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Abstract 

Multiple Criteria Decision-Making (MCDM) methods are widely used in research and industrial 

applications. These methods rely heavily on expert perceptions and are often sensitive to the 

assumptions made. The reliability and robustness of MCDM analysis can be further tested and verified 

by a computer simulation and sensitivity analysis. In order to address this, five different MCDM 

approaches, including Weighted Sum Model (WSM), Weighted Product Model (WPM), revised 

Analytic Hierarchy Process (rAHP), Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS) and COmplex PRoportional ASsessment (COPRAS) are explored in the paper. Real data of 

the case study for assessing housing affordability are used for testing the robustness of alternative 

ranking and finding the most sensitive criteria to the change of criterion weight. We identify the most 

critical criteria for any and best ranking alternatives. The paper highlights the significance of sensitivity 

analysis in assessing the robustness and reliability of MCDM outcomes. Furthermore, randomly 

generated and model-based data sets are used to establish relationship between the dispersion of relative 

importance values of alternatives and ranking uncertainty. Our findings demonstrate that the dispersion 

of relative importance values of alternatives correlate with the Euclidian distances of aggregated values. 

We conclude that the dispersion of relative importance values contributes directly to the ranking 

uncertainty and can be used as a measure for identifying critical criteria.  

Keywords: multiple criteria analysis, sensitivity analysis, robustness, data dispersion, housing 

affordability  
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1. Introduction 

Decision-making determines the success and failure in many areas of human activity. It becomes a 

difficult task in the situation that requires handling large amounts of data and information. In the light 

of this problem, the Multi-Criteria Decision Analysis (MCDA) has widely emerged as an important 

domain of operations research aimed at assisting with the decision-making. Multiple Criteria Decision-

Making (MCDM) methods have found their use in the evaluation of alternatives, involving many and 

often conflicting decision criteria, with the aim of establishing an optimal or best suited choice by 

ranking presented alternatives [1, 2].  

The MCDA has also been extended to estimate a numerical solution, e.g. the prediction of a 

value [3, 4] and implemented to facilitate decisions in business, management, engineering and industry 

[5-8]. MCDM methods were identified as particularly suitable for decision-making in fields such as the 

urban regeneration [9], urban and housing market sustainability [10, 11], sustainable housing 

affordability [12], real estate valuation [3, 13], wind energy [14], waste and water resource management 

[15, 16], building site planning and materials [17], inventory classification [18], mining industry [19] 

and many others. For this purpose, a great variety of MCDM methodologies has been developed in last 

few decades [20-22]. It has also been recognised that none of the methods can be considered as the 

“best” or “most suitable” for a single or diverse problems and applications [20, 23]. 

MCDM problems can be divided into two categories, discrete and continuous [21]. The later 

usually involves more than one objective function, which are sought to be optimised simultaneously 

often using evolutionary algorithms and is named Multi-Objective Optimization (MOO) [24, 25]. 

Whereas, the former described as a multi-attribute discrete option often consists of a modest number of 

alternatives, often is aimed at achieving one objective and is termed Multi-Attribute Decision Making 

(MADM) [21, 26]. 

The key stages of MCDM methodologies include: 1) establishing the relevant criteria and 

alternatives; 2) determining the numerical values (weights) concerning the relative importance of the 

criteria; 3) determining the impacts of the alternative option on criteria; and 4) processing the numerical 

values in determining a ranking of each alternative [1].  

The determination of the relative importance of different criteria is a complex problem and 

often becomes a very influential step in MCDA. The information for determining the weights of the 

relative importance for different criteria is difficult to obtain for the definition of weights itself and the 

precise input data are rarely if ever available [27]. Often, experts are employed in addressing this issue 

and to help determine the required parameters. Yet, the professional expert opinion and perception of 

the criteria importance can vary depending on the sector of industry and other similar factors [28]. 

Ambiguities in the input data cause variability (uncertainty) and imprecision of the results (output) [29]. 

It has been shown that different methods, if applied to the same problem, can return diverse results [30-

36], suggesting that the choice of method may also contribute to the inconsistency of the output. 
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Therefore, depending on the MCDM method, the importance of the criteria can have a quite varied 

influence on the output of the analysis.  

Whereas the usefulness of any model depends on the precision and reliability of its results [29], 

it is highly desirable to develop MCDM methods, which are less sensitive to the influence of the 

subjective assumptions made through the determination of the relative importance of the criteria, or to 

build strategies helping to assess the sensitivity of the model and the uncertainty of the result. To assist 

with this, the use of the sensitivity analysis has become widespread in many areas of sciences and is 

now widely acknowledged as a critical step in verifying the reliability and accuracy of the methodology. 

The sensitivity analysis is performed with a number of objectives: 1) to establish parameters, which 

require additional investigation to improve the knowledge base and thereby to reduce the result (output) 

variability (uncertainty); 2) to establish parameters that are insignificant and can be disregarded in the 

final model; 3) to determine data (inputs) that contribute most to the output uncertainty; 4) to identify 

parameters, which have most effect on the output; and 5) when the model is in operation, to calculate 

what the effect has on the change of a given input parameter on the output [37]. To date, a limited 

amount of research has been dedicated to the sensitivity analysis for MCDM models mostly reported in 

1980s and 1990s [38-42]. Previous studies mainly explore the dependency of output on the input 

parameters by helping to identify criteria that are most sensitive to the change of weight and have 

significant impact on the MCDM outcomes. The statistics of input parameters has not been considered 

so far.  

