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The correspondence between mathematical structures and experimental systems is the basis of the generaliz-
ability of results found with specific systems, and is the basis of the predictive power of theoretical physics.
While physicists have confidence in this correspondence, it is less recognized in cellular biophysics. On the
one hand, the complex organization of cellular dynamics involving a plethora of interacting molecules and the
basic observation of cell variability seem to question its possibility. The practical difficulties of deriving the
equations describing cellular behaviour from first principles support these doubts. On the other hand, ignor-
ing such a correspondence would severely limit the possibility of predictive quantitative theory in biophysics.
Additionally, the existence of functional modules (like pathways) across cell types suggests also the existence
of mathematical structures with comparable universality. Only a few cellular systems have been sufficiently
investigated in a variety of cell types to follow up these basic questions. IP3 induced Ca2+ signalling is one
of them, and the mathematical structure corresponding to it is subject of ongoing discussion. We review
the system’s general properties observed in a variety of cell types. They are captured by a reaction diffusion
system. We discuss the phase space structure of its local dynamics. The spiking regime corresponds to noisy
excitability. Models focussing on different aspects can be derived starting from this phase space structure.
We discuss how the initial assumptions on the set of stochastic variables and phase space structure shape the
predictions of parameter dependencies of the mathematical models resulting from the derivation.

IP3 induced Ca2+ signalling is one of the most
versatile and universal cellular signalling systems
and a popular model system in non-linear dy-
namics for pattern formation in noisy systems.
We discuss the experimental evidence allowing
for identification of the mathematical structure
to which it corresponds, and a variety of concepts
for deriving simplified models from it.

I. INTRODUCTION

In spring 1995, I (MF) joined John (Jack) L. Hudson’s
lab in Charlottesville, Virginia, to work with him on dy-
namic clustering of globally coupled non-linear oscillators
or a topic from pattern formation far from thermody-
namic equilibrium. James D. Lechleiter and Patricia Ca-
macho were in Charlottesville at this time, too. James
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had just published his results on the effect of energiz-
ing mitochondria on Ca2+ waves in Xenopus oocytes1,
which had several aspects very interesting for the the-
ory of pattern formation. According to that theory, free
ends of waves in excitable systems should either form a
spiral or recede. The free ends of Ca2+ waves with en-
ergized mitochondria neither formed spirals nor receded
but showed different dynamics. Jack suggested to work
on these patterns. This was my first biophysical project
and it redirected my career. Jack worked experimentally
and developed also the mathematical models explaining
his experiments. His high standards and expectations
towards theory close to experiments substantially influ-
enced all of my later scientific and educational work.

The first years of this biophysical research led to results
on spiral instabilities, spiral pattern regimes and gener-
ation and annihilation dynamics2, but could not explain
Lechleiter’s experiments. The underlying mathematical
structure of the model did not correspond to the experi-
mental system. When we replaced the model with a di-
rect transition from excitability to an oscillatory regime
by a model with a direct transition from excitability to
bistability3, it explained not only the mitochondria ex-
periments4, but also experiments which were not taken
into account when it was developed5. This exemplifies
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how the basic mathematical structure of a non-linear dy-
namical system defined by its set of bifurcations and their
relation, often called the bifurcation diagram and phase
space structure, is essential for the predictive power of a
theoretical description.

In physics, the fundamental equations, like Newton’s
first law, the variational principles of classical mechanics
or the Schrödinger equation of quantum mechanics have
been developed with simple examples. Nonetheless, they
are stunningly predictive far beyond the systems used in
their formulation. This predictive power originates from
a correspondence between the experimental objects and
mathematical structures. The mechanics of macroscopic
objects corresponds to variational principles and differ-
ential equations, the behaviour of microscopic objects
corresponds to operator theory in Hilbert spaces. The
identification of the correct mathematical structure cor-
responding to an observation provides predictive power
to a mathematical theory in science. Mathematical mod-
els formulated within mathematical structures not cor-
responding to the observations still may reproduce the
measurements used for their development but rarely are
predictive beyond them as illustrated by the history of
atom models.

In general, the biophysics of cells has to obey the basic
laws of physics - the first principles. But cells consist of
many components and interactions and therefore spec-
ifying the fundamental equations of physics to a living
cell is close to impracticable. The approach of theoret-
ical biophysics is consequently to consider the compo-
nents and interactions assumed to be most relevant for a
specific process of interest and to verify the assumptions
retrospectively by contrasting model predictions with ex-
perimental results. But does the lack of models derived
from first principles for cellular behavior also mean that
the correspondence of mathematical structures to obser-
vations has no meaning in cellular biophysics? The pre-
dictive power growing out of it makes it worth to follow
up on this only seemingly philosophical question.

