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Preface

This work summarizes the two years of research that I have conducted at Dana-Farber

Cancer Institute(DFCI)/Harvard T.H. Chan School of Public Health, in Boston (MA,

USA), where I collaborated with Lorenzo Trippa (Associate Professor at Harvard

University and Dana Farber Cancer Institute) and Steffen Ventz (Assistant Professor

at University of Rhode Island).

The thesis is divided in two main parts. The first part represents the main

contribute of my research and on which I spent a dominant portion of my PhD

period. In this part, called "Bayesian Uncertainty-Directed Dose Finding Designs", we

introduce Bayesian uncertainty directed (BUD) designs for dose finding trials. This

class of designs assigns patients to candidate dose levels with the aims of maximizing

explicit information metrics at completion of the trial, while also avoiding the

treatment of patients with toxic or ineffective dose levels during the trial. Explicit

information metrics provide, at completion of the clinical trial, accuracy measures

of the final selection of optimal or nearly optimal dose levels. The BUD approach

utilizes the decision theoretic framework, and builds on utility functions that rank

candidate dose levels. The utility of a dose combines the probabilities of toxicity

events and the probability of a positive response to treatment. We discuss the

application of BUD designs in three distinct settings; (i) dose finding studies for

single agents, (ii) dose optimization for combination therapies of multiple agents,

and (iii) precision medicine studies with biomarker measurements that allow dose

optimization at the individual level. The proposed approach and the simulation

scenarios used in evaluation of BUD designs are motivated by a Stereotactic Body



viii Preface

Radiation Therapy (SBRT) study in lung cancer at Dana Farber Cancer Institute.

The second part of the thesis, called "Inference in Adaptive Trials under Time

Trends in the Patient Population", is a smaller project that we started only a few

months ago, and thus many questions about the topic have not been investigated

yet. The project addresses the problem of changes in the patient population over

time during a clinical trial.

Standard analysis methods in clinical trials implicitly assume that the patient

characteristics do not change over time, and the treatment effect remains constant

during the study period. Since trials run for many years, this hypothesis may not hold

and time trends in the patient population can constitute a potential source of bias in

both estimation and testing of the treatment effects. This is especially important for

trials using adaptive randomization, where the randomization probabilities change as

a function of the outcome observed during the trial. Consider a randomized two-arm

trial of total sample size N with a binary endpoint. The response probability for the

first N/2 patients is 0.2 for the control arm and 0.5 for the experimental arm. Due to

changes in patient population, the response probabilities changes to 0.4 and 0.7 for the

remaining patients in the two arms respectively. With balanced randomization (BR),

where patients are allocated to the arms with equal probabilities, the expectation of

the estimated overall response probabilities are 0.3 and 0.6 for the two arms, and the

difference is 0.3, which is constant before and after the change. However, if response

adaptive randomization is employed and the randomization probability changes to

2:1 for experimental vs control for the last N/2 patients, the expectation of the

estimated overall response probabilities are now (0.2N/4 + 0.4N/6)/(N/4 + N/6) =

0.28 and (0.5N/4 + 0.7N/3)/(N/4 + N/3) = 0.61 for the control and experimental

arms with a difference of 0.33, which is inflated by 10%.

In this work, we propose a procedure which reduces the bias of treatment effect

estimates and preserves the frequentist operating characteristics. We account for

time trends by using Generalized Additive Models (GAMs) to estimate the treatment

effect. We then use a parametric bootstrap to obtain valid inferences for treatment
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effects. The testing procedure can be implemented for any adaptive design and any

estimator of the treatment effect.

We apply our procedure to some well-known Response Adaptive Randomization

(RAR) designs to evaluate the performance of the proposed method. For each design,

we assess the estimation and testing capabilities of the method by simulating different

time trends in both standard multi-arm clinical trials and platform trials.
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Part I

Bayesian Uncertainty-Directed

Dose Finding Designs
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Chapter 1

Introduction

We introduce Bayesian uncertainty directed (BUD) designs for dose finding clinical

trials. These designs build on joint Bayesian modeling of toxicity and efficacy

endpoints. A BUD design assigns patients sequentially to candidate dose-levels

of a single drug, or dose combinations of multiple drugs. The aim is to identify

effective dose levels and, in some cases, to optimize the dose at the patient level

accounting for relevant biomarkers or other individual characteristics. We define

the optimal dose through a utility function that balances toxicities and treatment

effects. BUD designs utilize metrics that quantify the accumulated information

during the course of the trial. In particular, the information measures that we use

are representative of the uncertainty level involved in selecting optimal treatments.

