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T H E S I S P R O J E C T A N D P O S S I B L E D E V E L O P M E N T S

This summary contains the thesis project and its possible develop-
ments, together with a list of references, to show what are the topics
that I have investigated during the Ph.D.

thesis work

This thesis aims at constraining cosmological inflation, studying the
anisotropies in the temperature of the Cosmic Microwave Background
(CMB) and the deviations of its spectrum from a black-body form.

Inflation is a period of accelerated, de Sitter-like expansion in the
early Universe [1–4]. It has set up the initial conditions for the density
perturbations which have later evolved into the structure we observe
today. Most of our knowledge about these initial conditions comes
from observation of the anisotropies in the temperature of CMB pho-
tons [5, 6]. Angular correlation functions of these anisotropies are
sensitive to inflationary perturbations on length scales from 101Mpc
to 104Mpc. Other probes are needed to constrain inflation on smaller
scales: among these there are CMB µ-type spectral distortions [7–13].
These spectral distortions are generated between 2 months and 300
years after the Big Bang, a period of time when photons were not
in thermodynamical equilibrium with electrons and baryons. They
probe scales far smaller than CMB anisotropies (from 10−4Mpc to
10−2Mpc).

The chief inflationary observable constrained by experiments like
WMAP and Planck is the two-point correlation function (power spec-
trum) of primordial scalar (ζ) and tensor (γ) perturbations [14]. Mo-
tivated by the fact that de Sitter isometries are only weakly broken
during inflation, the usual parameterization for their dimensionless
power spectrum in Fourier space is that of a power-law with spectral
index close to zero: k3 〈ζζ〉 ∝ kns−1, k3 〈γγ〉 ∝ knt . The tilt ns of scalar
perturbations has been detected at ∼ 5σ: however, deviations from a
simple power-law spectrum, parameterized by the so-called runnings
(αs ≡ dns

d logk , βs ≡ dαs
d logk , etc.) are still not very well constrained by data

[6, 14]. Future CMB spectrometry experiments like PIXIE could prove
invaluable for improving the present bounds from CMB anisotropies,
Ly-α forest observations [15, 16], and other probes at lower redshift.

When looking for signatures of inflationary dynamics, another im-
portant quantity is the three-point correlation function. It measures
correlations of a given observable (temperature anisotropies, the num-
ber density of galaxies, etc.) at three different points in space. Its
importance comes from the fact that we expect it to be very small
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(i. e. we expect perturbations to have nearly Gaussian statistics) if there
are no interactions between the degrees of freedom that drive inflation
[17–19].

Both spectral distortions and temperature anisotropies are sensitive
to this non-Gaussianity: for example, if a correlation between spectral
distortions and temperature anisotropies is found, single-field inflation
(where only one degree of freedom drives the expansion) will be ruled
out [20, 21].

During the Ph.D. I have studied these topics mainly in three works:

1. G. Cabass, A. Melchiorri and E. Pajer. “µ-distortions or running:
A guaranteed discovery from CMB spectrometry.” Phys. Rev. D
93, no. 8, 083515 (2016). arXiv:1602.05578 [astro-ph.CO];

2. G. Cabass, E. Di Valentino, A. Melchiorri, E. Pajer and J. Silk.
“Constraints on the running of the running of the scalar tilt from
CMB anisotropies and spectral distortions.” Phys. Rev. D 94, no.
2, 023523 (2016). arXiv:1605.00209 [astro-ph.CO];

3. G. Cabass, E. Pajer and F. Schmidt. “How Gaussian can our
Universe be?” JCAP 1701, no. 01, 003 (2017). arXiv:1612.00033
[hep-th].

The main goal of the first two papers was to study how future CMB
spectral distortions experiments could help in constraining the power
spectrum of primordial inflationary perturbations, when combined
with current data from CMB anisotropy observations (more precisely,
measurements from the Planck satellite). We focused mainly on the
PIXIE satellite [22], a proposed NASA mission. its goals are the study
of the frequency spectrum of both the CMB and other astrophysical
sources (such as cosmic dust), which act as a foreground for CMB
anisotropy observations:

1. in Phys. Rev. D 93, no. 8, 083515 (2016) we have shown that, if
green-lit, PIXIE will provide a guaranteed discovery. Spectral
distortions are sensitive to the amount of power on scales from
10−4Mpc to 10−2Mpc: the smaller the inflationary two-point
correlation function is on these scales, the smaller the distortion
of the CMB spectrum will be. PIXIE will have the sensitivity
necessary to probe the spectral distortions predicted by the
standard ΛCDM model: therefore, either it will observe them
or we will discover that the scale dependence of the spectrum
of primordial perturbations is stronger than what is expected in
standard inflationary models (i. e. that the scalar power spectrum
is more red-tilted: more precisely, the running αs is negative);

2. in Phys. Rev. D 94, no. 2, 023523 (2016), instead, it was shown
that PIXIE could give a 85% improvement on current bounds
on the running of the running βs. This parameter is assumed to

https://arxiv.org/abs/1602.05578v2
https://arxiv.org/abs/1605.00209v2
https://arxiv.org/abs/1612.00033v2
https://arxiv.org/abs/1612.00033v2
https://arxiv.org/abs/1602.05578v2
https://arxiv.org/abs/1605.00209v2
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be very small in standard slow-roll inflation scenarios, so that
narrowing down the contours is necessary to further confirm
the paradigm;

3. in the work JCAP 1701, no. 01, 003 (2017) we have computed
the general form of the observed cosmological three-point cor-
relators in the limit where one point is much farther away than
the other two (squeezed limit). This configuration is extremely
interesting from the theoretical point of view: in fact, models of
inflation where only one degree of freedom drives the expan-
sion predict that the squeezed three-point correlator is extremely
small [18, 23, 24]. Therefore any observation of a sizable contri-
bution in this limit would rule them out.

possible developments

The first possible continuation of the thesis work involves a further
study of non-Gaussianity. The same initial conditions which give
rise to CMB temperature anisotropies generate spectral distortions:
therefore, as mentioned above, we expect a correlation between these
two observables. Besides, while temperature anisotropies are linear in
the amplitude of inflationary perturbations, spectral distortions are
quadratic. Then, the correlation between the two will be sensitive to
the primordial three-point function [20, 21, 25–30]. The current goal
of [31] is to characterize all the secondary contributions that will add
to this correlation, which are expected because of the non-linearity
of gravitational evolution. Their calculation is necessary for (very
futuristic) PIXIE-like experiments, since they could bias the constraints
on primordial non-Gaussianity if not accounted for.

In [32], instead, we are currently studying what is the theoretical
prediction for the non-Gaussian halo bias in string theory-inspired
inflationary models such as “axion monodromy inflation” [33–35].
Having non-zero primordial non-Gaussianity will give rise to a cou-
pling between long- and short-wavelength perturbations: on small
scales, in a patch of size comparable to the long-wavelength mode,
dark matter halos will evolve in a “separate universe” with higher (or
smaller, depending on the details of the primordial coupling) power
spectrum amplitude [36–40]. This will give rise to a modulation of
their density by the long-wavelength perturbations that will directly
trace the primordial long-short mode coupling (which, in the axion
monodromy model, shows an oscillating scale dependence due to the
bursts of particle creation occurring during inflation [41]).

Finally, new forecasts for PIXIE should be carried out. Indeed, it
has been recently shown in [42] that taking correctly into account
foreground contamination will give a ∼ 5×worse sensitivity to spectral

https://arxiv.org/abs/1612.00033v2
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distortions with respect to the original mission target that was put
forward in [22].

other works

For coherence of content, only the three papers listed above have been
discussed in this thesis. The remaining publications produced during
the Ph.D. are the following:

• G. Cabass, M. Gerbino, E. Giusarma, A. Melchiorri, L. Pagano
and L. Salvati. “Updated Constraints and Forecasts on Pri-
mordial Tensor Modes.” Phys. Rev. D 92, no. 6, 063534 (2015).
arXiv:1507.07586 [astro-ph.CO];

• G. Cabass, L. Pagano, L. Salvati, M. Gerbino, E. Giusarma and
A. Melchiorri. “Constraints on the early and late integrated
Sachs-Wolfe effects from the Planck 2015 cosmic microwave back-
ground anisotropies in the angular power spectra.” Phys. Rev. D
93, no. 6, 063508 (2016). arXiv:1511.05146 [astro-ph.CO];

• C. Burigana et al. “Recent results and perspectives on cosmol-
ogy and fundamental physics from microwave surveys.” Int.
J. Mod. Phys. D 25, no. 06, 1630016 (2016). arXiv:1604.03819
[astro-ph.CO];

• E. Di Valentino et al. [CORE Collaboration] “Exploring Cosmic
Origins with CORE: Cosmological Parameters.” Accepted for
publication in JCAP. arXiv:1612.00021 [astro-ph.CO];

• L. Bordin, G. Cabass, P. Creminelli and F. Vernizzi. “Simplifying
the EFT of Inflation: Generalized Disformal Transformations
and Redundant Couplings.” Accepted for publication in JCAP.
arXiv:1706.03758 [astro-ph.CO].
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A B S T R A C T

Anisotropies in the angular power spectra of the Cosmic Microwave
Background (CMB) temperature and polarization are sourced by infla-
tionary perturbations on scales from 101Mpc to 104Mpc. Deviations
of the CMB frequency spectrum from a black-body, instead, can probe
inflationary perturbations on scales from 10−4Mpc to 10−2Mpc. These
length scales are inaccessible to CMB and large-scale structure mea-
surements. CMB spectral distortions, averaged over the whole sky,
constrain the two-point function of primordial perturbations. Corre-
lation of temperature and spectral distortion anisotropies, instead,
can constrain their three-point function (making them a probe of
primordial non-Gaussianity).

In the first part of this thesis I study what is the level of sensitivity
needed, by an experiment measuring the CMB frequency spectrum, to
detect the running of the spectral index of inflationary perturbations.
I then investigate what is the minimal contribution to the correlation
function between temperature and spectral distortion anisotropies
that is expected in standard inflationary scenarios. Finally, I discuss
what are the secondary contributions (arising from late-time gravita-
tional evolution) to such angular correlation, and how they could bias
constraints on primordial non-Gaussianity.

ix
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U N I T S A N D N O TAT I O N

We review here the conventions about units and notation that are used
in this work:

• the metric signature is (−,+,+,+);

• we choose units where c =  h = 1, in addition to kB = 1;

• we define the Planck mass MP to be (8πGN)
− 1
2 ;

• we use the conventions of [46, §3.6] for the Riemann tensor;

• the present time will be denoted by t0;

• the dimension of the curvature parameter K of a Friedmann-
Lemaître-Robertson-Walker metric is L−2: therefore the scale
factor a is dimensionless and K is the Gaussian curvature of the
space at t0 (since we choose the scale factor a(t0) to be 1);

• only in Chapter 1 we will denote with (Ωi)0 the present-day
ratios between the energy density for a given species i and the
energy density of a flat universe, i. e.

(Ωi)0 ≡
(ρi)0

3H20M
2
P

.

In the remaining Chapters, the subscript 0 will be omitted;

• greek indices will take the values from 0 to 3. Latin indices from
i to k stand for 1, 2, 3;

• an overdot denotes a derivative with respect to cosmic time t,
while a ′ sign denotes a derivative with respect to conformal
time η;

• the convention for the Fourier transform f(k) of f(x) is

f(k) =
∫

d3x f(x) e−ik·x ,

so that the inverse Fourier transform is (for simplicity of notation
we will often drop the argument k of the Fourier modes)

f(x) =
∫

d3k
(2π)3

f(k) eik·x .

From the above definitions we see that the Dirac delta δ(3)(x−x ′)
in real space is given by

δ(3)(x − x ′) =
∫

d3k
(2π)3

eik·(x−x ′) ,

xv
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while the Dirac delta δ(3)(k − k ′) in Fourier space is equal to

δ(3)(k − k ′) =
∫

d3x
(2π)3

e−i(k−k ′)·x ;

• we will often write a Fourier integral as∫
d3k
(2π)3

=

∫
k

;

• the translationally and rotationally invariant two-point corre-
lation function of a real variable f(x) in Fourier space (i. e. the
power spectrum) is defined by

〈f(k) f(k ′)〉 ≡ (2π)3δ(3)(k + k ′)Pf(k) ,

or (equivalently) by

〈f(k) f∗(k ′)〉 ≡ (2π)3δ(3)(k − k ′)Pf(k) ;

• when we encounter derivatives of the potential V for a scalar
field φ, we use the shorthand

dnV(φ)
dφn

∣∣∣∣
φ=χ

= V(n)(χ) .

For n 6 3 we use ′, ′′ , ′′′ instead of (1), (2), (3);

• the symmetrizing and antisymmetrizing brackets for 0a tensors
are defined as

T(m1...ma) ≡
1

a!

∑
Π

TmΠ(a)...mΠ(a)
,

T[m1...ma] ≡
1

a!

∑
Π

δΠTmΠ(a)...mΠ(a)
,

where the sum is taken over all permutations Π of 1, . . . a and δΠ
stands for the parity of the permutation. The generalization to a
generic number of upper and lower indices is straightforward;

• when symmetrizing or antisymmetrizing a tensor only on a
subset of its indices, we use the vertical brackets | · |. E. g.:

A(µB
ν
|λ|Cρ) =

1

2
(AµB

ν
λCρ +AρB

ν
λCµ) .



I N T R O D U C T I O N

The WMAP and Planck satellites have provided a great confirmation
of the ΛCDM model [5, 6]:

• they have detected a 5σ deviation from a Harrison-Zeldovich
spectrum of primordial perturbations, pointing to slow-roll infla-
tion as the mechanism that generated them. Besides, combined
with data from BICEP2/Keck Array [47], they have improved
the bounds on the tensor-to-scalar ratio r, greatly disfavoring
large-field inflationary models;

• they have provided further evidence for the presence of dark
matter (DM) and dark energy (DE), which make up the ∼ 95%
of the Universe.

Even so, there are still many open questions. For example:

• there is still no detection of primordial B-modes: in fact, one of
the main goals of future CMB experiments like CMB Stage IV is
to improve the sensitivity to r down to 10−3 [48];

• slow-roll inflation predicts a scale dependence for the tilt ns

of the scalar spectrum of order (1− ns)
2. Since current CMB

experiments allow to probe only up to scales k ∼ 10−1Mpc−1, it
is necessary to combine them with other observables to test this
prediction;

• are there any relativistic species beyond those predicted by the
Standard Model? Besides, the properties of DM and DE are still
unknown. For example, we do not know which are the interac-
tions of DM with the Standard Model (what is its annihilation
cross-section? Can it decay in Standard Model particles?), or if
the current accelerated expansion is driven by vacuum energy
or some modification of General Relativity;

• how Gaussian are the statistics of primordial perturbations? De-
tecting departures from Gaussianity would teach us a great deal
about interactions during inflation [19], but often the primordial
signal is buried under the contributions of late-time nonlinear
gravitational evolution.

This thesis deals mainly with the second and fourth of the above
questions, and is structured in the following way:
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the first part is a review of the basis of the FLRW cosmology. The
evolution of the various matter components is presented, along with
the so-called “puzzles” of the Hot Big Bang cosmology. I also study
how the black-body spectrum of the CMB is generated, along with
the mechanisms that can give rise to spectral distortions.

the second part contains a review of perturbation theory, and of
how the anisotropies in the CMB temperature are computed. The
contribution to CMB spectral distortions from Silk damping of acous-
tic waves in the photon-electron-baryon fluid is also investigated.
Finally, I describe how inflation sets up the initial conditions for the
evolution of perturbations at late times.

the third part contains the scientific research that I carried out
during the Ph.D.:

• I start by presenting the constraints from current data on the
scale dependence of the primordial scalar power spectrum, to-
gether with the forecasts for future CMB spectrometers, which
were carried out in [49, 50];

• then I briefly introduce the topic of primordial non-Gaussianity
and higher-order correlation functions;

• I conclude with the study, carried out in [51], of the observed
squeezed limit of primordial three-point functions, i. e. what is
the minimal amount of primordial non-Gaussianity that we can
expect to see in late-time observables.

the appendix contains a brief review of how the likelihood for a
CMB experiment is constructed, some intermediate mathematical
results for the derivation of the Einstein and fluid equations in a
perturbed FLRW cosmology, the mathematical details of the so-called
“two-fluid approximation” for the computation of CMB temperature
anisotropies, and the Appendices from [49, 51].
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In this Chapter we describe the main aspects of the standard cos-
mological model. We start with an introduction of the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric and its properties. We
proceed with the derivation and solution of Einstein equations in a
FLRW background. Then we discuss what are the “problems of the
initial conditions” present in the conventional Big Bang theory. The
Chapter ends with the description of the inflationary paradigm and
how it offers a solution to such issues. This Chapter is mainly based
on [44, §1, §2].

1 .1 flrw spacetimes

The Cosmological Principle, supported by many observations (e. g.,
observations of the Cosmic Microwave Background [52], of Large-
Scale Structure [53], and of supernovae [54]), states that the Universe
is homogeneous and isotropic on sufficiently large scales.

Mathematically this assumption implies that, on scales larger than ∼

100Mpc, the Universe is described by a FLRW metric [46, §2.6, §3.5][55,
§5.1]. FLRW spacetimes admit a foliation with a “cosmic time” coor-
dinate t and spacelike hypersurfaces Σt of constant cosmic time. The
hypersurfaces Σt are both homogeneous (translationally-invariant) and

20
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isotropic (rotationally-invariant). These conditions imply that the metric
is [55, §5.1]

ds2 = −dt2 +
a2(t)δijdxidxj(
1+

K|x|2

4

)2 , (1.1)

where we used Cartesian coordinates xi and the stereographic pa-
rameterization of a curved, homogeneous space. In terms of spherical
coordinates (r, θ, φ), the metric spacetime interval takes the form

ds2 = −dt2 + a2(t)
(

dr2

1−Kr2
+ r2dΩ2

)
. (1.2)

Before moving on there are a few things to say about eqs. (1.1) and
(1.2) for the metric:

• the factor a(t) is the so-called “scale factor”: the ratio between
a31 and a32 is the ratio between the volumes of Σ1 and Σ2;

• the parameter K characterizes the curvature of Σt: positively
curved hypersurfaces will have K > 0, while K = 0 and K < 0
are for flat and negatively curved hypersurfaces respectively;

• the interval ds2 above is written in comoving coordinates: ob-
servers keep fixed spatial coordinates in the absence of external
forces but the physical distance between them is time-dependent,
because the universe expands or contracts as a(t) varies.

We see that the evolution of the metric is entirely dictated by that
of the scale factor, whose evolution will be related to the energy-
momentum tensor via the Einstein field equations: before focusing on
the dynamics of a(t), however, we introduce the kinematic concepts
of particle horizon, redshifts, and distances in a FLRW background.

1 .1 .1 Light cones and horizons

In General Relativity the causal structure is determined by geodesics
with ds2 = 0. These trajectories are studied more easily if one works
with conformal time η, defined as

η(t) ≡
∫t
t̂

dt ′
1

a(t ′)
, (1.3)

where t̂ is some fixed time. If we consider the conventional Big Bang
model, that has a singularity a(tmin) = 0 at its initial time tmin =

0 (as we shall see in a moment), we may take t̂ to be “the origin
of the universe” t̂ = 0. Using eq. (1.3) along with the coordinate
transformation

dχ =
dr√
1−Kr2

, (1.4)
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the spacetime interval ds2 of eq. (1.2) becomes

ds2 = a2(η)
{
−dη2 + dχ2 + FK(χ)dΩ2

}
, (1.5)

where

FK(χ) ≡



sinh2(
√

|K|χ)

|K|
if K < 0 ,

χ2 if K = 0 ,

sin2(
√
Kχ)

K
if K > 0 .

(1.6)

Eq. (1.5) allows us to fully exploit the property of isotropy, which
ensures that it is sufficient to consider radially propagating photons to
study the causal properties of the spacetime. Since radial trajectories
satisfy dΩ = 0, their worldlines will be entirely specified by the
2-dimensional line element

ds2 = a2(η)(−dη2 + dχ2) , (1.7)

whatever the value of K. This equation says that the metric is like that
of Special Relativity, apart from a conformal factor a2(η): therefore
the null worldlines of photons have the form

χ = ±η+ χ0 , (1.8)

and consist of straight lines at ±45° in the χ - η plane, as it is depicted
in figure 1.1 below.

The metric has factorized into a static Minkowski metric multiplied by a time-dependent conformal

factor a(�). Expressed in conformal time the radial null geodesics of light in the FRW spacetime

therefore satisfy

⇥(�) = ±� + const. , (8)

i.e. they correspond to straight lines at angles ±45� in the �–⇥ plane (see Fig. 3). If instead we had

used physical time t to study light propagation, then the light cones for curved spacetimes would be

curved.

Event
P

Future Light Cone

Past Light Cone

Time

Space

causally-disconnected

Q

Figure 3: Light cones and causality. Photons travel along world lines of zero proper time, ds2 = 0,

called null geodesics. Massive particles travel along world lines with real proper time,

ds2 > 0, called timelike geodescis. Causally disconnected regions of spacetime are sep-

arated by spacelike intervals, ds2 < 0. The set of all null geodesics passing through a

given point (or event) in spacetime is called the light cone. The interior of the light cone,

consisting of all null and timelike geodesics, defined the region of spacetime causally

related to that event.

Particle Horizon

The maximum comoving distance light can propagate between an initial time ti and some later time

t is

⇥p(�) = � � �i =

� t

ti

dt

a(t)
. (9)

This is called the (comoving) particle horizon. The initial time ti is often taken to be the ‘origin

of the universe’, ti ⇥ 0, defined by the initial singularity, a(ti ⇥ 0) ⇥ 0.3 The physical size of the

particle horizon is

dp(t) = a(t)⇥p . (10)

The particle horizon is of crucial importance to understanding the causal structure of the universe

and it will be fundamental to our discussion of inflation. As we will see, the conventional Big Bang

3Whether ti = 0 also corresponds to �i = 0 depends on the evolution of the scale factor a(t); e.g. for

inflation ti = 0 will not be �i = 0.
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F igure 1 .1 : This figure shows the causal structure of Minkowski spacetime:
eqs. (1.5) and (1.7) tell us that a FLRW spacetime possesses the
same light cones, whatever its spatial curvature.

With eqs. (1.7) and (1.8) at hand, we are ready to study the so-called
“particle horizons”. According to eq. (1.8), the maximum distance light
is able to travel between a time ti and a later time t is given by

dp(t, ti) ≡ a(t)
{
η(t) − η(ti)

}
. (1.9)
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Hence eq. (1.3) gives us the particle horizon, that is

dp(t, ti) = a(t)

∫t
ti

dt ′
1

a(t ′)
. (1.10)

This is the maximum distance from which an observer at time t could
have received information: observers separated by a distance larger
than dp(t, ti) could never have communicated with each other.

As in eq. (1.3), if we consider the conventional Big Bang model with
its singularity a(tmin) = 0 at tmin = 0, we can take ti = 0. In this case
the size of the particle horizon is

dp(t, 0) = a(t)

∫t
0

dt ′
1

a(t ′)
. (1.11)

1 .1 .2 Geodesics

Let us study in more detail the geodesics of a FLRW universe: this will
also help us to set up some notation that will be used in the following
Sections. We can distinguish two cases:

• if we have a massive particle of mass m, we can parameterize
its worldline with the proper time s. Therefore, the four-velocity
Uµ = dxµ

ds will be normalized to −1 [46, §3.3], and the four-
momentum Pµ takes the simple form Pµ = mUµ. The geodesic
equation is then given by

Pν∇νPµ = Pν∂νP
µ + PνΓµνρP

ρ = 0 , (1.12)

where the Christoffel symbols Γρµν are computed from the metric
using the relation

Γρµν =
gρσ

2
(−∂σgµν + ∂µgνσ + ∂νgσµ) ; (1.13)

• in the case of a massless particle, the proper time is zero and
UµU

µ = 0. The momentum of the particle is then given simply
by dxµ

dλ , where λ is an affine parameter such that the geodesic
equation takes exactly the same form as eq. (1.12) [55, §3.3].

We are now in the position of studying the solutions to the geodesic
equation eq. (1.12). We start by introducing the Hubble rate H. It is
defined as

H ≡ ȧ
a
, (1.14)

and sets the time and distance scales of the FLRW spacetime: the
characteristic time and length scales of a homogeneous and isotropic
universe are H−1. Then, we note that due to the homogeneity of
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the background, ∂iPµ = 0. Finally, the Christoffel symbols Γρµν are
collected in tab. 1.1. With these results one can show that the geodesic
equation takes the form

P0
dPµ

dt
= −(2Γµ0j + Γ

µ
ijP
i)Pj . (1.15)

Table 1 .1 : In this table we collect the Christoffel symbols for the FLRW
metric of eqs. (1.1) and (1.2).

Γ000 0

Γ00j 0

Γ0ij Hgij

Γk00 0

Γk0j Hδkj

Γkij
gkl

2
(−∂lgij + ∂igjl + ∂jgli)

Eq. (1.15) can be studied and solved separately in the case of a
massive or massless particle:

• for a massive particle we can further distinguish two cases:

– if the particle is initially at rest in the comoving frame
(Pi = 0), we see that it will remain at rest because the
right-hand side of eq. (1.15) vanishes. From this, we see
also that the four-vector Uµ = δ

µ
0 , which is both timelike

and normalized,1 is the four-velocity of such particles;

– if the particle is initially moving with some comoving (i. e.,
relative to the comoving frame) peculiar velocity vi, related
to Pi by

Pi =
mvi√

1− gijvivj
, (1.16)

we see that the µ = 0 component of eq. (1.15) implies

E
dE
dt

= −Γ0ij = −Hp2 , (1.17)

where we defined P0 ≡ E (see [55, §4.3] for details) and
p2 ≡ gijP

iPj. The constraint PµPµ = −m2 implies that
EdE = pdp, so that

ṗ

p
= −H = −

ȧ

a
⇒ p ∝ 1

a
. (1.18)

1 In fact, using the metric of eq. (1.2), we see that UµUµ = gµνU
µUν = −1.
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Therefore, the physical three-momentum of massive par-
ticles (and then their peculiar velocity) decays with the
expansion of the universe: freely-falling particles will con-
verge on the Hubble flow;

• for a massless particle, the constraint PµPµ = 0 still implies that
EdE = pdp. It also says that E is equal to p, so that eq. (1.18)
now reads E ∝ a−1. That is, the energy of a massless particle
decays with the expansion of the universe.

1 .1 .3 Redshifts

As we have seen in the previous Section, the fact that our Universe is
expanding implies that photons lose energy with time. This is the so-
called redshift: classically, it corresponds to the fact that the wavelength
of propagating electromagnetic waves is stretched by the expansion.
Since everything we know about the Universe is inferred by the light
we receive from distant objects, it is clear that the redshift is a very
important quantity in cosmology. Its expression can be derived either
by treating photons classically or quantum mechanically. We will
follow the second way, and refer to [55, §4.3][56, §22.5] for two (very
detailed) explanations using geometric optics.

For photons, the momentum is inversely proportional to the wave-
length of light (λ = 2π/p): since, as we have seen in eq. (1.18), p scales
as a−1, the wavelength scales as a. Light emitted at time t1 with
wavelength λ1 will be observed at t0 > t1 with wavelength

λ0 =
a(t0)

a(t1)
λ1 . (1.19)

Since a(t0) > a(t1), the wavelength of the light increases, λ0 > λ1. It
is conventional to define the redshift parameter z as

z ≡ λ0 − λ1
λ1

⇒ 1+ z =
a(t0)

a(t1)
. (1.20)

It is very important to stress that such redshift of signals is a non-
local effect: it is a consequence of how light emitted from distant objects
travels to us (mathematically, it is a relation between observables
on the wordlines of two different observers). In this sense, it is very
different from effects like Doppler shifts, which are local. This is
usually a source of misconceptions, especially regarding the Hubble
redshift-distance relationship and the Hubble flow of galaxies.

1 .1 .4 Distances

There are mainly two concepts of distance of observational relevance
in cosmology: the luminosity distance and the angular diameter distance.
In order to define them, we need three other notions:
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physical distance It is the time-dependent distance between two
points on a spatial section at a cosmic time t (or at a conformal
time η) as calculated with the FLRW metric. Using the metric of
eq. (1.5), we see that for a flat FLRW universe it is just aχ. We
call d this distance.

comoving distance It is obtained from the physical distance by
removing the scale factor that multiplies it. From eq. (1.8) we see
that the comoving distance between us and some object emitting
light at redshift z (i. e. at a time t1 < t0) is given by

dco =

∫t0
t1

dt
1

a(t)
=

∫z
0

dz ′
1

H(z ′)
. (1.21)

Besides, for flat spatial hypersurfaces we can further distinguish
a comoving wavelength (λ) from a physical one (aλ), and co-
moving Fourier modes of modulus k from physical modes of
modulus ka .

metric distance Called dm, it is the distance between two points
on a hypersurface at fixed η and χ. For infinitesimal displace-
ments, ds2 = FK(χ)dΩ2 ≡ d2mdΩ2. If the curvature K of spatial
sections is zero, dm and the comoving distance coincide.

While the comoving distance and the metric distance are not observ-
able, they play an important role in the definition of the luminosity
distance dL and the angular diameter distance dA:

luminosity distance Suppose we know objects that behave like
standard candles: these are objects that have a known absolute
luminosity L.2 Then, it is possible to use the observed flux F
(≡ energy per second per receiving area) from such objects to
measure their distance. In a static Euclidean space, the flux-
luminosity relation for an object at a fixed comoving distance χ
is given by

F =
L

4πχ2
. (1.22)

In a FLRW universe, this relation is changed for three reasons:

• at the time t0, when the light reaches the Earth, the proper
area of a sphere that is drawn around the object and crosses
the Earth is 4πd2m;

• the energy of photons at the reception point differs from
the energy at emission by a factor of (1+ z)−1;

• the same factor enters in the expression for the number of
photons crossing a unit receiving area in a unit time, since

2 For example, Supernovae of Type IA are believed to be standard candles [54].
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the time intervals for the source and observer differ by
factor (1+ z)−1.3

Therefore, eq. (1.22) becomes

F =
L

4πd2m(1+ z)2
=

L

4πd2L
, with dL ≡ dm(1+ z) . (1.23)

angular diameter distance In addition to standard candles,
we can have access to standard rulers, i. e. objects of known phys-
ical size D. This is the case, for example, of fluctuations in the
CMB. If we assume, as we did before, that the light from an
object at a comoving distance χ from the Earth is emitted at
a time t1, and that the object subtends an angle δθ in the sky,
the formula for the distance of the object from us (in a static
Euclidean space) would be

dA =
D

δθ
. (1.24)

In a FLRW universe, the relation between the physical transverse
size D and its angular size in the sky is also modified:

• the comoving length of a small arc of angular size δθ is not
just χδθ, but a(t1)FK(χ)δθ, as we see from eq. (1.5);

• then, expressing it in terms of redshift z and dm, eq. (1.24)
becomes

dA =
dm

1+ z
. (1.25)

We will see in the Section 1.2.1 how the angular diameter distance
plays an important role in elucidating what are the so-called “puzzles”
of Hot Big Bang picture (see fig. 1.2).

1 .1 .5 Dynamics of FLRW spacetimes

The dynamics of the universe are dictated by those of the scale factor,
which in turn is governed by the Einstein equations

Gµν =
Tµν

M2
P
, (1.26)

where Gµν is the Einstein tensor Rµν − R
2gµν and Tµν is the energy-

momentum tensor.
What about Tµν? Its decomposition in the case of a generic fluid of

four-velocity Uµ normalized to UµUµ = −1 is [56, §22.3][57][58, §4]

Tµν = ρUµUν + pPµν + 2Q(µUν) + Σµν , (1.27)

where:

3 That is, the relation between the physical time intervals at emission and reception is
dt0 = (1+ z)dt1.
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• P
µ
ν = δ

µ
ν +UµUν is the projection tensor on 3-dimensional

spatial sections orthogonal to Uµ;

• the energy density (ρ) and isotropic pressure (p) of the fluid are
related to Tµν by

ρ = TµνU
µUν ,

p =
1

3
TµνP

µν ;

(1.28a)

(1.28b)

• Qµ is the energy-momentum transfer four-vector, and it is ob-
tained from the energy-momentum tensor by

Qµ = −PνµTνρU
ρ ; (1.29)

• the symmetric and traceless tensor Σµν is the anisotropic stress
tensor. Its expression in terms of Tµν is

Σµν = Pρ(µP
λ
ν)Tρλ −

1

3
hρλTρλPµν . (1.30)

In the case of a fluid whose energy and momentum are conserved
(and ours is the case), Qµ is equal to 0. Besides, in a FLRW cosmology:

• the energy-momentum tensor is that of a geodesic (Uµ is a
geodesic vector field) perfect fluid (the anisotropic stress ten-
sor is also 0);

• in order to maintain spatial homogeneity and isotropy ρ and p
will be functions of t only;

• as we have seen in Section 1.1.2, the worldlines of the geodesic
perfect fluid with zero peculiar velocity are those with four-
velocity Uµ = δµ0 .

Once everything is inserted in eq. (1.26) we end up with the system
of the two “Friedmann equations”, that is

H2 =
ρ

3M2
P
−
K

a2
,

Ḣ+H2 = −
1

6M2
P
(ρ+ 3p) ,

(1.31a)

(1.31b)

while the conservation of the energy-momentum tensor ∇µTµν = 0

(or the combination of eqs. (1.31), if you wish) instead gives

ρ̇ = −3H(ρ+ p) . (1.32)

Eq. (1.31b) tells us that in an expanding universe filled with ordinary
matter (that is one satisfying ρ+ 3p > 0, the so-called “strong energy
condition”) one must have ä < 0. This leads to a singularity in the
finite past at a time tmin (that may be set to 0): it is the Big Bang
singularity, which would signal the breakdown of the classic theory
of General Relativity. We will see later how inflation pushes this
singularity in the infinite past, effectively getting around this issue.
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1 .1 .6 Solutions of Friedmann equations

In this Section we study eqs. (1.31) and their solutions. We start by
writing down the equation of state that links the energy density with
the isotropic pressure, that is

p = wρ . (1.33)

The less restrictive energy conditions on the energy-momentum tensor
(see [46, §4.6] for details) say that |w| must be 61. In this range of |w|
we distinguish the following values for w, each corresponding to the
dominance of a particular form of matter:

matter dominance This case corresponds to the dominance of
non-relativistic matter and has w = 0.

radiation dominance This case corresponds to the dominance
of relativistic matter and has w = 1

3 .

Λ dominance This case corresponds to the dominance of a cos-
mological constant term in the Einstein-Hilbert action. It has
w = −1.

If we now combine the equation of state with the conservation of
energy, eq. (1.32), we get

d log ρ
d log a

= −3(1 + w) . (1.34)

This differential equation can be easily integrated and, if w does not
depend on t, the solution is

ρ(a) ∝ a−3(1+w) . (1.35)

Plugging this ρ into eq. (1.31a) and integrating it, one finds that the
time evolution of the scale factor is given by

a(t) ∝

t
2
3 (1+w) if w 6= −1 ,

eHt with H = const. if w = −1 .
(1.36)

A summary of these results is given in tab. 1.2.
If more than one (relativistic or not) matter species contributes

significantly to ρ and p, the total energy density and total isotropic
pressure will be

ρ =
∑
i

ρi , (1.37a)

p =
∑
i

pi , (1.37b)
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Table 1 .2 : Solutions of Friedmann equations for a flat FLRW metric dom-
inated by matter (MD), radiation (RD), and cosmological con-
stant (ΛD). The entries for ρ(a), a(t) and a(η) indicate what
these quantities are proportional to.

Dominance w ρ(a) a(t) a(η) ηmin

MD 0 a−3 t
2
3 η2 0

RD
1

3
a−4 t

1
2 η 0

ΛD −1 a0 eHt −η−1 −∞
where i runs over all the species (baryons, photons, etc.). From these
ρi and pi and their equations of state one defines the ratios

Ωi ≡
ρi
ρcr
⇒ Ω =

∑
i

Ωi , (1.38)

with the “critical energy density” ρcr (the energy density of a flat
FLRW universe) being4

ρcr ≡ 3H2M2
P . (1.39)

Now, thanks to eq. (1.35), we can write eq. (1.31a) as
(
H

H0

)2
=
∑
i

(Ωi)0a
−3(1+wi) + (ΩK)0a

−2 , (1.40)

where ΩK (i. e. the curvature contribution) is

ΩK ≡ −
K

(aH)2
, (1.41)

and we took a0 = 1 for simplicity. If we evaluate the above equation
at the present time we obtain the “consistency relation”∑

i

(Ωi)0 + (ΩK)0 = 1 . (1.42)

Current observations, mainly those of the Cosmic Microwave Back-
ground (CMB) and of Large-Scale Structure (LSS), tell us that the
ratios (Ωi)0 are those of tab. 1.3.
The first thing we notice from looking at tab. 1.3, together with eqs.
(1.41) and (1.42), is that K is constrained to be very close to zero:5

therefore we can (and will, for the rest of this thesis) focus on a flat
FLRW metric. These results also tell us that our present Universe is
composed approximately of:

4 In fact eq. (1.31a) with ρ = ρcr implies that K must be equal to zero.
5 At least when fitting cosmological data with the standard ΛCDM parameterization

[6]. We refer to [6, 60] for an analysis of the constraints on (ΩK)0 in extended
(i. e. non-ΛCDM) models.
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Table 1 .3 : 68% confidence limits for (Ωi)0 of baryon (b), cold dark matter
(cdm) and dark energy (Λ), as from [59]. We recall that h and
H0 are related by H0h−1 = 100 km s−1Mpc−1.

(Ωb)0h
2 (Ωcdm)0h

2 (ΩΛ)0h
2

0.02214± 0.00024 0.1187± 0.0017 0.692± 0.010

• a 5% of ordinary matter;

• a 27% of (cold) dark matter;

• a 68% of dark energy that satisfies an equation of state with
w ≈ −1, hence the subscript Λ.

1 .2 puzzles of the hot big bang theory

After this introduction, we are now going to explain how the conven-
tional Big Bang theory requires a particular fine-tuned set of initial
conditions if one wants the Universe to evolve into its current state.

1 .2 .1 Horizon problem

In Section 1.1.1 we saw that the maximum distance light can travel
from t = 0 to a given time t is

dp(t, 0) = a(t)

∫t
0

dt ′
1

a(t ′)
= a(t)

{
η(t) − ηmin

}
. (1.43)

In the conventional Big Bang expansion one has w > 0: this means
(see tab. 1.2) that ηmin is equal to 0, leading to a finite dp(t, 0). The
consequence is that at early times there is a large number of causally
disconnected regions (see fig. 1.2 for details), and this goes against
the experimentally verified homogeneity of the CMB. How could
these regions have thermalized if they were not in causal contact?
More precisely, the characteristic size of the anisotropies in the CMB
angular power spectrum is given by the angle at which the horizon
at recombination is seen today (as we will see in the next Chapters).
Neglecting factors of order 1, this angle is θ ≈ ηrec

η0
: from fig. 1.2, we

see that ηrec
η0
≈ 1°. The argument can then be turned around: i. e., we

do indeed see that the CMB temperature is the same (up to one part
in 10−5) in regions separated by ≈ 1° in the sky. This tells us that
the the Universe is made up by (ηrec/η0)

−3 ≈ 104 regions (“separate
universes”) that were not in causal contact at recombination.

One way to solve this puzzle would be just saying that the initial
density perturbations were exactly such that the right degree of unifor-
mity is observed in the Cosmic Microwave Background, and that they
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also possessed the right level of fluctuations to explain the formation
of the structure we observe today. This approach, however, is not very
satisfactory since it amounts to very fine-tuned initial conditions for
our Universe.

1 .2 .2 Flatness problem

In addition to the initial distribution of density inhomogeneities, the
velocities of the fluid are also needed to completely characterize the
“Cauchy problem of the universe”. If the universe has to remain homo-
geneous at late times, the initial fluid velocities must take very precise
values: if they are too small there would be a quick recollapse, if they
are too big the expansion would be so rapid that structure formation
could not occur.

This fine-tuning of the initial velocities is called “flatness problem”.
The name derives from the Newtonian treatment of gravity: in this
formalism one shows that the starting value for the kinetic energy of
fluid particles is related to the curvature parameter K, and one sees
how too little initial kinetic energy leads to a closed universe (K > 0),
while too large initial kinetic energy leads to an open universe (K < 0).

With this said, one can be more quantitative: choosing for simplicity
the case of a single species of matter and combining eq. (1.31a) with
eq. (1.34), one finds that

d|Ω− 1|

d loga
> 0⇔ 1+ 3w > 0 . (1.44)

Consequently, when dealing with ordinary matter (for which w is
always larger than zero), Ω = 1 is an unstable fixed point of the
Friedmann equations: in the standard Big Bang cosmology the near-
flatness observed today ((ΩK)0 ≈ 0) requires an unnatural adjustment
at Ω ≈ 1 of the total density parameter in the early Universe.

1 .3 classical dynamics of inflation

Everything is ready to present the theory of inflation, and to show
how it fixes the problems of the classical Big Bang cosmology that we
have presented in the preceding Section.

1 .3 .1 Solution of the horizon problem

We reformulate the horizon problem in way that will make its solution
more evident: in eq. (1.11) we obtained the physical particle horizon
dp(t, 0): the comoving (particle) horizon, then, is

dco
p (a) =

∫a
0

d loga ′
1

a ′H(a ′)
, (1.45)
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F igure 1 .2 : Spacetime diagram of standard Big Bang cosmology (neglect-

ing the period of Λ dominance that starts around a/a0 ≈ 0.5),
with its horizon problem: two points on a fixed surface of
constant η are in causal contact if their past light cones in-
tersect at η = ηmin (the Big Bang). Because ηmin is zero, the
LSS (last-scattering surface: it is the set of points situated at
a distance such that photons emitted from there at the time
of recombination are reaching us now. These are the photons
we detect today as CMB radiation) consists of many causally
disconnected patches that will not be in thermal equilibrium
with each other.

where (aH)−1 is the “comoving Hubble radius” (recall that a(t) is
equal to 0 for t = 0). The properties of dco

p and (aH)−1 are:

comoving particle horizon If at a time t two particles are at
a comoving distance larger than dco

p (t), they could never have
communicated with each other.

comoving hubble radius If at a given time t two particles are
separated by a comoving distance larger than the comoving
Hubble radius at that time, they are unable to influence each
other now.

The distinction between the two is crucial: it is possible that the
comoving particle horizon is much larger than (aH)−1 at the present
time, so that particles cannot communicate today but were in causal contact
early on. This is the solution to the horizon problem.

From eq. (1.45) one sees that an early phase of decreasing Hubble
radius gets the job done: in this way the comoving Hubble radius in
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F igure 1 .3 : Spacetime diagram of inflationary cosmology for H ≈ const.:
the singularity a = 0 is pushed at η = ηmin → −∞, and eq.
(1.50) says that the scale factor blows up at η = 0. This is due
to the assumption of an almost de Sitter space, which means
that inflation will continue forever (with η = 0 corresponding
to t→ +∞). In reality when inflation ends at some finite time
the approximation of eq. (1.50) breaks down: this is why η = 0

stands for the end of inflation, and there will be a smooth
transition (the so-called reheating phase) from inflation to the
standard radiation-dominated era.

the past would have been much larger than what it is now, and the
contributions to dco

p would come mostly from those times.

1 .3 .2 Solution of the flatness problem

We have seen how the second fine-tuning issue of the Hot Big Bang
theory derives from eq. (1.44). With a little manipulation we can
rewrite it as

|Ω− 1| =
|K|

(aH)2
. (1.46)

If in the past the comoving Hubble radius decreases, the solution
Ω = 1 becomes an attractor. This solves the flatness problem.
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1 .3 .3 Spacetime diagram of inflation

The defining trait of inflation is that of a shrinking comoving Hubble
radius. By means of eq. (1.31b) we can recast it as

d
dt

(
1

aH

)
< 0⇔ ä > 0⇔ ρ+ 3p < 0 , (1.47)

from which we deduce that:

• inflation is a period of accelerated expansion. If we introduce
the quantities εH and N, defined by

εH ≡ −
Ḣ

H2
, (1.48a)

dN
dt
≡ −H⇒ N1 −N2 = − log

a1
a2

, (1.48b)

eq. (1.47) is transformed into

εH =
d logH

dN
< 1 ; (1.49)

• during the inflationary epoch the strong energy condition is
violated.

In the next Section we are going to see how during inflation the
Hubble rate is approximately constant: since we want a period of
expansion, this constant must be larger than zero. In this case, thanks
to eq. (1.3), one has

η ≈ −
1

aH
with H ≈ const. . (1.50)

Thus eq. (1.9) implies that the comoving particle horizon is not finite,
and the horizon problem does not appear. What about the flatness
problem? The comoving Hubble radius is decreasing, so the results of
Section 1.3.2 apply. The resulting spacetime diagram is that of fig. 1.3
in the previous page.

1 .3 .4 Single-field slow-roll inflation

The simplest way in which one is able to violate the strong energy
condition is to take ρ and p to be those of a single scalar field φ:
the “inflaton”. We do not specify the physical nature of the inflaton:
indeed, there is no need to do it because in the Effective Field Theory
of Inflation φ is nothing more than a “clock” that parametrizes the
evolution of the inflationary energy density [61, 62]. The dynamics of
φ (minimally) coupled to gravity are governed by the action

S = SG + SM

=
M2

P
2

∫
d4x
√
−gR−

1

2

∫
d4x
√
−g
{
(∇φ)2 + 2V(φ)

}
,

(1.51)
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which we will examine more thoroughly in Chapter 4. The field φ can
depend only on time if the symmetries of a FLRW background must
be satisfied, and the resulting field equations for the scale factor are
nothing else but eqs. (1.31) with

ρ =
φ̇2

2
+ V(φ) , (1.52a)

p =
φ̇2

2
− V(φ) , (1.52b)

while for φ one has

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (1.53)

With the energy density and isotropic pressure given above, the
parameter w in the case of a single scalar field is

w =
φ̇2

2 − V(φ)

φ̇2

2 + V(φ)
, (1.54)

and we can have accelerated expansion if the potential energy is
sufficiently larger than the kinetic energy. What are the means to
achieve this? The original formulation of inflation in [63] was to have
φ evolve from a false vacuum (where the kinetic energy is close to
zero, but the potential energy is larger than zero) to the true minimum
of the potential via quantum tunnelling. However it was realized that
the expansion would have prevented the bubbles of the new phase
from coalescing, so the Universe would never have moved to the state
it is in today [1, 2].

Therefore the idea of a potential with a local minimum was aban-
doned in [3, 4], moving to one with a very shallow slope leading to
the ground state: the field would have slowly rolled towards the bottom
of the potential as depicted in fig. 1.4 in the next page, maintaining
its kinetic energy small and allowing for ä > 0. In fact with some
manipulations we find that εH is

εH =
φ̇2

2H2M2
P
=

3

1+
2V(φ)

φ̇2

, (1.55)

so if φ̇2 is smaller than V(φ) then εH < 1, and eq. (1.47) holds. Having
φ̇2 � V(φ) leads to εH � 1 and p ≈ −ρ, hence to the de Sitter limit.
What about the duration of inflation? It will be sustained for long
enough to solve the horizon and flatness problems only if εH < 1 for a
sufficiently large number of Hubble times: this requires that a second
parameter, called ηH and defined as

ηH = −
d log εH

dN
= 2εH +

2φ̈

Hφ̇
, (1.56)
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reality, inflation ends at some finite time, and the approximation (60) although valid at early times,

breaks down near the end of inflation. So the surface ⇥ = 0 is not the Big Bang, but the end of

inflation. The initial singularity has been pushed back arbitrarily far in conformal time ⇥ ⇤ 0, and

light cones can extend through the apparent Big Bang so that apparently disconnected points are

in causal contact. In other words, because of inflation, ‘there was more (conformal) time before

recombination than we thought’. This is summarized in the conformal diagram in Figure 9.

6 The Physics of Inflation

Inflation is a very unfamiliar physical phenomenon: within a fraction a second the universe grew

exponential at an accelerating rate. In Einstein gravity this requires a negative pressure source or

equivalently a nearly constant energy density. In this section we describe the physical conditions

under which this can arise.

6.1 Scalar Field Dynamics

reheating

Figure 10: Example of an inflaton potential. Acceleration occurs when the potential energy of

the field, V (⇤), dominates over its kinetic energy, 1
2 ⇤̇

2. Inflation ends at ⇤end when the

kinetic energy has grown to become comparable to the potential energy, 1
2 ⇤̇

2 ⇥ V . CMB

fluctuations are created by quantum fluctuations �⇤ about 60 e-folds before the end of

inflation. At reheating, the energy density of the inflaton is converted into radiation.

The simplest models of inflation involve a single scalar field ⇤, the inflaton. Here, we don’t

specify the physical nature of the field ⇤, but simply use it as an order parameter (or clock) to

parameterize the time-evolution of the inflationary energy density. The dynamics of a scalar field

(minimally) coupled to gravity is governed by the action

S =

⇤
d4x

⌅�g

�
1

2
R +

1

2
gµ�⌅µ⇤⌅�⇤� V (⇤)

⇥
= SEH + S⇥ . (61)

The action (61) is the sum of the gravitational Einstein-Hilbert action, SEH, and the action of a

scalar field with canonical kinetic term, S⇥. The potential V (⇤) describes the self-interactions of the
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F igure 1 .4 : This figure shows the mechanism of single-field slow-roll in-
flation, where the field φ rolls down a potential V(φ): when
the potential energy dominates over the kinetic energy ä is
larger than zero, and the acceleration stops when φ̇2 ≈ V(φ).
Fluctuations observed in the CMB are created at φCMB (often
called φ? in the literature). After inflation ends the inflaton
φ oscillates around the minimum of the potential, and its en-
ergy density is converted into radiation in the process called
“reheating”.

satisfies |ηH| < 1 (|ηH|� 1 in the de Sitter limit).
In the slow-roll regime the conditions εH � 1 and |ηH|� 1 can be

reformulated as constraints on the shape of the inflationary potential

εV(φ)� 1, with εV(φ) ≡
M2

P
2

(
V ′(φ)
V(φ)

)2
,

|ηV(φ)|� 1, with ηV(φ) ≡M2
P
V ′′(φ)
V(φ)

,

(1.57a)

(1.57b)

where the Planck mass is introduced to make these “potential slow-
roll parameters” (εH and ηH are the “Hubble slow-roll parameters”,
instead) manifestly dimensionless. The Hubble and potential slow-roll
parameters are related by the “slow-roll approximation”: in the upcom-
ing Chapters we will often stop at the first order of this approximation,
that says (one may refer to [64, 65] for a complete treatment of the
slow-roll expansion)

εH ≈ εV , (1.58a)

ηH ≈ −2ηV + 4εV . (1.58b)

Inflation ends when ä = 0: this corresponds to εH = 1 (thus to
εV ≈ 1) and to the violation of the slow-roll assumption. The number
of e-folds of inflation occurred at a time t is given by

N(t) = log
aend

a(t)
=

∫tend

t

dt ′H(t ′) =
∫φend

φ(t)
dφ

H

φ̇
. (1.59)
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If we stop at first order in slow-roll, and assume φ̇ > 0 (as in fig. 1.4),
eq. (1.59) becomes

N(t) ≈ 1

M2
P

∫φend

φ(t)
dφ

V(φ)

V ′(φ)
=

∫φend

φ(t)

dφ
MP

1√
2εV(φ)

. (1.60)

The above results can also be used to estimate how much inflation
is actually needed to solve the horizon and flatness problems of the
standard Hot Big Bang cosmology. At least, we need to require that
scales k of order of the comoving Hubble radius today had been inside
the comoving Hubble radius during inflation, i. e. that

(a0H0)
−1 < (aIHI)

−1 . (1.61)

For simplicity, we can neglect not only the period of Λ dominance
but also the matter-dominated epoch, and assume that reheating
happens instantaneously after the end of inflation. Then H ∝ a−2

after the end of inflation. Assuming the reheating temperature to be
Treh ∼ Tend ≈ 1015 GeV, we have (we will see in the next Chapter that
temperature scales as 1/a)

a0H0
aendHend

=
a0
aend

(
aend

a0

)2
=
aend

a0
=

T0
Tend

≈ 10−28 , (1.62)

where we have used T0 ≈ 10−3 eV (i. e. T0 ≈ 2.7K). Eq. (1.61), then,
tells us that

(aIHI)
−1 & 1028(aendHend)

−1 . (1.63)

Since H is almost constant during inflation, this relation turns into
log aend

aI
= NI & 64: that is, around 60 e-folds of inflation are needed.

