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Abstract 

In the past decades, maritime transportation not only contributes to economic prosperity, but 

also renders many threats to the industry, causing huge casualties and losses. As a result, 

various maritime safety measures have been developed, including Port State Control (PSC) 

inspections. In this paper, we propose a data-driven Bayesian Network (BN) based approach 

to analyse risk factors influencing PSC inspections, and predict the probability of vessel 

detention. To do so, inspection data of bulk carriers in seven major European countries from 

2005-20082 in Paris MoU is collected to identify the relevant risk factors. Meanwhile, the 

network structure is constructed via TAN learning and subsequently validated by sensitivity 

analysis. The results reveal two conclusions: first, the key risk factors influencing PSC 

inspections include number of deficiencies, type of inspection, Recognised Organisation 

(RO) and vessel age. Second, the model exploits a novel way to predict the detention 

probabilities under different situations, which effectively help port authorities to rationalise 

their inspection regulations as well as allocation of the resources. Further effort will be made 

to conduct contrastive analysis between ‘Pre-NIR’ period and ‘Post-NIR’ period to test the 

impact of NIR started in 2008.  

Key words: Port state control, Bayesian network, maritime risk, maritime safety, TAN network, 

maritime transport  

 

 

 

 

 

                                                 
1 Corresponding author: Zaili Yang.  Email: Z.Yang@ljmu.ac.uk 
2 In 2008, New Inspection Regime (NIR) was first introduced in Paris MoU port state control. Two sets of 
data, before and after 2008 are being collected for analysis of the effect of NIR. This paper, as the first 
phase study, analyses the detention probability before the implementation of NIR. 
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1. Introduction 

The past decades witnessed an unprecedented growing rate on maritime transportation 

demand, which on one hand contributes to industrial prosperity, but on the other hand renders 

threats and risks to the maritime industry, including but not limited to ship collisions, 

stranding, fire, and oil spill causing large property losses, environmental pollution and 

casualties. For instance, the grounding of the Exxon Valdez, the capsizing of the Herald of 

Free Enterprise and the Estonia passenger ferry are well-known accidents in maritime 

transportation. These accidents attracted the attention of the world on maritime safety (Li et 

al., 2014; Yang et al., 2013; 2014; John et al., 2014; Pristrom et al., 2016; Zhang et al., 2016) 

and Port State Control (PSC) inspections have been implemented as an administrative 

measure to reduce the occurrence of maritime accidents and ensure maritime safety 

(Viladrich-Grau, 2003; Li and Zheng, 2007). 

PSC inspections, which render port authorities the ability to inspect vessels in their own 

ports, are set up in order to prevent illegal actions of ship owners and maritime accidents. The 

PSC officers select high-risk vessels for inspection according to the risk estimation 

mechanism suggested by the regional PSC organizations (Xu et al. 2007). If a vessel fails to 

pass the inspection, it will face a certain level of detention based on its safety status. Actually, 

PSC inspections are regarded as the last line of defence in coping with substandard vessels 

that may cause maritime accidents. It is however well noted that although risk analysis 

approaches, qualitative or quantitative, have been widely used to enhance maritime safety in 

recent years, they have been insufficiently utilized in the PSC inspection area in the literature. 

This study aims to develop a risk assessment model using Bayesian Networks (BNs) to reveal 

the importance degree of different risk factors influencing PSC inspection results, as well as 

predict the detention rate of individual vessels under different situations. In order to build the 

model, the bulk carrier data of seven major European countries from 2005 to 2008 is 

collected from Paris MoU online inspection database (www.parismou.org/inspection-

search/inspection-search). Meanwhile, the casual factors related to PSC inspections are also 

identified from this database, including vessel flag, vessel age, DWT, classification society, 

inspection type, inspection port, number of deficiencies and inspection duration. The 

dependency among these factors and the casual relationships between them are simulated 

using qualitative diagram in BN while the quantitative configuration of such dependency (i.e. 

conditional probabilities) is obtained using a gradient descent approach based on the collected 

dataset (Jensen, 1999). 

In this study, BN is constructed through a data-driven approach and it attempts, for the first 

time (up the authors best knowledge), to use BN in risk analysis and prediction on PSC. The 
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network induced from a data-driven approach reduces the disturbance of experts’ judgements 

on accuracy of the results.  Additionally, incorporating BN to PSC inspections enables port 

authorities to predict the detention probability of vessels under different circumstances. The 

results of the study will provide important insights 1) for port authorities to ensure that 

optimal inspection actions are taken to improve safety at sea in a cost effective manner and 2) 

for ship owners to identify and address the potential deficiencies in advance. Moreover, it is 

useful for both stakeholders to make decisions in PSC inspections and check whether their 

actions are beneficial.  

The remainder of this paper is organised as follows. Section 2 reviews the current literature 

relating to risk based PSC and use of BN in maritime risk assessment. Section 3 describes the 

methodologies and techniques applied in this study, which is followed by the risk based PSC 

model construction process and result analysis in Section 4. Finally, Section 5 concludes this 

study with reference to its contributions and implications.  

2. Literature review 

2.1 Risk studies on PSC inspection 

Since PSC inspections play an increasingly important role in maritime safety, more and more 

researchers have conducted related studies in this area from both qualitative and quantitative 

perspectives. For example, the introduction and implementation of PSC inspection (Chiu et 

al. 2008), influence of PSC inspection (Cariou et al. 2011), relationship between maritime 

management and PSC inspection (Mitroussi, 2015) and game analysis on optimal inspection 

policies (Li and Yin, 2014). However, use of quantitative risk approaches in PSC is limited to 

risk diagnosis, waiting new solutions on real time risk prediction to be explored.   

Shen (2003) and Yang (2004) both proposed risk assessment PSC systems, which had been 

proved to have better performance than traditional PSC inspection mechanisms. Knowing 

that intense maritime traffic may cause significant navigational challenges in Istanbul Strait, 

Kara (2016) applied weighted points method to assess the risk level of each vessel 

experiencing the PSC inspection under Black Sea MoU. However, the weighting and scoring 

methods adopted in these studies are at large based on subjective expert judgements, which 

may cause arguments on the results.  

To address this problem, Xu et al. (2007) presented a risk assessment system based on 

Support Vector Machine (SVM) to estimate the risk of candidate vessels according to 

historical data before conducting on-board inspections. Evaluations showed that the proposed 

system could improve the accuracy of risk assessment. Gao et al. (2008) combined SVM and 

K-nearest neighbour approaches to facilitate the risk assessment system capable of coping 

with noisy data. Consequently, this method significantly improved the accuracy of results. 

Although showing attractiveness, such methods still reveal problems in practical applications 
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in terms of their capability of providing real time risk prediction (e.g. ship detention 

probability) in dynamic situations. 

Based on 183,819 PSC inspection records, Knapp & Franses (2007) applied binary logistic 

regression to measure the effect of inspections on the probability of casualties, especially for 

the very serious cases. Meanwhile, the model determined the magnitude of improvement 

areas for substandard vessels. Later in the same year, they did a further econometric analysis 

about the influence on the detention probability of different risk factors, and the results 

indicated only vessel types and PSC regimes were influential elements.     