Patients are sequentially assigned to different doses consistently with the primary

aim of maximizing the accumulated information at completion of the study.

In Phase I trials treatments are often administered for the first time to humans.

The goal is typically to identify a dose that is safe. In many disease areas it is common

to assume that the clinical benefit and the probability of toxicities increase with

the dose level. Phase I designs in oncology often estimate the maximum tolerated

dose (MTD), which is the highest dose level with an acceptable probability of severe

toxicity events. The 3+3 design of Storer [56] is the most frequently used design. The

design is simple to use, but has well documented limitations; MTD estimates have
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large variability [24], and the correct MTD is selected with low probability [58]. The

continual reassessment method (CRM) of O’Quigley et al. [47] uses sequentially the

accumulated data, estimates the dose-toxicity response curve, and assigns patients

to dose levels that are close to the current MTD estimate. Extensions of the CRM

have been discussed in the literature [34, 24, 46, 4].

Phase I designs that focus only on toxicities have been criticized, because they

do not consider treatment efficacy and positive effects [79, 60, 42]. Both toxicity and

efficacy endpoints can be used to guide dose selection: we mention the methodology

developed by Gooley et al. [25] for bone marrow transplantation studies, and the

study designs in [62, 10, 61, 45, 79, 42].

Recent dose finding designs include the estimation of personalized MTDs based

on individual characteristics, for instance age and biomarkers-profiles [50, 48, 5,

65]. Methodological work has also been directed to the estimation of MTDs for

combination therapies [64, 72, 78, 7]. Although the above designs have substantial

differences in their goals and complexity levels, most of the designs that we mentioned

seem to conform with the sequential assignment of patients either to the current

estimate of the MTD or to the estimated optimal dose. These strategies can be

suboptimal in accumulating information to accurately identify optimal dose levels at

completion of the study. Indeed, as discussed in [66, 57] these greedy assignment

rules often assign a substantial proportion of the enrolled patients to a single dose

with efficacy and toxicity probabilities considerably different from the most effective

does levels. The approach that we propose attempts to overcome this limitation.

Our study is motivated by a personalized dose finding trial for Stereotactic Body

Radiation Therapy (SBRT) at our institute. The radiation dose to the tumor and

surrounding organs are precisely measured and correlates with the probability of

cancer control versus organ injury. However, the distribution of radiations across

patients varies depending tumor size, and location. Patients will be assigned to

dose levels after measurement of a relevant biomarker, the individual dose volume

histogram (DVH).
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The SBRT trial that we mentioned will estimate optimal radiation doses for

patients with a broad spectrum of DVH curves. The individual optimal dose is

defined through a utility that balance the probabilities of toxicities and positive

treatment effects of candidate radiation intensity levels. For each enrolled patient,

the BUD algorithm estimates (i) utilities of candidate doses, specific for the enrolled

patient, and (ii) the potential gains of information on the relations that link efficacy

and toxicities to the treatment dose. The gain of information coincides with the

reduction of uncertainty on efficacy and toxicity regression curves determined by the

assignment of the enrolled patient to a specific dose. Potential gains of information

can vary substantially across dose levels, they tend to be more pronounced for dose

levels that are unexplored and less for dose levels that have been repeatedly assigned.

Patients assignment in BUD designs is sequentially driven both by utility estimates

and by potential gains of information.

The next chapters are organized as follows. In Chapter 2 we describe the SBRT

trial. Chapter 3 introduces a probability model that we use to define the BUD dose

finding algorithms in Chapter 4. In Chapter 5 we discuss BUD methods for (i) a

dose finding design with a single treatment, (ii) combination therapies, and (iii)

personalized dose finding designs that utilize biomarkers to predict toxicities and

treatment effects at various dose levels. A discussion is provided in Chapter 6.





7

Chapter 2

The SBRT trial

This work is motivated by a trial at our institution that seeks to define personalized

Stereotactic Body Radiation Therapy (SBRT) doses for patients with lung cancer.

SBRT is a novel radiation therapy technique that has been developed in the last

decade. It is a relatively new treatment technique, which has become widely adopted

for the treatment of lung cancer, but the exact dose tolerance of various organs to

high dose radiation remain unclear. The trial has two primary endpoints; chest wall

pain within 10 weeks of radiation T ∈ {0, 1} and tumor shrinkage E ∈ {0, 1} after 8

weeks of treatment. The trial aim is to estimate personalized optimal doses.

