
International Journal of Multiphase Flow 101 (2018) 113–124 

Contents lists available at ScienceDirect 

International Journal of Multiphase Flow 

journal homepage: www.elsevier.com/locate/ijmulflow 

Application of the Exact Regularized Point Particle method (ERPP) to 

particle laden turbulent shear flows in the two-way coupling regime 

F. Battista 

∗, P. Gualtieri , J.-P. Mollicone , C.M. Casciola 

Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Universitá di Roma, Via Eudossiana 18, Roma, 00184, Italy 

a r t i c l e i n f o 

Article history: 

Received 13 September 2017 

Revised 5 January 2018 

Accepted 5 January 2018 

Available online 11 January 2018 

Keywords: 

ERPP 

Two-way coupling 

Turbulence 

Accretion disk 

a b s t r a c t 

The Exact Regularized Point Particle method (ERPP), which is a new inter-phase momentum coupling ap- 

proach, is extensively used for the first time to explore the response of homogeneous shear turbulence in 

presence of different particle populations. Particle suspensions with different Stokes number and/or mass 

loading are considered. Particles with Kolmogorov Stokes number of order one suppress turbulent kinetic 

energy when the mass loading is increased. In contrast, heavier particles leave this observable almost un- 

changed with respect to the reference uncoupled case. Turbulence modulation is found to be anisotropic, 

leaving the streamwise velocity fluctuations less affected by unitary Stokes number particles whilst it is 

increased by heavier particles. The analysis of the energy spectra shows that the turbulence modulation 

occurs throughout the entire range of resolved scales leading to non-trivial augmentation/depletion of 

the energy content among the different velocity components at different length-scales. In this regard, 

the ERPP approach is able to provide convergent statistics up to the smallest dissipative scales of the 

flow, giving the opportunity to trust the ensuing results. Indeed, a substantial modification of the turbu- 

lent fluctuations at the smallest-scales, i.e. at the level of the velocity gradients, is observed due to the 

particle backreaction. Small scale anisotropies are enhanced and fluctuations show a greater level of in- 

termittency as measured by the probability distribution function of the longitudinal velocity increments 

and by the corresponding flatness. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Turbulent multiphase flows consist in a carrier fluid transport-

ng a disperse phase typically represented by solid particles, small

iquid droplets or gas bubbles. In many circumstances, ranging

rom natural phenomena, see e.g. ( Woods, 2010; Fu et al., 2014;

urham et al., 2013 ), to technological applications, see e.g. ( Post

nd Abraham, 2002; Hoef et al., 2008 ), the carrier flow is turbu-

ent and advects the disperse phase which in turns can modify the

arrier flow itself. 

Particle-laden turbulent flows have been well understood in the

o-called one-way coupling regime where the mass of the trans-

orted phase is much smaller than the mass of the carrier phase

o that the carrier flow is not altered by the particles. In these con-

itions, when the particle relaxation timescale τ p is of the order of

he Kolmogorov timescale τη , solid particles form small scale ag-

regates known as clusters, see e.g. ( Reade and Collins, 20 0 0; Mon-

haux et al., 2010; Bec et al., 2007; Yoshimoto and Goto, 2007; Saw
∗ Corresponding author. 
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t al., 2008; Toschi and Bodenschatz, 2009; Meneguz and Reeks,

011; Calzavarini et al., 2008; Salazar et al., 2008 ) among many.

hen the particles are transported by anisotropic flows, the clus-

ers show a directionality induced by the mean velocity gradient

s documented by Shotorban and Balachandar (2006) ; Gualtieri

t al. (2009) and Nicolai et al. (2013) in the context of homo-

eneous shear turbulence, see also ( Nicolai et al., 2014 ) where

 comparison between experimental and numerical data can be

ound. The same issue was addressed by Pitton et al. (2012) in

he case of a channel flow and Poelma et al. (2007) in the case of

rid-generated turbulence. Preferential spatial aggregation is also

bserved in inhomogeneous flows. For instance, in wall bounded

ows, the particles tend to segregate in the near-wall region. This

henomenon, known as turbophoresis, ( Caporaloni et al., 1975 )

nd Young and Leeming (1997) , has been widely studied in pla-

ar channels, ( Reeks, 1983; Marchioli et al., 2007 ), pipes, ( Vreman,

007; Picano et al., 2009; Soldati and Marchioli, 2009 ), spatially

eveloping flows such as boundary layers, ( Marchioli and Soldati,

002; Sardina et al., 2012; Li et al., 2016 ), turbulent jets, ( Longmire

nd Eaton, 1992; Picano et al., 2010; Li et al., 2011; Lau and Nathan,

016 ) reactive flows, ( Battista et al., 2011 ) and mixing-layers in
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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presence of evaporation both in the context of DNS ( Miller and

Bellan, 1999; Okongo and Bellan, 2004 ) and LES ( Leboissetier et al.,

2005 ) simulations. These issues are certainly relevant for modeling

purposes in the context of Reynolds Averaged Navier Stokes (RANS)

approaches ( Peirano et al., 2006; Meyer, 2012 ), and for Large Eddy

Simulations (LES) ( Marchioli et al., 2008; Innocenti et al., 2016 ), see

also the recent review by Marchioli (2017) . 

The one-way coupling assumption oversimplifies reality when

the mass loading of the suspension is no more negligible. In many

applications, the inter-phase momentum exchange must be taken

into account in a regime where the inter-particle collisions and

the hydrodynamic interactions can be still neglected. These cir-

cumstances occur when the volume fraction of the suspension

�V is small (dilute suspension) but the solid-to-fluid density ra-

tio ρp / ρ f is large, resulting in a mass loading � = 

(
ρp /ρ f 

)
�V of

order one. At the same time, the disperse phase can still be mod-

eled as an ensemble of small spheres (diameter d p smaller than

the Kolmogorov dissipative scale η). In the so-called two-way cou-

pling regime, the disperse phase back-reacts on the carrier fluid.

The turbulence modulation, in turn, produces a modified advection

of the suspension, see e.g. ( Elghobashi, 1994; Elgobashi, 2006 ) for

a discussion of the different transport regimes and the review pa-

pers by Crowe et al. (1996) ; Balachandar and Eaton (2010) where

a large literature survey can be found. 

The numerical modeling of the inter-phase momentum cou-

pling is a major concern in numerical simulations when the trans-

ported phase is disperse and formed by huge number of tiny parti-

cles. In fact, the sparse and relatively small ( d p �η) particles must

be followed by a classic Lagrangian, point-wise approach. In con-

trast, the fluid must be treated by a standard Eulerian description.

This unavoidable asymmetry is the cause of two difficulties. The

first one consists of the mismatch between particle positions and

nodes of the Eulerian grid, that calls for numerical interpolation

from particles to Eulerian grid and vice versa. This issue, though

relevant, see ( Balachandar and Maxey, 1989 ), is not the focus of

the present paper and will not be pursued further. The second

and, in our opinion, most important difficulty is that the parti-

cles represent localized sources of momentum for the fluid. The

carrier phase is forced by such concentrated, singular forces that

need to be suitably regularized to be effective for the numerical

solution of the carrier flow. The Particle In Cell (PIC) method in-

troduced by Crowe et al. (1977) exploits spatial averaging across

the computational cell occupied by the particle to smooth the

back-reaction field out, see e.g. among many ( Ferrante and El-

ghobashi, 2003; Gualtieri et al., 2013 ) or ( Zhao et al., 2010 ) for ap-

plications to homogeneous isotropic turbulence, turbulent homo-

geneous shear flow or turbulent channel flow, respectively. There

are drawbacks, however, since this averaging procedure lacks a

clear physical interpretation and is grid dependent, see the review

by Eaton (2009) and the discussion reported in Boivin et al. (1998) ;