Before moving on to the next Chapter, it is important to point out
that the fundamental microscopic origin of inflation is still unknown:
there are many models whose predictions are within the experimental
uncertainties. For a nice review of the most common potentials (and
on inflationary theory in general) we refer to [43, §6.5], while for a
compendium of all the inflationary models in the literature see [66].
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As we have seen in the previous Chapter, the Universe emerged
in a very dense state after the end of inflation and reheating. The
interactions between particles were so fast (much faster than the
Hubble rate) that thermodynamic equilibrium was established, and
the state of the Universe was that of a plasma at a single temperature
T . As the Universe expanded, the plasma cooled down, and the first
light elements (hydrogen, helium and lithium) formed. At some point,
the temperature had dropped enough for the first stable atoms to exist,
and then for photons to start free-streaming. In this Chapter, we are
going to review briefly the thermal history of the Hot Big Bang, with
a glance at neutrino decoupling, recombination, etc. In the second
part, we study in more detail how the CMB black-body spectrum (and
possible deviations from it) are formed. This Chapter is mainly based
on [44, §2, §3][45].

2 .1 thermal history

Suppose we have some particles that interact with each other with a
rate of interaction Γ . If Γ � H, then interactions are so fast that thermal
equilibrium is established, and particles can be described by a single
distribution function in phase space, characterized by a temperature
T . Conversely, if Γ � H, the particle species under consideration does
not interact efficiently anymore with the other particles in the thermal
bath, and decouples from it.

39
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What can we say about Γ in the Standard Model? The rate of interac-
tions for a reaction 1+ 2� 3+ 4, with particle densities n1 ∼ n2 ∼ n, is
given by n 〈σv〉, where σ and v are, respectively, the cross-section and
the relative velocity in the center-of-mass frame and 〈. . .〉 indicates an
average over the velocity distribution. In the Standard Model, where
interactions between 1, 2, 3 and 4 are mediated by gauge bosons,
from dimensional analysis we can write 〈σv〉 ∼ α2/T2 for v ∼ 1,
where α = g2/4π. Then, using n ∼ T3 and the Friedmann equation
ρ = 3H2M2

P ∼ T4, we see that for α ∼ 10−2 thermal equilibrium is
achieved for 102 GeV . T . 1016 GeV.

Conversely, consider for example weak interactions: below the elec-
troweak symmetry breaking scale, T . 102 GeV, theW± and Z0 bosons
are massive, and the cross-section for weak interactions becomes that
of Fermi theory, i. e. 〈σv〉 ∼ G2FT2, with GF ≈ 1.17× 10−5 GeV−2. The
strength of the weak interactions decreases as the temperature of the
Universe drops, and becomes O(H) around Tdec

w ≈ 1MeV. Around this
temperature, particles that interact with the plasma only through weak
interactions decouple.

In the next Sections we will investigate these concepts more thor-
oughly. We conclude this introduction with a summary of the key
events in the history of the Universe. A detailed treatment of all these
events can be found on [67] and references therein:

baryogenesis This is the epoch when the asymmetry between mat-
ter and antimatter that we observe today in the Universe was gen-
erated. Baryogenesis models try to derive the observed baryon-
to-photon ratio nb

nγ
≈ 10−9.

electroweak phase transition At a temperature T ≈ 102 GeV,
the Higgs mechanism gives mass to the W± and Z0 bosons.
The cross-section of weak interactions goes from a 〈σv〉 ∼ E−2
behavior to a 〈σv〉 ∼ E2 one.

qcd phase transition Around T ∼ ΛQCD ≈ 150MeV the strong
interaction between quarks and gluons becomes important, and
baryons (|qqq〉) and mesons (|qq̄〉) states are formed.

dark matter freeze-out If dark matter is a weakly-interacting
massive particle (WIMP), it will decouple (its abundance will
freeze-out) around T ∼ Tdec

w ≈ 1MeV.

neutrino decoupling Neutrinos interact with the plasma only
through weak interactions: therefore they will also decouple
around T ∼ Tdec

w .

electron-positron annihilation Around T ≈ me, the reac-
tion e+ + e− � γ+ γ can proceed only from left to right (be-
cause photons are not energetic enough to create e+-e− pairs).
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Electrons and positrons then annihilate, and their energy is trans-
ferred to the thermal bath, heating it. Neutrinos have decoupled
before e+-e− annihilation, so they are not heated.

big bang nucleosynthesis At T ≈ 10−1MeV light elements were
formed.

recombination When the photon temperature drops low enough
that the reaction H+γ→ e− +p is disfavored, neutral hydrogen
forms.

photon decoupling Around the time neutral hydrogen forms,
photons decouple from the plasma. Indeed, photons and elec-
trons interact mainly through Compton scattering e− + γ �
e− + γ: after recombination, the density of free electrons drops
sharply and the photon mean free path becomes longer than the
horizon. Photons then stream freely through the Universe and
are today observed as the CMB.

2 .1 .1 Equilibrium thermodynamics

When we talk about thermal equilibrium in the Hot Big Bang phase,
we are using the language of statistical mechanics. The system is
then described by a distribution function f in phase space [56, §22.6],
which is defined in terms of the measurements made by a local Lorentz
observer at a given point xµ in spacetime as the number δN of particles
that occupy a spatial volume δVx and have (physical) momentum
(defined as in Section 1.1.2) in a small region of size δPi around some
Pi, i. e. occupy some volume δVP in momentum space. The distribution
function f is then defined as the ratio

f ≡ δN

δVxδVP
. (2.1)

Notice that we have defined it in terms of x only (since we are focusing
on a specific local Lorentz observer, who has a proper definition of
time), and P only (since P0 > 0 is fixed uniquely by PµPµ = −m2).
For a generic observer Oµ, then, we can define [56, §22.6]

dN ≡ f(t, x, E(P),P)
√
hd3xd3P
(2π)3E(P)

, (2.2)

where [58, §4]:

• the coordinates (t, x) are locally adapted to the observer (i. e. we
have Oµ ∝ δ0µ in these coordinates);

• hµν is the induced metric on the surfaces of constant t;

• Pi are the covariant spatial components of the physical three-
momentum;
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• d3P
E(P) is the Lorentz-invariant volume element on the mass hy-
perboloid, and the positive-energy solution of PµPµ = −m2 is
selected in the relation E = E(P).

Given a distribution function f, we can define the number density
current Nµ and the energy-momentum tensor Tµν with a procedure
called “taking moments of f”.1 More precisely, we have (dropping the
arguments of f for simplicity of notation)

Nµ =

∫
d3P

(2π)3E
f Pµ , (2.3a)

Tµν =

∫
d3P

(2π)3E
f PµPν . (2.3b)

Matching with the definitions of eqs. (1.27), (1.28), (1.29), (1.30), we can
extract the energy density ρ, the isotropic pressure p, etc. Regarding
the number density, recall that a perfect fluid has four-velocity of
energy transport Uµ equal to the four-velocity of particle number
transport, i. e. one can write Nµ = nUµ, where n is the particle
number density.2 This definition allows to extract also n from eqs.
(2.3).

Things become more simple for perfect fluids in a FLRW back-
ground: indeed, due to homogeneity and isotropy, f for a given parti-
cle species i can depend only on cosmic time t and the energy E of
the particle. Then, it is straightforward to show that (recalling that
p2 ≡ gijPiPj, see Section 1.1.2)

n =

∫
d3P
(2π)3

f(E) ,

ρ =

∫
d3P
(2π)3

E f(E) ,

p =
1

3

∫
d3P
(2π)3

p2

E
f(E) .

(2.4a)

(2.4b)

(2.4c)

Having seen how n, ρ and p are defined, we proceed by introducing
three important concepts in the study of the thermal history of our
Universe:

kinetic equilibrium A system of particles is said to be in kinetic
equilibrium if the particles exchange energy and momentum
efficiently. This leads to a state of maximum entropy in which
the distribution functions are given by the Fermi-Dirac and Bose-
Einstein distributions, i. e.

f(E) =
g

e
E−µ
T ± 1

, (2.5)

1 We will see how this procedure works in more detail in Section 3.3. For the moment,
we refer to [56, §22.6][58, §4][67, §5] for more details.

2 This need not be the case for an imperfect fluid, as we will see in Section 3.3.1.
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where g is the number of internal degrees of freedom (e. g. spin),
the + (−) sign is for fermions (bosons), and µ is the chemical
potential.

chemical equilibrium A system of particles is said to be in
chemical equilibrium with respect to some reaction if the rate
of forward and reverse reactions is the same. For a reaction
A+B+ · · ·� C+D+ . . . , this implies

A,B,...∑
i

µi =

C,D,...∑
i

µi . (2.6)

For example, we will see that at redshifts z & 2× 106 photons
and electrons are in chemical equilibrium with respect to double
Compton scattering, i. e. e− + γ� e− + γ+ γ. This implies that
the photon chemical potential is zero at z & 2× 106.

thermal equilibrium Finally, a system of particles is in thermal
equilibrium if they are both in kinetic and chemical equilibrium.
Such particles share the same temperature T .

2 .1 .2 Densities, pressure and entropy

Using eqs. (2.4), (2.5), we can compute the number and energy den-
sities of massive and massless particles, assuming chemical equilib-
rium (so that all chemical potentials vanish). Recalling that E(P) =√
p2 +m2, it is straightforward to show that:

• in the ultra-relativistic limit T � m, the integrals can be done in
terms of the Riemann ζ function. They are given by

n =
gζ(3)

π2
T3 ×

1 for bosons ,
3
4 for fermions ,

(2.7a)

ρ =
gπ2

30
T4 ×

1 for bosons ,
7
8 for fermions ,

(2.7b)

p =
ρ

3
; (2.7c)

• in the limit T � m, instead, the integrals become

n = g

(
mT

2π

) 3
2

e−
m
T , (2.8a)

ρ = mn , (2.8b)

p = nT � ρ . (2.8c)

Comparing eqs. (2.7) with eqs. (2.8), one can see that there is an
exponential “Boltzmann suppression” of n, ρ and p as T drops below



2.1 thermal history 44

m. This is the annihilation of particles and antiparticles: when the
temperature drops below the mass, the energies of the particles in the
thermal bath are not high enough for pair production and then cannot
balance the annihilation. We will see in a moment how this is relevant
for the temperature of the Cosmic Neutrino Background (CνB).

Through eqs. (2.7) it is possible to define the so-called effective number
of relativistic species, g∗(T). Calling T the photon temperature and ρr

the energy density of radiation (i. e. the sum of energy densities over
all relativistic species), it is just defined as

g∗(T) ≡
30ρr

π2T4
. (2.9)

One can distinguish two contributions to g∗: these are the contribution
of relativistic particles (with T & m) in thermal equilibrium with
photons, i. e.

gth
∗ (T) ≡

∑
i=b

gi +
7

8

∑
i=f

gi , (2.10)

and the contribution of relativistic particles decoupled from photons
(which can have a different temperature, Ti 6= T , from photons), i. e.

gdec
∗ (T) ≡

∑
i=b

gi

(
Ti
T

)4
+
7

8

∑
i=f

gi

(
Ti
T

)4
. (2.11)

If all particles are in thermal equilibrium with photons, to compute
g∗(T) it is enough to use eq. (2.9) and discard a given species from
the sum once they annihilate. Things are different if there is some
contribution from gdec

∗ (T), since it is necessary to know the ratio Ti
T .

This can be done by using the conservation of entropy in equilibrium.3

In absence of chemical work, i. e. when the number of particles in
the system does not change if the volume is held fixed (so that µ = 0),
the first law of thermodynamics for the entropy density s reads as

∂µρ =
ρ+ p

n
∂µn+nT∂µs . (2.12)

Using the continuity equations for n and ρ, i. e. ∇µNµ = 0 and
Uµ∇νTµν = 0, it is possible to show that s = ρ+p

T is conserved,
i. e. that s ∝ a−3. From eqs. (2.7b), (2.7c), then, we see that for a
collection of particles of different species s takes the form

s =
∑
i

ρi + pi
T

≡ 2π
2

45

{
gth
∗,S(T) + g

dec
∗,S(T)︸ ︷︷ ︸

≡g∗,S(T)

}
T3 , (2.13)

where we used that the total energy density ρ is ≈ ρr in radiation
dominance. From this definition, and eqs. (2.9), (2.10), it is clear that

3 There are non-equilibrium processes in which entropy is not conserved. However,
these yield a negligible correction to this computation, since the result will be domi-
nated by the entropy of the photons [44, §3.2.5].
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gth
∗ (T) = g

th
∗,S(T). However, since for decoupled species si ∝ T3i from

eqs. (2.7b), (2.7c) (their entropy will be conserved separately once they
decouple), one has that

gdec
∗,S(T) ≡

∑
i=b

gi

(
Ti
T

)3
+
7

8

∑
i=f

gi

(
Ti
T

)3
6= gdec
∗ (T) . (2.14)

The conservation of entropy, then, takes the form

d(g∗,S(T)T3a3)
dt

= 0⇒ T ∝ 1
3
√
g∗,S(T)a

. (2.15)

Away from particle mass thresholds T ∼ mi, i. e. where the particle
species i becomes non-relativistic, g∗,S(T) is constant and T scales as
a−1. Whenever, instead, a particle species annihilates, its entropy is
transferred to the plasma, heating it up and causing T to decrease
less slowly than a−1. It is very important to stress that the entropy is
transferred only to the particles that the annihilating species was in
equilibrium with. As we will see in the next Section, this is the reason
why the temperatures of the CMB and the CνB are different.

2 .1 .3 Cosmic neutrino background

Neutrinos are coupled to the plasma via weak interaction. At tem-
peratures below the scale of electroweak symmetry breaking, the
cross-section for weak interactions scales as 〈σv〉 ∝ T2. Then, the inter-
action rate Γ = n 〈σv〉 scales as T5. Using the first Friedmann equation,
eq. (1.31a), and eq. (2.15), during radiation dominance, one can easily
see that the Hubble rate scales as

H =

√
ρr

3M2
P
≈ π
3

√
g∗(T)
10

T2

MP
∼
T2

MP
. (2.16)

Therefore, Γ becomes . H around 1MeV (a more precise calculation
gives Tdec

w ≈ 0.8MeV).
After the decoupling of weak interactions, neutrinos move freely

along geodesics preserving their Fermi-Dirac distribution. Their en-
tropy will be conserved: then, using the results of the previous Section,
Tν scales as a−1. If g∗,S(T) is constant, also the photon temperature
scales in the same way: however, particle annihilations can inject en-
ergy in the plasma and make T decrease more slowly than a−1. This
indeed happens because of e+-e− annihilation, which happens right
after Tdec

w , when the temperature drops below the electron mass.
The increase in the temperature of photons can be computed us-

ing eq. (2.15). Neglecting neutrinos and other decoupled species in
eqs. (2.13), (2.14), and using the fact that gγ = ge+ = ge− = 2, the pho-
ton temperature increases of a factor 3

√
11/4 after e+-e− annihilation,

i. e.

(aT)|T<me

(aT)|T&me

=
3

√
11

4
. (2.17)
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Since aTν is conserved, the ratio Tν
T for T . me is

Tν

T
=

3

√
4

11
, (2.18)

while the number of relativistic species is

g∗(T) = 2+
7

8
× 2Neff ×

(
4

11

) 4
3

, (2.19a)

g∗,S(T) = 2+
7

8
× 2Neff ×

(
4

11

)
. (2.19b)

In eqs. (2.19), Neff is the so-called “effective number of neutrino
species”: in the Standard Model it is equal to 3,4 while it can be higher
if there are other relativistic degrees of freedom around T ≈ 1MeV
(or lower, as it happens in scenarios involving a period of matter
domination before the beginning of the Hot Big Bang epoch, due to
the presence of a non-relativistic massive particle which then decays.
We refer to [70–72] for details). The evolution of g∗(T) and g∗,S(T) is
shown in fig. 2.1.
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7
8 ⇥ 12 = 96.25. The Higgs boson and the gauge bosons W±, Z0 annihilate next. This happens

roughly at the same time. At T ⇠ 10 GeV, we have g? = 96.26 � (1 + 3 · 3) = 86.25. Next,

the bottom quarks annihilate (g? = 86.25 � 7
8 ⇥ 12 = 75.75), followed by the charm quarks

and the tau leptons (g? = 75.75 � 7
8 ⇥ (12 + 4) = 61.75). Before the strange quarks had

time to annihilate, something else happens: matter undergoes the QCD phase transition. At

T ⇠ 150 MeV, the quarks combine into baryons (protons, neutrons, ...) and mesons (pions, ...).

There are many di↵erent species of baryons and mesons, but all except the pions (⇡±,⇡0) are

non-relativistic below the temperature of the QCD phase transition. Thus, the only particle

species left in large numbers are the pions, electrons, muons, neutrinos, and the photons. The

three pions (spin-0) correspond to g = 3 · 1 = 3 internal degrees of freedom. We therefore get

g? = 2 + 3 + 7
8 ⇥ (4 + 4 + 6) = 17.25. Next electrons and positrons annihilate. However, to

understand this process we first need to talk about entropy.

Figure 3.4: Evolution of relativistic degrees of freedom g?(T ) assuming the Standard Model particle content.

The dotted line stands for the number of e↵ective degrees of freedom in entropy g?S(T ).

3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su�ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

the total entropy stays constant even beyond equilibrium.

F igure 2 .1 : This plot shows the evolution of g∗(T) (full line) and g∗,S(T)
(dotted line) as a function of T . We see that they are equal up to
T ≈ 0.5MeV, when neutrinos decouple from the plasma, while
g∗(T) = 3.38 and g∗,S(T) = 3.94 after T ≈ me (for Neff = 3).
The plot also shows that the transitions of a particle species
from relativistic to non-relativistic behavior is not instanta-
neous. About 80% of the particle-antiparticle annihilations
takes place in the interval m6 . T . m [44, §3.2.2].

4 Taking into account corrections to the neutrino distribution function (i. e. deviations
from the Fermi-Dirac form) and the fact that neutrino decoupling is not instantaneous
raises this number to 3.046 [68, 69].
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2 .1 .4 Recombination and CMB decoupling

In the previous Sections we assumed (kinetic) equilibrium, so that the
distribution functions assumed the Bose-Einstein or Fermi-Dirac form.
There are, however, many processes in the early Universe where this
assumption does not hold. The tool needed to describe the evolution
is the Boltzmann equation. In its simplest form,5 it says that the
number of particles of a given species i is conserved in absence of
interactions, i. e.

dni
dt

+ 3Hni = C[n1, . . . ] , (2.20)

where the collision term C encodes the effect of interactions of the
particle i with the other species. In this Section we will consider only
interactions of the form 1+ 2� 3+ 4. In this case, the collision term
can be written as

C[n1, . . . n4] = −αn1n2 +βn3n4 , (2.21)

where α is the thermally averaged cross-section 〈σv〉1+2→3+4 for the
process 1+ 2→ 3+ 4: the first term on the right-hand side of eq. (2.21)
says that the higher α is (and/or the higher the densities of the
species 1 and 2 are), the faster n1a3 is depleted. The parameter β can
be related to α by noticing that n1a3 must be constant in chemical
equilibrium (indeed, in this case the number of particles in a fixed
physical volume V ∝ a3 does not change, because there is no process
that yields a net production or destruction of particles): the collision
term must then vanish when the number densities are those derived
from eqs. (2.5), (2.6), i. e.

β =

(
n1n2
n3n4

)∣∣∣∣
eq
α . (2.22)

Using Ni ≡ ni
s as variables, eq. (2.20) becomes

d logN1
d loga

= −
Γ1
H

{
1−

(
N1N2
N3N4

)∣∣∣∣
eq

N3N4
N1N2

}
, (2.23)

where Γ1 ≡ n2 〈σv〉1+2→3+4. The qualitative behavior of the solution
of eq. (2.23) is the following:

• for Γ1 � H, the system tends towards chemical equilibrium.
Suppose indeed that we start with Ni>1 ∼ N

eq
i>1. If N1 � N

eq
1 ,

the right-hand side of eq. (2.23) is negative and particles of the
species 1 are destroyed until N1 → N

eq
1 . If, on the other hand,

we start with N1 � N
eq
1 , particles are produced until N1 → N

eq
1 ;

5 We will study it in more detail in Sections 2.2 and 3.3.
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• for Γ1 � H, N1 tends to a constant, the “relic abundance”.

An example of out-of-equilibrium process where the above evolution
takes place is recombination. This is the period of time in the early
Universe when the first atoms formed. At temperatures above ≈ 1 eV,
the plasma was composed of free electrons, photons (tightly coupled
to electrons via Compton scattering) and nuclei (interacting with
electrons via Coulomb scattering). When the temperature became low
enough, the formation of neutral hydrogen became viable (i. e. photons
were not energetic enough to allow the reaction H + γ → p + e−).
Then, the density of free electrons dropped sharply and photons
decoupled from matter. The quantity that one wants to track during
recombination is the free electron fraction Xe, defined as

Xe ≡
ne

nb
, (2.24)

where nb is the baryon density.
The goal is then to solve eq. (2.23) with N1 = Ne, in order to find

the relic abundance of electrons. However, the onset of recombination
can be estimated in the following way. If we assume equilibrium, the
number densities of electrons, protons and hydrogen atoms take the
form of eq. (2.8a), i. e.

n
eq
i = gi

(
miT

2π

) 3
2

e
µi−mi
T for i = e, p,H , (2.25)

where we have included the chemical potentials, which were absent
from the calculations of Section 2.1.2. Assuming µγ = 0, chemical
equilibrium of the reaction H+ γ � p+ e− implies µH = µp + µe.
Considering the ratio

(
nH
nenp

)∣∣∣∣
eq

=
gH
gegp

(
2π

T

mH
memp

) 3
2

e
mp+me−mH

T , (2.26)

then, gets rid of the chemical potentials. Using ge = gp = 2, gH = 4,6

and neglecting the binding energy BH ≡ mp +me −mH in the pre-
factor (but not in the exponent), we arrive at

nH
n2e

∣∣∣∣
eq

=

(
2π

meT

) 3
2

e
BH
T , (2.27)

where we also used the fact that the Universe is not electrically charged
so ne = np. Using the baryon-to-photon ratio ηb ≡ nb

nγ
, and neglecting

all other nuclei except protons, one arrives at the Saha equation, i. e.

(
1−Xe
X2e

)∣∣∣∣
eq

=
2ηbζ(3)

π2

(
2πT

me

)
e
BH
T . (2.28)

6 Recall that |12 〉 ⊗ |12 〉 = |0〉 ⊕ |1〉.
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Eq. (2.28), which assumes that the relic abundance of electrons is the
equilibrium one, allows to estimate the recombination temperature.
We can define Trec as the temperature at which 90% of the electrons
have combined with protons to form hydrogen (i. e. when Xe = 10−1).
Using BH = 13.6 eV one finds Trec ≈ 0.3 eV. For T0 ≈ 2.7K, the redshift
of recombination is zrec ≈ 1300. Since matter-radiation equality is at
zm-r ≈ 3500, recombination occurs in matter dominance.

It is also possible to compute when the photons and electrons (cou-
pled through Compton scattering e− + γ� e− + γ) stop interacting.
The interaction rate Γe ≈ neσT (where σT is the Thomson scattering
cross-section and we take v ≈ 1) is decreasing because of recombina-
tion: using eq. (2.28) one sees that it becomes of order of the Hubble
rate at Tdec ≈ 0.27 eV, corresponding to zdec ≈ 1100.

We conclude this Section with some brief comments:

• the Saha equation gives the correct prediction for Trec, but solving
the full Boltzmann equation eq. (2.23) is necessary to compute
correctly the electron fraction after freeze-out;

• the recombination temperature is ≈ 102× smaller than the bind-
ing energy of the hydrogen atom. The reason is that, also if
T . BH, there are photons energetic enough to ionize a hydro-
gen atom in the high-frequency tail of the photon distribution.
This effect is amplified by the fact that there are very many
photons for each hydrogen atom (ηb ≈ 10−9);

• Trec and Tdec are fairly close. However, solving the full Boltz-
mann equation shows that the free electron fraction has a 10%
drop from recombination to decoupling. This means that a large
degree of neutrality is necessary for our Universe to become
transparent to photon propagation;

• while recombination happens after matter-radiation equality, it
is important to stress that zrec is not deep into matter dominance.
At recombination the ratio ρr

ρm
is still high enough to leave an ob-

servable signature in the CMB angular power spectrum, through
the early ISW effect [73, §9.2.2].

In this Section we have used the equilibrium distributions to arrive
at the Saha equation. In reality, the distributions deviate from the
Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann forms: while elec-
trons and ordinary matter are well described by Maxwell-Boltzmann
distributions up to z ≈ 10 [45], when electron and protons combine
to form an hydrogen atom, the energy emitted can distort the photon
spectrum. The study of the cosmological recombination lines is a very
rich and promising field of research [74, 75] These spectral distortions
will be investigated in the next Section.
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2 .2 cmb black-body spectrum

We have seen in Section 2.1.2 that, in kinetic equilibrium with zero
chemical potential, the photon frequency spectrum takes the black-body
form, i. e. (using eq. (2.5) with µγ = 0 and gγ = 2)

Iγ(E) =
E3fBB

γ (E)

2π2
=
E3

π2
1

e
E
T − 1

, (2.29)

where the intensity Iγ is defined from the relation

ργ =

∫+∞
0

dE Iγ(E) =
π2T4

15
, (2.30)

and it is usually plotted in units of erg s−1 cm−2 Hz−1 sr−1 in the
literature. From now on we will define fBB

γ (E) to be just (e
E
T − 1)−1,

i. e. without the factor gγ.
The black-body frequency spectrum is uniquely identified by the

temperature T , with the maximum of the intensity being around
νmax
T ≈ 58.8GHz K−1 (λmaxT ≈ 5.10mm K). For a black-body spectrum,

besides, the ratio ργ
nγ

is fixed in terms of T as

ργ

nγ

∣∣∣∣
BB

=
π4T

30ζ(3)
. (2.31)

What happens if we do a small change in the temperature, T → T ′ =
T + δT? The black-body spectrum will change as (defining x ≡ E/T ,
with x ′

x = T
T ′ )

δfBB
γ =

1

ex
′
− 1

−
1

ex − 1
=

xex

(ex − 1)2
δT

T
+O

(
δT

T

)2
, (2.32)

so that

∆Iγ

T3
=
x3

π2
xex

(ex − 1)2︸ ︷︷ ︸
≡G(x)

δT

T
+O

(
δT

T

)2
, (2.33)

where we can call G(x) the spectrum of a temperature shift. However, the
change in the total energy and total number of photons will satisfy
the relation

δnγ

nγ
−
3

4

δργ

ργ
= 0 . (2.34)

This tells us that if we inject some energy in the photon field, but
we are not able to change accordingly the number of photons, the
spectrum will deviate from a black-body. More precisely, the distortion
of eq. (2.32) will not be thermalized.

The goal of this Section is to study in more detail when and how
this happens in our Universe, and which kind of spectral distortions
of the CMB can arise.
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2 .2 .1 General assumptions

In order to thermalize a distortion, we need to create photons: two pro-
cesses that achieve this are thermal Bremsstrahlung (BR) and double
Compton emission (DC). These processes efficiently create photons
at low energies: it is Compton scattering that redistributes these soft
photons in the high-frequency tail of the spectrum, restoring full
equilibrium.

The relevant epoch for spectral distortions of the photon spectrum
is at z . 2× 106: indeed, thermalization was very efficient above this
redshift, and any residual distortion from this epoch will be very small
[45, §3]. Other two assumptions that we are going to make in this
Section are the following:

• we are going to neglect the perturbations in the cosmic fluid.
These perturbations are very important for the creation of spectral
distortions (as we will see in Section 3.4), but are negligible when
one wants to study the thermalization process;

• the distribution function of electrons, protons and ordinary mat-
ter is assumed to be of the Maxwell-Boltzmann form at one
common temperature Te and with fixed chemical potentials. Up
until recombination, as we have seen in Section 2.1.4, T and Te
are very close, i. e. photons and electrons are in thermal equilib-
rium (actually Te tends to deviate from the photon temperature
T as the Universe expands, in a process called “adiabatic cool-
ing”. This is due to the difference in adiabatic indices of photons
and electrons). After photon decoupling, the energy/momentum
transfer between electrons and other matter is still very fast, and
they share a common temperature Te up to z ≈ 10 [45, §3][76,
77].

2 .2 .2 Photon Boltzmann equation

The Boltzmann equation eq. (2.20) for particle number densities that
was used in Section 2.1.4 is a general consequence of the Boltzmann
equation for the distribution function f in phase space. On a FLRW
background, f = f(t, E) evolves as (we drop the subscript γ on f, from
now on)

ḟ−H
∂f

∂ logE
= C[f] . (2.35)

The left-hand side includes the effects of gravity (more precisely, the
effects of the cosmological expansion), while the right-hand side de-
scribes how f varies when particles interact with each other in between
their geodesic motion through spacetime. In absence of collisions, it
is easy to see that, given any function f0(E), the function f0(E× a)
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solves eq. (2.35). This, in turn, can be used to show that temperature
redshifts as a−1 for f0 given by eq. (2.5) with µ = 0.

Taking moments of eq. (2.35) directly yields the continuity equa-
tions for number and energy densities, defined in eqs. (2.4a), (2.4b),
with the appropriate source terms describing the heat transfer due to
interactions. In order to describe electrons and baryons this is enough.
In order to study the evolution of photons, instead, one needs the full
equation eq. (2.35), with the appropriate collision terms. Consider for
example Compton scattering, i. e.

e−(p) + γ(k)� e−(p ′) + γ(k ′) , (2.36)

whose kinematics is depicted in fig. 2.2. Neglecting the photon polar-
ization (as we are doing throughout), the collision term C[f]|CS reads
(see, e. g., [78])

C[f]|CS =
1

2E(p)

∫
Dp ′DkDk ′ (2π)4δ(4)(p+ k− p ′ − k ′)

× |M|
2
F(p, p ′, k, k ′) ,

(2.37)

where Dp = d3p
2(2π)3E(p)

, M is the matrix element of the interaction
eq. (2.36), and the statistical factor is

F(p, p ′, k, k ′) = fe(p ′)fγ(k ′){1+ fγ(k)}

− fe(p)fγ(k){1+ fγ(k ′)} ,
(2.38)

with the (1 + f) factors accounting for induced scattering (Pauli-
blocking has been dropped).
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Abbildung 2.4: Geometrie der Comptonstreuung eines Photons an einem bewegten Elektron

Inverse Comptonstreuung

Begri�ich bedeutet inverse Comptonstreuung, daß nicht die Photonen Energie an die
Elektronen abgeben, sondern umgekehrt. Voraussetzung dafür ist, daß sich das Elektron
vor dem Stoß in Bewegung befindet. In diesem Fall ist der Viererimpuls des Elektrons
durch pe = �mec(1,�) gegeben. Setzt man dies in (2.44) ein, so ergibt sich

� � =
� (1 � � cos�)

1 � � cos�� + h�
�mec2

(1 � cos�)
. (2.49)

Hier sind � und �� die Winkel zwischen der Bewegungsrichtung des Elektrons und der
Ausbreitungsrichtung des einfallenden bzw. auslaufenden Photons (vgl. Abb.2.4).

An (2.49) sieht man, daß ein niederenergetisches Photon (h� � �mec
2) von einem

bewegten Elektron in bestimmten Fällen Energie aufnehmen kann:

� �

h�
�mec2

�1

�� �(1 � � cos�)

1 � � cos��

��1

�� �(1 � � cos�)(1 + � cos��)

� �
�
1 + �(cos�� � cos�)

�
. (2.50)

Für cos� = 0 und cos�� = 1 wird z.B. die Frequenz des gestreuten Photons und damit
dessen Energie um einen Faktor 1 + � größer.

Im Mittel über alle Einfalls- und Ausfallsrichtungen ergibt sich in 1.Ordnung von �
kein Energietransfer. Erst die 2.Ordnung liefert einen Nettotransfer. Das kann man sich
folgendermaßen klarmachen: Ein Elektron bewege sich im System K entlang der positi-
ven x-Achse mit der Geschwindigkeit v. Zur Vereinfachung wird in das Ruhesystem K �

des Elektrons transformiert. Die Frequenz � � des Photons in K � ergibt sich aus der Dopp-
lerformel (2.13). Unter der Annahme, daß h� � � �h� � mec

2 erfüllt ist, kann die Fre-
quenzänderung durch die Streuung vernachlässigt werden (�sc � � nach (2.45)). Daher
geht der Klein-Nishina-Wirkungsquerschnitt (2.46) in den Thomson-Streuquerschnitt
(2.42) über und der Streuprozeß läßt sich durch Thomsonstreuung beschreiben. Fällt
unpolarisierte Strahlung auf das Elektron ein, so ist die gestreute Gesamtleistung in K �

durch

P �
sc =

dE�

dt�
= �Tc U �

gegeben (vgl. (2.40)). Diese ist eine Lorentzinvariante, da sich Energie und Zeit beide wie
die Null-Komponente eines Vierervektors transformieren. Die einfallende Energiedichte

Figure 3.6: Compton scattering angles.

3.3.2 Photon collision term

In the early Universe, photons undergo many interactions with free electrons. The most important processes
are Compton scattering (CS), double Compton (DC) scattering and Bremsstrahlung (BR), but there can also
be non-standard processes (e.g., decaying particles) that add a photon source term. Among these processes,
for most times Compton scattering is the fastest, while in particular DC and BR are only important early on.
Including these processes, the photon collision term takes the form

C[ f ] = C[ f ]|CS + C[ f ]|DC + C[ f ]|BR + C[ f ]|S . (3.15)

The collision term describes local real changes to the photon distribution. We are only interested in the photon
intensity but ignore polarization e↵ects. Below we now consider each contribution separately.

3.3.3 Compton scattering

We already know that Compton scattering is responsible for redistributing photons in energy. This problem
has been studied a lot in connection with X-rays from compact objects [42, 52] and the cosmological context
[59, 54]. In reality, electron-photon scattering also helps isotropizing the photon field (Thomson scattering
limit), although for this energy exchange is not as crucial [12, 11]. The reaction we are considering is

e(p) + �(k) ! e(p0) + �(k0) (3.16)

with the kinematic constraints between the four-momenta p + k = p0 + k0. It is pretty straightforward to show
(using p2 = p02 = mec2 and k2 = k02 = 0) that for given angles and energies between the scattering particles
this implies

⌫0

⌫
=

1 � �µ
1 � �µ0 + h⌫

�mec2 (1 � µsc)
, (3.17)

where � = 3/c, � = 1/
p

1 � �2, µ = cos↵, µ0 = cos↵0 and µsc = cos⇥ (see Fig. 3.6 for illustration).

F igure 2 .2 : Scattering angles for e−(p) + γ(k)� e−(p ′) + γ(k ′).

In the early Universe, photons undergo many interactions with
free electrons. The most important processes are Compton scatter-
ing, Bremsstrahlung and double Compton scattering.7 Among these,
Compton scattering is efficient (and the fastest) for most times, while
BR and DC are especially important before z ≈ 5× 104.

7 Notice that there can also be non-standard processes (e. g. decaying particles) that
add a photon source term.
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Compton scattering and Kompaneets equation

We start by studying the kinematics of Compton scattering, using the
conventions of fig. 2.2 for the scattering angles. Energy and momentum
conservation implies that the photon energy changes by a factor

E ′

E
=

1−βµ

1−βµ ′ + E
γm(1− cosΘ)

, (2.39)

where the β and γ factors of the electron have their usual Special
Relativity definition, and we have defined µ ≡ cosα, µ ′ ≡ cosα ′.
There are two interesting regimes:

• if β = 0, we are in the recoil-dominated regime. For E� me, the
photon energy shift becomes

E ′

E
≈ 1− E

m
(1− cosΘ) . (2.40)

Therefore we see that, averaging over angles, the fractional en-
ergy decrease is

〈
∆E ′

E

〉

Θ

≈ −
E

me
; (2.41)

• if 0 < β � 1 and E � me, so that β � E
γme

, we are in the
Doppler-dominated regime. In this limit, one can approximate
the energy shift as

E ′

E
≈ 1−βµ

1−βµ ′
≈ 1−β(µ− µ ′) −β2(µ− µ ′)µ ′ , (2.42)

so that
〈
∆E ′

E

〉

Θ

≈ β
2

3
. (2.43)

Averaging over the electron velocity distribution, which is as-
sumed to be of the Maxwell-Boltzmann form, the fractional
energy gain is proportional to

〈
∆E ′

E

〉

Θ,β

≈ Te

me
≡ θe . (2.44)

A more careful analysis, which takes into account the angular
dependence of the scattering cross-section, i. e. (in the Thomson
limit)

dσ
dΩ
≈ 3σT

16π
(1+ cos2Θ) for β� 1,

∆E ′

E
� 1 , (2.45)

gives an average fractional energy gain due to Doppler boosting
equal to 4θe.
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These limits prove useful to understand the terms appearing on the
right-hand side of the Kompaneets equation for the evolution of f [79],
i. e.

∂f

∂τ

∣∣∣∣
CS
≈ θe
x2e

∂

∂xe

{
x4e

[
∂f

∂xe
+ f(1+ f)

]}
=
θe

x2
∂

∂x

{
x4
[
∂f

∂x
+
T

Te
f(1+ f)

]}
.

(2.46)

The≈ sign is present in eq. (2.46) because it is obtained from eqs. (2.35),
(2.37) by stopping at second order in an expansion in 〈∆E ′E 〉Θ,β (where
the average is taken over the scattering cross-section and the electron
velocity distribution),8 and assuming that the photon distribution does
not have sharp features [79, 81]. In eq. (2.46) we have defined

xe ≡
E

Te
, (2.47a)

dτ ≡ σTnedt , (2.47b)

where τ(t) is the optical depth. If we write T = T0(1+ z), where T0 is
the current temperature of the CMB (T0 = 2.7255K [11]), we see that
switching from ( ∂∂t ,

∂
∂ logE) to ( ∂∂τ ,

∂
∂x) absorbs the redshift term of

eq. (2.35). Besides, we see that:

• the second term in the curly brackets is the Doppler boosting
term. It describes the diffusion of photons in energy due to the
Doppler effect and thus depends on the electron temperature, as
it is shown in eq. (2.44);

• the first term, instead, describes the downward scattering of
photons due to the recoil effect of eq. (2.41), with the (1 + f)

factor accounting for Bose-enhancement/stimulated recoil.

Taking moments of the Kompaneets equation, we can derive equa-
tions for the evolution of the photon energy density and number
density. Since Compton scattering conserves the number of photons,
we expect that d(na3)

dt = 0. Indeed, the integral of the right-hand side
of eq. (2.46) with respect to dx x2 vanishes. The integral over dx x3,
instead, is not zero, but gives the evolution equation for ργ, i. e.

∂ργ

∂τ

∣∣∣∣
CS
≈ 4θeργ

(
1−

T
eq
e

Te

)
, (2.48)

with the Compton equilibrium temperature defined by

T
eq
e ≡

T
∫+∞
0 dx x4 f(1+ f)

4
∫+∞
0 dx x3 f

. (2.49)

8 This assumption does not hold if electrons are hot, since the change in the energy of
the photon after the scattering will not be small. This happens, e. g., when one studies
the Sunyaev-Zeldovich effect in very hot clusters [80]: we refer to Section 2.3.2 for
details.
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Electrons are heated (cooled) and photons lose (gain) energy if Te <
T

eq
e (Te > T

eq
e ). Since T eq

e and T are not very far from each other (they
are actually the same if f has the black-body form), one can see that the
ratio T

Te
controls the energy exchange between electrons and photons:

if Te is lower than T , there can be a cooling of the photon gas. We will
encounter this effect in the next Sections, under the name of adiabatic
cooling. Finally, we note that the time-scale of energy transfer from
electrons to photons is teγ = (4σTneθe)

−1, which is smaller than an
Hubble time up to z ≈ 5× 104. At this point, Comptonization becomes
inefficient and the shape of the CMB spectral distortion changes: we
will see this in more detail in Section 2.3.3.

Bremsstrahlung and double Compton scattering

Bremsstrahlung and double Compton scattering are, respectively, the
lowest order radiative corrections to Coulomb and Compton scattering
where the photon number changes. For Bremsstrahlung, one needs
to worry mainly on electron-ion processes, since the e− + e− → e− +

e− + γ interaction is inefficient at the redshifts of interest [82]. Their
collision terms are given by

∂f

∂τ

∣∣∣∣
BR
≈ KBRe

−xe

x3e

{
1− (exe − 1)f

}
, (2.50a)

∂f

∂τ

∣∣∣∣
DC
≈ KBRe

−2x

x3

{
1− (exe − 1)f

}
, (2.50b)

where KBR and KDC are z- and E-dependent functions, whose expres-
sion can be found in [45, §1, §2]. We refer to, respectively, [83] and [12]
for a derivation: here we note that they can be approximated by

KBR ≈ 1.4× 10−6
(
ḡeff

3.0

)(
Ωbh

2

0.022

)
(1+ z)−

1
2 , (2.51a)

KDC ≈
16π3

45
αθ2 ≈ 1.7× 10−20(1+ z)2 , (2.51b)

where θ ≡ T
me

, α is the fine-structure constant, ḡeff is the BR thermally
averaged “Gaunt factor” [83], which encodes the details of the electron-
ion interaction, and eq. (2.51b) is valid in the limit that the scattering
photon in the e− + γ→ e− + γ+ γ interaction does not lead to a large
recoil of the electron. Comparing eq. (2.51a) and eq. (2.51b) shows
that, while Bremsstrahlung is more efficient in the past, the bulk of the
thermalization process is controlled by double Compton scattering,
which becomes more important than Bremsstrahlung emission around
z ≈ 3.7× 105 [9].
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2 .2 .3 Final set of evolution equations

Eqs. (2.46), (2.50) give the final evolution equation for the photon
distribution function, which we can write as

∂f

∂τ
=
θe

x2
∂

∂x

{
x4
[
∂f

∂x
+
T

Te
f(1+ f)

]}
+
{
1− (exe − 1)f

}(KBRe
−xe

x3e
+
KBRe

−2x

x3

)
+ S(τ, x) ,

(2.52)

where we have added explicitly a photon source term, which can arise
in non-standard models (e. g. one could consider some dark matter
particle decaying into photons): it adds both energy and photons to
the photon field. From eq. (2.52) we also see that, when DC and BR
dominate, the equilibrium (∂f∂τ = 0) distribution is driven towards the
black-body form at a temperature Te.

Eq. (2.52) needs to be complemented by an evolution equation for
the electron temperature (or, equivalently, the electron energy density).
While the photon temperature scales as a−1, the adiabatic index of
electrons is γe = 5/3 (as for a monoatomic ideal gas). Therefore, the
perfect gas law, for pe = neTe, gives Te ∝ V1−γe = a−2. For this
reason, an useful quantity to track is the ratio re ≡ Te

T : its evolution
equation reads [45, §3.4]

dre
dτ

=
Q̇

αhθσTne
+

4ργ

αhme
(r

eq
e − re)

−
H

σTne
re −

4ργ(HBR +HDC)

αhme
re ,

(2.53)

where αh ≡ 3
2(ne + nH + nHe) is the heat capacity of the medium

and Q̇ is the electron heating term, i. e. the equivalent of the photon
source term S. The BR and DC heating terms, HBR and HDC, can be
computed by taking the appropriate moments of eq. (2.52). The second
and third terms on the right-hand side of eq. (2.53) show how the
expansion tends to drive Te ∝ a−2, while Compton scattering tends
to bring Te close to T eq

e ≈ T .
The above evolution equations can be solved numerically: a great

simplification occurs if one expands the photon distribution function
in small perturbations around the black-body form. In this way, as
usual with linearized equations, a Green’s function method can be
used to solve eqs. (2.52), (2.53) for arbitrary source terms S and Q̇ (the
go-to code being CosmoTherm). In the next Sections we will see, instead,
in which limits some analytical results for f can be obtained.

2 .3 y- and µ-distortions

In this Section, we discuss some analytic approximations for the
spectral distortions caused by early energy release. We start by intro-
ducing the Compton-y and µ-distortions, which are the classic types

http://www.Chluba.de/CosmoTherm/
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of distortions first studied in [7, 80]. In the so-called y-distortion era,
z . 5× 104, DC and BR emission and photon transport from low to
high frequencies are already inefficient, so that at high frequencies the
distortion shape is purely determined by Compton scattering. In con-
trast, during the µ-era (5× 104 . z . 2× 106), thermalization works
very well and the amplitude of the distortion evolves significantly.
The distortion visibility functions will describe how efficiently these
distortions are thermalized, and which fraction of the energy released
in the plasma actually ends up modifying the black-body spectrum.

2 .3 .1 y-distortions

As we have seen in Section 2.2.2, more precisely when we derived
eq. (2.48), the energy exchange between photons and electrons due to
Compton scattering, along with the redistribution of photons in energy,
becomes inefficient around z ≈ 5× 104. If we neglect Bremsstrahlung
and double Compton scattering in eq. (2.52), since at these redshifts
DC is not fast enough with respect to the Thomson rate tT ≡ (σTne)

−1

and BR is a subleading correction until recombination [45, §4.4], the
evolution of f will be dictated by the Kompaneets equation eq. (2.46)
only.

Suppose that we start with at τ = 0 with a black-body spectrum. If
we evolve the distribution for a small time δτ, the distribution will
change as

δf ≈ (θe − θ)G(x)

{
x
ex + 1

ex − 1
− 4

}
︸ ︷︷ ︸

≡YSZ(x)

δτ , (2.54)

where the parameter y, defined as

y ≡
∫τ
0

dτ ′(θe − θ) , (2.55)

determines the time-scale over which the approximation of eq. (2.54)
holds. y measures the energy transfer between photons and electrons.
Indeed, integrating eq. (2.54) against dx x3 shows that δργργ = 4y:9

therefore, the Compton y-distortion arises in the limit of inefficient
energy exchange between electrons and photons. This distortion of
the CMB was first studied in [80], and then applied to hot electrons
residing inside the potential wells of clusters of galaxies, giving rise
to the Sunyaev-Zeldovich (SZ) effect, which we discuss briefly in the
next Section. The shape of the y-distortion, defined in eq. (2.54) as
YSZ(x) ≡

(
x coth x2 − 4

)
G(x), is shown in fig. 2.3.

9 Notice that the integral of eq. (2.54) against dx x2 vanishes, as it is expected since
Compton scattering does not change the number of photons.
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2 .3 .2 Sunyaev-Zeldovich effect

The CMB spectrum acquires a y-distortion when photons travel
through clusters of galaxies. These are the largest virialized objects in
our Universe, with typical masses 1013M� .M . 1014M�, contain-
ing up to ≈ 103 galaxies. They also host a hot plasma with free elec-
trons at temperature Te = O(keV) at typical densities ne ≈ 10−3 cm−3.
The hot electrons, then, can scatter CMB photons and distort their
spectrum, in a process called thermal Sunyaev-Zeldovich (tSZ) effect.
The typical y-parameter of massive clusters is of order 10−5 ÷ 10−4.

Before proceeding, we note that the assumptions of this Section are
inadequate to accurately compute the distortions due to the thermal SZ
effect. Indeed, the electrons inside clusters can have thermal velocities
up to O(10−1): in this case, relativistic corrections become important
and the Kompaneets equation loses its validity. Besides, if the cluster is
moving with respect to the CMB, there will be an additional Doppler
shift in the CMB temperature towards the cluster. This shift is of
purely kinematical origin: for this reason the effect is called kinematic
Sunyaev-Zeldovich (kSZ) effect.

2 .3 .3 µ-distortions

In the regime where the parameter y of eq. (2.55) is much larger
than 1, energy exchange is very efficient and the photon distribution
tends towards ∂f∂τ = 0. Solving the Kompaneets equation under this
assumption gives

f =
1

exe+µ0 − 1
, (2.56)

i. e. a Bose-Einstein distribution at a temperature Te, with dimension-
less chemical potential µ0. In the rest of this work we will use the
above definition of chemical potential, related to that of eq. (2.5) by

µhere =

(
−
µ

T

)∣∣∣∣
there

. (2.57)

The solution with µ0 < 0 is unphysical, because xe + µ0 could vanish
for some positive frequency xe,0 > 0: what would happen, instead, is
that the photons would form a Bose-Einstein condensate at xe = 0,
with µ0 = 0 elsewhere [84, 85]. In a real plasma, actually, BR and DC
emission will prevent even this from happening [8, 86].

How can we fix the constant µ0? Suppose to start with a black-body
spectrum for photons, and electrons at Te = T = Te,i. If we change the
number and energy density of the photon field as

ργ,f = ργ,i(1+ ερ) , (2.58a)

nγ,f = nγ,i(1+ εn) , (2.58b)
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and wait until the distribution function has reached the Bose-Einstein
equilibrium form, it is possible to relate the final electron temperature
Te,f = Te,i + δTe and the chemical potential µ0 to ερ and εn. Assuming
small deviations µ0 � 1, δTe � Te,i, the solution is

δTe =
540{ζ(3)}3εn − π6ερ
4{π6 − 480[ζ(3)]3}

≈ −0.5185εn + 0.6389ερ , (2.59a)

µ0 = −
3π4ζ(3)(4εn − 3ερ)

2{π6 − 480[ζ(3)]3}
≈ −1.866εn + 1.401ερ . (2.59b)

From eq. (2.59b) we see that for ερ = 4
3εn we have no distortion, as

we have already seen in eq. (2.34): in this case, only the temperature of
the black-body spectrum is increased after scattering has redistributed
all photons.

Suppose now that we are given some frequency spectrum, to which
we want to fit some spectral dependence.10 More precisely, we assume
that we want to fit a small distortion from a black-body. How do we
define the µ-distortion shape? Expanding eq. (2.56) for small µ0 gives

f =
1

exe − 1
− µ0

G(xe)

xe
+O(µ20) , (2.60)

suggesting that we fit a µ-distortion using the shape M(x) ≡ −
G(x)
x

(see fig. 2.3). However, recalling that Compton scattering conserves
the number of photons, a better definition turns out to be

M∗(x) ≡ 3

κc

{
G(x)

(
π2

18ζ(3)
−
1

x

)}
, (2.61)

where, following [45, §4.2.2], we defined

3

κc ≡
9π4ζ(3)

{2π6 − 810[ζ(3)]2}
≈ 1.401 . (2.62)

In this way, the integral of M∗(x) over dx x2 vanishes (as it does the
integral of YSZ for the y-distortion), and the relative change of the
photon energy density is normalized to 1. In the rest of this Section,
however, we will use the definition of µ0 which derives from eq. (2.60)
for analytical calculations (using the fact that at linear order in µ0
we can drop the difference between xe and x): the matching with
eq. (2.61) is straightforward. We refer to fig. 2.3 for a plot of the black-
body, temperature shift, y-distortion and µ-distortion shapes of the
photon frequency spectrum. The plot shows that the important feature
of a µ-distortion is that it is shifted towards lower frequencies with
respect to the y-distortion. This makes it distinguishable from G(x)

and YSZ(x), so that observing a µ-distortion is a clear indication for
a signal created in the pre-recombination era, deep into the thermal
history of our Universe.

10 This is exactly what happens when analyzing CMB data: see Appendix A for details.
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F igure 2 .3 : This plot shows the black-body, G, YSZ and M∗ shapes of the
photon frequency spectrum, i. e. Iγ(ν) = 2hν3

c2
fγ(ν), where

fγ(x) are the occupation numbers of eqs. (2.29), (2.33), (2.54),
(2.61). The dimensionless amplitudes of these spectra must be
fitted to data. We plot the intensities as functions of frequency
for T = 2.7255K.