2.2 Bayesian network in maritime risk analysis 

Qualitative analysis was largely used to assess maritime safety. For instance, in a score 

method, the selected evaluation factors are scored according to subjective experience. It 

provides the basis of the target factor method employed by Paris MOU and Tokyo MOU. 

However, over the years researchers realized that it is hard to achieve the best risk assessment 

results by qualitative or quantitative analysis separately. Fuzzy comprehensive evaluation 

(Pillay and Wang 2002; Akhtar and Utne 2014), grey system theory evaluation (Wu et al. 

1997), neutral network evaluation (Li and Zhang 2000) and some other approaches are 

gradually used to complement qualitative analysis in maritime safety studies. Meanwhile, risk 

analysis is moving away from accident investigation to the analysis of risk factors, resulting 

in the creation of advanced methods on risk diagnosis and prediction, such as BN (Eleye-

Datubo et al., 2006, Eleye-Datubo et al., 2008, Ren et al. 2008). 

Taking advance of casual inference, BN can be used to analyse the importance degree of risk 

factors and the relationships between them. Compared to pure Bayesian theory, BN is more 

visualized; while compared to other graphic models, it has a foundation of mathematical 

knowledge. Because of its advantages, BN has been increasingly applied in maritime safety 

in the past decade. When summarizing the topics of the publications in this area, it is not 

surprising to find various aspects are covered. For example, the occurrence of ship-ship 

collisions (Hänninen & Kujala, 2012; Goerlandt & Montewka, 2015; Zhang et al., 2015), 

navigational safety (Banda, O.A.V. et al., 2016; Zhang et al., 2013; Hänninen et al., 2014; 

Wu et al., 2015), maritime accidents analysis and prevention (Hänninen, 2014; Li et al., 2014; 

Antao et al., 2009), offshore safety mangement (Ren et al., 2008; Eleye-Datubo et al., 2008), 

risk-based vessel design (Montewka et al., 2017), oil spill in maritime accidents (Goerlandt & 

Montewka, 2014), oil spill recovery (Lehikoinen et al., 2013) and PSC inspections (Hanninen 

& Kujala, 2014). The variety of topics indicates the popularity of BN in maritime safety area.  

Despite such applications, a common criticism of BN is that it requires too much data in the 

form of prior probabilities, and such data is hard to collect, even inaccessible sometimes 

(Yang et al. 2008). Meanwhile, the size of conditional probability table (CPT) grows quickly 

in size as more parent nodes are added, leading to complexity and difficulty in computation. 
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Due to lack of empirical data, CPTs are often generated based on experts’ judgements in 

many publications. However, for large-scale BN models, it is time-consuming, impractical 

and inconsistence (Mkrtchyan et al. 2015).   

To address such concern, Li et al. (2014) proposed a solution through logit model and binary 

logistic regression to gain a large amount of likelihood of accidents as prior probabilities and 

built a maritime risk BN. However, it is available only when a large dataset is obtained. 

Another approach is called Noisy-OR. It was originally proposed by Pearl in 1988 and 

experienced several extensions. Through the Noisy-OR approach, the elicitation of full CPTs 

is simplified to the assessment of individual parent-child CPDs while the missing 

relationships are derived by combining the estimated CPDs disjunctively (Pearl 1988). Yang 

and Ning (2007) proposed non-impeding noisy-AND tree and improved it later in 2012, 

which enhanced BN’s capability of dealing with multi-state and dependent nodes. Yet, its 

limitations on how to derive the tree topology and the fact that not all causal interactions can 

be expressed by the method affects its popularity (Yang and Ning 2012, Yang et al. 2012). 

Through applying ranked nodes to BNs, Norman et al. (2007) presented a novel but effective 

approach. The approach is based on the doubly truncated Normal distribution with a central 

tendency that is invariably a weighted function of parent nodes. The results of case studies 

proved that the elicitation burden is much reduced by using ranked nodes. It is naturally an 

evolutionary approach of expert judgments. Other approaches, like Monte Carlo Simulation 

(Min et al. 2011), interpolation of anchor inputs (Cain 2001, Wisse et al. 2008), and function 

based methods (Vinnem et al. 2012), also provide different ways to cope with the drawbacks 

of BN in terms of high demand on prior probabilities.  

2.3 Data-driven approaches for BN construction  

Normally, the structure of a BN is constructed using human expert knowledge or common 

sense. However, such an approach is time consuming, and heavy emphasis is placed on 

experts to provide both the local probability parameters and dependency among the 

parameters. An alternative method for BN construction is to induce the network structure 

from data, namely the data-driven approach, which can greatly reduce the dependence on 

human experts and in some cases increase the accuracy of the model. However, a significant 

drawback of data-driven approach is that the number of possible structures for a given 

problem grows super-exponentially with the number of employed variables in the problem 

domain. Therefore, lots of effort has been made from the literatures to reduce such 

complexity. 

Dependency analysis, which is based on conditional independence test, was developed by 

Spirtes and Glymour (1991) and improved by Cheng et al. (1997) and Thomas (2005). 

Although there exist several drawbacks, such as extensive testing of independence relations 



 

6 

 

to derive the final network structure (Singh and Valtorta, 1993), it is still recognised as a 

good attempt to deal with computational complexity problems in network construction. 

Unlike the dependency analysis approach, the search and score approach is more popular and 

presents a better result. It seeks to explore a search space of candidate BN structures for the 

one that best represents the causality and dependency relationships (Cooper et al. 1992). It is 

more like an optimization problem in nature. To achieve the objective, a scoring is 

indispensable. Cooper and Herskovits (1992) derived K2 scoring metric based on Bayes 

theorem, starting with an empty network and iterating through each node to get the best 

structure. An order among the variables needs to be assumed in this algorithm, making it hard 

to determine. In contrast to Cooper and Herskovits, Buntine’s ‘B’ algorithm (1991) does not 

require a variable order. A link will be added at the end of each iteration if it can maximize 

the score and does not lead to a cycle, until the score no longer increases. However, once 

local optima occurs, the algorithm could not give reasonable results. Besides these two 

algorithms, other algorithms such as conditional independence and Bayesian learning 

algorithm (Singh and Valtorta 1993), genetic algorithm (GA) (Larra 1996, Novobilski 2003), 

and ChainGA algorithm (Kabli et al. 2007) present distinctive ideas in optimisation of 

network construction, respectively. 

When applied in risk-based PSC inspection study, according to the reviewed literatures, BN 

shows its superiority (e.g. bi-directional analysis) over risk assessment approaches, 

presenting a novel way to analyse PSC inspections for ship owners and port authorities. In 

other words, whenever the information about a specific ship concerning the defined nodes is 

obtained, its ship owner/operator or the authority of the port that the ship visit can use the BN 

based PSC model to analysis the detention probability of the ship in a forward risk prediction. 

If the ship is detained, the owner/operator can use it again to analyse the most possible causes 

leading to the detention in a backward risk diagnosis. Furthermore, it combines the visualized 

graph with mathematical knowledge, enabling it to analyse the inner relationship between 

different variables influencing PSC inspection results. However, because of the research 

challenges on CPTs and network construction, BN’s advantages in risk-based PSC have not 

yet been appropriately explored, revealing the major research gap to be fulfilled. 

