of the lepton number violating LHC sig-

nals, i.e. due to the quasi-degeneracy of the heavy neutrinos. Even so, the µ→ eγ

and µ− e conversion predictions are close to the current experimental bounds and

could be tested in the near future by upcoming experiments, such as Mu2e [123]

and PRISM/PRIME [124]. This is a characteristic feature of the RLτ models being

considered here, which have relatively large Yukawa couplings in the electron and

muon sectors, thus giving rise to observable lepton flavor violating (LFV) effects.

On the other hand, the Yukawa couplings in the tau sector are smaller, which sup-

presses the corresponding LFV effects. It is difficult to have any observable LFV

effects in most of the other low-scale RL models [125], and this puts the RLτ models

discussed here on a unique footing.

5. Type II seesaw/scalar triplet leptogenesis

Leptogenesis has mainly been studied in the framework of the type I seesaw mech-

anism, in which the source of the lepton asymmetry is the CP-violating decays of

heavy Majorana neutrinos. Scalar triplet leptogenesis [126–134], based on the type

II seesaw mechanism [135–138], has received much less attention in comparison. In

particular, lepton flavor effects were included only recently in this scenario [132–134].

5.1. The framework

In spite of its simplicity, the type II seesaw mechanism is much less popular than its

type I cousin, presumably because it is less easily implemented in GUTs. The only

thing it requires is the addition to the SM of a massive scalar electroweak triplet,

which couples to the LH leptons and to the Higgs doublet in the following way:

L∆ = − 1

2

(
yαβ `

T
αCiσ

2∆`β + µφTiσ2∆†φ+ h.c.
)
−M2

∆ tr(∆†∆) , (113)
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where C is the charge conjugation matrix defined by CγTµC
−1 = − γµ, and

∆ =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
, ∆† =

(
∆−/

√
2 ∆0∗

∆−− −∆−/
√

2

)
. (114)

In Eq. (113), α and β are lepton flavor indices, yαβ is a symmetric 3× 3 matrix

of complex dimensionless couplings, and µ is a complex mass parameter. Heavy

scalar triplet exchange generates the neutrino mass matrix

(M∆
ν )αβ =

1

4
µyαβ

v2

M2
∆

, (115)

where v =
√

2 〈φ0〉 = 246 GeV is the Higgs boson vacuum expectation value, pro-

viding the desired suppression of neutrino masses.

The Lagrangian in Eq. (113) allows the scalar triplet to decay into a pair of

anti-leptons or a pair of Higgs bosons, with respective tree-level decay rates and

branching ratios

Γ(∆→ ¯̀̀̄ ) =
λ2
`

32π
M∆ , Γ(∆→ φφ) =

λ2
φ

32π
M∆ , (116)

B` = λ2
`/(λ

2
` + λ2

φ) , Bφ = λ2
φ/(λ

2
` + λ2

φ) , (117)

where we have introduced the notations

λ` ≡
√

tr(yy†) , λφ ≡ |µ|/M∆ . (118)

This minimal setup is, however, not enough for leptogenesis: to generate an asym-

metry between triplet and anti-triplet decays, another heavy state must be added

to the model that couples to the lepton and Higgs doublets. Examples of such

states are additional scalar triplets, which induce a CP asymmetry in ∆/∆̄ decays

through self-energy corrections, or right-handed neutrinos, which give rise to ver-

tex corrections. If the additional particles are significantly heavier than the scalar

triplet, they are not present in the thermal bath at the time of leptogenesis, and

one can parametrize their effects [128] by the effective dimension-5 operatorsl

1

4

καβ
Λ

(`Tαiσ
2φ)C (φTiσ2`β) + h.c. , (119)

which are suppressed by Λ � M∆. These operators induce a new contribution to

neutrino masses proportional to καβ/Λ, so that the total neutrino mass matrix can

be written

Mν = M∆
ν +MH

ν , (M∆
ν )αβ =

λφyαβ
4M∆

v2 , (MH
ν )αβ =

καβ
4Λ

v2 . (120)

lIn full generality, one should also consider the effective dimension-6 operators

−1

4

ηαβγδ

Λ2

(
`TαCiσ

2~σ`β

)
·
(

¯̀
γ~σiσ

2C ¯̀T
δ

)
,

which arise at tree level if the heavier particles are scalar triplets and at the one-loop level if

they are right-handed neutrinos. These operators, which contribute to the flavor-dependent CP
asymmetries εαβ but not to the total CP asymmetry ε∆ ≡

∑
α,β εαβ , play a crucial role in

the scenario of “purely flavored leptogenesis,” discussed in Refs. [132, 133]. Given that they are
suppressed by an additional power of Λ and possibly also by a loop factor, their effects are typically

subdominant in less specific scenarios, and we will omit them in the following.
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The CP asymmetries between triplet and anti-triplet decays arise from the inter-

ference between a tree-level diagram and a one-loop diagram with insertion of the

operators in Eq. (119). They are given by [128, 134]