Garg et al. (2007) ; Gualtieri et al. (2013) . The issue becomes partic-

ularly crucial for highly uneven distributions of particles, as occur-

ring in turbulent sprays ( Marmottant and Villermaux, 2004; Jenny

et al., 2012 ). Recently, it was highlighted by several authors that

the calculation of the hydrodynamic force on the particles is an-

other crucial issue in Euler-Lagrangian simulations of particle laden

flows in the two-way coupling regime. Indeed, the fluid velocity at

the particle position that enters in the expression of the hydrody-

namic force, must be understood as the undisturbed flow, i.e. the

flow that one would have if the particle in question had no effect

on the flow. These circumstances are hardly achieved in two-way

coupled simulations, where the particle locally modifies the flow

calling for a procedure aimed at removing only the spurious self-

disturbance and retaining the effects of all the other particles. To

this purpose, ( Horwitz and Mani, 2016; 2017 ) developed and vali-

dated an accurate numerical interpolation procedure to remove the
article self-disturbance in the context of PIC simulations. The au-

hors were able to correctly estimate the force on the particle by

dding a proper correction of the fluid velocity evaluated at the

article position. Akiki et al. (2017) addressed the effects of the lo-

al volume fraction. When the particles are unevenly distributed,

he effect of the disturbance flow due to surrounding neighbors

ust be taken into account in the expression of the hydrodynamic

orce. The authors consider a proper background flow which ac-

ounts for the disturbance flow due to the surrounding neigh-

ors. The approach is particularly efficient since it exploits pre-

omputed pairwise particle hydrodynamic interactions. Alternative

ethods exploits volume-filtered Eulerian–Lagrangian approaches,

ee ( Capecelatro and Desjardins, 2013 ), where the inter-phase mo-

entum coupling is achieved by filtering the equations of motion

n scales much larger than the scale of the particles and provid-

ng appropriate models for the unclosed terms. Ireland and Des-

ardins (2017) highlighted once more the need to remove the self-

isturbance flow in the expression of the hydrodynamic force. The

uthors present a new strategy to evaluate the undisturbed flow

t the particle position by introducing a proper filtering procedure.

he results are validated in the case of a particle settling under

he effect of gravity. It is worth stressing that this test is partic-

larly challenging in two-way coupled simulations since the self-

isturbance must be properly removed if one wishes to capture the

orrect terminal velocity of the particle. 

The present paper deals with the Direct Numerical Simula-

ion (DNS) of particle laden turbulent flows in the two-way cou-

ling regime in the geometrical configuration of the homogeneous

hear flow (HSF). The HSF configuration is ideal to address fun-

amental issues of turbulent modulation and serves as prototy-

al flow with respect to more complex wall-bounded flows where

he spatial non-homogeneity might hinder the statistical analysis

nd overcomes some drawbacks of homogeneous isotropic turbu-

ence. Particle clusters are elongated spanning from the integral

o the dissipative scale. It follows that the back-reaction is active

cross the entire spectrum of scales. In homogenous isotropic tur-

ulence, an external forcing is usually applied to the largest scales

o keep the flow statistically steady. In such case the forcing di-

ectly modifies the large scale features of the clusters, leading to

nphysical effects, since external forcing and flow should be statis-

ically independent, whereas particle forcing is strongly correlated

ith the flow. On the other hand, the HSF self-sustains fluctua-

ions, implying that clusters consistently affect the flow itself. The

SF is therefore among the simplest (if not the simplest) of flows

here particle-fluid interactions can be addressed with no arte-

act. The fluid/particle coupling is modeled using the Exact Regu-

arized Point Particle (ERPP) method, presented in Gualtieri et al.

2015) , which overcomes the drawbacks of the classical PIC ap-

roach whilst preserving computational efficiency. The ERPP ap-

roach was proved to give convergent statistics up to the small-

st dissipative scales of the flow, see e.g. ( Gualtieri et al., 2017 ),

iving the opportunity to trust the ensuing results. The study in

ualtieri et al. (2017) , however, addressed only one issue, i.e. the

nergy spectrum modification, due to a specific particle popula-

ion and was not conceived to give a full characterization of the

urbulence modification when the control parameters, namely the

tokes number and the mass loading, are concurrently changed.

he present paper fills this gap and provides a complete char-

cterization of the turbulent modification when different particle

opulations are considered. A wide region of the control parame-

er space is explored by addressing particles with three different

tokes numbers ( St η = 0 . 3 , 1 , 5 ) and three different mass loadings

 φ = 0 . 2 , 0 . 4 , 0 . 8 ). As revealed by single point statistics, i.e. the tur-

ulent kinetic energy and the variances of the single velocity com-

onents, the turbulence modulation results to be anisotropic. The

treamwise velocity fluctuations are less affected by unitary Stokes
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umber particles whilst they are increased by heavier particles. In

ontrast, cross-flow velocity components show a depletion with in-

reasing mass loading, irrespective of the Stokes number. The anal-

sis of the energy spectra which can be successfully performed in

omogeneous conditions, show that the turbulence modulation oc-

urs throughout the entire range of resolved scales leading to non-

rivial augmentation/depletion of the energy contents among the

ifferent velocity components at different length-scales. A substan-

ial modification of the turbulent fluctuations at the smallest-scales

at the level of the velocity gradients) is observed due to the par-

icle backreaction. Small-scale anisotropies are enhanced, as mea-

ured by the statistics of the pseudo dissipation tensor. This result

alls for a more accurate study of the small-scale statistics of the

urbulent fluctuations in the two-way coupling regime. The proba-

ility distribution function of the longitudinal velocity increments

easured at small separation (comparable with the Kolmogorov

cale) show a substantial broadening, under specific conditions,

ith respect to the one-way coupling case. Thus, intermittency is

ncreased by the particle backreaction as measured by the corre-

ponding flatness. 

The paper is organized as follows: Section 2 provides a brief

urvey of the Exact Regularized Point Particle (ERPP) method.

ection 3 addresses the results of two-way coupled simulations

f the homogeneous particle-laden turbulent shear flow by pre-

enting both single point Eulerian statistics and energy spectra.

ection 4 summarizes the results of our study and its potentials

or the DNS of particle-laden turbulent flows. 

. Momentum coupling model 

This section summarizes the physical model used to achieve the

nter-phase momentum coupling between the carrier fluid and the

isperse phase. The reader can refer to Gualtieri et al. (2015) for a

etailed discussion of the methodology. 

.1. Carrier phase 

The fluid-particle interaction occurs via the non-slip boundary

ondition enforced at each particle boundary. The carrier fluid fills

he domain D \ � where D is the flow domain and �(t) = ∪ p �p (t)

enotes the region occupied by the collection of N p rigid particles,

ith �p ( t ) the time dependent domain occupied by the p th parti-

le. The motion of the carrier fluid is described by the incompress-

ble Navier–Stokes equations equipped with the no-slip condition

t the particle boundaries 

∇ · u = 0 

∂u 

∂t 
+ u · ∇u = − 1 

ρ f 

∇p + ν∇ 

2 u 

} 

x ∈ D\ �(t) 

u | ∂�p (t) = v p (x ) | ∂�p (t) p = 1 , . . . , N p 

u | ∂D = u wall 

u (x , 0) = u 0 (x ) x ∈ D\ �(0) . 

(1) 

n Eq. (1) , u 0 ( x ) is the velocity field at time t = 0 , ρ f denotes the

uid density, ν is the kinematic viscosity, and v p ( x ) the velocity of

he particle boundary. In principle, the system can be numerically

ntegrated at the price of resolving all the particle boundaries on

he computational grid. However, when the carrier flow is laden

y a huge number of small particles, a direct solution strategy is

naffordable. The idea is to relocate the boundary condition at the

article surface on a properly defined correction flow field which,

n the limit of small particles, is amenable of an analytical solution.

o this purpose the carrier fluid velocity u is decomposed into two

arts, u (x , t) = w + v where the (background) field w ( x , t ) is as-

umed to satisfy the equations 
∇ · w = 0 

∂w 

∂t 
+ F = − 1 

ρ f 

∇ π + ν∇ 

2 w 

w | ∂D = u wall − v ∂D 

w (x , 0) = ū 0 (x ) , (2) 

here x ∈ D and 

 = 

{ 

u · ∇u for x ∈ D\ �(t) 

v p · ∇v p for x ∈ �(t) 
(3) 

s a field reproducing the complete convective term of the Navier–

tokes equation in the carrier fluid domain D\ � which is pro-

onged inside � using the rigid-body particle velocity. In Eq. (2) ,

he convective term retains its complete nonlinear nature in the

uid domain and is treated as a prescribed forcing term. The no-

lip boundary condition at the particle surface has been removed

ven though the particles still affect the field trough the bound-

ry condition enforced on ∂D. The non-slip boundary condition at

he particle surface is recovered when considering the particle per-

urbation field v ( x , t ) which exactly satisfies the linear unsteady

tokes problem (the complete non-linear term has been retained

n the equation for w ) 