This paper focuses on five commonly used MCDM models, the Weighted Sum Model (WSM), 

the Weighted Product Model (WPM), the revised Analytic Hierarchy Process (rAHP), Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS), and Complex Proportional Assessment 

(COPRAS) [1, 30, 43-45]. By building on previous research [12, 46] and using real data from a case 

study on the assessment of housing affordability, the sensitivity analysis is performed identifying 

tolerable change of criteria weights and how change of criteria weights contribute to the ranking output 

of alternatives. The robustness and reliability of MCDM analysis results is evaluated. Moreover, the 

correlation between the dispersion of relative importance values of alternatives and either sensitivity of 

criteria, dissimilarity of aggregated values, or dissimilarity of ranking is investigated.  

 

2. Materials and methods 

2. 1. Data collection 

The criteria were identified by conducting interviews and literature review as described previously [47]. 

A total of 18 decision criteria were utilized in the assessment of sustainable housing affordability, as an 

empirical case study. A questionnaire-centred survey was performed and criteria weights wj were 

calculated as previously [12]. The criteria weights enabled to express the relative importance of the 

criteria (Table 1). Eleven residential housing areas (alternatives A1 to A11) in Liverpool, UK, were 

selected for empirical data collection the eighteen decision criteria. Openly available data from various 
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sources as reported in [46] were used to calculate the relative importance aij for each alternative Ai in 

terms of criterion Cj. Obtained values are presented in Table 1. 

The initial data collection process can be summarised in the following steps: 1) establishing 

criteria for the comprehensive assessment of the affordability of sustainable housing, which was 

achieved through the literature review and interviews with professionals; 2) determining criteria weights 

to reflect their importance, which were determined by experts; 3) selecting alternatives to be compared; 

and 4) computing relative importance values for each alternative. 

 

Table 1. Initial matrix for MCDM 

*The sign (+/-) indicates that a greater/lesser criterion value satisfies sustainable housing affordability 

 

2.2. Sensitivity analysis 

The sensitivity analysis was performed by applying two approaches. In the first, the analysis was 

performed to quantify the level of crosstalk between criteria and ranking. The methodological principles 

of this sensitivity analysis approach were described in [48]. By using this approach, the objective was 

to determine independently the effect of each criteria on the MCDM outcomes. The weight of each 

criterion was independently changed by 5% (small change) or 50% (large change) by increasing or 

decreasing it. The remaining criteria weights were kept unchanged. Obtained specific values of relative 

sensitivity coefficients indicate a number of changes in alternative ranking due to the change of criterion 

weight (5 or 50% increase/decrease). Inverse application of this approach enabled to determine a 

tolerable change of criteria weights as a percentage of allowed change (increase or decrease) for each 

criterion, which has no effect of alternative ranking result. This approach, in combination with the 

computer simulation, was used to study how the alteration of criteria weights contributes to the ranking 

of alternatives.  

In the second sensitivity analysis approach, the “most critical criterion” was defined as the 

criterion Cj for which the smallest relative change (in percentage), denoted as Dj, in its weight value Wj 

must occur to alter the existing ranking of the alternatives [38]. The sensitivity coefficient of criterion 

Cj, was denoted as SCj, and was used as a measure of the sensitivity to the change of criterion weight 

as follows: 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

- - + + + - + + + + + + + - + + - -

0.0689 0.0689 0.0634 0.0562 0.0515 0.0483 0.0586 0.0539 0.0546 0.0499 0.0545 0.0507 0.0436 0.0483 0.0602 0.0570 0.0634 0.0483

A 1 0.922 0.833 1.000 0.667 1.000 0.556 1.000 1.000 1.000 1.000 1.000 1.000 0.667 0.655 0.922 1.000 1.000 0.226

A 2 0.686 0.633 0.929 0.667 0.367 1.000 1.000 0.667 0.833 1.000 1.000 1.000 1.000 0.515 0.805 0.882 1.000 1.000

A 3 0.961 1.000 0.286 0.333 0.933 0.289 1.000 0.500 1.000 0.333 1.000 1.000 0.500 0.032 0.782 0.809 1.000 0.051

A 4 0.922 0.800 0.229 0.333 0.767 0.430 1.000 0.667 0.833 0.667 1.000 1.000 0.833 0.629 0.769 0.838 1.000 0.053

A 5 0.961 0.933 0.586 0.333 0.900 0.304 1.000 0.833 0.833 0.667 1.000 0.833 0.833 0.086 0.883 0.779 1.000 0.032

A 6 1.000 0.933 0.214 0.667 0.900 0.422 1.000 0.667 0.667 1.000 1.000 1.000 0.667 0.453 0.959 0.838 1.000 0.000

A 7 0.784 0.800 0.429 0.667 0.833 0.415 0.667 0.667 0.667 0.333 1.000 1.000 0.833 0.416 1.000 0.941 1.000 0.398

A 8 0.941 0.967 0.071 1.000 0.433 0.481 1.000 0.667 0.500 0.667 1.000 1.000 0.667 0.341 0.862 0.926 1.000 0.856

A 9 0.706 1.000 0.786 1.000 0.367 1.000 1.000 0.833 0.833 1.000 1.000 1.000 0.833 0.279 0.810 0.971 1.000 0.960

A 10 0.745 0.767 0.500 0.333 0.767 0.659 1.000 0.833 1.000 0.333 1.000 1.000 0.667 1.000 0.991 0.897 1.000 0.636

A 11 0.863 0.867 0.503 0.600 0.727 0.556 0.967 0.733 0.817 0.700 1.000 0.983 0.750 0.441 0.878 0.888 1.000 0.421

Criterionj

Cost (-), benefit (+)

Weight, w j

A
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n
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e
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For simulation purposes, the uniformly distributed pseudorandom numbers were generated 

using MATLAB function rand. Since the number of simulations depends on the quantity of input 

parameters, the limited number of alternatives (11) and defined number (12) of random number 

intervals were used to reduce computational costs. 