Conventional radiation is the standard of care for lung cancer patients when

surgical resection can’t be performed, with a local relapse rate of 55-70% and a

5-years survival probability of 15-30% [18]. SBRT can deliver significantly higher

doses of radiation to the tumor, while controlling exposure of healthy surrounding

tissues to radiation better than conventional therapy. Previous SBRT studies showed

encouraging improvements in tumor response [55], but also an unexpected incidence

of chest wall toxicities. Both Stephans et al. [55] and Dunlap et al. [18] indicate that

these adverse events may be correlated with the administered dose and volume of

chest wall exposed to radiations.

A tomography scan is used for radiation planning which entails delineating the

tumor and each nearby organ. The software utilized to specify radiation plans
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can be used to generate patient-specific DVH curves hi,d(·) [35, 43]. Assuming a

prescribed dose d will be administered to patient i, the quantity hi,d(d′) indicates

the volume of tissues that accumulate radiation intensities higher than d′ Gy, for d′

within a range of interest [17]. For instance hi,d(30) = 15% indicates that 15% of the

radiated chest wall will accumulate 30Gy or more. Patients treated with the same

prescribed dose-level d of radiation can have very different DVH curves for organs

such as the chest wall because of differences in the tumor location, chest volume and

other factors. Ideally most of the high dose radiation should concentrate around

the tumor tissue with only a small amount of chest wall exposed to radiation. The

optimal dose d?i that we will define in Chapter 4 is patient specific and depends on

the individual DVH curves {hi,d; d ∈ D}.
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Chapter 3

Probability model

We consider a dose finding trial that assigns up to N patients to different treatment

doses or combinations of treatments. For patient i the vector (Xi, Ti, Ei) ∈ X×{0, 1}2

includes binary toxicity and efficacy outcomes (Ti, Ei) and the covariate profile

Xi ∈ X ⊂ Rp, p ≥ 1, which consists of a set of patients’ characteristics, for example

age, and the assigned dose d. The outcome Ti = 1 indicates a toxicity event, chest

wall toxicity in the SBRT trial. Symmetrically Ei = 1 corresponds to a positive

response to the therapy, tumor shrinkage and control in the SBRT trial. Finally,

Σi = {(Xj , Tj , Ej); j = 1, . . . , i} denotes the observed data for the first i patients.

We use a bivariate Probit model [13] for the treatment outcomes

Pr (Ei = 1, Ti = 1|Xi = x, β) = Φ
(
x′βE , x′βT ; ρ

)
, (3.1)

with marginal probabilities Pr (Ei = 1|Xi = x, β) = Φ
(
x′βE ,∞; ρ

)
and Pr(Ti =

1|Xi = x, β) = Φ
(
∞, x′βT ; ρ

)
. Here Φ(·, ·; ρ) is the distribution function of a

bivariate normal random vector with variances equal to one and correlation ρ. The

BUD designs that we will study in this manuscript can be defined using alternative

Bayesian models, and the methodological approach remains identical.
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3.1 Treatments with a single agent

A dose finding trial for a single treatment considers J dose levels D = {d1, · · · , dJ}.

We initially assume that the covariate vectors Xi includes only the dose level,

Xi ∈ {0, 1}J , and the j-th entry is equal to one if the patient is assigned to dose

dj . Therefore, if the patient receives dose dj , then Pr (Ei = 1, Ti = 1|Xi, β) =

Φ
(
βEj , β

T
j ; ρ

)
, where (βEj , βTj ) indicates the j-th entry of (βE , βT ). The probabilities

of toxicity and efficacy in most cases are monotone with respect to the dose level.

In our Bayesian model the vectors βT and βE are a priori independent and we use

a Gaussian prior with monotone mean functions µ`,` = T,E, for β` ∼ N(µ`,Ψ`),

and the covariance values Ψ`
j,j′ are set equal to λ` ×min(dj , dj′). In different words

β`j+1 − β`j = µ`j+1 − µ`j + ε`j+1 with ε`j+1 ∼ N(0, λ`|dj+1 − dj |).