∇ · v = 0 

∂v 

∂t 
= − 1 

ρ f 

∇q + ν∇ 

2 v 

} 

x ∈ D\ �(t) 

v | ∂�p (t) = v p (x ) | ∂�p (t) − w | ∂�p (t) p = 1 , . . . N p 

v (x , 0) = 0 x ∈ D\ �(0) . (4) 

The solution of Eq. (4) can be expressed in terms of the bound-

ry integral representation of the unsteady Stokes equations, see

.g. classical textbooks, ( Happel and Brenner, 2012 ). In the limit of

mall particle diameter d p , the far field disturbance flow can be

stimated in terms of a multipole expansion of the complete solu-

ion, namely 

 i (x , t) = −
∑ 

p 

∫ t 

0 

D 

p 
j 
(τ ) G i j (x , x p , t, τ ) dτ , (5)

here G i j (x , ξ, t, τ ) is the so called unsteady Stokeslet which is in-

erpreted as the fluid velocity ( i th direction) at position x and time

 due to the singular forcing δ(x − ξ) δ(t − τ ) ( j th direction) applied

t point ξ and at time τ . Eq. (5) shows that the far field distur-

ance depends only on the hydrodynamic force D p ( τ ), with Carte-

ian components D 

p 
j 
, which acts on the generic particle. Since the

nsteady Stokeslet G ij solves the singularly forced unsteady Stokes

roblem, the partial differential equation whose solution is given

y (5) follows as 

∂v 

∂t 
− ν∇ 

2 v + 

1 

ρ f 

∇q = − 1 

ρ f 

∑ 

p 

D p (t) δ[ x − x p (t) ] ;

v (x , 0) = 0 , (6) 

n Eq. (6) , the fluid-particle coupling occurs via the (singular) forc-

ng term in the unsteady Stokes problem. Coming back to Eq. (2) :

s the particle diameter vanishes, the term F uniformly fills the

ntire domain D and reduces almost everywhere to the standard

onvective term of the Navier–Stokes equation u ·∇u . 

The crucial step for a practical and efficient numerical solution

f the particle-laden flow consists in regularising the solution of

q. (6) . This can be achieved by thinking in terms of the associated

orticity field ζ = ∇ × v which obeys a (vector) diffusion equation

hose solution can be expressed as a convolution with the fun-

amental solution of the diffusion equation g(x − ξ, t − τ ) that is

 Gaussian with time dependent variance σ (t − τ ) = 

√ 

2 ν(t − τ ) .
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By rearranging the forcing on the right hand side of Eq. (6) as a

time-convolution, the solution for the vorticity field follows as 

ζ(x , t) = 

1 

ρ f 

∫ t + 

0 

D p (τ ) × ∇g [ x − x p (τ ) , t − τ ] dτ . (7)

The disturbance vorticity field ζ is still singular, with singularity

arising from the contribution to the integral near the upper in-

tegration limit, τ � t . However, away from the upper integration

limit, the integrand is regular since it involves a Gaussian or its

gradient. This observation can be exploited to define a regular-

ization procedure based on a temporal cut-off εR such that the

field is additively split into a regular and a singular component,

ζ(x , t) = ζR (x , t; εR ) + ζS (x , t; εR ) , where the regular component is

given by 

ζR (x , t) = 

1 

ρ f 

∫ t−εR 

0 

D p (τ ) × ∇g [ x − x p (τ ) , t − τ ] dτ . (8)

As implied by the fundamental solution for the diffusion equation,

the regular part of the vorticity field is everywhere smooth and

characterized by the smallest spatial scale σR = σ (εR ) = 

√ 

2 νεR .

The corresponding vorticity field ζR at time t obeys a forced dif-

fusion equation where the forcing is applied at the slightly earlier

time t − εR , 

∂ ζR 

∂t 
− ν∇ 

2 ζR = − 1 

ρ f 

∇ × D p (t − εR ) g [ x − x p (t − εR ) , εR ] 

ζR (x , 0) = 0 . (9)

The complete regularized field, on the other hand, obeys the forced

unsteady Stokes equation 

∂v R 
∂t 

− ν∇ 

2 v R + 

1 

ρ f 

∇q R 

= − 1 

ρ f 

D p (t − εR ) g [ x − x p (t − εR ) , εR ] (10)

for the solenoidal field v R that can be split in terms of a pseudo-

velocity, 

∂v ζ
R 

∂t 
− ν∇ 

2 v ζ
R 

= − 1 

ρ f 

D p (t − εR ) g [ x − x p (t − εR ) , εR ] (11)

governed by the unsteady diffusion operator plus a correction re-

quired to enforce solenoidality, v R = v ζR 
+ ∇φR . Note that both

the regularized correction and the regularized pseudo-velocity are

forced by the anticipated Stokes drag (i.e. evaluated at t − εR ) times

the regular spatial distribution g [ x − x p (t − εR ) , εR ] which makes

the pseudo-velocity an extremely localized field, since it involves

the diffusion of the localized source for a short time interval εR . 

In contrast to v R , the singular contribution v S cannot be repre-

sented on a discrete grid. However, it can be shown that its contri-

bution is of the order of the particle Reynolds number and can be

thus neglected, see ( Gualtieri et al., 2015 ) for details. In any case,

this highly localized field will eventually diffuse to larger scales

at later times. The singular contribution that is neglected during a

single time step is successively reintroduced in the field as soon as

it reaches the smallest physically relevant scales of the system. 

The regularized fluid velocity of the carrier flow in presence

of the particles can be obtained by aggregating the two contribu-

tions of the velocity decomposition u = w + v R . Once the contri-

bution arising from the singular perturbation field v S is neglected,

the equations for the fluid field u read 

∇ · u = 0 

∂u 

∂t 
+ u · ∇u = − 1 

ρ f 

∇p + ν∇ 

2 u 

− 1 

ρ f 

N p ∑ 

p 

D p (t − εR ) g [ x − x p (t − εR ) , εR ] . (12)
here we have added the contributions arising from all the N p par-

icles transported by the fluid. The above set of equations simply

tate that along its motion the particles experience a concentrated

ydrodynamic force which, in turns, acts on the fluid via its regu-

arized form. In the proposed model, the regularization is naturally

rovided by the viscous diffusion and thus does not require any

d-hoc numerical artefact. The effect of the hydrodynamic force

s the generation of the regularized vorticity field, Eq. (8) , that is

haracterized by the smallest length-scale σR = 

√ 

2 νεR where εR 

s the regularization diffusion timescale. The net effect of the dis-

erse phase on the regularized carrier flow field is then accounted

or by the extra forcing term which involves the time-delayed hy-

rodynamic force D p (t − εR ) and the Gaussian g [ x − x p (t − εR ) , εR ]

ith variance σ R . In a turbulent flow laden with sub-Kolmogorov

ized particles, the interest is on the net effects that the swarm of

articles have on the resolved turbulent scales. It follows that the

egularization length-scale can be immediately chosen as σR = η. 

Even though the formal derivation of the momentum coupling

odel might result cumbersome under the mathematical point of

iew, the equations that must be solved are straightforward. Any

tandard Navier–Stokes solver can be easily equipped with an extra

erm which is known in closed form. Moreover, each particle pro-

uces an active forcing on the fluid localized in a sphere of radius

rder σ R centred at the particle position. In presence of many par-

icles, only the few grid points in the sphere of influence of each

article need to be updated. In a nutshell, the forcing decays more

han exponentially in space allowing to achieve highly efficient nu-

erical algorithms which allow to tackle the effect of millions of

mall particles. 