2 .3 .4 Distortion visibility functions

The picture that arises from Sections 2.3.1 and 2.3.3 is the following:
given a small energy increase ερ and/or small photon production εn,
the CMB spectrum will be distorted according to

δf(x) =
(ερ)|y
4︸ ︷︷ ︸
≡y

YSZ(x) +

{
(ερ)|µ −

(
4εn

3

)∣∣∣∣
µ︸ ︷︷ ︸

≡µ0

}
M(x) ,

(2.63)

where the subscripts indicate that the energy release and photon
production happen during the “µ-era” (5× 104 . z . 2× 106) or the
“y-era” (z . 5× 104). Two aspects are missing from this analysis:

• we have not included photon production (i. e. Bremsstrahlung
and double Compton scattering) into the picture but assumed
that only Compton scattering changes the photon field. This will
be mostly relevant for the evolution of µ-distortions, since not
all energy release or photon production eventually is visible as
a distortion. That is, the distortion visibility function is smaller
than unity because thermalization reduces the effective amount
of energy release that survives as a distortion. This is implicitly
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hidden in the definition of (ερ)|µ and (εn)|µ of eq. (2.63), and is
mainly relevant for the µ-distortion, when BR and DC can still
create soft photons and affect the photon number density;

• the second point is that the transition between the µ- and the
y-era is not abrupt, but occurs over a range of redshifts. In
the intermediate regime the distortion is not only given by the
superposition of µ- and y-distortion, but has a much richer
spectral dependence.

In this Section we will study in more detail how the µ-distortion
visibility function is defined and computed, referring to [12, 87, 88]
for details about the computation of the residual distortions from the
µ-y transition.

Assuming that the only relevant distortion is of the µ-type, from
eqs. (2.59b), (2.62) we can see that

dµ0
dτ

=
3

κc
d log(ργa4)

dτ
−
4

κc
d log(nγa3)

dτ
. (2.64)

Therefore, it is necessary to compute the energy release and photon
production terms from the Boltzmann equation, eq. (2.52).

Regarding the first term on the right-hand side of eq. (2.64), one can
show that BR and DC contributions cancel with the energy exchange
from Compton scattering, eq. (2.48) once the equilibrium temperature
is computed correctly [89]: therefore, one only needs to consider the
electron heating term Q∗e, i. e.

d log(ργa4)
dτ

≈ Q̇
∗
e

ργ
, (2.65)

where Q̇∗e is different from Q̇ in eq. (2.53) because it includes also the
contribution from adiabatic cooling of electrons [12, 89].

The photon production term d log(nγa3)
dτ is more complicated. We

know that at low frequencies the CMB spectrum is pushed into equi-
librium with the electrons, so that it is best to describe the distortion
with respect to a black-body at the electron temperature plus a small
µ-type distortion, as in eq. (2.60): since we are working at linear order
in the distortions from a black-body, we can neglect the difference
between the electron temperature and the photon temperature in
δf = −µ0

G(xe)
xe
≈ −µ0

G(x)
x .

If we now integrate eq. (2.52) against dx x2 assuming the distribution
function to be a black-body plus a small µ-type perturbation, we find
a diverging answer unless the chemical potential is a function of
frequency, and vanishes faster than −

logx
x2

for x → 0. The reason
is that, at small frequencies, Bremsstrahlung and double Compton
emission can still create photons, so the assumption of a constant,
non-zero chemical potential is incorrect in the Rayleigh-Jeans region
[7]. In order to compute its spectral dependence, one needs to look
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at the full Boltzmann equation. A simplification arises from the fact
that, since we are interested in small frequencies only, we can expand
eq. (2.52) for x → 0. Calling Λ(τ, x) ≡ KBR + KDCe

−x, the stationary
solution for the chemical potential must satisfy

x2
d2µ
dx2

+ 2x
dµ
dx

−
Λ(τ, x)

x2θ
= 0 . (2.66)

The BR and DC emission coefficients are only weakly dependent on
frequency for x � 1. We can thus replace Λ(τ, x) ≈ x2c θ, where the
critical frequency xc can be determined numerically. Eq. (2.66), then,
takes the form

d
dx

(
x2

dµ
dx

)
−
x2c
x2
µ = 0 , (2.67)

which has the simple solution µ(τ, x) = µ0(τ)e−
xc(τ)
x .11

Using this approximate solution, the photon production term in
eq. (2.64) takes the form

d log(nγa3)
dτ

≈ xcθ

2ζ(3)
µ0(τ) , (2.68)

so that eq. (2.64) becomes

dµ0
dτ

=
3

κc
Q̇∗e
ργ

−
2xcθ

κcζ(3)
µ0 . (2.69)

Assuming that the chemical potential vanishes at early times, only
the inhomogeneous solution survives. If we define the thermalization
optical depth τµ(z) as

τµ(z) ≡
2

κcζ(3)

∫z
0

dz ′
xcθ

(1+ z ′)tTH
, (2.70)

the solution reads

µ0(z) =
3

κc

∫+∞
z

dz ′
Q̇∗e
ργ

e−{τµ(z
′)−τµ(z)}

(1+ z ′)H

≈ 3

κc

∫+∞
0

dz ′
d(Q∗e/ργ)

dz ′
e−{τµ(z

′)−τµ(z)}︸ ︷︷ ︸
≡Jµ(z ′,z)

.
(2.71)

The function Jµ(z
′, z) is the spectral distortion visibility function be-

tween the heating redshift z ′ and z. It determines the fraction of
energy injected at z ′ that is still visible as a distortion at z. For
Jµ(z

′, z) ≈ 1, most of the energy is still stored in the distortion, while

11 One can see that at z ≈ 2× 105, when photon transport from Compton scattering
becomes inefficient and µ0 becomes for all practical purposes time-independent, the
critical frequency is xc ≈ 5× 10−2, corresponding to νc ≈ 3GHz (which is outside of
the coverage of current (Planck) and proposed (PIXIE) experiments).



2.3 y- and µ-distortions 63

102 103 104 105 106 107

z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

vi
si

bi
lit

y

y-epoch µ-epochµ-y transition

re
co

m
bi

na
ti

on

z
=
z K

y

µ

∆T

F igure 2 .4 : Formation of primordial distortions. At low redshifts (z .
zK = 5× 104), a y-distortion is formed with distortion visibility
close to unity, while at high redshifts a µ-distortion appears.
The energy release has to be weighted with the µ-distortion
visibility function which drops exponentially at zDC ≈ 2× 106
(leading to a pure temperature shift ∆T ), and is basically equal
to 1 at z ≈ 2× 105 (i. e. the redshift at which photon transport
from low to high frequencies by Compton scattering becomes
inefficient).

for Jµ(z
′, z)� 1, most of the energy was thermalized and converted

into a temperature shift. For redshifts above the Comptonization red-
shift zK ≡ 5× 104, where the distortion is of the µ-shape, the visibility
function Jµ(z

′, 0) can be approximated as [9, 10, 90]

Jµ(z
′, 0) = e−(z ′/zDC)

5
2
, (2.72)

where the DC thermalization redshift is given by [90]

zDC = 1.98× 106
(
Ωbh

2

0.022

)− 2
5
(

T0
2.7255K

) 1
5
(
1− Yp/2

0.88

)− 2
5

, (2.73)

with Yp being the 4He number density fraction. Such result includes
only DC emission in the computation of the thermalization optical
depth. Indeed, it is double Compton scattering, and not Bremsstrah-
lung, that controls the bulk of the thermalization process: we refer to
[45, §4.5.2] for details.12 We can extend this formalism below zK in a
straightforward way: after Compton scattering becomes inefficient, the
distortions do not thermalize, and the energy release goes completely

12 More precisely, see fig. 4.9.
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into a y-distortion. The resulting correction to the CMB black-body
occupation number, at redshift z = 0, reads

δf(x) = yYSZ(x) + µ0M(x) +∆TG(x) , (2.74)

where (see also fig. 2.4)

y =
1

4

∫+∞
0

dz
d(Q∗e/ργ)

dz
Θ(zK − z) ,

µ0 =
3

κc

∫+∞
0

dz
d(Q∗e/ργ)

dz
Jµ(z, 0)Θ(z− zK) ,

∆T =
1

4

∫+∞
0

dz
d(Q∗e/ργ)

dz
{1− Jµ(z, 0)Θ(z− zK)} .

(2.75a)

(2.75b)

(2.75c)

In this Chapter we already discussed some sources of d(Q∗e/ργ)
dz that

can lead to a distortion of the CMB spectrum. The adiabatic cooling
effect, introduced in Section 2.2.2, takes the form [12, 86]

d(Q∗e/ργ)
dz

∣∣∣∣
ac

= −
45{2nH(z) + 3nHe(z)}

2π2(1+ z)T3
,

where we see that it leads to a negative spectral distortion because
energy is extracted from the photon field in order to keep electrons
at Te ≈ T . There are other sources of distortions, like the Sunyaev-
Zeldovich effect, the contribution from recombination,13 and possibly
the effect of annihilating or decaying dark matter particles (see, e. g.,
[12]). In the next Chapters, we are going to be mostly dealing with
another effect, i. e. the spectral distortions coming from Silk damping
of acoustic waves in the photon-electron-baryon fluid. This effect is a
probe of inflationary perturbations at very small scales. In order to see
this, we have to depart from the assumption of a FLRW background
and add some perturbations to the metric and to matter: this will be
the topic of the next Chapters.

13 Photons emitted by atoms during the recombination process will distort the CMB
spectrum at specific frequencies, corresponding to the recombination lines: we refer
to [91], and references therein, for details.
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So far, we have treated the spacetime as perfectly homogeneous and
isotropic. To understand the formation and evolution of large-scale
structures, we have to introduce inhomogeneities. As long as these per-
turbations remain relatively small, we can treat them in perturbation
theory. This allows to expand the Einstein equations order-by-order in
perturbations of the metric and the stress-energy tensor.

The Chapter is based mainly on [44, §4, §5][92] (for the treatment
of CMB anisotropies) and [20, 93] (for the calculation of µ-distortions
anisotropies). The Arnowitt-Deser-Misner (ADM) formalism used to
obtain the perturbed Einstein and matter equations is reviewed in
Appendix B: for further details we refer to [55, §10, §E][56, §21][94].

3 .1 newtonian perturbation theory

In order to gain some intuition, one can start from Newtonian per-
turbation theory. Indeed, on scales well inside the Hubble radius and
for non-relativistic matter (e. g. cold dark matter and baryons after
decoupling), Newtonian gravity is a good approximation of General
Relativity.

3 .1 .1 Static spacetime

Consider a non-relativistic fluid with mass density ρ, pressure p �
ρ and velocity u. The equations of motion are obtained simply by

66
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imposing mass and momentum conservation: in absence of external
forces (i. e. for zero pressure) these would just be

ρ̇+ ∂i(ρu
i) = 0 , (3.1a)

Dtu = 0 , (3.1b)

where the convective derivative Dt = ∂t + u
i∂i measures how the

fluid velocity and the fluid mass density change along the trajectory
of a given fluid element. Expanding eqs. (3.1), and adding a non-zero
pressure gradient as an external force, gives the continuity and Euler
equations, i. e.

ρ̇+ ui∂iρ = 0 , (3.2a)

u̇i + uj∂ju
i = −

∂ip

ρ
− ∂iΦ . (3.2b)

The gravitational potential Φ is determined by the Poisson equation,
which reads as

∂2Φ =
ρ

2M2
P

. (3.3)

Expanding all the dynamical variables X in small perturbations
δX around a background X̄, it is easy to see that ρ̄ = const., p̄ =

const., ū = 0 and Φ̄ = 0 are a solution for the background, while the
perturbations must satisfy the equations

∂δρ

∂t
= −ρ̄∂iu

i , (3.4a)

ρ̄u̇i = −∂iδp− ρ̄∂iΦ , (3.4b)

∂2Φ =
δρ

2M2
P

. (3.4c)

Combining the time derivative of eq. (3.4a) with the divergence of
eq. (3.4b),1 one can arrive at a system of two partial differential equa-
tions for δρ and the gravitational potential, i. e.

∂2δρ

∂t2
− c2s ∂

2δρ = ρ̄∂2Φ , (3.5a)

∂2Φ =
δρ

2M2
P

. (3.5b)

In order to obtain eq. (3.5a), we assumed an equation of state for
the fluid. This means that in the rest frame of the fluid it is possible
to write p as a function of ρ: the speed of sound c2s , then, is just the
functional derivative δpδρ . Because of the symmetries of the background,
c2s is a constant in a static spacetime, while it can only depend on time
when H 6= 0.

1 As we will see in Section 3.3.1, this procedure allows to obtain a closed equation for
δρ and Φ only on sub-Hubble scales.
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It is a trivial step to plug eq. (3.5b) in eq. (3.5a), to arrive at a
(sourced) wave equation for δρ. Being a linear PDE, such equation can
be solved by going to Fourier space: the solution for δρk is given by a
superposition of plane waves, with frequency ω(k) equal to

ω2(k) = c2s k
2 −

ρ̄

2M2
P

. (3.6)

Therefore, we see that for wavelengths shorter than the Jeans length,
defined as

k2J ≡
ρ̄

2c2sM
2
P
, (3.7)

matter perturbations oscillate, while on large scales (k < kJ) they grow
exponentially.

3 .1 .2 Expanding spacetime

In an expanding space, xphys. = a(t)x (xphys. being the physical co-
ordinates and x being the comoving coordinates), eqs. (3.1) will still
hold when written in terms of xphys.. Therefore, when we switch to co-
moving coordinates, they become (up to linear order in perturbations)

∂ρ

∂t
−Hxi∂iρ+

∂i{ρ(Hax
i + vi)}

a
= 0 , (3.8a)

v̇i +Hvi = −
∂ip

aρ
−
∂iΦ

a
. (3.8b)

The Poisson equation, instead, simply becomes

∂2Φ =
a2ρ

2M2
P

. (3.9)

In the above equations, spatial derivatives are with respect to x, and
the peculiar velocity v (which starts at first order in perturbations) is
related to u by

u = ẋphys. = Hxphys. + v , (3.10)

where Hxphys. is the Hubble flow.
At zeroth order in perturbations, assuming p̄ = 0 for non-relativistic

matter, the mass density simply evolves as ρ̄ ∝ a−3. If we introduce the
density contrast δ ≡ δρ

ρ̄ , it is straightforward to see that the first-order
equations become

δ̇ = −
∂iv

i

a
, (3.11a)

v̇i +Hvi = −
∂iδp

aρ̄
−
∂iΦ

a
, (3.11b)

∂2Φ =
a2ρ̄δ

2M2
P

. (3.11c)
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Eq. (3.11b) confirms that, in absence of pressure or gravitational per-
turbations, peculiar velocities decay as a−1 with the expansion of the
universe.

Now, as we did in Section 3.1.1, we can combine eq. (3.11c), the time
derivative of eq. (3.11a), and the divergence of eq. (3.11b) to arrive at
a single equation for the fractional density perturbation δ. Assuming,
as before, a speed of sound c2s relating δρ and δp, we see that the
equation governing the evolution of δ is

δ̈+ 2Hδ̇−
c2s ∂

2δ

a2
=

ρ̄δ

2M2
P

. (3.12)

This implies the same Jeans length as in eq. (3.7), but unlike the case
of a static spacetime, it now depends on time because ρ̄ and c2s are
not forced to be constants. Compared to eqs. (3.5), the equation of
motion in the expanding spacetime includes a friction term ∝ Hδ̇.
This has two effects: Below the Jeans length, the fluctuations oscillate
with decreasing amplitude. Above the Jeans length, the fluctuations
experience power-law growth, rather than the exponential growth we
found in Section 3.1.1.

The above equation for δ can be used to follow the evolution of
matter perturbations (δm) inside the Hubble radius (with the caveat
that the right-hand side of eq. (3.12) must be replaced with a sum over
all the gravitating matter species, since it originally derives from the
Poisson equation for Φ). We will then solve it, focusing separately on
the radiation-dominated, matter-dominated and Λ-dominated epochs.
Besides, we will neglect small effects due to baryons (that will be
considered in Section 3.3.1), so that δm = δcdm, for which c2s = 0.
Finally, we assume adiabatic perturbations: as we will see in Section
3.2.4, this implies that all matter species i satisfy

δi
1+wi

=
δj

1+wj
∀ i, j . (3.13)

Therefore, for wi = O(1), all δi are comparable and the total density
perturbation, that sources Φ, is dominated by the species that is
dominant in the background.

Radiation dominance

As we will see in more detail in 3.3.1, radiation fluctuations on scales
smaller than the Hubble radius oscillate as sound waves (supported
by large radiation pressure) and their time-averaged density contrast
vanishes [95]. Therefore, assuming adiabatic perturbations, the mat-
ter density contrast during radiation dominance satisfies the simple
equation (recalling that the speed of sound is zero)

δ̈m + 2Hδ̇m = 0 . (3.14)



3.2 relativistic perturbation theory 70

Using H = 1
2t during the radiation-dominated epoch, we see that the

growing mode solution of eq. (3.14) is δm ∝ log t ∼ loga. We see that
the rapid expansion due to the effectively unclustered radiation makes
the growth of δm only logarithmic.

Matter dominance

During the matter-dominated epoch, using H = 2
3t and ρ̄ = 3M2

PH
2 ≈

ρ̄m, eq. (3.12) becomes

δ̈m +
4δ̇m

3t
−
2δm

3t2
= 0 . (3.15)

With a power-law ansatz, δm ∝ tp, it is easy to see that the growing
mode solution of eq. (3.15) has p = 2

3 . Therefore, we see that during
matter domination the dark matter fluctuations grow proportionally
to the scale factor.

Λ dominance

If dark energy is a cosmological constant, it will not cluster (δΛ =

0): therefore, for adiabatic perturbations, during Λ dominance the
evolution equation for δm on sub-Hubble scales will be the again given
by eq. (3.14), but with a different Hubble rate H. Indeed, H = const.
for a cosmological constant, so it is easy to see that the growing mode
solution for δm will just be δm = const.: density perturbations stop to
grow once dark energy starts to dominate.

These three results can be combined under the form of a “trans-
fer function”, T(z, k), which describes how the primordial perturba-
tions set up by inflation are post-processed: schematically, δm(z,k) =
T(z, k)δm(+∞,k). The transfer function T(z, k) depends only on the
magnitude k and not on the direction of k, because the perturba-
tions are evolving on a homogeneous and isotropic background. The
square of the Fourier mode δm(z,k), that defines the matter power
spectrum, will then be proportional to T2(z, k). We will not investigate
this further in this Section, and refer to [44, §5][96, §7] for details.

3 .2 relativistic perturbation theory

The Newtonian treatment of cosmological perturbations is inadequate
on scales larger than the Hubble radius, and for relativistic fluids
(like photons and neutrinos): the correct description of perturbations
requires General Relativity. In this Section we will describe how one
can derive the relativistic equations for a perfect fluid coupled to
gravity (referring to Appendix B for the mathematical details), discuss
briefly the gauge problem of cosmological perturbation theory (see
[97] and references therein), and conclude with an explanation of the
difference between adiabatic and isocurvature initial conditions.
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3 .2 .1 Einstein and fluid equations

We will consider fluids interacting only through gravity. Therefore
their energy-momentum tensors will be separately conserved. We can
then focus on a single fluid plus gravity: the generalization of the equa-
tions to the case of multiple fluids is straightforward. Furthermore,
until we arrive at Section 3.3.1, we will consider only perfect fluids.
Calling Uµ the velocity of energy and particle transport, satisfying
UµU

µ = −1, the stress-energy tensor Tµν and number density current
Nµ take the form

Nµ = nUµ ,

Tµν = (ρ+ p)UµUν + pgµν .

(3.16a)

(3.16b)

Since the universe admits a foliation in terms of a “cosmic time”
coordinate t and corresponding spacelike hypersurfaces Σt, an ADM
decomposition of the metric is useful. The normal nµ to the hypersur-
faces of constant t will have components

n0 =
1

N
,

ni = −
Ni

N
,

(3.17a)

(3.17b)

where N and Ni are, respectively, the lapse function and the shift
vector (not to be confused with the spatial components of the number
density current). The spacetime interval ds2 is decomposed as

ds2 = −N2dt2 + hij(dxi +Nidt)(dxj +Njdt) , (3.18)

with hµν = gµν + nµnν being the metric on the hypersurfaces Σt.
Using eqs. (3.17), (3.18) it is straightforward to see that nµnµ = −1.

The three-metric hµν and the normal one-form nµ allow to write
down a “3 + 1” decomposition of all tensorial quantities. For our
purposes it will be useful to decompose the fluid four-velocity Uµ as

Uµ = γ(nµ + vµ) , (3.19)

where nµvµ = 0. The normalization condition for Uµ implies that

γ =
1√
1− v2

, (3.20)

where v2 ≡ hµνvµvν. Since we assume that v̄µ = 0 (peculiar velocities
decay anyway), we see that γ = O(2). From eq. (3.19) one can project
the conservations of the stress-energy tensor and of the number density
current along nµ and orthogonal to it: these will yield the relativistic
form of the fluid equations (energy, momentum and particle number
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conservation). We refer to Appendix B for details on how to derive
these equations.

The system of fluid equations must be supplemented by the Einstein
equations, eq. (1.26). It is possible to write an ADM decomposition
of these as well. Since the Einstein tensors has two (symmetric) slots,
there are three possibilities, that we call ‖‖, ‖⊥ and ⊥⊥:

• the projection of both indices along the normal vector nµ (‖‖)
gives the lapse constraint;

• the projection of one index along nµ, and the other orthogonal
to it (‖⊥), gives the shift constraint;

• the projection of both indices on the hypersurfaces of constant
time (⊥⊥) gives the dynamical Einstein equations. These can
be further decomposed in a trace part, a trace-free part and a
“curl” part. The first two are obtained just by tracing Gµν with
hµν, and by subtracting (hρσGρσ)h

µν

3 to hµρhνσGρσ, while the
latter can be defined through the volume element εµνρσnσ on
Σt. We refer to [58, §A.1] for details: in any case, we will see that
it is not necessary to consider the curl part of the ⊥⊥ Einstein
equations if we work with scalar perturbations only.

We again refer to Appendix B for details on how to decompose the
Einstein equations in the 3+ 1 formalism: in the next Section we will
instead discuss the gauge freedom that is available in choosing the
foliation and the coordinates on the surfaces of constant time.

3 .2 .2 Gauge freedom and gauge fixing

Given a foliation t of spacetime, with coordinates xi on Σt, we have
still the freedom of choosing another one simply by redefining t =
t ′ + δt(t ′, x ′). As long as δt is small, the new time coordinate will still
be future-directed and timelike, and then will define a new foliation
of the manifold. On top of this freedom, we can choose whatever
coordinate system we want on the hypersurfaces of constant time.
This is nothing but the coordinate freedom of General Relativity.

For example, consider a fluid with four-velocity Uµ that satisfies
U[µ∇νUρ] = 0: the Frobenius theorem implies that Uµ is (at least
locally) hypersurface-orthogonal [55, §B.3], i. e. that there exist a func-
tion t such that Uµ ∝ ∂µt.2 It is then possible to choose t as a time
coordinate (so that Uµ ∝ δ0µ), write the four-dimensional metric in the

2 We notice that the condition of hypersurface orthogonality implies that the vorticity
ωµν = h

ρ
[µ
∇ρUν] is equal to zero (the converse is not true, in general [55, §9.2]:

zero vorticity implies that Uµ is hypersurface-orthogonal only if the four-acceleration
Uν∇νUµ vanishes). Indeed, it is possible to show that a barotropic fluid without
vorticity can always be described by a derivatively coupled scalar field φ [98].
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form of eq. (3.18), and use the remaining freedom in the choice of the
spatial coordinates on Σt to write hij as

hij = a
2e2ζ(eγ)ij , (3.21)

where the matrix γij is transverse and traceless, i. e. γii = 0, ∂iγij = 0.
A different coordinate system that one can choose is Newtonian

gauge. At linear order in perturbations, we can use the freedom of
redefining the spatial coordinates to put hij in the form

hij = a
2(1− 2Ψ)δij , (3.22)

where we have dropped the tensor modes γij. Then, considering only
scalar modes, it is possible to do a time redefinition that puts g0i to 0.
After these coordinate changes the metric takes the form

ds2 = −(1+ 2Φ)dt2 + a2(1− 2Ψ)δijdxidxj . (3.23)

Before proceeding, we stress the following points:

• if we consider also vector modes, g0i will not be zero. However,
g0i is not a dynamical variable, and will be constrained to zero
if the peculiar velocity vi has only a longitudinal component
(i. e. if vi = ∂iv). This is ensured by the scalar-vector-tensor
(SVT) decomposition theorem, that ensures that perturbations
of different helicities do not mix at linear order in perturbation
theory [99, §B.2];

• in Newtonian gauge, the coordinate time is not the same as the
one in the comoving gauge of eq. (3.21), since now Uµ will not be
proportional to δ0µ (equivalently, vi is not zero in this gauge).

As it is the case for all gauge theories, one must be careful to
isolate physical perturbations from fictitious gauge modes: in this
respect, gauge-invariant variables play a central role. At linear order
in perturbation theory, these are combinations of metric and mat-
ter perturbations that do not change under a linearized coordinate
redefinition, i. e.

xµ = x̃µ + ξµ(x̃) = x̃µ + ξµ(x) +O(2) , (3.24)

where ξµ starts at O(1) and ξi can be further decomposed in a trans-
verse and longitudinal part. We will discuss these gauge-invariant
variables in more detail in Section 4.8, when we derive the initial
conditions for metric and matter perturbations that are set up from
inflation. In the rest of this Chapter, we will work in a fixed gauge,
and make sure that the final result of any computation is indeed
an observable (this will happen, e. g., when we compute the CMB
anisotropy spectrum in Section 3.3).
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3 .2 .3 Perturbative expansion of field equations

We are now in the position to write down the Einstein equations and
the conservation of energy-momentum in Newtonian gauge. First of
all, we notice that the trace-free part of the ⊥⊥ projection of Einstein
equations implies that, in absence of anisotropic stresses, the two
potentials Φ and Ψ are equal. The remaining equations are:

lapse constraint

δρ

2M2
P
=
∂2Φ

a2
− 3H(Φ̇+HΦ) . (3.25)

shift constraint With vi = ∂iv, it is given by

Φ̇+HΦ = −
a2(ρ̄+ p̄)v

2M2
P

. (3.26)

trace part of ⊥⊥ einstein equations

δp

2M2
P
= 3H2Φ + 4HΦ̇ + 2ḢΦ + Φ̈ . (3.27)

energy conservation Assuming an equation of state w for the
background and a speed of sound c2s for perturbations, and
working in conformal time η, it is given by

δ ′ = −(1 + w)(θ − 3Φ ′) − 3Hδ(c2s − w) , (3.28)

where we defined H ≡ aH, θ ≡ a∂2v.

divergence of euler equation Contracting the spatial compo-
nents of ∇µT µν with ∂i gives

0 =
w ′θ
1 + w

+ ∂2Φ + θ ′ +
c2s ∂

2δ

1 + w
+ H(1 − 3w)θ . (3.29)

3 .2 .4 Adiabatic and isocurvature perturbations

We conclude this Section with a discussion of the initial conditions
for the Einstein and conservation equations, in the case of multiple
matter species. These are given for η → 0, i. e. when all the modes
of observational interest were outside of the horizon. We will see in
Section 4.8 that inflation sets up the initial conditions for the Newto-
nian potential Φ. Therefore, the super-horizon limit of eq. (3.25) can
be used to read off the initial condition for the density contrast δ (after
using the Friedmann equation eq. (1.31a) to rewrite δρ in terms of
δ and H). However, things are more complicated in the presence of
more than one matter species, because Φ is sourced by all compo-
nents: in this case, the differences between the density perturbations
of various species must be also provided as initial condition. One can
then distinguish two cases:



3.3 cmb anisotropies 75

adiabatic initial conditions These initial conditions satisfy

Si,j ≡
δi

1 + wi
−

δj

1 + wj
= 0 ∀ i, j . (3.30)

isocurvature initial conditions They are simply defined by
having a non-zero Si,j.

In the rest of this work, we will consider only adiabatic initial
conditions: current data are consistent with this assumption, and in
single-field inflation only this kind of perturbations are excited. To
see this, we can look at the reheating process: the inflaton φ must
be coupled to the Standard Model if we want it to decay, inflation
to end, and the radiation-dominated epoch to begin. Consider the
hypersurfaces of constant inflaton, φ = φ̄(t). Given a Standard Model
particle χi, and a rate Γi(φ) for the process φ → χiχi. Once Γi(φ)
becomes comparable to the Hubble rate (i. e. on the reheating surface),
the inflaton decays in χi. The relic density of the particle i will be fixed
by the decay rate, which in turn is only a function of the inflaton v.e.v.
Therefore, in this gauge there will be no density perturbations at the
end of inflation. In a general gauge, where the inflaton perturbations
are restored by a time shift

t = t̃+ δt = t̃+
δφ

˙̄φ
, (3.31)

the densities of the various species i will be determined by

ρ̄i(t) = ρ̄i(t̃+ δt) = ρ̄i(t̃) + ˙̄ρi(t̃)δt ∀ i , (3.32)

so that eq. (3.30) is automatically satisfied. In passing, we notice that
if there are other fields active during inflation that can decay into the
Standard Model, the picture above will not hold and isocurvature
perturbations can be generated (we refer to [73, §14] and references
therein for details).

3 .3 cmb anisotropies

We are now in the position to discuss how the CMB temperature
anisotropies that we observe today in the sky are generated. A full
treatment would require writing down the collisional Boltzmann equa-
tions for photons, electrons+baryons, and dark matter in a perturbed
universe, expand them up to first order in small fluctuations around
the FLRW background, and solve the coupled system of PDEs. For a
single species, we can write the Boltzmann equation as

Df
dλ

= Pµ
∂f

∂xµ
+

DE
dλ

∂f

∂E
+

Dlµ

dλ
∂f

∂lµ
= C[f] , (3.33)



3.3 cmb anisotropies 76

where λ is an affine parameter along the particle trajectory such that
Pµ is the four-momentum of the particle. As we discussed in Section
3.2.1, we have decomposed the four-momentum as

Pµ = E(nµ + lµ) , (3.34)

with nµlµ = 0, and hµνlµlν is fixed by the on-shell condition PµPµ =

−m2. Therefore, the distribution function is naturally a function of E
and lµ. For C[f] = 0 (i. e. in absence of collisions) the particles follow
geodesics, Pν∇νPµ = 0: from the geodesic equation, it is then possible
to derive the evolution of the energy (DE

dλ ) and the three-momentum
( Dlµ

dλ ), and from them obtain the evolution of the distribution function
(see [58, §4] and Section 3.3.2 for details). Eq. (3.33) is the Boltzmann
equation for a single particle species, with distribution function f: dif-
ferent species will be coupled directly via the collision term C[f1, . . . ],
and indirectly by gravity.

However, we will proceed in a different way. As we have seen in
Section 2.1.1, we can take moments of the Boltzmann equations:

• for dark matter, we can neglect all moments beyond the zeroth
and the first one. Higher moments will be suppressed by powers
of 〈pE〉 ∼ T

m , that is very small for cold dark matter. Besides, we
assume that dark matter is collision-less, i. e. that it interacts with
other species only through gravity. Therefore we can set to zero
the right-hand side of eq. (3.33). The result is that the relevant
equations for dark matter perturbations are just the relativistic
form of the continuity and Euler equation (with zero speed of
sound); 3

• baryons and electrons are effectively combined in a single fluid
thanks to Coulomb scattering. In turn, Compton scattering
tightly couples electrons to photons. Therefore, we effectively
end up with a photon-electron-baryon perfect fluid, where the
higher moments of the photon distribution function beyond the
monopole (i. e. the energy density of the fluid) and the dipole
(i. e. the fluid velocity) are suppressed by the photon mean free
path tT = (σTne)

−1. Indeed, consider a point in space: photons
arriving to it from different directions last-scattered off very
nearby electrons if Compton scattering is efficient (i. e. the pho-
ton mean free path is very small). These nearby electrons most
likely had a temperature very similar to the point of observation.
Therefore, photons from all directions have the same tempera-
ture: this means that only the monopole of the distribution is

3 This is not exactly true [100]: also in the case of dark matter there will be viscous
corrections, and a non-zero speed of sound will be generated by non-linearities. The
higher moments in the Boltzmann hierarchy, in this case, will be suppressed not
because of the strength of interactions (as it happens for photons+electrons+baryons,
where tT/H−1 is very small) but because dark matter particles could have moved
only for a finite distance given the finite age of the Universe.



3.3 cmb anisotropies 77

relevant. In the presence of a bulk velocity of the electron-baryon
fluid, the same argument will hold once we go to the electron-
baryon fluid rest frame. However, it is important to stress that
this is just an approximation: the non-zero photon mean free
path will lead to corrections to the perfect fluid behavior, en-
coded in viscous coefficients that modify the stress-energy tensor
from its perfect fluid form, can make the velocity of energy trans-
port differ from that of particle number transport, etc. (see also
[101, §6, §7, §B.10] for some analytical work emphasizing the
fluid dynamic approach);

• photons, electrons and baryons are tightly coupled until recom-
bination. Then photons decouple from electrons and baryons,
which in turn fall into the dark matter potential wells, and free-
stream to us: the photon distribution function will just follow the
collision-less Boltzmann equation in a perturbed universe, as the
photons travel from the last-scattering surface to us (of course,
reionization around z ≈ 6 and any other process that re-couples
photons to free electrons must be also taken into account. We
will not go into the details of these effects in this Section: we
refer to [73, §9.2.3][96, §8.7.2] for details).

Therefore, we have the following picture: up until recombination, we
can solve the coupled Einstein and fluid equations for dark matter
and photons+electrons+baryons (Section 3.3.1). At decoupling, we just
follow the perturbations of the photon distribution function through
the collision-less Boltzmann equation up to the observation point,
deriving the expression for the CMB temperature anisotropies that we
see in the sky today (Section 3.3.2). The two-fluid approximation of
Section 3.3.1 is based on [92][99, §3.3.3], while more general references
for both Sections 3.3.1 and 3.3.2 are [96, §7, §8][102, §9, §10].

3 .3 .1 Two-fluid approximation

As we have discussed above, we need to solve the fluid and Einstein
equations of Section 3.2.3 for the dark matter perturbations (subscript:
cdm) and the photon-electron-baryon fluid (subscript: bγ). If we define
the “baryon loading” R ≡ 3ρ̄b

4ρ̄γ
, it is straightforward to see that for

adiabatic perturbations we have

wbγ =
1

3+ 4R
, (3.35a)

c2s,bγ =
1

3(1+ R)
, (3.35b)

while wcdm = 0 and c2s,cdm = 0 are both equal to zero. If we further-
more define u ≡ θ/k in eqs. (3.28), (3.29) and use the adiabatic relation
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between δb and δγ, we see that the system of equations for δγ and
ubγ ≡ uγ simplify to

δ ′cdm = −kucdm + 3Φ ′ , (3.36a)

u ′cdm = −Hucdm + kΦ , (3.36b)

δ ′γ = −
4

3
kuγ + 4Φ

′ , (3.36c)

(1+ R)u ′γ = −RHuγ +
1

4
kδγ + (1+ R)kΦ , (3.36d)

k(Φ ′ +HΦ) =
a2

2M2
P

∑
i=

{cdm,bγ}

(ρ̄i + p̄i)ui . (3.36e)

where we used the shift constraint equation eq. (3.26) to close the
system, following [92]. In Appendix C we solve eqs. (3.36) numerically:
however, we also need the initial conditions. These are set up deeply
into radiation domination, when all modes of interest were outside
the horizon: by taking the η → 0 limit of eqs. (3.36) we see that the
initial conditions for the matter fluctuations are

δγ = −2Φ , (3.37a)

δcdm =
3

4
δγ , (3.37b)

uγ = −
1

4

k

H
δγ . (3.37c)

ucdm = uγ . (3.37d)

As we will see in Section 4.8, the initial conditions for the Newtonian
potential Φ (which becomes a constant on super-horizon scales) are
set up by inflation: for now we can just take the initial Φ to be equal
to 1, thereby extracting the primordial perturbations from the transfer
functions.

We are interested in following perturbations, more precisely the
“effective temperature perturbation” Φ+

δγ
4 , up to decoupling. Indeed,

as we will see in more detail in the next Section, Φ+
δγ
4 is the local

temperature perturbation minus the redshift photons suffer when
climbing out from the potential well of the dark matter perturbation
(Φ is negative for an overdensity, as we can see from the sub-horizon
limit of eq. (3.25) after we expand it in Fourier modes). Besides, we
will see that the main contribution to the temperature anisotropies we
observe at a given angular scale θ comes from Φ(ηrec, k) +

δγ(ηrec,k)
4 at

k ≈ π
θdco

rec
, where dco

rec = η0 − ηrec ≈ η0 is the comoving distance to the
last-scattering surface.

While from eqs. (3.37) we see that scales that are outside the horizon
at recombination are not post-processed and will mainly contain the
information from inflation, for k� krec ≡ η−1rec we can try to get some
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insight from Newtonian perturbation theory. Plugging eq. (3.36d) into
the time derivative of eq. (3.36c), we obtain

δ ′′γ = 4Φ ′′ + 4Rc2s,bγkHuγ − c
2
s,bγk

2δγ −
4

3
k2Φ . (3.38)

On sub-horizon scales we can drop kHuγ. Besides, since recombi-
nation happens during matter dominance, Φ ′′ will be negligible for
adiabatic perturbations: indeed, when a single species with constant
equation of state w dominates the energy and pressure budget of the
universe, combining eqs. (3.25), (3.27) leads to

0 = Φ ′′ + 3(1+w)HΦ ′ +wk2Φ . (3.39)

For w = 0, the growing-mode solution for the potential is Φ = const.
If we further consider a constant speed of sound, we see that the
equation for δγ is that of a forced harmonic oscillator with frequency
ω2 = c2s,bγk

2, i. e.

δ ′′γ + c2s,bγk
2δγ = −

4

3
k2Φ . (3.40)

Taking the η→ 0 limit and imposing that δγ → −2Φ = const. selects
only the cosine solution (this limit is not mathematically consistent
with the approximations used to arrive at eq. (3.40), but it gets the
right initial conditions for δγ). We also see that the effect of baryons
(via R) is to shift the equilibrium point of the oscillations of Φ+

δγ
4

by −RΦ. In an expanding universe, c2s,bγ will be slowly-varying: the
WKB approximation can then be used to show that

δγ(η, k)

4
+ (1+ R)Φ(η, k) ∝ coskrs , (3.41)

where the sound horizon rs(η) is given by

rs(η) =

∫η
0

dη ′ cs,bγ(η
′) . (3.42)

Other corrections will come from the fact that the potential Φ also
evolves, especially at the earlier times when radiation dominates
the expansion rate (e. g. this will affect the proportionality factor of
eq. (3.41), for sub-horizon modes). However, the qualitative result of
an acoustic oscillation of Φ+

δγ
4 , and the shift of its equilibrium point

by baryons, remains:

• the photon-electron-baryon fluid is attracted by the gravitational
potential sourced by dark matter, reaching the maximum com-
pression. The photon pressure, then, pushes the fluid out from
the potential well, reaching its maximum decompression. These
oscillations continue until recombination;
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• the shifting of the equilibrium point due to R 6= 0 has significant
phenomenological consequences. In fact, this shift breaks the
oscillations symmetry, with baryons enhancing the compression
phase into potential wells;

• we see that the typical angular scale of variation of CMB tem-
perature anisotropies in the sky is θ ∼

rs(ηrec)
η0

∼ ηrec
η0

.

F igure 3 .1 : Free motion of photons in space washes out inhomogeneities
in their spatial distribution. The flux of photons from an over-
dense region is higher than that from an underdense one, so
the free motion smoothes out the density contrast. This is a
kinematic effect, whose spatial scale (the Silk damping scale) is
determined by the distance that photons travel in characteristic
time (i. e. the Hubble time in a cosmological context). Pertur-
bations of wavelength shorter than this length are suppressed.

By assuming perfect tight coupling, i. e. a mean free path of pho-
tons equal to zero, the above solutions are still missing some impor-
tant physics: the approximation of the photons and electrons and
baryons moving together as a single fluid is just an approximation.
It is valid only if the scattering rate of photons off electrons is in-
finite. Of course this condition is not met: photons travel a finite
distance in between scatters (see fig. 3.1), given by the mean free path
λmpf = tT = (σTne)

−1. If the density of electrons is very large, then
the mean free path is correspondingly small. In the course of a Hubble
time, the number of photon scatterings is σTneH

−1, and each scatter
contributes to the random walk of the photon. The total distance trav-
eled in the course of a random walk is the mean free path times the



3.3 cmb anisotropies 81

square root of the total number of steps. Therefore, in a Hubble time a
cosmological photon moves a mean distance

λD ∼ λmfp

√
σTne

H
=

1√
σTneH

. (3.43)

Any perturbation on scales smaller than λD can be expected to be
washed out. In Fourier space this will correspond to damping of
all modes with k & λ−1D : more precisely, in eq. (3.41), the effective
temperature perturbation (and δγ, uγ themselves) will be damped by
a factor

δγ(η, k) ∝ e
− k2

k2D coskrs , (3.44)

where we defined kD as [96, §8.4][103–105]4

k2D(η) ≡
∫η
0

dη ′

a(η ′)
1

6(1+ R)σTne

(
R2

1+ R
+
8

9

)
. (3.45)

Putting aside factors of order unity, eq. (3.45) says that 1/kD ∼
√
ηtT/a,

which agrees with the estimate of eq. (3.43). This result for the damp-
ing of short-scale modes (the so-called “Silk damping”) follows directly
by writing down the full Boltzmann hierarchy, expanded in the limit of
small λmpf. In the fluid approximation this amounts to adding viscous
corrections to the number density current and the stress-energy tensor:
for example, the stress-energy tensor of a perfect fluid would get a cor-
rection ∆Tµν parameterized as (we refer to [93][101, §6, §7, §B.10][107,
§7.4.1] for details)

∆Tµν = −2η
{
∇(µUν) +U(µU

λ∇|λ|Uν)
}

+

(
2η

3
− ζ

)(
∇λUλ

)(
gµν +UµUν

)
+O(∇2) ,

(3.46)

where η and ζ are the shear viscosity and bulk viscosity, respectively.
However we stress that, as in any Effective Field Theory expansion,
the expression for the viscous coefficients in terms of tT can be derived
only by matching with the microscopic theory (i. e. the the Boltzmann
hierarchy itself, in this case).

We are now in the position of solving eqs. (3.36), (3.37) numerically,
following [92]. The details are spelled out in Appendix C: here we
stress that we assume Λ = 0, so that the background evolution is
dictated only by matter and radiation, and can be solved analytically
[44, §5.2.3]. Fig. 3.2 shows the sources Φ+

δγ
4 and uγ evaluated at

recombination, for varying wavenumber k: we see that the behavior
discussed above is reproduced by the numerical solution.

4 Taking into account photon polarization, the factor 89 is replaced by 16
15 [106].
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F igure 3 .2 : Photon perturbations at η = ηrec, for varying k, assuming
Λ = 0, Ωmh

2 = 0.13, Ωbh
2 = 0.02 and arec = 1100. We

defined κ ≡ kηr, where ηr ≡ (4arec/ΩmH
2
0)
1/2 ≈ 501.4Mpc is

the would-be conformal time at recombination if there had
been only matter dominance after the Big Bang (we refer to
Appendix C for details). The Newtonian potential Φ has been
set to 1 for η→ 0 (i. e. deeply into radiation dominance).

3 .3 .2 Free-streaming after decoupling

As we discussed in the previous Section, after decoupling we can
follow photon perturbations from the last-scattering surface to us
using the collision-less Boltzmann equation. Several comments are in
order:

• we can parameterize the photon momentum in eq. (3.33) as
Pµ = E(nµ + lµ), where nµ is the normal to the surfaces of
constant time in Newtonian gauge (see the discussion at the
beginning of Section 3.2.1), nµlµ = 0, and the on-shell condition
implies that

hµνl
µlν = 1 , (3.47a)

E2 = hµνP
µPν ≡ p2 ; (3.47b)

• the photon phase-space distribution function has the black-body
form, i. e. (we will often suppress the arguments for simplicity
of notation)

f =
2

e
E
T − 1

, (3.48)
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where the temperature T = T̄(1+Θ) depends on xµ = (t, x) and
lµ = (0, l) only, and we used gγ = 2;

• the assumption of tight coupling at recombination, i. e. the fact
that the photon-baryon-electron is approximated as a perfect
fluid (characterized only by energy density, pressure density and
velocity), means that the temperature perturbation Θ takes the
form

Θ =
δγ

4
+ lµ(v

µ)γ , (3.49)

where (vµ)γ for the photon fluid is defined by eqs. (3.19), (3.20).
Indeed, we can take moments of the photon distribution of
eq. (3.48) in a local Lorentz frame adapted to the fluid, and see
that they reproduce the definitions of Section 3.2.1 (eqs. (3.16),
more precisely) for a photon fluid with density contrast δγ and
velocity (vµ)γ;

• in Newtonian gauge (restoring the potential Ψ for a moment),
we can write li as

li =
p̂i

a(1−Ψ)
, (3.50)

where δijp̂ip̂j = 1. From eq. (3.50) we have that

Pi = pli =
pp̂i

a(1−Ψ)
, (3.51)

at leading order in perturbations. Recalling from eq. (3.26) that
(vi)γ = ∂ivγ, and that (dropping for a moment the subscript γ)

ui = avi

ui = −
∂iu√
−∂2

⇒ θ = a∂iv
i = −

∂2u√
−∂2

=
√
−∂2 u , (3.52)

or, equivalently, that

ui = avi

ui = −ik̂iu

}
⇒ θ = a(iki)vi = ku , (3.53)

we have

lµ(v
µ)γ = p̂ · uγ +O(2) , (3.54)

where we used

li = a(1−Ψ)p̂
i +O(2) . (3.55)

If we go to Fourier space, and call χ ≡ p̂ · k̂, eq. (3.54) becomes

lµ(v
µ)γ = −iχuγ . (3.56)
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We have now all the ingredients to solve the collision-less Boltzmann
equation from ηrec to η0. As we have seen in eq. (3.33), it is given by

0 = Pµ
∂f

∂xµ
+

DE
dλ

∂f

∂E
+

(
hµν

Dlν

dλ

)
∂f

∂lµ
, (3.57)

where we used the fact that only the projected part of Dlµ
dλ will survive

when contracted with ∂f
∂lµ (we refer to [58, §4][108] for a proof). The

evolution equations for E and lµ are dictated by the photon geodesic
equation. The derivation of these equations is deferred to Appendix
B: for now we just note that the last term on the right-hand side
of eq. (3.57) will be second-order in perturbations (i. e. lensing is a
second-order effect, since the photon direction lµ is unchanged by
geodesic motion in a FLRW background and the zeroth-order phase-
space distribution depends only on the photon energy. Indeed, as we
can see from eq. (3.49), ∂f

∂lµ = O(1)). If we further use the fact that
eq. (3.57) is linear in f, it is straightforward to arrive at two equations
for T̄ and Θ only, i. e.

d log T̄
dt

= −H , (3.58a)

0 = Θ̇+
p̂i

a
∂iΘ− Ψ̇+

p̂i

a
∂iΦ . (3.58b)

Eq. (3.58a) is self-explanatory. Going to conformal time, eq. (3.58b)
becomes

0 = Θ ′ + p̂i∂iΘ−Ψ ′ −Φ ′ +Φ ′ + p̂i∂iΦ , (3.59)

which, using the method of characteristics, is solved by

(Θ+Φ)(η, x, p̂) = (Θ+Φ)(ηrec, x − p̂∆η, p̂)

+

∫η
ηrec

dη ′ SISW(η ′, x − p̂∆η) ,
(3.60)

where we defined

∆η ≡ η− ηrec , (3.61a)

SISW(η, x) ≡ (Ψ ′ +Φ ′)(η, x) . (3.61b)

Indeed, we have

∂(Θ+Φ)(η, x, p̂)
∂η

= −p̂i
∂(Θ+Φ)(ηrec, y

i, p̂)
∂yi

∣∣∣∣
y=x−p̂∆η

+ SISW(η, x − p̂∆η)

− p̂i
∫η
ηrec

dη ′
SISW(η ′, y)

∂yi

∣∣∣∣
y=x−p̂∆η

,

(3.62)

and

p̂i
∂(Θ+Φ)(η, x, p̂)

∂xi
= p̂i

∂(Θ+Φ)(ηrec, y
i, p̂)

∂yi

∣∣∣∣
y=x−p̂∆η

+ p̂i
∫η
ηrec

dη ′
SISW(η ′, y)

∂yi

∣∣∣∣
y=x−p̂∆η

.
(3.63)
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Evaluating eq. (3.60) at η = η0 and restoring Φ = Ψ, we see that the
present temperature anisotropy Θ(η0, x, p̂) is given by

Θ(η0, x, p̂) =
(
δγ

4
+Φ

)
(ηrec, x − p̂∆η0)

+ p̂ · uγ(ηrec, x − p̂∆η0)

+

∫η0
ηrec

dη ′ SISW(η ′, x − p̂∆η0) .

(3.64)

In the left-hand side of eq. (3.64) we have put to zero two terms:

• first of all, the Newtonian potential today is unobservable (or,
equivalently, only the potential difference between recombina-
tion and the observation point is a physical observable).5 There-
fore, we have absorbed Φ(η0, x) in the average measured tem-
perature by the observer at (η0, x);

• the second term we have put to zero is the Doppler term p̂ ·
uγ(η0, x), which is due to the motion of the observer at (η0, x)
with respect to the CMB (recall eq. (3.19)). This effect results in a
large dipole anisotropy, which must be taken into account when
CMB data are analyzed but is not relevant for this discussion.

We see, then, how Θ(η0, x, p̂) is made up of three contributions:

sachs-wolfe effect It is the relative frequency shift of photons
induced by the difference in gravitational potentials at emission
(i. e. at recombination) and detection.

doppler effect At the last scattering epoch, the baryon-electron-
photon medium moves with respect to the conformal Newtonian
frame with a non-zero velocity, and this generates a Doppler
shift in the photon temperature.

integrated sachs-wolfe effect It also reflects the change of
the photon frequency due to gravitational potentials, now de-
pending on time. If a photon passes through a region with neg-
ative potential whose magnitude grows in time, it first “dives”
into the potential well and then gets out from the deeper well.
As a result, the photon loses energy.

Once we have the observed temperature anisotropy as a function of
p̂, we can expand it in spherical harmonics Y`m(p̂) on the sky. More
precisely, given Θ(η0, x, p̂) we can define its a`m spherical harmonic
coefficients by

Θ(η0, x, p̂) =
∞∑
`=0

∑̀
m=−`

a`m(η0, x) Y`m(p̂) . (3.65)

5 As always in General Relativity, only (second) derivatives of the potential can be
measured by a local observer (Einstein equivalence principle).
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Correspondingly, we extract the coefficients a`m by

a`m(η0, x) =
∫

dp̂Θ(η0, x, p̂) Y∗`m(p̂) , (3.66)

where the integration is on the unit sphere. The coefficient for ` = 0,
which is just the angular average of the temperature anisotropy on the
sky, can be re-absorbed in the definition of T̄(η0). The ` = 1 multipole,
instead, will pick up the local Doppler term p̂ · uγ(η0, x) that we have
discussed (and discarded) in the previous paragraph. From the a`m
coefficients, then, we can define the angular power spectrum, i. e.