We do not enforce monotonicity β`j ≤ β`j+1, ` = T,E, with prior probability one,

but utilize increasing mean functions µ`j . The prior distributions for µ` can range

from linear functions, µ`j = γ`0 +γ`1dj , γ`1 ≥ 0, with a hyperprior on γ`, to independent

densities for (µ`1, µ`2 − µ`1, · · · , µ`J − µ`J−1). For the correlation parameter ρ we use a

mixture prior ρ ∼ πδ0(ρ) + (1− π)Unif(ρ,−1, 1), where δ0 is the Dirac function and

Unif(ρ,−1, 1) indicates the uniform distribution on [−1, 1].

3.2 Combination therapies

In Section 5.2 we discuss BUD designs for therapies with two agents, with dose

levels d ∈ D = D1×D2. Here Dr = {dr1, · · · , drJ} indicates candidate doses for agent

r = 1, 2. The covariate vector Xi = (X1
i , X

2
i , X

3
i ) of the Probit model (3.1) includes,

as in Section 3.1, vectors Xr
i , r = 1, 2, that indicate the assigned dose of treatment

r, and a third component X3
i to account for potential interactions. The interaction

term can be defined by multiplication X3
i = (d1(i)×d2(i)), of the assigned doses d1(i)

and d2(i) for patient i or other functions, we refer to [1] for a survey on modeling

approaches and definitions of interaction terms for binary regressions.

We use independent Gaussian distributions for the prior probability of β` =
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(β`,1, β`,1, β`,3), ` = T,E. In particular β`,r ∼ N(µ`,r,Ψ`,r), r = 1, 2, and also in this

setting, as in Section 3.1, we use increasing linear functions µ`,r and hyperpriors

on the corresponding coefficients. We use the same covariance structure as earlier

Ψ`,r
j,j′ = min(dj , dj′)× λ`r, r = 1, 2.

Recently Riviere et al. [52] studied several probability models for dose finding in

combination therapy trials and showed with simulations that the Probit model is

competitive and often superior to more complex regression models.

3.3 The use of biomarkers to optimize individual dose

levels

In the SBRT trial that we described in Chapter 2, each patient is assigned to one

of J dose levels d ∈ D. Typically the administered dose d is not homogeneously

distributed over the radiated volume of the chest wall [35, 43, 55, 18]. Depending on

the size and location of the tumor, and the radiation angle, some tissues are exposed

to more radiations than others.

Before treatment of patient i, a radiation oncology software quantifies for each

dose d ∈ D a DVH curve hi,d(·), where hi,d(z) ∈ [0, 1] indicates the volume of

the chest wall that receives more than z ≥ 0 Gy of radiation. The probability of

a toxicity event increases with the volume exposed to high intensity of radiation.

Therefore we use the patients’ DVH to predict toxicity events.

We compute for each dose a summary, the generalized equivalent uniform dose

(EUD) of the patient DVH curve, Qi(d) = (
∑
k z

a
k × hi,d(zk))1/a. Here {zk} is a grid

of equal spaced values, and the parameter a is chosen using the recommendations

in [77]; for the chest wall we use a = 5 [77]. See [28] for an insightful discussion of

EUDs in radiation oncology.

Ideally, the tumor should be radiated with high intensity and the surrounding

chest wall should not be damaged by radiations.

For each candidate dose d ∈ D we compute the EUD Qi(d). High values of
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Qi(d) tend to increase the risk of toxicity [77]. We include the EUDs in the binary

regression model. Alternative summaries of the DHV curves, different from Qi(d),

could be considered and utilized in the proposed BUD designs.

The probability model Pr(Ei|Xi, β) for the efficacy endpoints Ei remains identical

as in Section 3.1. For patient i, we define Xi =
(
X1
i , Qi(d1), · · · , Qi(dJ)

)
and, if the

patient is treated with dose dj , then the individual probability of toxicity becomes

P (Ti = 1|Xi, β) = Φ(βTj + βQj ×Qi(dj)).