Only a few cellular dynamical systems are currently
characterized well enough for identifying the mathemat-
ical structure corresponding to them. Intracellular Ca2+

dynamics is one of them. The Ca2+ pathway trans-
lates extracellular signals into intracellular responses by
increasing the cytosolic Ca2+ concentration in a stim-
ulus dependent pattern6–8. The concentration increase
can be caused either by Ca2+ entry from the extracellu-
lar medium through plasma membrane channels, or by
Ca2+ release from internal storage compartments. In the
following, we will focus on inositol 1,4,5-trisphosphate
(IP3)-induced Ca2+ release from the endoplasmic reticu-
lum (ER), which is the predominant Ca2+ release mech-
anism in many cell types. IP3 sensitizes Ca2+ channels
(IP3Rs) on the ER membrane for Ca2+ binding, such
that Ca2+ released from the ER through one channel
increases the open probability of neighboring channels.
This positive feedback of Ca2+ on its own release chan-
nel is called Ca2+-induced-Ca2+-release (CICR). Open-

ing of an IP3R triggers a Ca2+ flux into the cytosol due
to the large concentration differences between the two
compartments, which is in the range of 3 to 4 orders
of magnitudes. The released Ca2+ is removed from the
cytosol either by sarco-endoplasmic reticulum Ca2+ AT-
Pases (SERCAs) into the ER or by plasma membrane
Ca2+ ATPases into the extracellular space.

IP3R are spatially organized into clusters of up to
about fifteen channels. These clusters are scattered
across the ER membrane with distances of 1 to 7 µm9–13.
CICR and Ca2+ diffusion couple the state dynamics of
the channels. Given that the diffusion length of free Ca2+

is less than 2 µm due to the presence of Ca2+ binding
molecules in the cytoplasm and SERCAs, the coupling
between channels in a cluster is much stronger than the
coupling between adjacent clusters14. The structural hi-
erarchy of IP3R from the single channel to clusters shown
in Fig. 1 is also reflected in the dynamic responses of
the intracellular Ca2+ concentration as revealed through
fluorescence microscopy and simulations9,15–17. Open-
ings of single IP3R (blips) may trigger collective open-
ings of IP3R within a cluster (puffs), while Ca2+ diffus-
ing from a puff site can then activate neighboring clus-
ters, eventually leading to a global, i.e., cell wide, Ca2+

spike13,16,18,19. Repetitive sequences of these Ca2+ spikes
encode information that is used to regulate many pro-
cesses in various cell types6,20,21.

Ca2+ exerts also a negative feedback on the channel
open probability, which acts on a slower time scale than
the positive feedback, and has a higher half maximum
value than CICR9,15,18,22–24. This Ca2+-dependent neg-
ative feedback helps terminating puffs, and therefore the
puff probability immediately after a puff is smaller than
the stationary value but typically not 0. Channel clus-
ters recover within a few seconds to the stationary puff
probability9,15,18,22–24.

The negative feedback terminating release spikes
causes an absolute refractory period Tmin as part of the
interspike intervals (ISIs) lasting tens of seconds25–27.
The molecular mechanism of this feedback is pathway
and cell type specific and not always known although
a negative feedback on the IP3 concentration might be
involved28,29. Hence, the negative feedback that deter-
mines the time scale of interspike intervals is different
from the feedback contributing to interpuff intervals and
requires global (whole cell) release events.

At very strong stimulation, cells exhibit a raised Ca2+

concentration of much longer duration than spikes which
may oscillate30,31, burst32,33 or is rather constant1,34,35.
Typically, the amplitude of these oscillations is smaller
than the spike amplitude. In the following we review
our current understanding of experimental results on
Ca2+ signaling and how it illustrates the relation between
mathematical structures and observations in biophysics.
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FIG. 1. Hierarchical organization of IP3 induced Ca2+ sig-
nalling with concentration signals of the corresponding struc-
tural level. The elementary building block is the IP3R channel
(bottom). It opens and closes stochastically. An open chan-
nel entails Ca2+ release into the cytosol due to the large con-
centration difference between the ER and the cytosol. Since
channels are clustered, opening of a single channel, which is
called a blip, leads to activation of other channels in the clus-
ter, i.e., a puff (middle). The cluster corresponds to a re-
gion with Ca2+ release with a radius Rcl that is fixed by the
number of open channels. The stochastic local events are or-
chestrated by diffusion and CICR into cell wide Ca2+ waves,
which form the spikes on cell level (top). (Figure reprinted
from A. Skupin, H. Kettenmann, and M. Falcke, ”Calcium
signals driven by single channel noise” PLoS Comput Biol 6,
e1000870 (2010).36.)

II. EXPERIMENTAL RESULTS ON THE PHASE SPACE
STRUCTURE AND DYNAMICAL PROPERTIES OF IP3

INDUCED CA2+ RELEASE

The pathway exhibits local Ca2+ release through in-
dividual channel clusters at low [IP3], spiking at inter-
mediate [IP3] and an elevated cytosolic [Ca2+]i at high
[IP3]. A basic observation in all experiments is, that cell-
to-cell variability with respect to Ca2+ spiking behavior
is large but not completely arbitrary. It obeys some pre-
served characteristics, which have been confirmed for all
cell types in which they have been investigated. We will
focus on these general characteristics since they obviously
reflect essential system properties.

It is convenient for the presentation of experimental
results to introduce also a few mathematical concepts.
In mathematical terms, intracellular Ca2+ dynamics are
described by reaction-diffusion equations like

∂X

∂t
= D4X + F (X,~r, t, p), (1)

where X is a vector of concentrations, t is time, ~r is the
space coordinate, D is a diagonal diffusion matrix, 4 the
Laplace operator, F (·) is a non-linear function describ-

ing the local dynamics, and p is a vector of parameters.
X comprises free cytosolic Ca2+, Ca2+ bound to Ca2+-
binding molecules, IP3, and free and bound Ca2+ in the
lumen of the ER and mitochondria in a rather general
formulation of the dynamics.