.2. Disperse phase 

The disperse phase consists of small spherical particles of di-

meter d p that can be considered as material points of mass m p .

heir evolution follows the standard Newton’s law 

dx p 

dt 
= v p (t) , m p 

dv p 

dt 
= D p (t) + 

(
m p − m f 

)
g , (13)

here m f is the mass of the displaced fluid, D p ( t ) is the hydro-

ynamic force, and g the acceleration due to gravity. For inertial

articles, ρp �ρ f , the hydrodynamic force reduces to the Stokes

rag, see e.g. ( Maxey and Riley, 1983; Gatignol, 1983; Olivieri et al.,

014 ), 

 p (t) = 6 πμa p [ ̃  u (x p , t) − v p (t) ] , (14)

here a p = d p / 2 is the particle radius and μ the dynamic viscosity.

he expression of the force holds in the limit of vanishing parti-

le Reynolds number defined as Re p = || u | p − v p || d p / ν . The prob-

bility density function (PDF) of the particle Reynolds number is

hown in Fig. 1 for a few of the cases reported in Table 1 . The PDF

hows a definite peak that is well below the critical value of Re p =
 . The tails rapidly drop as Re p → 1, confirming that irrespective of

he particle diameter (Stokes number), all the particles of a spe-

ific population can be considered to be in the Stokes regime. Fol-

owing the original derivation provided in Maxey and Riley (1983) ;

atignol (1983) , the velocity ˜ u (x p , t) differs from u ( x p , t ) and must

e interpreted as the fluid velocity at the particle position in ab-

ence of the particle self-interaction. That is, ˜ u p should account for

he background turbulent flow and for the disturbance generated

y all the other particles except the p th one. In the two-way cou-

ling regime, where the particle back-reaction modifies the carrier

ow, the correct and efficient calculation of ˜ u p is crucial and calls

or an effective procedure to remove the particle self-interaction

ontribution at the particle position from the field u . The ERPP

pproach allows to purge the spurious self-induced contribution

ince the disturbance flow generated by each particle can be eas-

ly evaluated in closed form. More specifically, the self-disturbance
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Table 1 

Simulations matrix. 

The Navier–Stokes equations are integrated in a 4 π × 2 π × 2 π periodic box with a resolution of 

N x × N y × N z collocation points in physical space. For all cases, the shear parameter is S ∗ = 7 . The Tay- 

lor Reynolds number is Re λ = u rms λ/ν, N p denotes the number of particles and � is the mass loading 

(see text for definitions). The Stokes number is defined as St η = τp /τη where τ η is the Kolmogorov 

time. The ratio between the disperse and carrier phase densities is ρp / ρ f . The dataset is organized 

into four sections. The first three entries, A 1 , B 1 , C 1 , provide realistic cases with few particles per cell 

to be compared with cases A 2 , B 2 and C 2 where the average number of particles per cell is intention- 

ally made unitary at the expense of having an unrealistic density ratio. The last six entries, D, E, F, 

E 1 , E 2 and E 3 , provide data at relatively higher Reynolds number and at different Stokes numbers. In 

all cases, the regularization length-scale σ R is chosen to match the Kolmogorov scale η and the grid 

spacing is such that Dx = η. Entries B 3 and B 4 serve for numerical purposes to assess the indepen- 

dency of the results under grid refinement in case B 3 where Dx/η = 0 . 5 ; σR /η = 1 and for changes 

of the regularization length-scale in case B 4 where Dx/η = 0 . 5 ; σR /η = 0 . 5 . The regularization time 

scale εR can be found for all cases through the relation εR /τη = 0 . 5(σR /η) 2 . 

Case N Re λ N p � ρp / ρ f St η d p / η σ R / η Dx / η

A 1 288 x 288 x 144 55 297.760 0.2 1800 1 0.1 1 1 

B 1 288 x 288 x 144 55 595.520 0.4 1800 1 0.1 1 1 

C 1 288 x 288 x 144 55 1.191.040 0.8 1800 1 0.1 1 1 

A 2 288 x 288 x 144 55 1.769.472 0.2 63500 1 0.017 1 1 

B 2 288 x 288 x 144 55 1.769.472 0.4 13600 1 0.036 1 1 

C 2 288 x 288 x 144 55 1.769.472 0.8 3690 1 0.07 1 1 

B 3 576 x 576 x 288 55 595.520 0.4 1800 1 0.1 1 0.5 

B 4 576 x 576 x 288 55 595.520 0.4 1800 1 0.1 0.5 0.5 

D 384 x 384 x 192 80 1.10 0.0 0 0 0.2 1800 1 0.1 1 1 

E 384 x 384 x 192 80 2.20 0.0 0 0 0.4 1800 1 0.1 1 1 

F 384 x 384 x 192 80 4.40 0.0 0 0 0.8 1800 1 0.1 1 1 

E 1 384 x 384 x 192 80 440.0 0 0 0.4 90 0 0 5 0.1 1 1 

E 2 384 x 384 x 192 80 196.500 0.4 1800 5 0.23 1 1 

E 3 384 x 384 x 192 80 3.111.270 0.4 100 0.3 0.23 1 1 

Fig. 1. Probability density function of the particle Reynolds number, see text for 

definition, for fixed mass loading φ = 0 . 4 and three different particle populations: 

St η = 0 . 3 ( �); St η = 1 ( 	 ); St η = 5 ( � ). 
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eld produced by the p th particle in a time step t n → t n +1 can be

erived by integrating the complete equation for the disturbance,

amely Eq. (10) with the initial condition v (x , t n ) = 0 . For the illus-

rative case of the Euler time integration, the solution v (x , t n +1 ) is

chieved by splitting the operator in (10) into three steps: the forc-

ng step, the diffusion step and the projection step which enforces

he divergence-free constraint. Note that the same procedure holds

or each sub-step in a generic Runge–Kutta method. The detailed

alculations, see e.g. ( Gualtieri et al., 2015 ), lead to the closed form

xpression of the self-disturbance velocity field 

v R,p (x , t n +1 ) 

= 

1 (
2 πσ 2 

)3 / 2 

{[
e −η2 − f (η) 

2 η3 

]
D 

n 
p −

(
D 

n 
p · ˆ r 

)[
e −η2 − 3 f (η) 

2 η3 

]
ˆ r 

}
, 

(15) 
here we have defined D 

n 
p = D p (t n − εR ) , r = x − x p (t n − εR ) , the

at denotes ˆ r = r /r, η = r/ 
√ 

2 σ is the dimensionless distance

ith σ = 

√ 

2 ν(εR + �t) and f (η) = 

√ 

π

2 
erf (η) − ηe −η2 

. The value

 R,p [(x p (t n +1 ) , t n +1 )] is then used to compute ˜ u p [ x p (t n +1 ) , t n +1 )] =
 p [ x p (t n +1 ) , t n +1 )] − v R,p [(x p (t n +1 ) , t n +1 )] . 

. Results and discussion 

The following sections discuss the turbulence modification due

o different particle populations in the homogenous shear flow

HSF). Section 3.1 summarizes the dataset. In Section 3.2 , the al-

eration of single-point statistics such as the turbulent kinetic en-

rgy is presented. The third Section 3.3 concerns the modification

f energy and dissipation spectra. The last Section 3.4 addresses

he anisotropic turbulent modification and the alteration of turbu-

ence intermittency. 

.1. Homogeneous shear flow & dataset 

The homogeneous shear flow is a turbulent flow in a periodic

ox with an imposed mean flow U = Sx 2 e 1 in the streamwise di-

ection e 1 . The direction e 2 is along the mean (constant) shear S

nd e 3 denotes the spanwise coordinate. The coordinates along e 1 ,

 2 and e 3 will be denoted as (x 1 , x 2 , x 3 ) = (x, y, z) . The mean shear

 extracts energy from the mean flow and forces turbulent fluc-

uations via the Reynolds shear stress as seen in a planar chan-

el, pipe or turbulent jet. This mechanism results in an anisotropic

orcing of the largest scales. On dimensional ground, the turbu-

ence is characterized by two dimensionless parameters, namely

he Corrsin parameter S ∗c and the shear strength S ∗. The Corrsin

arameter, defined as S ∗c = S(ν/ε) 1 / 2 = ( η/L S ) 
2 / 3 

, η being the Kol-

ogorov scale, L S = 

√ 

ε/S 3 the shear scale and ε the energy dissi-

ation rate, can be recast in terms of the Taylor-Reynolds number

 /S ∗c ∝ Re λ = u rms λ/ν, where u rms = 

√ 〈 u i u i 〉 / 3 is root mean square

alue of the velocity fluctuations, with u i as the i th Cartesian com-

onent of the velocity fluctuation and the angular brackets denot-

ng ensemble averaging, and λ is the Taylor scale. The Corrsin pa-
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Fig. 2. Snapshot of the instantaneous particle configuration (scatter plot) and of 

the Eulerian intensity of the force-feedback field operated by the particles on the 

fluid (contour plot). The slice in the x − y plane has a thickness of the order of 

few Kolmogorov scales. The mean flow U(y ) = Sy in the x − y plane is from left 

to right. Panel a): scatter plot of the instantaneous particle configuration. Panel b): 