 

2.3. MCDM models 

Since there is no single method considered to be the most appropriate for all situations of  decision-

making, a large number of MCDM models and their derivatives have been developed [21] and the 

search for the “best” method continues. However, if applied to the same problem, different MCDM 

methods can deliver dissimilar results. As the method that is suitable for all types of decision-making 

has not been yet developed [20], the paradox of the selection of a suitable MSDM method continues 

[1]. The identification and selection of an appropriate MCDM method is therefore not a simple task and 

a considerable consideration must be given to the choice of method [20, 35, 49].  

The affordability of sustainable housing in eleven residential areas was ranked by applying the 

five most common MCDM models, Weighted Sum Model (WSM), Weighted Product Model (WPM), 

revised Analytic Hierarchy Process (rAHP), Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) and COmplex PRoportional Assessment (COPRAS) [26, 30, 43, 45]. These were 

applied to the data from a real case study and provide the initial decision-making matrix (Table 1). 

Using each model, the aim was to determine the relative importance of each alternative (aij) in terms to 

each criterion and to compute the aggregated value for each alternative (Ai
WSM, Ai

WPM, Ai
rAHP, Ai

TOPSIS, 

Ai
COPRAS) establishing the overall ranking order of alternatives. Since input data (xij) often are expressed 

in different units of measurement (e.g. ratio, points, percentage, price), and in order to ensure that the 

data are non-dimensional, the data normalisation for WSM, rAHP, and COPRAS was performed 

following principles suggested in previous studies [50, 51] and as follows: 

𝑎𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

;  𝑗 = 1,2,3, … , 𝑛; 

(2) 

where, aij is a value of relative importance (weight) for the ith alternative in terms of the jth criterion. 

For WSM, this transformation allowed to replace multidimensional criteria, which are not permitted for 

use with this model, with the measures that are both numerical and comparable, and expressed in the 

same unit [51]. 
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2.3.1. WSM 

The WSM is one of the simplest MCDM methods. This method is based on weights given by the 

decision-maker. Each criterion is given a non-negative weight, and the alternatives are ranked by 

evaluating the weighted sum of the criteria [43]. The method involves adding together criteria values 

for each alternative and applying the individual criteria weights, which should be expressed as non-

negative values. This is best expressed as a decision matrix: 

𝐶𝑗 𝐶1

𝐴𝑖 (𝑤1

𝐴1 𝑎11

𝐶2 … 𝐶𝑛

𝑤2 … 𝑤𝑛)
𝑎12 … 𝑎1𝑛

𝐴2 𝑎21

…
𝐴𝑚 𝑎𝑚1

𝑎22 … 𝑎2𝑛

… … …
𝑎𝑚2 … 𝑎𝑚𝑛

 

(3) 

The decision matrix represents m alternatives (A1 to Am) in rows and n criteria (C1 to Cn) in columns, 

where aij (i = 1,…,m; j = 1,…,n) indicates the relative importance of alternative Ai with respect to 

criterion Cj. 

Following this, each criterion value is multiplied by its corresponding weight. The aggregated 

value for each alternative is calculated using the following formula: 

𝐴𝑖
𝑊𝑆𝑀 = ∑ 𝑎𝑖𝑗𝑤𝑗

𝑛

𝑗=1

;  𝑖 = 1,2,3, … , 𝑚; 

(4) 

The alternative with the highest value can be established as the best solution as follows: 

𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑊𝑆𝑀 = max

𝑖
∑ 𝑎𝑖𝑗𝑤𝑗

𝑛

𝑗=1

;  𝑖 = 1,2,3, … , 𝑚; 

(5) 

where, the matrix A has data entries aij corresponding to the relative importance value of the ith 

alternative in terms of the jth criterion. Ai
WSM and Aoptimal

WSM are the WSM aggregated values for any and 

optimal alternatives, respectively, wj is the weight (relative importance) of the jth criterion, and m and 

n are the numbers of alternatives and criteria, respectively.  