In general, non-linear dynamics reaches asymptotically
the attractors in phase space which may be stationary
states or manifolds of higher dimension. Attractors with
higher dimension like limit cycles, tori or even chaotic at-
tractors potentially describe the Ca2+ spiking behaviour.
They may be caused by the dynamics of spatial modes
(eigenfunctions of the linearized rhs of Eq. (1)) or by the
local dynamics37, i.e. may occur with4X ≡ 0 also. Spa-
tial modes have been observed with the Ca2+ dynamics of
excitation contraction coupling in cardiac myocytes38,39,
which is a driven system in terms of dynamical systems
theory. However, there is no experimental evidence for
attractors of the autonomous and/or IP3 induced intra-
cellular Ca2+ dynamics caused by spatial modes, and
hence we can focus on properties of the local dynamics.

The local dynamics of Eq. (1) are the behaviour of the
IP3R clusters. The majority of the modelling literature
assumes oscillatory local dynamics in the spiking regime,
since measured spikes are repetitive. Indeed, spike se-
quences even with a CV of 0.3-0.4 of the ISI appear sur-
prisingly regular in visual inspection. However, a closer
look could not confirm this assumption24,40.

Clusters are dynamically coupled by Ca2+ diffusion,
which needs to be reduced for investigations focussing on
the local dynamics. Such an uncoupling can be achieved
by high intracellular concentrations of the Ca2+ buffer
EGTA. The elemental event of the local dynamics is the
stochastic opening of channels in a cluster. The first open
channel entails with some probability opening of more
channels in the cluster causing a puff. Puffs last typi-
cally a few tens of ms but with large scatter13,41. The
probability of triggering calcium puffs is linearly related
to the number of IP3R in a cluster42. Puff sequences at a
given cluster exhibit some correlation between amplitude
and subsequent interpuff intervals, a weak correlation
between interpuff intervals and subsequent amplitude,
but no detectable correlation between consecutive am-
plitudes41. Both puff amplitude and frequency increase
and saturate with increasing stimulation of cells42.

Typical interpuff intervals last a few seconds13,24,41,42,
interspike intervals are in the range from about 20 s to a
few minutes. If the local dynamics were oscillatory and
caused the sequence of spikes, the time scale of the ISI
should be detectable as a temporal modulation of prop-
erties of the puff sequence at a given site. That has not
been found24. A modulation of puff sequences on the
ISI time scale could not be detected and no evidence
of an oscillatory regime of the local dynamics has been
observed24. The ISI time scale has only been observed
on cell level. Consequently, spikes are a collective phe-
nomenon requiring coupling of clusters. Another set of
experiments demonstrated that indeed the average ISI
depends sensitively on the intracellular buffer concentra-
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tion modulating the strength of spatial coupling40. This
confirms the results of the analysis of the local dynamics.

These experimental results are supported by theoret-
ical investigations. The Ca2+ concentration at closed
clusters is the resting concentration in the range of
≤100 nM. Detailed simulations of the concentration dy-
namics in the immediate vicinity of channels14 showed
that concentrations at open channels are high (>20 µM).
The dynamic range of the regulatory binding sites for
both the positive and negative feedback of Ca2+ to the
open probability ranges from a few hundred nM to mi-
cromolar values below 10 µM 43–45. Oscillatory dynamics
require concentration values in the dynamic range. How-
ever, with these large concentration changes, the system
essentially never is in this dynamic range and the regime
of the deterministic limit of the cluster dynamics is either
excitable or bistable (except tiny parameter ranges)17.

If channels are sufficiently sensitized for Ca2+ bind-
ing, puffs may cooperate to set off a global release spike
spreading from the initiating site into the cell in a wave
like manner. Waves occur if a critical number of releas-
ing clusters is reached16,46,47. The randomness of puffs
causes randomness of spike timing with a linear relation
between the standard deviation σ of interspike intervals
(ISI) and the average Tav

σ = α (Tav − Tmin) (2)

as shown in Fig. 2 and further for 8 cell types and 10
conditions27,40,48–50 (see also51). The slope α of this
relation between SD and average is the same for all
cells of the same type stimulated with the same ago-
nist27,40,48,49,52 and robust against changes in stimulation
strength27, pharmacological perturbations27, changes in
buffering conditions40, and the large cell variability. It
has been verified even in cells not exhibiting clustering
of channels and puffs49. Values of α are for example
about 0.2 for hepatocytes stimulated with vasopressin,
0.25 for HEK cells stimulated with CCh, 0.37 for hep-
atocytes stimulated with phenylephrine27, 0.7 for PLA
cells52 and close to 1 for spontaneously spiking astro-
cytes40. Consequently, the standard deviation is of the
same order of magnitude as the average ISI.