Eulerian force-feedback field intensity on the fluid. Panel c): instantaneous particle 

configuration superimposed on the corresponding feedback field. 
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rameter determines the extension of the range of scales below the

shear scale L S and above the Kolmogorov length η where turbu-

lent fluctuations are driven by (non-linear) inertial energy trans-

fer mechanisms. When this range is sufficiently extended, i.e. the

Taylor-Reyolds number is large enough, small scale isotropy recov-

ery is likely to occur in the fluid velocity field. The shear strength,

defined as S ∗ = S〈 u i u i 〉 /ε = ( L 0 /L S ) 
2 / 3 where L 0 is the integral scale,

fixes the range of scales where fluctuations are driven by the

anisotropic turbulent kinetic energy production mechanisms asso-

ciated with the mean velocity gradient. 

With regards to the disperse phase, the Stokes number St η =
τp /τη, defined as the ratio between the particle relaxation time

scale τp = 

(
ρp /ρ f 

)
d 2 p / 18 ν and the Kolmogorov timescale τη , is

well known to control the clustering dynamics. In the two-way

coupling regime, other parameters come into play: the mass load-

ing � = M p /M f defined as the ratio between the mass of the dis-

perse phase M p = ρp V p and the carrier fluid M f = ρ f V f . The mass

fraction can be expressed as � = (ρp /ρ f )�V . In the definition of

the volume fraction �V = V p /V f , V p = N p πρp d 
3 
p / 6 is the volume

occupied by the N p particles in the fluid volume V f . The density
atio ρp / ρ f is assumed to be much larger than unity to achieve

ppreciable loads even in dilute suspensions. In summary, the di-

ensionless quantities { S ∗, Re λ, St η , �, N p } are the physical param-

ters which control the dynamics of two-way coupled multiphase

ows in the asymptotic conditions d p �η, ρp �ρ f and �V � 1. 

In the context of homogeneous shear flow, Eqs. (12) are solved

xploiting the Rogallo’s algorithm, ( Rogallo, 1981 ). The instan-

aneous velocity field is decomposed as the sum of mean and

uctuation, u = Sx 2 e 1 + u 

′ . Rogallo’s technique is then employed

o write the Navier–stokes equations for velocity fluctuations in

 coordinate system convected by the mean flow according to

he transformation of variables ξ1 = x 1 − St x 2 ; ξ2 = x 2 ; ξ3 = x 3 ;

= t . In computational space, the equation for u 

′ turns out to

e homogeneous since the non-homogeneous term U ·∇u 

′ is ab-

orbed by the variable transformation which, however, introduces

ime dependent differential operators ∇ = (∂ ξ1 
, ∂ ξ2 

− Sτ ∂ ξ1 
, ∂ ξ3 

) .

ue to homogeneity, the Fourier transform can be taken at the

ost of dealing with time-dependent wave-numbers k = (k 1 , k 2 −
τ k 1 , k 3 ) . Rogallo’s transformation allows the use of standard

seudo-spectral methods. The equation for the Fourier coefficients

f u 

′ is integrated in time by a low-storage Runge–Kutta method

hilst non-linear terms are evaluated in physical space. Care is

aken to control aliasing errors by the standard 3/2 dealiasing rule.

he divergence-free constraint leads to a Poisson equation for the

ressure that is solved in closed analytical form in Fourier space.

urther details can be found in Gualtieri et al. (2002) . 

The simulations matrix is reported in Table 1 together with

he relevant parameters needed to characterize each simulation.

he dataset is organized into four sections. The first three entries

f the table, A 1 , B 1 and C 1 , provide cases where the mass load-

ng is changed at fixed Stokes number. In these simulations, the

umber of particles N p follows once �, St η and ρp / ρ f are fixed

o the desired values. N p turns out to be smaller than the num-

er computational cells N c used for the numerical solution of the

arrier phase. The following three entries, A 2 , B 2 and C 2 , serve as

 comparison at the same values of � and St η but with the ra-

io N p / N c intentionally fixed to one. Given this additional numer-

cal constraint, the desired mass loading and Stokes number can

e achieved only at the expense of the density ratio ρp / ρ f , which

as unlikely values, at least for cases A 2 and B 2 . However, the lat-

er are the conditions in which one should work in the context of

he Particle In Cell (PIC) approach where the additional numerical

onstraint of N p / N c � 1 is mandatory to trust in the physical re-

ults. Since the number of particles in the ERPP approach can be

hanged with no negative consequence, cases A 2 , B 2 and C 2 serve

nly for comparison to assess the independency of the results from

he average number of particles per cell. Case B 3 provides the grid

efinement of case B 1 – the grid spacing is reduced ( Dx/η = 0 . 5 )

or a fixed regularization scale ( σR /η = 1 ). In case B 4 , the grid is

efined as in case B 3 and the regularization length-scale is now

maller than the Kolmogorov scale ( σR /η = 0 . 5 ). The last six en-

ries of the table – D, E, F, E 1 , E 2 and E 3 – provide data at relatively

igher Reynolds number and at different Stokes numbers. Note

hat the conditions in terms of the Stokes number and/or mass

oading are similar to those occurring in technological applications.

or instance, in a typical diesel engine, see e.g. ( Ferguson and Kirk-

atrick, 2015 ), the mass of fluid injected per cycle per cylinder is

bout 3 · 10 −4 kg . Considering a four stroke, 2.5 litre engine with

 cylinders, back of the envelope calculations immediately give a

ass loading of approximately 0.4 and a volume fraction of the

rder φV = 6 · 10 −3 . In modern common-rail injection systems, the

iameter of the droplets is about d p = 1 ÷ 10 μm whilst the Kol-

ogorov scale is of the order η = 30 μm . In these conditions, the

olmogorov Stokes number ranges from 0.05 up to 5 and overlaps

he range of values addressed in this paper. 
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Fig. 3. Normalized turbulent kinetic energy k / k 0 versus the mass loading � for different values of the Stokes number. Panel a): simulations at Re λ = 80 . Uncoupled case 

( �); St η = 1 ( � ); St η = 0 . 3 ( ∇); St η = 5 ( �), run E 1 ; St η = 5 ( 	 ), run E 2 . Panel b): simulations at Re λ = 55 . Runs A 1 , B 1 and C 1 with N p / N c < 1 ( � ) are compared against A 2 , 

B 2 and C 2 with N p /N c = 1 ( �). Run B 3 ( 	 ) provides the grid refinement of case B 1 with σR /η = 1 and Dx/η = 0 . 5 . Case B 4 ( ∇) checks the sensitivity of the regularization 

length-scale, σR /η = 0 . 5 . Error-bar height is 2 σ/ 
√ 

N s where σ is the variance associated to the averaged data and N s is the number of samples used to compute averages. 
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Each simulation is initialized by exploiting an already fully de-

eloped turbulent field achieved by a companion simulation. The

articles are initially homogeneously distributed in space with ve-

ocity matching the fluid velocity at their positions. After discard-

ng an initial transient, 300 uncorrelated snapshots for the simu-

ations operated on the finest grids up to 600 and 900 snapshots

or the intermediate and coarser grids respectively are stored ev-

ry T stat /τ0 = 2 where τ 0 is the large scale correlation time of the

ow, i.e. the integral timescale. 