〈a`ma∗` ′m ′〉 ≡ C`δ`` ′δmm ′ ⇒ C` =
1

2`+ 1

∑̀
m=−`

|a`m|
2 , (3.67)

where we assumed statistical isotropy in eq. (3.67), so that the coef-
ficients a`m are uncorrelated at different ` and m. If we recall from
eq. (3.64) that Θ(η0, x, p̂) is a function of x − p̂∆η0, we can write it in
Fourier space as

Θ(η0, x, p̂) =
∫

d3k
(2π)3

Θ(η0,k, p̂)eik·xe−ik·p̂∆η0 , (3.68)

where

Θ(η0,k, p̂) =
(
δγ

4
+Φ

)
(ηrec,k) + p̂ · uγ(ηrec,k)

+

∫η0
ηrec

dη ′ SISW(η ′,k) .
(3.69)

Using the Rayleigh expansion of a plane wave, i. e.6

e−ik·p̂∆η0 = 4π
+∞∑
`=0

m∑
`=−m

i−`j`(k∆η0)Y
∗
`m(k̂)Y`m(p̂) , (3.70)

and matching with eq. (3.65), one can find the expression of the
a`m(η0, x) in terms of Θ(η0,k, p̂). Things are simpler for the Sachs-
Wolfe (SW) and Integrated Sachs-Wolfe (ISW) effects, since for them
Θ(η0,k, p̂) does not depend on p̂. For the Doppler shift, some more
work is needed to translate the p̂-dependence into a `-dependence (we
refer to [96, §8.5.1] for details: the p̂ · uγ term gives rise to a different
combination of Bessel functions j`(k∆η0)). If we focus only on the SW
term for simplicity, we find

a`m(η0, x) = 4π
∫

d3k
(2π)3

eik·x
(
δγ

4
+Φ

)
(ηrec,k)︸ ︷︷ ︸

≡SSW(ηrec,k)

× i−`j`(k∆η0)Y∗`m(k̂) ,

(3.71)

6 The complex conjugation between the two spherical harmonics can be interchanged.
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which also defines the Fourier transform a`m(η0,k). We can now
compute the angular power spectrum: taking the ensemble average of
a`ma

∗
` ′m ′ at (η0, x), we see that

〈a`ma∗` ′m ′〉 = (4π)2
∫

k

∫
k ′
ei(k−k ′)·x

× 〈SSW(ηrec,k)S∗SW(ηrec,k ′)〉
× i−`+` ′j`(k∆η0)j` ′(k ′∆η0)
× Y∗`m(k̂)Y` ′m ′(k̂ ′) .

(3.72)

As we will see in the next Chapter, the ensemble average in eq. (3.72)
is fixed by the initial conditions for the Newtonian potential Φ deep
into radiation dominance, which in turn are set up by inflation. More
precisely, eq. (3.44) has a proportionality factor equal to −83ΦMD,
whereΦMD is the value of the potential on super-horizon scales kη� 1

during matter dominance (when recombination happens). Indeed, we
have that δγ = 4

3δcdm for adiabatic perturbations, and the relativistic
Poisson equation eq. (3.25) tells us that δcdm = −2Φ on super-horizon
scales when dark matter fluctuations are the main source for the
Newtonian potential (as it happens in the matter-dominated epoch).
Thus, the normalization factor for δγ(ηrec, k) at kηrec � 1 is fixed by

δγ

4
→ −

2ΦMD

3
⇒ Φ+

δγ

4
→ ΦMD

3
. (3.73)

As we will see in more detail in Section 4.8, the value of Φ on super-
horizon scales drops of a factor 9

10 as we transition from radiation to
matter dominance. Therefore, we have

ΦMD =
9

10
ΦRD . (3.74)

ΦRD was set to 1 in Section 3.3.1. We will see that it is just −23ζ, where
the comoving curvature perturbation ζ is defined during inflation by
eq. (3.21) in comoving gauge. It becomes a constant on super-horizon
scales: with ζ here we denote such constant value. Therefore the initial
conditions for δγ, and the ensemble average of the a`m coefficients,
are fixed by

ΦMD = −
3

5
ζ . (3.75)

These results are confirmed by fig. 3.2 (apart from small correc-
tions coming from the fact that recombination does not truly hap-
pen deeply into matter dominance, and from the fact that baryons
are also present): then, in order to proceed it suffices to notice that
〈SSW(ηrec,k)S∗SW(ηrec,k ′)〉 will just be proportional to the power spec-
trum of ζ, i. e.

〈SSW(ηrec,k)S∗SW(ηrec,k ′)〉 ∝ 〈ζ(k) ζ∗(k ′)〉
= (2π)3δ(3)(k − k ′)Pζ(k) ,

(3.76)
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where we used homogeneity and isotropy to write the two-point
function of ζ in terms of its power spectrum Pζ(k). If we call ∆2SW(k)

the proportionality factor in the above equation (which, again, can
depend only on k because of homogeneity and isotropy), we can write
eq. (3.72) as

〈a`ma∗` ′m ′〉 = (4π)2
∫

k
∆2SW(k)Pζ(k)

× i−`+` ′j`(k∆η0)j` ′(k∆η0)
× Y∗`m(k̂)Y` ′m ′(k̂) ,

(3.77)

where we see that translational invariance ensures that the observed
angular power spectrum does not depend on the observation point x.
If we do the angular integral in dk̂, and use the closure relation∫

dk̂ Y∗`m(k̂)Y` ′m ′(k̂) = δ`` ′δmm ′ , (3.78)

we arrive at

C` =
2

π

∫+∞
0

dk k2∆2SW(k)Pζ(k) j
2
` (k∆η0) . (3.79)

The derivation of the previous paragraph for the angular power
spectrum, eq. (3.79), can be carried out for the full combination of SW,
Doppler and ISW effects of eq. (3.64). When computing the C` coeffi-
cients, there will be cross-terms between the different source functions.
E. g., the Sachs-Wolfe and the Doppler terms are out of phase with one
another (see fig. 3.2): at the places where the monopole contributes
least to the anisotropies, at its troughs, the dipole contributes the most.
This means that the dipole is not as important in the power spectrum
as one might naively think, since it adds incoherently to the monopole.
Among other effects that are not considered by eq. (3.79), we have:

• we have approximated photon decoupling as instantaneous, but
(as we have seen in Section 2.1.4) photon decoupling takes quite
a long time. This prevents us from seeing very small scales in
the CMB anisotropy spectrum. More precisely, instead of consid-
ering as initial conditions for the free-streaming evolution the
photon monopole and dipole just at η = ηrec, the sources Φ(ηrec),
δγ(ηrec) and uγ(ηrec) must be replaced with a convolution over
the photon visibility function, which gives the probability that a
photon last-scatters at a redshift η. As a result, the C` coefficients
get a suppression ∼ exp(−`2/∆`2), where ∆` ≈ 2800. We refer
to [73, §9.3] for a more detailed analysis: in Section 3.3.1 and
Appendix C we added a fudge factor directly in the sources,
following [92];

• at reionization, the light from the first stars, quasars and dwarf
galaxies makes our Universe less transparent to CMB photons.
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The density of free electrons become sizable again, and the prob-
ability for a photon to “live through” the reionization epoch
(starting at trei) is exp(−τrei), where the optical depth of reion-
ization is given by

τrei =

∫t0
trei

dt σTne , (3.80)

with the integration being performed along the photon worldline.
Photons that rescatter at z = zrei at given place in the Universe
have last scattered at recombination anywhere on a sphere of
coordinate radius ηrei − ηrec ≈ ηrei. Since the direction of photon
propagation changes randomly, photons coming to an observer
from a given direction gather from the whole of that sphere.
Hence, the contribution of rescattered photons to anisotropy at
angular scales smaller than ∆θrei =

ηrei
η0

is washed out, and the
remaining anisotropy is due to photons that have not rescattered.
On the other hand, the anisotropy at angular scales larger than
∆θrei remains intact, since the regions of the coordinate size ηrei

at recombination are not resolved at these angular scales. At the
level of the angular power spectrum, this implies a suppression
of the C` coefficients by exp(−2τrei) for ` > πη0

ηrei
;

• we have not included (massive) neutrinos in the computation
of the sources in Section 3.3.1. The effective number of neutrino
species and the neutrino mass have an important impact on
CMB anisotropies, and are one of the most important targets
of upcoming experiments (we refer to [109–114] and references
therein for details).

Current codes, like CAMB, take all these effects into account, in addi-
tion to solving the Boltzmann hierarchy to higher order in moments
(i. e. beyond the monopole and the dipole): in fig. 3.3 we show the
temperature angular power spectrum as a function of `, computed by
CAMB, for the Planck best-fit cosmological parameters [6].

3 .3 .3 CMB polarization

We conclude this Section with a word on polarization. One would
expect the polarizations of the CMB photons to be completely random:
however, a net linear polarization is induced by Thomson scattering
between photons and free electrons, either at decoupling or during
a later epoch of reionization, if the incoming radiation field has a
quadrupole component [96, §10.5, §10.6]. In the case of isotropic (in the
rest frame of the electron) incoming radiation, the outgoing radiation
remains unpolarized: this is because orthogonal polarization directions
cancel out [115, 116].

How does one characterize these fluctuations in the photon polar-
ization? Polarization is not a scalar field, so the standard expansion

http://camb.info
http://camb.info
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F igure 3 .3 : The blue curve shows the angular power spectrum CTT` of
temperature anisotropies for the Planck best-fit cosmological
parameters [6], while the orange points (with gray lines) show
Planck data points and errors. Errors become larger at small `
because of cosmic variance. Since the ensemble average over
different universes that appears in the definition of the C`
coefficients cannot (for obvious reasons) be taken, we construct
an estimator Ĉ` of the C`, defined as

Ĉ` ≡
1

2`+ 1

∑̀
m=−`

|a`m|2 .

The expected squared difference between Ĉ` and C` is the
cosmic variance, and for Gaussian anisotropies is equal to

〈(Ĉ` −C`)2〉 =
2C2`
2`+ 1

.

Therefore, at large angular scales we do not have many dif-
ferent regions (that we assume are corresponding to different
realizations of the underlying stochastic field: ergodic hyphote-
sis) over which to sample the distribution from which the a`m
are drawn, and there will be an intrinsic uncertainty in our
knowledge of the C`.

in spherical harmonics does not apply. Instead, one starts from the
anisotropy tensor, that is a 2× 2 tensor Iij(p̂) defined on the sky (the
directions i and j are those orthogonal to p̂) at the observation point
(η0, x). From Iij one constructs:
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F igure 3 .4 : This figure shows how both E- and B-mode polarization pat-
terns are rotationally-invariant, but behave differently under
reflections through the plane orthogonal to p̂: the E-modes
stay unchanged, while the positive and negative B-modes get
interchanged. Another way to characterize them is that the
E field is divergence- and curl-free (with E < 0 around cold
spots in the sky and E > 0 around hot ones), contrary to the B
one which is divergence-less but has vorticity different from
zero at every point in the sky.

• the “Stokes parameters” Q and U, which are

Q =
1

4
(I11 − I22) , (3.81a)

U =
1

2
I12 . (3.81b)

These two parameters are related to the magnitude and angle of
polarization through

P =
√
Q2 +U2 , (3.82a)

α =
1

2
arg(Q+ iU) ; (3.82b)

• the scalar (spin-0) 14(I11 + I22), which is nothing but the temper-
ature anisotropy itself.
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Since the spin-2 fields Q and U are not invariant under rotations in the
plane perpendicular to p̂, they cannot be expanded as in eq. (3.65): the
spin-2 spherical harmonics Y(s)`m (with (s) = ±) must be used instead,
leading to [117, 118]

Q(p̂)± iU(p̂) =
+∞∑
`=0

∑̀
m=−`

a±`mY
±
`m(p̂) . (3.83)

The last step is the introduction of the linear combinations

aE`m ≡ −
1

2
(a+`m + a−`m) , (3.84a)

aB`m ≡ −
1

2i
(a+`m − a−`m) , (3.84b)

and, from there, of the spin-0 fields

E(p̂) ≡
+∞∑
`=0

∑̀
m=−`

aE`mY`m(p̂) , (3.85a)

B(p̂) ≡
+∞∑
`=0

∑̀
m=−`

aB`mY`m(p̂) . (3.85b)

These fields are much more convenient to use (due to their scalar
nature), and completely specify the linear polarization field. The prop-
erties of E- and B-modes are illustrated in figure 3.4.

Along with the multipole moments a`m of eq. (3.65) (that from
now on we will denote with aT`m), the coefficients aE`m and aB`m are
everything we need to compute power spectra and cross-correlations
of temperature and polarization fluctuations. The angular correlation
of eq. (3.67) is then generalized to

CXYl ≡ 1

2l+ 1

∑̀
m=−`

〈aX`m(aY`m)∗〉 with X, Y = T, E, B . (3.86)

Given that both temperature and polarization anisotropies are cre-
ated by primordial density fluctuations, we expect a non-zero cross-
correlation XY = TE. The TB and EB cross-correlations, instead, are
equal to 0 for symmetry reasons).

This decomposition in E- and B-modes is fundamental in modern
cosmology, as [117, 118] (but see [96, § 10.9], also) have shown. In fact
these two works have demonstrated that:

• scalar perturbations (energy density fluctuations in the plasma)
can lead to a quadrupole component for the incoming radiation
field. The result, though, is only E-modes and no B-modes;

• vector perturbations (vorticity in the plasma) also produce a
quadrupole component. They create mainly B-modes, but the
expansion of the universe damps vorticity so their contribution
is expected to be negligible;
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• tensor perturbations (gravitational waves) stretch and squeeze
space in orthogonal directions. They produce both E- and B-modes.

The point is that tensors generate B-modes where scalars do not, so a
detection of B-modes by experiments can be a sign of primordial grav-
itational waves generated by inflation. The problem is that polarized
radiation is also emitted by electrons gyrating in the galactic magnetic
field (synchrotron radiation) or by dust (aligned particles of carbon,
graphite and other silicates). Besides gravitational lensing can turn
E-modes in B-modes. Therefore a detection of B-mode polarization in
the CMB is not automatically a “smoking gun” for inflation: one has
to also take into account the contributions of these foregrounds.

We conclude this brief survey of CMB polarization with the equiva-
lents of eq. (3.79) for XY different from TT :

• for XY = EE, TE we are considering, respectively, the angular
power spectrum of the E field and the angular cross-correlations
between the temperature anisotropies and E-modes. Both of
them are dominated by scalar fluctuations, so one can write

CEE` =
2

π

∫
dk k2

inflation︷ ︸︸ ︷
Pζ(k)

transfer function︷ ︸︸ ︷
∆E,`(k)∆E,`(k) ,

CTE` =
2

π

∫
dk k2 Pζ(k)︸ ︷︷ ︸

inflation

∆T,`(k)∆E,`(k)︸ ︷︷ ︸
transfer function

,

(3.87a)

(3.87b)

where, in eq. (3.79), we would have defined ∆T,` as

∆T,`(k) ≡ ∆SW(k) j`(k∆η0) ; (3.88)

• for XY = BB we are studying the angular power spectrum of
B-modes. The equivalent of eq. (3.79) is

CBB` =
4

π

∫
dk k2 Pγ(k)︸ ︷︷ ︸

inflation

∆B,l(k)∆B,l(k)︸ ︷︷ ︸
transfer function

, (3.89)

where the power spectrum of tensor perturbations during infla-
tion is the Fourier transform of the two-point function of the
spin-2 metric perturbation γij of eq. (3.21), computed during
inflation (the overall factor of 2 with respect to eqs. (3.87) ac-
counts for the two polarizations, + and ×, of γij: we refer to
Section 4.3 for details). Since Pγ(k) only appears in eq. (3.89),
the power spectra of B-modes is a probe of the strength of tensor
perturbations.

3 .4 cmb µ-distortions from silk damping

We conclude this Chapter with an overview of how µ-type spectral
distortions from Silk damping are generated. The physical picture
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is that dissipation erases all sound waves on small scales and homo-
geneously redistributes their energy, hence heating the photons and
generating a µ-distortion. In Section 2.3.4 we have seen how (recalling
that 3κc ≈ 1.4)

µ0 =
3

κc

∫zDC

0

dz
d(Q∗e/ργ)

dz
Θ(z− zK) , (3.90)

where zDC = 2× 106, zK = 5× 104 and we have approximated the
µ-distortion visibility function of eq. (2.75b) as a simple Theta function,
i. e. Jµ(z, 0) = Θ(zDC − z). Therefore we only need to compute the rate
of heating Q∗e ≡ Q, and we will have an expression for the chemical
potential µ0 ≡ µ.

-4 -2 0 2 4 6
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F igure 3 .5 : The average µ-distortion seen in the sky is a direct probe of
the power spectrum of scalar perturbations during inflation
on scales complementary to those probed by the CMB, as we
see from eq. (3.101). The dimensionless power spectrum ∆2ζ(k)

is usually parameterized as a power-law, i. e.

∆2ζ(k) = As

(
k

k?

)ns−1+αs log k
k?

,

where k? (fixed to 5× 10−2Mpc−1 in the plot ), ns is the “tilt”
(ns ≈ 0.96 from Planck data [6]) and αs is the “running” (which
slow-roll inflation predicts to be αSR

s ∼ −(1−ns)
2). From the

plot we see that µ is very sensitive to the running αs.

In flat space, the energy of a wave δ is [93]

Q(η, x) = ρ̄
c2s

1+ c2s
〈δ2(η, x)〉p , (3.91)

where 〈. . .〉p denotes an average over the period of oscillation. Since
large-scale perturbations do not dissipate anyway, we can extend
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this flat-space result to a perturbed FLRW universe. Besides, we will
neglect the effect of baryons in the following (referring to [93] for
a more detailed treatment): therefore, the overall relativistic factor
c2s,γ/(1+ c

2
s,γ) of eq. (3.91) is

c2s,γ

1+ c2s,γ
≈ 1
4
, (3.92)

for c2s,γ ≈ wγ = 1
3 . Now, we know from Section 3.3.1 that acoustic

waves δγ in the photon-electron-baryon fluid oscillate according to

δγ(η, k) ∼ coskrs , (3.93)

where rs(η) is defined in eq. (3.42). However, while in Section 3.3.1
we were focusing on acoustic oscillations in the matter-dominated
epoch, µ-distortions are created deeply into radiation dominance. For
this reason, we must be careful about the normalization of δγ. During
radiation domination, the Newtonian potential obeys eq. (3.39) with
wγ = 1/3. Imposing Φ → ΦRD = −23ζ on super-horizon scales, we
have

Φ(η, k) = −2ζ(k)
j1(krs)

krs
. (3.94)

If we use the Poisson equation eq. (3.25) with δ ≈ δγ during radiation
domination (for adiabatic perturbations), we see that inside the horizon
δγ oscillates around 0 with maximum amplitude 4ζ. Adding the Silk
damping term, we have

δγ(η, k) = −4ζ(k)e
− k2

k2D coskrs , (3.95)

where the Silk damping scale k2D(η) is defined in eq. (3.45). Since the
damping scale k2D(η) decreases with time (indeed, we have kD(z) ≈
4.1(1+ z)3/2× 10−6Mpc−1), the amplitude of the acoustic waves (and
then their energy) is also decaying with time, so that

d(Q/ρ̄γ)
dz

> 0 , (3.96)

and we will have a positive µ-distortion. Combining eq. (3.91) with
eq. (3.95), we find [20, 25]

µ(zK, x) = 4.6
∫

k1

∫
k2
ζ(k1)ζ(k2)e

i(k1+k2)·x

× 〈cos(k1rs) cos(k2rs)〉p e−(k21+k
2
2)/k

2
D

∣∣∣
zDC

zK

≈
∫

k1

∫
k2
ζ(k1)ζ(k2)Wµ(k1, k2)e

i(k1+k2)·x ,

(3.97)

where we have approximated 〈cos(k1rs) cos(k2rs)〉p ≈ 1
2 and we de-

fined the window function Wµ(k1, k2) as

Wµ(k1, k2) ≡ 2.3 e−(k21+k
2
2)/k

2
D

∣∣∣
zDC

zK
. (3.98)
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If we write µ(zK, x) in Fourier space, i. e.

µ(zK, k) =

∫
d3x e−ik·x

∫
k1

∫
k2
ζ(k1)ζ(k2)Wµ(k1, k2)e

i(k1+k2)·x , (3.99)

and we evolve it from zK to z = 0 using the Sachs-Wolfe approximation
of eq. (3.71), we see that the aµ`m coefficients at the observation point
(η0, x) are given by

a
µ
`m = 4π

∫
k
eik·xµ(zK, k)i

−`j`(k∆η0)Y
∗
`m(k̂) , (3.100)

where ∆η0, now, is η0 − ηK. If we consider the sky average ` = 0 (so
that Y∗`m(k̂) = 1

4π , and take the ensemble average 〈aµ00〉, we see that
the expected value of the observed chemical potential is equal to (as
expected, the dependence on the observation point x drops out due to
translational invariance)

〈aµ00〉 =
∫

k1
Pζ(k1)Wµ(k1, k1)j0(0)

=

∫+∞
0

dk
k
∆2ζ(k)Wµ(k, k) ,

(3.101)

where we defined the dimensionless power spectrum ∆2ζ(k) as

∆2ζ(k) ≡
k3Pζ(k)

2π2
. (3.102)

Therefore, we see that µ is a direct probe of the power spectrum of ζ
on scales between kD(zK) ≈ 46Mpc−1 and kD(zDC) ≈ 1.1× 104Mpc−1

(see fig. 3.5).
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In this Chapter we will compute, following [18], the power spectra of
primordial scalar and tensor fluctuations. Then, we will see how the
super-horizon values of these perturbations act as initial conditions for
the late-time evolution we studied in Chapter 3. We will conclude with
a review of the phenomenological parameterizations of the primordial
scalar power spectrum.

4 .1 gauge choice and quadratic actions

We will focus on single-field, slow-roll inflation. The action is that of
eq. (1.51), i. e.

S =
M2

P
2

∫
d4x
√
−gR−

1

2

∫
d4x
√
−g
{
(∇φ)2 + 2V(φ)

}
. (4.1)

How many degrees of freedom are present? The metric will contain
4 scalar perturbations (g00, gii, g0j ∼ ∂jB, gij ∼ ∂i∂jE), 2 vector
perturbations (g0j, with ∂jg0j = 0, and gij ∼ ∂(iÊj), with ∂iÊi = 0)
and one transverse and traceless tensor perturbation gij. Furthermore,
we will have one scalar perturbation δφ coming from φ. One vector
perturbation can be set to zero by means of a coordinate change,
while the shift constraint equation will enforce the second vector
perturbation to zero (since there are no sources for it in the matter
sector). If we choose the time coordinate so that δφ = 0 (comoving
gauge), all degrees of freedom will be contained in the metric. The
ADM decomposition of the metric will read as in eq. (3.18), i. e.

ds2 = −N2dt2 + hij(dxi +Nidt)(dxj +Njdt) , (4.2)
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and we can use the remaining gauge freedom to put the spatial metric
in the form

hij = a
2e2ζ(eγ)ij , (4.3)

where γii = ∂iγij = 0. Correspondingly, the action of eq. (4.1) will be
decomposed as

S =
M2

P
2

∫
d4xN

√
h

(
(3)R+

EijE
ij − E2

N2

)

+
1

2

∫
d4xN

√
h

{ ˙̄φ
2

N2
− 2V(φ̄)

}
,

(4.4)

where we defined Eij ≡ NKij (Kµν being the extrinsic curvature of
the surfaces of constant time), E ≡ hijK

ij, and we used the 3 + 1
decomposition of the Ricci scalar, which is given by [55, §E.2]

R = (3)R+KµνK
µν −K2 + 2∇µ(Knµ −Aµ) , (4.5)

with Aµ ≡ nν∇νnµ.
The variables N and Ni are non-dynamical (their equations of

motion do not involve time derivatives), so they can be integrated out
to find the action for scalar and tensor fluctuations. If we are interested
in up to the cubic action for ζ and γij, we just need them at first order:
in fact, the second- and third-order lapse and shift perturbations will
multiply the zeroth-order lapse and shift equations, which vanish
since the background solves the zeroth-order equations of motion (we
refer to [119] for a proof1). Then, N and Ni will not contain tensor
modes, since we cannot form a scalar from the transverse and traceless
γij at first order in perturbations. Using the fact that the extrinsic
curvature can be written as

Eij =
ḣij − 2

(3)∇(iNj)

2
, (4.6)

where (3)∇i is the covariant derivative on surfaces of constant time
and Ni = hijNj, the constraint equations become

0 = (3)R− 2V(φ̄) −
EijE

ij − E2

N2
−

˙̄φ
2

N2
, (4.7a)

0 = (3)∇i
(
Eij − Eδ

i
j

N

)
. (4.7b)

If we define

N = 1+ δN , (4.8a)

Ni = ∂iψ , (4.8b)

1 Actually, it is possible to prove that the solution of the constraints at order n is enough
to find the action for ζ and γij up to order 2n+ 1 [65].
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eqs. (4.8) are solved by

δN =
ζ̇

H
, (4.9a)

ψ = −
ζ

a2H
+ εH∂

−2ζ̇ , (4.9b)

where εH is the slow-roll parameter defined in eq. (1.55), i. e.

εH = −
Ḣ

H2
=

˙̄φ2

2H2M2
P

. (4.10)

After plugging eq. (4.9) in eq. (4.4), and expanding up to second
order in perturbations, we can find the quadratic actions for ζ and γ.
These are equal to [18]

Sζ =M
2
P

∫
d4x εHa3

{
ζ̇2 − a−2(∂kζ)

2
}
,

Sγ =
M2

P
8

∫
d4xa3

{
(γ̇ij)

2 − a−2(∂kγij)
2
}

.

(4.11a)

(4.11b)

We will start from the scalar action: once we have solved the equations
of motion for ζ we will be able to translate the results also to γij.

4 .2 dynamics of the scalar degree of freedom

We start with the Fourier decomposition of the comoving curvature
perturbation, that is

ζ(t, x) =
∫

d3k
(2π)3

ζ(t,k)eik·x . (4.12)

From eq. (4.11a) we see that each ζ(t,k) is a harmonic oscillator with
time dependent mass, whose equation of motion is

d
(
a3εHζ̇(t,k)

)

dt
+ aεHk

2ζ(t,k) = 0 . (4.13)

It is a simple matter, then, to quantize the system: we promote ζ(t,k)
and ζ̇(t,k) to q-numbers by writing (see [55, § 14.2] and [120, § 3.2] for
a more exhaustive treatment of quantization on curved spacetimes)

ζ(t,k) = rk(t)ak + r∗k(t)a
†
−k , (4.14)

where the mode functions rk(η) are general classical solutions of
eq. (4.13). These are solutions to a second-order linear differential
equation, so they will depend on two arbitrary constants of integration.
In principle, these constants are fixed in the following way:

• if the operators ak and a†k must satisfy the standard creation
and annihilation commutation relations, the mode functions will
have to satisfy a particular normalization condition. For a scalar
field in Minkowski spacetime this condition would be

r∗kṙk − rkṙ
∗
k = −i ; (4.15)
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• the second constant is fixed by choosing a vacuum state |0〉 for
the fluctuations, annihilated by all ak.

How can we proceed during inflation? By inspection of eq. (4.13)
we see that for early times, when a mode of physical wavelength aλ
is well inside the horizon, the ratio of aλ to the Hubble scale H−1 is
very small and the mode feels like it is in a flat spacetime. So we can
take as |0〉 the usual vacuum of Minkowski space for an observer in
the far past. When the mode is outside the horizon during inflation,
instead, the solutions of eq. (4.13) quickly become constant.

Let us see, now, what happens in de Sitter space. The action for a
massless scalar s is given by

S =
1

2

∫0
−∞ dη

∫
d3x

1

H2η2

{
(s ′)2 − (∂ks)

2
}
, (4.16)

and it is straightforward to show that the classical solutions scl.
k , in this

case, are given by [120, §5.4]

scl.
k (η) =

H√
2k3

(1− kη)eikη . (4.17)

Very late times correspond to small |η|, and we see that the mode
function scl.

k becomes a constant in this limit. The two-point function
of the massless scalar is instead given by

〈s(η,k) s(η,k ′)〉 = (2π)3δ(k + k ′)|scl.
k (η)|

2

= (2π)3δ(k + k ′)
H2

2k3
(1+ k2η2) ,

(4.18)

and for modes well outside the horizon (for which k|η|� 1, since in
de Sitter space η = −(aH)−1) it becomes

〈sk(η)sk ′(η)〉 ∼ (2π)3δ(k + k ′)
H2

2k3
. (4.19)

Going back to the inflationary computation we see that, if one knew
the solution to eq. (4.13), the two-point function of ζ(t,k) would be
simply calculated as

〈ζ(t,k) ζ(t,k ′)〉 = (2π)3δ(k + k ′)|rk(t)|
2 . (4.20)

In the slow-roll limit, however, it is possible to estimate the late-time
behavior (after the time of horizon crossing, that is) of the mode
function by the corresponding result in de Sitter space, taking as
value for H the Hubble constant at the moment of horizon crossing
k = a(t)H(t). The reason is that at late times rk(t) is constant while
at early times the flat spacetime approximation is valid. We also note
that the action of eq. (4.11a) contains an overall factor of εH: it enters
in the normalization of the classical solution, therefore to compute
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the super-horizon (η→ 0) two-point function for ζ we have to use the
result of eq. (4.19) with

s(0,k) =
√
2εH ζ(0,k) =

˙̄φ
H
ζ(0,k) , (4.21)

where εH is evaluated at horizon crossing k = a(t)H(t). Recalling the
definition of power spectrum for ζ, then, we see that

Pζ(0, k) ≡ Pζ(k) =
1

4M2
Pk
3

H2

εH

∣∣∣∣
k=aH

. (4.22)

4 .3 dynamics of the tensor degrees of freedom

We start from expanding the tensor perturbation γij in a Fourier
integral. This expansion is given by

γij(t, x) =
∫

d3k
(2π)3

∑
p=+,×

ε
p
ij(k)γ

p(t,k)eik·x , (4.23)

with

δikδjlε
p
ij(k)ε

q
kl(k) = 2δ

pq , (4.24a)

δijε
p
ij(k) = 0 ∀k, p , (4.24b)

kiε
p
ij(k) = 0 ∀k, p . (4.24c)

Eqs. (4.24b), (4.24c) impose constraints on the symmetric three-tensors
ε
p
ij, and this is why they actually depend only on the magnitude k of

k. If we insert this expression for hij into the tensor quadratic action
Sγ we find the sum of two copies of the scalar quadratic action Sζ,
one for the + polarization and one for the × polarization. However
the difference is that Sγ is not multiplied by the slow-roll parameter
εH: therefore, the power spectrum of tensor modes (which is the same
for both polarizations) is given by [18]

Pγ(k) =
2

M2
Pk
3
H2|k=aH . (4.25)

4 .4 power spectra in the slow-roll approximation

We recall that for an operator O the power spectrum PO in Fourier
space is defined by

〈O(t,k)O(tk ′)〉 ≡ (2π)3δ(k + k ′)PO(t, k) . (4.26)

The dimensionless power spectrum ∆2O for the same quantity is instead
defined as

∆2O(t, k) ≡
k3

2π2
PO(t, k) , (4.27)
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where the overall factor ∝ k3 ensures that the real space variance of
the dimensionless power spectrum is given by the momentum-space
integral

∫+∞
0 d logk∆2O(t, k). The final results of this analysis are listed

in tab. 4.1 below.

Table 4 .1 : Power spectra for scalar and tensor modes for η→ 0 at leading
order in slow-roll [18].

Pζ(k)
1

4M2
Pk
3

H2

εH

∣∣∣∣
k=aH

∆2ζ(k)
1

8π2M2
P

H2

εH

∣∣∣∣
k=aH

Pγ(k)
2

M2
Pk
3
H2|k=aH

∆2γ(k)
1

π2M2
P
H2|k=aH

4 .5 inflationary observables

The scalar and tensor dimensionless power spectra ∆2s (k) and ∆2t (k)
are related to those of ζ and γij by

∆2s (k) = ∆
2
ζ(k) , (4.28a)

∆2t (k) = 2∆
2
γ(k) , (4.28b)

where the factor of 2 in equation (4.28b) derives from the sum over the
two polarizations + and ×. These equations show us two important
results:

• since the scalar action is slow-roll suppressed, ∆2s (k) is slow-roll
“enhanced” by a factor of ε−1H ;

• the same thing does not happen for ∆2t (k), so tensor modes are
more difficult to detect.2

This property of primordial fluctuations is encoded in the “tensor-to-
scalar ratio” r, whose expression in terms of the slow-roll parameters
εH and ηH (that we defined in Section 1.3.4) is

r(k) =
∆2t (k)

∆2s (k)
= 16εH|k=aH . (4.29)

Another observable one can consider is the “spectral index”, that we
already introduced in fig. 3.5: the condition k = aH in tab. 4.1 leads to
additional momentum dependence of the dimensionless power spectra,

2 Another reason is that tensor modes (like vector modes) decay once they come back
into the horizon [121, 122].
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even if the explicit factor of k3 has been removed. One parameterizes
this dependence with

ns(k) − 1 =
d log∆2s (k)
d logk

= −ηH|k=aH − 2εH|k=aH , (4.30a)

nt(k) =
d log∆2t (k)
d logk

= −2εH|k=aH , (4.30b)

that hold at first order in slow-roll. With these definitions, ns(k) = 1

and nt(k) = 0 correspond to “scale-invariant” spectra. In the following
we will consider only the scalar spectral index, because experiments
are not yet sensitive enough to detect nt.

If we now use the potential slow-roll parameters instead of the
Hubble ones, recalling the relations of eqs. (1.58), we find that

∆2s (k) =
1

24π2
1

M4
P

V

εV

∣∣∣∣
k=aH

,

r(k) = 16εV |k=aH ,

ns(k) = 1+ 2ηV |k=aH − 6εV |k=aH ,

(4.31a)

(4.31b)

(4.31c)

where εV and ηV are functions of the potential and of its first and
second derivatives (respectively) evaluated at φ = φ̄(t). Experiments
will give us the values of the scalar and tensor spectra at a “pivot”
scale k?, where the scalar and tensor spectra are normalized (recall
fig. 3.5). The scale k? has crossed the horizon at the time t? at which
k? = a?H?): using eqs. (4.31) we relate these measurements directly to
the shape of the inflationary potential driving the period of accelerated
expansion. In fact one is able to reconstruct the derivatives of the
potential at φ̄? = φ̄(t?) and from there its power series.

4 .6 the energy scale of inflation and the lyth bound

In this short Section we study what one can learn about the inflationary
epoch by measuring primordial gravitational waves. We begin from
relating the energy scale of inflation to the strength of these primordial
gravitational waves. The starting point is eq. (4.29) for the tensor-to-
scalar ratio

r(k) =
∆2t (k)

∆2s (k)
, (4.32)

which one can rewrite as

r(k) =
2

π2M2
P

H2|k=aH
∆2s (k)

≈ 2

3π2M4
P

V |k=aH
∆2s (k)

, (4.33)

since during slow-roll the kinetic energy is negligible. If we now
substitute in this formula the measured value of the dimensionless
scalar power spectrum, which is of order 10−9 [123], we arrive at the
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equation (we are dropping the dependence on k here, because we are
just interested in the orders of magnitude)

4
√
V ≈ 4

√
r

0.01
× 1016 GeV . (4.34)

Therefore having a tensor-to-scalar ratio of order 10−1 corresponds to
an energy scale of order 1016 GeV.

Now we arrive at the Lyth bound [124], which relates the intensity
of tensor fluctuations to the excursion in field space during inflation. If
we combine eq. (4.31b) with the expression for the number of e-folds
N at first order in slow-roll, i. e. (we assume ˙̄φ > 0, as in fig. 1.4)

N(t) =

∫ φ̄end

φ̄(t)

dφ̄
MP

1√
2εV(φ̄)

, (4.35)

we find that

dφ̄
dN

= −MP

√
r(φ̄)

8
. (4.36)

If we now use the fact that εV (and then r) does not evolve much
during slow-roll (since also |ηV | is much smaller than 1), we find that
(again dropping the dependence on k)

φ̄end − φ̄CMB

5MP
≡ (∆φ̄)slow-roll

MP
≈
√

r

0.01
, (4.37)

where φ̄CMB (recall fig. 1.4) is the value of the inflaton at the time at
which the fluctuations measured in the CMB are generated. Hence
values of r of order 10−1 translate into a trans-Planckian displacement
(∆φ̄)slow-roll & MP during inflation: this is why models predicting a
large amount of primordial gravitational waves are called “large-field
models”.3

4 .7 beyond power-law spectra

The result of eq. (4.30a) for the tilt of the scalar power spectrum can be
cast in a different way: from the definition of spectral index we have
that, for constant ns(k) − 1, ∆2ζ(k) can be written as

∆2ζ(k) = As

(
k

k?

)ns−1

, (4.38)

where

As =
1

8π2M2
P

H2

εH

∣∣∣∣
aH=k?

, (4.39a)

ns − 1 = −ηH|aH=k? − 2εH|aH=k? . (4.39b)

3 For an analysis of large field models from an effective field theory point of view we
refer the reader to [43, §28.3, §28.4].
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However, it is possible to extend eq. (4.39) to higher order in an
expansion in log k

k?
. More precisely, we can write

∆2ζ(k) = As

(
k

k?

)ns−1+
αs
2 log k

k?
+βs
6 log2 k

k?
+...

, (4.40)

where αs is the “running of the spectral index”, βs the “running of
the running of the spectral index”, etc. In the slow-roll approximation,
we can match the phenomenological parameters of eq. (4.40) to time
derivatives of the Hubble parameter at the pivot scale by using the
relations

N−N? = − log
k

k?
, (4.41a)

1−ns = 2εH −
1

εH

dεH
dN

, (4.41b)

where N is the number of e-folds from the end of inflation, decreasing
as time increases (i. e. Hdt = −dN). The running of εH up to third
order in N is given, then, by

εH(N) = εH(N?) +

3∑
i=1

ε
(i)
H

i!
(N−N?)

i , (4.42)

with

ε
(i)
H ≡

diεH
dNi

∣∣∣∣
N=N?

. (4.43)

The coefficients ε(i)H can be related to ns − 1, αs and βs by using
eq. (4.41b). Indeed, differentiating it with respect to N and then using
eq. (4.41a), one can find the coefficients of the Taylor expansion of
εH(N) in terms of the parameters describing the scale dependence of
the primordial spectrum ∆2ζ(k). More precisely, the system of equa-
tions to solve is (calling εH|? ≡ εH(N?))

ε
(1)
H = (ns − 1)εH|? + 2(εH|?)

2 , (4.44a)

ε
(2)
H = −αsεH|? + 4εH|?ε

(1)
H + (ns − 1)ε

(1)
H , (4.44b)

ε
(3)
H = βsεH|? − 2αsε

(1)
H

+ (ns − 1)
{
−αsεH|? + 4εH|?ε

(1)
H + (ns − 1)ε

(1)
H

}
+ 4
{
εH|?

[
−αsεH|? + 4εH|?ε

(1)
H + (ns − 1)ε

(1)
H

]

+ (ε
(1)
H )2

}
. (4.44c)

4 .8 connection to observations

As we have seen in Section 4.1, ζ and γij are conserved on super-
horizon scales, given that there are no mass terms in their Lagrangians
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eqs. (4.11). Then, we can use these two variables to connect the infla-
tionary epoch to the Hot Big Bang era. The main problem is finding
gauge-invariant variables that reduce to ζ and γij in comoving gauge,
so that we can then equate their super-horizon value to that of the
Newtonian gauge variables of Section 3.3.1.

4 .8 .1 Scalar mode

We start from studying the scalar mode ζ. Given a generic first-order
metric gµν equal to

g00 = −(1+ 2Φ) , (4.45a)

g0j = a(∂jB+ B̂j) , (4.45b)

gij = a
2(1− 2Ψ)δij + a

2∂i∂jE+ a
2∂(iÊj) + a

2γij , (4.45c)

with ∂jB̂j = ∂iÊi = 0, and the stress-energy tensor of a fluid with
four-velocity Uµ = γ(nµ + vµ) (nµ being the normal to the surfaces
of constant time and vi equal to ∂iv), it is straightforward to see that
the combination −Ψ+ a2Hv is gauge-invariant. Indeed, consider for
example the case of a time redefinition t = t̃+ δt(t̃, x̃): under this
transformation we have

Ψ̃ = Ψ−Hδt , (4.46a)

ṽ = v−
δt

a2
, (4.46b)

so that −Ψ+ a2Hv does not change.
In comoving gauge during inflation, −Ψ+ a2Hv reduces to our ζ,

since for δφ = 0 the stress-energy tensor is unperturbed (so v = 0).
Besides, we see that ζ is indeed conserved for η→ 0, so that also the
gauge-invariant combination −Ψ+ a2Hv will be conserved on super-
horizon scales and can be used to match to the Newtonian gauge
variables at horizon re-entry during radiation dominance. Using the
shift constraint equation for a fluid with equation of state w, we can
rewrite −Ψ+ a2Hv as

−Ψ+ a2Hv = −Ψ−
2M2

P
ρ̄(1+w)

(HΨ̇+H2Ψ)

= −Ψ−
2

3(1+w)

(
Ψ̇

H
+Ψ

)
,

(4.47)

so that for Ψ̇→ 0 on super-horizon scales we obtain

−Ψ+ a2Hv→ −Ψ−
2Ψ

3(1+w)
= −

5+ 3w

3(1+w)
Ψ . (4.48)

For Ψ = Φ, in absence of anisotropic stress, we obtain the initial
conditions used in the previous Chapter. Besides, we see that as
w goes from 1

3 to 0 as we go from radiation dominance to matter
dominance, the super-horizon value of the Newtonian potential drops
of a factor of 9

10 .
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4 .8 .2 Tensor modes

The same line of reasoning of the previous Section can be applied to
the tensor modes γij. Things are far simpler in this case, since at linear
order in perturbations γij is gauge-invariant. Indeed, if we take the
linearized coordinate transformation of eq. (3.24), i. e.

xµ = x̃µ + ξµ(x̃) = x̃µ + ξµ(x) +O(2) , (4.49)

we see that neither ξ0 nor ξi = ∂iξL + ξ̂i (with ∂iξ̂i = 0) can contain
a spin-2 perturbation at this order.

Therefore, the super-horizon value of γij (and of its power spectrum)
obtained in Section 4.3 can be directly used as initial condition for the
tensor modes in any other gauge at horizon re-entry.
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In this Chapter we discuss the implications for single-field slow-roll
inflation of a PIXIE-like experiment that will measure µ-distortions at
the level of 10−8. The Chapter is based on the work Phys. Rev. D 93,
no. 8, 083515 (2016).

5 .1 introduction

The recent measurements of CMB anisotropies made by the Planck
satellite experiment [14] have provided, once again, a spectacular
confirmation of the ΛCDM cosmological model and determined its
parameters with an impressive accuracy. Also, numerous new ground
based or balloon borne CMB telescopes are currently gathering data
or under development. Moreover, several proposals for a new satel-
lite experiment like PIXIE [22], PRISM [125, 126], COrE [127], and
LiteBIRD [128] are under discussion.

In summary, two main lines of investigation are currently pur-
sued: CMB polarization and spectral distortions. Improving current
measurements of CMB polarization is partially motivated by the infla-
tionary paradigm. As we have seen in Chapter 4, the simplest models
of inflation predict a nearly scale-invariant (red-tilted) spectrum of
primordial scalar perturbations, in perfect agreement with the latest
experimental evidence. Inflation also predicts a stochastic background
of gravitational waves: a discovery of this background (e. g. through
measurements of CMB B-mode polarization [117, 118]) with a tensor-
to-scalar ratio r ∼ 10−2 would correspond to inflation occurring at the
GUT scale (see Section 4.6). Planned and/or proposed CMB experi-
ments could detect this background, and measure the tensor-to-scalar
ratio r ∼ 0.01× (Einflation/10

16 GeV)4 with a relative error of order 10−2,
if inflation occurs at these energies [129, 130]. This would be a spectac-
ular confirmation of the inflationary theory. However, the energy scale
of inflation could be orders of magnitude lower than the GUT scale.
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In this case, the stochastic background would be out of the reach of
upcoming or planned experiments.

On the other hand, CMB µ-type spectral distortions are an unavoid-
able prediction of the ΛCDM model, since they are generated by the
damping of primordial fluctuations [7, 90] with an amplitude of order
µ = O(10−8) (for this reason, it will be useful to define the parameter
µ8 ≡ µ× 108, that will be used in the rest of this and the following
Chapters).

While a measurement of CMB spectral distortions could shed light
on several aspects of physics beyond ΛCDM such as, e. g., gravitino
decay [131], cosmic strings [132], magnetic fields [133], hidden pho-
tons [134], and dark matter interactions [135], just to name a few, it
is important to stress that spectral distortions could provide signifi-
cant information on inflation through the contribution coming from
primordial perturbations [136–140].

Indeed, as we have shown in Section 4.7, in a typical inflationary
model the spectral index ns of scalar perturbations is expected to have
a small (and often negative) running, of order |αs| ∼ (1−ns)

2 [141–143].
State-of-the art CMB observations by the Planck experiment [6, 14]
are fully compatible with an exact power law spectrum of primordial
fluctuations Pζ(k), with αs = −0.006± 0.007 at 68% CL (Planck TT , TE,
EE + lowP dataset). A more than ten-fold improvement in sensitivity
is therefore needed to reach the typical slow-roll values with CMB
experiments. However, CMB anisotropies can probe Pζ(k) only up
to k ≈ 0.1Mpc−1, since at shorter scales primordial anisotropies are
washed away by Silk damping [103–105] and foregrounds become
dominant. There is, then, a limit in the range of multipoles that we can
use to test the scale dependence of the power spectrum.1 Moreover,
CMB measurements will soon be limited by cosmic variance: recent
analyses have shown that for upcoming experiments (COrE+ or CMB
Stage IV), which are close to be CVL (Cosmic Variance Limited), one
can expect σαs ≈ 10−3 [145–147].

As we have seen in Section 3.4, the CMB µ-type spectral distortion
is sensitive to the amount of scalar power up to k of order 104Mpc−1

because of the damping of acoustic modes. The strong lever arm makes
this observable an ideal probe to improve the bounds on the running
from large scale CMB anisotropies. In addition, the cosmic variance
of the µ monopole and of the higher multipoles is minuscule (see
[20] for a discussion). With a sufficiently broad frequency coverage,
instrumental noise will be the main source of uncertainty for any
foreseeable future, leaving ample room for improvements.

In this context, we address several questions:

1 For this reason, we expect that E-mode polarization will be better, in the long run,
at constraining the scale dependence of Pζ(k), since CEE` starts to become damped
around ` ≈ 2500 (see [144] for a discussion).
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• is there a benchmark sensitivity for CMB spectrometry, i. e. which
should be the target of the next generation experiments? How
can we design an experiment to ensure a discovery even in the
absence of a detection?

• what sensitivity to the spectrum is needed to detect µ-distortions
when accounting for the prior knowledge from Planck?

• how much will a joint analysis of large scale CMB anisotropies
and CMB spectral distortion strengthen the bounds on the run-
ning? How does this quantitatively depend on the improvement
over PIXIE sensitivity?2

To articulate the answers to these questions, we consider the follow-
ing three fiducial cosmologies:

• a ΛCDM cosmology with zero running: the best-fit for the µ-
amplitude, in this case, is of order µ8 = 1.6. We stress that for
the sensitivities considered in this and the following Chapters,
this fiducial is indistinguishable from models with running of
order (1−ns)

2, such as typical slow-roll models;

• a fiducial spectral distortion amplitude µfid
8 equal to the best-fit of

the the Planck analysis for the ΛCDM+αs model, i. e. µfid
8 = 1.06.

This value of µ is roughly correspondent to what one obtains for
a running αs = −0.01 which is close to the mean value predicted
by current Planck data;

• αfid
s = −0.02 (corresponding to µ8 = 0.73), at the edge of the 2σ

bounds of Planck. We note that it is possible to obtain such large
negative runnings in some models of single-field inflation like,
e. g., extra-dimensional versions of Natural Inflation [148, 149]
or recent developments in axion monodromy inflation [150–152].

The rest of the Chapter is organized as follows: after a very brief
review of photon thermodynamics in the early universe and of distor-
tions from Silk damping (we refer to Sections 2.2, 2.3 and 3.4 for more
details), we compute the µ-distortion parameter allowed by current
Planck bounds for a ΛCDM and ΛCDM +αs model (Section 5.3). We
then analyze what a PIXIE-like mission will be able to say about the
running, given these posteriors for µ. The discussion is divided in
three Sections: we start with the predicted bounds on µ-distortions
from current Planck data (Section 5.3). We proceed with a Fisher anal-
ysis (Section 5.4), discussing also the optimal choice of pivot scale for
a combined study of CMB anisotropies and spectral distortions. The
MCMC analysis and forecasts are carried out in Section 5.5. Finally,
Section 5.6 studies the implications of these results for single-clock
slow-roll inflation, and we draw our conclusions in Section 5.7.

2 For example the PRISM imager [125, 126] corresponds to approximately 10× PIXIE.
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5 .2 photon thermodynamics

At very early times, for redshifts larger than zDC ≈ 2× 106, processes
like double Compton scattering and Bremsstrahlung are very efficient
and maintain thermodynamic equilibrium: any perturbation to the
system is thermalized and the spectrum of the CMB is given to very
high accuracy by a black-body. At later times the photon number is
effectively frozen, since photons can be created at low frequencies by
elastic Compton scattering but their re-scattering at high frequencies
via double Compton scattering and Bremsstrahlung is not efficient
due to the expansion of the universe [7–10, 12, 13].

The end result is a Bose-Einstein distribution 1/(ex+µ(x) − 1) (x ≡
hν/kBT ) with chemical potential µ. Since photons can still be created
at low frequencies, µ will not exactly be frequency independent: it
can be approximated as µ0 exp(−xc/x), with xc ≈ 5× 10−3. However,
no planned/proposed experiments will be able to probe such low
frequencies: for this reason we will take the chemical potential to be a
constant (and drop the subscript 0).

For a given energy release d(Q/ργ)/dz, one can write the value of
µ as (see Section 2.3.4)

µ(z) = 1.4
∫zDC

z

dz ′
d(Q/ργ)

dz ′
e−τµ(z

′)Θ(z− zK) , (5.1)

where zK = 5× 104 and τµ(z) can be approximated as (z/zDC)
5/2

[7–10, 12, 13, 74].
Below redshifts around z = zµ-i ≈ 2× 105, Compton scattering is

not sufficient to maintain a Bose-Einstein spectrum in the presence
of energy injection. The distortions generated will then be neither
of the µ-type nor of the y-type: they will depend on the redshift at
which energy injection occurs [12, 87, 138], and must be calculated
numerically by solving the Boltzmann equation. Recently, in [87, 138],
a set of Green’s functions for the computation of these intermediate
distortions has been provided:3 they sample the intermediate photon
spectrum n(i) for a energy release Qref/ργ = 4× 10−5 in O(103) red-
shift bins from z ≈ 2× 105 to z ≈ 1.5× 104. The i-type intensity, for a
generic energy injection history d(Q/ργ)/dz, will then be computed
as [138]

I
(i)
γ (ν) =

2hν3

c2

∑
zk

n
(i)
zk (ν)

4× 10−5
d(Q/ργ)

dz

∣∣∣∣
zk

δzk

≡ 2hν
3

c2

∑
zk

n
(i)
zk (ν)

4× 10−5 × µ
(i)
zk .

(5.2)

At redshifts z . 1.5× 104 also elastic Compton scattering is not
efficient enough: there is no kinetic equilibrium and the distortion is

3 We refer also to [88] for an alternative derivation.
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of y-type. The transition between µ- and y-distortions can be modeled
with a redshift dependent visibility function [88]. The information
on the transition is encoded in the residual r-type distortions. Since
r-distortions are not degenerate with µ- and y-type distortions (see
Appendix D), they can be useful for probing the redshift dependence
of different energy release histories [138, 153].4

The y-type distortions is expected to be dominated by astrophysics
at low redshifts (created when the CMB photons are scattered in the
clusters of galaxies by hot electrons, the thermal Sunyaev-Zeldovich
effect). While this signal is very interesting by itself as a probe of the
matter distribution in the universe [154–156], our goal is studying
the contribution due to dissipation of acoustic waves, and so we will
marginalize over it in our analysis (see Appendix D).5

Additional spectral distortions are the ones created during recom-
bination [74, 75] and reionization [74, 158, 159]. Previous work on
recombination spectra has been carried out in [160–165], and recently
[75] has shown that spectral distortions from recombination can be
computed with high precision. Therefore we are not going to include
them in our analysis, assuming they can be subtracted when looking
for the primordial signal.

In this and the following Chapters we will not consider these inter-
mediate distortions, and take the transition between the µ- and y- era
to be instantaneous at a redshift zK = 5× 104 [90]: in the case of an
energy release that does not vary abruptly with redshift, we do not ex-
pect the inclusion of r-distortions to alter significantly the constraints
on the parameters describing d(Q/ργ)/dz. We leave the analysis of
their effect on combined CMB anisotropies - CMB distortions forecasts
for cosmological parameters for future work (referring to [138, 153,
157] for forecasts involving CMB spectrometry alone).

