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Abstract 

Carbon fibre (CF) recycling has been demonstrated to achieve reductions in environmental impacts 

compared to virgin CF production, but there is limited understanding of the financial viability of 

recycling and reutilisation of recycled CF (rCF). In this work, cost analysis and identification of market 

opportunities for rCF are performed by evaluating the cost of recycling, composite manufacture, and 

applications in automotive industry. Cost impacts of using rCF as a substitute for conventional materials 

and competitor lightweight materials are assessed over the full life cycle, including in-use implications. 

Recovery of CF can be achieved at $5/kg and less across a wide range of process parameters, 

approximately 15% of the cost of producing virgin carbon fibre. The life cycle cost results show that rCF 

composites, especially aligned rCF composites, give substantial cost reductions relative to virgin CF 

composites and even steel and aluminium.  
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1 Introduction 

Vehicle lightweighting is a potentially effective method to reduce energy consumption in the 

transportation sector. Due to its low density and high mechanical performance, carbon fibre (CF) has been 

widely used in lightweighting applications. The global demand for carbon fibre reinforced plastic (CFRP) 

in automotive industries values $2.4 billion in 2015, and is expected to increase to $6.3 billion by 2021 

with an average increase of 17.5% [1]. However, compared to conventional steel and aluminium, the high 

cost of the manufacture of virgin CF (vCF) has limited the net benefits of lightweighting. It is estimated 

that the global demand of vCF would be 1.23 million tonnes if it was available at $11/kg [1]; however 

recent prices are estimated in the range of  $33–66/kg [2, 3]. Recycled carbon fibre (rCF) can potentially 

provide similar lightweighting performance as vCF at a lower cost; however there is limited 

understanding of the overall financial viability of producing automotive components from rCF. 

The generation of CFRP-based wastes is correspondingly increasing along with the increasing demand 

of CFRP, arising from manufacturing, where up to 40% of the CFRP can be waste arising during 

manufacture [4-6] and end-of-life products/components. For instance, 6000-8000 commercial aircraft are 

expected to come to their end-of-life by the year of 2030 [3, 7]. Treatment of CFRP waste must account 

for environmental and cost impacts. Conventional methods to treat the CFRP wastes, such as landfilling 

and incineration, incur costs while recovering little value, and are discouraged by policies aimed at 

reducing waste sent to landfill [8] and increasing the recovery and recycling of materials from end-of-life 

products, including automobiles under the End-of-life Vehicle Directive [9]. Opportunities to recover CF 

could thus extract greater value from CFRP waste streams while contributing to a range of policy 

objectives. 

There is very little publicly available cost information regarding the performance of commercial-

scale/pilot-scale facilities associated with CF recovery or other waste management options. Mechanical 

recycling is a mature technology but is only employed at commercial scale to recycle glass fibre 

reinforced plastics [10]. Significant scale CF recycling plants, based on a pyrolysis process, have been 

built in Japan, Europe, and US with capacities of 1000–2000 t/yr [11-14]. In contrast, the fluidised bed 
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and chemical processes (supercritical fluid; subcritical fluid) are still transitioning from lab scale to pilot 

plant, including a fluidised bed pilot plant representative of commercial scale developed at the University 

of Nottingham. The fluidised bed technology is particularly suitable for dealing with end-of-life CFRP 

wastes which are likely to be contaminated with other materials [5, 15, 16]. Energy related cost data for 

CFRP recycling is either based on hypothesis or literature for lab-scale operation. This results in 

uncertainties/limitations of the financial results as a comprehensive assessment of recycling processes can 

only be implemented when high quality data is available. 

The knowledge gap also exists in the subsequent manufacturing processes of rCFRP in considering the 

rCFRP applications. Recycled CF are typically in a discontinuous and filamentised form with random 

orientation and low bulk density, but without tow structures. Therefore, it is difficult in handling and 

processing compared to vCF with a continuous tow form, which has limited the penetration of rCF into 

vCF markets so far. A range of techniques have been explored for preparing composite materials from 

rCF, including rCF conversion processing including wet papermaking process [17, 18] and fibre 

alignment [18-20]; final composite manufacturing including compression moulding [6, 17], and injection 

moulding [21]. CFRP using rCF shows retention of excellent mechanical properties, in specific, tensile 

performance relative to vCF [18, 21, 22]. However, gaps exist in current understanding of rCF conversion 

techniques for opportunities to produce high performance rCFRP materials in a cost-effective way (e.g. 

processing time, temperatures, pressures, capacity) and no cost analysis has been conducted previously. 

Limited studies have examined the viability of CFRP recycling and utilisation of rCF. Materials 

produced from rCF can significantly reduce key environmental impacts (greenhouse gas emissions, fossil 

energy use) in automotive applications when used in place of conventional materials (steel) and 

alternative lightweighting materials (vCF, aluminium) [4, 16, 23, 24]. However, there is little 

understanding of the financial performance of recycling and remanufacturing routes to assess CFRP 

technologies capable of producing rCF suitable for vCF displacement. To date, only one work [25] 

evaluated the financial viability of mechanical recycling of CFRP waste and use of rCF in place of raw 

glass fibres, finding that this low value use of rCF provided insufficient revenue to compensate for the 

costs of CFRP waste collection and CF recovery.  

For the full implications of any use of rCF to be considered, technical and financial viability of utilising 

rCF-based composite materials needs to be evaluated for automotive component manufacture. In this 
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work, a techno-economic analysis is undertaken to determine the financial viability of producing 

automotive components from rCF. The analysis considers: 1) the minimum rCF selling prices based on 

key operating parameters of a fluidised bed recycling process; 2) cost of manufacturing automotive 

components from rCF, competitor lightweight materials (vCF, aluminium) and conventional materials 

(steel); and 3) in-use fuel costs due to mass-induced fuel consumption in a typical light duty passenger 

vehicle. Comparisons with conventional and competitor lightweight materials are made to assess financial 

viability, and provide insights to rCF use in automotive applications. 

2 Methods 

Techno-economic models are developed to assess the feasibility of rCF use in automotive applications. 