 

2.3.2. WPM 

The WPM is in principle similar to the WSM, except that it performs ranking of alternatives on the 

basis of a multiplicative measure instead of addition [1]. Therefore, when applying WPM in decision-

making, the impact of zero values for the relative importance of criteria must be treated cautiously, 

since they might distort the multiplicative ranking measure. Similarly to the WSM, the WPM also 

requires cost criteria to be transformed into benefit ones prior to normalization. The aggregated value 

for each alternative is calculated by using the following formula: 
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𝐴𝑖
𝑊𝑃𝑀 = ∏ 𝑎

𝑖𝑗

𝑤𝑗; 

𝑛

𝑗=1

𝑖 = 1,2,3, … , 𝑚; 

(6) 

Then the alternative with the highest value can be selected as the best solution: 

𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑊𝑃𝑀 =  max

𝑖
∏ 𝑎

𝑖𝑗

𝑤𝑗

𝑛

𝑗=1

;  𝑖 = 1,2,3, … , 𝑚; 

(7) 

where, Ai
WSM and Aoptimal

WSM are the WPM aggregated values for any and optimal alternative, 

respectively. Since WPM eliminates any units of measure, this method is considered as a dimensionless 

analysis and can be used for single and multi-dimensional problems [1].  

 

2.3.3. rAHP 

The rAHP employs, in a similar manner to the WSM and WPM, a matrix formulated from relative 

importance values of alternatives in terms of each criterion and the use of pair-wise comparisons, both 

to estimate criteria weights and to compare the alternatives with regard to the decision criteria [52]. 

However, instead of accumulated the sum of relative importance values of alternatives (a1j, …, aij) being 

equal to 1, proposed in the original AHP [44], in the rAHP the relative importance value (aij) of the jth 

criterion is divided by maximum value of aij (maxaij) of the jth criterion [53] resulting in calculation of 

aggregated value using following formula: 

𝐴𝑖
𝑟𝐴𝐻𝑃 = ∑

𝑎𝑖𝑗

max
𝑖

𝑎𝑖𝑗
𝑤𝑗

𝑛

𝑗=1

;  𝑖 = 1,2,3, … , 𝑚; 

(8) 

The alternative with the highest value can be established as the best solution as follows: 

𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑟𝐴𝐻𝑃 = max

𝑖
∑

𝑎𝑖𝑗

max
𝑖

𝑎𝑖𝑗
𝑤𝑗

𝑛

𝑗=1

;  𝑖 = 1,2,3, … , 𝑚; 

(9) 

The rAHP can use both benefit and cost criteria [54]. 

 

2.3.4. TOPSIS  

The TOPSIS is a model based on an aggregating function representing distances from the ideal solution 

[26]. TOPSIS approaches a MCDM problem by considering that the optimal alternative should have 

the shortest distance from the ideal solution and the greatest distance from the negative-ideal solution. 

The distances are computed for normalized and weighted data and are measured using the Euclidean 

metrics. TOPSIS can be applied to both benefit and cost criteria [55]. TOPSIS commences with the 

normalization of relative importance values of alternatives, which are calculated as following: 
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𝑎𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

;  𝑗 = 1,2,3, … , 𝑛; 

(10) 

where, xij and aij represent values of the ith alternative in terms of the jth criterion prior and after 

normalisation, respectively. In the next step, the values (vij) for weighted normalised decision matrix V 

are calculated:  

𝑣𝑖𝑗 =  𝑎𝑖𝑗𝑤𝑗;  𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑛; 

(11) 

In the third step, the positive ideal (best) (V+) and negative-ideal (worst) [56] solutions are 

determined as follows: 

𝑉+ = {𝑣1
+ , … , 𝑣𝑛

+}, 𝑣𝑗
+ = {max

𝑗
(𝑣𝑖𝑗)  if 𝑗 ∈ 𝐽;  min

𝑗
(𝑣𝑖𝑗)  if 𝑗 ∈ 𝐽′} ; 

(12) 

𝑉− = {𝑣1
− , … , 𝑣𝑛

−}, 𝑣𝑗
− = {min

𝑗
(𝑣𝑖𝑗)  if 𝑗 ∈ 𝐽;  max

𝑗
(𝑣𝑖𝑗)  if 𝑗 ∈ 𝐽′} ; 

(13) 

where, J = {j = 1, 2, ..., N and j is associated with benefit criteria}; and J’ = {j = 1, 2, ..., N and j is 

associated with cost/loss criteria}.  

Then, separation measures (distances) (Si
+ and Si

-) from the positive ideal alternative (vj
+) and 

negative ideal alternative (vj
-) are calculated for each alternative using the n-dimensional Euclidean 

distance method as follows: 

𝑆𝑖
+ = √∑(𝑣𝑗

+ − 𝑣𝑖𝑗)2

𝑛

𝑗=1

 ;  𝑖 = 1, … , 𝑚; 

(14) 

𝑆𝑖
− = √∑(𝑣𝑗

− − 𝑣𝑖𝑗)2

𝑛

𝑗=1

 ;  𝑖 = 1, … , 𝑚; 

(15) 

Finally, the relative closeness (aggregated value) of each alternative is calculated as Ai
TOPSIS and 

the ideal solution as Aoptimal
TOPSIS: 

𝐴𝑖
𝑇𝑂𝑃𝑆𝐼𝑆 =  

𝑆𝑖
−

(𝑆𝑖
+ + 𝑆𝑖

−)
;  0 ≤ 𝐴𝑖

𝑇𝑂𝑃𝑆𝐼𝑆 ≤ 1;  𝑖 = 1,2,3, … , 𝑚; 

(16) 

𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑇𝑂𝑃𝑆𝐼𝑆 = max

𝑖
𝐴𝑖

𝑇𝑂𝑃𝑆𝐼𝑆 ;  𝑖 = 1,2,3, … , 𝑚; 

(17) 
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It should be mentioned that TOPSIS does not consider the relative importance of the distances 

from the positive and negative ideal solution points [30]. The TOPSIS model uses squared terms in the 

evaluation of criteria and this should be emphasised. The consequence is that the most beneficial and 

most costly relative importance values in input data can have more of an impact on the final output, 

whereas average data points will have a lesser impact to the results if compared to the methods that do 

not utilise squared terms. Methods that utilise squared terms may not be particularly suitable where 

criteria values for different alternatives are similar, thus requiring further identification. 