3. Methodology 

Normally, the process of developing a data-based BN model consists of four phases: data 

acquisition, BN structure learning, BN monitoring and analysis, and model validation (Zhang 

et al. 2013). When applying it in the context of risk-based PSC inspections, a new conceptual 

methodology to analyse PSC inspections is developed including the following six steps in 

this study.  

3.1 Data acquisition 
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To determine if a vessel is more likely to be detained, a list of historical PSC inspection 

records is necessary. The data used in this study is derived from Paris MoU online inspection 

database (www.parismou.org/inspection-search/inspection-search, 2005-2008), which 

presents the details of inspections and provides a comprehensive and support dataset for this 

study. 

3.2 Variable identification 

Based on the inspection records from Paris MoU database, several variables are identified, 

including vessel flag, Recognized Organization (RO), dead weight tonnage (DWT), vessel 

age, type of inspection, port of inspection and number of deficiencies. It is noteworthy that 

the factors concerned are those influencing detention, rather than inspections. In this study, 

the risk variables are set as the ‘root variables’, or ‘first level risk variables’ influencing 

detention rates of vessels. However, the size of the relevant CPT table would have been 

enormous if all root variables are defined as the parent nodes of inspection results in terms of 

‘detention’. To solve this issue, two intermediate level risk variables are introduced based on 

the principal of divorcing approach (Jensen, 2001), one is ‘vessel group’, and the other is 

‘inspection group’. Vessel-related root variables (i.e. vessel age, flag, RO, DWT) and 

inspection-related root variables (i.e. type of inspection, port of inspection, and number of 

deficiencies) are connected as the parent node of the two intermediate level variables, 

respectively. Then the two intermediate level risk variables will act as the parents of the node 

‘detention’.  In fact, they are two dummy variables to help reduce CPT calculation work. 

‘Vessel group’ is the child node of vessel-related variables, while ‘Inspection group’ is the 

child node of inspection-related variables. They are at the same level in network and jointly 

act as the parent nodes of ‘Detention’. The hierarchical BN structure can significantly reduce 

the CPT calculation work (Huang et al. 2006). 

3.3 Structure learning through data-driven approach 

After identifying risk variables in the second step, a qualitative BN representing their 

interactive dependencies can be constructed through a data-driven approach, called TAN 

learning (Friedman et al, 1997). 

3.3.1 TAN learning  

The essence of TAN learning is actually an optimization problem. Let 𝐴1… 𝐴𝑛 be the 

attribute variables (e.g. the first level root variables) and C be the class variable (e.g. ‘Vessel 

group’) in PSC inspection. 𝛱𝐶 represents the parent variables of C.  B is defined as a TAN 

model if 𝛱𝐶 =  Ø and there is a function 𝜋 that defines a tree over 𝐴1, … , 𝐴𝑛 such that 𝛱𝐴𝑖
=

{𝐶, 𝐴𝜋(𝑖)} if 𝜋(𝑖) > 0, and 𝛱𝐴𝑖
= {𝐶} if 𝜋(𝑖) = 0. The optimization problem consists on 

finding a tree defining function 𝜋 over 𝐴1… 𝐴𝑛 such that the log likelihood is maximized, 

and the TAN model under this function is the structure of the target BN model. One 

difference between BN model and TAN model lies in class variables. Class variables in BN 

http://www.parismou.org/inspection-search/inspection-search
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model always have at least one parent node. However, since we will do Bayesian inference 

on the results, it is accepted for links to go in either direction to best fit the result reflecting 

the reality. In other words, we can change the directions of links in TAN model appropriately 

to fit the demand of BN.  

The procedure called Construct-TAN can solve this optimization problem. This procedure 

follows the general outline proposed by Chow and Liu (1968), except that instead of using 

the mutual information between two attributes, it uses conditional mutual information 

between attributes given the class variable. This function is defined as 

 𝐼𝑃(𝑨𝒊; 𝑨𝒋|𝑪) =  ∑ 𝑃(𝒂𝒊𝒊, 𝒂𝒋𝒊, 𝒄𝒊)𝑙𝑜𝑔
𝑃(𝒂𝒊𝒊, 𝒂𝒋𝒊|𝒄𝒊)

𝑃(𝒂𝒊𝒊|𝒄𝒊)𝑃(𝒂𝒋𝒊|𝒄𝒊)
𝒂𝒊𝒊,𝒂𝒋𝒊,𝒄𝒊

 ( 1 ) 

where 𝐼𝑃 represents the conditional mutual information, 𝒂𝒊𝒊 is the ith state of attribute 

variable 𝑨𝒊, 𝒂𝒋𝒊 is the ith state of attribute variable 𝑨𝒋, 𝒄𝒊 is the ith state of class variable 𝑪𝒊. 

This function measures the information that 𝑨𝒊, 𝑨𝒋 both have when the value of C is known.  

The Construct-TAN procedure of PSC inspection consists of five main steps: 

a) Compute 𝐼𝑃(𝐴𝑖, 𝐴𝑗| 𝐶) between each pair of attribute variables in PSC inspection, i ≠ 

j. 

Attribute variables in PSC inspection: vessel flag, Recognized Organization (RO), 

dead weight tonnage (DWT), vessel age, type of inspection, port of inspection and 

number of deficiencies. 

Class variables in PSC inspection: vessel group, inspection group 

b) Build a complete undirected graph in which the vertices are the attributes 𝐴1,…, 𝐴𝑛. 

Annotate the weight of an edge connecting 𝐴𝑖 to 𝐴𝑗 by 𝐼𝑃(𝐴𝑖, 𝐴𝑗| 𝐶).  

c) Build a maximum weighted spanning tree. 

Spanning tree: A spanning tree is a connected subgraph containing no cycles. 

Maximum weighted spanning tree: The maximum weight spanning tree is a spanning 

tree that no other spanning tree has a larger sum of weights on its edges. 

Therefore, the maximum weighted spanning tree in our study is the tree that has a 

maximum sum of 𝐼𝑃(𝐴𝑖, 𝐴𝑗| 𝐶). 

d) Transform the resulting undirected tree to a directed one by choosing a root variable 

from the attribute variables and setting the direction of all edges to be outward from it. 

e) Construct a TAN model by adding a vertex labeled by class variable C and adding an 

arc from C to each 𝐴𝑖. 

Compared to other data-driven network construction approaches, like naive BN (Langley et 

al., 1992) and C4.5 (Quinlan, 1993), TAN is proved to be more competitive and accurate 

(Murphy et al. 1995).   



 

9 

 

3.3.2 Construction of BN for risk-based PSC 

To reduce the size of the CPT of the node ‘detention’, the BN construction process is 

conducted as follows: 

a) Divide the risk variables into two groups, ‘vessel group’ and ‘inspection group’ 

      Vessel group 

      The first level variables are vessel age, vessel flag, classification society, and DWT  

      The intermediate level variable is vessel group. 

       

      Inspection group 

      The first level variables are port of inspection, type of inspection, number of 

deficiencies. 