The techno-economic analysis includes cost modelling of: 1) CF recycling by the fluidised bed process, 2) 

processing of rCF, 3) manufacture of rCFRP automotive components, and 4) mass-induced fuel 

consumption. A set of rCFRP manufacturing routes are considered:  

(1) Random structure – Compression Moulding: rCF is processed by a wet papermaking process 

prior to impregnation with epoxy resin and compression moulding. Fibre volume fractions (vf) 

of 20%, 30%, and 40% are considered. 

(2) Aligned – Compression Moulding: rCF is processed by a fibre alignment process prior to 

compression moulding with epoxy resin. 50%vf and 60%vf are considered. 

(3) Random structure – Injection Moulding: rCF is processed by wet papermaking and subsequently 

chopped prior to compounding with polypropylene (PP); rCF–PP pellets are subsequently 

injection moulded. Fibre volume fraction is 18%. 

The overall life cycle cost of rCFRP components are compared to conventional material (steel) and 

competitor lightweight materials (aluminium, vCFRP) to assess the relative financial performance of 

utilising rCF for automotive component manufacture while meeting the same component design criteria 

(see Section 2.6). The first considers autoclave moulded vCF material typical of high-performance 

applications wherein bi-directionally woven vCF is autoclaved moulded from prepreg with epoxy resin 

with a fibre volume fraction of 50%. A second, a similar process wherein chopped, unaligned fibres are 

compounded with PP and vCF–PP pellets are subsequently injection moulded with a fibre volume 

fraction of 18%. The CF-based materials are also compared with mild steel manufactured by stamping 
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process, as a conventional automotive material, and potential lightweight materials (aluminium 

manufactured via casting process) as described in Section 2.5. Vehicle assembly is excluded as costs are 

assumed to be similar for all materials considered. The end of life stage is also excluded. 

The techno-economic models are developed to account for capital cost (CAPEX) such as equipment 

and financing, and operational cost (OPEX) such as fixed operating and maintenance, utilities costs (e.g., 

energy), depreciation and overheads. Taxes, subsidies, and profit margins are not included in the analysis. 

The minimum rCF selling price is determined based on estimated costs of CFRP recycling and key 

operating parameters of a fluidised bed process (see Section 2.2). Overall life cycle costs of 

manufacturing automotive components and their in-use fuel costs are calculated for all materials to 

determine the relative financial performance of rCF-based materials.  

Techno-economic modelling is highly sensitive to the accuracy of the input data. A sensitivity analysis 

is performed to evaluate the impact of uncertainty in the model input parameters. Key parameters such as 

in-use fuel consumption, vehicle lifetime, fuel price, raw material price are considered in the analysis in 

Section 3.3. 

The comparison analysis is taken to ensure functional equivalence of producing automotive 

components from the set of materials based on the material design index (λ) [26, 27] in order to broadly 

understand the financial viability of rCF materials in potential applications. The component thickness is 

variable and is adjusted based on each material’s mechanical properties and the specific design material 

index (see Section 2.6 for further details). Financial results are presented on a normalised basis (relative 

to the mild steel reference material), and can thereby be easily applied to subsequent analyses that are 

undertaken for specific components where the material design index is known. 

2.1 Capital and Operational Costs 

The CAPEX estimation is undertaken for hypothetical CFRP recycling, rCF processing, and rCFRP 

manufacturing facilities. Equipment costs are estimated with insights from the Nottingham fluidised bed 

demonstration plant and laboratory-scale processes developed for rCF processing (papermaking, fibre 

alignment). Installed costs are estimated for standard equipment, sized to required capacity, and non-

standard equipment with indicative cost data from the demonstration plant, using the factor method [28, 

29] as shown in Table 1. All major equipment items are designed and costed based on the process 
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information described in Section 2.2-2.5. Costs are then extrapolated to those of year 2015 based on the 

Chemical Engineering Plant Cost Index [30]: 

                 
 

 
 
 

 
     
  

  (1) 

where Cp,v,2015 is the equipment CAPEX with capacity v in the year of 2015, Cp,u,r is the reference 

equipment cost at capacity u in year r, I2015 is cost index in the year of 2015., Ir is cost index in year r. A 

scaling factor (n) of 0.6 is assumed. An exponential relationship as shown in Eq. (1) is used to estimate 

equipment capital costs for different plant capacities. Normalised annual CAPEX is calculated assuming a 

15% of return tax rate for a plant life of 10 years [31]. 

The annual operational cost is calculated as the sum of operating costs (labour, material, utility), plant 

overheads, and maintenance cost as shown in Table 1 but OPEX information is updated based on actual 

component of pilot plant or standard equipment where available. The labour cost is estimated based on an 

hourly pay rate of £18.20 ($27.70) in 2015 [32] for plant operation requirement of 3 shifts per day across 

250 days per year (see Table 1). Other operational costs including materials, utilities, plant overheads and 

maintenance are obtained from publicly available data and, where appropriate, are adjusted to the plant 

capacities. 

2.2 CF Recycling 

The overall fluidised bed process consists of two main sub-processes: waste CFRP size reduction 

(shredder, hammer mill) and a fluidised bed process.  In the fluidised bed reactor, the epoxy resin is 

oxidised at a temperature above 500 C. The gas stream is able to elutriate the released fibres and 

transport them out of the fluidised bed for separation by cyclone. After fibre separation, the gas stream is 

directed to a high-temperature oxidiser to complete oxidation of resin decomposition products. Energy is 

recovered to preheat inlet air to the fluidised bed. Process models of the fluidised bed recycling plant have 

been developed in our previous study [16, 33], and are used in this work to calculate utilities cost. The 

rCF minimum selling price is calculated for a set of operational parameters including plant capacity (100– 

6000 t/yr) and feed rate per fluidised bed area (3–12 kg/hr m
2
). 