An instantaneous field of the particle-laden turbulent flow is re-

orted in Fig. 2 . The panels represent a cut of the three dimen-

ional field in an x − y plane containing the mean flow. The data

efers to case E of Table 1 where St η = 1 and � = 0 . 4 . Panel a)

hows a snapshot of the particles configuration and panel b) re-

orts the corresponding Eulerian feedback field on the fluid. As ap-

arent from the instantaneous particle configuration, the presence

f the mean flow dramatically gives a preferential spatial orien-

ation to the particle aggregates, referred to as clusters. It is well

nown that in the conditions of unitary Stokes number, the clus-

ers form a multi-scale geometrical set. As discussed in the litera-

ure, the clustering phenomena occurs at the smallest scales. Such

ehavior is crucial in the two-way coupling regime where the clus-

er geometry fixes the sets where the back-reaction field acts on

he fluid. These ideas can be still visualized in Fig. 2 by correlat-

ng the instantaneous particle configuration to the intensity of the

eedback field. Panel c) reports the superposition of panel a) and

). The instantaneous Eulerian feedback field on the fluid retains

he same geometrical features of the clusters, i.e. the back-reaction

n the fluid is a multi-scale field which forces turbulent fluctua-

ions in a wide range of spatial scales spanning from the integral

cale, which is comparable to the cluster length, to the Kolmogorov

cale, which is comparable to the cluster width. Panel b) shows

hat the field is smooth and well resolved even though the average

umber of particles per cell for case E is pretty small, about 0.1.

ndeed, the feedback kernel is regular everywhere once the regu-

arization length-scale σ R is resolved on the computational grid. 

.2. Turbulent kinetic energy 

Panel a) of Fig. 3 reports the turbulent kinetic energy k as a

unction of the mass loading � for cases D, E and F at St η = 1 . The

ata for cases E 1 , E 2 and E 3 at different Stokes number – St η = 0 . 3

nd St η = 5 – have also been reported. The turbulent kinetic en-

rgy is normalized with the corresponding value k 0 in the unladen

ase (no feedback on the fluid). Consistently with available data

n the literature for homogeneous isotropic turbulence and homo-

eneous shear flow, as the mass loading is increased the kinetic

nergy is attenuated for particles at St η = 1 . Particles at St η = 0 . 3

ehave as the population at St η = 1 for � = 0 . 4 while heavier par-
icles at St η = 5 leave the kinetic energy almost unchanged. In this

ast case, there is no appreciable effect of the density ratio on

he results, compare run E 1 and E 2 . Panel b) reports the turbu-

ent kinetic energy versus the mass loading for the simulations at

e λ = 55 . The data shows that i) the results are independent of

he number of particles per cell; ii) the solution is grid convergent

nd iii) the physical results do not depend from the value of the

egularization length-scale. Statement i) is supported by the com-

arison between cases A 1 , B 1 , C 1 and A 2 , B 2 , C 2 . The former cases

ave few particles per cell while the latter share N p /N c = 1 . Within

tatistical accuracy, quantified by the error-bars in the plot corre-

ponding to 2 σ/ 
√ 

N s , where σ is the variance associated with the

verages and N s is the number of samples used to compute aver-

ges, the data shows that the turbulent kinetic energy is indepen-

ent on how many particles per cell are available. Indeed, in the

RPP approach, the number of particles N p can be safely changed

o cope with the actual physical conditions, with no negative ef-

ect on the results. In panel b), run B 3 provides the grid refinement

heck – the number of grid points has been doubled in each direc-

ion – for the reference case B 1 with σR = η. As expected, doubling

he number of grid points provides a better numerical represen-

ation of the same physical solution even though the ratio N p / N c 

ecomes almost one order of magnitude smaller, thus supporting

nce more statements i) and ii). Case B 4 shows the convergence

ith respect the regularization length-scale that is now smaller

han the Kolmogorov scale σR /η = 0 . 5 , see statement iii) and the

xtended discussion in Gualtieri et al. (2017) . 

.3. Energy and dissipation spectra 

The energy spectrum, when compared to the uncoupled case,

hows the scales of turbulence which are affected by the back-

eaction. Panel a) of Fig. 4 shows the energy spectrum for

hree cases, D, E and F , which differ in mass loading with � =
 . 2 , 0 . 4 , 0 . 8 at a fixed Stokes number St η = 1 . Data sets at St η = 0 . 3

nd St η = 5 , at fixed mass loading � = 0 . 4 , are also shown, see

ases E 1 , E 2 and E 3 . Comparing cases D, E and F , the energy content

f the largest scales is slightly decreased while the smallest scales

re progressively energized as � is increased. Panel b) shows the

orresponding dissipation spectrum which better highlights the al-

eration of turbulence at the smallest scales that are significantly

nergized by the back-reaction when compared to the uncoupled

ase. This behavior is likely due to the high clustering intensity

hat occurs at St η = 1 . The particle clusters are extremely elongated

length of the order of the integral scale) and tiny (thickness of the

rder of the Kolmogorov scale). As a consequence, the spectrum of

he back-reaction spans the entire range of resolved scales. Note

owever how the energy spectrum and the dissipation spectrum

icely behave at smallest scales, i.e. at the highest wave numbers.
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Fig. 4. Energy spectrum (panel a) and dissipation spectrum D = 2 νk 2 E (panel b) versus wavenumber k at Re λ = 80 for different cases. Data normalized in Kolmogorov units 

with ε0 , the energy dissipation rate in the uncoupled case. Uncoupled case (solid line); � = 0 . 2 , St η = 1 ( �); � = 0 . 4 , St η = 1 ( 	 ); � = 0 . 8 , St η = 1 ( � ); � = 0 . 4 , St η = 0 . 3 

( ∇); � = 0 . 4 , St η = 5 ( �), run E 1 ; � = 0 . 4 , St η = 5 ( � ), run E 2 . 

Fig. 5. Energy spectrum versus the wavenumber k at Re λ = 55 . Data are made dimensionless in Kolmogorov units. Panel a): data at the fixed mass loading � = 0 . 4 and 

Stokes number St η = 1 are compared when the average number of particles per cell is changed – run B 1 and run B 2 of Table 1 . Panel b): reference data at given mass loading 

� = 0 . 4 and Stokes number St η = 1 , run B 1 ( � ), are compared against data obtained on a finer grid, run B 3 ( 	 ) at a fixed value of the ratio σR /η = 1 . Data pertaining to run 

B 4 ( ∇) is also reported to check the sensitivity to the change of the regularization length-scale – σR /η = 0 . 5 . 
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This is a consequence of the proper regularization of the feedback

field. In panel a), the data for cases E 1 , E 2 and E 3 show the effect

of the Stokes number, St η = 0 . 3 , and for the case at St η = 5 also

the effect of the density ratio, on the turbulence alteration when

the mass loading is kept fixed. Particles with St η = 0 . 3 show a sim-

ilar behavior with respect to the population at St η = 1 . This is re-

lated to the fact that particles at St η = 0 . 3 are still characterized by

small-scale clustering similarly to particles at St η = 1 . Heavier par-

ticles at St η = 5 , which are less affected by the small-scale cluster-

ing, irrespective of the density ratio, produce a completely different

alteration of the turbulent fluctuations. Specifically, the turbulent

energy spectrum is depleted at all scales except for the first few

modes which are augmented. This is a direct consequence of the

augmented particle inertia. At increasing Stokes number, the par-

ticles are responsive only to the largest scales of the flow and the

threshold where turbulence is augmented/depleted shifts towards

the largest scales. This behavior is consistent with the overall in-

crease of the turbulent kinetic energy discussed in the previous

section. The effect of the Stokes number on the dissipation spec-

trum is shown in panel b). 

As reported in panel a) of Fig. 5 , the energy spectrum for cases

B 1 and B 2 at � = 0 . 4 and St η = 1 shows the same behavior at each

resolved scale. Irrespective of the number of particles per compu-

tational cell N p / N c , the ERPP approach provides a physically con-

sistent and smooth regularization of feedback force on the fluid.

Panel b) compares the data at � = 0 . 4 and St η = 1 obtained on

a finer grid, run B 3 , against the reference data of run B 1 , show-

ing the grid-convergence properties of the ERPP method. In panel

b), run B 4 , obtained on a finer grid with a smaller regularization

length-scale σR = 0 . 5 η, is reported showing that by reducing σ R 

the scales shared among different cases are not affected by the reg-

ularization parameter, see the discussion in Gualtieri et al. (2017) . 