      The intermediate level variable is inspection group. 

b) The structure of each group is established via the TAN learning approach in Section 

3.3.1. ‘Vessel group’ and ‘Inspection group’ are set as the target node of each group 

respectively.  

c) Combine two group structures and ‘detention’ together to obtain the final BN 

structure.  

3.4 CPT distribution of the risk-based PSC BN 

When the structure of the PSC BN is confirmed, the conditional probabilities of the nodes are 

required to model the uncertainties of risk variables. In this paper, the CPTs are formulated 

by using a gradient descent approach.   

In the developed PSC BN, there is an existing evidence e, for example, the inspection 

database from 2005-2008. For a particular variable V, take ‘Vessel age’ as an example, we 

have 𝒙 = 𝑃(𝑉 | 𝑒) = (𝑥1, … , 𝑥𝑛), which reflects the conditional probabilities of different 

states of ‘Vessel age’. Meanwhile, we have a prior request 𝒚 = (𝑦1, … , 𝑦𝑛) for 𝑃(𝑉 | 𝑒). If 

the structure of BN is determined, the conditional probabilities associated with ‘vessel age’ 

are described by a set 𝒕 = (𝑡1, … , 𝑡𝑚), for example, 

𝑃(𝑣𝑒𝑠𝑠𝑒𝑙 𝑔𝑟𝑜𝑢𝑝 =′ ℎ𝑖𝑔ℎ 𝑑𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘′|𝑉 = ′𝑚𝑜𝑟𝑒𝑡ℎ𝑎𝑛20′). Set 𝒕 has an initial 

value 𝒕0, which based on the estimation or related experience. According to Bayes’ rules, the 

conditional probability of ‘vessel age’ can be calculated as a function of set 𝒕, denoted as 𝒙 =

𝑃(𝑉 | 𝑒) = 𝐹(𝒕). The objective of gradient descent approach is to adjust the conditional 

probability set 𝒕 so that 𝑃(𝑉 | 𝑒) is sufficiently close to y. Once this objective is satisfied, the 

value of set t at this time is the corresponding conditional probabilities in the BN model of 

PSC.  

A distance measure approach is introduced, called Euclidean distance (𝑑𝑖𝑠𝑡𝐸):  
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  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) = ∑(𝑥𝑖 − 𝑦𝑖)
2

𝑖

 ( 2 ) 

It is a metric, having the following characteristics: 

1.  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) = 0 if and only if x = y 

2.  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚)  ≤   𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒛) +  𝑑𝑖𝑠𝑡𝐸(𝒛, 𝒚) 

3.  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) =  𝑑𝑖𝑠𝑡𝐸(𝒚, 𝒙) 

The task is to set the conditional probability set 𝒕 such that the distance is as small as 

possible. If it is possible to determine  𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) as a function of t, then the problem can be 

solved directly. However, usually the problem cannot be solved directly even when the 

function is known, and a gradient descent method can be used: 

a) Calculate grad 𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚) with respect to set t. 

b) Give 𝒕0 a displacement ∆𝒕 in the direction opposite to the direction of the grad 

 𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚)(𝒕0), which is denoted as:  

∆𝒕 =  −𝛼 𝐠𝐫𝐚𝐝 𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚)(𝒕0) 

Where the step size 𝛼 > 0. 

c) Iterate this procedure until the gradient is close to 0. 

From the definition above, that the following is obtained: 

 𝐠𝐫𝐚𝐝 𝑑𝑖𝑠𝑡𝐸(𝒙, 𝒚)(𝒕) = ∑ 2(𝑥𝑖 − 𝑦𝑖)𝐠𝐫𝐚𝐝𝒙𝒊(𝒕)

𝑖

 ( 3 ) 

Once the adjustment process stops, the latest values of set t are defined as the conditional 

probabilities in BN model of PSC.  

3.5 Generation of posterior probabilities and risk prediction 

Once the BN structure and CPTs are properly constructed, the unobservable situations 

associated with PSC inspection can be predicted through the generated posterior probabilities 

when observable evidence is provided. Bayes’ rule is applied to obtain the posterior 

probabilities in this study illustrated as follows: 

Imagine there are only two variables ‘vessel age’ and ‘vessel group’, and ‘vessel age’ is the 

parent node of ‘vessel group’. Set ‘vessel age’ as M, ‘vessel group’ as N, ‘𝑀 = 𝑀𝑖’ means the 

vessel is at its ith ‘vessel age’ state, and the same goes to ‘𝑁 = 𝑁𝑗’. 

According to Bayes’ rule, the joint probability  

𝑃(𝑀 = 𝑀𝑖 , 𝑁 = 𝑁𝑗) =  𝑃(𝑀 = 𝑀𝑖) × 𝑃(𝑁 = 𝑁𝑗|𝑀 = 𝑀𝑖) 

Where: 𝑃(𝑀 = 𝑀𝑖 , 𝑁 = 𝑁𝑗) represents the joint probability that events ‘𝑀 = 𝑀𝑖’ and ‘𝑁 =

𝑁𝑗’ both occur, 𝑃(𝑀 = 𝑀𝑖) denotes the prior probability of the ith ‘vessel age’ state, 
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𝑃(𝑁 = 𝑁𝑗|𝑀 = 𝑀𝑖) denotes the conditional probability of the occurrence of ith ‘vessel age’ 

state given that jth ‘vessel group’ state occurs. 

If the state of ‘vessel group’ is locked and the state of ‘vessel age’ is changed to different 

states, the sum of joint probabilities is known as the probability of ith ‘vessel group’ state 

described as follows: 

 𝑃(𝑁 = 𝑁𝑗) = ∑ 𝑃(𝑀 = 𝑀𝑖) × 𝑃(𝑁 = 𝑁𝑗|𝑀 = 𝑀𝑖)

𝑖

 ( 4 ) 

Further, when the variable N has more than one parent node, the probability of ith ‘vessel 

group’ state can also be calculated through equation (4) as it is a special case of binary 

variables. 

Imagine 𝑀0, 𝑀1, 𝑀2, … , 𝑀𝑛 are parent nodes of N, and the ith state of kth parent nodes are 

represented as ‘𝑀𝑘 = 𝑀𝑖(𝑘)
𝑘 ′ . Through applying equation (4), the probability of jth ‘vessel 

group’ state described as follows: 

𝑃(𝑁 = 𝑁𝑗) = ∑ 𝑃(𝑀1 = 𝑀𝑖(1)
1 , 𝑀2 = 𝑀𝑖(2)

2 , … , 𝑀𝑘 = 𝑀𝑖(𝑘)
𝑘 )

𝑖(𝑘)

× 𝑃(𝑁 = 𝑁𝑗|𝑀1 = 𝑀𝑖(1)
1 , 𝑀2 = 𝑀𝑖(2)

2 , … , 𝑀𝑘 = 𝑀𝑖(𝑘)
𝑘 ) 

Where i (k), k= 1, 2… n, are independent numbers. 

3.6 Sensitivity analysis, scenario simulation and model validation 

Sensitivity analysis is known as a way to determine how the uncertainty in the output of a 

model can be influenced by the different sources of uncertainty in its input. In this particular 

study, a two-step sensitivity analysis has been developed to not only determine the influence 

degree of risk variables, but also validate the proposed model.   