  

The capital and operational costs associated with rCF are estimated for a fluidised bed plant with a 

hypothetical throughput of 1000 t/yr as a base case while a range of 100–6000 t/yr is considered in the 

sensitivity analysis. The main components of the fluidised bed plant are shown in Fig. 1. Cost for 
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shredding is estimated for processing particle size to 25–100 mm and finally to 5–25 mm [28, 29]. An 

indicative oxidiser capital cost is obtained based on the pilot plant. Fixed costs for all other equipment are 

estimated based on processing parameters (e.g., flow rate, temperature and pressure) for best operation of 

the pilot plant using standard equipment and appropriate cost indices, installation factors and other 

costing factors [28]. All capital costs are adapted for required capacity in the year of 2015 and normalised 

to annual capital costs.  

The OPEX of the selected recycling plant is calculated based on  a nominal operating labour of three 

persons per shift, utility inputs (natural gas, electricity) calculated previously [16], and costs associated 

with maintenance, supervision and indirect costs as detailed in Section 2.1.  Heat recovery from the 

exhaust stream is assumed to provide additional revenue by displacing natural gas used for an 

onsite/offsite heating system. The financial value of recovered heat is assumed to be 80% that of the 

avoided natural gas consumption to account for costs of a heat recovery system. Heat recovery, however, 

depends on having a customer for the heat; this is discussed further in the results section.  

A discounted cash flow analysis is used to determine the rCF minimum selling price (MSP) ($/kg) to 

achieve a net present value of zero: 

    
              

  
 (2) 

where OPEX is the operational cost ($/yr), ACAPEX is annualised capital cost ($/yr), OR is other 

revenue ($/yr), e.g. heat sales, and AO is annual rCF output (t/yr) 

2.3 Processing of rCF 

Due to its discontinuous, filamentised form and low bulk density, rCF cannot be directly manufactured 

into CFRP. Currently, there are two methods to convert rCF into intermediate mats: wet papermaking 

process for random rCF mats and fibre alignment process for aligned rCF mats. In the papermaking 

process, CF is metered and dispersed in a viscous aqueous solution to form a fibre suspension. The 

volume fraction of rCF in the suspension is 0.1% based on the best performance to avoid agglomeration 

tested so far. The suspension is then filtered out onto a moving mesh to form a wet mat. The mat is later 

subjected to binder application, drying and winding onto a CF roll. The main equipment of papermaking 

process consists of mixer, belt conveyer, vacuum dryer and thermal dryer. Capital costs are estimated 

based on standard equipment, sized to required capacity and non-standard equipment with processing 
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parameters from lab-scale plant. Plant capacity required can be related to quantity of rCF required in final 

CFRP part manufacture volume. An energy analysis of the papermaking process has been performed 

based on the processing parameters previously [16] and energy consumption (4 kWh/kg) is used for 

energy cost estimation in this study. Viscosity modifier cost is estimated assuming a recycling rate of 

99.5%, which is achieved by complete recovery during vacuum drying and minor losses during thermal 

drying. The papermaking process is assumed to need 1.5 labourers per operational shift.  

Fibre alignment processes are under development and show promise to allow rCF to be manufactured 

into CFRP with high fibre volume fractions for high value applications [34]. Similar to the papermaking 

process, discontinuous rCF is dispersed in a viscous aqueous liquid to form a fibre suspension. The 

suspension is then pumped into a pressure pot and then pressurized to form a consistent flow via a 

convergent nozzle. The nozzle is located above a nylon mesh inside a rotating drum. The mesh screen 

filtered the fibre dispersion to separate the CF. Vacuum suction is employed under the mesh to accelerate 

the dewatering step. As the alignment process is under development, no cost information is available for 

fibre alignment rig yet. Instead, we calculate a target cost for alignment to compete financially with 

competitor materials and randomly oriented rCF materials. Additional alignment costs could be 

acceptable due to the improved mechanical performance that can be achieved from aligned, high volume 

fraction rCFRP materials relative to unaligned materials. Target fibre alignment costs are determined in 

order for aligned rCFRP materials to achieve the same life cycle cost as a conventional steel component 

and the best performing randomly aligned rCFRP material.  

2.4 Component Manufacture 

After rCF processing, rCF can be manufactured into the final CFRP products by either compression 

moulding or injection moulding from random/aligned rCF mats.  

A compression moulding method has been utilised to produce rCFRP components from either random 

or aligned CF at lab scale. In this process, CF mats and epoxy resin film are cut to fit into the mould. The 

main equipment consists of a compression moulding press and a trimming machine of which fixed capital 

is $1.88 million for a 200 t/yr plant [35] and scaled up to the required capacity of component production 

and extrapolated to 2015. Energy analysis of the process (i.e. heating stage, curing stage, pressure build-

up stage and finishing stage) based on heat transfer and force analysis has been reported in a previous 
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publication [16] and used for utilities estimation. The process is assumed to require 1.5 labourers per 

operational shift. 

Injection moulding is also an efficient way to process rCF leading an outstanding mechanical 

performance when compared to vCF counterparts [21]. The CF is compounded with polymer matrix to 

produce pellets for injection moulding. The injection moulding facility is made up of compounding, 

injection and trimming machines and the equipment capital cost ($24.8m for a 144 t/yr plant) [35] and 

scaled up to the required capacity of component production and extrapolated to 2015. Operational cost is 

based on material requirements as in the discussion of material substitution under equivalent stiffness, 

manufacturing energy use (based on previously presented models of energy consumption [23]). This 

process is assumed to require 1.5 labourers per shift. 

The reference component is assumed to be made of hot rolled steel coil. The manufacturing devices are 

assumed to include a coil handling and a stamping equipment (CAPEX is $18.2m for a 460 t/yr plant), 

and the manufacturing energy is 0.34 MJ/kg [35]. Aluminium is assumed to be manufactured by wrought 

methods including casting, punching and machining units (CAPEX is $6.24m for a 210 t/yr plant) and the 

total energy requirement is 18.43 MJ/kg [36]. Virgin CF is either manufactured by autoclave moulding 

(CAPEX is $4.50m for 210 t/yr [37]) into woven vCFRP or by injection moulding into chopped vCFRP 

similar as for rCFRP. Publicly available operational cost data are used to evaluate, including materials, 

labour and utilities for these manufacturing processes, obtained from process models, literature and online 

database [36-39] (see Table 2).  