εφ ≡ 2
Γ(∆→ φφ)− Γ(∆̄→ φ̄φ̄)

Γ∆ + Γ∆̄

=
1

2π

M∆

v2

√
B`Bφ

Im
[
tr(M∆†

ν MH
ν )
]

M̄∆
ν

, (121)

εαβ ≡
Γ(∆̄→ `α`β)− Γ(∆→ ¯̀

α
¯̀
β)

Γ∆ + Γ∆̄

(1 + δαβ)

=
1

2π

M∆

v2

√
B`Bφ

Im
[
(M∆∗

ν )αβ(MH
ν )αβ

]
M̄∆
ν

, (122)

where (M∆
ν )αβ and (MH

ν )αβ are defined in Eq. (120), Γ∆ = Γ∆̄ is the total triplet

decay rate, and

M̄∆
ν ≡

√
tr(M∆†

ν M∆
ν ) . (123)

Unitarity and CPT invariance ensure that the CP asymmetry in decays into Higgs

bosons εφ is equal to the total CP asymmetry in leptonic decays
∑
α,β εαβ .

The first quantitative study of scalar triplet leptogenesis, in which flavor effects

were omitted, was performed in Ref. [128]. Flavor effects were discussed in a flavor

non-covariant approach in Refs. [132, 133], and spectator processes were included in

Ref. [133]. Flavor-covariant Boltzmann equations were first presented in Ref. [134].

5.2. Flavor-covariant Boltzmann equations

In order to describe flavor effects in a covariant way, we introduce, as was done for

the type I seesaw case in Ref. [65], a 3 × 3 matrix in lepton flavor space [19–22]

— the matrix of flavor asymmetries [Y∆`]αβ . The diagonal entries of this matrix

are the asymmetries Y∆`α ≡ (n`α − n̄`α)/s stored in the lepton doublets `α, while

its off-diagonal entries encode the quantum correlations between the different flavor

asymmetries. Explicitly, one first defines the phase-space distribution functions

f`αβ(p) and f̄`αβ(p) as matrices in flavor space by [22]

〈b†α(p)bβ(p′)〉 = (2π)3δ(3)(p− p′)f`αβ(p) , (124a)

〈d†β(p)dα(p′)〉 = (2π)3δ(3)(p− p′)f̄`αβ(p) , (124b)

where b†α (resp. d†α) is the operator that creates a lepton (anti-lepton) doublet of

flavor α (the opposite order of the flavor indices α and β in Eq. (124a) and Eq. (124b)

is required by flavor covariance). The matrix of flavor asymmetries is then given by

[Y∆`]αβ ≡
n`αβ − n̄`αβ

s
, (125)

where the (matrix) number densities n`αβ and n̄`αβ are obtained by integrating

f`αβ(p) and f̄`αβ(p) over phase space (with a factor g` = 2 due to the SU(2)L
degeneracy):

n`αβ = 2

∫
d3p

(2π)3
f`αβ(p) , n̄`αβ = 2

∫
d3p

(2π)3
f̄`αβ(p) . (126)
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With this definition, the matrix of flavor asymmetries transforms as Y∆` →
U∗Y∆`U

T under flavor rotations ` → U`, where U is a 3 × 3 unitary matrix. We

also need to define asymmetries for the Higgs doublet and scalar triplet:

Y∆χ ≡
nχ − n̄χ

s
, χ = φ,∆ , (127)

where nχ and n̄χ are the number densities of the scalars χ and of their anti-particles:

nχ = gχ

∫
d3p

(2π)3
fχ(p) , n̄χ = gχ

∫
d3p

(2π)3
fχ̄(p) , (128)

with gχ = 2 for Higgs doublets and gχ = 3 for scalar triplets.

The time evolution of the matrix of flavor asymmetries is governed by a flavor-

covariant Boltzmann equation of the form

sHz
d[Y∆`]αβ

dz
=

(
Y∆ + Ȳ∆

Y eq
∆ + Ȳ eq

∆

− 1

)
γD Eαβ −Wαβ , (129)

where the first term on the right-hand side is the source term proportional to the CP-

asymmetry matrix Eαβ , and the second term is the washout term. In the parenthesis,

Y∆ ≡ n∆/s and Ȳ∆ ≡ n̄∆/s are the triplet and anti-triplet yields, respectively, and

Y eq
∆ and Ȳ eq

∆ are their equilibrium values. Flavor covariance requires that, under

rotations `→ U`, the matrices E andW transform in the same way as Y∆`, namely

as E → U∗EUT and W → U∗WUT.