The standard deviation of ISI of oscillatory systems
moving on a limit cycle in phase space and perturbed by
noise is typically smaller than the values measured for
Ca2+ spiking53, and/or the cumulant relation may ex-
hibit a negative slope53. Varying parameter values across
the range covered by cell variability and the perturba-
tions applied in two studies27,40 causes loss of a unique
relation between σ and Tav

53 with these oscillatory sys-
tems, since the period and the noise causing the standard
deviation are determined by differential processes. Thus
the robustness of α against cell variability and perturba-
tions can hardly be reconciled with an oscillatory dynam-
ics, since all these parameter variations against which
α is robust would need to affect the processes setting
the average and the processes setting the SD in exactly
the way conserving the CV. But since spike generation is
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FIG. 2. Variability in Ca2+ signals. A: The transient cy-
tosolic Ca2+ concentration of an astrocyte stimulated with
10 µM ATP (upper panel) exhibits some variability as indi-
cated by the variable individual ISIs (lower panel). B: An as-
trocyte of the same experiments shows slower and more irreg-
ular spiking illustrating cell-to-cell variability. C: The system-
atic analysis of the standard deviation σ of ISI versus the aver-
age ISI Tav for HeLa cells stimulated with 100 µM histamine
reveals a linear dependence in accordance with the moment
relation (2) where each data point corresponds to the char-
acteristic of an individual cell. D: The σ-Tav relation of as-
trocytes stimulated with 10 µM ATP exhibits also a linear
dependence with a different slope than HeLa cells. Tav-Tmin

is the average stochastic part of the ISI.

stochastic, the parameters control only the spike genera-
tion probability, and the type of stochastic process – like
e.g. inhomogeneous Poisson – fixes the relation between
Tav and σ54.

The second parameter of Eq. (2), the absolute refrac-
tory period Tmin, was also found to be the same for all
individual cells of the same type stimulated with the same
agonist27,40. When Tmin has passed, the puff probability
recovers from 0 gradually to its asymptotic value. This
slow recovery delays initiation of the next spike. That
spike may occur during recovery, if the asymptotic spike
generation probability is large compared to the recovery
rate, or after recovery in the opposite case. The con-
tribution of this stochastic part of the ISI to the total
average ISI has been thoroughly investigated and is well
known. It contributes typically 40%-70% to the total av-
erage ISI, and the measured range is from 8% to 95%
contribution27,40,48–50. The recovery reduces also the SD
(of the stochastic part) of the ISI27,40,48–50. The slower
the recovery the smaller is the ratio of SD to average ISI
(coefficient of variation CV)54.

The wave-nucleation like generation of global release
spikes as well as the ISI statistics strongly suggest ex-
citability as the dynamic regime of IP3 induced Ca2+

spiking in agreement with the analysis of the local dy-
namics. Excitable systems exhibit a stationary state
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FIG. 3. ISI distributions P(ISI) for two spike trains measured
with HEK cells stimulated with 100 µM CCh. The differences
between the distributions illustrate cell variability. The ex-
perimental data are from the experiments published in ref.27,
the fitting method is explained in ref.56.

which is stable against small perturbations. Perturba-
tions above the excitation threshold are amplified to a
transition to the excited state. The stochastic behavior
of channel clusters causes incidental local transitions to
the excited state, which then spreads with some prob-
ability into the whole cell. The resulting large fraction
of open clusters - i.e. a release spike - causing a high
Ca2+ concentration and high open probability are the
excited state of Ca2+ dynamics. This state is terminated
by negative feedback acting on a slower time scale than
the excitation. The probability for generating this super-
critical local excitation fixes the average stochastic part
Tav-Tmin and the standard deviation σ.

The complete distribution of ISI cannot be easily de-
termined from experimental data since measured spike
trains are not longer than about 60 ISI. Fusion of ISI se-
quences normalised by Tav have been used as a surrogate
data set and led to skewed distributions with an absolute
refractory period55. More sophisticated methods based
on the time rescaling theorem and Kolmogorov-Smirnov
tests for comparison of measured and hypothetical dis-
tributions identified an inhomogeneous Gamma distribu-
tion as the most likely experimental ISI distribution with
time dependent stimulus56. Distributions of ISI obtained
with these methods and constant stimulation are shown
in Fig. 3.

The response of the average ISI to stimulation with
extracellular agonists has features applying to all of the
four plasma membrane receptors for which it has been
investigated27. On that basis, we assume them also to
be general features of the system. Tmin is not affected
by stimulation, as we have learned from the robustness
properties of Eq. (2), already. Stimulation controls the
average stochastic part Tav-Tmin of the ISI. The concen-
tration response has been established by applying steps
in the concentration a of the stimulating agonist27. The
change of the average stochastic part of the ISI due to this
concentration step is proportional to the average stochas-
tic part at the lower agonist concentration Tav1

27:

∆Tav = β (Tav1 − Tmin) . (3)

Analysis of measurements revealed that β does not de-
pend on the agonist concentration27, which entails an
exponential dependency on a

Tav = Tref
st e
−γ(a−aref) + Tmin. (4)

Tref
st is the average stochastic part measured at the refer-

ence concentration aref . This prefactor of the exponen-
tial is cell specific and picks up all the cell variability.
The constant γ in the exponent is the same for all cells
of a given cell type stimulated with the same agonist.
Eq. (4) does not bear directly information on the dy-
namic regime of IP3 induced Ca2+ spiking, but it defines
clear constraints to its theory.

III. BASIC REQUIREMENTS AND CONCEPTS FOR
MODELLING OF IP3 INDUCED INTRACELLULAR CA2+

DYNAMICS

A comprehensive monograph reviewing modelling of
intracellular Ca2+ dynamics has recently been pub-
lished57. Here, we would like to fill a void in the literature
by a critical reflection on the framework of model deriva-
tion and the approximations coming with modelling con-
cepts used in the biophysical literature.