2.5 Use Phase 

In the use phase, the automotive part will influence vehicle fuel consumption due to its weight. Mass-

induced fuel consumption is calculated for a typical midsize passenger vehicle (Ford, Fusion) with the 

Physical Emission Rate Estimator model [40] and a mathematical model [41]. As a base case, a typical 

vehicle life of 200000 km [35, 42] is assumed. Fuel prices are regionally dependent; as a base case we 

consider the average 2015 U.K. petrol price (£1.11/litre or approximately $1.70/litre) [43] but consider a 

range of fuel costs in typical of other jurisdictions. To compare with upfront costs, use phase fuel costs 

are converted to a present value assuming a 5% discount rate and a vehicle life of 10 years.  
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2.6 Automotive Component Design Criteria  

Automotive components produced from different materials must meet the same design criteria in order 

to be suitable for their application. In this study, a generic automotive component with requirements of 

bending and torsion stiffness, assumed to be produced from mild steel, is selected as the reference 

component and allocated a normalised thickness and mass of 1. When evaluating alternative materials, it 

is ensured that each meets the component design criteria measured by component stiffness by considering 

the design material index (λ) and varying component thickness to account for differences in each 

material’s mechanical properties. Properties of rCFRP materials, vCFRP materials, mild steel, and 

aluminium are obtained from experiments  and online databases as in [23] (see Table 3). The mass and 

thickness ratio among components made of different materials is expressed below: 

  

  

 
  

  
 
  

  

     (3)  

  
  

  
  

  

     
(4) 

where E1, t1, ρ1 are the tensile modulus, thickness and density of reference materials (i.e. mild steel), E2, 

t2, ρ2 are the tensile modulus, thickness and density of replacing material, (e.g. aluminium, CFRP), λ is 

the component-specific design material index. 

Depending on design purposes, the structural index λ value may vary between 1 and 3. λ=1 is for 

columns and beams under tension conditions; λ=2 is for beam under bending and compression 

conditions in one plane; and λ =3 is for beam and panel when loaded in bending and buckling conditions 

in two planes. In order to meet design constraints, finite element simulation is required for actual 

component designs to identify the material design index. For instance, vehicle structural components have 

a λ value range of 1.2–2.0 [26] while other car body structural parts have a λ value range of 1.21–2.4 

based on finite element analysis [48]. In this work, a range of λ values (1-3) is considered to assess the 

financial viability of rCF applications across a broad range of potential automotive component 

applications. 

The relative thickness of the components impacts costs for raw material procurement as thicker CFRP 

components require greater quantities of fibre and matrix materials for functional equivalence. Larger 
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weight components also require higher cost for manufacturing. Moreover, they incur greater in-use fuel 

consumption associated with mass as will be discussed in the following sections.  

3 Results and Discussion 

3.1 CF Recovery 

Recovery of CF from CFRP wastes can be achieved at under $5/kg across a wide range of process 

parameters. Fig. 2 shows the minimum selling price of rCF with a breakdown costs at a range of 

capacities between 50 and 6000 t/yr. The cost includes all variable and fixed costs associated with the 

construction and operation of the fluidised bed recycling plant and revenue from heat recovery. The 

relative contribution of fixed and operational costs is highly dependent upon the plant capacity for 

recycling. At capacities in excess of 500 t/yr, an rCF minimum selling price of less than $5/kg can be 

achieved. Operation at smaller capacities is detrimental to financial viability: at relatively low capacity of 

100 t/yr, rCF would have to achieve a market value of $15/kg to be financially feasible. This is primarily 

because of the higher relative share of fixed capital and labour costs. At all plant capacities, operational 

cost accounts for over 50% of the total cost of recycling. As labour cost is determined by the operation 

requirement of the recycling process itself, and is independent of plant capacity, its relative contribution 

therefore reduces when the plant capacity grows. For a fixed feeding rate (kg/hr m
2
), larger equipment 

capacities result in lower specific capital cost ($/t yr) due to economies of scale. Heat recovery from 

exhaust contributes to reducing the rCF minimum selling price by $0.17/kg for all capacities. At the base 

case capacity of 1000t/yr, heat sales represent 6% of rCF recovery costs. If a customer for the heat is not 

available, rCF recovery cost would correspondingly increase. Sorting, dismantling and transport of waste 

CFRP to the facility are not included in this analysis, but this could represent significant costs, 

particularly if manual disassembly is required.  However, publicly available data of dismantling cost is 

limited or lacking for aerospace industries, bringing uncertainty in the total recycling cost. It is reported to 

cost between £60,000 to £120,000 to dismantle a Boeing 747 airplane giving about £0.33-£0.65/kg [49, 

50]. Previous study [25] displays dismantling cost for automotive CFRP waste is £1.38/kg CFRP waste. 

Transportation costs vary due to waste availability and regional factors when high capacities can be 

achieved. However, transport costs are expected to be quite small as stated in [25] that £0.043/t-km and 

200 km travelling distance making only £0.0086/kg CFRP waste. Therefore, further work is suggested to 
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investigate disassembly cost for aerospace industry and types, locations and quantities of CFRP wastes 

when data is available to better understand these costs and their impact on financial viability. 

The impacts of feed rate per unit fluidised bed area on the minimum selling price of rCF and the 

breakdown of the costs for a 1000 t/yr plant are shown in Fig. 3. The minimum selling price per kg rCF 

varies from $4.9 to $2.5 with respect to feeding rate of 3 kg/hr m
2
 to 12 kg/hr m

2
. Prior analysis [16] also 

shows feeding rate is a key factor for environmental impact which is correlated to the energy input. For a 

fixed plant capacity, with the increase of feed rate per unit bed area the size of equipment can be reduced. 