 

2.3.5. COPRAS 

The COPRAS is, in principle, similar to the WSM. However, COPRAS allows for both benefit and cost 

criteria to be considered within the matrix [45].  

After the normalization step as described in section 2.3, the sums of the weighted normalised 

criteria (Si
+ and Si

-) of the ith alternative are calculated as follows:𝑆𝑖
− 

𝑆𝑖
+ = ∑ 𝑎𝑖𝑗𝑤𝑗𝑧+;  

𝑛

𝑗=1

𝑎𝑖𝑗 ≥ 0;  𝑧+ = 1;  𝑗 = 1,2,3, … , 𝑛; 

(18) 

𝑆𝑖
− = ∑ 𝑎𝑖𝑗𝑤𝑗𝑧−;   𝑎𝑖𝑗 ≤ 0

𝑛

𝑗=1

;  𝑧− = −1;  𝑗 = 1,2,3, … , 𝑛; 

(19 

The aggregated value for each alternative is calculated using the following formula: 

𝐴𝑖
𝐶𝑂𝑃𝑅𝐴𝑆 = 𝑆𝑖

+ +  
∑ 𝑆𝑖

−𝑚
𝑖=1

𝑆𝑖
− ∑

1

𝑆𝑖
−

𝑚
𝑖=1

;  𝑖 = 1,2,3, … , 𝑚; 

(20) 

The alternative with the highest value is established as the best solution: 

𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝐶𝑂𝑃𝑅𝐴𝑆 = max

𝑖
( 𝑆𝑖

+ + 
∑ 𝑆𝑖

−𝑚
𝑖=1

𝑆𝑖
− ∑

1

𝑆𝑖
−

𝑚
𝑖=1

) ;  𝑖 = 1,2,3, … , 𝑚; 

(21) 

 

3. Results and discussion 

3.1. Sensitivity analysis 

In solving the MADM problem using MCDM models, the relative importance of the criteria (weights) 

is determined by decision-makers. They can employ experts to rank the criteria or to establish the 

importance of the criteria using other means. As a consequence, the relative importance of the criteria 
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can be to some degree subjective, carry some level of uncertainty and, therefore, may shape the analysis 

of the results.  

In order to investigate the sensitivity of the output to the uncertainty in the criteria weight, we 

used an example with parameters (data) acquired for the assessment of the affordability of sustainable 

housing [47]. Eighteen criteria and eleven alternatives (residential housing areas) were used to build a 

decision matrix as described in Material and methods. For MCDA, five MCDM methods such as WSM, 

WPM, rAHP, TOPSIS and COPRAS were applied. The expert opinion-determined values of criteria 

weights and the values of the alternatives were combined in the mathematical models of the MCDM 

methods described in subsections 2.3.1 to 2.3.5.  

First, selected MCDM methods were investigated if they outputs are different with selected 

criteria and alternative inputs by comparing aggregated values and ranking of alternatives. Therefore, 

the aggregated values of alternatives (Ai) and their resulting ranking (rank) were determined (Table 2). 

All aggregated values and, with exception for A1 and A2, a majority of alternatives were ranked 

differently by five selected MCDM methods.  

 

Table 2. Aggregated values (Ai) and ranking results (rank) using five different MCDM methods. 

 

 

Second, the pairwise correlation analysis between five MCDM methods was executed. Results 

showed that four methods, WSM, rAHP, TOPSIS and COPRAS, performed very similarly with a 

Pearson correlation coefficient ranging from 0.830 to 0.995 (Table 3). These findings extend and 

consolidate other studies, where WSM, AHP and TOPSIS [49], AHP and TOPSIS [57], and WSM and 

COPRAS [58] are compared. Previous research has suggested that it is important to use alternative 

MCDM methods in order to achieve reliable and viable ranking results. Although none of the MCDM 

approaches can significantly outclass other methods, the correlation analysis suggested that the 

COPRAS was most consistent with other models used for the assessment of sustainable housing 

affordability (Table 3). Whereas previous research proposed that the WSM model, which performs 

accurately and delivers satisfactory results for a majority of single-criteria based problems [59], can be 

A i rank A i rank A i rank A i rank A i rank

A1 0.1042 1 0.1014 1 0.8782 1 0.5324 1 0.1032 1

A2 0.0924 4 0.0000 11 0.7927 5 0.8632 9 0.0899 6

A3 0.0881 8 0.0833 7 0.7612 9 0.9220 3 0.0925 4

A4 0.0872 9 0.0842 6 0.7617 8 0.9131 8 0.0871 9

A5 0.0964 2 0.0938 2 0.8167 2 0.7101 2 0.1006 2

A6 0.0922 5 0.0890 4 0.7949 4 0.8342 4 0.0931 3

A7 0.0899 7 0.0881 5 0.7748 7 0.9003 6 0.0893 8

A8 0.0813 11 0.0724 10 0.7170 11 0.9388 10 0.0802 11

A9 0.0933 3 0.0816 8 0.7961 3 0.7903 7 0.0919 5

A10 0.0842 10 0.0747 9 0.7471 10 0.9305 11 0.0822 10

A11 0.0909 6 0.0909 3 0.7840 6 0.8844 5 0.0899 7

Alternative
WSM WPM rAHP TOPSIS COPRAS
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used as a standard for evaluating MCDM methods [1], it was found to be second best according to the 

analysis. 