The essence of the system is defined by its general
properties, which are also the basic requirements mod-
els should meet:

• The sequence of dynamic regimes with increasing stim-
ulation: puffs, spikes, permanently elevated Ca2+.
Pathway dependent also a bursting regime may follow
or replace the spiking regime.

• The dynamics of individual clusters are not oscillatory
on the time scale of ISI.

• Cell-to-cell variability of average ISI is large.

• The spiking regime obeys Eqs. (2), (3) and (4) with
Tmin, α and γ being cell type and pathway specific
but not subjected to cell variability.58

• ISIs depend sensitively on parameters of spatial cou-
pling.

The high stimulation regime is not in this list, since the
behavior is cell type dependent - it might be stationary
or oscillatory.

The hierarchical organization of CICR carries the ran-
domness of individual channels onto the level of cell-
wide spikes via the stochastic puff dynamics of clusters
(Fig. 1). The random channel state changes are the
source of noise. Consequently, the master equation for
the probability of the microscopic states of the system is
the starting point for an exact theory. In the most gen-
eral case, that would comprise the position and number
of Ca2+ ions and Ca2+ binding molecules and the state
of the channels and pumps. While the master equation
as the starting point for a theory defines concepts and
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methods to be used, solving it is not practical in the
end. Hence, probabilistic theories usually start from for-
mulations of the state dynamics eligible for simulating
trajectories in phase space.

A. Simulations

The diffusion coefficients of Ca2+ and Ca2+ binding
molecules are sufficiently large to establish the deter-
ministic concentration profile on the time scale of typ-
ical channel state changes due to the frequent sampling
of space by thermal motion. The number of SERCA
molecules is orders of magnitude larger than the num-
ber of Ca2+ channels. Hence, we can describe diffusion,
the reactions involving cytosolic Ca2+ binding molecules
and the SERCA flux by reaction-diffusion equations like
Eq. (1). The opening and closing of channels causes time
dependent source terms in the partial differential equa-
tion for the Ca2+ concentration. We illustrate that with
a simple model comprising cytosolic Ca2+ c, one Ca2+

buffer b (Ca2+ bound form) and the ER Ca2+ concentra-
tion e

∂c

∂t
= Dc4c+

N∑
i=1

∞∑
j=1

Ai,j (c, e) δ (t− ti,j) δ (~r − ~ri)

−Vp
c2

K2 + c2
+ Pl(e− c)− k+(bt − b)c+ k−b (5)

∂e

∂t
= De4e− ν

 Np∑
i=1

∞∑
j=1

Ai,j (c, e) δ (t− ti,j) δ (~r − ~ri)

+Vp
c2

K2 + c2
− Pl(e− c)

]
(6)

∂b

∂t
= Db4b+ k+(bt − b)c− k−b. (7)

Here, bt denotes the total buffer concentration, k+ and
k− the binding and dissociation rate, Vp is the maximum
SERCA pump flux, and ν the ratio of cytosol to ER
volume. We have approximated the shape of a channel
mouth by a spatial δ-function and the time course of a
single opening by a temporal δ-function. N is the number
of channels, ~ri is the location of the ith channel, and {ti,j}
the sequence of its openings before time t. The sequence
of time points of openings is determined by Markov chain
Monte Carlo simulations for the state of each individual
channel. The simulations are based on state schemes, an
example is shown in Fig. 4. Such an approach has been
used both for single clusters as well as cell-wide cluster
arrays19,53,59–64.

This type of simulations is well suited to investi-
gate channel state schemes in cellular context, the
role of particular pathway components or spatial as-
pects19,53,59,62–64.

B. Distributions and their moments

Probability distributions for stochastic variables are
the natural way to characterize stochastic systems. They
are the solutions of the master equation. However, we
need to simplify the system to obtain equations we can
solve. These simplified systems can be informed by the
general properties listed above. We know about the ISI
distribution that it should exhibit an absolute refractory
period and a linear relation between standard deviation
and average.

The formulation of the problem in terms of Eq. (5) and
Markov chains can also serve as starting point for analyt-
ical calculations or derivation of simplified models. The
robustness of spike generation with respect to cell vari-
ability and perturbations demonstrates that it cannot de-
pend on very specific parameter values or other details.
Hence, simplifications should not destroy the basic char-
acteristics of the system. At the same time, the large cell
variability entails requirements on the theory. With each
experiment comprising a population of cells we sample
a phase space volume large enough for accommodating
this cell variability. Hence, the qualitative properties of
IP3 induced Ca2+ dynamics listed above must not de-
pend sensitively on the value of parameters distinguish-
ing individual cells. These parameters comprise protein
concentrations65, the number of clusters, their spatial ar-
rangement, diffusion properties and more13.

A suggestion for calculating the ISI distribution has
been made in this spirit54. It starts from the wave nu-
cleation character of spike generation. All clusters are
closed at the end of a spike. Each opening cluster en-
tails a sphere of increased Ca2+ concentration around it.
We indicate that by the orange spheres in the red round
cells above scheme (8). The local rise in Ca2+ increases
the open probability of the open cluster’s neighbours. A
spike occurs, when a critical number Ncr of open clus-
ters is reached via one of many possible paths of cluster
openings. Hence, the ISI calculation can be formulated
as a first passage problem from 0 to Ncr open clusters.
The first passage time distribution corresponds to the ISI
distribution for stationary spike trains. This approach
radically simplifies the system into a state space defined
by the number of open clusters only54. That implies av-
eraging over all Npath possible paths from 0 to Ncr open
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The transition probabilities from k to k+1 open clusters
are determined by the probability that k open clusters
open another one, and from k to k-1 that a cluster closes.
The transition probabilities Ψi,k in state scheme (8) can
be directly calculated from interpuff interval and puff du-
ration distributions54. Such an approach is able to ex-
plain the cumulant relation Eq. (2)54.