Therefore, the annualised capital cost reduces relative to the increase of feeding rate. Also, plant with 

higher feeding rate consumes less energy (i.e. natural gas and electricity), and thus, has less utilities cost 

while the other costs including labours remain unchanged. For instance, the utilities cost is $0.73/kg (15% 

of the total) at 3 kg/hr m
2
 but reduces to $0.18/kg (4% of the total) at 12 kg/hr m

2
. While cost 

effectiveness gains are identified to be achievable by increasing feed rate, there are potential trade-offs in 

terms of resulting rCF properties. To avoid agglomeration in the recycling process at high feed rates, fibre 

length must be reduced [51]. However, fibre length may also affect the downstream rCFRP 

manufacturing process and resulting rCFRP properties. The feeding rate has to balance recycling cost and 

subsequent rCFRP properties. 

3.2 Complete Life Cycle Cost 

CFRP materials manufactured from rCF can offer cost savings and weight reductions relative to steel 

and competitor lightweight materials in some cases, but is dependent on the specific application, e.g., 

material design index, as this drives the weight reduction/in-use fuel consumption and material 

requirements (see Fig. 4). 

With the increasing fibre content, rCFRP materials show better mechanical performance. Thus 

increasing the fibre volume fraction in CFRP materials is beneficial in reducing component mass for 

functional equivalence with steel. For design material index λ=2, for instance, significant weight 

reductions are seen in increasing the fibre content of random rCFRP components from 20%vf (54% 

reduction) to 30%vf (58% reduction); however, further increase to higher volume fractions of 40%vf 

compromises the weight reductions due to fibre damage during the manufacturing process while it 

achieves the same weight reduction as for 30%vf (see scattered dots in Fig. 4). Although achieving 



  

 

 

13 

 

further high fibre volume fractions of 50% and 60% provides 65%-67% weight reductions, this requires 

new fibre alignment techniques. 

Weight savings achieved during material substitutions result in in-use fuel saving, and thus, potential 

life cycle cost benefits. However, the net financial benefits can be compromised for high cost of raw 

materials. For instance, due to high cost of vCF ($41/kg), the total life cycle cost of vCFRP does not 

present significant benefits especially for low fibre volume fraction ($1.6/part for vCF 18%) for λ=2 . 

The normalised life cycle costs including vehicle use for material substitution under different design 

indices (i.e. λ=1, 2, 3) are shown in Fig. 4, where life cycle cost of the parts made of rCFRP and other 

alternative lightweight materials are compared relative to steel. 

For design index λ =2, which is typical for components under bending and compression conditions in 

one plane (vertical pillars, floor supports), rCFRP components show slight cost reductions relative to steel 

over the full life cycle. For random rCFRP parts with different fibre volume fractions, total normalised 

cost varies between $0.93/part for 20%vf, $0.82/part for 30%vf and $0.81/part for 40%vf. It is noted that 

for random rCFRP, from 30%vf to 40%vf, the life cycle cost is not expected to be reduced as from 20% 

to 30%. This is primarily because of different weight reductions achieved between 20-30% and 30-40% 

as discussed above. Raw material costs account for a large part of the life cycle cost (28-36%) primarily 

due to the high cost of epoxy resin. On the contrary, although use phase cost of random rCFRP parts is 

42–46% that of steel part, these benefits do not compensate the material and manufacturing cost. 

Compression moulding random rCFRP part costs only 59–67% of that for injection moulded random 

rCFRP part in the full life cycle. Compression moulding random rCFRP part with higher fibre volume 

fraction (20–40%vf) shows better mechanical performance than injection moulded part, which results in 

greater weight reductions relative to steel. Therefore, injection moulded random rCFRP part with 18%vf 

has less fuel savings and as such higher life cycle cost compared to compression moulded rCFRP part. 

For a panel loaded in bending and buckling conditions in two planes (λ=3), following trends similar to 

that for λ=2, larger weight savings for rCFRP in replacement of steel are observed and as such more fuel 

savings can be achieved in the use phase. For random rCFRP components, normalised life cycle costs are 

$0.70/part for 20%vf, $0.65/part for 30%vf and $0.66/part for 40%vf, respectively (equivalent to cost 

reductions of 16–21% relative to the reference steel component).  



  

 

 

14 

 

For λ=1, for columns and beams under tension conditions (e.g., a window frame), there is limited scope 

for lightweighting with any of the materials considered in this work. Even though, fibre alignment could 

still potentially improve financial performance of rCFRP provided that the target value of $1.3/kg for 

fibre alignment technique is met. 

3.2.1 Cost Target for Fibre Alignment 

To achieve high rCF fibre volume fraction, which is necessary to achieve similar mechanical 

performance as woven vCFRP, fibre alignment is necessary. The life cycle cost results are used to set 

targets for the development of fibre alignment technologies that are currently under development. 

Hatched columns on Fig. 4 show the target cost that aligned rCF intermediate materials must achieve to 

compete with best available random rCFRP (i.e. rCFRP with 30%vf) for λ=2 and λ=3 or with steel for 

λ=1. Therefore, for instance, life cycle cost for aligned rCFRP component is assumed to be $0.65/part, 

giving a corresponding target alignment cost of $0.18/part for 50%vf and $0.21/part for 60%vf 

respectively (λ=3). If rCF can be produced at a cost of $3/kg at an annual throughput of 1000 t/yr as 

discussed in Section 3.1, higher processing costs (i.e. fibre alignment cost) could be accommodated for 

high quality aligned rCFRP products to achieve the same cost level as the random rCFRP products or 

steel under different design constraints in the full life cycle. The target fibre alignment cost is $10-16/kg 

aligned rCF mat compared to $11.6/kg random rCF mat via papermaking process under λ=2, 3 while the 

target value has to be as low as $1.3/kg in order to achieve the same life cycle cost with steel under λ=1. 

In Fig. 5, the general performance trends of  life cycle cost relative to weight savings are presented for 

rCFRP materials and compared to steel and other lightweight materials. Cost data for members of a 

particular group of material (e.g. vCFRP, rCFRP) cluster together and can be enclosed by an envelope. As 

previously discussed, greater weight and life cycle cost reductions can be achieved at higher design 

criteria indices. With the increase of lambda values, using rCF materials to replace steel show more life 

cycle cost reductions as well as weight reductions. This demonstrates the more appropriate cost effective 

applications of rCF materials in beam/panel part manufacture under bending conditions. Results also 

indicate larger cost savings together with weight savings can be achieved by using high-fibre-volume-

fraction rCFRP. Compared to vCFRP, providing the same weight reduction, aligned rCFRP materials 

potentially lead to larger life cycle cost reductions in replacement of steel in automotive parts. This 
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demonstrates fibre alignment could potentially improve financial performance provided technology 

development targets are met.  