To complete the Bayesian model we need a prior distribution on the parameters

βT and βQ. One can combine the prior distribution of βT in Section 3.1 and a joint

Gaussian distribution for the biomarker effects βQ = (βQ1 , · · · , β
Q
J ) ∼ N(µQ,ΨQ)

with covariance ΨQ
j,j′ = λQ exp{−|dj − dj′ |/λS}.
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Chapter 4

BUD dose finding

The goal of a BUD design is the maximization of information at completion of the

study. The design can be applied in various settings, including trials for a single

treatment or a combination therapy, as well as studies that seek to optimize the

dose level and treatment duration simultaneously [36]. For simplicity, we describe

BUD designs for dose finding studies with a single treatment. Extensions to dose

finding designs for combination therapies or trials that utilize individual biomarkers

are described in Section 4.1. The BUD approach can be described in three steps:

U-Step (Utility of a Dose). We start by specifying a utility function u(d) that

ranks candidate dose levels d ∈ D. Utility functions, as it is standard in decision

theory [9], express preferences. We focus on maps u(d) = u(pT,d, pE,d) that are

increasing in the probability of a positive response to treatment pE,d and decreasing

in the probability of toxicity pT,d. For simplicity, we use weighted combinations of

these two probabilities

u(d) = w1 × (1− pT,d) + (1− w1)× pE,d, (4.1)

where w1 ∈ [0, 1]. In our Bayesian analysis, both pT,d and pE,d are random variables,

jointly specified a priori and updated during the trial. It follows that also u(d) is a

random variable whose conditional distribution, given the data, changes during the
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trial.

The Bayesian model (3.1) and the accumulated data Σi are used sequentially to

estimate dose-specific utilities and to quantify uncertainty on these estimates. We

use d? ∈ D to indicate the dose that maximizes the utility u among all candidate

dose levels D, i.e. we define the random variable d? = arg maxd∈D u(d).

I-Step (Information Measure). Efficacy and toxicity data from the first i patients

enrolled in the trial allow one to estimate the optimal dose,

Pr(d? = d|Σi) = Pr
(
∩d′∈D

{
u(d) ≥ u(d′)

}
|Σi
)
, for d ∈ D. (4.2)

The posterior of our Bayesian model (3.1) can be used to quantify the accumulated

information. We select an information measure I(Σi). The function may take

negative values. Large values of I(ΣN ) indicate that the trial allows to select dose

levels of high utility with good accuracy. Various information measures can be used,

we mention three examples:

(i) The (negative) posterior variance of the utility generated by d?, I1(Σi) =

−Var[u(d?)|Σi]. A low posterior variance of u(d∗) indicates low uncertainty about

the potential benefits of the treatment.

(ii) We also consider the (negative) entropy of the posterior distribution (4.2)

of the optimal dose, I2(Σi) =
∑
d∈D Pr(d? = d|Σi) logPr(d? = d|Σi). The measure

takes its minimum I2(Σi) = − log |D| when the posterior distribution of d? is uniform,

and I2(Σi) = 0 if d? = d with posterior probability one for some dose d ∈ D.

(iii) Consider the dose level d̂?i := arg mind∈D E([u(d)−u(d?)]2|Σi] after observing

the first i outcomes. If the total sample size of the trial was N = i, then we would

select d̂?i . The average squared distance between the utilities of d? and d̂?i , i.e.

I3(Σi) = −E
([
u(d?)− u(d̂?i )

]2|Σi
)
, is a measure of uncertainty. Values close to zero

indicate a low risk of selecting a dose with utility substantially below the maximum

u(d∗).

A-Step (Dose Assignment Rule). We define the sequential dose assignment
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algorithm. It assigns each patient to a dose d ∈ D by weighting two goals: (i) the

approximate optimization of the accumulating information expressed by the metric

I(Σi) (see I-Step) and (ii) the assignment of patients to doses with high expected

utility and low-risk of toxicity events.

We use convex functions Pr(·|Σi) → Ĩ[Pr(·|Σi)] that translate the posterior

Pr(·|Σi) into an information summary I(Σi) = Ĩ[Pr(·|Σi)]. We previously described

three examples. Convexity implies that for any 0 ≤ α ≤ 1 and pair of distributions

p1 and p2 on the parameter space of our Bayesian model

Ĩ(α× p1 + (1− α)× p2) ≤ Ĩ(p1)× α+ Ĩ(p2)× (1− α).

The use of convex information measures ensures, by Jensen’s inequality, that the

accumulated information will on average increase E[I(Σi)|Xi,Σi−1] ≥ I(Σi−1) with

each additional observation (Xi, Ei, Ti).

For each patient 1 ≤ i ≤ N we compute the summary I(Σi−1). We then

determine the expected increment in information Gi(d) if the patient is assigned to

dose dj ∈ D,

Gi(d) = E[I(Σi)|Xi = d,Σi−1]− I(Σi−1).