A lot remains to be done even with such a simple ap-
proach. The dependency of the transition probability
on the numbers of open clusters and the parameters of
spatial coupling has not been worked out analytically,
yet. Also, the effect of the recovery from the negative
feedback terminating spikes has not yet been described
analytically in this approach but with phenomenological
ansatzes or stochastic simulations only40,53,55,66. A new
approach to this problem has been suggested recently,
but has not been specified to Ca2+ spiking, yet67. Deriva-
tion of the concentration response relation Eq. (4) with
this approach has neither been attempted, yet.

C. Rate equations

Rate equations for lumped variables might be desirable
for simplified models and have been successfully used for
investigating specific aspects of pathways or the dynam-
ics3,28,57,70–74. The derivation of rate equations implies
averaging over the state distribution dynamics defined
by the master equation. The spatial character of spike
initiation renders the averaging difficult. Another (re-
lated) conceptual problem arises from the fact that the
dynamics on cell level is still noisy. In contrast, the more
frequent situation in the derivation of cellular dynam-
ics encounters noise on the molecular level only. The
population average carried out in the master equation of
such systems during the derivation of rate equations is
an average over the molecules in a single cell. The large
number limit guaranteeing the validity of deterministic
rate equations applies to the cell level. With IP3 induced
Ca2+ spiking, this limit does not apply to the cell level,
since cell behavior is noisy. The average needs to be car-
ried out across an ensemble of identical cells.

Consequences of these considerations can be illustrated
by a comparison to existing rate equation models. We

FIG. 4. This state scheme of the IP3R originally published
by Siekmann et al.68 is comprised of two modes. One is the
drive mode containing three closed states C1, C2, C3 and one
open state O6. The other is the park mode which includes
one closed state C4 and one open state O5. The rates of
state-transitions within each mode are constants. α and β
are the rates connecting the two modes and depend on Ca2+

in a highly dynamic manner. Figure reprinted with permis-
sion from Biophysical Journal 112(2017) , P. Cao, M. Fal-
cke, and J. Sneyd, ”Mapping interpuff interval distribution to
the properties of inositol trisphosphate receptors”, 2138–2146,
copyright (2018)69.

prepare this comparison by reconsidering the rate equa-
tion derivation of the most simple stochastic process -
radioactive decay of atoms. The stochastic variable is
the number Na of atoms. We denote the probability per
unit time for decay of a single atom with λ. The atom
number Na obeys for large initial numbers Ni the expo-
nential function Na = Nie

−λt. Each decaying atom is in
a stationary state till it decays, there is no process set-
ting the time point of its decay. However, if we ask for
the time tr required till a specific number of atoms Nr
remains in the deterministic limit, it is set by Ni, Nr and
λ (tr = λ−1 ln(Ni/Nr)). The process setting the time
scale is the continuous decrease of Na down to Nr.

Rate equation models derived by averaging on the
molecular level and assuming deterministic behavior on
cell level usually require specific processes to set the time
scale of ISIs. That might be a rising fraction of chan-
nels recovered from inhibition, an approach to a criti-
cal Ca2+ concentration or the rise of receptor sensitiza-
tion57,74. However, the noisy behavior of Ca2+ spiking
entails different determinants of the average ISI. Figure 5
illustrates some differences between the rate equations
obtained by assuming deterministic cell behavior and
noisy behavior on cell level. The time courses were ob-
tained from simulations of a purely deterministic model75

(black) and a noisy excitable version of it53 (red). Both
systems respond with a spike to the perturbation. The
noisy system generates subsequent spikes some time after
the stimulated one (red line in Fig. 5A). The determin-
istic rate equation model stays in a stationary state af-
ter the initial perturbation without generating a second
spike (black line in Fig. 5A). During the time Tdiv, the
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FIG. 5. Time scales set by noise are not captured by current
deterministic rate equations. A: Caricature of a Ca2+ time
course as produced by deterministic rate equations (black)
and by a corresponding noisy system (red) after an initial
perturbation (arrow) based on model simulations53,75. The
noisy system generates subsequent spikes some time after the
previous one. During the time Tdiv, the deterministic rate
equations are in a stationary state without generating a sec-
ond spike. B: The interspike interval is dominated by the
time required to reach the threshold of CICR (blue) in the
oscillatory regime of deterministic rate equation models. The
dependency of the ISI on the parameters characterizing the
noise is lost.

dynamics is completely noise dominated. This illustrates
that completely analogous to radioactive decay, there is
no deterministic process on the level of the individual cell
setting its ISI after recovery from the previous spike.

Spiking is lost in the rate equations since Tdiv diverges
due to averaging on the molecular level. Thus also the
dependency of the ISI on the parameters characterizing
the noise and spatial coupling is lost. Most rate equation
models tune parameters to an oscillatory regime to es-
tablish spiking (Fig. 5B). The interspike interval is then
dominated by the time required to reach the threshold
for CICR. This entails parameter dependencies of the ISI
different from the ones of noise driven dynamics.