While there are many non-standard potential sources of spectral
distortions, e. g. decaying or annihilating Dark Matter particles [12, 87,
131], a source of heating that is present also in the standard picture
is the dissipation of perturbations in the primordial plasma due to
Silk damping. Even before recombination, when the tight-coupling
approximation holds, photons are random-walking within the plasma
with a mean free path λmfp = (σTne)

−1. In the fluid description,
this amounts to anisotropic stresses that induce dissipation. One can
compute the (integrated) fractional energy lost by these acoustic waves
δγ: as we have seen in Section 3.4, in the tight-coupling approximation
eq. (5.1) reduces to [78, 166]

µ ≈ 2.3
∫

dk1dk2
(2π)6

eik+·xζ(k1)ζ(k2)e−(k21+k
2
2)/k

2
D

∣∣∣
zDC

zK
, (5.3)

4 As [12] shows, they can be used to put constraints on observables like the lifetime of
decaying dark matter particles.

5 We note that in [157], the authors carried out this marginalization by taking into
account also r-distortions: this results in a slightly higher µ detection limits, but does
not affect the main results of this Chapter.
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where k+ ≡ k1 + k2 and ζ(k) = ζ(k) are the Fourier modes of the
primordial curvature perturbation. The diffusion damping length
appearing in the above formula, instead, is given by [103–105]

kD(z) =

√∫+∞
z

dz
1+ z

HσTne

[
R2 + 16

15(1+ R)

6(1+ R)2

]
. (5.4)

If we consider the ensemble average of µ, we see that it is equal to
the log-integral of the primordial power spectrum multiplied by a
window function

Wµ(k) = 2.3 e−2k
2/k2D

∣∣∣
zDC

zK
. (5.5)

Since the tight-coupling approximation is very accurate at redshifts
much before recombination we expect this to be a good approxima-
tion for the µ-distortion amplitude: this simplified picture allows
us to obtain a qualitative understanding of the possible constraints
coming from an experiment like PIXIE [22]. The window function of
eq. (5.5) and the analogous one for y-distortions are shown in fig. 5.1.
We also account for adiabatic cooling [12, 86], namely the fact that
electrons and baryons alone would cool down faster than photons.
Because of the continuous interactions, they effectively extract energy
from the photons to maintain the same temperature, leading to an
additional source of distortions of the CMB spectrum. During the
µ-era, this energy extraction results in a negative µ-distortion of order
µBEC ≈ −2.7× 10−9 (for the Planck 2015 best-fit values of cosmological
parameters).

-4 -2 0 2 4 6
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0.5

1.0

1.5

F igure 5 .1 : This cartoon plot shows the scales which are probed by µ-
and y-type spectral distortions, using the “window function”
approximation of eq. (5.5).

5 .3 expectations from large scales

As we discussed in the previous Section, the expected primordial
spectral distortion µ is a function of cosmological parameters that play
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F igure 5 .2 : The figure shows the one-dimensional posteriors for µ8 pre-
dicted by Planck TT , TE, EE + lowP data, for the ΛCDM model
(orange curve) and the ΛCDM +αs model (purple curve). The
posteriors have been obtained through the idistort code de-
veloped by Khatri and Sunyaev [87, 138].

a role during the early universe epoch (like the scalar spectral index ns,
its running αs, the cold dark matter energy density, etc.). Since most of
these parameters are now well constrained by the recent measurements
of CMB anisotropies (both in temperature an polarization) made by
the Planck satellite, one could, albeit indirectly, constrain the expected
value of µ assuming a ΛCDM model or one of its extensions (see also
[140] for a recent analysis).

http://wwwmpa.mpa-garching.mpg.de/~khatri/idistort.html
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F igure 5 .3 : This figure shows the 68% CL and 95% CL contours in the ns
- µ (top panel) and the αs - µ8 plane (bottom panel) for the
Planck TT , TE, EE + lowP dataset for ΛCDM + αs, together
with the 1σ detection limits for PIXIE and possible improve-
ments.

Spectral distortions in the µ-era can be computed in terms of 6 - 7
parameters (which we will call θ):

• the baryon and cold dark matter density parameters Ωbh
2 ≡ ωb

and Ωcdmh
2 ≡ ωcdm, together with the number of effective rela-

tivistic degrees of freedom Neff. These enter in the computation
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of the expansion history: from them we compute the Hubble
constant H0 and the Helium mass fraction YP that enter in the
computation of the dissipation scale kD;

• the CMB temperature T0;

• the parameters describing the primordial spectrum Pζ(k), i. e.

Pζ(k) =
2π2

k3
∆ζ(k) =

2π2

k3
×As

(
k

k?

)ns−1+
αs
2 log k

k?

. (5.6)

These are the amplitude log(1010As) and tilt ns for the ΛCDM
case, with the addition of the running αs for the ΛCDM + αs

case.

We performed an analysis of the recent Planck TT , TE, EE + lowP
likelihood [167], which includes the (temperature and E-mode polar-
ization) high-` likelihood together with the TQU pixel-based low-`
likelihood, through Monte Carlo Markov Chain sampling, using the
publicly available code cosmomc [168, 169]. We have varied the primor-
dial parameters, along with ωb, ωcdm, the reionization optical depth
τ,6 and finally the ratio of the sound horizon to the angular diameter
distance at decoupling 100θMC. For each model in the MCMC chain
we compute, as derived parameter, the value of µ8 using the idistort

code developed by Khatri and Sunyaev [87, 138]. For this purpose we
fix the CMB temperature to T0 = 2.7255K, the neutrino effective num-
ber to the standard value Neff = 3.046, and we evaluate the primordial
Helium abundance YP assuming standard Big Bang Nucleosynthesis.

Processing the chains through the getdist routine (included in the
cosmomc package), and marginalizing over all the nuisance parameters,
we obtain for the ΛCDM case (no running) the indirect constraint
µ8 = 1.57+0.108

−0.127 at 68% CL. Including the possibility of a running, the
Planck constraint on µ is weakened to µ8 = 1.28+0.299

−0.524 (68% CL). The
marginalized posterior distributions for µ8 are shown in fig. 5.2. Notice
that the “the balanced injection scenario”, namely the possibility that
the negative contribution to µ from adiabatic cooling cancels precisely
the positive contribution from the dissipation of adiabatic modes
[78, 86], leaving µ8 = 0, is excluded at extremely high significance
(i. e. ≈ 15σ) for the ΛCDM model, and at 97.4% CL7 if we allow the
running to vary.

Fig. 5.3 shows the dependence of µ-distortion on the tilt ns and the
running αs:

• in the top panel we see that µ8 is not very degenerate with ns.
The reason is twofold. First and most importantly, for non-zero
running of order 10−2, as allowed by Planck, a change in the

6 We introduced this parameter in Section 3.3.2: we have called it τrei in eq. (3.80).
7 We quote the confidence level, in this case, because the posterior for µ8 is non-

Gaussian (as can be seen from fig. 5.2).

http://cosmologist.info/cosmomc/
http://wwwmpa.mpa-garching.mpg.de/~khatri/idistort.html
http://getdist.readthedocs.io/en/latest/
http://cosmologist.info/cosmomc/
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tilt of order 10−2 is a small correction to the power spectrum at
the short scales that are responsible for µ-distortions (αs appears
in eq. (5.6) with a factor of (logk/k?)/2 ∼ 5 for k ∼ 103Mpc−1).
Secondly, Planck constraints on ns are tighter than those on αs

by roughly a factor of two;

• the bottom panel, on the other hand, shows that µ8 is strongly
dependent on αs (increasing αs increases the power at short
scales and hence leads to a larger µ8, and viceversa). We also
note that the two dimensional contour in the αs - µ8 plane is
not ellipsoidal, but banana-shaped. The reason is that at large
negative running, the contribution to spectral distortions from
dissipation of acoustic waves will go to zero asymptotically, and
the net µ amplitude will be the one from adiabatic cooling (which
for the tightly constrained values of cosmological parameters
can be practically considered a constant).

Having discussed the current (indirect) limits on µ-distortions from
Planck measurements of CMB temperature and polarization anisotro-
pies, we move to the forecasts for a PIXIE-like spectrometer.

5 .4 forecasts for pixie : fisher analysis

Considering only µ-distortions, and using the approximation in terms
of a window function from zK = 5× 104 to zDC = 2× 106 (with the
amplitude of the scalar spectrum fixed at As ≈ 2.2× 10−9), we can
perform a simple Fisher forecast to see how the constraints on tilt and
running are improved by combining PIXIE with the Planck prediction
for µ8.

This allows us also to discuss, mirroring what has been done for
CMB anisotropies alone in [170], what is the optimal choice of pivot
scale (that maximizes the detection power for these two parameters)
for the combined analysis, as function of the sensitivity of a PIXIE-
like mission. We stress that the choice of pivot has no impact on the
detectability of µ-distortions themselves: it is just a particular way to
parametrize the spectrum. Whether or not µ-distortions will be seen is
only dependent on the amount of scalar power at small scales (which
is captured by the fiducial µ8 that we consider).

Finally, we also point out that this analysis already shows that an
improvement of a factor of three over PIXIE implies a guaranteed
discovery.
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F igure 5 .4 : (1−ns)/σns (top panel) and |αs|/σαs (bottom panel) as func-
tion of the pivot scale k?, for a vanishing fiducial distortions
µfid
8 = 0. A dependence on the pivot scale is always present for
ns (top panel), while for αs the dependence becomes apprecia-
ble only for a significant improvements over PIXIE sensitivity.
The optimal choice of k? shifts towards k < 0.05Mpc−1 for
ns and k > 0.05Mpc−1 for αs, when the information from
spectral distortions is included.

We add to the Planck bounds the detection limits for µ-distortions
from the PIXIE white paper [22], i. e.

L(ns, αs) ∝ L(ns, αs)Planck

× exp
[
−

{
µ8(ns, αs) + µ8,BEC − µfid

8

}2
2σ2µ8

]
,

(5.7)

where σµ8 is equal to 1 (0.5 and 0.2) for (2× and 5×) PIXIE, and
µ8(ns, αs) is given by

µ8(ns, αs) = 2.3× 108 ×As

∫kD(zDC)

kD(zK)

dk
k

(
k

k?

)ns−1+
αs
2 log k

k?

. (5.8)
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F igure 5 .5 : Same as fig. 5.4, but in this case we consider a fiducial µ8
amplitude of 1.3 (see Section 5.4 for details). The behavior is
qualitatively similar to the case of a vanishing fiducial µ8.

The results of this Fisher analysis are just an approximation of the
full MCMC sampling of the joint likelihood that we will present in
the next Section. We can then safely consider only two fiducial values
for µ8, which approximate well the choices we will make later (see
tab. 5.2):

• µfid
8 = 0, i. e. a cosmology with zero µ-type distortions;

• µfid
8 = 1.3, i. e. the mean-fit value from Planck data (for the
ΛCDM +αs case).

As Planck likelihood, we take (disregarding for simplicity the normal-
ization)

logL(ns, αs)Planck = −
(αs − ᾱs)

2

2σ2αs

−
(ns +

αs
2 log(k?/k

(0)
? ) − n̄s)

2

2σ2ns

,

(5.9)

where:
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• the tilt is written at an arbitrary pivot k? in terms of the run-
ning and the reference scale k(0)? (note that the Jacobian of the
transformation is 1 so it can be neglected);

• k
(0)
? = 0.05Mpc−1 is the scale where ns and αs decorrelate: for

this reason we take n̄s, ᾱs to be the marginalized means from
the Planck TT , TE, EE + lowP analysis. σns and σαs are the
corresponding marginalized standard deviations. The values are
listed in tab. 5.1.

Table 5 .1 : Mean and standard deviation for spectral index and running
used in eq. (5.9), from the Planck TT , TE, EE + lowP analysis.

n̄s 0.9639

ᾱs −0.0057

σns 0.0050

σαs 0.0071

Fig. 5.4 shows (1− ns)/σns and |αs|/σαs as function of the pivot
scale for vanishing µfid

8 : we see that, as we increase the sensitivity
of PIXIE, the k? that maximizes the detection of the tilt is shifted
towards values smaller than k(0)? = 0.05Mpc−1. The best pivot for
the running moves in the opposite direction, towards values larger
than 0.05Mpc−1. fig. 5.5 shows that the same qualitative behavior is
reproduced in the case of a fiducial µ8 different from zero.

These plots show that the effect of changing of pivot on the detection
power for ns and αs is not very relevant, if we increase 1/σµ8 up to
5× PIXIE. At 10× the choice of k? can lead to a small improvement
on σαs : this is an interesting result, that could open up the possibility
of choosing the pivot outside of the CMB window in the future, as
σµ8 becomes even smaller.8 However, since we will stop at 10× PIXIE
(i. e. the expected error on µ8 achievable by PRISM) in this Chapter,
we will keep k? = 0.05Mpc−1 in the following Sections.

For vanishing µfid
8 , fig. 5.4 shows that the improvement for σαs

can be greater than the case with non-zero fiducial. However, it is
important to stress that the assumption of having zero distortions
starts to become incompatible with the Planck indirect constraints
on µ8 (as one can see, e. g., from fig. 5.2) for σµ8 ≈ 0.3, making a
combination of the two likelihoods inadvisable (this is also the reason
why we have decided to not consider, in Section 5.1, a fiducial running
so small that spectral distortions from Silk damping are absent). For
fiducial µ8 different from zero we see that this does not happen: the

8 However, from the top panels of figs. 5.4, 5.5 we see how this improvement would be
at the expense of an increased error on the tilt ns.
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combination of the likelihoods, which we will explore through MCMC
sampling in the next Section, is therefore justified in this case.

Finally, it is interesting to ask whether there exist any threshold
value for sensitivity to the µ amplitude such that, by reaching it, we are
guaranteed to learn something about the early Universe, irrespectively
of what the running might actually be. The bottom panel of fig. 5.4
suggests the answer to this question (which we will confirm in the
next Section with a detailed calculation). Within the uncertainty of
Planck, a vanishing running implies a distortion of order µ8 ∼ 1.4,
as we have seen in Section 5.3: therefore a measurement of the CMB
spectrum at sensitivity of σµ8 ∼ 1.4/4 = 0.35, corresponding to about
3× PIXIE, must lead to9 a first detection of µ-distortions or a detection
of negative running, or both. In fact, any central value µ8 . 1.4/2 ∼ 0.7
at this resolution would exclude αs > 0, while any larger µ8 would
exclude µ8 6 0 at 95% CL.

5 .5 forecasts for pixie : mcmc

This Section contains the main results of the Chapter, summarized in
tab. 5.2 and fig. 5.6 (which shows the contours in the αs - µ8 plane).

We start with a discussion of the detectability of µ-type distortions
by PIXIE in the context of the ΛCDM model, i. e. with zero running
of the spectral index. We stress that, in this case, Planck bounds
imply that with only a small 2× improvement over PIXIE noise, the
exclusion of µ8 6 0 at ≈ 3σ is guaranteed, given the narrow posterior
for µ8. On the other hand, as we have seen in Section 5.3, for the
ΛCDM + αs case a value of µ8 ∼ 0.7 is fully compatible with Planck
data, and it will be only marginally detectable by PIXIE in the case of
a minimal configuration. Assuming the Planck constraint on µ8, the
minimal value of µ8 compatible with Planck in between two standard
deviations is µ8 ∼ 0.25. Clearly, given this value, a safe experimental
direct detection of µ-type distortions can be obtained only with an
experimental sensitivity of σµ8 ∼ 0.2, i. e. a 5× improvement over
PIXIE.

However, in the presence of running, the argument can be reversed:
it becomes now interesting to see how precise should be the mea-
surement performed by a PIXIE-like spectrometer to translate a non-
detection of µ-distortions into a detection of αs < 0, pursuing the
marginal (below one standard deviation) indication for negative run-
ning coming from Planck (whose posterior, while compatible with
αs = 0, peaks at a negative value of αs = −0.006: see tab. 5.2). For this

9 This assumes that we interpret the data within ΛCDM plus running. Given our
theoretical understanding of the early Universe, this is indeed perhaps the most
natural choice.
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Table 5 .2 : 68% CL constraints on the scalar spectral index ns, its running
αs and the µ-distortion amplitude from a future combined anal-
ysis of the Planck 2015 release in temperature and polarization
(baseline: TT , TE, EE + lowP) and a PIXIE-like spectrometer as
function of different experimental configurations and fiducial
values for the running of the spectral index (αfid

s = −0.01, cor-
responding to µfid

8 = 1.06, and αfid
s = −0.02, corresponding to

µfid
8 = 0.73). Notice that for αfid

s = −0.01, 5× PIXIE is needed
to exclude αs = 0 at 95% CL, while for αfid

s = −0.02, 3× PIXIE
suffices.

baseline ns αs µ8

ΛCDM 0.9645+0.0048
−0.0049 ≡ 0 1.57+0.11

−0.13

ΛCDM +αs 0.9639± 0.0050 −0.0057+0.0071
−0.0070 1.28+0.30

−0.52

“slow-roll” 0.9644+0.0051
−0.0052 ∼ −(1−ns)

2 1.49+0.12
−0.13

αfid
s = −0.01 ns αs µ8

+ 1× PIXIE 0.9637+0.0050
−0.0049 −0.0064+0.0065

−0.0064 1.22+0.28
−0.45

+ 2× PIXIE 0.9634+0.0049
−0.0048 −0.0074+0.0061

−0.0053 1.15+0.25
−0.34

+ 3× PIXIE 0.9632± 0.0048 −0.0079+0.0053
−0.0045 1.11+0.22

−0.27

+ 5× PIXIE 0.9631+0.0048
−0.0047 −0.0083+0.0040

−0.0035 1.08+0.17
−0.18

+ 10× PIXIE 0.9631± 0.0047 −0.0085+0.0025
−0.0024 1.06± 0.09

αfid
s = −0.02 ns αs µ8

+ 1× PIXIE 0.9635+0.0050
−0.0049 −0.0071+0.0065

−0.0063 1.18+0.27
−0.43

+ 2× PIXIE 0.9628+0.0049
−0.0048 −0.0094+0.0061

−0.0052 1.04+0.23
−0.31

+ 3× PIXIE 0.9624+0.0049
−0.0048 −0.0111+0.0055

−0.0045 0.95+0.19
−0.24

+ 5× PIXIE 0.9618+0.0049
−0.0047 −0.0131+0.0046

−0.0037 0.85+0.16
−0.15

+ 10× PIXIE 0.9613+0.0048
−0.0047 −0.0149+0.0033

−0.0029 0.77± 0.09

purpose, we reprocess the MCMC chains by importance sampling,
multiplying the weight of each sample by (see also eq. (5.7))

LPIXIE = exp
[
−

{
µ8(θ) + µ8,BEC(θ) − µ

fid
8

}2
2σ2µ8

]
, (5.10)

focussing on the two fiducial models for the running described in
Section 5.1:

• αfid
s = −0.01, corresponding to a spectral distortion µ8 = 1.06

(close to the Planck best-fit for µ8);

• αfid
s = −0.02 corresponding to a spectral distortion µ8 = 0.73,

which is at the limit of two standard deviations from the Planck
mean-fit.
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As in Section 5.4, we take σµ8 = 1/n for a n× PIXIE experimental con-
figuration. The results of this importance sampling are also reported
in tab. 5.2.
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F igure 5 .6 : Top panel: 68% CL and 95% CL contours in the αs - µ8 plane,
for Planck alone (yellow contour) and including in the analysis
the likelihood with αfid

s = −0.01 (i. e. µfid
8 = 1.06) for a 2× and

3× improvement over PIXIE (orange and purple contours).
Bottom panel: same as top panel, but with fiducial αs equal to
−0.02.
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Considering that from the Planck dataset alone one obtains σns ≈
0.005 and σαs ≈ 0.007, we see that the minimal configuration of 1×
PIXIE or the upgraded 2× PIXIE will produce minimal effects on the
Planck bounds, even when the fiducial model deviates significantly
from the Planck best-fit.

If, instead, the experimental sensitivity will reach the level of 5×
PIXIE (10× PIXIE) then the constraints on the running of the spectral
index can be improved by ∼ 30% (∼ 50%): this improvement could be
extremely significant. More precisely, we see that if αfid

s is ∼ −0.01,
then the addition of 5× PIXIE to Planck bounds could yield a detection
of negative running at two standard deviations (three for 10× PIXIE).
If we allow an even more negative fiducial value for the running,
i. e. αfid

s ∼ −0.02 then the negative running will be probed at two
standard deviations by 3× PIXIE (five standard deviations by 10×
PIXIE). tab. 5.2 also shows that the constraints on the tilt are left
basically untouched, in agreement with the results of Section 5.3,
where we have seen that µ8 is only mildly dependent on it.

Finally, we comment on the possibility of discriminating between no-
running ΛCDM and slow-roll inflation, where the running is second
order in the slow-roll expansion. An order-of-magnitude prediction
for αs, that arises in many models, is αs ∼ −(1 − ns)

2 [141–143]:
tab. 5.2 shows that the predictions for µ8 in these two cases are
indistinguishable at PIXIE sensitivity, and that a massive improvement
in sensitivity by a factor of order 102 is needed to probe the differences
between them.

5 .6 implications for slow-roll inflation

In this Section, we discuss the implications of the value of the running
within single-clock inflation. Observations tell us (see [14] and tab. 5.2)

1−ns(k?) ≡ −
∂ log∆2ζ(k?)
∂ logk

(5.11a)

= 0.0361± 0.0050 (68% CL) ,

αs = −ns,N (5.11b)

= −0.0057+0.0071
−0.0070 (68% CL) ,

r < 0.08 (95% CL) , (5.11c)

where ∗,N refers to a derivative with respect to the number of e-
folds from the end of inflation, decreasing as time increases, namely
Hdt = −dN (we refer to Section 4.7 for details). The standard slow-
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roll solution for the primordial power spectrum gives (for an inflaton
speed of sound cs 6= 0)

1−ns = 2εH −
(εH),N
εH

−
cs,N

cs
(5.12a)

=
r

8cs
−
r,N
r
, (5.12b)

αs = 2(εH),N −
r,NN
r

+

(
r,N
r

)2
, (5.12c)

where the tensor-to-scalar ratio is given approximately by r = 16εHcs.
It is convenient to re-express the running by making explicit its

dependence on the tilt, which is relatively well constrained, i. e.

αs = (1−ns)
2 − 6εH(1−ns) + 8ε

2
H −

(
rs

8cs
+
r,NN
r

)
. (5.13)

Here, εH can be extracted from r if we know the speed of sound
cs from the equilateral bispectrum, or if we assume standard slow-
roll single-field inflation, namely cs = 1. On the other hand, the last
term r,NN/r makes its first appearance in the running αs; also the
penultimate term s ≡ cs,N/cs is degenerate with (εH),N/εH in ns and
so it is also considered unknown. In this precise sense, we can think
of the running as a measurement of the yet unknown next-to-leading
(NLO) order slow-roll parameters

NLO ≡ rs

8cs
+
r,NN
r

cs=1−−−→ (εH),NN
εH

. (5.14)

In fig. 5.7, we show a contour plot of αs as function of εH for
different values of the NLO slow-roll parameters. We point out that
for NLO = 0 one finds αs > −18(1−ns)

2 ' −2× 10−4. Any evidence
that the running is sizable and negative therefore implies NLO > 0,
i. e. the discovery of a new higher order slow-roll parameter. In a
typical slow-roll model, one indeed expects the NLO terms to be
of the same order as (1 − ns)

2. For example, consider cs = 1 and
εH = 3/(4N2),10 i. e. the Starobinsky model [171]. Then, we have

(1−ns)
2 ' 4

N2
, (5.15a)

r,NN
r

=
6

N2
. (5.15b)

One hence finds

αs ' −
2

N2
' −

1

2
(1−ns)

2 . (5.16)

10 Note that the relation εH = 3/(4N2) holds at first order in slow-roll: it is accurate
enough, however, for the values of N that reproduce a scalar spectral index ns within
the current Planck bounds.
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F igure 5 .7 : This contour plot shows αs as function of εH (called ε in the
figure) for different values of the NLO slow-roll parameters.
Notice that the uncertainty in ns is smaller than the thickness
of the lines in the plot. In red we show αs(εH) of eq. (5.13)
for NLO = 0, while the blue line is its asymptotic value (1−

ns)
2 ≈ 0.0013. The black line shows the predictions of the

Starobinsky model [171] (with N going from 20 to 70), with the
yellow dot being its prediction forN = 56 (chosen to reproduce
the observed value of ns). The gray bands show the values of
αs excluded (at 95% CL) by Planck TT , TE, EE + lowP data,
while the gray dashed vertical line shows the current bound
on εH = r/(16cs) from eq. (5.11c), considering cs = 1.

5 .7 conclusions

In this Chapter, we have considered how a measurement of the CMB
spectrum by an experiment like PIXIE would extend our knowledge
of the very early Universe. Using Planck data, we have derived the
predicted likelihood for the size of the µ-type distortions generated
by the dissipation of acoustic waves in the photon-baryon-electron
plasma. As shown in fig. 5.2, both ΛCDM and ΛCDM + αs predict
µ8 ' O(1), and exclude µ8 = 0, a.k.a. the “the balanced injection
scenario” [12, 78, 86] at high confidence (at 15σ forΛCDM, at 97.4% CL
for ΛCDM +αs). While this means that we will be eventually able to
measure µ-distortions, it is important to determine whether this will
already be possible with the next satellite experiment. Here we point
out that, irrespectively of the actual value of αs (and its respective µ8,
according to eq. (5.8)), a meaningful sensitivity target is σµ8 ' 0.35,
namely about a three times improvement over the current PIXIE
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design (but still less sensitive than the proposed PRISM). This is in fact
the threshold for a guaranteed discovery: either µ8 is large enough
that it will be detected (at 95% CL), or else αs > 0 will be excluded
(at 95% CL) and with it our current standard model, namely the 6-
parameter ΛCDM. The absence of a detection of µ8 for a 3× PIXIE
improvement would exclude most slow-roll models as well, since
typically |αs| ∼ (1− ns)

2, which is indistinguishable from αs = 0 at
these sensitivities.

We have further considered the constraining power of CMB spectral
distortions combined with the current Planck data. We have discussed
how to optimize this analysis by choosing an appropriate pivot for
the parameterization of the primordial power spectrum (see fig. 5.5
and fig. 5.5). In tab. 5.2, we present the improved constraints on the
spectral tilt and its running from Planck plus an n-fold improvement
over PIXIE sensitivity. For a fiducial αs = −0.01, close to the fit for
Planck, one expects a detection of µ8 at 95% CL already with 2× PIXIE.
Conversely, for a fiducial αs = −0.02 (which is at the low 95% CL end
of the Planck constraint), 3× PIXIE will already provide evidence (at
2σ) of a sizable negative running. This would put pressure on the
standard slow-roll paradigm, which leads to the typical expectation
αs ' −(1−ns)

2 (see, e. g., eq. (5.13)). Finally, we proposed fig. 5.7 as
a convenient and compact way to visualize the improving constraints
on the tilt, running and tensor-to-scalar ratio.



6
R U N N I N G T H E R U N N I N G

contents

6 .1 Introduction 129
6 .2 Method 131
6 .3 Results 133
6 .4 Constraints from µ-distortions 144
6 .5 Large βs and slow-roll inflation 145
6 .6 Conclusions 146

In this Chapter we discuss what are the current constraints on the
running of the running βs from Planck data. Besides, we see what
are the possible improvements on these constraints that a PIXIE-like
experiment could provide. The Chapter is based on the work Phys.
Rev. D 94, no. 2, 023523 (2016).

6 .1 introduction

The recent measurement of the Cosmic Microwave Background (CMB)
anisotropies provided by the Planck satellite mission (see [6, 14], for
example) have provided a wonderful confirmation of the standard
ΛCDM cosmological model. However, when the base model is ex-
tended and other cosmological parameters are let free to vary, a few
“anomalies” are present in the parameter values that, even if their
significance is only at the level of two standard deviations, deserve
further investigation.

First of all, the parameter AL, that measures the amplitude of the
lensing signal in the CMB angular spectra [172], has been found larger
than the standard value with AL = 1.22± 0.10 at 68% CL (AL = 1

being the expected value in ΛCDM) from Planck temperature and po-
larization angular spectra [6]. A value of AL larger than one is difficult
to accommodate in ΛCDM, and several solutions have been proposed
as modified gravity [173, 174], neutrino anisotropies [175], and com-
pensated isocurvature perturbations [176]. Combining Planck with
data from the Atacama Cosmology Telescope (ACT) and the South
Pole Telescope (SPT) to better constrain the foregrounds, Couchot et
al. [177], found a consistency with AL = 1. However the compatibility
of the CMB datasets used is unclear. More recently Addison et al.
[178] have found that including the AL parameter solves the tension
between Planck and WMAP9 on the value of the derived cosmological
parameters.

129

https://arxiv.org/abs/1605.00209v2
https://arxiv.org/abs/1605.00209v2
https://act.princeton.edu/
https://pole.uchicago.edu/
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As shown in [6], the AL anomaly persists when the Planck data
is combined with Baryonic Acoustic Oscillation surveys (BAO), it is
enhanced when the CFHTLenS shear lensing survey is included, but
it practically disappears when CMB lensing from Planck trispectrum
observations are considered. The AL anomaly is also still present in
a 12-parameter extended ΛCDM analysis of the Planck dataset (see
[60]), showing no significant correlation with extra parameters such
as the dark energy equation of state w, the neutrino mass, and the
neutrino effective number Neff.

Second, the Planck dataset prefers a positively curved universe,
again at about two standard deviations with Ωk = −0.040± 0.020 at
68% CL (Ωk being the parameter defined in eq. (1.41), evaluated at the
present time). This “anomaly” is not due to an increased parameter
volume effect but, as stated in [14], curvature provides a genuine
better fit to the data with an improved fit of ∆χ2 ∼ 6. When BAO
data is included, however, the curvature of the universe is again
compatible with zero with the stringent constraint Ωk = −0.000±
0.005 at 95% CL.

The fact that both the AL andΩk anomalies disappear when reliable
external datasets are included suggests that their origin might be a
systematic or that they are produced by a different physical effect than
lensing or curvature.

In this respect it is interesting to note that a third parameter is
constrained to anomalous values from the Planck data. The primordial
scalar spectral index ns of scalar perturbations is often assumed to be
independent of scale. However, since some small scale-dependence is
expected, we can expand the dimensionless scalar power spectrum
∆2ζ(k) = k

3Pζ(k)/2π
2 as in eq. (4.40), i. e.

∆2ζ(k) = As

(
k

k?

)ns−1+
αs
2 log k

k?
+βs
6 log2 k

k?

, (6.1)

where αs is the running of the spectral index, βs is the running of the
running, and k? = 0.05Mpc−1.

The Planck temperature and polarization data analysis presented in
[14], while providing a small indication for a positive running different
from zero (αs = 0.009± 0.010 at 68% CL), suggests also the presence
of a running of the running at the level of two standard deviations
(βs = 0.025 ± 0.013 at 68% CL). The inclusion of a running of the
running improves the fit to the Planck temperature and polarization
data by ∆χ2 ∼ 5. This third anomaly is therefore robust and hints for
possible new physics beyond the standard model. A discussion of the
impact of this anomaly on inflationary models has been presented in
[179].

What this Chapter aims to do, then, is to discuss the possible cor-
relations between these three anomalies, βs, AL and Ωk and see, for
example, if one of them vanishes if a second one is considered at the

https://www.cfhtlens.org/
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same time in the analysis. Moreover, we will see if the indication for
the running of the running survives when additional datasets as BAO
or lensing (CMB and shear) are considered.

This Chapter is structured as follows. In the next Section we will
describe the analysis method and the cosmological datasets used. In
Section 6.3 we present our results and discuss possible correlations
between βs, AL and Ωk. We also investigate the possibility that a run-
ning of the running affects current and future measurements of CMB
spectral distortions. Finally, in Section 6.6 we derive our conclusions.

6 .2 method

We perform a Monte Carlo Markov Chain (MCMC) analysis of the
most recent cosmological datasets using the publicly available code
cosmomc [168, 169]. We consider the 6 parameters of the standard
ΛCDM model, i. e. the baryon ωb ≡ Ωbh

2 and cold dark matter
ωcdm ≡ Ωcdmh

2 energy densities (we will use the subscript c instead
of “cdm” in the following), the angular size of the horizon at the last
scattering surface θMC, the optical depth τ (called τrei in eq. (3.80)),
the amplitude of primordial scalar perturbations log(1010As) and
the scalar spectral index ns. We extend this scenario by including
the running of the scalar spectral index αs and the running of the
running βs. We fix the pivot scale at k? = 0.05Mpc−1. This is our
baseline cosmological model, that we will call “base” in the following.
Moreover, as discussed in the introduction, we also consider separate
variation in the lensing amplitude AL, in the curvature density Ωk
and in the sum of neutrino masses

∑
mν.

The main dataset we consider, to which we refer as “Planck”, is based
on CMB temperature and polarization anisotropies. We analyze the
temperature and polarization Planck likelihood [167]: more precisely,
we make use of the TT , TE, EE high-` likelihood together with the
TEB pixel-based low-` likelihood. The additional datasets we consider
are the following:

• Planck measurements of the lensing potential power spectrum
C
φφ
` [180];

• weak gravitational lensing data of the CFHTLenS survey [181,
182], taking only wavenumbers k 6 1.5hMpc−1[6, 183];

• Baryon Acoustic Oscillations (BAO): the surveys included are
6dFGS [184], SDSS-MGS [185], BOSS LOWZ [186] and CMASS-
DR11 [186]. This dataset will help to break geometrical degen-
eracies when we let Ωk free to vary.

http://cosmologist.info/cosmomc/
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6 .3 results

In tab. 6.1 we present the constraints on ns, αs and βs from the Planck
2015 temperature and polarization data and in combination with BAO,
cosmic shear and CMB lensing. As we can see, the Planck dataset
alone provides an indication for βs > 0 at more than two standard
deviations with βs = 0.027± 0.013 at 68% CL.

It is interesting to investigate the impact of the inclusion of αs and
βs on the remaining 6 parameters of the ΛCDM model. Comparing
our results with those reported in tab. 3 of [14], we see that there are
no major shifts on the parameters. The largest shifts are present for
the scalar spectral index ns, that is ∼ 0.9 standard deviations lower
when βs is included, and for the reionization optical depth τ that is
∼ 0.9 standard deviations higher with respect to the standard ΛCDM
scenario. A similar shift is also present for the value of the root mean
square density fluctuations on scales of 8hMpc−1 (the σ8 derived
parameter), which is higher by about one standard deviation when βs

is considered. In Fig. 6.1 we plot the probability contour at 68% CL
and 95% CL for the several combinations of datasets in the βs - σ8
and βs - τ planes respectively. Clearly, a new determination of τ from
future large scale polarization data as those expected from the Planck
HFI experiment could have an impact on the value of βs. On the other
hand, this one sigma shift in τ with respect to ΛCDM shows that a
large scale measurement of CMB polarization does not fully provide a
direct determination of τ but that some model dependence is present.

Moreover, as expected, there is a strong correlation between αs and
βs. Thanks to this correlation, the running αs is constrained to be
positive, with αs > 0 at more than 68% CL when βs is considered.
This is a ∼ 1.3 standard deviations shift on αs if we compare this result
with the value obtained using the same dataset but fixing βs = 0

in tab. 5 of [14]. In fig. 6.2 we plot the two dimensional likelihood
constraints in the βs - ns and βs - αs planes respectively. As we can
see, a correlation between the parameters is clearly present.
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F igure 6 .1 : Constraints at 68% CL and 95% CL in the βs - σ8 plane (top
panel) and in the βs - τ plane (bottom panel).
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F igure 6 .2 : Likelihood constraints in the βs - ns (top panel) and βs - αs
(bottom panel) planes for different combination of datasets, as
discussed in the text.
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F igure 6 .3 : Shift in the amplitude of unresolved foreground point sources
at 143 GHz between the ΛCDM case and the case when varia-
tion in αs and βs are considered, for the Planck dataset.

The Planck likelihood consists essentially of three terms: a low-`
(` = 2÷ 29) TEB likelihood based on the Planck LFI 70GHz channel full
mission dataset, an high-` likelihood based on Planck HFI 100GHz,
143GHz and 217GHz channels half mission dataset and, finally, an
additional χ2 term that comes from the external priors assumed on
foregrounds (see [167]). By looking at the mean χ2eff values from these
three terms we can better understand from where (low `, high `,
foregrounds) the indication for βs is coming. Comparing with the
χ2 values obtained under standard ΛCDM with αs = 0 and βs = 0,
we have found that while the high-` likelihood remains unchanged,
there is an improvement in the low-` likelihood of ∆χ2eff ∼ 2.5 and
in the foregrounds term with ∆χ2eff ∼ 1. The inclusion of βs provides
therefore a better fit to the low-` part of the CMB spectrum and to
the foregrounds prior. While the better fit to the low-` part of the
CMB spectrum can be easily explained by the low quadrupole TT
anomaly and by the dip at ` ∼ 20÷ 30, the change due to foregrounds
is somewhat unexpected since, in general, foregrounds do not correlate
with cosmological parameters. We have found a significant correlation
between βs and the point source amplitude at 143GHz, APS143. The
posterior of APS143 shifts indeed by half sigma towards lower values
with respect to the standardΛCDM case (see fig. 6.3) fromAPS143 = 43±
8 to APS143 = 39± 8 at 68% CL. This shift could also explain the small
difference between the constraints reported here and those reported
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in [14], that uses the Pliklite likelihood code where foregrounds are
marginalized at their ΛCDM values.
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F igure 6 .4 : One-dimensional posterior distributions for the sum of neu-
trino masses

∑
mν, for the indicated datasets. The model

considered is ΛCDM +αs +βs +
∑
mν.

Going back to tab. 6.1, we can see that the indication for βs > 0 is
slightly weakened but still present also when external datasets are
considered. Adding CMB lensing gives βs = 0.022± 0.013, i. e. reduc-
ing the tension at about 1.7 standard deviations, while the inclusion of
weak lensing and BAO data does not lead to an appreciable decrease
in the statistical significance of αs and βs.

In tab. 6.2 we report similar constraints but including also variations
in the neutrino mass absolute scale

∑
mν. The constraints obtained

from the Planck 2015 data release on the neutrino masses are indeed
very strong, especially when combined with BAO data, ruling out
the possibility of a direct detection from current and future beta and
double beta decay experiments (see, e. g., [187]). Since Planck data
show a preference for βs > 0, it is clearly interesting to investigate
if the inclusion of running has some impact on the cosmological
constraints on

∑
mν. Comparing the results of tab. 6.2 with those

in [14], which were obtained assuming αs = βs = 0, we see that
the constraints on

∑
mν are only slightly weakened, moving from∑

mν < 0.490 eV to
∑
mν < 0.530 eV at 95% CL for the Planck dataset

alone and from
∑
mν < 0.590 eV to

∑
mν < 0.644 eV at 95% CL when

also lensing is considered. The constraints on
∑
mν including the WL



6.3 results 138

and BAO datasets are essentially unaffected by βs. We can therefore
conclude that there is no significant correlation between βs and

∑
mν.

In fig. 6.4 we plot the posterior distributions for
∑
mν, while in

fig. 6.5 we plot the probability contour at 68% CL and 95% CL for the
several combinations of datasets in the βs -

∑
mν plane, respectively.
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Planck + WL

Planck + lensing

F igure 6 .5 : Two-dimensional posteriors in the βs -
∑
mν plane, for the

indicated datasets. We see that there is no correlation between∑
mν and βs.

In tab. 6.3 we report the constraints from the same datasets but
letting also the lensing amplitude AL free to vary. As discussed in
Section 6.1, Planck data are also suggesting a value for AL > 1 and
is therefore interesting to check if there is a correlation with βs. As
we can see there is a correlation between the two parameters but not
extremely significant. Even with a lower statistical significance, at
about ∼ 1.2÷ 1.5 standard deviations for AL and βs respectively (that
could be also explained by the increased volume of parameter space),
data seem to suggest the presence of both anomalies. When the CMB
lensing data are included, AL goes back to its standard value while
the indication for βs increases. When the WL shear data are included
the AL anomaly is present while the indication for βs is weakened.

We also consider variation in the curvature of the universe and
we report the constraints in tab. 6.4. As we can see, also in this case
we have a correlation between βs and Ωk but not significant enough
to completely cancel any indication for these anomalies from Planck
data. Indeed, when Ωk is considered, we have still a preference for
Ωk < 0 and βs > 0 at more than one standard deviation. More
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interestingly, when external datasets are included, the indication for a
positive curvature simply vanishes, while we get βs > 0 slightly below
95% CL.

In fig. 6.6 we show the constraints at 68% CL and 95% CL in the
βs - AL plane (top panel) and in the βs - Ωk plane (bottom panel).
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F igure 6 .6 : Constraints at 68% CL and 95% CL in the βs - AL plane (top
panel) and in the βs - Ωk plane (bottom panel).
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F igure 6 .7 : Top panel: 68% CL and 95% CL contours in the αs - βs plane,
for the Planck (blue) and Planck + FIRAS (green) datasets (base
model). The red regions represent the 2σ and 5σ limits from
PIXIE around the Planck dataset best-fit for the ΛCDM model,
i. e. µ = 1.57× 10−8 [49]. Bottom panel: same as top panel,
with the red contours represent the 68% CL and 95% CL limits
from PIXIE, obtained by post-processing the Markov chains
with a Gaussian likelihood µ = (1.57± 1.00)× 10−8. The grey
region represents the values of αs and βs that lead to a slow-
roll parameter εH(k) (called ε in the figure), computed via
the Taylor expansion of eq. (4.42), less than zero before or at
k = 2× 104Mpc−1.
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6 .4 constraints from µ-distortions

As we have seen in Section 3.4, CMB µ-type spectral distortions from
the dissipation of acoustic waves at redshifts between z = 2× 106 and
z = 5× 104 offer a window on the primordial power spectrum at very
small scales, ranging from 50 to 104Mpc−1 (for recent works on this
topic see [49, 91] and references therein). The impact of a PIXIE-like
mission on the constraints on the running αs has been analyzed in
[49], while [91] investigated the variety of signals (and corresponding
forecasts) that are expected in the ΛCDM model (not limited to a
µ-type distortion).

In this Section, we briefly investigate the constraining power of
µ-distortions on βs, given the Planck constraints on αs and βs of
Section 6.3. We compute the contribution to the µ-monopole from Silk
damping of acoustic waves in the photon-baryon plasma [90, 103–105],
using the expression for the distortion visibility function presented in
[138] and discussed in Section 2.3. The resulting formula for µ is the
same as the one used in Chapter 5, namely eqs. (5.3), (5.4), (5.5).

Table 6 .5 : 95% CL bounds on αs and βs from the Planck (TT , TE, EE +
lowP), Planck + FIRAS and Planck + PIXIE datasets, for the
ΛCDM + αs + βs (i. e. “base”) model. The results have been
obtained by post-processing with a Gaussian likelihood the
Markov chains considering µ = (1.0±4.0)×10−5 [11] for FIRAS,
and µ = (1.57± 1.00)× 10−8 for PIXIE. See the main text for a
discussion of the bounds on the µ-amplitude.

base αs βs µ

Planck 0.011± 0.021 0.027± 0.027 /

+ FIRAS 0.006+0.017
−0.018 0.020+0.016

−0.019 (0.77+3.10
−0.77)× 10−6

+ PIXIE −0.007+0.012
−0.013 0.001+0.008

−0.009 (1.59+1.75
−1.52)× 10−8

Tab. 6.5 shows how, already with the current limit on the µ-distortion
amplitude from the FIRAS instrument on the COBE satellite, namely
µ = (1± 4)× 10−5 at 68% CL [11], we can get a 28% increase in the
95% CL upper limits on αs, and a 33% increase in those on βs. In
fig. 6.7, we also report a forecast for PIXIE, whose expected error
on µ is 10−8 [22]. Actually, in [157] it was shown that, when also r-
distortions are considered,1 the expected error should be larger (about
σµ = 1.4× 10−8): however, for the large values of αs and βs allowed
by the Planck dataset, the forecasts of tab. 6.5 are not significantly
affected. Besides, we see that:

1 r-distortions are the residual distortions that encode the information on the transition
between the µ-era and the y-era, where the CMB is not in kinetic equilibrium and
energy injections result in distortions of the y-type [88].

https://lambda.gsfc.nasa.gov/product/cobe/firas_overview.cfm
https://lambda.gsfc.nasa.gov/product/cobe
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• for the best-fit values of cosmological parameters in the ΛCDM+

αs + βs model, which leads to µ = 1.09× 10−6, PIXIE will be
able to detect spectral distortions from Silk damping at extremely
high significance (fig. 6.7). Besides, we see that a statistically sig-
nificant detection of βs is expected, along with a sizable shrink-
ing of the available parameter space (fig. 6.7). As we discuss
later, any detection of such values of µ-distortions will rule out
single-field slow-roll inflation (we did not investigate whether
it could be possible to have models of multi-field inflation, or
models where the slow-roll assumption is relaxed [188], that can
predict such values for the µ-distortion amplitude);

• for a fiducial value of µ corresponding to the ΛCDM best-fit
i. e. µ = 1.57× 10−8 [49], we see that we get a 84% increase in
the 95% CL upper limits on αs, and a 83% increase in those on
βs. More precisely, values of βs larger than 0.02 will be excluded
at ∼ 5σ.

We conclude this Section with a comment on the validity of a Taylor
expansion (in logk/k?) of the power spectrum down to scales probed
by spectral distortions. We can estimate the terms in the expansion
of ns(k) by choosing k = 104Mpc−1, corresponding to kD at z = zDC:
for values of βs of order 0.06 (which are still allowed at 95% CL, as
shown in fig. 6.7), the term βs

6 (logk/k?)2 in eq. (6.1) becomes of order
1. For this reason, tab. 6.5 does not report the limits on µ coming
from the current Planck constraints on the scale dependence of the
spectrum. When existing limits on µ from FIRAS are instead added,
an extrapolation of ∆2ζ(k) at the scales probed by µ-distortions starts to
become meaningful, and when also PIXIE is included in our forecast
around the ΛCDM prediction, the upper bounds on αs and βs are
lowered enough that a perturbative expansion becomes viable, making
our forecast valid.

6 .5 large βs and slow-roll inflation

In this Section we discuss briefly the implications that values of αs

and βs of order 10−2 have for slow-roll inflation. We can compute the
running of the slow-roll parameter εH in terms of ns, αs and βs using
the procedure described in Section 4.7, namely in eqs. (4.41), (4.42),
(4.43), (4.44). From those results, we see that at scales around k?, ns

dominates, so that εH is increasing and a red spectrum is obtained.
However, in presence of positive αs and βs, at small scales εH becomes
smaller, until it becomes zero at k ≈ 39.7Mpc−1 for αs = 0.01 and
βs = 0.02 (taking εH|? = 0.002, i. e. the maximum value allowed by
current bounds on r, when the inflaton speed of sound cs is fixed to
1). If we impose that εH stays positive down to k ≈ 2× 104Mpc−1,
which is of the same order of magnitude of the maximum k probed by
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µ-distortions (as we have seen Section 2.3), we can obtain a theoretical
bound on αs and βs. We show this bound in fig. 6.7: this plot tells
us that a large part of the contours from the Planck + FIRAS and
Planck + PIXIE datasets cannot be interpreted in the context of slow-
roll inflation extrapolated to µ-distortion scales, because εH becomes
negative before reaching k ≈ kD(zDC).

These kind of bounds tell us that the Taylor expansion is not suitable
for extrapolating the inflationary spectrum far away from the CMB
window, in presence of the values of αs and βs that are currently
allowed by Planck, since εH becomes zero already ∼ 7 e-folds after
the horizon exit of k?. To avoid this problem, one could consider a
series expansion that takes into account the theoretical bounds on εH,
i. e. εH(N = 0) = 1 and 0 < εH < 1: the Taylor series does not respect
these requirements, so it does not in general represent a possible power
spectrum from inflation, over the whole range of scales. Only when
the values of the phenomenological parameters describing the scale
dependence of the spectrum are small, the Taylor expansion can be
a good approximation of a realistic power spectrum over a range of
scales much larger than those probed by the CMB.

Another possibility is to consider bounds on the primordial power
spectrum coming from observables that lie outside the CMB scales, but
are still at small enough k that the Taylor series applies. In this regard,
constraints on the scale dependence of the primordial power spectrum
from observations of the Ly-α forest could be very powerful (the
forest constrains wavenumbers k ≈ 1hMpc−1),2 In [191], an analysis
of the the one-dimensional Ly-α forest power spectrum measured
in [192] was carried out, showing that it provides also small-scale
constraints on the tilt ns and the running αs: more precisely, for a
ΛCDM + αs +

∑
mν model, a detection at approximately 3σ of αs

(αs = −0.00135+0.0046
−0.0050 at 68% CL) is obtained. It would be interesting

to carry out this analysis including the running of the running, to see
if the bounds on βs are also lowered.

6 .6 conclusions

In this Chapter we have studied the constraints on the running of the
running of the scalar spectral index βs and discussed in more detail
the 2σ indication for βs > 0 that comes from the analysis of CMB
anisotropies data from the Planck satellite.

We have considered simultaneous variations in the lensing ampli-
tude parameter AL and the curvature of the universe Ωk. We have
found that, while a correlation does exist between these parame-
ters, Planck data still hint for non-standard values in the extended

2 Even if modeling the ionization state and thermodynamic properties of the inter-
galactic medium to convert flux measurements into a density power spectrum is very
challenging (see [189] and [190] for a discussion).
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ΛCDM + αs + βs +AL and ΛCDM + αs + βs +Ωk model, only par-
tially suggesting a common origin for their anomalous signal related
to the low CMB quadrupole. We have found that the Planck constraints
on neutrino masses

∑
mν are essentially stable under the inclusion of

βs.
We have shown how future measurements of CMB µ-type spectral

distortions from the dissipation of acoustic waves, such as those ex-
pected by PIXIE, could severely constrain both the running and the
running of the running. More precisely we have found that an im-
provement on Planck bounds by a factor of ∼ 80% is expected. Finally,
we discussed the conditions under which the phenomenological ex-
pansion of the primordial power spectrum in eq. (6.1) can be extended
to scales much shorter that those probed by CMB anisotropies and
can provide a good approximation to the predictions of inflationary
models.
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In this Chapter we will discuss why we expect deviations from Gaus-
sianity in the statistic of cosmological correlation functions, and how
the CµT` angular cross spectrum is a probe of the three-point function
of the primordial curvature perturbation generated by inflation. The
Chapter is based mainly on [20, 25, 31].

7 .1 why non-gaussianity?

So far, we have considered only two-point functions of cosmologi-
cal perturbations. Indeed, in a Gaussian theory the power spectrum
completely characterizes the statistics of perturbations. However, grav-
itational evolution and the collision terms in the Boltzmann equation
are non-linear (i. e. we have an interacting theory), and will lead to a
coupling between modes with different wavenumber. This will lead to
deviations from Gaussian statistics, that we call “non-Gaussianity”.

In this and the following Chapters we will focus mainly on non-
Gaussianity coming from inflationary physics: this is encoded in the
higher-order correlation functions of the scalar and tensor perturba-
tions (ζ and γij) of Chapter 4. Any interaction present during inflation
will generate these n-point functions:

• for single-field inflation, these can come from the scalar sector.
For example, in single-field slow-roll inflation there will be con-
tribution to the cubic Lagrangian for perturbations coming from
the potential V(φ). In theories where the inflaton Lagrangian is
a function P(X,φ), with X ≡ gµν∂µφ∂νφ, there will be higher-
derivative interactions [62, 119, 193];

• if other fields besides the inflaton are active during inflation,
interactions between the inflaton and these fields will also lead
to non-Gaussianities [194];

• finally, gravity itself is a non-linear theory. We then expect some
amount of non-Gaussianity due to gravitational interactions.