Fig. 6 shows the comparison between the ERPP and Particle

In Cell (PIC) approaches. The energy and dissipation spectra are

a  
hown in panels a) and b) respectively for the same physical con-

itions of � = 0 . 8 and St η = 1 . Note how, in the PIC approach, the

igh wave-number tail of the energy spectrum and more evidently

f the dissipation spectrum is strongly affected by N p / N c . A de-

ailed discussion about the difficulties related to N p / N c when using

he PIC method is reported in Gualtieri et al. (2013) . The corre-

ponding high wave-number range in the ERPP approach confirms

hat the number of particles N p can be safely changed irrespective

f N c . The approach therefore allows any mass loading for a fixed

tokes number and density ratio, see ( Gualtieri et al., 2015 ) for a

reliminary discussion on this idea which is now demonstrated by

he present results. 

.4. Anisotropic turbulence modification 

This subsection documents the anisotropic alteration of the tur-

ulent flow. Fig. 7 shows some selected single point statistics.

anel a) reports the velocity variance in the streamwise direction

 u 2 
1 
〉 and panel b) reports the velocity variance along the direction

f the mean shear 〈 u 2 2 〉 as a function of the mass loading �. The

ata has been normalized by the corresponding values in the un-

oupled case. Particles at St η = 1 do not significantly change the

alue of the streamwise velocity variance whilst they attenuate the

elocity fluctuations in the shear direction. Lighter particles, say at

t η = 0 . 3 , do not appreciably change the velocity variances in the

treamwise or shear directions. A more interesting modification is

roduced by heavier particles at St η = 5 . In these cases, the veloc-

ty variance in the streamwise direction is augmented with respect

o the uncoupled case while the velocity variance in the shear di-

ection is attenuated, as seen for particles at St η = 1 . This behav-

or can be attributed to the particle inertia. As the Stokes num-

er increases, a ballistic regime is progressively approached where

he particles filter out the small scale fluid velocity fluctuations

nd retain only the turbulent fluctuations at the largest scales. The
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Fig. 6. Energy spectrum (panel a) and dissipation spectrum D = 2 νk 2 E (panel b) versus wavenumber at Re λ = 55 , mass loading � = 0 . 8 and Stokes number St η = 1 . Data 

normalized in Kolmogorov units. Results from the ERPP method ( � , �) are compared against corresponding data obtained from the Particle In Cell method ( �, 	 ). Cases 

with few particles per cell, ERPP ( � ) and PIC ( �). Cases with N p /N c = 1 , ERPP ( �) and PIC ( 	 ). 

Fig. 7. Panel a): velocity variance in the streamwise direction. Panel b): velocity variance along the shear direction. Panel c): Reynolds shear stresses. Panel d): norm of 

the deviatoric component of the Reynolds stress tensor (black symbols) and norm of the deviatoric component of the pseudo-dissipation tensor (red symbols), see text for 

definitions. Data normalized with corresponding values in the uncoupled case, denoted with the subscript, are plotted versus the mass loading � for the available Stokes 

number at Re λ = 80 . Uncoupled case ( �); St η = 1 ( � ); St η = 0 . 3 ( ∇); St η = 5 ( �) run E 2 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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article velocity is therefore expected to be different with respect

o the fluid velocity, giving rise to a more intense force-feedback

n the fluid. In the ballistic limit, the particles tend to preserve

heir velocity, dragging along the fluid and generating larger fluctu-

tions in the streamwise direction with respect to lighter particles.

he velocity variance in the spanwise direction (not shown) be-

aves similarly to 〈 u 2 
2 
〉 . The augmentation of 〈 u 2 

1 
〉 overwhelms the

ttenuation of 〈 u 2 2 〉 and 〈 u 2 3 〉 resulting in a slight increase in tur-

ulent kinetic energy, as shown in the previous Section 3.2 . Panel

) reports the Reynolds shear stresses 〈 u 1 u 2 〉 which are responsi-

le for the turbulent kinetic energy production rate P = −S〈 u 1 u 2 〉 .
n overall attenuation of the Reynolds shear stresses is observed

hen the mass loading is increased for particles at St η = 1 . Par-

icles with St η = 0 . 3 leave this quantity unchanged while heavier

articles at St η = 5 produce higher turbulent shear stress. This be-

avior can again be ascribed to inertial effects. In the low inertia

ase, particles are responsive to a broader range of fluid time and

pace fluctuations. They can therefore follow both fluctuations in

he streamwise and in the shear direction at the same time, giving

ise to a marginal alteration of the shear stresses. In contrast, par-

icles with higher inertia produce a much higher momentum flux

ince they are responsive only to the largest scales motions. Once
he particles move in the direction of the shear they tend to pre-

erve their longitudinal and vertical velocity, generating a sensible

hear stress on the fluid. 

The results discussed so far highlight that the alteration of

urbulence fluctuations is strongly directional, i.e. what happens

n the streamwise or cross-flow directions is significantly differ-

nt. This modification can be globally quantified by the devia-

oric component of the Reynolds stress tensor defined as b i j =
 u i u j 〉 / 〈 u k u k 〉 − 1 

3 δi j , where δij is the Kronecker symbol. The norm

 b‖ = 

√ 

b i j b i j , is reported in panel d) for the available data (black

ymbols). This observable shows that the overall anisotropic con-

ent of the largest scales is dramatically enhanced in the two-way

oupling regime when the mass loading is increased at fixed Stokes

umber or when the mass loading is fixed and the Stokes number

s increased. The anisotropy level of the smallest scales is charac-

erized by the deviatoric component of the pseudo-dissipation ten-

or εi j = 2 ν〈 ∂ k u i ∂ k u j 〉 , namely d i j = εi j /εkk − 1 
3 δi j . The norm ‖ d‖ =

 

d i j d i j is reported in panel d) (red symbols). The effects of the

nter-phase momentum exchange is even more striking at the level

f the velocity gradients where the anisotropy increase is larger

ith respect to the anisotropy increase of the largest scales. 
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Fig. 8. Ratio E �=0 
ii 

/E �
ii 

(no sum on the repeated index i ) versus wavenumber. Streamwise direction ( �); shear direction ( 	 ); spanwise direction ( � ); at � = 0 . 4 and different 

Stokes number, namely St η = 0 . 3 (panel a)); St η = 1 (panel b)); St η = 5 (panel c)). Panel d): ratio E 12 / E vs. wavenumber: uncoupled case (solid line); � = 0 . 2 , St η = 1 ( �); 

� = 0 . 4 , St η = 1 ( 	 ); � = 0 . 8 , St η = 1 ( � ); � = 0 . 4 , St η = 0 . 3 ( ∇); � = 0 . 4 , St η = 5 ( �), run E 2 . 
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Fig. 8 addresses the anisotropic modification of turbulence in

spectral space quantified by the i -th component of the velocity

spectrum, namely E �
ii 

(no sum on the repeated index i ). Panels a),

b) and c) show the ratio E �=0 
ii 

/E �
ii 

between the energy spectrum

in the uncoupled case and in presence of backreaction, for differ-

ent values of the Stokes number at fixed mass loading � = 0 . 4 .

Different velocity components are reported with different symbols.

Starting from light particles, St η = 0 . 3 , turbulence is energized at

the smallest scales while only a slight modification is observed at

the largest scales. Particles at St η = 1 produce an appreciable atten-

uation of the energy contents of the largest scales. The level of at-

tenuation/augmentation among the three velocity components ap-

pears to be different. For instance, at large scales, the population

at St η = 1 induces a slight depletion of the streamwise spectrum

while the depletion in the cross-flow direction is almost double.

Moving towards the smallest scales, all three components are al-

most equally augmented. Heavier particles at St η = 5 , case E 2 , gen-

erate a completely different modification of the turbulent fluctua-

tions. The spectrum is attenuated in almost the whole range of re-

solved scales with the effect being largest at the dissipative scales.