The sketch of Tdiv for the excitable model in Fig. 5A
applies when the asymptotic spike generation probability
reached after recovery is smaller than the recovery rate
from negative feedback. The medium and long ISI data
in Xenopus oocytes18 and spontaneously spiking astro-
cytes and microglia cells40,66 are experimental realiza-
tions. Their recovery phase from negative feedback is
substantially shorter (α ≈1) than the average ISI40,66.
The effect of noise on time scales and parameter depen-
dencies is also substantial if the recovery phase and the
average ISI are of comparable length27,40,66.

In summary, averaging on the single cell level across
molecules and clusters eliminates the noise generating the

spike. The rate equations for this average do not reflect
the spike generating mechanism, since usually an oscil-
latory regime is then used to ’rescue’ spiking. However,
averaging over a stochastic ensemble of cells defined by
a cellular spike generation probability distribution allows
for including the average of the noise generated time scale
and its parameter dependencies, and can thus reflect the
spike generation mechanism.

Deriving rate equations in a way reflecting the spike
generation mechanism is an open problem and has not
been attempted, yet. Suitable concepts might be in-
spired by the integrate-and-fire models of neuronal dy-
namics starting from an expression for the spike gener-
ation probability on cell level. Investigations on glob-
ally coupled noisy excitable systems might be specified
to Ca2+ dynamics76. Another very promising approach
includes higher moments in the derivation77.

Parameter dependencies and the mathematical struc-
ture of models can also be restricted by Eqs. (3) and (4).
Stochastic simulations of the excitable regime of the fre-
quently used DeYoung-Keizer-model reproduced Eq. (3)
but not Eq. (4). Hence, a comprehensive theoretical un-
derstanding of the concentration response is still lacking.

IV. CONCLUSION

While detailed multiscale simulations can mimic
experimental observations in a rather flexible man-
ner19,53,59–64, neither the current state of the stochastic
theory, nor the rate equation models live up to the re-
quest for predicting experimental outcome beyond the
examples used for model derivation. This indicates that
we have not yet understood how to derive the appropri-
ate models. Based on the accordance of experimental and
multiscale simulation results, we come to the conclusion
that a reaction diffusion system with a local dynamics
in a noisy excitable regime must be the starting point of
the derivation of predictive models, since it is the math-
ematical structure corresponding to the observations.

IP3 induced Ca2+ dynamics is a classic of biological
applications of non-linear dynamics57,78–80. On the
basis of early interpretations of experimental results,
it became one of the prototypical cellular limit cycle
oscillators. The recent experimental results reviewed in
this study revealed that the repetition of spikes is caused
by noise instead of a limit cycle or torus in phase space.
Derivation of predictive and simple models starting from
this noisy spatially extended excitable system is a task
reaching beyond the specific biological system. Hence,
this classic still poses theoretical problems interesting
and challenging for the whole field of nonlinear dynamics.
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IP3 and Ca2+ oscillations: Frequency encoding and identification
of underlying feedbacks,” Biophys J 90, 3120 – 3133 (2006).

29P. J. Bartlett, W. Metzger, L. D. Gaspers, and A. P. Thomas,
“Differential regulation of multiple steps in inositol 1,4,5- trispho-
sphate signaling by protein kinase C shapes hormone-stimulated
Ca2+ oscillations.” Journal of Biological Chemistry (2015).

30M. Berridge, “Calcium oscillations,” J.Biol.Chem. 265, 9583–
9586 (1990).

31M. Nash, K. Young, R. Challiss, and S. Nahorski, “Receptor-
specific messenger oscillations,” Nature 413, 381–382 (2001).

32A. Green, P. Cobbold, and C. Dixon, “Elevated intracellular
cyclic AMP exerts different modulatory effects on cytosolic free
Ca2+ oscillations in single rat hepatocytes,” Biochem.J. 302,
949–955 (1994).

33A. Green, C. Dixon, A. McLennan, P. Cobbold, and M. Fisher,
“Adenine dinucleotide-mediated cytosolic free Ca2+ oscillations
in single hepatocytes,” FEBS 322, 197–200 (1993).

34M. S. Nash, M. J. Schell, P. J. Atkinson, N. R. Johnston,
S. R. Nahorski, and R. A. J. Challiss, “Determinants of
Metabotropic Glutamate Receptor-5-mediated Ca2+ and Inosi-
tol 1,4,5-Trisphosphate Oscillation Frequency,” J Biol Chem 277,
35947–35960 (2002).

35M. Bootman, C. Taylor, and M. Berridge, “The thiol reagent,
thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the
inositol 1,4,5-trisphosphate receptor,” J.Biol.Chem. 267, 25113–
25119 (1992).

36A. Skupin, H. Kettenmann, and M. Falcke, “Calcium signals
driven by single channel noise,” PLoS Comput Biol 6, e1000870
(2010).

37A. Mikhailov, Foundations of Synergetics, Springer Series in Syn-
ergetics, Vol. 1,2 (Springer, 1994).

38M. Diaz, D. Eisner, and S. O’Neill, “Depressed Ryan-
odine Receptor Activity Increases Variability and Du-
ration of the Systolic Ca2+ Transient in Rat Ven-
tricular Myocytes,” Circ Res 91, 585–593 (2002),
http://circres.ahajournals.org/cgi/reprint/91/7/585.pdf.