Here Xi = d indicates the assignment of patient i to dose d. By convexity Gi(d) ≥ 0,

and large values of Gi(d) correspond to large expected gains in information. Next

we define scores that weight the gain in information Gi(d) and the estimated utility

of the dose

Si(d) = w2 ×Gi(d) + (1− w2)× E[u(d)|Σi−1].

The parameter w2 ∈ [0, 1] weights the two aims of the dose finding algorithm. With

w2 = 1 the dose with the maximum expected increment in information has the

highest score, while with w2 = 0 the dose with the highest expected utility ranks

first.

Lastly, we restrict the dose assignment of patient i to a dose in Ai ⊂ D that
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(i) has a predicted probability of toxicity pT,d below the pre-specifies threshold

pmax,

(ii) has an expected utility E[u(d)|Σi−1] above the pre-specifies threshold umin,

(iii) and is similar to the last assigned dose level, that is, we only allow gradual

escalation and deescalation of dose levels by at most ε units at each assignment.

Alternative toxicity criteria can be used to replace (i). For instance we may select

all doses d such that Pr(pT,d < pmax|Σi) > ∆. Here ∆ represents a threshold for

the posterior probability of {pT,d < pmax}. The last two constraints (ii) and (iii) in

the definition of Ai may not be necessary for all dose finding trials, in such cases we

set (ε, umin) = (∞, 0). The constraints Ai are key components of dose finding trials

to protect patients safety, and their definition can be tailored to the specific trial

characteristics. As we describe in the next paragraph BUD designs are driven by

the scores Si(d) and select the dose for patient i within Ai.

If the set Ai is empty, then the trial is stopped because candidate dose levels

are not safe or promising. Otherwise, patient i is assigned to a dose dj ∈ Ai with

probability

Si(d)c × I(d ∈ Ai)∑
d′∈Ai

Si(d′)c
. (4.3)

where c ≥ 0. With c ≈ ∞ patients are assigned to the dose with the highest score

within Ai, whereas with c = 0 they are assigned with identical probabilities to any

of the dose levels in Ai. We can now summarize the Bayesian uncertainty directed

dose finding design in Algorithm 2.

4.1 Personalize dose finding designs

The BUD algorithm that we introduced can be applied to trials with combination

therapies, i.e. D = D1×D2, without any substantial change other than the Bayesian

modeling of toxicity and efficacy endpoints. Additionally, in this Section, we describe
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Algorithm 1 The Bayesian uncertainty directed (BUD) dose finding algorithm
1: for Each patient 1 ≤ i ≤ N do
2: Compute the expected utility E[u(d)|Σi−1] for each d ∈ D.
3: Compute the information increament Gi(d) for each d ∈ D.
4: Determine the set of candidate doses Ai for patient i.

5: if Ai = ∅, then stop the trial
6: else
7: Set Si(d) = w2 ×Gi(d) + (1− w2)× E[u(d)|Σi−1] for each d ∈ Ai.

8: Randomize patient i to a dose d ∈ Ai with probability

Si(d)c∑
d′∈Ai

Si(d)c .

9: end if
10: end for
11: Output: d̂? = arg maxE[u(d)|Σi].

how to use the design in personalized dose finding studies. The probability of

dose related toxicity and efficacy at dose d depends on the patient covariates x.

We indicate variations of the probabilities of toxicity and efficacy across values

of these characteristics x by pT,d(x) and pE,d(x) for each dose d ∈ D. Similar to

Chapter 3 and the previous Section, the vector Xi = (d, x) indicates the assigned

dose d and other characteristics x, such as age. For instance, in Section 5.3, we

use the EUD to predict the probability of toxicity for each candidate dose dj ∈ D,

pT,dj
(x) = Φ(βTj + βQj × x), when the EUD equals Qi(dj) = x.

The BUD approach now remains essentially identical and proceeds as follows:

U-Step. We use the same function u(d, x) := u(pT,d(x), pE,d(x)) as before in (4.1)

to determine the utility of dose d for a patient with profile x. The personalized

optimal dose for a patient with profile x is d?(x) = argd∈Dmax u(d, x).

I-Step. We use I(Σi, x) to indicate the accumulated information on dose levels

with high utility for patients with profile x, for example I(Σi, x) =
∑
d Pr(d?(x) =

d|Σi) logPr(d?(x) = d|Σi). The BUD algorithm seeks to maximize the average

I(ΣN ) = E[I(ΣN , X)] =
∫
X I(ΣN , x)dPr(x) at completion of the trial. Here the

information measure I(ΣN , x) is averaged with respect to the distribution of the
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patients covariates x. In our application, we use available data from the department

of radiation oncology at our institution to estimate the distribution Pr(x). This

estimate is plugged into the BUD algorithm.