3.6.1 Mutual information calculation 

Entropy is described as a value that, when increased, can be interpreted as increase in 

uncertainty of a dataset which would then require more information in order to describe that 

data. Consider a discrete random variable 𝜶 with possible values {𝛼1, 𝛼2, … , 𝛼𝑖} and 

probability mass function 𝑃(𝜶), then the entropy can be explicitly written as: 

𝐻(𝜶) = − ∑ 𝑃(𝛼𝑖)𝑙𝑜𝑔𝑏𝑃(𝛼𝑖)

𝑖

 

Where b is the base of the logarithm used. Normally, the value of b is 2. 

Based on entropy theory, mutual information (entropy reduction) is introduced in this paper 

to measure the mutual dependence of different variables. Since our objective is to find the 

relationship between risk variables and ‘detention’, ‘detention’ is chosen as a fixed variable 
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in mutual information calculation. Therefore, the mutual information between ‘detention’ and 

other risk variables can be defined as: 

 𝐼(𝐷, 𝛽) = − ∑ 𝑃(𝑑, 𝛽𝑖)𝑙𝑜𝑔𝑏

𝑃(𝑑, 𝛽𝑖)

𝑃(𝑑)𝑃(𝛽𝑖)
𝑑,𝑖

 ( 5 ) 

Where D represents ‘detention’, 𝛽 represents risk variables, 𝛽𝑖 represents the ith state of 𝛽,   

𝐼(𝐷, 𝛽) represents the mutual information between ‘detention’ and risk variables.  

The larger the value of mutual information is, the stronger relationship exists between 

variable ‘𝛽’ and ‘detention’.  

Moreover, the results of mutual information can help filter out insignificant variables in our 

model to avoid unnecessary work. 

3.6.2 Scenario simulation - the effects of different variables 

Once the variables are selected from mutual information calculation, scenario simulation, 

another form of sensitivity analysis, are needed to determine the effects of these variables. 

The classical way to set a scenario is to lock all the other nodes and change the target node 

gradually, for example, 10% as a step for up and down, and the changes rate can be used to 

analyse the effect of this variable. However, this approach has an obvious drawback that it is 

only suitable for variables having two states. For those who have more than two states, the 

classical way is not workable. Take the variable ‘vessel age’ in this study as an example, it 

has five states ‘0 to 5 years’, ‘5 to10 years’, ’10 to15 years’, ’15 to 20 years’ and ‘over 20 

years’ (the reason for the classification is in section 4). If we increase the state ‘over 20 years’ 

from 0% to 10%, the overall value of other states will decrease from 100% to 90% 

accordingly. Actually, the combinations of in this case are innumerable, and it is impossible 

to decide which one should be applied. Therefore, the traditional scenario simulation 

(sensitivity analysis) is inappropriate to our study. 

To overcome the difficulties, a new method (Alyami et al. 2016) is applied in this study. 

First, increase the probability of the state that can generate the highest detention rate to 100% 

to obtain the High Risk Inference (HRI). Secondly, increase the probability of the state that 

can generate the lowest detention rate to 100% to obtain the Low Risk Inference (LRI). 

Finally, the average value of HRI and LRI will show the True Risk Influence (TRI) of each 

risk variable in the entire PSC inspection system, and it is described as follows: 

 𝑇𝑅𝐼 =
HRI + LRI

2
   ( 6 ) 

The sensitivity analysis results, or in other words, the influence degree on ‘detention’ of 

different risk variables, can therefore be ranked according to the value of TRI.  
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Through this approach, the downside of classical scenario simulation (sensitivity analysis) 

can be overcome.   

3.6.3 Model validation 

If the methodology and method in our study is reasonable and logical, then the sensitivity 

analysis must at least satisfy the following two axioms (Yang et al., 2009; Jones et al., 2010; 

Li, K.X. et al., 2014): 

Axiom 1. A slight increase/decrease in the prior probabilities of each parent node should 

certainly result in the effect of a relative increase/decrease of the posterior probabilities of the 

child node. 

Axiom 2. The total influence magnitudes of the combination of the probability variations 

from x attributes (evidence) on the values should be always greater than the one from the set 

of x-y (y ϵ x) attributes (sub-evidence). 

4. BN model for PSC inspection before the implementation of NIR in 2008 

4.1 Data  

A database containing more than 80000 inspection records before the implementation of New 

Inspection Regime (NIR) from 2005 to 2008 is established and named as ‘Pre-NIR’ database. 

Data after this period is also under collection for a comparative study to investigate the 

impact of NIR in the next phase of this research project. 

A preliminary analysis of the inspection records indicates that bulk carriers play a dominating 

role, as inspection records of bulk carriers occupies the biggest part, thus are selected as the 

research target in this paper. 

4.2 Risk variables 

The risk variables are classified into three levels as mentioned in Section 3.2 

Firstly, the root variables influencing detention are explained with a particular reference to 

their state definitions as follows: 

(1) Vessel flag 

Each year a new White, Grey and Black list is published in the Paris MoU Annual Report. 

The “White, Grey and Black (WGB) list” presents the full spectrum, from quality flags to 

flags with a poor performance that are considered to have a high or very high risk. It is based 

on the total number of inspections and detentions over a 3-year rolling period for flags with at 

least 30 inspections.  

This variable has four states: ‘White’, ‘Grey’, ‘Black’ and ‘Black (high risk)’, where the 

performance of each state decreases successively.  
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(2) Recognized Organization (RO) 

The performance of recognized organizations is also summarized into a performance list by 

Paris MoU. According to Recognised Organisation Performance table published by Paris 

MoU every year, only those ROs that had 60 or more inspections in a 3-year period are taken 

into account. 

Meanwhile, the RO table provides an official performance level classification: ‘high’, 

‘medium’, ‘low’ and ‘very low’. 

(3) Dead Weight Tonnage (DWT) 

DWT is a measure of a vessel's weight carrying capacity, and does not include the weight of 

the ship itself. The ‘Review of maritime transport’ of United Nations Conference on Trade 

and Development (UNCTAD) classified bulk carriers into five categories according to DWT: 

‘Small’, ‘Handysize’, ‘Handymax’, ‘Panamax’ and ‘Capesize’. 

 

Figure 1 – Bulk carrier categories 

(Source: UNCTAD Review of Maritime Transport, 2016) 

(4) Vessel age 

Vessel age is another important factor influencing inspection results. Old vessels are more 

likely to suffer detention. In UNCTAD reports, vessel age is categorized in Figure 2. 

 

Figure 2 – Categorized Vessel age 

(Source: UNCTAD Review of Maritime Transport 2016) 

Refer to this table, vessel age has 5 states of ‘0 to 5 years’, ‘5 to10 years’, ’10 to15 years’, ’15 

to 20 years’ and ‘over 20 years’, where ‘0 to 5 years’ means 0 ≤  𝑥 < 5, and so as others. 

(5) Type of inspection 
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A PSC officer visiting a ship will conduct a general inspection of several areas to verify that 

the overall condition of the ship complies with the requirements by PSC. 