 

Table 3. Correlation between alternative rankings computed using different MCDM methods.  

 

Note: similarity matrix is coloured as a heat-map that shows the level of correlation between ranking 

results. The most dissimilar rankings are coloured in light pink. MCDM method pairs with absolutely 

equal rankings have a Pearson correlation value equal to “1” and are in light blue. 

Next, as described in Materials and methods and by following approach described in [38], we 

determined the most critical criterion for each MCDM model. As shown in Figure 1A, the criterion C14 

had the highest sensitivity coefficient for the best alternative in all MCDM models, whereas criteria C3, 

C4, C6 and C18 were identified as 2nd or 3rd amongst critical criteria for the best alternative. C14 was 

the most critical criterion for any alternative in the case of rAHP and positioned as 2nd and 3rd in WPM, 

TOPSIS and COPRAS (Figure 1B), whereas C18 and C3 were the most critical criteria for any 

alternative using WPM, TOPSIS and COPRAS (C18) and WSM (C3). As for the best alternative, C3, 

C6 and C18 were amongst the criteria positioned as 2nd and 3rd. In addition criterion C10 was identified 

as 2nd (WPM) and 3rd (rAHP) for any alternative. 

Taken together, criteria C3, C4, C6, C10, C14, and C18 were identified as the most critical 

criteria for both the best and any alternative. These results revealed that the sensitivity of different 

criteria varies significantly across five selected MCDM methods. Moreover, the when different 

alternatives are taken into consideration, different criteria can be most critical, which highly depends 

on the MCDM method applied. Therefore, to reduce computational costs and especially when multiple 

MCDM approaches are used, other measures outside those that are provided by sensitivity analysis 

should be considered. 

In order to quantify the level of crosstalk between criteria and ranking, the sensitivity analysis 

was performed. It was aimed at establishing how the ranking of alternatives (aggregated score Ai) 

change due to alteration of criteria weights (Cj). Table 4 shows the distribution of relative sensitivity 

coefficients. The specific value of the sensitivity coefficient denotes that a 5% (arbitrary small change) 

or 50% (arbitrary large change) increase or decrease of the criterion weight leads to single, double or 

multiple changes in the ranking of alternatives. 

 

WSM WPM rAHP TOPSIS COPRAS 

WSM 1.000 .201 .995 .861 .942

WPM .201 1.000 .209 .410 .318

rAHP .995 .209 1.000 .830 .922

TOPSIS .861 .410 .830 1.000 .966

COPRAS .942 .318 .922 .966 1.000
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A 

 

B 

 

Figure 1. Most critical criteria. The bar chart compares sensitivity coefficients of the most critical 

criteria for best (A) and any alternatives (B) established using different MCDM models. 

 

The robustness of the ranking output, expressed as a percentage of the tolerable change of the 

criterion weight, is summarised in Table 5. Results revealed that the WPM model had the lowest relative 

coefficients with the fewest changes in the ranking of alternatives and highest tolerance to the 5% (or 

50%) alteration in criteria weights comparing to other four MCDM models. The simulated 5% change 

of criteria weights did not have any influence on the ranking of alternatives by using WPM and 

COPRAS. The MCDM output was absolutely robust to the changes of criterion C11 weight. This 

suggested that the exclusion of this criterion from the MCDM matrix and subsequent analysis had no 

effect on the ranking results and therefore can be eliminated or substituted with other criterion if 

required. 
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Table 4. Relative sensitivity coefficients calculated as a number of changes in the alternative ranking 

due to change of criteria weights. 

 

Table 5. Tolerable change of criteria weights established through the sensitivity analysis.  

 

 

The results of the sensitivity analysis including each individual criterion were summarised in 

Figure 2. Notably, changes of the most critical criteria for the best and any alternatives, i.e. C14, C18 

and C3 (Figure 1), comprised a most important effect on the ranking of alternatives as shown in Figure 

2. However, the relative sensitivity coefficients and tolerable change of criteria weights varied 

significantly across five MCDM methods. These results supported the notion that other than sensitivity 

analysis approach should be considered aiming to reduce computational costs. 

Notably, criteria C14, C18 and C3 endured the highest dispersion of relative importance values 

of alternatives expressed as a coefficient of variation (CV). Followed analysis, as presented in Figure 3, 

confirmed a strong correlation between the coefficient of variation (dispersion) and number of changes 

in the ranking of alternatives.  