148
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Derivative interactions and multi-field inflation can lead to sizable
n-point functions: the minimal amount of non-Gaussianity, however,
come from gravitational interactions, and is of order of the slow-roll
parameters. To see this, we can go to the so-called “flat gauge”, where
we restore the field perturbation δφ from the unitary gauge (and
remove ζ) with a time redefinition. The cubic scalar Lagrangian will
have a contribution L(3) ⊃ V ′′′(φ̄)δφ3: however, it is straightforward
to show that V ′′′(φ̄) is second-order in slow-roll (indeed, it is of the
same order of the running of the spectral index). The only remaining
δφ interaction terms can come only from gravity, i. e. from the solution
of the constraint equations (since in this gauge there are no scalar
modes in the three-dimensional metric hij). As we will see in more
detail in the next Chapter, the solution of δN and NI = ∂iψ in terms
of δφ is of order εH, so that the interaction Lagrangian for δΦ will be
of order εH.

7 .2 squeezed limit and f loc.
NL

In the following we will focus only on non-Gaussianity in the scalar
sector, i. e. we will focus only on (super-horizon) n-point functions
of the comoving curvature perturbation ζ (or, equivalently, of the
perturbation δφ to the inflaton v.e.v.).

The simplest observable that we can think of when talking about
deviations from Gaussian statistics is the three-point function. Indeed,
〈ζ(k1)ζ(k2)ζ(k3)〉 vanishes for a Gaussian theory, so it is a direct
probe of the interactions of ζ. Due to translational and rotational
invariance, 〈ζ(k1)ζ(k2)ζ(k3)〉 can be written as

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)

× Bζ(k1 , k2 , k3) ,
(7.1)

where the bispectrum Bζ(k1 , k2 , k3) can depend only on the moduli
ki of the three momenta ki . The freedom in the choice of the momenta
ki means that we can look at the bispectrum in different configurations.
Two of the most common are:

equilateral configuration It corresponds to looking at modes
of similar size, i. e. k1 ∼ k2 ∼ k3 .

squeezed configuration It considers one mode to be much lon-
ger than the other two, i. e. k3 ∼ k` � k1 ∼ k2 ∼ ks.

The overall strength of non-Gaussianities is parameterized by fNL,
which is the overall amplitude of the bispectrum. The shape of non-
Gaussianities, instead, is usually parameterized as

Bζ(k1 , k2 , k3) ∝
S(k1 , k2 , k3)

(k1k2k3)2
(∆2ζ)

2 , (7.2)
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for scale-invariant power spectra Pζ(k) = 2π2

k3
∆2ζ. Depending on

the shape of the bispectrum, one defines different fNL parameters.
Two common shapes are the equilateral and the local shape (with
their corresponding fequil.

NL and f loc.
NL amplitudes): the equilateral shape

peaks in the equilateral configuration, while the local shape peaks in
the squeezed configuration (see fig. 7.1). The constraints on fequil.

NL and
f loc.

NL from Planck are [195]

f
equil.
NL = −3.7± 43 (68% CL) , (7.3a)

floc.
NL = 0.8± 5.0 (68% CL) . (7.3b)
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F igure 7 .1 : Top panel: contour plot of the equilateral shape Sequil., nor-
malized such that Sequil.(1, 1, 1) = 1. The axes x` and x2 are
the rescaled momenta k`/k1 and k2/k1, respectively (choosing
k3 ≡ k`). Momenta are ordered such that x` < x2 < 1, and
satisfy the triangle inequality x2 + x` > 1. Sequil. goes to zero
as k`/k1 in the squeezed limit x` � 1. Bottom panel: contour
plot of the local shape Sloc.. We see that it increases rapidly (as
k1/k`) in the squeezed limit.
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Multi-field inflation can give sizable floc.
NL , while derivative interac-

tions can give sizable fequil.
NL . What about single-field slow-roll inflation?

The bispectrum in this case is given by [17, 18]

Ss.f.s.r. = (1−ns)Sloc. +
5

3
εSequil. , (7.4)

where from now on we will drop the subscripts H on the Hubble
slow-roll parameters. Eq. (7.4) shows that both ε and η appear in
the amplitude in the three-point function. To gain some intuition on
what this means, we can go to the squeezed limit. The bispectrum
has a simple physical interpretation in this configuration (see fig. 7.2
for details): as we will see in more detail in the next Chapter, it
corresponds to looking at how the power spectrum of a short-scale
perturbation ζs defined in a region of size R & k−1s is correlated with
a long-wavelength mode ζ` which is almost constant over that region
(k−1` � R). eq. (7.4) says that, at leading order in gradients of ζ`
(i. e. for a constant ζ`), the coupling between Pζ(ks) and ζ` is given by
(minus) the tilt of the power spectrum.

F igure 7 .2 : Squeezed limit of ζ = ζ` + ζs in real space: we compute how
the correlation function of ζs (which we call 〈ζsζs〉 (r), where
r ≡ |x1 − x2|) depends on the long-wavelength fluctuation ζ`.
We can expand ζ` in a Taylor series, since it is slowly varying
inside R: any point inside of R is as good as the other for
the expansion [24, 196], so we will choose the middle point
xc ≡ (x1+ x2)/2 for simplicity. We also stress that the choice of
R is immaterial in the squeezed limit, the only real requirement
being that k` � ks [197].

If we work in real space, and stop at zeroth order in gradients of
the long mode ζ`, this translates into

〈ζsζs〉 (r)|ζ` = {1+ (1−ns)ζ`(xc)} 〈ζsζs〉 (r) , (7.5)

where r ≡ |x1 − x2| and xc ≡ (x1 + x2)/2 (see fig. 7.2). This seems
to suggest that floc.

NL is equal to 1− ns: however, there are some sub-
tleties. Indeed, consider an observer living in the region R, as depicted
in fig. 7.2. She is living in a “separate universe” perturbed by the
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(constant) long mode ζ`(xc), so that the spatial background metric is
given by

ḡij = a
2{1+ 2ζ`(xc)}δij . (7.6)

The observer can look at correlations of the short-scale perturbations
with the long mode, and she would do it by measuring the short-scale
power spectrum in terms of the physical distance dp between x1 and
x2. Now, we can see that given the metric of eq. (7.6), dp is not equal
to a× r, but it is given by

dp = a× {1+ ζ`(xc)}× r ≡ a× rp . (7.7)

When eq. (7.5) is rewritten in terms of rp, we see that the term ∝
(1−ns) cancels, i. e.

〈ζsζs〉 (r(rp))|ζ` = {1+ (1−ns)ζ`(xc)} 〈ζsζs〉 (rp)

− ζ`(xc)
d 〈ζsζs〉 (rp)

d log rp

= 〈ζsζs〉 (rp) .

(7.8)

Therefore, for a local observer, there is no coupling between long
and short modes at leading order in k`/ks in single-field inflation:
corrections will enter at second order in derivatives of ζ`, i. e. at
O(r2∂2ζ`). We will see in the next Section an example of an observable
where we can apply this argument, i. e. the correlation between CMB
temperature and µ-distortion anisotropies.

7 .3 µT angular correlations

As we have shown in Section 3.4, the heating rate from Silk damping
is proportional to the power spectrum on very short scales (from
≈ 50Mpc−1 to ≈ 104Mpc−1). In presence of a floc.

NL different from zero,
and then of a coupling between long and short modes, we see that
the heating rate becomes spatially dependent (see fig. 7.3). Therefore,
we expect to see anisotropies of µ in the sky. More precisely, if we
parameterize the long-short mode coupling in real space as1

ζ = ζs + ζ` −
6

5
floc.

NLζsζ` , (7.9)

and use eq. (3.101), we see that at the observation point the average
chemical potential will be modulated by ζ`, its fractional variation
being [20, 25]

∆µ

µ
≈ δ 〈ζ

2
s〉 |ζ`
〈ζ2s〉

= −
12

5
floc.

NLζ` , (7.10)

1 The factor of −65 is conventional: with this factor the Newtonian potential in matter
domination has a bispectrum of the local shape with amplitude floc.

NL . We refer to [25]
for details.
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where δ 〈ζ2s〉 |ζ` ≡ 〈ζ2s〉 |ζ` − 〈ζ2s〉. Therefore, we see that, with local-
model non-Gaussianity, the fractional chemical potential fluctuation
in a given region of the sky is given simply by the long-wavelength
curvature perturbation in that region at the surface of last scatter.
The same is true for the large-angle temperature fluctuation: as we
have seen in Section 3.3.2, it is determined primarily by the curvature
fluctuation at the surface of last scatter and has magnitude ∆TT ≈ −ζ`5 ,
as we can see by combining eqs. (3.73), (3.75). Therefore, for multipole
moments ` . 100, that probe causally disconnected regions at the
surface of last scattering, the cross-correlation between the fractional
chemical potential fluctuation ∆µ

µ and the temperature fluctuation ∆T
T

has an angular power spectrum equal CµT` to

C
µT
` = 12floc.

NLC
TT
` . (7.11)

f loc.
NL 6= 0

�2⇣(k,x1)

�2⇣(k,x2)

F igure 7 .3 : Modulation of the average chemical potential in the sky by a
long wavelength mode: for non-zero floc.

NL , the coupling between
long and short modes leads to a modulation of the amplitude
of the spectral distortion.

Now, we have seen in Section 7.2 that the physical coupling between
the long and short modes, in any of the regions at last scattering that
subtend an angle ∼ `−1 in the sky, is zero in single-field inflation.
Therefore, there will be no contribution from primordial physics to the
correlation between temperature and µ-distortion anisotropies. Does
this mean that CµT` identically vanishes? We are currently investigating
this [31]. There will be projection effects as photons travel from each
of these regions to us: since they will travel in a universe perturbed
by the long-wavelength mode, this can lead to additional correlations
with ζ` that can mimic a non-zero floc.

NL . For example, this happens for
the CMB bispectrum. Consider the squeezed limit of the three-point
function of ∆TT in the sky: this corresponds to looking at how the
power spectrum of ∆TT on small angular scales is correlated with a
large-angle temperature fluctuation. We can do this by measuring
the power spectrum in small patches in the sky, and then seeing if



7.3 µT angular correlations 154

such power spectrum varies from patch to patch (and if the change is
correlated with a long temperature perturbation). We recognize that
there are at least three effects that can generate such changes:

• there can be a change in the angular size of the short-scale
anisotropies from patch to patch;

• in every patch, the local temperature will have experienced a
different redshift;

• finally, the definition itself of local temperature in every patch
will be changed by the presence of a long-wavelength perturba-
tion at recombination. That is, we have to define the short-scale
temperature anisotropies with respect to the average tempera-
ture in every patch, which is a direct tracer of ζ`.

However, we now also see that these three effects will be absent in the
case of µT correlations:

• when we compute CµT` , we are not looking at how the power
spectrum of µ varies from patch to patch, but we are considering
the average µ. Therefore, there is no “angular size” of short-scale
µ that could change from patch to patch;

• differently from T , µ does not redshift after the end of the µ-era,
but it is frozen;

• once we define the average temperature in the patch, we are
automatically able to extract the average µ. This follows directly
from the form of the Bose-Einstein frequency spectrum.

Therefore, we expect that in single-field inflation we expect exactly zero
µT correlations, up to corrections suppressed by (k`/ks)

2 (where k`
is of the order of the comoving horizon at recombination and ks is of
the order of the damping scale at the end of the µ-era). The goal of
[31] is to investigate this in more detail. However, one can also ask
oneself what happens to the primordial contribution at second order
in gradients of ζ`. We have seen in Section 7.2 that the contribution
proportional to the tilt cancels from local observables at leading order
in gradients: does this happen at O(k`/ks)2 too? The goal of the next
Chapter is to answer this question.
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In this Chapter we will study what is the minimal amount of primor-
dial non-Gaussianity that can be observed today in n-point functions
of cosmological perturbations. The Chapter is based on the work JCAP
1701, no. 01, 003 (2017).

8 .1 introduction

As cosmological observations show no evidence of departures from
Gaussian primordial perturbations, it is natural to ask: How Gaus-
sian can our Universe be? If we assume primordial perturbations to
be generated during inflation, we know that multi-field and higher
derivative interactions typically enhance primordial non-Gaussianity.
Setting aside these more general scenarios, we focus on the simplest
model, which leads to the least amount of non-Gaussianity: canonical
single-field slow-roll inflation. We know that inflaton self-interactions
are subleading in the slow-roll expansion (see [18, 65, 198, 199] for
explicit calculations), so we are led to ask how small gravitational non-

155
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linearities can be. Maldacena answered this question in [18] computing
the primordial bispectrum in comoving coordinates

Bζ(k1, k2, k3) ∝
(∆2ζ)

2

(k1k2k3)2

[
(1−ns) Sloc.(k1, k2, k3)

+
5

3
ε Sequil.(k1, k2, k3)

]
,

(8.1)

where Pζ(k) = k3∆2ζ/2π
2 is the power spectrum of curvature pertur-

bations, Sloc. and Sequil. are the shape functions of local and equilateral
non-Gaussianity, and ns − 1 is the scalar spectral tilt, which is given
in terms of the Hubble slow-roll parameters by

ns − 1 = −η− 2ε, with ε ≡ −
Ḣ

H2
, η ≡ ε̇

Hε
. (8.2)

The minimum size of non-Gaussianity is therefore determined by
ε and the spectral tilt ns − 1. Although these two contributions are
“of order slow-roll”, there is a dramatic difference between the two.
The spectral tilt is relatively well known, ns − 1 = −0.0355± 0.005
(95% CL) [14]. On the other hand, ε is uncertain by more than 50
orders of magnitude: an upper bound comes from the tensor-to-scalar
ratio bound 16ε = r < 0.07 (95% CL) [47], while a lower bound comes
from conservatively assuming a reheating scale larger than a TeV,
leading to 5× 10−3 & ε & 10−54. So the answer to the title of this
Chapter can be hugely different, depending on whether it is ε or ns − 1

that control the minimum amount of primordial non-Gaussianity.
It was shown in [24] that, to leading order in derivatives, the con-

tribution from the local shape, of size ns − 1, cancels exactly for any
local measurement. In particular, it does not contribute to the scale-
dependent bias [200–202], to the CMB bispectrum in the squeezed
limit [203, 204], and to the cross-correlation between CMB temperature
anisotropies and spectral distortions [20]. It is therefore natural to ask
whether ns − 1 survives at some subleading order in derivatives or
if it cancels to all orders, allowing primordial non-Gaussianity to be,
for all practical purposes, arbitrarily small. The goal of this Chapter is
to answer this question. Using Conformal Fermi Coordinates (CFC)
[24, 200, 201], we will show that a term which involves two spatial
derivatives of ζ and is proportional to ns − 1 survives in local observ-
ables and therefore appears in the appropriately defined curvature
bispectrum.

To put our result into context, we stress two main points. First, the
original motivation for our investigation was the widespread suspi-
cion, put forward in [205], that some general argument might exist to
guarantee the complete cancellation of any term proportional to η (and
therefore to the tilt). After all, it is ε that controls the departure from
an exact de Sitter spacetime (see eq. (8.85)), in which case, following
the argument sketched in [205], non-Gaussianity should vanish. Our
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explicit calculation shows that this suspicion is unfounded. We also
clarify how the survival of ns − 1 is indeed expected when considering
the de Sitter limit. Second, even though we compute the bispectrum of
primordial curvature perturbations on a constant-proper-time hyper-
surface at the end of inflation, as opposed to some late-time observable
such as the CMB or galaxy bispectrum, our result has a direct and
transparent physical implication.

Recall that curvature perturbations, and hence their correlators, are
conserved until they re-enter the (largest) sound horizon of any rel-
evant component (matter, radiation, etc.). As an example, consider
then matter domination, when the sound horizon is parametrically
smaller than the Hubble radius. Two short and one long mode that
enter the Hubble horizon during this epoch still possess the primordial
correlation we compute here as long as they are larger than the sound
horizon, and this coupling is in principle observable, as we will discuss
in Section 8.6. In practice of course we are interested in modes that
enter also during radiation domination and we observe non-conserved
density perturbations as opposed to conserved curvature perturba-
tions. Many evolution and projection effects then need to be added to
our result. Nevertheless, the example above highlights that our result
describes a physical and in principle measurable late-time correlation.
Connection to observations will be further discussed in Section 8.6.

The rest of the Chapter is organized as follows. In Section 8.2
we construct the CFC frame for single-field slow-roll inflation; in
Section 8.3 and Section 8.4 we compute the local bispectrum in CFC;
in Section 8.5 we discuss why we expect η to also be locally observable,
in contrast to what was argued in [205], and briefly describe the case
where the inflaton speed of sound cs is different from 1. Finally, we
derive our conclusions in Section 8.7. We collect the technical details
in Appendix E (about the CFC construction), Appendix F (about
the transformation of the curvature perturbation ζ from comoving
coordinates to CFC), and Appendix G (about the bispectrum in Fourier
space). In Appendix H we briefly describe the simplifications in the
calculation of the CFC bispectrum when cs � 1.
Notation and conventions As we are doing throughout this thesis, we
use ζ (not R) to define the comoving curvature perturbation, following
[18]. In the remainder of the Chapter, we work in units where the
reduced Planck mass M2

P ≡ 1/8πGN = 1, unless it is explicitly said
otherwise. It can be reintroduced easily with dimensional analysis in
the final results, if needed. In this Chapter (and in the Appendices E,
F, G and H), we are going to use τ in place of η as conformal time. We
will also drop the superscript (3) on the three-dimensional Dirac delta
functions, and we will often denote derivatives with respect to τ with
∂0.



8.2 cfc coordinates in single-field inflation 158

8 .2 cfc coordinates in single-field inflation

When we referred to “local measurements” in the introduction above,
we meant in particular the response of short-wavelength perturbations
(k1 ∼ k2 ∼ ks) to the presence of long-wavelength ones k3 ∼ k` � ks
(squeezed limit). As shown, e. g., in [206],1 the squeezed limit of
correlation functions of ζ in Fourier space corresponds to looking at
how perturbations ζs which are defined in a region of size R & k−1s are
correlated with perturbations ζ` of wavelength k−1` � R, i. e. that are
almost constant in the region R (see fig. 7.2). This correlation between
long and short modes is expected, since the long modes will affect the
dynamics of the short modes, modifying the background over which
they evolve: up to second order in gradients, the long-wavelength
perturbation can be reabsorbed in the FLRW background, while at
O(k2` ) it adds curvature to the “separate universe” of size ∼ k−1` and
modifies its expansion history [207, 208]. Maldacena’s consistency
relation is just a statement of the fact that these effects are suppressed
by how much the long mode is outside the horizon at a given time (for
primordial correlations this saturates at k2`/k

2
s , ks ∼ aH ≡ H being the

moment when short modes freeze out).
We can see this in the following way. We start by asking ourselves

what a local observer with proper 4-velocity Uµ in the separate uni-
verse of fig. 7.2, freely falling in the background perturbed by the
long-wavelength mode ζ`, can measure during inflation. First, she
naturally sets the time coordinate to match what is measured by her
clock (i. e. by her proper time ≡ tF) and uses it to define surfaces
of constant time. The (non-rotating) spatial coordinate axes of her
local laboratory frame emanate from her worldline along geodesics.
The resulting coordinate system (xµF ) depends on the worldline of Uµ:
timelike and spacelike coordinates are defined in such a way that the
distance of a point from the worldline is given by ηµν∆x

µ
F∆x

ν
F , with

higher order corrections in ∆xF that encode how spacetime deviates
from flatness. This local coordinate system is known as Fermi Normal
Coordinates (FNC) [206, 207, 209–211].

However, space is also expanding, as determined locally by how
a small sphere of test particles carried on the worldline changes in
volume. This change is encoded by the geodesic expansion ∇µUµ.
By introducing a local FLRW scale factor aF, the spatial coordinates
can account for the fact that ∇µUµ 6= 0: the distance of a point
from the worldline is then given by −∆t2F + a

2
F|∆xF|

2, where aF is the
integral over the local expansion rate ∇µUµ = 3HF. The important
point is that spatial geodesics are still used to define spatial distances,
the only difference with the previous case being the fact that the
overall expansion of space has now been factored out. Higher-order

1 See its Sec. 2.
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corrections in ∆xF to the distance between points would now encode
the intrinsic curvature of spatial slices.

This generalization of the FNC is called Conformal Fermi Coordi-
nates (CFC) [24, 200, 201]: they are the coordinates that a local observer
uses to describe physics in an expanding universe. They are naturally
suited to the case where there is a separation of scales, such as the one
described in fig. 7.2: an observer who has access only to scales ∼ 1/ks
treats the long mode as an effective background within which the
short modes evolve,2 and then looks at what is the power spectrum
of the latter in this background, which she describes through CFC.
This coordinate system makes explicit that the separate universe is an
unperturbed FLRW universe (the corrections to the expansion history
coming from HF 6= H are of order of the time dependence of ζ`, which
starts at order ∂2ζ` in single-field inflation): deviations from this pic-
ture enter only at second order in spatial gradients of ζ`. Hence, the
first non-zero, physical coupling between short and long modes that a
local observer can measure appears at quadratic order in the momen-
tum of the long mode. At this order, if the CFC power spectrum of ζs
in presence of ζ` does not vanish for ε → 0 on super-Hubble scales
(we will show later that the difference between constant t surfaces
and constant tF surfaces goes to zero as the Hubble radius decreases),
we conclude that the “gravitational floor” of non-Gaussianities from
inflation is of order of the tilt ns − 1.

8 .2 .1 Construction of CFC

As we explained above, CFC coordinates xF = (τF, xF) for a geodesic
observer Uµ ≡ (e0)

µ are constructed in a similar way to Fermi Normal
Coordinates, the difference being that around the observer’s geodesic
the metric looks approximately as FLRW (not Minkowski). The devi-
ations from FLRW are of order |xF|

2k2`ζ`, instead of |xF|
2H2 as in the

FNC case. The construction goes as follows:

1. we construct an orthonormal tetrad (eν)
µ, parallel transported

along the central geodesic P(tF) of the observer (e0)µ (tF being
the observer’s proper time);

2. given a spacetime scalar aF(x), we define a conformal proper
time τF by

dτF = a−1F (P(tF))dtF , (8.3)

and we choose τF as time coordinate (often replacing P(tF(τF))
with just P to simplify the notation). This allows us to define sur-

2 It is clear that this picture, during inflation, can hold only if we stop at quadratic
order in gradients of the long mode: at higher order we cannot neglect the quantum
nature of perturbations and treat them as a classical background. To see this, it is
enough to think about the de Sitter mode functions ζ(τ, k) = ζ(0, k)(1+ ikτ)e−ikτ:
for k→ 0, the term of O(k3) picks up a factor of i.
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faces of constant τF, spanned by space-like conformal geodesics
(i. e. geodesics of the conformal metric g̃µν(x) ≡ a−2F (x)gµν(x))
originating from the central geodesic;

3. this construction of surfaces of constant τF also gives us spatial
coordinates xiF. More precisely:

• one defines the central geodesic to have coordinates xF =

(τF, 0);

• one takes the family γ(τF;αi, λ) of geodesics of the confor-
mal metric with affine parameter λ = 0 at P, and tangent
vector given by αi(ei)

µ
P ;

• the point Q with coordinates (τF, xF) is then identified with
γ(τF;βi, λQ), where

λQ = δijx
i
Fx
j
F , (8.4a)

βi =
aF(P)x

i
F√

δijx
i
Fx
j
F

; (8.4b)

• with the exponential map we can then construct the coor-
dinate transformation from global coordinates (x) to CFC
coordinates (xF) as a power series in xiF. Rescaling λ so that
it runs from 0 to 1, i. e. βi = aF(P)x

i
F, this power series

reads as

xµ(xF) = c
µ
0 (τF) +

+∞∑
n=1

cµn(τF, xF) , (8.5)

with

cµn(xF) = O[(xiF)
n] for n > 1 . (8.6)

We see that cµ0 (τF) is simply given by xµ(P), the coordinates
of the central geodesic evaluated at tF(τF), and can be
computed once one knows aF and (e0)

µ. The tangent vector
on P, i. e. cµ1 (τF, xF), is then given by

c
µ
1 (τF, xF) = aF(P)(ei)

µ
Px
i
F . (8.7)

Higher order coefficients are computed recursively by solv-
ing the geodesic equation for the conformal metric: we refer
to [200, 201] and to Appendix E for details.

The resulting metric has the form

gFµν(xF) = a
2
F(τF)[ηµν + h

F
µν(xF)], with hFµν(xF) = O[(xiF)

2] . (8.8)
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More precisely, stopping at order (xiF)
2, we have [200, 201]

hF00(xF) = −R̃F0k0l|Px
k
Fx
l
F , (8.9a)

hF0i(xF) = −
2

3
R̃F0kil|Px

k
Fx
l
F , (8.9b)

hFij(xF) = −
1

3
R̃Fikjl|Px

k
Fx
l
F , (8.9c)

where R̃Fµρνσ is the Riemann tensor of the conformal metric in CFC
coordinates, and indices have been lowered with the conformal metric.
In terms of global coordinates, R̃Fµρνσ|P is

R̃Fµρνσ|P = R̃αβγδ|P(ẽµ)
α
P(ẽρ)

β
P (ẽν)

γ
P(ẽσ)

δ
P , (8.10)

where on the central geodesic the CFC coordinate vectors are given by
(ẽν)

µ
P = aF(P)(eν)

µ
P .

When compared to the Fermi Normal Coordinates construction,
CFC need one additional ingredient to determine the metric perturba-
tions hFµν, i. e. the scalar aF(x) computed along the central geodesic.3

The idea is to absorb the leading contributions to the spacetime cur-
vature in this scale factor aF, and make then the Riemann tensor of
g̃µν as simple as possible. In [200] it is shown how this is achieved by
defining aF(x) from the local expansion rate

d logaF(P)
dtF

=
1

aF(τF)

d logaF(P)
dτF

=
∇µUµ|P

3
. (8.11)

8 .2 .2 Residual coordinate freedom

This construction, even after having fixed the geodesic Uµ(tF) and the
choice of aF, has two residual “gauge” freedoms that leave hF00 and
hF0i invariant at O[(xiF)

2]:

• it is possible to perform a coordinate transformation

τF → τF , (8.12a)

xiF → xiF(yF) = y
i
F +

Aijkl(τF)

6
y
j
Fy
k
Fy
l
F , (8.12b)

where Aijkl(τF) is fully symmetric with respect to j, k, l. This
transformation does not affect aF, but changes hFµν via

hF00(xF)→ hF00(yF) , (8.13a)

hF0i(xF)→ hF0i(yF) , (8.13b)

hFij(xF)→ hFij(yF) +A(ij)kl(τF)y
k
Fy
l
F , (8.13c)

3 We also need its derivatives along the central geodesic, since these will enter in
R̃Fµρνσ|P : we refer to [200, 201] for a more detailed review.



8.2 cfc coordinates in single-field inflation 162

where the indices of Aijkl(τF) are lowered with the conformal
metric. It is important to stress that, up to including order (yiF)

2,
coordinate lines yF = λ ˛F are still geodesics of the conformal
metric;

• one can rescale aF by a constant aF(τ) → c aF(τ): it comes
from the fact that we defined it through the local Hubble rate
for the observer Uµ, so we still have the freedom of choosing
the integration constant when we integrate eq. (8.11) along the
central geodesic.

This construction holds for any spacetime: there is no need of
expanding the metric in perturbations around a given background.
However, we will specialize to the case of a perturbed FLRW spacetime
in the following Sections. For this reason, we defer the discussion of
these two residual transformations to the next Sections, where working
in perturbation theory will allow us to fix them in a much easier way.

8 .2 .3 From comoving to CFC coordinates

The main goal of this and the following Sections is to construct ex-
plicitly the change from the global to the CFC frame, constructed for
the long-wavelength part of the metric: this will allow us to find the
effect that a long-wavelength perturbation ζ` has on short modes ζs.
The construction will follow closely the one presented in [24], the
main difference being the fact that we will go up to order k2`/k

2
s in

the gradient expansion. Here we provide the outline of the calculation,
while the details are collected in Appendix E.

We work in a perturbed FLRW spacetime gµν = a2(ηµν + hµν):
more precisely we consider the comoving gauge [18], where the in-
flaton perturbations δφ are set to zero and the metric is given by
(neglecting tensor modes)

g00 = a
2(−1− 2N1), with N1 =

∂0ζ

H
, (8.14a)

g0i = a
2Ni = a

2∂iψ, with ψ = −
ζ

H
+ ε∂−2∂0ζ , (8.14b)

gij = a
2e2ζδij ≈ a2(1+ 2ζ)δij . (8.14c)

Since we are interested in three-point functions, we restricted to linear
order in the lapse and shift constraints [18, 65, 119]. We can now
split ζ in a long- and short-wavelength part, ζ(x) = ζs(x) + ζ`(x):
because we are interested in the bispectrum only, it will be sufficient to
consider the linear response of the short-scale modes to the coordinate
transformation (that is, we can work at linear order in ζ`). Now, given
that the background is FLRW, we can straightforwardly write down
the (normalized) time-like geodesic congruence Uµ as [200, 201]

Uµ = (e0)
µ = a−1

(
1+

h00
2
, Vi
)

= a−1(1−N1, V
i) , (8.15)
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where the first order perturbations Vi are the peculiar velocities of the
observers Uµ. Neglecting vorticity (which is not sourced in single-field
models), the corresponding spatial vectors of the tetrad are [200, 201]

(ei)
µ = a−1

(
Vi+h0i, δ

j
i−

h
j
i

2

)
= a−1

(
Vi+Ni,

[
1− ζ

]
δ
j
i

)
, (8.16)

where we raise and lower latin indices with δji. Since the tetrad (eν)
µ

is parallel transported along the central geodesic, one can show that
the peculiar velocities must obey the equation

∂0V
i +HVi = −∂iN1 − ∂0N

i −HNi . (8.17)

Finally, one can use the relation HF = ∇µUµ/3 to find the expression
for the CFC scale factor aF: at linear order in perturbations, one has
that (see, e. g., Section E.1)

aF(P)

a(P)
= 1+CaF(τ∗, xc(τ∗))

+

∫τ
τ∗

ds
(
∂0ζ(s, xc(s)) +

1

3
∂iV

i(s, xc(s))
)
,

(8.18)

where both left-hand side and right-hand side of this equation are
computed in global coordinates along the central geodesic (xc(τ)). We
have defined τ∗ as the initial time in the integration of eq. (8.11), while
CaF(τ∗, xc(τ∗)) is an arbitrary constant which we treat as first order
in perturbations. This corresponds to the freedom to rescale aF by
a constant, as mentioned in the previous Section. The last step is to
solve the geodesic equation for the peculiar velocities. We can do it by
defining Fi ≡ Vi +Ni: the solution for Fi = ∂iz then reads as

z(x) = e−
∫τ
τ∗ dsH(s)

[
τ∗Cz(τ∗, x)

−

∫τ
τ∗

ds e
∫s
τ∗ dwH(w)N1(s, x)

]
,

(8.19)

where Cz(τ∗, x) is a second integration constant (which we multiply
by τ∗ for convenience). Cz corresponds to an initial relative velocity
of the geodesic (which, as we can see, decays on super-Hubble scales)
considered with respect to comoving observers.

It is now straightforward to show that on the central geodesic
(i. e. for xF = 0) we have

xµ(τF, 0) = x
µ
F + ξµ(τF, 0), with ξµ(τF, 0) = O(ζ`) , (8.20)

so in Eqs. (8.18), (8.19) we can neglect the shift in the arguments of first
order perturbations (i. e. we can take xc(τ) = 0, τ = τF). This allows
to write down the full exponential map at first order in the long-
wavelength perturbations. If we denote by Γ̃ the Christoffel coefficients
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of the conformal metric (collected in tab. E.1), and by (aF/a)|` the
terms of order ζ` in eq. (8.18), the final result at O[(xiF)

3] is equal to

xµ(τF, xF) = x
µ
F + ξµ(τF, 0) +A

µ
i (τF) x

i
F

+Bµij(τF) x
i
Fx
j
F +C

µ
kij(τF) x

i
Fx
j
Fx
k
F ,

(8.21)

where the coefficients of the expansion are given by

ξµ(τF, 0) =


∫τF
τ∗

ds
[
(aF/a)(τF, 0)|` −N1(s, 0)

]
µ = 0 ,

∫τF
τ∗

ds Vl(s, 0) µ = l ,

(8.22a)

A
µ
i (τF) =

Fi(τF, 0) µ = 0 ,
[
(aF/a)(τF, 0)|` − ζ(τF, 0)

]
δli µ = l ,

(8.22b)

B
µ
ij(τF) = −

1

2
Γ̃
µ
ij(τF, 0) , (8.22c)

C
µ
kij(τF) = −

1

6
∂kΓ̃

µ
ij(τF, 0) . (8.22d)

Notice that aF never appears by itself. Only ξ0(τF, 0) and (aF/a)|`
appear.

We can now fix the additional freedoms in the CFC construction
(namely, the choice of τ∗, the constants CaF and Cz, and the possibility
of changing spatial coordinates without changing the time-time and
time-space components of the metric). We start with the choice of
initial time (noting that the initial time appears always in quantities
that are already first order in the long mode): we are trying to absorb
the effect that long-wavelength modes ζ` have on short modes ζs
through a change of coordinates. In order to do this, we must be able
to treat them as classical, so we have to start defining the CFC after
they have long exited the horizon. Then, we could choose τ∗ such that
H(τ∗) = ks, where ks is the typical wavelength of the short-scale ζs.
However, it is much simpler to choose as “initial” time τ∗ → 0− (the
end of inflation), when all modes of interest have left the horizon and
ζ has become constant, mirroring what has been done in [201]. This
fixes the lower limit in the various integrals that define (aF/a)|`, the
peculiar velocity potential z, and time shift along the central geodesic
ξ0(τF, 0). Now, the upper limit will also be taken to be τF → 0−, since
we are interested in the super-Hubble limit of correlation functions.
This will simplify a lot the calculation, since many time integrals will
not contribute.

Then, as shown in Section E.2, this CFC construction gives

hF00 = −xkFx
l
F

(
∂k∂l −

δkl
3
∂2
)
(N1 + ∂0ψ+Hψ) , (8.23a)

hF0i =
2

3
xkFx

l
F

[
εH2(δklFi − δkiFl)

]
, (8.23b)

hFij = −
1

3
xkFx

l
F

[
2

3
H(∂mV

m)Tijkl + Sijkl(ζ+Hψ)

]
, (8.23c)
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where all terms on the right-hand side are evaluated on the central
geodesic (i. e. at (τF, 0)), and the tensors Tijkl, Sijkl are given by

Tijkl = δilδkj − δijδkl , (8.24a)

Sijkl = δil∂j∂k − δkl∂i∂j + δkj∂i∂l − δij∂l∂k . (8.24b)

We can then use the additional freedom in the definition of spatial
coordinates to bring the spatial part hFij in conformal Newtonian form,
following [201]. In Section E.3 we show that, at linear order in per-
turbations, the coordinate transformation of eqs. (8.12) amounts to
subtracting the tensor Alkij(τF, 0) from ∂kΓ̃

l
ij in eq. (8.22d). hFij, corre-

spondingly, transforms as in eq. (8.13c). We perform this coordinate
change with

Alkij = −
1

6
KF(δ

l
kδij + δ

l
iδjk + δ

l
jδki)

+
1

9
(δlkδij + δ

l
iδjk + δ

l
jδki)∂

2(ζ+Hψ)

−
2

3
(δlk∂i∂j + δ

l
i∂j∂k + δ

l
j∂k∂i)(ζ+Hψ)

+
1

3
(δij∂

l∂k + δjk∂
l∂i + δki∂

l∂j)(ζ+Hψ) ,

(8.25)

where we have defined KF as

KF = −
2

3

[
∂2(ζ+Hψ) +H∂mV

m
]
= −

2

3
(∂2ζ+H∂2z) . (8.26)

After this final change of coordinates, the spatial metric gij becomes

gFij = a
2
F

(
1+ xkFx

l
FDkl(ζ+Hψ)

(
1+

KF|xF|
2

4

)2

)
δij , (8.27)

with

Dkl ≡ ∂k∂l −
δkl
3
∂2 . (8.28)

Eq. (8.27), combined with eqs. (8.23a), (8.23b), shows that the final
result for the spatial metric is that of a curved FLRW metric plus
tidal corrections. This form of the metric makes it clear that the scalar
curvature of constant-proper-time slices of the observer is ∝ KF/a2F
and, as we will see in Section 8.4, can be used to calculate the CFC
bispectrum directly at the level of the action. Besides, as we will
discuss in more detail in Section 8.6, it will allow us to connect our
result to the late-time evolution.

Finally, we can fix the constants CaF and Cz. We start from CaF :
following [200, 201], we fix it by imposing that, at τF → τ∗, the local
scale factor-proper time relation is the same as that of the unperturbed
background cosmology, i. e. we require that

lim
τF→τ∗

aF(τF) = a(τ∗) . (8.29)
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In Section E.3 we prove that taking CaF = 0 satisfies this equality. We
then move to Cz, whose gradient is the initial peculiar velocity of
the CFC observers. From eq. (8.19), we see that such initial velocity
will decay as 1/H: therefore, we can put it to zero in our treatment,
since we neglect decaying modes throughout. In this way, we also see
from eq. (8.23b) that the effect of a long ζ` on the difference between
hypersurfaces of constant τ and constant τF (encoded in the difference
between τ and τF away from the central geodesic, which generates a
non-zero hF0i) is of order k3` .

With these choices for CaF and Cz, and straightforward manipula-
tion of the lapse and shift constraints N1 and ψ, the metric perturba-
tions hFµν become

hF00(τF, xF) = −xkFx
l
FDkl

[
εH(1+ η)∂−2∂0ζ

− εζ+ ε∂−2∂20ζ
]
, (8.30a)

hF0i(τF, xF) = O(k3` ) , (8.30b)

hFij(τF, xF) =
[
xkFx

l
FDkl(εH∂

−2∂0ζ) −
KF|xF|

2

2

]
δij , (8.30c)

i. e. a curved FLRW metric with KF ∝ ∂2ζ and (slow-roll suppressed)
tidal corrections. We can also write down the correction (aF/a)|` to
the scale factor, i. e. eq. (8.18), at linear order in perturbations (as we
are doing throughout this Section). We find

aF(P)

a(P)
= 1+

∫τF
τ∗

ds
(
∂0ζ(s, 0) +

1

3
∂iV

i(s, 0)
)

= 1+

∫τF
τ∗

ds
(
∂0ζ(s, 0) −

1

3
∂2ψ(s, 0)

)
+O(k4` ) .

(8.31)

We will use this metric in Section 8.4, where we will compute the full
CFC bispectrum by working directly at the level of the action.

8 .3 bispectrum transformation

In this Section, we transform Maldacena’s bispectrum to the conformal
Fermi frame, following the approach of [24], to obtain our main result,
i. e. the bispectrum BFζ(ks,k`). We split the computation into three
steps:

• in Section 8.3.1 and Section 8.3.2, respectively, we derive the
transformation rules for the short-scale curvature perturbation
and its power spectrum under the CFC change of coordinates;

• Section 8.3.3 contains the derivation of the bispectrum BFζ(ks,k`)
up to and including second order in gradients of the long mode.
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8 .3 .1 Transformation of ζ

We start from the transformation of the curvature perturbation ζ: we
consider a coordinate transformation from x to x̄ that does not change
the hypersurfaces of constant τ, i. e.

τ = τ(x̄) = τ̄ , (8.32a)

xi = xi(x̄) = x̄i + ξi(x̄) . (8.32b)

Since τ = τ̄, the metric on surfaces on constant time will now be given
by

ḡij(x̄) = gij(x(x̄)) + gil(x(x̄))∂jξ
l(x̄)

+ gkj(x(x̄))∂iξ
k(x̄) +O(ξ2) ,

(8.33)

where derivatives are understood to be with respect to x̄. Now, the
curvature perturbation on surfaces of constant time is defined by [18,
212–217]

ζ̄(x̄) =
log det(ḡij(x̄)/a2(τ))

6
, (8.34)

where a is not changed since we are not transforming the time coordi-
nate. If we work in the comoving gauge, we can write down ḡij(x̄) as
(lowering spatial indices with δij)

ḡij(x̄)/a
2 = δij + ∂iξj(x̄) + ∂jξi(x̄) + (e2ζ(x(x̄)) − 1︸ ︷︷ ︸

=∆g(x̄)

)δij

+∆g(x̄)
[
∂iξj(x̄) + ∂jξi(x̄)

]
+O(ξ2) .

(8.35)

Dropping terms cubic in perturbations (which we denote by “. . . ”
below), we arrive at

log(ḡij(x̄)/a2) = ∂iξj(x̄) + ∂jξi(x̄) +∆g(x̄)δij

+∆g(x̄)
[
∂iξj(x̄) + ∂jξi(x̄)

]
−
1

2

[
∆g(x̄)

]2
δij

−∆g(x̄)
[
∂iξj(x̄) + ∂jξi(x̄)

]
+ . . .

= ∂iξj(x̄) + ∂jξi(x̄) + 2ζ(x(x̄))δij + . . . .

(8.36)

Taking the trace of the above equation, we find

ζ̄(x̄) =
∂iξ

i(x̄)

3
+ ζ(x(x̄)) . (8.37)

Now, we are interested in long-wavelength transformations, i. e. ξµ =

ξ
µ
` will contain only long modes. Therefore, if we split also ζ̄ in long

and short modes, we find that its short-scale part transforms as a
scalar: ζ̄s(x̄) = ζs(x(x̄)).

This derivation does not hold if we change also the time coordinate.
If one is interested in working at zeroth and linear order in gradients,
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as it was done in [24], this is not a problem since the change to CFC
affects τ only at order k2` . However, for our purposes we will need to
consider also the fact that surfaces of constant conformal time are not
surfaces of constant CFC time. In Appendix F we show that in this
case the transformation rule for ζs is nontrivial, namely it acquires a
shift

ζ̄s(x̄) = ζs(x(x̄)) +
Nis(x̄)∂iξ

0
` (x̄)

3
. (8.38)

Since Ni = ∂iψ, with ψ a function of ζ, this additional shift will
generate other terms proportional to (spatial derivatives) of the short-
scale power spectrum 〈ζsζs〉.

8 .3 .2 Transformation of the power spectrum

We can now see how the short-scale power spectrum 〈ζsζs〉 of the
curvature perturbation ζ is transformed when moving to the CFC
frame. The overall transformation of 〈ζsζs〉 will follow closely the one
presented in [24], the main difference being the fact that we will go up
to order k2` in the gradient expansion. This implies that, in principle,
we would need to take the transformation of conformal time (i. e. the
contribution of ξ0) into account. However, it is straightforward to see
that these terms will not matter on super-Hubble scales:

• the first contribution is

ζFs(xF) ⊃
Nis(xF)∂iξ

0
` (xF)

3
. (8.39)

Since Nis ∼ −∂i(ζs/H) and ∂iξ
0
` go to zero for −ksτF � 1,

−k`τF � 1, these terms in the transformation of the short-scale
curvature perturbation can be dropped;

• the second contribution is, instead, given by

ζFs(xF) ⊃ ξ0` (xF)∂0ζs(xF) . (8.40)

Since ζs freezes on super-Hubble scales, we see that also this
part of the transformation will not be relevant for BFζ(ks,k`).

Then, for τF → 0−, we can write the equal-time power spectrum of
short modes in CFC as

〈ζFs(xF1)ζFs(xF2)〉 = 〈ζs(x1)ζs(x2)〉 , (8.41)

where we have defined xi1,2 ≡ xi(xF1,2), and we have dropped all time
dependences for simplicity of notation. Now, thanks to translation
invariance, we can write the short-scale power spectrum in real space
as

〈ζs(x1)ζs(x2)〉 = 〈ζsζs〉 (r) , (8.42)
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where R ≡ x1 − x2, and r ≡ |R|. We can now expand this at O[(riF)
3]

and to first order in long-wavelength perturbations: it is straightfor-
ward to see that

rlF = r
l
F +A

l
i(x
F
c) r

i
F +

1

4
Clkij(x

F
c) r

i
Fr
j
Fr
k
F , (8.43)

since we construct the CFC frame around xFc = (xF1 + xF2)/2. The exact
position of the central geodesic does not matter in the squeezed limit.
This has been proven up to order k` in [24], and here we see that
this is true also at order k2` : indeed, choosing the middle point gets
rid of Blij(x

F
c) only, which is of order k` (in fact, it is ∼ δij∂

lζ`(xFc)),
and no terms of order k2` are cancelled. That is, any additional cor-
rection to our result coming from the change in the position of the
central geodesic enters at order k3` . The final expression for the power
spectrum of the short modes in CFC, then, is given by

〈ζFsζFs〉 (rF) = 〈ζsζs〉 (rF) +Ali(xFc) riF∂l 〈ζsζs〉 (rF)

+
1

4
Clkij(x

F
c) r

i
Fr
j
Fr
k
F∂l 〈ζsζs〉 (rF) .

(8.44)

8 .3 .3 Squeezed limit bispectrum – 1st method

The Maldacena consistency relation [18, 23, 196, 210, 218] in global
coordinates, i. e.

Bζ(ks,k`) = −(ns − 1)Pζ(ks)Pζ(k`) +O

(
k2`
k2s

)
, (8.45)

is equivalent to saying that a long-wavelength mode modulates the
small-scale power as

Pζ(ks)|ζ(k`) = [1− (ns − 1)ζ(k`)]Pζ(ks) . (8.46)

The transformation to CFC, up to linear order in k`/ks, cancels exactly
the term ∝ (ns − 1) in the previous equation. We want to see, now,
what are the terms that survive if we carry the CFC construction up
to order k2`/k

2
s . Schematically, working in real space, we can write the

transformation to CFC of the short-scale power spectrum as (we drop
all “F”s on coordinates for simplicity of notation)

〈ζsζs〉 (r)|ζ`(xc) → 〈ζsζs〉 (r)|ζ`(xc) + Ξ(ζ`(xc)) 〈ζsζs〉 (r) , (8.47)

where Ξ stands for the various terms, including derivatives with
respect to r, of eq. (8.44). If we multiply the right-hand side of the
above equation by ζ`(x3), and then average over long modes, we
can see what part of the long-short coupling is cancelled when we
move to the CFC frame. Following [24], we can compute what is the
contribution of these terms when we go in Fourier space x1 ↔ k1,
x2 ↔ k2 and x3 ↔ k`:
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• the first term on the right-hand side of the above equation will
give the single-field slow-roll bispectrum in global coordinates
of [18], i. e.

Bζ(ks,k`) = Pζ(ks)Pζ(k`)
{
(1−ns) +

k2`
k2s

[(
29

6
ε+

1

4
η

)

−

(
1

12
ε+

5

8
η

)
(1− 3µ2)

]}
,

(8.48)

where we have split the part ∝ k2`/k2s into a monopole and a
quadrupole part. This shows how, for an isotropic long mode,
the contribution of ε to the bispectrum of Maldacena at order
k2`/k

2
s is ≈ 20 times larger than the one proportional to η;

• in [24] it is shown how, thanks to translational invariance, the
term coming from the coordinate transformation can be written
in Fourier space as

〈ζ`(x3)Ξ(ζ`(xc))〉 〈ζsζs〉 (r)→ PζΞ(k`)Pζ(ks)|ks=k1+k`/2︸ ︷︷ ︸
≡∆Bζ(ks,k`)

, (8.49)

where we have omitted an overall (2π)3δ(k1 + k2 + k`) of mo-
mentum conservation.

This result allows us to compute separately the long- and short-
wavelength power spectra. More precisely, when we go to Fourier
space, we include directly in 〈ζsζs〉 (r) the powers of ri and derivatives
∂i contained in Ξ. The full calculation is carried out in Appendix G;
here we cite the only result that we are going to need, that is

(rirjrk . . . )∂l 〈ζsζs〉 (r)→ iN+1 ∂N

∂kis∂k
j
s∂kks . . .

[
klsPζ(ks)

]
. (8.50)

In 〈ζ`(x3)Ξ(ζ`(xc))〉 ≡ Pζ`Ξ(|x3 − xc|), now, we will only have contri-
butions like

Pζ`Ξ(|x3 − xc|) ⊃ 〈ζ`(x3)∂ijk...ζ`(xc)〉 , (8.51)

that in Fourier space will read as

〈ζ`(x3)∂ijk...ζ`(xc)〉 →
[
(−iki`)(−ik

j
`)(−ik

k
` ) . . .

]
Pζ(k`) . (8.52)

The two contributions that we have to consider are Ali(xc) and
Clkij(xc). Before embarking on the calculation, we note that ∆Bζ will
be of order ns − 1: in fact, since we are basically just changing the
way in which we measure distance, we will have an effect only if the
short-scale power spectrum is not scale invariant. This tells us three
things:
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• we can use the de Sitter mode functions [18, 43, 119, 219], i. e.,
dropping irrelevant phases,

ζ(τ, k) = ζ(0, k)(1+ ikτ)e−ikτ =
√
Pζ(k) (1+ ikτ)e

−ikτ , (8.53)

to compute (aF/a)|`, that will enter in Ali(xc). This is analogous
to what is done in Maldacena’s calculation of the bispectrum in
global coordinates: once the cubic Lagrangian for ζ is found to
be of second order in slow-roll (the quadratic one being of first
order), the in-in computation of the leading order contribution
to the three-point function can be carried out using just the de
Sitter modes;

• we can drop the slow-roll suppressed part of the shift constraint
when we compute (aF/a)|`. That is, we can take ψ` to be just
−ζ`/H and drop ε∂−2∂0ζ`, when we use the expression for
(aF/a)|` given in eq. (8.31);

• when we consider Clkij(xc), we can drop the ε-suppressed part of
the stereographic projection, i. e. the last three lines of eq. (8.25):
the only contribution that we need to consider is the isotropic
one, which involves the curvature KF.

However, we note that there will be no need of actually computing
(aF/a)|`: in fact, from its definition of Section 8.2.3 and our choice
of initial time for the definition of Conformal Fermi Coordinates, we
have that

(aF/a)|`
−k`τ�1−−−−−−→ CaF +O(k3` ) . (8.54)

Since we take CaF to be zero, we can forget about this contribution.
Then,

• we start from Ali(xc), which gives

∆B
(1)
ζ (ks,k`) = Pζ(k`)

∂

∂kis
[kisPζ(ks)] , (8.55)

where

∂

∂kis
[kisPζ(ks)] =

(
3+

d
d logks

)
Pζ(ks) = (ns −1)Pζ(ks) . (8.56)

So we have

∆B
(1)
ζ (ks,k`) = (ns − 1)Pζ(k`)Pζ(ks) ; (8.57)

• the second (and last) term we have to consider is Clkij(xc). It
contains two contributions. One from ∼ ∂i∂jζ, and one from
∼ H∂i∂jz (as we see from tab. E.1): since z is already of order
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k2` , it is sufficient to include the former. At leading order in
slow-roll, then, we have

Clkij(k`) = −
1

6

[
δijk

k
` k
l
`ζ(k`)

− δljk
k
` k
i
`ζ(k`) − δ

l
ik
k
` k
j
`ζ(k`)

+
1

9
(δlkδij + δ

l
iδjk + δ

l
jδki)k

2
`ζ(k`)

]
.

(8.58)

In the above equation, if we isolate a tensor Llkij ∝ k2`ζ(k`), we
can write

∆B
(2)
ζ (ks,k`) =

1

4
Pζ(k`)L

l
kij

[
i4

∂3

∂kis∂k
j
s∂kks

[
klsPζ(ks)

]]

≡ 1
4
Pζ(k`)L

l
kijS

l
ijkPζ(ks) .

(8.59)

We compute this quantity in Appendix G and cite here only the
final result, i. e.4

∆B
(2)
ζ (ks,k`) = (ns −1)

k2`
k2s

(
−
5

24
+
5

8
µ2
)
Pζ(k`)Pζ(ks) . (8.60)

Summing these two contributions to the Maldacena bispectrum of
eq. (8.48), we see that in the CFC frame the long-short coupling still
retains terms ∝ η: more precisely, we have

BFζ(ks,k`) =
k2`
k2s
Pζ(ks)Pζ(k`)

[(
29

6
ε+

1

4
η

)

+

(
1

3
ε−

5

12
η

)
(1− 3µ2)

]

=
k2`
k2s
Pζ(ks)Pζ(k`)

[(
13

3
ε−

1

4
(ns − 1)

)

+

(
7

6
ε+

5

12
(ns − 1)

)

× (1− 3µ2)

]
,

(8.61)

where, in the second equality, we have highlighted the tilt of the scalar
spectrum ns − 1 instead of η. We see that, as in Maldacena’s squeezed
bispectrum at order k2`/k

2
s , the contribution to the physical isotropic

mode coupling ∝ ε is larger than the one ∝ η by a factor of ≈ 20.