If the ship is of full compliance, the PSC Officer will issue a ‘clean’ inspection report (Form 

A) to the master of the ship. In case that any deficiency is identified, the inspection report 

will include a deficiency-found report (Form B) indicating any follow-up actions to be taken 

to rectify the deficiencies indicated. Furthermore, control on compliance with on-board 

operational requirements may be included in the control procedures, particularly if an officer 

has a reason to believe that the crew demonstrates insufficient proficiency in that area.  

This variable therefore has the three states of ‘Initial inspection’, ‘More detailed inspection’ 

and ‘Expanded inspection’. 

(6) Port of Inspection 

Paris MoU consists of 27 participating maritime administrations and covers the waters of the 

European Coastal States and the North Atlantic basin from North America to Europe. 

Seven major countries investigated in the research are Belgium, France, Germany, Italy, 

Netherlands, Spain and UK, which occupy 6913 cases in 11000 inspection records.  

(7) Number of deficiencies (Nb of deficiencies) 

During an inspection, a vessel may face detention if it is detected with deficiencies. There are 

different types of deficiencies, such as alarms, cargo operations, fire safety, navigation safety, 

ISPS. These deficiency types can be divided into two groups: major deficiencies and minor 

deficiencies. Major deficiencies can lead to direct detention regardless of its combination 

with other deficiencies.  

From the inspection records, the detention rate increases dramatically between the following 

states: ‘0’, ‘1 to 3’, ‘4 to 9’ and ‘more than 10’ (the number of inspected deficiencies are 

integer, e.g. ‘0’ means 0 deficiency in inspection, ‘1 to 3’ means the number of deficiencies 

are 1, 2 or 3). Hence, these four states are applied to node ‘number of deficiencies’.  

Secondly, the intermediate level risk variables are explained with a particular reference to 

their state definitions as: 

(1) Vessel group 

The variable ‘vessel group’, which presents the overall risk level of a vessel, is added to the 

network having connections with ‘detention’ and inspection-related variables. It has four 

parent variables, ‘vessel flag’, ‘DWT’, ‘vessel age’ and ‘RO’. Meanwhile, it is the parent 

node of ‘inspection type’ because port authorities will choose inspection types according to 

the type (i.e. high or low risk) of the inspected vessel.  
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Four parent nodes of ‘vessel group’ have a number of different combinations, and cases 

correlated with them can all be found in the PSC inspection database. If we select several 

cases with different combination of vessel-related nodes and same combination of inspection-

related nodes, when inputting them into BN, the result reveals that most cases resulting in 

detention has a detention rate more than 10%, and other cases are lower than 10%. 

(The selected combination of inspection-related nodes are under general conditions) 

Therefore, in this study, this variable has two states of ‘High detention risk vessel’ and ‘Low 

detention risk vessel’.  

(2) Inspection group  

The ‘inspection group’ is set as the risk level of the inspection considering all inspection-

related risk factors. Similar to ‘vessel group’, it also connects the inspection-related variables 

with ‘detention’. It has three parent variables, ‘type of inspection’, ‘port of inspection’ and 

‘number of deficiencies’.  

This variable has two states of ‘High detention risk’ and ‘Low detention risk’, and the 

distinguish criteria is also 10% detention rate as ‘Vessel group’. 

Finally, a third level variable ‘Detention’ is determined by the two intermediate level 

variables, ‘Vessel group’ and ‘Inspection group’. It describes the results of an inspection 

given the application of the vessel group and the inspection group. This variable has two 

states, i.e. ‘Yes’ and ‘No’. 

4.3 A new risk analysis model for PSC 

The model for analysing PSC inspections is developed by considering the risk variables at 

different levels and their relationships mentioned in section 4.2. Because of the complexity 

and difficulty to construct BN model by TAN learning manually, Netica software package is 

used to assist the calculation. It has a ‘learning network’ function that can develop the TAN 

network based on Equation (1). The structure of BN is presented in Figure 3.  
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Figure 3 – Proposed BN for PSC inspection 

4.4 CPT and prior probabilities for each node 

Once the model is developed, the next step is to establish the CPT table of each node. When 

executing the BN model, the conditional probabilities of each node will be calculated through 

Equation (2) and (3) mentioned in gradient descent section.  

Specifically, it is a three-step calculation process: 

(1) With regard to the root nodes, the proportion of each defined state is used as the prior 

probabilities.  

For instance, over the 6913 inspection records, 926 vessels are 0-5 years old, 962 vessels are 

5-10 years old, 1050 vessels are 10-15 years old, 520 vessels are 15-20 years old, 3455 

vessels are over 20 years old. Therefore, the calculation provides the prior probabilities of 

vessel age as 

0 - 5 years: 926/6913= 0.1340         5 - 10 years: 962/6913= 0.1392 

                 10 - 15 years: 1050/6913= 0.1519     15 - 20 years: 520/6913= 0.0752 

               Over 20 years: 3455/6913= 0.4998 

In a similar way, the prior probabilities of other root variables are obtained and presented in 

Table 1. 
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Table 1 – The prior probability of each root node 

DWT 

Capesize Handymax Handysize Panamax Small 
  

0.0073 0.1284 0.5949 0.0094 0.2600 
  

Flag 

Black (High) Black Grey White 
   

0.0103 0.2218 0.0671 0.7008 
   

Vessel age 

0to5Years 5to10Years 10to15Years 15to20Years Over20Years 
  

0.1340 0.1392 0.1519 0.0752 0.4998 
  

Port of inspection 

Belgium France Germany Italy Netherlands Spain UK 

0.1297 0.1360 0.0866 0.1564 0.1243 0.2356 0.1315 

 

(2) Once prior probabilities of root variables are determined, they are served as the prior 

request for the subsequent gradient descent calculation for other first level and intermediate-

level risk variables.  

(3) Similar to step 2, the conditional probabilities obtained in step 2 are set as the prior 

request for further calculation of third-level risk variable ‘detention’.   

Tables 2 – 6 list the relevant conditional probabilities in this model. 

Table 2 – CPT of RO 

 RO 

Vessel flag 

High Low Medium Very Low 

Black (High) 0.5819 0.2467 0.0565 0.1149 

Black 0.9740 0.0044 0.0154 0.0063 

Grey 0.8113 0.0316 0.0604 0.0967 

White 0.9890 0.0036 0.0037 0.0036 

 

Table 3 – CPT of ‘type of inspection’ 

 Type of inspection 

Vessel group 

Expanded Inspection Initial Inspection More detailed Inspection 

Low Detention Risk 0.2769 0.3305 0.3926 

High Detention Risk 0.5701 0.1021 0.3278 
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Table 4 – CPT of ‘number of deficiencies’ 

 Nb of deficiencies 

Type of inspection 

4 to 10 More than 10 0 to 1 1 to 4 

Expanded Inspection 0.3136 0.2079 0.2273 0.2512 

Initial Inspection 0.1052 0.0093 0.6035 0.2820 

More detailed Inspection 0.2807 0.0973 0.3322 0.2898 

 

Table 5 – CPT of ‘Vessel group’ 