 

Method

5% 50% 5% 50% 5% 50% 5% 50% 5% 50% 5% 50% 5% 50% 5% 50% 5% 50% 5% 50%

C1 0 2 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 1

C2 0 1 0 1 0 0 0 0 1 1 0 3 0 0 0 0 0 1 0 1

C3 1 3 0 0 0 1 0 3 1 1 1 3 0 5 1 7 0 3 0 4

C4 0 2 0 1 0 0 0 1 0 2 0 0 0 2 0 4 0 1 0 3

C5 0 0 1 2 0 1 0 0 0 1 1 2 0 2 0 0 0 2 0 1

C6 0 0 1 2 0 1 0 0 0 1 1 2 0 2 0 2 0 3 0 2

C7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

C8 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1

C9 0 1 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1

C10 0 0 0 1 0 2 0 1 1 1 0 0 0 0 0 4 0 2 0 1

C11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C13 0 1 0 0 0 1 0 0 1 2 0 2 0 0 0 0 0 0 0 1

C14 0 1 0 1 0 0 0 2 0 3 1 1 0 3 0 3 0 2 0 3

C15 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

C16 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

C17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C18 0 1 1 2 0 3 0 0 1 2 1 1 2 8 0 5 0 4 0 3

Decrease (%)Change of 

criterion weight

COPRAS

Decrease (%) Increase (%) Decrease (%) Increase (%) Decrease (%) Increase (%) Decrease (%)

WSM WPM rAHP TOPSIS

Increase (%) Increase (%)

Method

Ranking status 
no 

change

single 

change

no 

change

single 

change

no 

change

single 

change

no 

change

single 

change

no 

change

single 

change

no 

change

single 

change

no 

change

single 

change

no 

change

single 

change

no 

change

single 

change

no 

change

single 

change
Allowed change 

C1 5 20 100 150 100 100 50 100 5 15 10 50 100 100 50 100 50 100 20 50

C2 5 100 20 50 50 100 50 400 1 90 10 10 100 100 50 50 20 100 20 50

C3 1 15 50 50 20 50 20 20 1 50 1 10 5 10 1 5 10 20 5 15

C4 20 20 20 50 100 100 20 50 5 15 50 50 15 20 15 15 20 50 5 20

C5 90 90 1 20 20 50 100 200 5 50 1 5 20 20 50 50 15 20 20 50

C6 50 90 1 20 20 50 100 200 5 50 1 5 10 10 20 20 10 20 15 20

C7 100 100 50 100 20 100 150 200 90 100 50 50 100 100 50 100 20 100 100 300

C8 50 90 50 150 50 100 50 150 5 10 50 150 100 100 50 50 50 100 20 100

C9 10 90 50 200 50 100 100 200 10 100 5 20 50 100 50 50 50 50 20 100

C10 50 50 20 100 15 20 20 50 1 50 50 100 50 100 10 10 10 15 10 50

C11 100 100 900 900 100 100 900 900 100 100 900 900 100 100 900 900 100 100 900 900

C12 100 100 300 400 100 100 400 400 100 100 200 200 100 100 400 900 100 100 900 900

C13 5 90 50 100 20 100 50 100 1 15 15 20 100 100 50 50 50 50 20 50

C14 20 50 20 50 50 50 20 20 10 20 1 50 5 15 5 20 5 20 5 20

C15 100 100 15 100 100 100 300 400 20 90 10 50 100 100 100 200 50 100 50 200

C16 50 100 200 300 100 100 150 150 15 20 50 150 100 100 300 400 100 100 50 150

C17 100 100 100 100 100 100 900 900 100 100 900 900 100 100 400 400 90 90 300 400

C18 20 50 1 10 10 20 50 150 1 20 1 50 1 1 5 20 5 10 15 20

Increase (%)Decrease (%) Increase (%) Decrease (%) Increase (%) Decrease (%)Decrease (%) Increase (%) Decrease (%) Increase (%)

WSM WPM rAHP TOPSIS COPRAS
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Figure 2. The sensitivity analysis of how the change of criterion weight affects the ranking of 

alternatives. The dark grey shading indicates the tolerable change of criteria weight, which is shown as 

folds of difference on the left and right panels. The light grey shading represents the range that 

contributes to a single change of alternatives. The abbreviations of criteria are shown on the top. The 

results for the five MSDM methods in each criterion panel are displayed in the following order: WSM 

(first from the left), WPM, rAHP, TOPSIS and COPRAS (last from the left). The coefficients of 

variation (dispersion) for each criterion is shown on the bottom. 

 

3.2. Dispersion 

The MCDM methods are multidimensional. They can incorporate a multiple conflicting criteria and 

consider all relevant aspects in a single evaluation process. Importantly, MCDM is capable of 

considering criteria of incommensurable units of measure (e.g. ratios, points, and percentages) and those 

of both benefit and cost. Due to the former, a wide dispersion in values of measurement, the calculated 

relative importance of the alternatives for individual criterion can span from 0 to 100 or higher. This 

can result in a precedent where the dispersion of values of alternatives aij can vary severely for different 

criteria with coefficient of variation (CV) values spanning from 0 to as high as 1 and in some extreme 

circumstances significantly above that value. Therefore, we investigated further the relationship 

between the distribution of relative importance values of alternatives (linear, polynomial and 

exponential), from now on denoted as dispersion, and aggregated values of alternatives or ranking 

results. For this purpose, two approaches were used. 
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Figure 3. The correlation between the dispersion of relative importance values of alternatives (CV) and 

criteria sensitivity, measured as a number of changes in the alternative ranking. R2 is coefficient of 

determination of the linear regression.  
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Figure 4. The correlation between the dispersion of relative importance values of alternatives (CV) and 

the dissimilarity of aggregated scores (Euclidian distance, ED). Random numbers were used as criterion 

C11 relative importance values of alternatives. RL
2, RP

2 and RE
2 are coefficients of determination for 

linear, polynomial and exponential regressions, respectively. 