A-Step. For each patient i we compute the expected information gains

Gi(d, x) = E[I(Σi)|Xi = (d, x),Σi−1]− I(Σi−1),

d ∈ D, and the score function Si(d, x) = w2×Gi(d, x)+(1−w2)×E[u(d, x)|Σi−1]. We

then determine the set of candidate dose levelsAi(x) that (i) are safe E[pT,d(x)|Σi−1] ≤

pmin and (ii) have expected utility E[u(d, x)|Σi−1] above a minimum threshold umin.

If no such dose exists, Ai(x) = ∅, the patient with profile x will not be enrolled in

the trial because no safe and effective dose is available. Otherwise the randomization

probabilities within Ai(x) remains proportional to [Si(d, x)]c, as in the previous

Section.

When patient i with profile x is not treated because Ai(x) is empty, we determine

if the trial should continued or not. We evaluate the proportion of patients that

could be treated accordingly to the available data Σi−1. The relative proportion of

this group of patients is Pr(x : Ai(x) 6= ∅); as we mentioned in our application the

patients’ profiles x distribution is estimated from historical data. If this proportion

falls below 20% the trial is terminated.
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Chapter 5

Simulation studies

We discuss the operating characteristics of BUD designs for dose finding studies. We

initially investigated the sensitivity of the BUD design with respect to the tuning

parameter w2, which balances two competing goals. Recall that by selecting w2 = 0

the design assigns each patient i to the dose d with highest expected utility, while at

the opposite extreme w2 = 0 maximizes the expected information gain Gi(d).

We illustrate a simulation study for a single agent with J = 5 doses and probabili-

ties of response and toxicity equal to (0.1, 0.2, 0.25, 0.5, 0.54) and (0.05, 0.07, 0.1, 0.15,

0.35). We set w1 = 0.55 in the definition of the utility (4.1) and u(dj) = 0.56, 0.60, 0.60,

0.69 and 0.60 for doses j = 1, · · · , 5. We then generated 1,000 trials using

w2 = 0, 0.1, . . . , 0.9 or 1. Column A of Figure 7.1, summarizes the operating

characteristics for a trial with N = 30 patients. Different colors in Figure 7.1

correspond to different dose levels. Dose levels are ordered accordingly to their

utility, from blue (high utility) to yellow (low utility). We used the information

measure I1(Σi) = −Var[u(d?)|Σi). The top row shows the proportion of simulations

that selected dose d ∈ D at completion of the phase I study as the optimal dose for

future stages of drug development. The bottom row shows the average number of

patients treated with each dose during the study.

In our simulation the parameter w2 has moderate effect on the operating charac-

teristics, with relatively small variations for parameter values of w2 > 0.4. Values of
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w2 < 0.2 lead to a large proportion of simulations that select a suboptimal dose with

low utility and a large number of patients treated with a suboptimal dose. With

w2 = 0 BUD selects in 40.1% of the simulations the dose with the highest utility and

assigns on average 6.1 patients to this dose. Values of w2 above 0.4 lead to sufficient

accumulation of information to select in most simulations a dose with high utility.

For instance with w2 = 0.4, 0.7 or 1 the design selects in 61.4%, 63.6% and 68.1%

of all simulated trials the dose with the highest utility and assigns on average 11.2,

11.2 and 10.5 patients to this dose.

This result is in agreement with our simulations in Section 5.1. Designs like the

bCRM of [10], which assign each patient to doses close to the current estimate of

the optimal dose (similar to BUD with w2 = 0), select in a relevant proportion of

simulations a suboptimal dose and tend to assign fewer patients to the optimal arm

than a BUD with w2 > 0.2.

5.1 Dose finding trials for single-drug therapies

We consider BUD designs for a single treatment. We consider scenarios with a

maximum sample size of N = 30 patients and J = 5 dose levels. For comparisons

we selected the same simulation scenarios as in [42], which are described in the

first column of Table 6.1. For each scenario, we simulated 1,000 trials using BUD

designs and three alternative designs. The toxicity and efficacy outcomes have

been generated from a bivariate Gumbel model as detailed in [44, 42] with outcome

probabilities summarized in Table 6.1. To facilitate comparisons we assume that the

outcomes are available immediately after treatment assignment. We will relax this

assumption later in this manuscript and discuss the effects of delayed outcomes.