The Boltzmann equation, Eq. (129), can be derived using the CTP formal-

ism [17, 18, 139, 140] (see also Sec. 2.2.2), in a similar way to the flavored quantum

Boltzmann equations of type I seesaw leptogenesis [34–38, 40, 41, 102, 141]. In

the CTP approach, particle densities are replaced by Green’s functions defined

on a closed path in the complex time plane going from an initial instant t = 0

to t = +∞ and back. Starting from the Schwinger-Dyson equations satisfied by

the lepton-doublet Green’s functions, one arrives, after some manipulations, at the

quantum Boltzmann equation (see Ref. [134] for details)

sHz
d[Y∆`]αβ

dz
= −

∫
d3w

∫ t

0

dtw tr
[
Σ>`βγ(x,w)S<`γα(w, x)− Σ<`βγ(x,w)S>`γα(w, x)

−S>`βγ(x,w)Σ<`γα(w, x) + S<`βγ(x,w)Σ>`γα(w, x)
]
, (130)

where S<`αβ(x, y) and S>`αβ(x, y) are lepton-doublet Green’s functions path-ordered

along the closed time contour, and Σ<`αβ(x, y) and Σ>`αβ(x, y) are self-energies. The

expansion of the Universe has been taken into account by making the replacement
d
dt → sHz d

dz on the left-hand side of Eq. (130). Since we are not interested in

quantum effects, we take the classical limit of Eq. (130) by extending the time

integral to infinity, which amounts to keeping only the contribution of on-shell

intermediate states in the self-energy functions. In this way, we obtain the semi-

classical, flavor-covariant Boltzmann equation

sHz
d[Y∆`]αβ

dz
=

(
Y∆ + Ȳ∆

Y eq
∆ + Ȳ eq

∆

− 1

)
γD Eαβ −WD

αβ −W
`φ
αβ −W

4`
αβ −W`∆

αβ , (131)
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Fig. 6. (a) One-loop contribution to the lepton doublet self-energy Σ`βα. (b) Two-loop contri-

butions to the lepton doublet self-energy giving rise to the CP asymmetry Eαβ .

in which the terms WD
αβ , W`φ

αβ , W4`
αβ and W`∆

αβ correspond to different washout

processes, to be specified below. The source term of Eq. (131) arises from the

two-loop self-energy diagrams of Fig. 6, which provide the flavor-covariant CP-

asymmetry matrix

Eαβ =
1

4πi

M∆

v2

√
B`Bφ

(MH
ν M

∆†
ν −M∆

ν M
H†
ν )αβ

M̄∆
ν

. (132)

It is straightforward to check that the trace of this matrix is equal to the total CP

asymmetry between triplet and anti-triplet decays: tr E =
∑
α,β εαβ = ε∆.

The washout termWD
αβ is associated with triplet and anti-triplet inverse decays.

It arises from the one-loop contribution to the lepton doublet self-energy, shown

in Fig. 6, and is given by

WD
αβ =

2B`
tr(yy†)

[
(yy†)αβ

Y∆∆

Y eq
∆ + Ȳ eq

∆

+
1

4Y eq
`

(
2y[Y∆`]

Ty† + yy†Y∆` + Y∆`yy
†)
αβ

]
γD . (133)

In Eq. (133), Y∆∆
≡ (n∆ − n̄∆)/s is the triplet asymmetry, Y eq

` ≡ n
eq
` /s and γD is

the total, thermally-averaged decay rate of triplets and anti-triplets:

γD =

∫
d3p

(2π)32ωp

∫
d3k

(2π)32ωk

∫
d3q

(2π)32ωq
3
(
λ2
` + λ2

φ

)
(k · q)

× (2π)4δ(4)(p− k − q)
{
f eq

∆ (p) + f̄ eq
∆ (p)

}
. (134)

The other washout terms are associated with 2 → 2 scattering processes and

originate from two-loop contributions to the lepton doublet self-energy. W`φ
αβ ac-

counts for the washout of the flavor asymmetries by the ∆L = 2 scatterings
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`γ`δ ↔ φ̄φ̄ and `γφ↔ ¯̀
δφ̄, and is given by

W`φ
αβ = 2

{
1

tr(yy†)

[(
2y[Y∆`]

Ty† + yy†Y∆` + Y∆`yy
†)
αβ

4Y eq
`

+
Y∆φ

Y eq
φ

(yy†)αβ

]
γ∆
`φ

+
1

Re [tr(yκ†)]

[(
2y[Y∆`]

Tκ† + yκ†Y∆` + Y∆`yκ
†)
αβ

4Y eq
`

+
Y∆φ

Y eq
φ

(yκ†)αβ

]
γI`φ

+
1

Re [tr(yκ†)]

[(
2κ[Y∆`]

Ty† + κy†Y∆` + Y∆`κy
†)
αβ

4Y eq
`

+
Y∆φ

Y eq
φ

(κy†)αβ

]
γI`φ

+
1

tr(κκ†)

[(
2κ[Y∆`]

Tκ† + κκ†Y∆` + Y∆`κκ
†)
αβ

4Y eq
`

+
Y∆φ

Y eq
φ

(κκ†)αβ

]
γH`φ

}
,

(135)

in which γ∆
`φ and γH`φ are respectively the contributions of scalar-triplet exchange

and of the d = 5 operators in Eq. (119) to the rate of ∆L = 2 scatterings γ`φ, and