 

Firstly, the relative importance values of alternatives for non-essential criterion C11 was 

consecutively substituted with randomly generated values, which were within the different dynamic 

ranges, computed as the ratio between the largest and smallest values, from 1 to 106, including 1 to 1.25, 

1 to 1.5, 1 to 2, …, and 1 to 106. Using randomly generated relative importance values of alternatives, 

the simulations of MCDM were performed as described in Material and methods. The resulting 

aggregated values Ai and ranking results were subjected to a correlation analysis. Euclidian distances 
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accounting for dissimilarity were plotted against the CV. All models demonstrated a very high level of 

positive correlation between the dispersion of relative importance values of alternatives for individual 

criterion, measured as CV, and the dissimilarity of aggregated values, calculated as Euclidian distances 

(Figure 4). For WSM and COPRAS, the correlation was absolute, with coefficient of determination R2 

= 1. Similarly, a significant correlation was also observed when ranking results were used instead of 

aggregated values (Figure 5). 

 

Figure 5. The correlation between the dispersion of relative importance values of alternatives (CV) and 

the dissimilarity of ranking (Euclidian distance, ED). Random numbers were used as criterion C11 

relative importance values of alternatives. R2 is coefficient of determination of the linear regression. 
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Figure 6. The correlation between the dispersion of relative importance values of alternatives (CV) and 

the dissimilarity of aggregated values (Euclidian distance, ED). Non-random numbers were used as 

criterion C11 relative importance values of alternatives. The top panel represents the dynamics of 

models that were used to generate non-random values. RL
2, RP

2 and RE
2 are coefficients of determination 

for linear, polynomial and exponential regressions, respectively. 
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Figure 7. The correlation between the dispersion of relative importance values of alternatives (CV) and 

the dissimilarity of ranking (Euclidian distance, ED). Nom-random numbers were used as criterion C11 

relative importance values of alternatives. RL
2, RP

2 and RE
2 are coefficients of determination for linear, 

polynomial and exponential regressions, respectively. 

 

Secondly, the non-random relative importance values of alternatives were generated using a 

variety of well-defined distribution models, including linear, exponential growth and decay, and 

geometric growth and decay, which contained maxima values different in the scale and position 

amongst eleven alternatives (Figure 6, top panel). Again, using a non-random distributions of relative 

importance values of alternatives, the WSM and COPRAS demonstrated absolute correlation between 

the dispersion of relative importance values and the dissimilarity of aggregated values (Figure 6). The 

WPM showed a significantly lower R2 value. The WSM, TOPSIS and COPRAS demonstrated a 
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significant correlation between the dispersion of relative importance values and the dissimilarity of 

ranking (Figure 7). 

Altogether, the results demonstrated that the dispersion of relative importance values of 

alternatives strongly correlates with dissimilarity of aggregated values, which is one of the key 

parameters for ranking uncertainty. The dispersion can be used as an alternative measure for 

identification of most and least sensitive criteria, potential criteria ranking and is applicable for at least 

four MCDM methods including WSM, rAHP, TOPSIS and COPRAS.  

 

4. Conclusions 

The ranking output in the MCDM heavily depends on a nature of criteria that are used in the analysis 

and most notably on a distribution of the weighting amongst criteria. In addition, the factor that the 

criteria weights are usually established on the basis of expert perception should be taken into 

consideration, which can, to some extent, be subjective and may vary accordingly. Therefore, the effect 

of a possible deviation of the criteria relative importance values of alternatives should be evaluated. 

Commonly, for the purpose of MCDM, the information about alternatives is derived in 

qualitative and quantitative forms. Then, qualitative data have to be transformed into measurable 

numerical values [60]. Both types of data can have a very different level of statistical dispersion. We 

used real data, collected for the assessment of the affordability of sustainable housing, to investigate 

how the data dispersion and distribution can influence alternative ranking using the five MCDM models 

including WSM, WPM, rAHP, TOPSIS and COPRAS. The sensitivity analyses of these different 

MCDM methodologies confirmed an earlier view that alternative MCDM methods should be used for 

a thorough and, most significantly, a critical assessment of decision-making. The criteria sensitivity 

differed amongst MCDM methods and amongst criteria themselves. 

Here, we proposed that those criteria, of which the relative importance values of alternatives 

are distributed across a broad range of values, should be treated with particular care. For this purpose, 

the ranking susceptibility to the change of criteria weight can be assessed analytically using the 

sensitivity analysis. Then, the prospective ranking results must be taken into consideration. To verify 

the ranking results, alternative MCDM methods, in particular those that transform relative importance 

values of alternatives using constrained functions, as for example preference functions in 

PROMETHEE [61], can also be considered. 

Finally, in this study, the sensitivity of MCDM methods to the change of weight of the decision 

criterion was assessed and the link between the ranking uncertainty and the dispersion of relative 

importance values of alternatives was established. Importantly, it was demonstrated that the criteria 

sensitivity and resulting uncertainty in the ranking output strongly correlates with the dispersion of 

relative importance values of alternatives for at least four MCDM methods including WSM, rAHP, 

TOPSIS and COPRAS. Therefore, the dispersion of relative importance values of alternatives can be 

used as a measure for identification of critical criteria. 
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