Vessel age Flag RO DWT Low Detention Risk High Detention Risk 

Over20Years Black (High) High Capesize 0.5062 0.4938 

Over20Years Black (High) High Handymax 0.4364 0.5636 

Over20Years Black (High) High Handysize 0.0012 0.9988 

Over20Years Black (High) High Panamax 0.5109 0.4891 

Over20Years Black (High) High Small 0.0014 0.9986 

… … … … … … 

… … … … … … 

… … … … … … 

5to10years White  Very Low Capesize 0.5508 0.4492 

5to10years White Very Low Handymax 0.4492 0.5508 

5to10years White Very Low Handysize 0.4691 0.5309 

5to10years White Very Low Panamax 0.4704 0.5296 

5to10years White Very Low Small 0.5111 0.4889 

Table 6 – CPT of ‘Inspection group’ 

   Inspection group  

Port of inspection Type of inspection Nb of deficiencies Low High 

Belgium Expanded 4 to 10 0.9987 0.0013 

Belgium Expanded More than 10 0.0015 0.9985 

Belgium Expanded 0 to 1 0.9986 0.0014 

Belgium Expanded 1 to 4 0.9987 0.0013 

Belgium Initial 4 to 10 0.9989 0.0011 

… … … … … 

… … … … … 

… … … … … 

UK Initial 1 to 4 0.9987 0.0013 

UK More Detailed 4 to 10 0.9986 0.0014 

UK More Detailed More than 10 0.0013 0.9987 

UK More Detailed 0 to 1 0.9990 0.0010 

UK More Detailed 1 to 4 0.9985 0.0015 
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Table 7 – CPT of ‘Detention’ 

  Detention  

Vessel group Inspection group No Yes 

Low Detention Risk Low 0.9909 0.0091 

Low Detention Risk High 0.6471 0.3529 

High Detention Risk Low 0.9674 0.0326 

High Detention Risk High 0.5976 0.4024 

 

4.5 Model result 

Based on the CPT of each node, the marginal probability of each child node can be obtained 

using Equation (4). Figure 4 shows the result of the BN model using Netica. It indicates that 

the detention rate of a bulk carrier under inspection is estimated to be 4.52% given the input 

data covering the period of 2005-2008. If we calculate the detention rate from database 

directly, it is 4.57%, which shows a harmony with the result delivered by the model. The 

model is verified in terms of prediction of detention rate of bulk carriers. 

 

Figure 4 – Results of BN model 

4.6 Sensitivity analysis and model validation 

A sensitivity analysis is conducted to analyse influencing degree of risk variables and 

validate the model to prove its capability of realizing real-time risk prediction in dynamic 

environments. 

 



 

21 

 

4.6.1 Mutual information calculation 

According to Equation (5) shown in 3.6, mutual information between ‘detention’ and other 

risk variables is obtained, which is shown in Table 8. 

Table 8 – Sensitivity of ‘Detention’ 

Sensitivity analysis 

Node Mutual  Info Percent Variance of Beliefs 

Detention 0.26555 100 0.0431370 

Inspection group 0.09654 36.4 0.0108729 

Number of deficiencies 0.09386 35.3 0.0105047 

Type of inspection 0.01464 5.51 0.0008056 

Vessel group 0.00140 0.527 0.0001046 

RO 0.00025 0.0933 0.0000171 

Vessel flag 0.00025 0.0929 0.0000161 

DWT 0.00009 0.0331 0.0000053 

Vessel age 0.00003 0.0131 0.0000021 

Port of inspection 0 0.0007 0.0000001 

 

From Table 8, it is concluded that:  

Firstly, inspection-related risk factors have stronger relationship with ‘detention’ than vessel-

related variables in general, except ‘port of inspection’. Port of inspection almost has no 

influence on final inspection results.    

Secondly, the most significant node is therefore the variable ‘Inspection group’. Mainly 

responsible for this impact is its parent nodes ‘Number of deficiencies’ and ‘Type of 

inspection’ can change the detention probability more significantly than other first level 

nodes. 

Meanwhile, from Table 8, ‘Inspection group’, ‘Number of deficiencies’, ‘Type of inspection’, 

‘Vessel group’, ‘RO’ and ‘Vessel flag’ are selected to do further analysis. 

4.6.2 Scenario simulation - the effects of different variables 

Table 9 and Table 10 shows the TRI value of selected nodes under different scenarios 

through Equation (6). 

Specifically, the first row of each variable represents the normal scenario, and the following 

rows represent the different scenarios when each state of the variable reaches 100% 

occurrence probability respectively. The comparison between TRI of different variables 

indicates the results of sensitivity analysis – the influence degree of different risk variables. 

Here ‘Number of deficiencies’ is selected to illustrate the process of scenario simulation. 
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Table 9 – TRI of risk variables (1) 

Inspection group 

High Low Detention rate HRI LRI TRI 

- - 4.52%  

31.18% 

 

3.49% 

 

17.34% 100% 0 35.7% 

0 100% 1.03% 

Number of deficiencies 

0 to 1 1 to 4 4 to 10 More than 

10 

Detention rate HRI LRI TRI 

- - - - 4.52%  

 

30.48% 

 

 

3.47% 

 

 

16.98% 

100% 0 0 0 1.05% 

0 100% 0 0 1.07% 

0 0 100% 0 1.10% 

0 0 0 100% 35% 

Type of inspection 

Initial Expanded More detailed Detention rate HRI LRI TRI 

- - - 4.52%  

3.86% 

 

3.41% 

 

7.27% 100% 0 0 1.11% 

0 100% 0 8.38% 

0 0 100% 4.41% 

Vessel group 

High Low Detention rate HRI LRI TRI 

- - 4.52%  

4.35% 

 

0.24% 

 

4.59% 100% 0 8.87% 

0 100% 4.28% 

Table 10 – TRI of risk variables (2) 

RO 

High Medium Low Very low Detention rate HRI LRI TRI 

- - - - 4.52%  

 

2.79% 

 

 

0.07% 

 

 

2.86% 

100% 0 0 0 4.45% 

0 100% 0 0 5.95% 

0 0 100% 0 7.11% 

0 0 0 100% 7.31% 

Vessel age 

0 to 5 5 to 10 10to15 15to20 over20 Detention rate HRI LRI TRI 

- - - - - 4.52%  

 

0.14% 

 

 

0.16% 

 

 

0.3% 

100% 0 0 0 0 4.36% 

0 100% 0 0 0 4.37% 

0 0 100% 0 0 4.36% 

0 0 0 100% 0 4.43% 

0 0 0 0 100% 4.66% 
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Accordingly, based on the results obtained in Table 4.8, the most important variables can be 

listed as follows: 

Inspection group > Number of deficiencies > Type of inspection > Vessel group > RO > 

Vessel age 

As ‘inspection group’ and ‘vessel group’ are class variables which are not existed in PSC 

inspection records, ‘Number of deficiencies’ is in fact the most important risk factor, 

followed by ‘type of inspection’, ‘RO’ and ‘Vessel age’. This result indicates sub-standard 

performance of inspection-related items (Number of deficiencies, type of inspection, etc.) is 

more likely to lead to detention than unqualified intrinsic attributes of vessels (vessel age, 

dwt, RO, etc.).  

Meanwhile, the BN model in this study can be used to calculate detention rate of bulk carriers 

under different situations, serving as real-time prediction tool. Such a tool not only helps port 

authorities to test their policies, but also urges ship owners to improve their vessels 

accordingly.  