γI`φ is the interference term (more precisely, γ`φ = γ∆
`φ+ 2γI`φ+γH`φ). The remaining

washout termsW4`
αβ andW`∆

αβ are associated with ∆L = 0 scatterings. Even though

they do not violate lepton number, they modify the dynamics of leptogenesis by

redistributing the lepton asymmetry among the different flavors, thus affecting the

value of the final B−L asymmetry. For the washout term due to the lepton-lepton

scatterings `γ`δ ↔ `ρ`σ and `γ ¯̀
ρ ↔ ¯̀

δ`σ, one obtains

W4`
αβ =

2

λ4
`

[
λ2
`

(
2y[Y∆`]

Ty† + yy†Y∆` + Y∆`yy
†)
αβ

4Y eq
`

− tr(Y∆`yy
†)

Y eq
`

(yy†)αβ

]
γ4` ,

(136)

while for the lepton-triplet scatterings `γ∆↔ `δ∆, `γ∆̄↔ `δ∆̄ and `γ ¯̀
δ ↔ ∆∆̄:

W`∆
αβ =

1

tr(yy†yy†) 2Y eq
`

(
yy†yy†Y∆` − 2yy†Y∆`yy

† + Y∆`yy
†yy†

)
αβ
γ`∆ . (137)

The scattering rates γ4`, γ`∆ and the contributions γ∆
`φ, γI`φ and γH`φ to γ`φ are

computed with the appropriate subtraction of on-shell intermediate states when

necessary (see the discussion in Chapter [27]). Their expressions can be found in

Ref. [134].

Since the couplings yαβ and καβ transform as (y, κ)→ U∗(y, κ)U† under flavor

rotations ` → U`, one immediately sees from Eq. (132), Eq. (133), Eq. (135),

Eq. (136) and Eq. (137) that the CP-asymmetry matrix E and the various washout

terms transform as (E ,W)→ U∗(E ,W)UT, as required by flavor covariance.

In order to have a closed set of Boltzmann equations, one must supplement

Eq. (131) with equations for Y∆ + Ȳ∆ and Y∆∆
(an equation for Y∆φ is not needed,
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as Y∆φ can be expressed as a functionm of Y∆∆ and [Y∆`]αβ):

sHz
d
(
Y∆ + Ȳ∆

)
dz

= −
[
Y∆ + Ȳ∆

Y eq
∆ + Ȳ eq

∆

− 1

]
γD − 2

[(
Y∆ + Ȳ∆

Y eq
∆ + Ȳ eq

∆

)2

− 1

]
γA ,

(138a)

sHz
dY∆∆

dz
= − 1

2

[
tr(WD)−WD

φ

]
, (138b)

where the first and second terms in Eq. (138a) are due to triplet/anti-triplet decays

and to triplet-anti-triplet annihilations, respectively, and the termWD
φ in Eq. (138b)

is associated with the decays ∆→ φφ, ∆̄→ φ̄φ̄ and with their inverse decays:

WD
φ = 2Bφ

(
Y∆φ

Y eq
φ

− Y∆∆

Y eq
∆ + Ȳ eq

∆

)
γD . (139)

Using Eq. (133) and Eq. (139), the Boltzmann equation for Y∆∆
can be rewritten

as

sHz
dY∆∆

dz
= −

(
Y∆∆

Y eq
∆ + Ȳ eq

∆

+B`
tr(yy†Y∆`)

λ2
`Y

eq
`

−Bφ
Y∆φ

Y eq
φ

)
γD . (140)

5.3. Flavor regimes and spectator processes

In deriving the flavor-covariant Boltzmann equation, Eq. (131), we assumed that

the quantum correlations between the different lepton flavors are not affected by

charged-lepton Yukawa interactions, which, strictly speaking, is true only above

T = 1012 GeV (see Sec. 2.1). At lower temperatures, the scatterings induced by

charged-lepton Yukawa couplings can no longer be neglected, and their effects must

be taken into account by appropriate terms on the right-hand side of Eq. (131).

Alternatively, one can neglect the quantum correlations between lepton flavors that

these processes, when they are sufficiently fast, tend to destroy. For instance, below

T = 1012 GeV, the tau Yukawa coupling is in equilibrium and drives the (e, τ) and

(µ, τ) entries of Y∆` to zero. The relevant dynamical variables in the temperature

range 109 GeV < T < 1012 GeV are therefore Y∆`τ (the asymmetry stored in the

tau lepton doublet) and the 2× 2 matrix [Y 0
∆`]αβ (the flavor asymmetries stored in

`e and `µ and their quantum correlations). Accordingly, Eq. (131) must be replaced

by two separate Boltzmann equations for Y∆`τ and [Y 0
∆`]αβ , the second one being

covariant with respect to rotations in the (`e, `µ) flavor space. Below T = 109 GeV,

the muon Yukawa coupling also enters equilibrium and destroys the correlations

between the e and µ flavors. The Boltzmann equation, Eq. (131), then reduces to

three equations for the flavor asymmetries Y∆`α (α = e, µ, τ).