In contrast, at the largest scales, the spectrum is augmented con-

sistently with the fact that the turbulent kinetic energy and the

velocity variances result globally augmented in this case. Note that

the three velocity components are affected in a different manner,

thus enhancing the overall level of the flow anisotropy at each

scale. Panel d) addresses the ratio between the energy co-spectrum

and the energy spectrum. This indicator vanishes in isotropic con-

ditions and can be assumed to measure the relative anisotropic en-

ergy content of each scale, see e.g. the seminal paper by Saddoughi

and Veeravalli (1994) . From the data, it emerges that in the two-

way coupling regime the range of scales affected by anisotropy is

progressively larger as the mass loading is increased, at least for

particles with St η = 1 . For unitary Stokes number, the particle clus-

ters span from the Kolmogorov to the integral scale and, as ap-

parent from the instantaneous plots and confirmed by statistical

analysis, the clusters retain a preferential orientation induced by

the mean flow up to the smallest scales. This implies that the spa-

tial support of the feedback field on the flow is anisotropic and

forces the fluid in specific directions. In contrast, heavier particles
t St η = 5 deplete the anisotropy content at the fixed mass load-

ng of � = 0 . 4 . In fact, at increasing inertia small scale clustering

s attenuated and the support of the feedback field looses its di-

ectionality. Moreover, due to ballistic effects, the particle motion

ecomes less correlated to the fluid motion, hindering the possibil-

ty to achieve a coherent forcing on the fluid in a specific direction.

As evident from the results presented up to this point, the pres-

nce of particles strongly alters the turbulent fluctuations through-

ut the resolved range of scales. The smallest scales are also af-

ected by the backreaction in a non-trivial way. One of the dis-

inctive features of turbulence is the presence of rare and intense

elocity fluctuations at the different scales, known as intermit-

ency, see e.g. ( Frisch, 1996 ). A possible measure of intermittency is

rovided by the statistical behavior of the random variable repre-

ented by the longitudinal velocity increments. Given two points

n space, x and y , it is possible to measure the velocity differ-

nce δu = [ u (y ) − u (x ) ] · ˆ r where ˆ r is the unit vector joining the

oints y and x . This observable can be measured for each separa-

ion r . Panel a) of Fig. 9 shows the probability distribution func-

ion (PDF) of the random variable δu ( r ) evaluated at a separation

η = 2 (small scales). Different data sets are reported and com-

ared to the reference, uncoupled case. It seems that the fluid ve-

ocity fluctuation statistics at the small scales are sensibly different

rom a Gaussian distribution. This means that intense fluctuations

re likely to occur in turbulent flow as can be seen by the tails of

he PDF. In the case of two-way coupled simulations, the presence

f the particles modify the statistics of the turbulent fluctuations at

he smallest scales. As the mass loading is increased, the rare and

ntense events that already characterize the unladen flow become

ven more important, as shown by the fact that the PDF is broad-

ned and the tails decay slower than the reference uncoupled case.

n other words, the presence of the particles triggers extremely

are events that are unlikely to occur in the uncoupled case. For

nstance, the frequency of events at five times the variance is in-

reased by one order of magnitude. A scale-dependent measure of

he intermittency is provided by the flatness of the PDF, namely

 (r) = 〈 δu 4 〉 / 〈 δu 2 〉 2 , that is shown as a function of the separation

n panel b). The interesting point is that in turbulence, the flat-

ess is a quantity that is scale-dependent, meaning that statistics



F. Battista et al. / International Journal of Multiphase Flow 101 (2018) 113–124 123 

Fig. 9. Panel a): probability density function of the longitudinal velocity increments at separation r/η = 2 . Panel b): flatness of the velocity increments versus separation. 

� = 0 . 2 , St η = 1 ( �); � = 0 . 4 , St η = 1 ( 	 ); � = 0 . 8 , St η = 1 ( � ); � = 0 . 4 , St η = 0 . 3 ( ∇); � = 0 . 4 , St η = 5 ( �), run E 2 . 
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f the velocity increments do not follow the dimensional predic-

ion. Following Kolmogorov K41 theory, the moments of the lon-

itudinal velocity increments can be described by dimensional ar-

uments by the scaling laws 〈 δu p 〉∝ εp /3 r p /3 which evidently give a

cale independent flatness. In turbulence, the scaling laws depart

rom the dimensional prediction and follow a power law behavior

 δu p 〉 ∝ r ζp , where the scaling exponents ζ p are a nonlinear convex

unction of p . In particular, the flatness as a function of the separa-

ion should scale as F ∝ r ζ4 −2 ζ2 . This function increases as the sep-

ration is reduced, given the fact that the scaling exponents do not

ollow the dimensional prediction implying that ζ 4 < 2 ζ 2 . The flat-

ess shown in panel b) highlights how, in presence of the particles,

he flatness is modified throughout the range of scales. The flatness

iverges faster at small scales as the mass loading is increased. This

ehavior suggests that the backreaction is able to modify the hier-

rchy of the scaling exponents towards an overall increase in in-

ermittency. In all cases, Gaussian statistics are recovered at the

argest scales comparable to the integral scale, where the flatness

pproaches the value of three and the corresponding PDF of the

elocity increments (not shown) is well fitted by a Gaussian func-

ion. 

. Final remarks 

We have applied the ERPP method to the direct numerical sim-

lation of turbulent flows in the two-way coupling regime with up

o millions of sub-Kolmogorov particles. 

The simulations in the homogeneous shear flow were instru-

ental to address the turbulence modulation induced by small in-

rtial particles at different mass loadings and Stokes numbers. Tur-

ulence intensities are selectively altered by the presence of the

isperse phase. The streamwise velocity fluctuations are almost

naltered when the mass loading is changed for small inertia par-

icles, such as St η ≤ 1. In contrast, large inertia particles at St η = 5

ugment the streamwise velocity fluctuations. Irrespective of the

tokes number, the crossflow velocity variances are attenuated at

ncreased mass loading. This selective turbulence modification im-

acts the anisotropic content of both the large and small scales. 

The scale-by-scale turbulence modulation has been addressed

y inspecting the energy spectrum, the cospectrum and the dis-

ipation spectrum. The effects of the momentum coupling at in-

reasing mass loading and at unitary Stokes number results in an

ttenuation of the energy content of the largest scales and an am-

lification at the smallest ones. Small inertia particles have less

ffect on the scale-by-scale energy content while particles with

arger inertia attenuate the energy content at almost each wave-

umber whilst the energy content of the first few modes is aug-

ented. Even at the level of two-point statistics, such as the en-

rgy spectrum and cospectrum, the alteration is selective. The en-

rgy cospectrum is progressively broadened when increasing the

ass loading, showing that the back-reaction forces anisotropic
odes in the system. The same conclusion is reached by inspection

f the spectrum pertaining the three velocity components. At small

cales, the spectrum of the velocity components is augmented. At

he largest scales, the attenuation of the velocity fluctuations in

he spanwise and shear direction is more pronounced with respect

o the modification of the streamwise fluctuation which remains

lmost unaltered. Interestingly, the probability density function of

he longitudinal velocity increments measured at the Kolmogorov

cale shows a sensible broadening with respect to the reference

ne-way coupling case. It follows that the probability to observe

are and intense events, i.e. intermittency, is increased by the par-

icle backreaction as shown throughout the range of scales by the

orresponding flatness. 

The results show that the ERPP method is able to tackle uneven

ow conditions where N p / N c � 1 since the perturbation field gen-

rated by each particle is smooth and the regularization procedure

oes not depend on the grid spacing. 

Finally, it is noteworthy to comment on applications where the

urbulent flow is laden with heavy particles, say St η � 1. To give an

xample, the process of inter-particle collisions, ( Pan and Padoan,

014 ), and turbulence modification, ( Fu et al., 2014; Johansen et al.,

007 ), play a crucial role in the astrophysical context where the

orrect prediction of the time required for the formation of a pro-

oplanet in an accretion disk is still an open issue, ( Mitra et al.,

013 ). In such context, the Stokes number might span several or-

ers of magnitude. Let us consider a hydrogen gas accretion disk

hat can be modeled as a turbulent shear flow due to the fast ro-

ation. From the data available in the literature, the Stokes num-

er ranges from 5 · 10 −2 to 5 · 10 3 . Given the very large values of

he density ratio, the particles are small compared to η. In these

onditions, i.e. St η = 5 · 10 3 , a simulation at the Reynolds number

resented in the paper would require very few particles per com-

utational cell, namely N p /N c = 0 . 001 . This simulation would only

e possible in the ERPP framework where the small number of par-

icles per cell is not an issue. 
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