4 This contribution vanishes for an isotropic long mode (i. e. µ2 = 1/3). Indeed, in this
case it is easy to see that to go from the metric in global coordinates to the CFC metric
described in Section 8.2.3 it is enough to remove the constant and constant gradient
parts of metric perturbations. In fact, g0i is already zero in the isotropic case and the
curvature part of gij (i. e. the one proportional to |x|2) is already of the right form.
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For reference, we can match the result eq. (8.61) to the squeezed
limit of the equilateral shape Sequil.(k1, k2, k3). Using Eq. (52) from
[40], we have

B
equil.
ζ (ks,k`) =

k2`
k2s
Pζ(ks)Pζ(k`) 4f

equil.
NL

[
2+ (1− 3µ2)

]
. (8.62)

Clearly, eq. (8.61) cannot be matched to the equilateral shape, since the
relative isotropic and anisotropic contributions are different. Moreover,
we have only calculated the O(k2`/k

2
s) contribution in the squeezed

limit, and different shapes S(k1, k2, k3) can have the same squeezed-
limit scaling ∝ k2`/k2s . Hence, we caution against associating eq. (8.61)
with the equilateral template. Roughly, however, eq. (8.61) corresponds
to fequil.

NL ∼ 0.1× (ns − 1).

8 .4 calculation at the level of the action

In this Section we derive the CFC bispectrum in the limit ε → 0

directly, without recurring to a transformation of Maldacena’s result.

8 .4 .1 Short modes in CFC

We start by defining the short modes in CFC: keeping the “F” label on
coordinates and components to parallel the first part of our previous
calculation, we write the line element in CFC coordinates as

ds2F = −a2
[
1+ 2(NF1)` + 2(N

F
1)s
]
dτ2F

+ a2(NFi )s(dτFdxiF + dxiFdτF)

+ a2e2ζ
F
` e2ζ

F
sδijdxiFdxjF ,

(8.63)

where:

• we have put to zero (NFi )`, since we have seen that the time-space
components of the long-wavelength metric in CFC are of order
k3` ;

• working at linear order in the long mode (as we are doing
throughout the Chapter), the long-wavelength part of the metric
can be related, by direct comparison, to the results of Section 8.2.
For example, the anisotropic part of ζF` will be

(ζF` )(xF)
anis. =

1

2
xiFx

j
FDij

[
εH∂−2∂0ζ`(τ, 0)

]
, (8.64)

where ζ` is the long-wavelength curvature perturbation in global
coordinates;

• we have included the modification to the scale factor, i. e.

aF(τF) = a(τF)
[
1+ (aF/a)(τF)|` +Hξ0(τF, 0)

]
, (8.65)
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directly into ζF` and (NF1)`: by doing so we can keep track more
easily of both the order in perturbations and the order in the
slow-roll expansion;

• ζFs , (NF1)s and (NFi )s = ∂iψ
F
s (whose indices will be raised and

lowered with δji) are the short modes. As before, we stopped
at first order in perturbations in the small-scale lapse and shift
constraints, which will be solved linearly in terms of ζs.

At this point, one can write down the action for ζFs : the lapse and shift
constraints will have the usual expression, and the quadratic action
S(2) will be given by [18]

S(2) =

∫
d4xF a2ε

[
(∂0ζ

F
s)
2 − (∂iζ

F
s)
2
]

. (8.66)

Then, the goal is to compute the power spectrum of ζFs in the back-
ground of the CFC long-wavelength metric: since the latter is explicitly
of order k2` , it is clear that the CFC bispectrum will vanish at zeroth
and first order in gradients of the long mode. Now, in order to cal-
culate the O(k2` ) contribution, one needs the cubic action with one
long leg and two short legs. This can be computed with the standard
methods (see [18, 119], for example) and, as in the standard case, the
“brute-force” computation gives an action which is of order zero in
slow-roll (compared with the quadratic action of eq. (8.66), which
is slow-roll suppressed): however, due to the complicated relation
between ζF` and (NF1)`,

5 integrating by parts to remain with O(ε) terms
that can be removed with a field redefinition is more difficult than in
Maldacena’s calculation.

A possible alternative approach is to work in φ gauge for the short
modes, while keeping the long-wavelength metric as in eq. (8.63). In
this case, the quadratic action for the small-scale field fluctuations
δφs would be of order zero in slow-roll [18, 119], but this would still
not help because the cubic action will again, naively, not be slow-
roll suppressed (we refer also to Appendix H for a more detailed
discussion about these issues). In both these cases, then, we could not
do an in-in calculation using the de Sitter modes ∝ e−ikτ(1+ ikτ),
since we would be missing terms due to slow-roll corrections to the
mode functions: we would need to use the full solution of the classical
equations of motion for the short modes in terms of Hankel functions,
complicating the in-in integral considerably. For this reason, we will
employ a different method, that is explained in the following Section.

5 This relation can be found by solving at linear order the lapse constraint for (NF1)`
with the metric of eq. (8.63). The result is not particularly illuminating, so we will not
write it down.
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8 .4 .2 From flat gauge to CFC

This second method is based on the observation that, in flat gauge, all
interactions are suppressed by

√
ε. Therefore, if we are interested only

in the contribution to the CFC bispectrum proportional to η (which is
the focus of this Chapter), we expect that it will not be necessary to
do any in-in calculation. We will explain how this comes about in the
following.

To simplify notation, in this Section we will use x = (x0, x) for
global coordinates, xF = (x0F, xF) for CFC. We use a “tilde” and a
“hat” for coordinate changes, and a “prime” for time derivatives of the
background inflaton φ̄). We then proceed in the following way:

• we start from the long-wavelength metric in global coordinates
x, in ζ gauge. At linear order in the long mode, we can go to flat
gauge with a simple time shift, i. e.

x0 = x̃0 −
ζ`
H

. (8.67)

This coordinate change will originate an inflaton perturbation
δφ` = −

√
2ε ζ`, which is of order zero in slow-roll since a factor

of 1/
√
ε is “hidden” in ζ`;

• to this δφ` we add a short δφs, solve the constraints, and com-
pute both the quadratic action for δφs and the interaction terms
at cubic order (see also [65] for details):

– S(2) is given by

S(2) =

∫
d4x̃ a2

[
(∂0δφs)

2−(∂iδφs)
2+H2η δφ2s

]
. (8.68)

So, we see that η provides a mass for δφs, which tells us
that δφs will not be conserved on super-Hubble scales;

– the result for the cubic terms will be Maldacena’s cubic
Lagrangian in flat gauge, with one long leg and two short
legs. It is then easy to see from Eq. (3.8) of [18] that, at
leading order in slow-roll, interactions will be suppressed
by a factor

√
ε: therefore in the limit ε → 0 there is no

coupling between the long mode and short modes, i. e. we
can schematically write

Pδφs |δφ` = Pδφs , (8.69)

where Pδφs is the usual power spectrum of δφs in an
unperturbed FLRW background that one computes from
eq. (8.68), while Pδφs |δφ` is the power spectrum of δφs in
the background of a long-wavelength mode (i. e. consider-
ing the coupling with δφ`);
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• then, we transform from the flat gauge in global coordinates to
CFC. At linear order, the transformation is simply given by

x̃µ = xµF +
ζ`
H
δ
µ
0 + ξµ`︸ ︷︷ ︸
≡∆µ`

, (8.70)

where ξµ` is the vector field given in eqs. (8.22) in terms of ζ`.
Now, after this change of coordinates, the spatial part of the
metric at quadratic order in perturbations but at linear order in
the long mode,6 will be given by

gFij = −a2
∂∆0`
∂xiF

∂∆0`

∂x
j
F

+
∂∆0`
∂xiF

g̃0j +
∂∆0`

∂x
j
F

g̃i0 + a
2e2ζ

F
` δij

= a2
∂∆0`
∂xiF

∂jψ̃s + a
2∂∆

0
`

∂x
j
F

∂iψ̃s + a
2e2ζ

F
` δij +O[(ζ`)

2] ,

(8.71)

where ψ̃s is the short-scale shift constraint in flat gauge, i. e.

ψ̃s = −ε∂−2∂0(Hδφs/φ̄
′) , (8.72)

and we dropped terms quadratic in ζ`. Correspondingly, the
inflaton will transform as

φ = φ̄+
√
2εHξ0` + δφs +∆

µ
` ∂µδφs , (8.73)

where we used φ̄ ′ =
√
2εH;

• then: we want to find the relation between δφs and ζFs , defined
as in eq. (8.63). In order to do this, we first do a time translation
x0F = x̂

0
F + T (with T starting linear in short modes, and having a

quadratic long-short coupling) that brings φ to φ̄+
√
2εHξ0` . It

is easy to see that T is given by

T = −
1√
2εH

[
δφs +∆

µ
` ∂µδφs

−
φ̄ ′′

φ̄ ′
ξ0`δφs − ∂0ξ

0
`δφs

]

= −
1√
2εH

[
δφs +∆

µ
` ∂µδφs

−H

(
1− ε+

η

2

)
ξ0`δφs − ∂0ξ

0
`δφs

]
.

(8.74)

Now, we focus on the spatial metric ĝij after this time translation,
working at quadratic order in perturbations but dropping terms
involving two short modes. It will be given by

ĝFij = a
2∂∆

0
`

∂x̂iF
∂jψ̃s + a

2∂∆
0
`

∂x̂
j
F

∂iψ̃s + a
2eζ

F
` eζ

F
sδij , (8.75)

6 That is, we consider only quadratic terms that mix long and short modes: therefore,
we do not consider the long part of g̃0i (which will not be of order k3` yet) since it
will give rise to terms quadratic in the long mode in the transformed spatial metric.
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where we have used the fact that the long-wavelength part of
gF0i is O(k3` ) (so that we can safely neglect its contribution to the
transformation at the order we are working at), and we have
defined ζs as

ζFs = HT + T∂0ζ` = HT −
δφs√
2ε
∂0ζ` . (8.76)

With some hindsight, then, we can also define ζs as

ζs = −
H

φ̄ ′
δφs = −

δφs√
2ε
, (8.77)

so that ζFs becomes

ζFs = HT + ζs∂0ζ` . (8.78)

We note that ĝFij is not yet of the form of eq. (8.63) because of
the terms in eq. (8.75) involving the short-scale shift constraint
in flat gauge, which is given by

ψ̃s = −ε∂−2∂0

(
H

φ̄ ′
δφs

)
= ε∂−2∂0ζs . (8.79)

However, we can see that these terms will not matter on super-
Hubble scales. We can follow the approach of Maldacena: with
a second order long-short spatial transformation (which does
not modify the field perturbations at the order we are working
at) we can remove these terms at the price of new second order
contributions to ζFs . From [18] we can see that all the new terms
that ζFs gains will contain ψ̃s, that is proportional to ∂−2∂0ζs.
However, we know that ζs must freeze on super-Hubble scales
(this can be seen also at the level of the quadratic action, that can
be derived from the action for δφs with the changes of coordi-
nates discussed above). This tells us that we can safely neglect
the contributions from this second order spatial transformations
in the relation between δφs and ζFs ;

• then, we can focus just on eq. (8.77). We consider only terms
that are either of order zero in slow-roll, or suppressed by η,
dropping all terms ∝ ε. With these assumptions, ζFs becomes
equal to

ζFs = ζs + ξ
i
`∂iζs + ξ

0
`∂0ζs +

1

H
ζ`∂0ζs

+
η

2
ζ`ζs − ζs∂0ξ

0
` −Hξ0`ζs + ζs∂0ζ

F
` .

(8.80)

In the above equation we recognize the term ξi`∂iζs from Sec-
tion 8.3.3. We also see that both terms containing ∂0ζs will not
contribute on super-Hubble scales, so they can be dropped. We
deal with the remaining terms separately by considering that ξ0`
and ζ` can be split in a uniform (which encodes the modified
expansion history), isotropic and anisotropic part:
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– we start from the isotropic part. For ξ0` it is zero, while for
∂0ζ

F
` it is proportional to |xF|

2∂0KF, which in turn is ∝ k4` ;

– the uniform part of ∂0ζF` is, dropping ε-suppressed terms,
equal to ∂0ξ0` +Hξ0` + ∂0(aF/a)|`. The first two terms ex-
actly cancel with those in eq. (8.80), while from the defini-
tion of (aF/a)|` discussed in Section 8.2.3 we see that the
last one vanishes on super-Hubble scales;

– finally, we can easily see from the results of Section 8.2.3 that
the anisotropic part of ∂0ζF` is of order ε (or higher), while
that of ∂0ξ0` +Hξ0` contains either ε-suppressed terms, or
terms that go to zero as fast as H−2.

So we conclude that the only relevant terms in eq. (8.78) will be

ζFs = ζs + ξ
i
`∂iζs +

η

2
ζ`ζs . (8.81)

8 .4 .3 Squeezed limit bispectrum – 2nd method

We are now in a position to compute the squeezed limit bispectrum in
the conformal Fermi frame. Since we have the power spectrum of δφs,
we can compute the power spectrum of ζFs in the background of the
long modes. Schematically, since ζFs is ζs plus a long-short coupling,
we would have

〈ζFsζFs〉 |ζ` = 〈ζsζs〉 |ζ` +O(ζ`) 〈ζsζs〉 . (8.82)

Had we kept also ε-suppressed interactions in our flat gauge calcula-
tion of Section 8.4.2, the first term on the right-hand side of the above
equation would actually also contain a coupling with long modes:
however, we do not care about this term (since we are trying to capture
only the part of the bispectrum proportional to η). Then, 〈ζsζs〉 |ζ`
will just be the power spectrum of ζs computed from the quadratic
Lagrangian of δφs, i. e. what we called 〈ζsζs〉 in the previous Section.
The second term on the right-hand side of eq. (8.82) contains both
the contribution of ξi`∂iζs, which reproduces exactly what we have
computed in Section 8.3.3, and a second term ∝ η. We can deal with
the latter by expanding ζ` in a Taylor series around xFc ≡ (xF1 + xF2)/2,
so that

〈ζFs(xF1)ζFs(xF2)〉 |ζ`(xFc) ⊃
η

2

[
2ζ`(xFc) +

riFr
j
F

4
∂i∂jζ`(xFc)

]

× 〈ζsζs〉 (rF) +O(k3` ) .
(8.83)

Going to Fourier space using the results of Appendix G, more precisely
the fact that

∂2

∂kis∂k
j
s

Pζ(ks) = −3
δij

k2s
Pζ(ks) + 15

kisk
j
s

k4s
Pζ(ks) +O(ns − 1) , (8.84)
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and averaging over the long-wavelength perturbations, we reproduce
the η part of Maldacena’s bispectrum in the squeezed limit, up to and
including O(k2`/k

2
s). Summing this to the other contribution (noting

that the first term in eq. (8.82) will not matter once we average over
long modes, since it has no coupling to them that are proportional to
η), we reproduce our final result of eq. (8.61) for ε→ 0. This concludes
our analysis: we stress that this method is not completely independent
from that of Section 8.3, since we still need to compute what is the
effect of the shift ξi`∂iζs, but we consider it different enough to provide
a consistency check.

8 .5 interactions during inflation

In this Section we discuss an argument, put forward in [205], to
estimate the size of (gravitational) interactions between long and short
modes. More generally, we review how the contribution ∝ η arises in
Maldacena’s bispectrum, and argue that η must be locally observable,
as shown through the direct calculation in Section 8.3 and Section 8.4.

8 .5 .1 Where does η come from?

Let us start by considering short-scale scalar field perturbations δφs
in the separate universe (similarly to the setup described in fig. 7.2).
Naively, one might think that a coupling to ζ` enters at order ε0 [207,
208]: for example, the Ricci three-scalar on constant time hypersurfaces,
which measures the spatial curvature, is (3)R ∝ ∂2ζ`; that is, it is
not slow-roll suppressed. Indeed, if one were to do a brute-force
computation of the action for δφs in the long-wavelength background
modified by ζ` (i. e. the cubic action with two short legs δφs and one
long leg ζ`, which controls the interactions between the long and short
modes), the result would naively appear to be of such order. However,
one can compute the full spacetime Riemann tensor Rµνρσ of the
background (in any gauge7)

Rµνρσ = H2(gµρgνσ − gµσgνρ) +O(ε× ∂2ζ`) , (8.85)

where we stopped at quadratic order in gradients of ζ`, and used the
fact that time derivatives of ζ` are also ∝ ∂2ζ`. In a general set of
coordinates, gµν might contain unsuppressed terms of order ε0ζ`. We
notice though that the leading term is the Riemann tensor for a maxi-
mally symmetric spacetime with Ricci scalar ∝ H2, namely de Sitter
spacetime. Therefore, up to terms of order ε, there must exist a change
of coordinates that removes completely the long mode from the right

7 This expression is covariant, but not manifestly covariant because we are trying
to make explicit the dependence on ε and ζ`, which are defined in global FLRW
coordinates.
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hand side.8 Then, the coupling between δφs and ζ` is suppressed by
ε, and no term ∝ η only appears. We also know that these small-scale
inflaton fluctuations have non-zero mass. eq. (8.68) tells us that this
mass is ∝ η. Therefore, δφs evolves on super-Hubble scales. Switching
from inflaton perturbations to curvature perturbations cancels this
time dependence, and induces an additional term ∝ η in the long-
short mode coupling, since the relation between δφ and ζ is non-linear.
For this reason, we can regard η as measuring a physical effect, i. e. the
time evolution of inflaton correlators on super-Hubble scales, and we
do not expect η to vanish in the CFC bispectrum at order k2`/k

2
s .

Another way to look at this is to work directly with short-scale cur-
vature perturbations ζs: as Maldacena has shown, a straightforward
computation of the cubic action of ζ with ζ` in one leg and ζs in the
other two leads to S(3) ∼ ε0× ζ`× ζ2s . However, one can do a sequence
of integration by parts to rewrite this as S(3) ∼ ε(1+ ε+ η)× ζ` × ζ2s ,
with the term proportional to εη arising when one integrates by parts
terms such as a2ε ζ(∂0ζ)2. This shows that also S(3) goes to zero when
ε goes to zero. However, what matters is the relative order in slow-roll
between the quadratic action S(2) ∼ ε× ζ2s and this cubic action. The
quadratic action for ζs is also suppressed by ε, so the size of inter-
actions is ∼ (1+ ε+ η): η and ε are both a measure of the coupling
between long- and short-wavelength modes of ζ. The fact that the
background spacetime is de Sitter in the ε → 0 limit, even in pres-
ence of ζ`, does not allow us to conclude that such long-wavelength
perturbations have no effect on the short modes ζs.9 Notice that the
terms of order ε× 1 in S(3) do not contribute to correlation functions
on super-Hubble scales (their contribution in the in-in calculation of
the bispectrum decays). In fact, we know that the final result for the
2-point function of ζs in presence of ζ` must satisfy the consistency
relation in the squeezed limit, i. e. at leading order in derivatives of ζ`
we have

〈ζsζs〉 (r)|ζ`(xc) = [1+ (1−ns)ζ`(xc)] 〈ζsζs〉 (r) . (8.86)

Then, one can do a counting of factors of ε and η to see what is the
order in slow-roll of the above expression. The tilt contains both ε and
η, while the three perturbations of ζ each contain 1/

√
ε (recall that

〈ζζ〉 ∼ H2/ε). Therefore the overall order of eq. (8.86) is ∼ (ε, η)×ε−3/2.
One can then repeat the same argument for the full in-in calculation
of this position-dependent power spectrum. From two powers of the

8 In passing, we also note that this is the reason why in Section 8.2.3 we have seen that
the anisotropic part of the long-wavelength metric in CFC is slow-roll suppressed.
Indeed, de Sitter is an isotropic spacetime.

9 The argument we made for scalar perturbations, using eq. (8.85), does not apply to
curvature perturbations. In fact, ζs is not a (perturbation of a) scalar field: it is a
component of the metric which is non-linearly related to the inflaton δφs and has a
non-minimal coupling with the Riemann tensor of the long-wavelength background.
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short modes, of which we compute the 2-point function in presence of
ζ`, we have (1/

√
ε )2, while S(3) would give

S(3) ∼ ε(1+ ε+ η)× ζ` × ζ2s ∼ ε(1+ ε+ η)× ε−3/2 . (8.87)

Overall, we have (1+ ε+ η)× ε−3/2: to agree with the result in the
squeezed limit, then, the terms of order ε× 1 in S(3) must not con-
tribute on super-Hubble scales. By continuity, the same applies to
other momentum configurations away from the squeezed limit.

Finally, there is yet another way to see why we must expect η to be
present in physical observables. Recall the discussion of Section 7.2.
We have seen that any uniform ζ` disappears from local observables
when correlators are re-written in terms of the physical distance
between x1 and x2. The reason is that the consistency relation is,
at this order, completely equivalent to a constant rescaling of the
scale factor, and then of the distance on constant-time hypersurfaces.
However, this ceases to be true at second order in gradients of ζ`: while
the primordial coupling is still of the local type, i. e. it corresponds to
a spatially-dependent rescaling of volumes, the physical distance and
the coordinate distance will not be simply proportional to each other
(as it can be checked straightforwardly by computing the distance
between x1 and x2 with a curved FLRW metric).

8 .5 .2 Non-trivial speed of sound

We conclude this Section by briefly discussing the case where the
inflaton speed of sound cs is different from 1. In this case, we know
that the operator giving cs 6= 1 also induces cubic couplings for the
inflaton [62], leading to enhanced non-Gaussianities. Indeed, while the
three-point function from these inflaton self-interactions still satisfies
the consistency relation in the squeezed limit, the term proportional to
k2`/k

2
s is of order (1− c2s )/c2s [119, 208, 220], which can be much larger

than the one coming from gravitational interactions for cs < 1. It is
then easy to see how this still holds in the conformal Fermi frame: the
corrections to the bispectrum coming from the transformation to CFC
are of order of the scale dependence of the power spectrum, namely

∆Bζ(ks,k`) ∼
k2`
k2s
× d log[k3sPζ(ks)]

d logks
, (8.88)

For cs 6= 1, we have [62, 119, 219]

Pζ(ks) ∝
H2

εcs
, (8.89)

so that

d log[k3sPζ(ks)]
d logks

= O(ε, η, s), with s ≡ ċs

Hcs
. (8.90)
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Approximate time translation invariance requires s� 1, i. e. that the
inflaton sound speed does not evolve quickly in one Hubble time [62].
Therefore, ∆Bζ is subleading with respect to the bispectrum in global
coordinates when cs � 1, and the 1/c2s -enhanced non-Gaussianity is
locally observable.

8 .6 connection to observations

F igure 8 .1 : For a local observer Uµ, the effect of a long mode k` is that
of making the short modes evolve in a separate universe of
size ∼ 1/k`, described by a curved FLRW metric with time-
dependent tidal corrections [200, 201]. Long modes become
classical on super-Hubble scales, and we can describe their
effect on small-scale perturbations by going to CFC. We carry
on our construction to the end of inflation, when all relevant
modes are super-Hubble and time-independent. This gives
the coupling between long- and short-scale perturbations mea-
sured by the observer Uµ, that can be used as initial condition
for the evolution of short modes as they re-enter the Hubble
radius during the Hot Big Bang.

The result that we have found in Section 8.3 and Section 8.4 can be
used as initial condition for the study of the dynamics of small-scale
perturbations in the CFC frame when they re-enter the horizon, which
has been carried out in [200, 201]. In this Section we sketch how this
can be done, leaving the details for future work.

First, note that in order to achieve this (i. e. to be able to use the
inflationary prediction as initial condition for the late-time gravita-
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tional dynamics, while working in this local CFC frame throughout
the whole history of short modes), the “factoring out” of the back-
ground expansion in the definition of CFC coordinates is crucial, as
was already emphasized in [24]. In fact, if we wanted to do the same
calculation, but working in FNC, we could not have followed the
small-scale perturbations from horizon exit to horizon re-entry: the
reason is that FNC are valid on a physical scale dphys. which is either
the physical Hubble radius H−1, or the scale of variation a/k` of long
modes, whichever is smaller. During inflation all modes of interest
exit the horizon, i. e. we have a/k` � H−1 (see fig. 8.1). Hence, we
have for the range of validity of FNC dphys. . H−1 � a/k, and FNC
are therefore unable to cover the small-scale mode of interest with
wavelength ∼ 1/ks.

We begin with laying out a simple procedure for how eq. (8.61)
could in principle be measured. For this, we focus on the isotropic
part of the long-short coupling, and assume that the long-wavelength
perturbation ζ` considered is outside the sound horizon of all fluid
components. Then, the locally observable effects of ζ` are exactly de-
scribed by the separate-universe picture [201]. Suppose now that at
some time during matter domination there is a collection of comoving
observers distributed throughout the Universe (e. g., at z ∼ 10). Each
observer measures the amplitude of large-scale (linear) density per-
turbations on a fixed physical scale aF/ks in their local Universe, as
well as their local cosmology: proper time since the Big Bang, Hubble
rate, and spatial curvature K = KF. Using this information and linear
perturbation theory, they can immediately infer the amplitude As of
the super-horizon curvature perturbations at the end of inflation at
the same fixed physical scale. Specifically, choosing comoving gauge,
they calculate the super-horizon amplitude of the perturbations ζs
to their local CFC-frame metric, which, through eq. (8.63), precisely
correspond to our ζFs :

gFij =
a2F(1+ 2ζ

F
s)(

1+ KF
4 |xF|

2
)2 δij . (8.91)

They then communicate their local cosmology including As to a dis-
tant observer on their future light cone (e. g., at z ∼ 0). This distant
observer, now, has access to the locally measurable (in a spatial sense)
amplitude of small-scale curvature perturbations As at the end of in-
flation, at a number of Lagrangian locations corresponding to Eulerian
locations throughout his Hubble volume. He also knows what the local
curvature is at each of these locations, and can use this to reconstruct
the large-scale curvature perturbations ζ`. Correlating ζ`(k`) with
As(k`), he then obtains precisely eq. (8.61), if the initial conditions are
set by single-field slow-roll inflation.

Let us now briefly discuss more realistic observables, such as the
CMB temperature bispectrum [19], or the scale-dependent bias of
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halos [221]. The contributions to any late-time observable can be split
into three physically distinct contributions, as illustrated in fig. 8.1:

• Primordial contribution: this is defined as the contribution from
eq. (8.61) in single-field slow-roll inflation, whose physical inter-
pretation is given above. The leading contribution is ∝ k2`/k2s ,
with a coefficient of order ε, η, and of order 1/c2s for cs � 1.
Using the rough matching made after eq. (8.61), we can approxi-
mate this as fequil.

NL ∼ ε, η, and ∼ 1/c2s , respectively.

• Gravitational evolution: the gravitational dynamics that become
active when the short modes re-enter the horizon contribute
to the mode coupling at order fequil.

NL ∼ 1 (see also [222–225]
for a discussion). Consider again an isotropic long mode for
simplicity. Then, by way of the separate-universe picture, the
leading long-short coupling can be calculated exactly by running
a Boltzmann code with modified cosmological parameters [226].
This contribution to the mode coupling is enhanced with respect
to the primordial contribution for sub-horizon modes ks � H,
as [201] has shown. During matter domination, the equation
for the second order (i. e. containing the long-short coupling)
density contrast δ(2) in CFC, for an isotropic long mode, reads
(Eq. (5.28) of [201])

δ ′′(2) +Hδ ′(2) −
3

2
H2δ(2) =

26

27

1

H2
∂2Φ∂2φ , (8.92)

where Φ and φ are, respectively, the long- and short-scale New-
tonian potentials, and we have used the linear (sub-Hubble)
solution for δ(1), that is

δ(1) =
2

3H2
∂2φ . (8.93)

The initial condition from the primordial contribution, eq. (8.61),
for δ(2), defined when the short modes re-enter the horizon
(ks ∼ Hini), scales as

δ ′′(2),ini ∼ O(ε, η)× ∂2Φini
∂2φini

H2ini
. (8.94)

The late-time evolution is hence enhanced by a factor of k2s/H2,
which is much larger than 1 for sub-horizon small-scale modes.
The sum of the two yields the late-time small-scale perturbations
in the presence of the long mode in the local CFC frame.

• Projection effects: In order to connect to observations made on
Earth, we have to map the CFC-frame quantities to the frame
of a distant observer. These projection effects are calculated by
following photon geodesics from the different CFC patches to
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the distant observer. Importantly, the projection effects scale
as k2`/H

2
0, where H−1

0 is the observer’s comoving horizon. If
H−1
0 � H−1 like in our thought experiment above, where H−1

is the comoving horizon at the time of light emission, then there
is an interesting regime where k` & H0 but k` � H . ks.
Unlike the first two contributions above, which are suppressed
by k2`/k

2
s and k2`/H

2, respectively, the projection effects are not
suppressed in this regime. They are thus the only contribution
that can mimic non-Gaussianity of the local type. However, it
is important to stress that these contributions are completely
independent of the long-short coupling generated from inflation.
They can be easily computed at linear order with the so-called
ruler perturbations of [227–229] (see also [230–232] for similar
approaches). An example is provided by the squeezed-limit
CMB bispectrum [203, 204, 233–235]. If we restrict to multipoles
`` . O(100), the long-wavelength mode is outside the horizon
at recombination, so that any effect that it can have on the
dynamics of short modes during recombination is suppressed,
and the largest contribution comes from projection effects [24,
203].

8 .7 conclusions

Our main result, eq. (8.61), is the three-point correlation between the
large-scale curvature perturbation and the short-scale curvature power
spectrum in Conformal Fermi Coordinates. This coordinate system
allows us to follow the evolution of short modes in the background
perturbed by the long-wavelength mode from the end of inflation until
the long mode starts evolving again. eq. (8.61) encodes the primordial
mode coupling that a local observer measures before it is reprocessed
by the late-time non-linear gravitational evolution. We find that the
magnitude of the physically relevant part of the curvature bispectrum
in models of canonical single-field inflation is controlled by both ε
and η so, barring cancellations, the minimal amount of primordial
non-Gaussianity which arises from gravitational interactions during
inflation is bounded from below by the measured tilt of the power
spectrum ns − 1.

As a byproduct of the calculation, we show explicitly that for cs < 1

the size of non-Gaussianity is of order (1− c2s )/c
2
s [119, 208], as ex-

pected. The transformation to the conformal Fermi frame is propor-
tional to ε, η, and ċs/Hcs, and can be neglected for a slowly varying
cs. For a very small speed of sound, in fact, we do not expect gravity
to play a role: the equivalence principle still demands that the bis-
pectrum starts ∝ (k2`/k

2
s)Pζ(ks)Pζ(k`) in the squeezed limit, but the

overall amplitude is fixed by inflaton derivative self-interactions.
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We trace the presence of η in our final result to the fact that it is
also appearing in the cubic action S(3) of curvature perturbations [18],
i. e. η is also a measure of the gravitational interactions of ζ during
inflation. When S(3) is integrated by parts to show that it must have
at least a factor of ε suppressing the interactions, a term ∝ εη is also
introduced.

Concerning the measurability of this effect, we see that single-field
slow-roll inflation does not produce any fNL of the local type, but
is guaranteed to produce non-Gaussianity roughly corresponding
to an equilateral amplitude of fequil.

NL ∼ 0.1× (ns − 1). Notice that, as
discussed after eq. (8.61), our results strictly apply to the O(k2`/k

2
s)

part of the locally observable mode coupling, and hence cannot be
matched unambiguously to equilateral non-Gaussianity. As discussed
in Section 8.6, this effect is swamped by late-time gravitational non-
linearities, which give fequil.

NL of order 1. It would be interesting to study
models that exhibit a peculiar behavior in the squeezed limit, such as
resonant non-Gaussianity [41], to see if they predict signatures that
can be distinguished more easily from the gravitational ones. We leave
this, along with the details of the connection to observations, to a
future work.



C O N C L U S I O N S

The goal of my Ph.D. thesis was to study how the temperature
anisotropies of the Cosmic Microwave Background and the distor-
tions of its frequency spectrum can constrain the physics of inflation.
µ-distortions of the CMB from Silk damping measure the primordial

power spectrum on scales between 50Mpc−1 and 104Mpc−1: they are,
then, an exceptional tool for constraining its scale scale dependence.
In [49] I have considered the running of the spectral index αs =

dns
d logk ,

and I have shown that a PIXIE-like mission [22] that will measure the
CMB frequency spectrum with sensitivity of ∼ 3 times the original
mission design [22] is guaranteed to make a discovery:

• if µ is detected, we can start constraining cosmology at z > 104;

• the absence of a detection, instead, means that the running αs

is too large and negative to be consistent with the predictions
of single-field slow-roll inflation (i. e., αSR

s ∼ −(1− ns)
2). The

slow-roll paradigm is then ruled out.

In [50], instead, I have included the running of the running βs =
dαs

d logk to the analysis. I have shown that, in this case, a ∼ 35% improve-
ment on the bounds from Planck can be achieved already with the
FIRAS constraints on µ [11]. PIXIE, instead, can bring this improve-
ment to ∼ 85%.

There can be other sources of energy injection in the plasma: e. g. DM
annihilation and DM decay [12]. During the completion of these
works, I developed a modified version of the idistort code [138], that
allows to include bounds on these processes from measurements of
the CMB spectrum: one of my goals is to continue its development,
with the purpose of a joint analysis of the constraints on dark matter
annihilation from Planck [6, 236–240] together with possible future
constraints from PIXIE.

While this work was being completed, [42] has shown that including
the uncertainties in the frequency dependence of foregrounds (like
thermal and spinning dust, synchrotron emission, etc.) will worsen
the constraints that PIXIE can provide on µ by ∼ 5× with respect to
the forecasts of [22]. As a consequence, a ∼ 3× only improvement over
the design of [22] will not be enough to exclude slow-roll inflation
(even if it is important to stress that this is just a limitation due to
the sensitivity of the experiment, not a conceptual one). Regarding
the running of the running βs, instead, we have seen that the large
uncertainties on this parameter coming from current data mean that,
even when the foregrounds are correctly accounted for, PIXIE would
still provide a ∼ 80% improvement over Planck.
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http://wwwmpa.mpa-garching.mpg.de/~khatri/idistort.html
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The second part of the thesis deals with primordial non-Gaussianity.
From the point of view of inflationary physics, deviations from Gaus-
sian statistics in observed correlation functions contain information
about the whole spectrum of the theory (inflaton self-interactions,
presence of other particles, etc.). The simplest observable that one can
consider when investigating non-Gaussianity is the three-point func-
tion (bispectrum). Translational and rotational invariance imply that
in Fourier space it will depend on the amplitude of three momenta.
When comparing theoretical predictions to observations, the focus is
mainly on two momentum configurations:

• “equilateral”, which looks at the coupling between three modes
of comparable size;

• “squeezed”, which instead considers a long (k`) and two short
(ks) modes.

Since improving the constraints on equilateral non-Gaussianity beyond
those coming from the CMB will be challenging [241], I decided to
focus on the squeezed limit k` � ks.

The strength of the mode coupling is measured by the fNL parameter.
In [51] I studied what is the physical fNL in single-field inflation.
“Physical” because of the following fact: a local observer who has
access only to short comoving distances ∼ 1/ks would interpret local
physics as taking place in a “separate universe” of size k−1` and the
non-Gaussianity she would measure would be suppressed by (k`/ks)

2

(because of the equivalence principle). The goal of [51] was to see if,
in single-field inflation (where any coupling between long and short
modes is dominated by gravitational interactions, and so it is slow-roll
suppressed), the physical fNL is proportional to (1− ns)× (k`/ks)

2,
or if it vanishes. The final result is that (1− ns) survives: in single-
field inflation, a local observer on scales ∼ k−1s is guaranteed to see a
coupling with the long modes.

While it is important to show that there is this definite target, it
would be interesting to study cases where the behavior in the squeezed
limit is different from the single-field consistency relation: this hap-
pens in models that predict a fractional scaling in the squeezed limit
(k`/ks)

ν (ν being related to the mass of heavy particles present during
inflation) [242], or models like resonant non-Gaussianity [41].

It is important to stress, however, that interactions during infla-
tion are not the only (and not even the most important) source of
non-Gaussianity. Indeed, there are contributions to cosmological three-
point functions from late-time evolution that will add to the primordial
ones. These are both gravitational non-linearities that are generated
once perturbations re-enter the horizon, and projection effects due
to photon propagation in a perturbed background [227–232]. A sys-
tematic treatment is needed to disentangle them from the primordial
bispectrum. This can be done using “Conformal Fermi Coordinates”
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[201], which are the coordinates that the local observer uses to describe
her separate universe. In [31] we plan to do this for the correlation
of temperature anisotropies and spectral distortions: Silk damping of
acoustic waves heats the photons in the photon-electron-baryon fluid,
so that distortions in the CMB spectrum are generated. In presence of
non-Gaussianity, and then of long-short mode coupling, the heating
rate acquires a spatial dependence on large scales, and becomes cor-
related with large-scale temperature anisotropies. This effect can be
used to constrain primordial non-Gaussianity [20]: however, as in the
case of the CMB temperature bispectrum [203, 204, 234, 243, 244], we
expect that the above mentioned projection effects will again add up
to the primordial contribution.

Another related question that I intend to investigate is whether
it is possible to extend the separate universe picture to theories of
gravity different from General Relativity. This would prove invaluable
in light of the planned large-scale structure surveys, since it would
allow to study in an analytical way how the growth of structure in
the late-time universe is affected by modifications of gravity. Besides,
it would be possible to extend this approach to N-body simulations:
currently, simulations are already implementing the separate universe
picture with standard General Relativity [207, 226, 245], but are not
considering the possibility of doing the same with another theory of
gravity.
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A P P E N D I X



A
C M B L I K E L I H O O D S

In this short Appendix we describe how the likelihood for the Cosmic
Microwave Background angular power spectra is constructed, referring
to [96, §11] for a more detailed discussion. For simplicity, we focus on
a single anisotropy spectrum of the CMB: the generalization to the full
T , E, B spectra is straightforward [246]. We start from the expression
for the likelihood of a full-sky experiment, i. e. (disregarding factors
of 2π)

L =
1√

det(CS +CN)
e−

1
2∆

T ·(CS+CN)−1·∆ , (A.1)

with data points ∆i`m = si`m +ni`m at each pixel (labelled by `m since
we work in harmonic space) and each frequency channel i. The signal
si`m is given by Ŵi

câ
c
`m, where the â`m are the harmonic coefficients

of the (beam-smoothed) temperature anisotropy for each component c
(i. e. CMB + foregrounds such as dust, synchrotron, etc.), and the shape
vector Ŵi

c provides the frequency dependence of each component.1

These are constructed from the frequency spectra of fig. 2.3, so that
besides a standard temperature shift Θ (corresponding to the CMB
anisotropies studied in Section 3.3), we can allow for distortions from
a black-body spectrum. The spectral shape of the foregrounds must
be provided, as well. In these formulas we have used a “hat” symbol
to denote that the Wc and ac`m are those of the specific realization we
observe, following [247].

We will assume isotropic white noise in each channel, i. e.

〈ni`m(nj` ′m ′)
∗〉 = w−1

(i)δ
ijδ`` ′δmm ′ . (A.2)

Assuming statistical isotropy, the signal covariance matrix will be
block diagonal in harmonic space: therefore the expression for the
log-likelihood L ≡ −2 logL becomes

L =
∑
`

(2`+ 1)

{
Tr
[∑`

m=−`∆
i
`m(∆j`m)∗

Wi
cC
cc ′
` W

j
c ′ +N

ij
`

]

+ log det
[
Wi
cC
cc ′
` W

j
c ′ +N

ij
`

]}
.

(A.3)

In this equation we denote by Tr the trace over the frequency channels,
and all terms with i, j indices are understood as matrices. Besides we
have defined the noise bias as

N
ij
` ≡ N

(i)
` δ

ij = w−1
(i)e

σ2(i)`(`+1)δij , (A.4)

1 Note that in writing eq. (A.1) we assume that each component is Gaussian.
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for a gaussian beam of beam-size variance σ(i). Eq. (A.3) is the expres-
sion of the CMB likelihood, once we are given a map ∆i`m from an
experiment. Let us see, instead, what is the procedure to follow if one
wants to carry out forecasts for a CMB mission. In this case, we do not
have the map ∆i`m itself, but we can use the estimator that would be
made from such a map, i. e. (see also the caption of fig. 3.3)

D̂
ij
` =

∑̀
m=−`

∆i`m(∆j`m)∗ ≡ Ŵi
cĈ
cc ′
` Ŵ

j
c ′ +N

ij
` , (A.5)

where the hats denote the fact that the cosmological parameters are
fixed to their “true” values. Therefore our expression for L becomes

L =
∑
`

(2`+ 1)

{
Tr
[
Ŵi
cĈ
cc ′
` Ŵ

j
c ′ +N

ij
`

Wi
cC
cc ′
` W

j
c ′ +N

ij
`

]

+ log det
[
Wi
cC
cc ′
` W

j
c ′ +N

ij
`

]}
.

(A.6)

Given fiducial cosmological parameters (which we assume are the ones
describing our Universe) and the beam and noise specifications of the
experiment, one can construct the likelihood for CMB anisotropies, and
then use it in a Monte Carlo Markov Chain exploration of parameter
space.

Eq. (A.6) simplifies a little if we can consider the case of only one
component (the CMB) and forget about foregrounds: however, one has
still to take into account both auto- and cross-channel power spectra.
For Nc channels with the same noise level, considering both auto
and cross power spectra is equivalent to have one frequency channel
with an effective noise power spectrum lower by a factor Nc. One can
generalize these considerations to the case of channels with different
noise levels. The optimal channel combination results in having an
effective noise bias N` given by [248–250]

N` =

(∑
i

1

N
(i)
`

)−1

=

(∑
i

w(i)e
−σ2(i)`(`+1)

)−1

. (A.7)

In reality the presence of foregrounds limits our ability of extracting
the CMB signal from the data, and a full likelihood analysis should
take them into account. Fortunately, each component scales differently
in frequency (i. e., every foreground has a different shape Wc): there-
fore it is possible to separate them using maps at different frequencies
[251, 252]. This foreground subtraction will be the source of addi-
tional noise, depending on the level of foreground removal, which will
contribute to the noise bias N` (we refer to [250] for a more detailed
analysis). In the case where this additional noise is much smaller than
the instrumental noise of eq. (A.4), eq. (A.7) is recovered.
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Therefore, normalizing the likelihood such that L = 0 at the fiducial
values of the cosmological parameters, we have that (for TT spectra
only)

L =
∑
`

(2`+ 1)

[
− 1+

ĈTT` +N`

CTT` +N`
+ log

(
CTT` +N`

ĈTT` +N`

)]
. (A.8)

Finally, there is one additional caveat: in the case of a non full-sky
experiment (where only part of the sky is observed or can be used for
cosmology) not all modes are available for the analysis, and eq. (A.6)
does not hold. One can capture this effect by introducing the fsky

parameter, which reduces the available modes by (we refer the reader
to [253] for better approximations)∑

`

(2`+ 1)→
∑
`

(2`+ 1)× fsky . (A.9)
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In this Appendix we collect some results regarding the 3+ 1 decom-
position of the Einstein, fluid and (collision-less) Boltzmann equations.
Section B.1 will deal with the first two, while Section B.2 will focus on
the latter.

b .1 einstein and fluid equations

As explained in the main text, given an observer nµ we can decom-
pose tensorial quantities along the wordline of nµ or on the local
subspace orthogonal to it by using the projector hµν. If, furthermore,
the observer is hypersurface-orthogonal we can define a time coordi-
nate t such that nµ ∝ ∂µt (the proportionality factor being defined
by nµ∂µt = n0 = N−1, where N is the lapse function). This, in turn,
implies that the three-tensor Kµν, defined by

Kµν ≡ h ρ
µ ∇ρnν , (B.1)

is symmetric. Kµν, then, is the extrinsic curvature of the constant-t
hypersurfaces.

b .1 .1 Einstein tensor decomposition

Assuming the observer nµ to be hypersurface-orthogonal, we can
proceed to a decomposition of the Einstein tensor Gµν = Rµν −

R
2gµν:

• the ‖‖ contraction gives

Gµνn
µnν =

1

2
((3)R+K2 −KµνK

µν) ; (B.2)

• the ‖⊥ contraction, instead, gives

hµρnσGρσ = (3)∇νKµν − (3)∇µK ; (B.3)
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• finally, the ⊥⊥ contraction gives

h ρ
µ h

σ
ν Gρσ = (3)Rµν +KKµν −

(3)∇µAν +nρ∇ρKµν

− 2n(µA|ρ|K
ρ

ν) −AµAν −
(3)R

2
hµν

+
K2

2
hµν −

KρσK
ρσ

2
hµν

− {∇ρ(Knρ −Aρ)}hµν ,

(B.4)

where Aµ = nν∇νnµ = (3)∇µ logN, and an useful relation to
keep in mind when dealing with derivatives of three-tensors like
Kµν is

nρ∇ρTµν =
1

N
(LtTµν −LNTµν) , (B.5)

where h ρ
µ h

σ
ν Tρσ = Tµν, and Lt, LN denote a Lie derivative

along the time direction and the shift vector, respectively. By
tracing eq. (B.4) with hµν, or by considering its trace-free part,
one can obtain the results of Section 3.2.3.

b .1 .2 Fluid equations

As discussed in the main text, given a perfect fluid with four-velocity
Uµ, we can decompose Uµ in a part parallel and one orthogonal to
nµ, i. e.

Uµ = γ(nµ + vµ) =
nµ + vµ√
1− hρσvρvσ

, (B.6)

with nµvµ = 0. Then, it is possible to project the conservation equa-
tions of Tµν = (ρ + p)UµUν + pgµν and Nµ = nUµ along nµ or
orthogonal to it:

• the number current conservation equation becomes

0 = nµ∇µ(γn)+ vµ(3)∇µ(γn)+γnK+γn(3)∇µvµ+γnAµvµ ;

(B.7)

• the projection of ∇νTνµ = 0 parallel to nµ is equal to

0 = nµ∇µ(γ2M) + vµ(3)∇µ(γ2M) + γ2MK

+ γ2M(3)∇µvµ + 2γ2MAµv
µ + γ2MKµνv

µvν −nµ∇µp ,
(B.8)

where M ≡ ρ+ p;
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• the projection of ∇νTνµ = 0 orthogonal to nµ, instead, is

0 = γ2vµnν∇νM+ γ2vµvν(3)∇νM
+ γMθvµ +Mθµ⊥ + (3)∇µp ,

(B.9)

where we defined θ (not to be confused with the variable ap-
pearing in eqs. (3.28), (3.29) and similar), θµ⊥ as

θ = ∇µUµ = γK+ γ(3)∇µvµ + γAµv
µ

+nµ∇µγ+ vµ(3)∇µγ , (B.10a)

θ
µ
⊥ = hµρU

ν∇νUρ︸ ︷︷ ︸
≡θρ

=
vµ

2
(nν∇νγ2 + vν(3)∇νγ2)

+ γ2Aµ + γ2hµρn
ν∇νvρ (B.10b)

+ γ2vνK µ
ν + γ2hµρv

ν∇νvρ .
(B.10c)

It is possible, then, to take the three-divergence of eq. (B.9): this
results in eq. (3.29) that, as discussed in the main text, assumes
t to be the time coordinate in Newtonian gauge, considers only
scalar modes, and stops at leading order in perturbations.

We conclude this Section by listing the relevant projections of the
stress-energy tensor, that would go together with eqs. (B.2), (B.3), (B.4):

• the ‖‖ projection is

Tµνn
µnν = γ2M− p ; (B.11)

• the ‖⊥ one, instead, is

hµρnσTρσ = −γ2Mvµ ; (B.12)

• finally, since we have zero anisotropic stress, the only remaining
relevant contraction is the trace of T⊥⊥µν , i. e.

Tµνh
µν = 3p+M(γ2 − 1) . (B.13)

b .2 boltzmann equation

The same machinery can be used to do a 3 + 1 decomposition of
the Boltzmann equation for photons. In this Section we are going to
consider the collision-less Boltzmann equation, i. e.

0 =
Df
dλ

= Pµ
∂f

∂xµ
+

DE
dλ

∂f

∂E
+

Dlµ

dλ
∂f

∂lµ
, (B.14)

where λ is an affine parameter along the photon worldline. The photon
four-momentum is decomposed as

Pµ = E(nµ + lµ) , (B.15)
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where the three-vector lµ has unit norm, since PµPµ = 0 for photons.
In the following, we will drop the assumption of an hypersurface-
orthogonal nµ, but we still denote the three-tensor h ρ

µ ∇ρnν as Kµν.
Since Kµν can possibly be non-vanishing, we decompose it as

Kµν =
K

3
hµν + σµν +ωµν , (B.16)

where

K = hµνKµν = ∇µnµ , (B.17a)

σµν = h ρ
µ h

σ
ν Kρσ −

K

3
hµν = K(µν) −

K

3
hµν , (B.17b)

ωµν = K[µν] . (B.17c)

Now, if C[f] = 0 the photons follow geodesics, i. e.

Pν∇νPµ = 0 . (B.18)

Projecting this equation along the worldline of the observer nµ and
in the hyperplane orthogonal to it allows to derive the evolution
equations for E (redshift) and lµ (lensing), that can be plugged in
eq. (B.14). More precisely, one has that

DE
dλ

= −E2
(
Aµl

µ + lµlνσµν +
K

3

)
, (B.19a)

Dlµ

dλ
= hµρ

Dlρ

dλ
+ EnµlνAν + En

µlρlσKρσ , (B.19b)

where

hµρ
Dlρ

dλ
= E(Aνl

ν + lρlσKρσ)l
µ − EAµ − ElρK µ

ρ . (B.20)

It is important to stress that only the projection of eq. (B.20) can enter
in the contraction with ∂f

∂lµ , since the latter cannot have a non-zero
projection along nµ. Therefore, we can just focus on hµρDlρ

dλ , that can
be rewritten as

hµρ
Dlρ

dλ
= −EsµνA

ν − Eωµνl
ν − Esµνσνρl

ρ , (B.21)

where the screen projector sµν ≡ hµν − lµlν projects a three-tensor in
the plane orthogonal to lµ, i. e. orthogonal to the line of sight. Finally,
we notice that eq. (B.21) implies that the normalization lµlµ = 1 is
conserved along the photon path, since

Pν∇ν(lµlµ) = 2lµhµν
Dlν

dλ
= 0 . (B.22)
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In this Appendix we review the two-fluid approximation and how
fig. 3.2 was obtained. As discussed in Section 3.3.1, the system of
equations that we need to solve is

δ ′cdm = −kucdm + 3Φ ′ , (C.1a)

u ′cdm = −Hucdm + kΦ , (C.1b)

δ ′γ = −
4

3
kuγ + 4Φ

′ , (C.1c)

(1+ R)u ′γ = −RHuγ +
1

4
kδγ + (1+ R)kΦ , (C.1d)

−
k2

H2
Φ−

3Φ ′

H
− 3Φ =

a2

H2

∑
i=

{cdm,bγ}

ρ̄iδi

2M2
P
, (C.1e)

where the baryon loading is defined as R ≡ 3ρ̄b
4ρ̄γ

, and we used the lapse
constraint eq. (3.25) to close the system, instead of the shift constraint
eq. (3.36e). The initial conditions for the equations are set for η→ 0,
and are equal to

δγ = −2Φ , (C.2a)

δcdm =
3

4
δγ , (C.2b)

uγ = −
1

4

k

H
δγ . (C.2c)

ucdm = uγ , (C.2d)

where the initial value of Φ will be set to 1 (as discussed in the main
text, its expression in terms of ζ can be reinserted easily at the end of
the calculation). The last ingredient is the Friedmann equation for the
background, i. e.