Finally, the effect of spectator processes [72, 73], which affect the dynamics of

leptogenesis even though they do not violate lepton number, must be taken into
mFor instance, in the limit where all spectator processes (electroweak and QCD sphalerons, Stan-
dard Model Yukawa couplings) are neglected, which has been implicitly considered so far, one has

Y∆φ = trY∆` − 2Y∆∆
from hypercharge and baryon number conservation.
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account [133]. Working in the usual approximation that, in a given temperature

range, each of these reactions is either negligible or in equilibrium, one obtains rela-

tions among the various particle asymmetries in the plasma. Using these relations,

one can write the Boltzmann equations solely in terms of asymmetries that are

conserved by all spectator processes relevant in the temperature range considered.

These asymmetries are Y∆∆
, the 3× 3 and 2× 2 flavor-covariant matrices

Y∆αβ
≡ 1

3
Y∆B δαβ − [Y∆`]αβ and Y 0

∆αβ
≡ 1

3
Y∆B δαβ − [Y 0

∆`]αβ (141)

(relevant in the temperature regimes T > 1012 GeV and 109 GeV < T < 1012 GeV,

respectively), which are conserved by all spectator processes except charged-lepton

Yukawa interactions, and

Y∆α ≡ Y∆B/3−Lα =
1

3
Y∆B − Y∆`α − Y∆eRα , (142)

which are preserved by all SM interactions. In addition to Y∆ + Ȳ∆ and Y∆∆
,

the dynamical variables appearing in the Boltzmann equations (after making use

of the equilibrium relations) are Y∆αβ
above T = 1012 GeV, (Y 0

∆αβ
, Y∆τ

) between

T = 109 GeV and T = 1012 GeV, and (Y∆e , Y∆µ , Y∆τ ) below T = 109 GeV.

The expressions for the Boltzmann equations valid in each temperature regime,

with proper inclusion of the spectator processes, can be found in Ref. [134].

5.4. The relevance of flavor effects

A remarkable property of scalar triplet leptogenesis, as opposed to leptogenesis in

the type I seesaw framework, is that lepton flavor effects are relevant in all tem-

perature regimes. In particular, there is no well-defined single-flavor approximation

in scalar triplet leptogenesis. The basic reason for this is that the scalar triplet

couples to a pair of leptons rather than to a specific combination of lepton flavors.

By contrast, in the leptogenesis scenario with right-handed neutrinos, the couplings

of the lightest singlet neutrino N1 can be written as

−
∑
α

λα1
¯̀
αφ

cN1 + h.c. = − λN1
¯̀
N1φ

cN1 + h.c. , (143)

where `N1 ≡
∑
α λ
∗
α1`α/λN1 and λN1 ≡

√∑
α |λα1|2 . Assuming hierarchical right-

handed neutrinos, so that the heavier singlet neutrinos N2 and N3 are not present in

the plasma when N1 starts to decay (and neglecting the ∆L = 2 scattering processes

mediated by N2 and N3), the coherence of `N1
is preserved as long as the scatterings

induced by the charged-lepton Yukawa couplings remain out of equilibrium, i.e. in

the temperature regime T > 1012 GeV. Leptogenesis can then be described in terms

of a single lepton flavorn — hence the name single-flavor approximation. This can

be understood in more technical terms by going to the flavor basis (`N1 , `⊥1, `⊥2),

where `⊥1 and `⊥2 are two directions perpendicular to `N1
in flavor space. When the

nAn exception to this statement is when the lepton asymmetries generated in N2 and N3 decays
have not been completely washed out before the out-of-equilibrium decays of N1 start to occur.
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charged-lepton Yukawa couplings and the washout terms mediated by N2 and N3

are switched off, the Boltzmann equation for [Y∆`]11 ≡ Y∆`N1
becomes independent

of the other entries of the matrix [Y∆`]αβ , and the source terms for Y∆`⊥1
and Y∆`⊥2

vanish. Analogously, in the temperature regime 109 GeV < T < 1012 GeV, where

the tau Yukawa coupling is in equilibrium but the muon and electron ones are not,

leptogenesis can be described in terms of the flavor asymmetries Y∆`τ and Y∆`0

(where `0 ∝ λ∗e1`e + λ∗µ1`µ), provided that N2 and N3 play a negligible role in the

generation and washout of the lepton asymmetry.

In scalar triplet leptogenesis, one may formally define a single-flavor approxima-

tion by making the substitutions [Y∆`]αβ → Y∆`, yαβ → λ`, καβ → λκ ≡
√

tr(κκ†)

and Eαβ → ε∆ in Eq. (131) and Eq. (140), but the resulting Boltzmann equationso

cannot be obtained as limits of the flavor-covariant ones. As a consequence, ne-

glecting flavor effects in scalar triplet leptogenesis does not, in general, provide a

good approximation to the flavor-covariant computation, even above T = 1012 GeV.