3.2.2 Cost Effectiveness of Reducing GHG Emissions 

The normalised financial costs of components (relative to steel) are compared with previously reported 

life cycle GHG emissions (including material production, component manufacture, and use-phase 

emissions) and also normalised against emissions from conventional steel components [23] (Fig. 6). 

Materials in the lower half of the figure reduce life cycle cost relative to the reference steel component 

while materials in the left-hand side of the figure can reduce GHG emissions relative to steel; materials 

capable of reducing both cost and GHG emissions are therefore located in the lower left quadrant. With 

higher lambda values, using rCF materials to replace steel achieves greater life cycle cost reductions as 

well as GHG emission reductions. Relative to vCFRP components, rCFRP can achieve both lower life 

cycle costs and greater avoided GHG emissions. Compared to lightweight aluminium, compression 

moulded random rCFRP materials enable greater GHG emissions reductions; and they exhibit lower cost 

at varying fibre volume fractions for λ=3, only lower cost at higher fibre volume fractions (no less than 

30%vf as observed) for λ=2, but higher cost for λ=1. Therefore, for λ=2 and 3, unaligned rCFRP 

materials can save cost and provide an added benefit of reducing GHG relative to aluminium,  giving 

negative carbon abatement costs of -$52.9/t CO
2
eq. (λ=2) and -$178.9/t CO

2
eq (λ=3), respectively  . 

Although rCFRP is able to reduce GHG emissions relative to aluminium for λ=1, the higher relative cost 

of rCFRP components in this case results in an overall cost of avoided CO
2
eq. emissions of in excess of 

$900/t CO
2
eq., which far exceeds estimates of the social cost of carbon (~$40/t CO2eq. in 2015)[52] and 

thus is not a cost-effective means of reducing GHG emissions.   

3.3 Sensitivity Analysis 

The cost analysis entails uncertainties, as not all costs of stages of the life cycle are known in the 

design process. Variation in key parameters in the life cycle (in-use fuel consumption, vehicle lifetime, 

fuel price, raw material price) would incur sensitive results. 

Uncertainty associated with mass-induced fuel consumption and vehicle lifetime does not alter the 

finding that rCFRP components significantly reduce the life cycle cost among the lightweight substitution 

materials from a life cycle perspective (see Fig. 7). Mass-induced fuel consumption is estimated to be 
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0.26–0.44 L/(100 km·100 kg) for different brands of midsized light duty vehicles. Mass-induced fuel 

consumption of 0.38 L/(100 km·100 kg) for Ford Fusion vehicle in 2015 is selected as the base case for 

life traveling distance of 200000 km as presented in Fig. 6. Across the range of values considered herein, 

rCFRP materials maintain the lowest life cycle cost impact. Aligned rCFRP materials offer possibilities 

for further life cycle cost savings than random rCFRP and weight reductions while maintaining good 

mechanical properties, but fibre alignment technique is still under development. It is also noted that due 

to the high energy intensity of vCF production, vCFRP with low fibre volume fraction (18%) only exhibit 

cost savings when the mass induced fuel consumption is larger than 1.48 L/(100 km·100 kg). 

Similarly, life cycle cost increases with traveling distance, depending on the mass of the substitution 

alternatives, the initial cost of raw material and part manufacturing. At extended vehicle lifetime (up to 

300000 km), cost advantages of lightweight materials become more pronounced. Aligned rCFRP 

components reduce life cycle cost relative to steel by up to 60% excluding fibre alignment; fibre 

alignment could potentially improve financial performance (see dashed lines in Fig. 7) provided 

technology development targets are met, demonstrating lowest cost from use of high volume fraction 

rCFRP. CFRP components from vCF become favourable to steel when vehicle life exceeds 566000 km 

(λ=2). Conversely, shorter vehicle life reduces in-use fuel savings and is therefore detrimental to the 

performance of lightweight materials. However, rCF components can reduce life cycle cost relative to 

conventional steel components even with relatively short distances travelled (~180000 km). Conventional 

lightweight aluminium also shows cost reductions from the very start of the life. 

Life cycle costs are sensitive to fuel price similar with the variations in mass-induced fuel consumption 

(see Fig. 8). Life cycle cost shows linear relationships with fuel price, but rCFRP materials continue to 

show significant cost reductions across the range of values considered in this study. For each material 

type, cost variations between -60% and +30% is shown. This is based on historic fuel price range of $1.22 

–2.07/L (£0.8–1.35/L) in the UK from 2000 to 2015 [43] with a reference price of $1.70/litre (£1.11/L) in 

2015. Considering proportional relationship between the fuel consumption and the part mass, for 

functional equivalence, weight savings mean cost reductions in the replacement and therefore fuel price 

directly impact quantities of fuel savings. The total life cycle cost varies –7% – +5% for rCF 30% 

compared to -13% –+10% for steel relative to the base case ($1.70/L) mainly due to larger mass-induced 

fuel consumption for steel part. Results are compared for regional variations amongst US, Canada, EU 
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average and Netherlands due to different fuel prices in 2015. Because of regional variations in transport 

fuel tax rates, rCFRP show variations in net cost savings relative to steel, for instance, the net cost saving 

of using rCFRP to replace steel in the US is smaller than that in Netherlands. 

Uncertainty in raw material prices brings sensitivity of life cycle cost results depending on the material 

types (Fig. 9). The price range is mostly considered under historic figures from 2000 to 2015. For rCF, 

the prices vary depending on the plant capacities and feeding rate as discussed in Section 3.1 in the region 

of $1.2–5/kg under common industrial scales (500–6000 t/yr). As raw material costs account for a 

relatively small part, the total life cycle cost of steel part has only -0.3%–+0.3% variations corresponding 

to variations of -13%–+13% for the steel price. Variations of rCF price also have an impact on the total 

life cycle cost of rCFRP components: -58%–+78% variations of rCF price result in -6%–+7% variations 

for random rCFRP with 30%vf. Excluding alignment cost, life cycle costs for aligned rCFRP components 

is sensitive to rCF price showing relatively high variations of -8%–+9% with high rCF content (60%). 