H2 =

(
a ′

a

)2
=

a2

3M2
P

∑
i=

{cdm,bγ}

ρ̄i . (C.3)

It is straightforward to see that if we define y ≡ a
am-r

, where the
matter-radiation equality redshift is given by

1+ zm-r =
a0
am-r

=
Ωm

Ωr
≈ 3500 , (C.4)

we can rewrite eq. (C.3) as

H2 = H20
Ω2m
Ωr

(
1

y
+
1

y2

)
. (C.5)
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The above equation is solved by

y = 2αx+α2x2 , (C.6)

where we defined (taking a0 = 1)

x ≡ η

ηr
, (C.7a)

ηr ≡ 2
√

arec

ΩmH
2
0

, (C.7b)

α2 ≡ arec

am-r
. (C.7c)

If further define κ ≡ kηr and the reduced Hubble parameter

Hr ≡ ηrH =
2α(1+αx)

2αx+α2x2
, (C.8)

eqs. (C.1) take the form

dδcdm

dx
= −κucdm + 3

dΦ
dx

, (C.9a)

ducdm

dx
= −Hrucdm + κΦ , (C.9b)

dδγ
dx

= −
4

3
κuγ + 4

dΦ
dx

, (C.9c)

duγ
dx

=

(
1+

3Rby

4

)−1(
−
3Rby

4
Hruγ +

κ

4
δγ

)
+ κΦ , (C.9d)

−
κ2

H2r
Φ−

3

Hr

dΦ
dx

− 3Φ =
3

2

δγ + yRcdmδcdm

1+ y
, (C.9e)

where Rcdm ≡ Ωcdm
Ωm

, Rb ≡ Ωb
Ωm

= 1− Rcdm.
To obtain fig. 3.2, we have solved eqs. (C.9) in x−1 from xi = 10

−3

to xrec, which is equal to

xrec =

√
α2 + 1− 1

α
, (C.10)

sampling κ from 10−2 to 300 (logarithmically from 10−2 to 1, linearly
from 1 to 300), and choosing Ωmh

2 = 0.13, Ωbh
2 = 0.02. Finally,

following [92], we have multiplied Φ+
δγ
4 and uγ at xrec with a factor

D(κ), to account for Silk damping and the finite thickness of the
last-scattering surface. D(κ) is given by [92]

D(κ) = e
− κ2

2κ2D , (C.11)

where

κ−2D = 2x2S + σ2x2rec , (C.12a)

xS = 0.6(Ωmh
2)

1
4 (Ωbh

2)−
1
2a

3
4
rec , (C.12b)

σ = 0.03 . (C.12c)
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In this short Appendix we are going to show how one can obtain the
1σ error on the µ-distortion amplitude for PIXIE, that we used in
Chapters 5 and 6. This Appendix follows the notation of Chapter 5.
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F igure D.1 : This plot shows the spectral shapes (normalized at the maxi-
mum) for µ- and y-distortions, together with the spectra for
i-type distortions at redshifts z = O(2× 105), z = O(1× 105)
and z = O(5× 104) and the spectral shape of the monopole
of temperature anisotropies Θ. We see that for increasing red-
shift, the maximum, minimum and zero of the occupation
numbers are moved towards lower frequencies.

If we consider eq. (5.2) and the results of Section 2.3, we see that we
can write down the observed photon spectrum in terms of shapes Ia
and corresponding amplitudes µa where, for example [7, 80]:

• a = 1 corresponds to µ-type occupation number, i. e. (recalling
that x ≡ hν/kBT )

I1 =
2hν3

c2
ex

(ex − 1)2

(
x

2.19
− 1

)
≡ 2hν

3

c2
×n(µ)(ν) ; (D.1)

• a = 2 corresponds to y-type occupation number, i. e.

I2 =
2hν3

c2
xex

(ex − 1)2

[
x

(
ex + 1

ex − 1

)
− 4

]
≡ 2hν

3

c2
×n(y)(ν) ; (D.2)

and so on. Besides µ-, i- and y-type distortions, that we have discussed
in Section 5.2, one must also consider the fact that the uniform part
of temperature perturbations Θ is not known a priori and must be fit
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simultaneously with the spectral distortions: for this reason we also
consider the t-type occupation number, i. e. [138]

It =
2hν3

c2
xex

(ex − 1)2
≡ 2hν

3

c2
×n(t)(ν) . (D.3)

We do not include foregrounds in our analysis since, for PIXIE, the
noise penalty for rejecting foregrounds is only 2%, and this noise
penalty has been included in all the estimates of CMB sensitivity by
the PIXIE collaboration [22].

We can then write down the signal-to-noise, in terms of amplitudes
µa and spectra Ia as (dropping factors of 2 for simplicity)

(
S

N

)2
=
∑
c

[∑
a Ia(νc)× (µa − µ̄a)

]2

δI2(νc)
, (D.4)

where µ̄a are the fiducial values of the amplitudes, and δI(νc) is the
noise at each frequency channel c:

• PIXIE will have 400 channels (15GHz-wide) from 30GHz to 6THz:
however, we see from fig. D.1 that the signals that we consider
go quickly to zero beyond ν ≈ 1000GHz (see fig. D.1), so the
sum over channels in eq. (D.4) will stop there;

• δI for PIXIE, as from Fig. 12 of [22], is expected to be

δIPIXIE = 5× 10−26W m−2 Hz−1 sr−1 . (D.5)

If we want to marginalize over some of the amplitudes µa (see [254],
for example), we can use the fact that for a Gaussian with inverse
covariance matrix (Fisher matrix) F given by

F =

(
F̃ S

ST M

)
, (D.6)

where F̃ is the sub-matrix that spans the parameters that we are
interested in, the marginalized Fisher matrix will be equal to

Fmarg = F̃− SM−1ST . (D.7)

For eq. (D.4), we will want to marginalize over t and y, so M will be
the 2× 2 matrix

Mab =
∑
c

Ia(νc)

δI(νc)

Ib(νc)

δI(νc)
, (D.8)

with a, b = y, t. Similar expressions can be derived for S and its
transpose, while F̃ is simply given by eq. (D.4) with a running on all
components except y and t. If we had instead supposed that the two
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y and t amplitudes were known, we could just have taken F̃ as Fisher
matrix for eq. (D.4).

In this work we have not considered i-distortions, so F will be a 3× 3
matrix with a, b, c = µ, y, t: marginalizing over y and t amplitudes,
as described in Eqs. (D.7) and (D.8), we obtain σµ8 = 1 for the stan-
dard PIXIE configuration. The increments in PIXIE sensitivity that we
considered in Chapters 5 and 6, then, can be interpreted as either an
increase in the number N of frequency channels (that would decrease
σµ8 by a factor

√
NPIXIE/Nnew ), or a decrease in the instrumental

noise δI (which instead gives a linear improvement δInew/δIPIXIE).
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e .2 Conformal Riemann tensor 207
e .3 Fixing the residual freedom 209

In this Appendix we review in more detail the transformation from
global coordinates to CFC, following closely the results of [200, 201]
but focusing on the comoving gauge for single-field slow-roll inflation:

• we explicitly compute the coefficients cµn(P) of eq. (8.5), high-
lighting the simplifications that occur when working at linear
order in perturbations. We focus particularly on cµ0 (P) = x

µ(P),
i. e. the CFC coordinates of the central observer’s worldline;

• we use the results of the previous point to compute the Riemann
tensor of the conformal metric on the central geodesic, and then
arrive at the expression for the long-wavelength CFC metric. We
also list the various residual gauge freedoms that are present
after this step of the CFC construction;

• we fix the freedom in the initial time used to define the CFC
and the arbitrary constant that comes from the integration of the
local Hubble rate;

• finally, we discuss the possibility of changing spatial coordinates
without changing the time-time and time-space components of
gFµν(xF): following [201], we fix this ambiguity by choosing a
frame where the effect of a long-wavelength ζ on the curvature
of spatial slices is explicit (we basically use the stereographic pa-
rameterization of a curved, homogeneous space). The freedom in
the definition of the space-like vectors of the tetrad, (ei)µ, i. e. the
choice of the integration constant in eq. (8.19), is discussed in
detail in Section 8.2.3.

Before proceeding, notice that in this Appendix we will use x̄ and not
xF to define the CFC coordinates: this is done to simplify the notation
(apart from this change, the notation follows the one of Chapter 8).
We will also take the CFC spatial coordinates of the central geodesic
to be, generically, x̄c (instead of 0).
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e .1 cfc exponential map at linear order

Dai, Pajer and Schmidt derived the general expression for the coef-
ficients cµn(P) of eq. (8.5) in terms of the Christoffel symbols Γ̃ρµν of
the conformal metric g̃µν(x) = a−2F (x)gµν(x) evaluated on the central
geodesic [200]. Up to third order in powers of x̄, the transformation is

xµ(τ̄, x̄) = xµ(P) + aF(P)(ei)
µ
P ∆x̄

i

−
a2F(P)

2
Γ̃
µ
αβ|P(ei)

α
P(ej)

β
P ∆x̄

i∆x̄j

−
a3F(P)

6
(∂γΓ̃

µ
αβ − 2Γ̃µσαΓ̃

σ
βγ)|P

× (ei)
α
P(ej)

β
P (ek)

γ
P ∆x̄

i∆x̄j∆x̄k .

(E.1)

In this equation, we have denoted x̄ − x̄c as ∆x̄, where x̄c is the CFC
position of the central geodesic. Besides, we stress that all quantities
are evaluated in the global coordinate system, on the central geodesic.
For example, we have

(ei)
µ
P ≡ (ei)

µ(x(P)), where xµ(P) = xµ(τ̄, x̄c) . (E.2)

For this reason, in order to express everything in terms of barred
coordinates x̄, we need to compute xµ(P) in terms of τ̄ (and x̄c). In
[200] it is shown that xµ(τ̄, x̄c) satisfies the equations

∂xµ(τ̄, x̄c)
∂τ̄

= aF(P)(e0)
µ
P , (E.3)

which can be easily solved if we work in perturbation theory. We start
from µ = i: from eq. (8.15) we see that (keeping the notation a bit
heavy for the moment)

(e0)
i
P = a−1(τ(τ̄, x̄c))Vi(x(τ̄, x̄c)) , (E.4)

while eq. (8.18) reads as

aF(P)

a(P)
= 1+CaF(τ∗, xc(τ∗))

+

∫τ
τ∗

ds
(
∂0ζ(s, xc(s)) +

1

3
∂iV

i(s, xc(s))
)

.
(E.5)

As explained in Section 8.2.3, both l.h.s. and r.h.s. of this equation are
understood to be computed in global coordinates along the central
geodesic (i. e. on x = xc(τ): we parameterize the central geodesic with
τ). Besides, we also recall that:

• the first order perturbation CaF is the constant coming from the
integration of eq. (8.11);

• τ∗ is the initial time for the definition of CFC.
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Before inserting this relation for the µ = i component of eq. (E.3), we
need to express the r.h.s. in barred coordinates: however, we note that
(e0)

i
P is already first order in perturbations, so that the zeroth order

of aF/a (which is ≡ 1) suffices. Therefore, we find

aF(P)(e0)
i
P = Vi(x(τ̄, x̄c)) , (E.6)

so that

xi(τ̄, x̄c) = x̄c +
∫ τ̄
τ̄∗

ds̄ Vi(τ(s̄, x̄c), x̄c) , (E.7)

where we used the fact that xc = x̄c at zeroth order in perturbations.
We now move to µ = 0 in eq. (E.3): using eq. (8.15) (that defines the
components of Uµ in global coordinates) we arrive at

aF(P)(e0)
0
P =

aF(P)

a(P)

[
1−N1(x(P))

]
= 1−N1(x(P))+

aF(P)

a(P)

∣∣∣∣
`

, (E.8)

where we called aF(P)/a(P)|` the first order term in eq. (E.5). Inserting
this into eq. (E.3) and integrating in τ̄ (choosing τ̄∗ = τ∗), we see that
along the central geodesic τ is equal to τ̄+∆τ, where ∆τ is first order
in perturbations. Therefore, we can simplify eq. (E.8) into

xi(τ̄, x̄c) = x̄c +
∫ τ̄
τ̄∗

ds̄ Vi(s̄, x̄c) , (E.9)

and we can write eq. (E.5) in CFC coordinates as

aF(P)

a(P)
= 1+CaF(τ̄∗, x̄c)+

∫ τ̄
τ̄∗

ds̄
(
∂0ζ(s̄, x̄c)+

1

3
∂iV

i(s̄, x̄c)
)

. (E.10)

Finally, we write the time shift ∆τ as

∆τ(τ̄, x̄c) =
∫ τ̄
τ̄∗

ds̄
[
(aF/a)(s̄, x̄c)|` −N1(s̄, x̄c)

]
. (E.11)

Having found the expression of xµ(P), we can move to the additional
terms in eq. (E.1), i. e. the ones away from the central geodesic. We see
that they all involve the connection coefficients (in global coordinates)
of the conformal metric Γ̃ , evaluated on the central geodesic. An impor-
tant simplification, then, arises: since aF is equal to a at zeroth order
in perturbations, the conformal metric g̃µν(x) = a−2F (x)gµν(x) will
be equal to ηµν at zeroth order in perturbations. Then, the Christof-
fel symbols will be already first order in perturbations, and eq. (E.1)
simplifies into

xµ(τ̄, x̄) = xµ(P) + aF(P)(ei)
µ
P ∆x̄

i

−
1

2
Γ̃
µ
ij|P ∆x̄

i∆x̄j −
1

6
(∂kΓ̃

µ
ij)|P ∆x̄

i∆x̄j∆x̄k ,
(E.12)
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where we used aF = a and (ei)
µ = a−1δ

µ
i at zeroth order. The

quickest way to compute the connection coefficients of g̃µν is to use
the relation

Γ̃ρµν = Γρµν+ δ
ρ
µ∇ν logω+ δρν∇µ logω−gµνg

ρσ∇σ logω , (E.13)

for g̃µν = ω2gµν.1 For ω = a−1F , we can use of the results of [200] for
the derivatives of aF along the central geodesic, i. e.

(∇µ logaF)|P = −
HF(P)

aF(P)
(e0)µ,P, with (e0)µ,P = (gµν(e0)

ν)P . (E.14)

In this expression, the local comoving expansion rate HF is given by
(again, we refer to [200] for details)

HF(P)

aF(P)
=

1

a(τ)

(
H(τ) −H(τ)N1(s, xc(s))

+ ∂0ζ(s, xc(s)) +
1

3
∂iV

i(s, xc(s))
)
,

(E.15)

where, as in eq. (E.5) above, both sides of the equation are computed
in global coordinates along the central geodesic. From these equations,
we see that (∇µ logaF)|P contains also terms that are of zeroth order
in perturbations. However, these terms will identically cancel with
the zeroth order ones of Γρµν: therefore we can safely drop the first
order time shift and the first order shift of the position of the central
geodesic in the argument of the Christoffel symbols Γ̃ρµν. We have
collected these coefficients in tab. E.1: we note that no time derivative
of the Christoffel symbols appear in eq. (E.12), so we can just take
their spatial derivatives in global coordinates and compute them at
(τ̄, x̄c). In the end, the full transformation at order (x̄i)3 reads

τ(τ̄, x̄) = τ̄+∆τ(τ̄, x̄c) + Fi(τ̄, x̄c)∆x̄i

−
1

2
Γ̃0ij(τ̄, x̄c)∆x̄

i∆x̄j

−
1

6
∂kΓ̃

0
ij(τ̄, x̄c)∆x̄

i∆x̄j∆x̄k , (E.16a)

xl(τ̄, x̄) = x̄l +
∫ τ̄
τ̄∗

ds̄ Vl(s̄, x̄c)

+
[
(aF/a)(τ̄, x̄c)|` − ζ`(τ̄, x̄c)

]
∆x̄l

−
1

2
Γ̃ lij(τ̄, x̄c)∆x̄

i∆x̄j

−
1

6
∂kΓ̃

l
ij(τ̄, x̄c)∆x̄

i∆x̄j∆x̄k . (E.16b)

where we have used the fact that eli is equal to a−1(1− ζ`)δli to cancel
the x̄c coming from eq. (E.9). In eq. (E.16a), we denote the sum Vi+Ni

1 See, e. g., [46].
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as Fi. This definition is particularly convenient: in fact the parallel
transport equation for Vi in global coordinates reads as

∂0V
i +HVi = −∂iN1 − ∂0N

i −HNi . (E.17)

So, if we take Vi to be −Ni + ∂iz, eq. (E.17) is solved if ∂0z+Hz =

−N1, i. e.

z(x) = e−
∫τ
τ∗ dsH(s)

[
τ∗Cz(τ∗, x)

−

∫τ
τ∗

ds e
∫s
τ∗ dwH(w)N1(s, x)

]
,

(E.18)

where the integration constant Cz is first order in perturbations.
Now, to avoid having to carry around signs and factorials, and to

simplify a little bit the notation, we rewrite Eqs. (E.16) as

xµ(τ̄, x̄) = x̄µ + ξµ(τ̄, x̄)

= x̄µ + ξµ(τ̄, x̄c) +A
µ
i (τ̄, x̄c)∆x̄

i

+Bµij(τ̄, x̄c)∆x̄
i∆x̄j +Cµkij(τ̄, x̄c)∆x̄

i∆x̄j∆x̄k .

(E.19)

Table E.1 : In this table we collect the Christoffel coefficients of the confor-
mal metric along the central geodesic in global coordinates, that
we computed making use of eq. (E.14). We separate them into
the contributions from ηµν+hµν and those from the conformal
factor a2/a2F. As explained in the main text, there is no need to
consider the time shift and the shift of the position of the central
geodesic in their argument, so we omitted them. Fi = ∂iz is
defined in eq. (E.18): since it is a first order perturbation, we
can neglect the shift in its argument as well.

Γ(ηµν + hµν) C(a−1F ) +C(a)

0
00 ∂0N1 −∂0ζ− ∂mV

m/3

0
0i ∂iN1 HFi
0
ij ∂0ζδij − ∂(iNj) −(∂0ζ+ ∂mV

m/3)δij
k
00 ∂0N

k + ∂kN1 HFk

k
0i ∂0ζδik + ∂[iNk] −(∂0ζ+ ∂mV

m/3)δki
k
ij −∂kζδij + ∂iζδ

k
j + ∂jζδ

k
i H(−Fkδij + Fiδ

k
j + Fjδ

k
i )

e .2 conformal riemann tensor

We are now ready to compute the long-wavelength metric in the
conformal Fermi frame, for which we need the conformal Riemann
tensor in CFC coordinates. Since this will be already first order in
perturbations, it is sufficient to calculate it in global coordinates on
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the central geodesic.2 The calculation goes as follows: we use the
properties of the Riemann tensor under a conformal transformation,
i. e. [46]

R̃ρσµν = Rρσµν − 2(δ
ρ
[µδ

α
ν]δ

β
σ − gσ[µδ

α
ν]g

ρβ)∇α∇β logω

+ 2(δρ[µδ
α
ν]δ

β
σ − gσ[µδ

α
ν]g

ρβ + gσ[µδ
ρ
ν]g

αβ)

×∇α logω∇β logω ,

(E.20)

where we will take again ω = a−1F . It is clear that if we want to
compute R̃ρσµν we need to know also the second (covariant) derivatives
(∇µ∇ν logaF)|P on the central geodesic (whose zeroth order will
exactly cancel the corresponding contribution from the background
scale factor a). The coordinate-free expression for these derivatives of
the local scale factor has been derived in [200], and reads as

(∇µ∇ν logaF)|P = −

(
HF(P)

aF(P)

)2
gµν|P

+

[
1

a2F(P)

dHF(P)
dτ̄

− 2

(
HF(P)

aF(P)

)2]
(e0)µ,P(e0)ν,P ,

(E.21)

where the “local cosmic acceleration” is given by (like in Eqs. (E.5),
(E.15), both sides are understood as computed in global coordinates
along the central geodesic)

1

a2F(P)

dHF(P)
dτ̄

=

(
HF(P)

aF(P)

)2
+ (e0)

µ
P∂µ

(
HF(P)

a2F(P)

)
. (E.22)

Now, as explained in Section 8.2.3, we split the curvature pertur-
bation ζ into a long- and short-wavelength part: ζ(x) = ζs(x) + ζ`(x).
Then, at leading order in ζ, the metric gµν in global coordinates
becomes

g00 = a
2(−1− 2(N1)s − 2(N1)`)

g0i = a
2∂iψs + a

2∂iψ`

gij = a
2(1+ 2ζs + 2ζ`)δij

⇒ gµν = (gµν)s+(gµν)` . (E.23)

The goal is to absorb the effect of ζ` by changing coordinates to CFC:
therefore, we will construct the CFC metric w.r.t. (gµν)`. All Christoffel
symbols of tab. E.1, the derivatives of the local scale factor of eq. (E.21),
and the conformal Riemann tensor can be computed in terms of ζ`:

2 That is, in the definition of eq. (8.10) one can take the CFC coordinate basis along
the central geodesic, (ẽν)

µ
P = aF(P)(eν)

µ
P , at zeroth order. Using aF = a one remains

with (ẽν)
µ
P = δµν. R̃µρνσ will not carry any power of the background scale factor by

itself.
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putting all together, and using Eqs. (8.9), we arrive at the expression
for the long-wavelength metric perturbations in CFC coordinates3

h̄00(τ̄, x̄) = −∆x̄k∆x̄l
(
∂k∂l −

δkl
3
∂2
)
(N1 + ∂0ψ+Hψ) ,

(E.24a)

h̄0i(τ̄, x̄) =
2

3
∆x̄k∆x̄l

[
(∂0H−H2︸ ︷︷ ︸

=εH2

)
[
δklFi − δkiFl

]

− (δkl∂i − δki∂l)(HN1 − ∂0ζ︸ ︷︷ ︸
=0

)

]
, (E.24b)

h̄ij(τ̄, x̄) = −
1

3
∆x̄k∆x̄l

[
2

3
H(∂mV

m)Tijkl + Sijkl(ζ+Hψ)

]
,

(E.24c)

where

Tijkl = δilδkj − δijδkl , (E.25a)

Sijkl = δil∂j∂k − δkl∂i∂j + δkj∂i∂l − δij∂l∂k . (E.25b)

The last ingredient is the local scale factor aF(P): it is given by
eq. (E.10), i. e.

aF(τ̄) = a(τ̄+∆τ(τ̄))

(
1+CaF(τ̄∗) +

∫ τ̄
τ̄∗

ds̄
(
∂0ζ(s̄) +

1

3
∂iV

i(s̄)

)
,

(E.26)

where we suppressed the label x̄c for simplicity.

e .3 fixing the residual freedom

In this Section we discuss the additional “gauge” degrees of freedom
present in the construction of the CFC metric. We start from the choice
of initial time τ̄∗, and the constant CaF in the definition of aF. We will
be interested in computing equal-time correlation functions as τ̄→ 0−

(that is, on super-Hubble scales: in this way, the long modes will have
have already exited the horizon, and will be classical variables that
we can use in a coordinate transformation). Now, as discussed in
Section 8.2.3, we choose also the initial time to be τ̄∗ → 0−. If we
decide to fix the constant following [200, 201], that is by requiring that
at τ̄∗ the local scale factor-proper time relation is the same as that of
the unperturbed background cosmology, i. e.

lim
τ̄→τ̄∗

aF(τ̄) = a(τ̄∗) , (E.27)

3 As discussed above, we suppress the argument (τ̄, x̄c) on the r.h.s. of these equations.
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then we see that CaF can be safely taken equal to zero. In fact, expand-
ing eq. (E.26) at first order in perturbations, we see that (dropping the
label x̄c)

aF(τ̄) = a(τ̄)
[
1+ (aF/a)(τ̄)|` +H∆τ(τ̄)

]
. (E.28)

For τ̄ going to zero we have that:

• the integral in the definition of ∆τ = ξ0(τ̄, x̄c) is killed (basically
one has the limit of x−1

∫x
0 dy f(y) for x → 0), and H∆τ(τ̄)

becomes −CaF(τ̄∗);

• (aF/a)(τ̄)|`, instead, simply becomes CaF(τ̄∗).

This tells us that for this choice of initial time aF goes to a for any
choice of CaF . Therefore we fix this constant to be zero in the following,
for simplicity. This choice is such that (aF/a)(P), that is the difference
between aF and a along the central geodesic (i. e. with both aF and a
being evaluated at the same spacetime point), goes to 1 for τ̄→ τ̄∗.4

The second gauge freedom that we discuss in this Section is the
possibility of changing the spatial coordinates as

x̄l → x̄l(ȳ) = ȳl +
Alkij(τ̄, x̄c)

6
∆ȳi∆ȳj∆ȳk , (E.29)

where the first order perturbation Alkij(τ̄, x̄c) is fully symmetric w.r.t.
its three lower indices. Going back to x̄ as the label for the coordinates,
we see how this additional gauge freedom simply means that we can
take Clkij in eq. (E.19) to be not only −∂kΓ̃

l
ij(τ̄, x̄c)/6, but

Clkij(τ̄, x̄c) = −
1

6

[
∂kΓ̃

l
ij(τ̄, x̄c) −A

l
kij(τ̄, x̄c)

]
. (E.30)

One can show that, under this transformation, the CFC metric pertur-
bations h̄ij transform as

h̄ij(τ̄, x̄)→ h̄ij(τ̄, x̄) +A(ij)kl(τ̄, x̄c)∆x̄k∆x̄l , (E.31)

where we have lowered spatial indices with δij. One can use this
additional freedom to put the spatial part of the metric in the desired
shape, without altering h00 and h0i.5 More precisely, we use this

4 This choice makes clear that there is no contribution from primordial physics which
is not suppressed by two spatial derivatives of long-wavelength perturbations. Notice
that in a curved universe the normalization of the scale factor cannot be reabsorbed
by a simple rescaling of spatial coordinates. However, since KF is already first order
in the long-wavelength modes, at this order any rescaling of aF can be mimicked by a
coordinate transformation, and then cannot have any effect on physical observables.

5 Notice that, since h̄µν is already first order in perturbations, there is no need to
consider the change of its argument. aF will not be touched either, since it depends
only on τ̄ which is not changed.
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freedom to put the metric of Eqs. (E.24) in conformal Newtonian form,
following [201]: we add two tensors Alkij(τ̄, x̄), given by

(1)A
l
kij = −

1

6
KF(δ

l
kδij + δ

l
iδjk + δ

l
jδki) , (E.32a)

(2)A
l
kij =

1

9
(δlkδij + δ

l
iδjk + δ

l
jδki)∂

2(ζ+Hψ)

−
2

3
(δlk∂i∂j + δ

l
i∂j∂k + δ

l
j∂k∂i)(ζ+Hψ)

+
1

3
(δij∂

l∂k + δjk∂
l∂i + δki∂

l∂j)(ζ+Hψ) , (E.32b)

where we defined KF(τ̄, x̄) as

KF = −
2

3

[
∂2(ζ+Hψ) +H∂mV

m
]
= −

2

3
(∂2ζ+H∂2z) . (E.33)

After this transformation, the spatial part of the metric becomes (where
both l.h.s. and r.h.s. are intended as functions of x̄)

ḡij = a
2
F

(
1+∆x̄k∆x̄lDkl(ζ+Hψ)

(
1+

KF|∆x̄|2

4

)2

)
δij, with Dkl = ∂k∂l −

δkl
3
∂2 .

(E.34)
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T R A N S F O R M I N G T H E C U RVAT U R E P E RT U R B AT I O N

In this Appendix we provide the transformation rules for the long-
and short-wavelength curvature perturbations ζ. As we have seen in
Section 8.3.1, when the change of coordinates does not touch time, we
can derive its effect easily with a passive approach. However, when
also the time coordinate changes it is more straightforward to use an
active approach. One starts from the definition of ζ given a slicing of
spacetime by surfaces Στ, i. e. [18, 212–217]

ζ =
log det(gij/a2)

6
, (F.1)

where gij is the induced metric on Στ. This is nothing else but the local
number of e-folds definition, that relates the curvature perturbation ζ
to the volume element on the Στ surfaces. We can then use this defini-
tion to see how ζ transforms under a long-wavelength transformation
xµ → x̄µ = xµ − ξµ, ξµ = ξµ` : as usual, we will stay linear in ξµ, but
we will go up to second order in perturbations (since in the end we
will want to find the induced coupling between long and short modes).
Denoting with a bar the transformed metric, at leading order in ξ we
have [101]

gµν → ḡµν = gµν + 2∇(µξν)

= gµν + gνρ∇µξρ + gµρ∇νξρ +O(ξ2) ,
(F.2)

so that

ḡij/a
2 = δij + (e2ζ − 1︸ ︷︷ ︸

≡∆g
)δij + 2∇(iξj)/a

2 +O(ξ2) . (F.3)

Using the relation log det = Tr log, and working at quadratic order in
perturbations (linear in ξ), we obtain (the ellipsis indicates that we
have dropped terms of higher order in perturbations)

log(ḡij/a2) = ∆gδij + 2∇(iξj)/a
2

−
1

2
∆g2δij − 2∆g∇(iξj)/a

2 +O(ξ2)

= 2ζδij + 2∇(iξj)/a
2

− 2ζ(∂iξj + ∂jξi + 2Hξ
0δij) + . . . .

(F.4)

What we need now is the expression for ∇(iξj)/a
2. First of all we have

that

∇iξj/a2 = gjρ∇iξρ/a2 = gjρ∂iξρ/a2 + gjρΓρiσξσ/a2

= ∂iξj + 2ζ∂iξj +Nj∂iξ
0 + gjρΓ

ρ
iσξ

σ/a2 ,
(F.5)

212
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where, staying linear in ξ and quadratic in perturbations, gjρΓ
ρ
iσξ

σ/a2

is given by (see tab. F.1)

gjkΓ
k
ilξ
l/a2 = δjkΓ

k
ilξ
l = −HNjξi + δijξ

l∂lζ− 2ξ[i∂j]ζ , (F.6a)

gjkΓ
k
i0ξ

0/a2 = e2ζδjkΓ
k
i0ξ

0

= Hδijξ
0 + 2Hζξ0δij + ξ

0∂0ζδij − ∂[iNj]ξ
0 ,

(F.6b)

gj0Γ
0
iσξ

σ/a2 = NjΓ
0
iσξ

σ = NjΓ
0
ikξ

k = NjHδikξ
k = HξiNj .

(F.6c)

With this, eq. (F.4) becomes

log(ḡij/a2) = 2ζδij + 2∇(iξj)/a
2 − 2ζ(∂iξj + ∂jξi + 2Hξ

0δij) + . . .

= 2ζδij + 2∂(iξj) + 2Hξ
0δij

+ 2N(i∂j)ξ
0 + 2ξµ∂µζδij + . . . .

(F.7)

Taking the trace, we obtain

ζ̄ =
Tr log(ḡij/a2)

6
= ζ+

∂iξ
i

3
+Hξ0 +

Ni∂iξ
0

3
+ ξµ∂µζ . (F.8)

Table F.1 : In this table we collect the Christoffel coefficients of gµν, sep-
arating the contribution of the conformal factor a2 from the
full result: ∆ is defined as 2ζ−N1. We refer to tab. E.1 for the
contribution from ηµν + hµν.

C(a) Γ

0
00 H H+ ∂0N1
0
0i HNi ∂iN1 +HNi
0
ij Hδij +H∆δij Hδij +H∆δij + ∂0ζδij − ∂(iNj)
k
00 HNk ∂0N

k +HNk + ∂kN1
k
0i Hδki Hδki + ∂0ζδ

k
i +

1
2(∂iN

k − ∂kNi)
k
ij −HδijN

k ∂iζδ
k
j + ∂jζδ

k
i − ∂

kζδij −HδijN
k

Now, recall that we are interested in a long-wavelength transforma-
tion ξµ = ξ

µ
` , and that we want to remain linear in the long mode.

Then, splitting both ζ and ζ̄ in long- and short-wavelength parts, we
obtain

ζ̄` = ζ` +
∂iξ

i
`

3
+Hξ0` , (F.9a)

ζ̄s = ζs +
Nis∂iξ

0
`

3
+ ξµ` ∂µζs , (F.9b)
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where Ni = Ni(ζ) is the shift constraint at linear order in ζ. This
shows that the short-wavelength ζ transforms as a scalar, with an
additional shift if ξ0 is x-dependent (as it is in our case). This shift
will be of no consequence for the final bispectrum transformation, in
fact it is straightforward to see that both Nis and ∂iξ0` go to zero on
super-Hubble scales (we refer to Section 8.3.3 for more details).



G
B I S P E C T R U M I N F O U R I E R S PA C E

We follow closely [24] to derive the transformation of the bispectrum
from global coordinates to CFC. In Section 8.3.2 we have seen that
the change to CFC gives rise to the following terms (where we have
dropped the label “F” for simplicity and we have taken xc ≡ (x1 +
x2)/2). As explained in Section 8.3.2, only the contributions from the
change in the spatial coordinates need to be considered. If we call
r ≡ x1 − x2 and r ≡ |R|, they are given by

∆Bζ = Pζ`A(|x3 − xc|) ri∂l 〈ζsζs〉 (r)

+
1

4
Pζ`C(|x3 − xc|) rirjrk∂l 〈ζsζs〉 (r) ,

(G.1)

where with Pζ`X we denote the cross-spectrum between the long-
wavelength curvature perturbation and X, which denotes the two
tensors Ali and Clkij.

We can now compute what is the contribution of these terms when
we go in Fourier space R ↔ kS and x3 − xc ↔ kL. As shown in [24],
translational invariance allows to focus separately on the long- and
short-wavelength power spectra:

• a generic Pζ`Xijk...(|x3 − xc|) will be of the form

Pζ`Xijk...(|x3 − xc|) = 〈ζ`(x3)∂ijk...ζ`(xc)〉 , (G.2)

so that, going to Fourier space, we get∫
dk`
(2π)3

Pζ(k`)
∂N

∂xic∂x
j
c∂xkc . . .

eik`·(x3−xc) , (G.3)

where N is the number of derivatives we are considering. We
see that each of these derivatives ∂/∂xnc brings down −ikn` :
collecting these terms together with Pζ(k`) gives

Pζ`Xijk...(|x3− xc|)→
[
(−iki`)(−ik

j
`)(−ik

k
` ) . . .

]
Pζ(k`) ; (G.4)

• the short-scale spectra can be dealt with in a similar way. More
precisely, a generic term that one needs to compute is of the
form

(rirjrk . . . )∂l 〈ζsζs〉 (r) =
∫

dks
(2π)3

Pζ(ks)(r
irjrk . . . )∂le

iks·r ,

(G.5)
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that can be rewritten as∫
dks
(2π)3

Pζ(ks)(r
irjrk . . . )∂le

iks·r =

i(−i)N
∫

dks
(2π)3

[
klsPζ(ks)

]( ∂N

∂kis∂k
j
s∂kks . . .

eiks·r
)

=

i(−i)N(−1)N
∫

dks
(2π)3

(
∂N

∂kis∂k
j
s∂kks . . .

[
klsPζ(ks)

])
eiks·r ,

(G.6)

where N is the number of powers of r that we are consider-
ing. We have moved the derivatives from the exponential to
the power spectrum integrating by parts N times. This gener-
ates an overall (−1)N factor. Then, the Fourier transform of
(rirjrk . . . )∂l 〈ζsζs〉 (r) is given by

(rirjrk . . . )∂l 〈ζsζs〉 (r)→ iN+1 ∂N

∂kis∂k
j
s∂kks . . .

[
klsPζ(ks)

]
.

(G.7)

For our applications, we will need to take N up to 3. The expres-
sions can quickly become cumbersome, so we proceed step by step
and collect the intermediate results for convenience of the reader.
Since all derivatives ∂/∂kis are acting on a function of ks only, some
simplifications will arise:

• we start from the simple ∂/∂kis, that we rewrite as

∂

∂kis
=
kis
k2s

d
d logks

. (G.8)

This directly leads to

∂

∂kis
kjs = δ

j
i + k

j
s

∂

∂kis
= δji +

kisk
j
s

k2s

d
d logks

; (G.9)

• then we will encounter terms like ∂2/∂kis∂k
j
s. With simple ma-

nipulations one arrives at

∂2

∂kis∂k
j
s

=
δij

k2s

d
d logks

+
kisk

j
s

k4s

(
d2

d logk2s
− 2

d
d logks

)
; (G.10)

• finally, we will have terms with three derivatives and one power
of ks, i. e.

Slijk =
∂3

∂kis∂k
j
s∂kks

kls . (G.11)
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If we define

D1 =
d

d logks
, (G.12a)

D2 =
d2

d logk2s
− 2

d
d logks

, (G.12b)

D3 =
d3

d logk3s
− 6

d2

d logk2s
+ 8

d
d logks

, (G.12c)

we can write this term as a sum of various pieces (all symmetric
in i, j, k)

Slijk =
δijδkl

k2s
D1 + 2 perms. +

δijk
k
sk
l
s

k4s
D2 + 2 perms.

+
δlik

j
sk
k
s

k4s
D2 + 2 perms. +

kisk
j
sk
k
sk
l
s

k6s
D3 .

(G.13)

With some simple algebra, one can now write the expression for the
action of Slijk on the small-scale power spectrum at leading order in
slow-roll, recalling that if we neglect any running of the spectral index
we can write derivatives of Pζ(ks) as

dmPζ(ks)
d logkms

= (ns − 4)
mPζ(ks)

= (−3)m
[
1+

m

3
(ns − 1)

]
Pζ(ks) .

(G.14)
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In this Appendix we investigate briefly the simplifications that arise
when one is interested in the limit of a small inflaton speed of sound
(cs � 1). In passing, we collect some results that can be useful if
one wants to compute the CFC bispectrum directly from the action,
with the long-wavelength metric given by eqs. (8.30). This approach
is different from the one we have followed in Section 8.4, where
we obtained the η contribution to the CFC bispectrum by mirroring
Maldacena’s calculation in flat gauge [18].

We will take the Goldstone boson of time diffeomorphisms (that we
will call π) as short-wavelength variable [62, 219]. Before proceeding,
let us see how the metric in the conformal Fermi frame looks like when
working in the π gauge for the short modes: dropping for simplicity
the “F” label not only on coordinates, but also on all the components
of the metric (for simplicity of notation), we have that

ds2 = −a2(1+ 2(N1)` + 2(N1)s)︸ ︷︷ ︸
=N2

dτ2

+ a2Nis(dτdxi + dxidτ) + a2e2ζ`δij︸ ︷︷ ︸
=hij

dxidxj ,
(H.1)

where:

• we have taken aF = a in g0i. The reason is that we can remain
at linear order in perturbations when we deal with the time-time
and time-space components of the metric;

• we have put to zero the long-wavelength shift constraint, because
we have seen in Section 8.2.3 that it is of order k3` . Besides, the
short-scale shift constraint Nis can be written as ∂iψ, as usual:
we will omit the “s” subscript in the following for simplicity
of notation. We note that this definition (i. e. without including
the factor of a2) agrees with the ADM parameterization of g0i
(which is hijNj), because we are working at linear order in the
constraints. Therefore, in the following we will raise and lower
the indices of Ni with δji;

• both (N1)s and ψ will be linearly solved in terms of π [62, 219].
In single-field slow-roll inflation, the leading interaction (cubic)
Lagrangian comes from the mixing with gravity, so it is not
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possible to neglect these terms (i. e., the decoupling limit would
not capture the relevant physics);1

• the long-wavelength contribution to aF, which is equal to (we
refer to Section E.2 for details)

aF(τ) = a(τ)
[
1+ (aF/a)(τ)|` +Hξ0(τ, 0)

]
, (H.2)

is included in (N1)` and ζ` (the subscript “`” is dropped on
ξµ for simplicity). That is, we add it to the perturbations h00
and hij ∝ δij that make up the long-wavelength CFC metric of
eqs. (8.30). In this way it is easier to keep track of both the order
in perturbations and the order in the slow-roll expansion.

In this gauge, the action is equal to

S = SEH +

∫
d4xN

√
h

[
(∂0φ−Ni∂iφ)

2

N2
− hij∂iφ∂jφ− 2V(φ)

]
,

(H.3)

where we have that:

• the inflaton φ, whose background value we write as φ̄, is given
by (in the following, we will often denote derivatives w.r.t. τ
with a “prime”)

φ = φ̄(τ+ π) + φ̄ ′(τ+ π)ξ0(τ+ π)︸ ︷︷ ︸
≡δφ`(τ+π)

+O[(ξ0)2]

=
√
2εH

[
ξ0 + π+ ∂0ξ

0π+
H

2

(
1− ε+

η

2

)
(π2 + 2ξ0π)

]
+ . . . ,

(H.4)

where we have dropped terms cubic in perturbations (staying
linear in the long-wavelength ξ0) and we have used the slow-roll
relations

φ̄ ′ =
√
2εH , (H.5a)

H ′ = H2(1− ε) , (H.5b)

ε ′ = Hεη . (H.5c)

The presence of φ̄ ′ξ0 ≡ δφ` is due to the transformation to CFC,
and the fact that at second order in k` we cannot neglect the
change in the time coordinate;

• the potential V(φ) can likewise be expanded in perturbations,
using the above result for φ and the fact that V(φ̄) = H2(3− ε).
We will not write down the expansion here, since it is very easy
to obtain it with simple algebra. We note that useful relations
between V(φ̄) (and its derivatives) and the Hubble slow-roll
parameters are also listed in Sec. B of [65];

1 Even if, as we have seen in Section 8.4, there are a lot of simplifications that arise if
we are interested only in contributions to the bispectrum that are ∝ η.
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• the Einstein-Hilbert action SEH, i. e.

SEH =
1

2

∫
d4xN

√
h

[
R(3)(h) +

EijEij − E
2

N2

]
, (H.6)

with

Eij ≡
1

2

[
∂0hij − 2∇(iNj)

]
, (H.7a)

E = hijEij , (H.7b)

is computed in terms of the metric of eq. (H.1).

It is now straightforward to solve the constraints in terms of π: at
linear order in perturbations they are given by [219]

(N1)s = εHπ , (H.8a)

ψ = −εH∂−2∂0π . (H.8b)

From this one can find the quadratic action for the Goldstone boson π.
At leading order in slow-roll it is equal to [62, 219]

Sππ =

∫
d4xa2H2ε

[
(∂0π)

2 − (∂iπ)
2
]

. (H.9)

Now, what we are looking for is the coupling between long and short
modes, so what we need is the interaction Lagrangian at cubic order in
perturbations with one long leg and two short ones (we focus only on
scalar degrees of freedom, i. e. we discard the graviton). Adding this to
the quadratic action for π, one can compute the power spectrum of π in
the background of a long-wavelength classical curvature perturbation:
we will denote this two-point function 〈ππ〉 |` by Pπ|` (we use the
subscript “`” to indicate that the power spectrum of π will depend on
the whole long-wavelength part of the metric in eq. (H.1), i. e. on aF,
KF, etc.). Once the cubic action Sππ|` has been found, one can use the
in-in formalism [18, 119, 255–258], which guarantees the correct choice
of normalization and vacuum for the modes, to calculate Pπ|`. Since we
are computing a two-point function in a perturbed background FLRW,
and not a full three-point function, there is a simplification [208]: the
cubic Lagrangian will depend explicitly on the spatial coordinates,
since the long-wavelength metric in CFC does. However, the terms
coming from the correction to the scale factor are evaluated only on
the central geodesic, and do not depend on x: schematically, we denote
these terms by Sππ|`,x=0. Therefore, it is possible (but not necessary)
to deal with them by taking as free action not only the one of eq. (H.9),
but Sππ + Sππ|`,x=0. The resulting equation of motion can be solved
perturbatively with Green’s function methods (see [65], for example),
and the normalization of the modes (necessary to have the correct
commutation relations) and the choice of vacuum (i. e. the Bunch-
Davies vacuum) can be carried out in the usual way.2 At this point, Pπ|`

2 For example, for the normalization of the modes it will be necessary to impose that
the Wronskian of the mode functions of the canonically normalized variable is equal
to 1 [18, 43, 119, 219, 259].
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is Pπ + Pπ|`,x=0. To find the final contribution Pπ|`,x6=0, which comes
from the x-dependent terms in the cubic action, one can do a tree-
level in-in calculation. Denoting by Lππ|`,x6=0 the corresponding cubic
Lagrangian, and using the fact that at third order in perturbations the
interaction Hamiltonian density is −Lint., one can write this power
spectrum on super-Hubble scales (τ → 0−) as [18, 43, 119, 208, 219,
259]

〈π(0, x1)π(0, x2)〉 |`,x6=0 = (2π)3
∫

dk1dk2
(2π)6

Pij(τ,k1,k2)

×
[

∂2

∂ki1∂k
j
1

δ(k1 + k2)
]

× eik1·x1+ik2·x2 .

(H.10)

In the above equation, the function Pij is defined as [208]

Pij(τ,k1,k2) = −4Re
[
iπ(τ,k1)π(τ,k2)

∫0
−∞+

dsL∗ij(s,k1,k2)
]
,

(H.11)

where the boundary condition −∞+ ≡ −∞(1 − iε) picks out the
interacting vacuum. With L∗ij we denote the (complex conjugate of
the) Fourier transform of Lππ|`,x6=0 evaluated on the mode functions of
π, that we will denote by πcl.. The i, j indices mean that every explicit
power of x that is carried by the long legs (which are all quadratic in
xi, e. g. ∝ KF|x|2) is taken care of by the derivatives of δ(k1 + k2) in
eq. (H.10). More precisely:

• suppose that Lππ|`,x6=0 contains a term of the form

Lππ|`,x6=0 ⊃ a1 a2H2εKF|x|2 (∂iπ)2 , (H.12)

where a1 is a numerical factor. In this case, Lij would be equal
to

Lij(τ,k1,k2) ⊃ −a1 × a2H2ε×KFδij︸ ︷︷ ︸
KF|x|

2

× (ik1) · (ik2)πcl.(τ, k1)πcl.(τ, k2)︸ ︷︷ ︸
(∂iπ)2

.
(H.13)

We stress that KF is just a real, classical, x-independent number
(it is evaluated on the central geodesic), therefore it is on the
same footing as a2H2ε, i. e. it is not touched by the Fourier
transform (and it is already evaluated on the classical mode
functions). We note that the time dependence of KF starts at
O(k4` ), so it can be considered a constant at the order in the
gradient expansion that we are working;
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• one can also consider the case where that Lππ|`,x6=0 contains an
anisotropic term. From eq. (8.30c), we have that the anisotropic
part of ζ` is (in terms of the long-wavelength curvature pertur-
bation in global coordinates ζgl.)

ζanis.
` (x) =

1

2
xixjDij

[
εH∂−2∂0ζgl.(τ, 0)

]
≡ xixjZij(τ, 0) , (H.14)

with Dij = ∂i∂j − ∂
2δij/3. Then the cubic Lagrangian will con-

tain a term of the form (a2 is again a numerical factor)

Lππ|`,x6=0 ⊃ a2 a2H2ε xixjZij (∂0π)2 , (H.15)

and Lij would, similarly to eq. (H.13), be given by

Lij(τ,k1,k2) ⊃ −a1×a2H2ε×Zij× ∂0πcl.(τ, k1)∂0πcl.(τ, k2) .

(H.16)

As before, Zij is a real number: however, in this case one cannot
neglect its time dependence when computing the corresponding
Pij, since it starts at order k2` .

We note that an overall −1 in the definition of Pij is due to the fact
that

xixj = −

∫
dk

(2π)3

[
∂2

∂ki∂kj
δ(k)

]
eik·x , (H.17)

while an overall factor of 2 comes from the two different contractions
that we need to consider when we use Wick’s theorem. Now, inte-
grating by parts eq. (H.10) to isolate a (2π)3δ(k1 + k2), it is possible
to extract the expression for Pπ|`,x6=0. Multiplying it with a second
long mode, and taking the average, gives then the squeezed limit
bispectrum in CFC.

Eventually, one is interested in the short-wavelength ζs and its
coupling with the long mode. In unitary gauge π = 0, the perturbation
ζs is defined by

hij = a
2e2ζ`e2ζsδij , (H.18)

so what one needs to do is find the relation between ζs and the
Goldstone boson π. We see from eq. (H.4) that a time shift τ = τ̃− π
would take care of the inflaton perturbation, that would go back to
φ = φ̄ + δφ` (as it was after the transformation from global coor-
dinates in ζ gauge to CFC) at linear order in π. This is enough for
our purposes, since we are interested only in the long-short coupling
and therefore we can drop all terms that are quadratic (or higher) in
π. Correspondingly, at quadratic order in perturbations, the spatial
metric would transform as (see also Section 8.4 for more details)

ˆ̃gij = −a2
∂π

∂x̃i
∂π

∂x̃j
− a2

∂π

∂x̃i
∂jψ

− a2
∂π

∂x̃j
∂iψ+ a2e2ζ`e−Hπe−π∂0ζ`δij ,

(H.19)
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where in the expansion of hij (i. e. the last term on the r.h.s.) we
have stopped at linear order in the short mode, for the same reason
discussed above. We see that the metric, after this time shift, is not
of the form of eq. (H.18), because of the first two terms that involve
spatial derivatives of π. It is possible to remove them with a second
order spatial coordinate transformation: however, since the terms
we have to remove are of quadratic order in the short modes, their
contribution to ζs would be negligible for our purposes. From this,
comparing with eq. (H.18), we conclude that the relation between ζs
and π is given by

ζs = −Hπ− π∂0ζ` . (H.20)

After the in-in calculation of Pπ|` that we have briefly discussed above
has been carried out, one can use eq. (H.20) to compute the power
spectrum of the short-scale ζs in the background of the long modes:
in addition to the coupling coming from the interactions (i. e. the
contribution coming from replacing π with −ζs/H in Pπ|`), there will
be additional terms coming from the second order (long-short) term
ζs ⊃ −∂0ζ`π.

At this point, one must compute the cubic Lagrangian, and for each
term derive the corresponding Pij. However, since we are working in
a “mixed ζ - π gauge”, it is clear that there will be some complications
due to the fact that the interaction Lagrangian will not be slow-roll
suppressed w.r.t. the quadratic Lagrangian for the pion. For example,
there will be interactions of the form

Lππ|` ⊃
{
a1 a

2H2ε ζ` (∂0π)
2, a2 a

2H2ε ζ` (∂iπ)
2,

a3 a
2H4ε ∂0ξ

0 π2, a4 a
2H2ε ∂iξ

0∂iππ, . . .
}
,

(H.21)

coming from both the EH action (once we plug in it the constraints
solved in terms of π) and the inflaton action. Since the mode functions
πcl., (ζ`)cl. and ξ0cl. are ∝ 1/√ε at leading order in slow-roll, the cu-
bic Lagrangian should be at least of order ε3/2 to be able to capture
the leading part of the bispectrum (which we know is slow-roll sup-
pressed, i. e. it is of order (ε2, εη)× (1/

√
ε )6) by using the de Sitter

modes alone. In other words, if we were to compute the bispectrum
using the in-in formalism discussed above, we would indeed see that
at zeroth order in slow-roll (that is, at order (1/

√
ε )6) it is zero, and

that the leading order result is O(ε, η). However, we could not trust
the slow-roll-suppressed part of the result because we would be ne-
glecting contributions coming from corrections to the mode functions:
to capture all the effects it would be necessary to use the full classical
solutions in terms of Hankel functions, which complicate considerably
the time integrals of eq. (H.11).

We are now in the position to discuss briefly the case of an inflaton
speed of sound cs different from 1. We know that for cs 6= 1, the
contribution to the bispectrum which is not slow-roll suppressed will
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be different from zero: namely, it will be proportional to (1− c2s )/c
2
s

[119, 208, 219]. Therefore, the de Sitter modes would be able to fully
capture the leading order bispectrum (which would be much larger
than its slow-roll suppressed part if cs is not too close to 1) in this
case. Besides, a further simplification arises if cs � 1: in fact, in
this non-relativistic limit we do not expect the short modes π to feel
the spatial curvature of the universe induced by the long mode,3

but to be sensitive only to the effect it has on the expansion history
aF 6= a [208]. Translated at the level of the interaction Lagrangian, this
statement means that it is possible to drop all the long legs that are
not (functions of) aF, because only these will affect the bispectrum at
order (k2`/k

2
s)/c

2
s [208]. Then, powers of xi will not appear explicitly

in Lππ|` and it will not be necessary to compute Pij using the method
of eq. (H.11), greatly simplifying the calculation.

3 The same argument can be used for the anisotropic part of the long-wavelength
metric (which we also know has an additional slow-roll suppression w.r.t. the other
parts).
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