39J. Kockskämper and L. A. Blatter, “Subcellular Ca2+ alternans
represents a novel mechanism for the generation of arrhythmo-
genic Ca2++ waves in cat atrial myocytes,” J Physiol 545, 65–79
(2002), http://jp.physoc.org/cgi/reprint/545/1/65.pdf.

40A. Skupin, H. Kettenmann, U. Winkler, M. Wartenberg,
H. Sauer, S. C. Tovey, C. W. Taylor, and M. Falcke, “How does
intracellular Ca2+ oscillate: by chance or by the clock?” Biophys
J 94, 2404–11 (2008).

41G. D. Dickinson and I. Parker, “Factors determining the recruit-
ment of inositol trisphosphate receptor channels during calcium
puffs,” Biophys J 105, 2474 – 2484 (2013).

42G. D. Dickinson, D. Swaminathan, and I. Parker, “The proba-
bility of triggering calcium puffs is linearly related to the number
of inositol trisphosphate receptors in a cluster,” Biophys J 102,
1826 – 1836 (2012).

43C. Taylor, “Inositol trisphosphate receptors: Ca2+-modulated
intracellular Ca2+ channels,” Biochimica and Biophysica Acta
1436, 19–33 (1998).

http://dx.doi.org/10.1242/jcs.208520
http://dx.doi.org/10.1242/jcs.208520
http://dx.doi.org/DOI: 10.1016/0143-4160(92)90053-U
http://dx.doi.org/DOI: 10.1016/0143-4160(92)90053-U
http://dx.doi.org/DOI: 10.1016/j.jtbi.2009.03.018
http://dx.doi.org/DOI: 10.1016/j.jtbi.2009.03.018
http://dx.doi.org/10.1371/journal.pcbi.1000870
http://dx.doi.org/10.1371/journal.pcbi.1000870
http://dx.doi.org/ 10.1161/01.RES.0000035527.53514.C2
http://arxiv.org/abs/http://circres.ahajournals.org/cgi/reprint/91/7/585.pdf
http://dx.doi.org/10.1113/jphysiol.2002.025502
http://dx.doi.org/10.1113/jphysiol.2002.025502
http://arxiv.org/abs/http://jp.physoc.org/cgi/reprint/545/1/65.pdf


10

44J. K. Foskett, C. White, K.-H. Cheung, and D.-O. D. Mak, “Inos-
itol trisphosphate receptor Ca2+ release channels,” Physiological
Reviews 87, 593–658 (2007).

45E. Gin, M. Falcke, L. E. Wagner, D. I. Yule, and J. Sneyd,
“A kinetic model of the inositol trisphosphate receptor based on
single-channel data,” Biophys.J. 96, 4053–4062 (2009).

46G. Dupont, S. Swillens, C. Clair, T. Tordjmann, and L. Com-
bettes, “Hierarchical organisation of calcium signals in hepa-
tocytes: from experiments to models,” Biochim.Biophys.Acta
1498, 134–152 (2000).

47W. Croft, K. Reusch, A. Tilunaite, N. A. Russell, R. Thul, and
T. C. Bellamy, “Probabilistic encoding of stimulus strength in
astrocyte global calcium signals,” Glia 64, 537–552 (2016).

48S. Dragoni, U. Laforenza, E. Bonetti, F. Lodola, C. Bottino,
R. Berra-Romani, G. Carlo Bongio, M. P. Cinelli, G. Guerra,
P. Pedrazzoli, V. Rosti, F. Tanzi, and F. Moccia, “Vascular
endothelial growth factor stimulates endothelial colony form-
ing cells proliferation and tubulogenesis by inducing oscillations
in intracellular Ca2+ concentration,” Stem Cells 29, 1898–1907
(2011).

49P. Cao, X. Tan, G. Donovan, M. J. Sanderson, and J. Sneyd, “A
deterministic model predicts the properties of stochastic calcium
oscillations in airway smooth muscle cells,” PLoS Comput Biol
10, e1003783 (2014).

50G. Dupont, A. Abou-Lovergne, and L. Combettes, “Stochastic
Aspects of Oscillatory Ca2+ Dynamics in Hepatocytes,” Biophys
J 95, 2193–2202 (2008).

51M. Perc, A. K. Green, C. J. Dixon, and M. Marhl, “Establishing
the stochastic nature of intracellular calcium oscillations from
experimental data,” Biophys Chem 132, 33 – 38 (2008).

52A. Skupin and M. Falcke, “The role of IP3R clustering in
Ca2+ signaling,” Genome Informatics 20, 15–24 (2008), skupin,
Alexander Falcke, Martin Japan Genome informatics. Inter-
national Conference on Genome Informatics Genome Inform.
2008;20:15-24.

53A. Skupin and M. Falcke, “From puffs to global Ca2+ sig-
nals: How molecular properties shape global signals,” Chaos 19,
037111 (2009).

54K. Thurley and M. Falcke, “Derivation of Ca2+ signals from puff
properties reveals that pathway function is robust against cell
variability but sensitive for control,” Proc Nat Acad Sci USA
108, 427–432 (2011).

55Skupin, A. and Falcke, M., “Statistical analysis of calcium oscil-
lations,” Eur. Phys. J. Special Topics 187, 231–240 (2010).
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