Virgin CFRP components are sensitive to vCF prices (-25%–+25% variations) that the life cycle cost 

shows -10%–+8% variations for woven vCFRP primarily due to the large proportion of vCF production 

cost in the full life cycle. 

4 Conclusions 

The need for a systematic identification of the utilisation of rCF materials in order to reduce life cycle 

costs has been addressed. In this work, techno-economic models have been developed for cost impact 

assessment of a hypothetical commercial-scale fluidised bed recycling plant and rCFRP manufacturing 

technologies to identify the market opportunities for rCF. Recovery of CF from CFRP wastes can be 

achieved at $5/kg or less across a wide range of key process parameters including plant capacity (100 

t/yr–6000 t/yr) and feeding rate per unit bed area (3 kg/hr m
2
 – 12 kg/hr m

2
), approximately 15% of the 

cost of producing vCF. At all plant capacities, operational cost accounts for over 50% of the total cost of 

recycling. Increasing feeding rate is beneficial to reducing the capital and operational cost but it has to 

balance recycling cost and subsequent rCFRP properties. 

The manufacture of rCFRP is selected for case studies in terms of material selection and substitution 

for steel under different design indices. Case studies are used to assess the life cycle cost performance of 

rCFRP which is required to be addressed before it is used widely in applications in automotive industries.  
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The comparative assessment showed that rCFRP can be a competitive material that can replace 

conventional metal materials and vCFRP materials in automotive applications. It is observed that 

significant weight savings are achieved by rCFRP materials in substituting steel materials while providing 

the same mechanical properties. Random rCFRP shows significant life cycle cost reduction for λ=3 (30-

35%) and for λ=2 (7-19%), but cost increase for λ=1. Aligned rCFRP as the lightest substitution 

alternative could potentially improve financial performance for all material indexes (more than 35% cost 

reduction) provided technology development targets are met. Financial credits are primarily from the 

vehicle in-use fuel cost savings due to mass-induced fuel consumption associated with mass reduction. 

The cost is already competitive with the conventional steel component, prior to monetising the 

environmental benefits of rCF materials (e.g. social cost of carbon).  

Injection moulded rCFRP parts cost 33-41% more than those manufactured by compression moulding. 

However, injection moulding process allows for close tolerances in small parts with complex geometries 

at high production rates, and it requires little post-production work as parts have a finished shape after 

ejection, which is very suitable for CF/matrix part formation.  

Uncertainty associated with mass-induced fuel consumption, vehicle lifetime, and fuel price does not 

alter the findings of life cycle cost reductions obtained by using rCFRP materials to replace conventional 

steel components relative to aluminium and vCFRP materials. 

 

This is one of a few studies on CFRP recycling that offers financial assessment of CFRP recycling and 

reutilisation of rCF. It offers an extensive list of environmental and financial impact categories, and a set 

of valuable data to cover some gaps of data availability for the CFRP recycling process as well. While 

developed to assess financial viability of fluidised bed recycling process in automotive application, the 

method could be applied to any CFRP recycling technologies and reutilisation of rCFRP materials in 

other structural and/or non-structural applications. 

The findings of this study together with previous life cycle assessment results provide insight for 

decision-makers seeking to use rCF composite materials, especially considering for reductions in weight, 

energy intensity, greenhouse gas emissions and life cycle costs. Opportunities to use rCF materials exist 

in automotive components such as vertical pillar and car hood under bending conditions as demonstrated 

using material indexes. The results are in particular important as they support the emerging 
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commercialisation of CF recycling technologies, identify significant potential market opportunities in the 

automotive sector, and set critical development targets for rCF processing to improve cost and 

environmental performance.  

In terms of applications of rCFRP, not restricted to automotive industries, future research could 

evaluate in more detail specific applications of rCFRP materials, such as aerospace, wind energy and 

sporting industries. Their environmental and financial impacts could be assessed for a creation of 

reutilisation pathway databases and trade-off strategies for waste management of CFRP wastes. 
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Appendix A.  

Table A1 

Manufacturing costs of 1000 t/yr rCF recycling plant 
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Table 1. 

Summary of the cost model input data. 

Items Values 

CAPITAL COSTS 

Fixed capital, C
FC

 C
FC

=Purchase cost (1+f
10

+f
11

+f
12
) 

Working capital, C
WC

 C
WC

=15% C
FC

 

Total capital investment, C
TC

 C
TC

=C
FC

+C
WC 

/available data 

OPERATIONAL COSTS 

Direct  

Raw materials 
Steel $0.43/kg [53] 

 
Aluminium $1.65/kg

 [39] 
 

vCF $41/kg
 [54] 

 
Epoxy resin $16/kg[55] 

 
Polypropylene $1.35/kg

 [56] 
Utilities 

Electricity cost £0.09 ($0.14)/kWh [57] 

 
Natural gas cost £0.007($0.011)/MJ[57] 

Maintenance 5-10% of fixed capital (6% used) 

Operating labour 
Labour costs £18.20 ($27.70) per hour

 [43] 

 
Working days per year 250 

 
Shifts 8 h/3 per day 

Indirect  

Plant overheads 60% of operating labour 

Insurance 0.5% of the fixed capital 

General expenses  

Administrative costs 25% overhead 

Distribution and selling costs 5% of total expense 

Research and development 5% of total expense 

Production volume 50000 parts/yr 

Production period 10 yrs 

Depreciation time  10 yrs (estimated machine lifetime) 

Use 

Premium unleaded gasoline in 2015: $1.70/litre 

[32] 
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Table 2.  