In addition, the floating range of different variables on detention rate can also be obtained 

from this table.  

4.6.3 Model validation 

To validate the model, another sensitivity analysis is carried out by investigating the 

detention rate of the minor change given different risk variables. By selecting ‘Inspection 

group’ as the first node, the state generating highest detention rate is increased by 10%, while 

the state generating lowest detention rate is decrease by 10%. This change is denoted as 

‘~10%’ in this study. Once the updated detention rate is obtained, same change is applied to 

next node and the combined detention rate is calculated. The sensitivity analysis continues in 

the same manner until all nodes are included. The following Table 11 presents the results of 

this sensitivity analysis.  

Table 11 – Detention rate of minor change in variables 

Inspection 

group 

Number of 

deficiencies 

Type of 

inspection 

Vessel group RO Vessel age Detention 

rate 

- - - - - - 4.52% 

~10% - - - - - 7.98% 

~10% ~10% - - - - 7.99% 

~10% ~10% ~10% - - - 8.55% 

~10% ~10% ~10% ~10% - - 9.14% 

~10% ~10% ~10% ~10% ~10% - 9.59% 

~10% ~10% ~10% ~10% ~10% ~10% 9.71% 
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The first row shows the original detention rate and the rest of the table presents the updated 

detention rates by changing risk variables continuously. Through comparing the updated 

results with the initial detention rates, it is claimed that the model is proved to be in line with 

Axiom 1. 

As to Axiom 2, it can be examined by comparing the initial detention rate with reassigned 

detention rates, in which can be regarded as the evidence and sub-evidence. From Table 11, 

the detention rate is gradually increasing along with the continuous variation of risk variables, 

which proves the model is sound in line with Axiom 2.   

In general, the model developed is proved reasonable and reliable. It can be used to predict 

the detention rate of PSC inspection of Paris MoU when any new evidence is entered. 

Meanwhile, the results of the model, as well as the variation law of detention rate, can be 

used by port authorities to improve their policies and ship owners to increase their passing 

rate.  

4.7 Research implications - model applications in real cases 

In this section, some real cases are simulated to illustrate how the proposed model can help 

both port authorities and ship owners in PSC inspections. The information in the cases is set 

based on the real inspection records in Paris MoU online database.  

4.7.1 Case I 

A bulk carrier was inspected at Port of Immingham in 2008, and the information of this 

inspection is shown as follows: 

1. Vessel age: 2 years 

2. Vessel flag: Singapore (White list) 

3. DWT: 45223 dwt (Handysize) 

4. RO: NKK (High) 

5. Inspection: initial inspection 

6. Port: Immingham (UK) 

7. Number of deficiencies identified: 0  

 

To determine whether this vessel meets the requirement of PSC regulations, port authority of 

Immingham should input the information of this inspection into the proposed BN model. The 

result indicated the detention rate was 0.95%, demonstrating this vessel was standard and 

should not be detained.  
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Figure 5 – model prediction of inspection result 

In fact, the inspection record of case I in Paris MoU online database showed this vessel passed 

the inspection, which coincides with the model result, illustrating the effectiveness of the model 

in PSC inspections.  

4.7.2 Case II  

The relevant information gathered from a bulk carrier that was to be inspected at Port of Hull 

in England in Year 2008 was: 

1. Vessel age: 23 years 

2. Vessel flag: Panama (Black list) 

3. DWT: 13685 dwt (Handymax) 

4. RO: NKK (High) 

5. Inspection: Expanded inspection 

6. Port: Hull (UK) 

7. Number of deficiencies identified: 18  

 

Perspective from the port authority of Hull 

Port authorities aims at regulate the behaviour of ship owners to avoid potential accidents and 

ensure ship safety through their PSC inspections. The vessels at high risk need to be 

identified and detained. In this case, the port authority of Hull could input the relevant 

information related to this inspection into the proposed BN model, the result indicated the 

detention rate was 35.3% under this condition in Figure 5. Compared to the normal detention 

rate 4.57%, the detention rate of this vessel was almost 8 times higher. Meanwhile, it was 36 
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times higher than the detention rate of standard vessel in Case I (0.95%). Therefore, this 

vessel was sub-standard and port authority of Hull needed to detain this vessel to avoid 

potential accidents at sea.  

In fact, if we check the result of this inspection from Paris MoU database, this vessel is 

indeed detained, proving the effectiveness and accuracy of the model when making decisions 

for port authorities.   

 
Figure 6 – Perspective of Hull Port authority  

 

Perspective of the ship owner 

Once this ship owner was informed that his/her vessel was detained, he/she needed to address 

all the identified deficiencies. If the vessel were detained in succession, it would have a very 

high probability to be banned by Paris MoU. Different from port authorities, ship owners 

cared more on profits and thus evaluated whether the investment on repair/maintenance could 

help them avoid detention next time. In this regard, the BN model is helpful for rationalize 

their decisions. 

When the ship owner fixed the deficiencies according to the detention report and remains the 

vessel at a high quality status by reducing the number of deficiencies to less than 10. When it 

was inspected in Port of Hull in this case, even under the worst situation where the expanded 

inspection was conducted, the likelihood for its detention was only 0.97% shown in Figure 6. 
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Therefore, it would strongly motivate the owner to rectify the deficiencies given it was 

proved to be beneficial.  

 

 

Figure 7 – Perspective of the ship owner 

5. Conclusion 

PSC inspection is set as an effective way to prevent maritime accidents and illegal actions of 

ship owners. Previous studies on PSC inspection are mostly based on qualitative analysis for 

the development of PSC policies.  

In this paper, BN, along with the data-driven structure learning approach, are applied to 

analyse PSC inspections in the context of Paris MoU. In order to facilitate the study, the data 

relating to bulker carriers of seven major countries in Europe at the ‘Pre-NIR’ time is 

collected by a web crawler program from online inspection database of Paris MoU. 

Meanwhile, the risk factors are identified using the inspection records. Through TAN 

learning, the data-driven approach, a risk-based BN for PSC is constructed to serve as a real 

time risk analysis and prediction tool. CPT is calculated through a gradient descent approach, 

and sensitivity analysis is implemented at last to validate the model.  

The results of analysis reveal the important risk factors in PSC inspection are Inspection 

group, Number of deficiencies, Type of inspection, Vessel group, RO, Vessel age in order. 

As inspection group and vessel group are intermediate level variables that are not existed in 

PSC inspection records, ‘Number of deficiencies’ is in fact the most important risk factor, 
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followed by ‘type of inspection’, ‘RO’ and ‘Vessel age’. Meanwhile, the real-time risk 

prediction function of BN model in this study can be used to calculate detention rate of bulk 

carriers under different situations. It can effectively help port authorities to improve their 

inspection regulations and policies.  

In general, the findings from the BN presents the overall picture of PSC detention of Paris 

MoU before 2008, which forms the first part of our PSC inspection study. New data in the 

duration of 2009-2017 is being collected to conduct a comparative study to demonstrate the 

effectiveness of NIR since 2008. Additionally, further effort should also consider ‘detention 

time’, which is the punishment intensity for vessels that fail to pass the inspection. 
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