This is a clear difference with the standard leptogenesis scenario with hierarchical

right-handed neutrinos. The analogue of the single-flavor approximation of the type

I seesaw case is in fact a “three-flavor approximation” in which flavor effects still

play a prominent role. Namely, in the basis where the triplet couplings to leptons

are flavor diagonal, the Boltzmann equations for the diagonal entries of the matrix

[Y∆`]αβ become independent of the off-diagonal ones when the contribution of the

dimension-5 operators in Eq. (119) to the ∆L = 2 scatterings in Eq. (135) vanishes.

Equation (131) may then be replaced by three Boltzmann equations for the flavor

asymmetries Y∆`1 , Y∆`2 and Y∆`3 , where the `i define the basis of flavor space in

which the couplings yαβ are diagonal. It should be clear that the three-flavor ap-

proximation is valid only in this particular basis; in any other basis, the diagonal

and off-diagonal entries of [Y∆`]αβ are coupled. Furthermore, the flavor-covariant

Boltzmann equations must be used as soon as the contribution of the operators

in Eq. (119) to ∆L = 2 scatterings is sizable. Finally, between T = 109 GeV and

T = 1012 GeV, there is no flavor basis in which Eq. (131) can be substituted for

Boltzmann equations for “diagonal” flavor asymmetries, even when ∆L = 2 scat-

terings are negligible. The use of the flavor-covariant formalism involving the 2× 2

matrix [Y 0
∆`]αβ is therefore unavoidable in this regime.

5.5. Quantitative impact of flavor effects

Let us now illustrate the relevance of flavor effects by means of some numerical

examples. Given the large number of parameters involved, we shall concentrate on

two suitably chosen Ansätze. We can take as independent parameters the scalar

triplet mass M∆ and its couplings to Higgs doublets (λφ) and to lepton doublets

(yαβ). Once values for these parameters and for the neutrino parameters are chosen

(including the yet unknown mass ordering, lightest neutrino mass and phases of

oThese equations are the ones that were derived and used in the first quantitative study of scalar
triplet leptogenesis [128], which did not include flavor effects.
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the PMNS matrix), the coefficients καβ/Λ of the effective dimension-5 operators

in Eq. (119) are completely fixed by the neutrino mass formula in Eq. (120). For

definiteness, we work in the charged-lepton mass eigenbasis, in which the neutrino

mass matrix takes the formMν = U∗ν diag(m1,m2,m3)U†ν , where themi (i = 1, 2, 3)

are the neutrino masses and Uν is the PMNS matrix. For the mixing angles and

squared mass differences, we take values within 1σ of the best fit to global neutrino

data of Ref. [142]. Finally, we set all phases of the PMNS matrix to zero, assume a

normal mass ordering and take the lightest neutrino mass to be m1 = 10−3 eV at

the triplet mass scale.

For the triplet parameters, we choose the following Ansätze, defined in terms of

the triplet contribution to the neutrino mass matrix m∆:

• Ansatz 1: M∆
ν = iMν

• Ansatz 2: M∆
ν = iM̄ν U

∗
ν

0.949 0 0

0 0.048 0

0 0 0.312

U†ν ,

where M̄ν ≡
√

tr(M†νMν) =
√∑

im
2
i .

Both Ansätze are characterized by M̄∆
ν = M̄ν . Since [M∆

ν ]αβ = λφyαβ v
2/(4M∆),

the hierarchical structure of the triplet couplings to leptons yαβ is completely deter-

mined in each case, while two parameters, which can be chosen to be λ` and M∆,

remain free. In Ansatz 1, the triplet couplings to leptons are proportional to the

entries of the neutrino mass matrix, while, in Ansatz 2, the hierarchical structures

of yαβ and [Mν ]αβ are very different. Ansatz 1 also has the property of maximizing

the total CP asymmetry ε∆.

Figure 7 shows the impact of lepton flavor effects and spectator processes on

the generated baryon-to-photon ratio for Ansatz 1 (left panel) and Ansatz 2 (right

panel). The triplet mass has been chosen to be M∆ = 5×1012 GeV, so that most of

the B−L asymmetry is produced at T > 1012 GeV. The flavor-covariant computa-

tion involving the 3× 3 matrix of flavor asymmetries [Y∆`]αβ is compared with the

single-flavor approximation, with and without spectator processes. Flavor effects

are sizable for practically all parameter values and typically lead to an enhancement

of the generated baryon asymmetry by a factor of order one (up to an order of mag-

nitude for Ansatz 2 with λ` ∼ 0.03). However, for small values of λ` (corresponding

to B` � Bφ), the difference between the flavor-covariant computation and the sin-

gle flavor approximation is much less significant. This can easily be understood by

noting that, in this limit, the washout of the flavored lepton asymmetries, which is

mainly due to the inverse decays `α`β → ∆̄ and ¯̀
α

¯̀
β → ∆, becomes less important.