Summary of cost data of manufacturing routes  

Items Steel Aluminium CFRP 

Manufacture type Stamping Casting IM CM AM 

Part 

manufacture 

Equipment $18.2m [35] $6.24m [35] $24.8m [35] $1.96m
 
[35] 

$4.50m
 

[37] 

Plant capacity 460 t/yr 210 t/yr 144 t/yr 200 t/yr 210 t/yr 

Energy 0.34 MJ/kg 18.43 MJ/kg 3-4 MJ/kg 
15-20 

MJ/kg 
33 MJ/kg 

Labour 4 2 1.5 1.5 2 

CM = compression moulding, IM = injection moulding, AM = autoclave moulding 

Table 3. 

Material properties of selected materials in the study 

Material Matrix Manufacture 
Density, 
g/cm3 

Modulus, 
GPa 

Strength, 
MPa 

References 

Mild steel - Stamping 7.81 207 350 [44] 

Aluminum - Wrought 2.70 69 276 [46] 

Random rCF 20% Epoxy resin 
Compression 
molding 

1.32 27.6 260 
[17] 

Random rCF 30% Epoxy resin 
Compression 
molding 

1.38 37.1 341 
[17] 

Random rCF 40% Epoxy resin 
Compression 
molding 

1.44 39.8 302 
[17] 

Aligned rCF 50% Epoxy resin 
Compression 
molding 

1.50 60.8 - 
calculated 

Aligned rCF 60% Epoxy resin 
Compression 
molding 

1.56 73.9 - 
calculated 

Woven vCF 50% Epoxy resin 
Autoclave  
molding 

1.6 70 570 
[47] 

Random rCF 18% PP 
Injection 
molding 

1.17 16.3 125 
[20] 

Chopped vCF 18% PP 
Injection 
molding 

1.07 16.2 117 
[58] 
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Table A2 

Manufacturing costs of 1000 t/yr rCF recycling plant 

Job title: Fluidised bed recycling plant Date estimate carried out: September 2016 

Location: Nottingham Capacity: 1000 t/yr rCF 

 Cost index type: Chemical Engineering in 2015 

 Cost index value: 557.91 

CAPITAL COSTS 

Fixed capital, C
FC

  $4,117,108  C
FC

=PPC*(1+f
10

+f
11
+f

12
) 

Working capital, C
WC

  $617,566  C
WC

=15% C
FC

 

Total capital investment, C
TC

  $4,734,674  C
TC

=C
FC

+C
WC

 

OPERATIONAL COSTS 

Direct $/yr  

Raw materials   CFRP waste 

Miscellaneous materials   10% of maintenance 

Utilities 254,914  Electricity and natural gas 

Maintenance 247,026  5–10% of fixed capital (6% 
used) 

Operating labour 499,378  from manning estimate 

Supervision 74,907  15% of operating labour 

Operating Supplies 24,703  10% of maintenance 

Laboratory charges 49,938  10% of operating labour 

Royalties  1% of the fixed capital 

Total, A
DME

 1,150,866   

Indirect   

Plant overheads 492,787  60% of operating labour 

Insurance 20,586  0.5% of the fixed capital 

Total, A
IME

 554,543  

Total manufacturing expense (excluding 
depreciation), A

ME
=A

DME
+A

IME
 

1,725,995   

General expenses   

Administrative costs 123,197  25% overhead 

Distribution and selling costs 102,733  5% of total expense 

Research and development 102,733  5% of total expense 

Total, A
GE

 328,662    

Total expense, ATE 2,031,785 A
TE

=A
ME

+A
BD

+A
GE

 

Revenue from sales, As   

rCF/ $2.83/kg 2,805,710 MSP 

Process steam/ $0.009/kg rCF 169,467.66   
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Fig. 1. Main components and flow directions of the fluidised bed CFRP recycling process 
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Fig. 2. Minimum selling price of rCF and breakdown cost components for different plant capacities at feed 

rate of 9 kg/hr m
2
. 

 

Fig. 3. Minimum selling price and breakdown costs of rCF for different feeding rates (kg/hr m
2
) for 1000 t/yr. 
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4.1.1  
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5  
 

Fig. 4. The normalised life cycle cost ($/new part / $/steel part) of the automotive components made of steel 

and substitution materials under different design indices (i.e. λ=1, 2, 3). The orange columns represent fibre 

alignment cost range allowed to breakeven with conventional steel components and randomly oriented rCF 

components competitors. 
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Fig. 5. The weight saving for components against normalised cost target relative to steel baseline for a) λ=1, 

b) λ=2, c) λ=3. 
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8  

9  

Fig. 6. The normalised life cycle cost savings ($/new part relative to $/steel part) for components against 

normalised GHG emissions relative to steel baseline (kg CO
2
eq./new part relative to kg CO

2
eq./steel part) for a) 

λ=1, b) λ=2, c) λ=3. GHG emission results are from [23].  

 

Steel 

Al 

vCF 18% 

vCF 50% 

rCF 18% 

rCF 20% rCF 30% 

rCF 40% 
rCF 50% 

rCF 60% 

0 

1 

2 

0 1 2 

N
o

rm
al

is
ed

 li
fe

 c
y

cl
e 

co
st

 (
 $

/p
ar

t)
 

Normalised GHG emissions(kgCO2 eq/part) 

λ=2 b) 

Steel 

Al 

vCF 18% 
vCF 50% 

rCF 18% 

rCF 20% 

rCF 30% 

rCF 40% rCF 50% 

rCF 60% 

0 

1 

2 

0 1 2 

N
o

rm
al

is
ed

 li
fe

 c
y

cl
e 

co
st

 (
 $

/p
ar

t)
 

Normalised GHG emissions(kgCO2 eq/part) 

λ=3 c) 



  

 

 

34 

 

 

Fig. 7. The life cycle cost of automotive component materials with varied life cycle distances (80000–320000 

km) and mass induced fuel consumption (0.26–0.44 L/(100 kg·100 km)) (λ=2). 
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Fig. 8. The life cycle cost of automotive component materials with varied fuel prices ($1.22–2.07/L) based on 

historic prices in the UK from 2000 to 2015 and geographical locations (λ=2). 

 

Fig. 9. The life cycle cost of automotive component materials with varied raw material prices (low, medium 

and high) (λ=2). 
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