Neglecting all washout terms in the Boltzmann equation, Eq. (131), and taking the
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Fig. 7. Baryon-to-photon ratio nB/nγ as a function of λ` for M∆ = 5 × 1012 GeV, assuming

Ansatz 1 (left panel) or Ansatz 2 (right panel). The red lines show the result of the flavor-covariant
computation involving the 3 × 3 matrix [Y∆`]αβ , with (solid red line) or without (dashed-dotted

red line) spectator processes taken into account, while the blue lines correspond to the result of the

single-flavor approximation, including spectator processes (blue dashed line) or not (blue dotted
line). The branching ratios B` and Bφ are equal for λ` ' 0.15. Figure taken from Ref. [134].

trace over lepton flavors, one obtains

sHz
d[Y∆`]αβ

dz
=

(
Y∆ + Ȳ∆

Y eq
∆ + Ȳ eq

∆

− 1

)
γD Eαβ ,

=⇒ sHz
dY∆`

dz
=

(
Y∆ + Ȳ∆

Y eq
∆ + Ȳ eq

∆

− 1

)
γDε∆ , (144)

which is the equation of the single-flavor approximation in the same limit. Flavor

effects also tend to become relatively less important in the opposite limit λ` �
1 (corresponding to B` � Bφ), because the lepton flavor asymmetries are more

efficiently washed out than for smaller values of λ`, and the asymmetry generated

in the Higgs sector becomes the dominant source of the final baryon-to-photon

ratio [128, 134].

Figure 8 shows the dependence of the generated baryon asymmetry on λ` and

M∆ for Ansatz 1 (left panel) and Ansatz 2 (right panel). The isocurves of the

baryon-to-photon ratio correspond to the flavor-covariant computation including

spectator processes. The comparison of the two shaded, colored areas shows that

the inclusion of flavor effects significantly enlarges the region of parameter space

where successful scalar triplet leptogenesis is possible. For the Ansätze considered,

the observed baryon-to-photon ratio can be reproduced for triplet masses as low as

4.4 × 1010 GeV, to be compared with 1.2 × 1011 GeV in the approximation where

flavor effects and spectator processes are neglected. These values are not absolute

lower bounds, as different assumptions about the triplet parameters can lead to

successful leptogenesis for lower triplet masses (for instance, Ref. [128] found a

lower bound M∆ > 2.8 × 1010 GeV for M̄∆
ν = 0.001 eV � M̄ν in the single-flavor

approximation).
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Fig. 8. Isocurves of the baryon-to-photon ratio nB/nγ in the (λ`,M∆) plane, obtained performing

the flavor-covariant computation including spectator processes, assuming Ansatz 1 (left panel) or
Ansatz 2 (right panel). The shaded, colored areas correspond to the regions of the parameter space

where the observed baryon asymmetry can be reproduced in the flavor-covariant computation
(light red shading) or in the single-flavor approximation neglecting spectator processes (dark blue

shading). The solid black line corresponds to B` = Bφ. Also shown are the regions where λφ is

greater than 1 or 4π. Figure taken from Ref. [134].

6. Importance of flavor in other models

Before concluding this chapter, we remark on the importance of flavor effects in

other models of leptogenesis. We focus, in particular, on those models detailed in the

other chapters of this review, and cross references are included where appropriate.

ARS mechanism. If the sterile-neutrino Yukawa couplings are sufficiently small,

successful leptogenesis can be achieved within type I seesaw scenarios at scales as

low as M ∼ 1 – 100 GeV, whilst at the same time satisfying the observational

and experimental constraints on the SM neutrino masses. The smallness of these

Yukawa couplings delays the thermalization of the sterile states, such that at least

one of them can still be out of equilibrium at the onset of the electroweak phase

transition. Their CP-violating oscillations are then able to distribute lepton asym-

metry unevenly amongst the different flavors. These individual asymmetries can

then be communicated to the charged leptons by any of the sterile neutrinos that

are in equilibrium and reprocessed into baryon asymmetry by sphaleron processes.

The resulting baryon asymmetry is protected from the eventual equilibration of the

sterile states, since this occurs after the sphaleron processes have switched off. This

scenario of baryogenesis via leptogenesis is known as the ARS mechanism, after

Akhmedov, Rubakov and Smirnov [13] (see also Ref. [143]). In contrast to the sce-

narios described in the rest of this chapter, the ARS mechanism does not rely on

the Majorana nature of the sterile neutrinos, and it therefore allows for successful
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leptogenesis also for Dirac-type neutrinos. Even if Majorana masses are present, the

lepton number violating processes that they mediate are suppressed in the regime

T �M relevant to the ARS mechanism. With the exception of contributions to the

asymmetry from thermally-induced L- and CP-violating decays of the Higgs dou-

blet [144, 145], ARS leptogenesis is therefore a purely flavored scenario, and further

discussions can be found in the dedicated Chapter [14] along with an overview of

its experimental signatures in Chapter [146].

Extended low-scale type II and type III leptogenesis. The resonant en-

hancement of CP violation in type II (scalar triplet) and type III (fermion triplet)

seesaw scenarios can be implemented through the addition of new scalars and

fermions. Further discussions and references can be found in the discussions in

Sec. 4.2 of Chapter [146].

Left-right symmetric models. Further discussions of the embeddings of low-

scale resonant scenarios in left-right-symmetric [147–149] extensions of the SM gauge

groups (SU(2)L × SU(2)R × U(1)B−L) can be found in Sec. 5.2 of Chapter [146].

Type I soft leptogenesis. Soft SUSY breaking terms can give rise to additional

sources of CP violation, allowing leptogenesis to be realised in supersymmetric type I

seesaw scenarios at temperatures T . 109 GeV lower than the bound from gravitino

over-production. Further details of type I soft leptogenesis and the importance of

lepton flavor effects are discussed in Sec. 6.1 of Chapter [146].

Flavor symmetries. In order to predict the mixing angles and phases of the

PMNS matrix, one can assume that the three generations of SM leptons form a

triplet of a flavor symmetry group Gf , which may be taken together with a CP

symmetry that acts non-trivially in flavor space. A comprehensive discussion of fla-

vor symmetries and their implications for leptogenesis can be found in Chapter [46].

7. Conclusions

In this chapter, we have highlighted the potential importance of accounting fully

for flavor effects in order to obtain accurate estimates of the final lepton (and

therefore baryon) asymmetry in scenarios of leptogenesis. Flavor correlations in

the heavy-neutrino sector contribute to the source of the CP asymmetry, and flavor

correlations in the charged-lepton sector are important for determining the washout

of the lepton asymmetry. The effect on the latter can even allow for successful

leptogenesis when total lepton number is conserved (or the violation of total lepton

number is suppressed).

In the case of thermal leptogenesis based on the type I seesaw scenario, we have

seen that the region of parameter space where the next-to-lightest RH neutrino
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dominates the production of the asymmetry is enhanced when charged-lepton flavor

effects are taken into account. Moreover, once these effects are accounted for,

only one scenario of thermal leptogenesis can successfully generate the observed

asymmetry whilst remaining independent of the initial conditions: the tau N2-

dominated scenario, wherein the asymmetry is mostly produced by decays of the

next-to-lightest heavy neutrino via the tau channel. In these flavored regimes,

the evolution of the individual flavor asymmetries can be coupled by spectator

effects, and this can expand and open up viable regions of parameter space for

N2-dominated scenarios.

In resonant leptogenesis, we have seen that coherences in the charged-lepton and

heavy-neutrino sectors play significant and opposing roles in determining the final

asymmetry. This is because, for the quasi-degenerate heavy-neutrino mass spec-

tra relevant to these scenarios, flavor oscillations also contribute to the source of

the CP asymmetry in addition to the flavor mixing that dominates for hierarchical

mass spectra. Treating only coherences in the heavy-neutrino flavors but neglect-

ing coherences amongst the charged-lepton flavors can overestimate the asymmetry

by as much as a factor of 5. Doing the opposite, i.e. treating only coherences in

the charged-lepton flavors but neglecting coherences amongst the heavy-neutrino

flavors, can instead underestimate the asymmetry by as much as a factor of 2.

This motivates the use of fully flavor-covariant approaches that are able to yield

rate equations for the matrices of charged-lepton and heavy-neutrino number den-

sities. Such approaches can be realised both in semi-classical and field-theoretic

descriptions of leptogenesis, and we have briefly reviewed these complementary

methodologies.

Furthermore, for models of leptogenesis embedded in the type II seesaw sce-

nario, we have seen that charged-lepton flavor effects are relevant in all tempera-

ture regimes, since the scalar triplet couples to a pair of lepton doublets. A flavor-

covariant treatment then shows that accounting fully for these effects typically leads

to an order-one enhancement of the asymmetry compared to a single-flavor approx-

imation, where the latter may be justified for small triplet-lepton couplings.

Aside from having an important impact on the final asymmetry, flavor effects

are also relevant to the testability of leptogenesis. Specifically, when flavor effects

cannot be neglected, leptogenesis becomes sensitive to the phases of the PMNS

matrix. Moreover, in low-scale resonant scenarios, some of the Yukawa couplings

remain sizable, allowing such models to be directly testable in current and near-

future experiments, including the LHC, as well as low-energy experiments looking

for lepton flavor and lepton number violation.
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[111] R. N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Non-
conservation, Phys. Rev. Lett. 44, 912, (1980).

[112] T. Yanagida. Horizontal symmetry and masses of neutrinos. In eds. O. Sawada and
A. Sugamoto, Proceedings of the Workshop on Unified Theories and Baryon Number
in the Universe, 13–14 February 1979 National Laboratory for High Energy Physics,
Tsukuba, Japan, pp. 95–99, (1979).

[113] M. Gell-Mann, P. Ramond, and R. Slansky. Complex spinors and unified theories. In
eds. P. van Nieuwenhuizen and D. Z. Freedman, Proceedings of Supergravity, 27–28
September 1979, Stony Brook, New York, pp. 315–321, (1979).

[114] S. L. Glashow. The Future of Elementary Particle Physics. In eds. M. Lévy, J.-L.
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Cargèse Summer Institute: Quarks and Leptons, 9–29 July 1979, Cargèse, France,
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