We consider three BUD designs, with utility u(d) defined as in (4.1) with

w1 = 0.55 and set c = 1 in (4.3). Each BUD design adopts a different information

measure using either the posterior variance of the utility u(d?), the negative posterior

entropy of d? or the mean squared loss between u(d̂?i ) and u(d?). These are the
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information measures discussed in Chapter 4. We indicate the three designs by

BUD1, BUD2 and BUD3, respectively.

We compare the BUD design to the bivariate continuous reassessment method

(bCRM) of Braun [10] and the design introduced in Liu and Johnson [42] (LJ). The

bCRM computes, before the assignment of each patient i, the distances between

the estimated probabilities of response and toxicity (E[pE,d|Σi−1], E[pT,d|Σi−1])

of dose d ∈ D and target probabilities (θE , θT ) as described in Braun [10]. We

indicate the distance by ri(d). The patient is then assigned to the dose that

minimizes this distance. At the end of the trial the bCRM design recommends dose

d̂? = arg mind rN+1(d) for future stages of drug development. The LJ design defines

the utility of a dose d as

u(d) = pE,d − w3 × pT,d − w4 × pT,d × I(pT,d > θ?T ),

where θ?T is a toxicity threshold [42]. Before the enrollment of each patient i, the

LJ design determines the estimate d̂?i equal to arg maxd∈D Pr(u(d?) = u(d)|Σi), and

assigns the patient to either d̂?i or the two neighboring (above and below) doses

with probability proportional to Pr(u(d?) = u(d)|Σi). At the end of the trial dose

d̂?N+1 is recommended. We set (w3, w4) = (0.33, 1.09) and θ?T = 0.3 in the LJ design,

(θE , θT ) = (0.4, 0.2) in the bCRM. These values ensure, that the optimal dose levels

under bCRM, LJ snd BUD designs are the same in each scenario.

The bCRM, LJ and BUD designs utilize the probability model described in Section

3.1. To facilitate comparisons we do not include early stopping. The variance param-

eters λ`, ` = T,E, for β` ∼ N(µ`,Ψ`) equal 1.5, and mean function µ` is centered

around (−0.85,−0.5,−0.25, 0, 0.25) for r = E and (−1.65,−1.25,−0.85,−0.5,−0.4)

for r = T .

Table 6.1 reports, for each scenario, the proportion of times that each dose was

selected at the end of the trial as the optimal dose across 1000 simulations. Values

in parenthesis indicate the average number of patients that have been treated with
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dose d ∈ D across simulations.

In Scenario 1, all doses have a low probability of toxicity and dose d5 has, with

0.43, a substantial larger probability of response to treatment compared all other

dose levels. The BUD1, BUD2 and BUD3 recommend in 65%, 67% and 66% of all

simulated trials dose five for future drug development, compared to 34% and 59%

for the bCRM and the JL designs respectively. In Scenario 4, the third and the

fourth dose d4, d5 have nearly identical utilities, 0.62 and 0.61 compared to values

between 0.51 and 0.56 for the remaining doses. The bCRM and LJ designs select

the first two doses d1, d2 substantially more frequently across simulations than the

BUD designs. The bCRM selects dose one or two in 49% of all simulations, while

LJ selects these doses in 36% of all simulations. In comparison the BUD designs

select these two suboptimal doses substantially less frequently (13.8%, 12.4%, and

13.2% for BUD1, BUD2 and BUD3).

We show, in Column A of Figure 7.2, for each scenario, the expected number of

responses to treatment and toxicity events in a hypothetical future cohort of 100

patients treated with the recommended dose d̂?. In scenario 1 the five designs lead

on average between 90 and 92 out of 100 patients without toxicity events. The

three BUD designs lead on average to 36 patients that respond to the treatment

at dose d?, compared to 28 and 34 patients for the bCRM and LJ designs. The

performance of the BUD designs compared to the bCRM and LJ design are similar

in the remaining scenarios. The BUD2 design, based on the posterior entropy of d?,

seems outperforms BUD1 and BUD3 in scenarios 1, 3 and 5.

We also investigated the operating characteristics of BUD designs when the

outcomes are not available immediately after treatment assignment. The additional

time between enrollment and outcome data reduces the information utilized by the

dose-assignment algorithm. We repeated the simulations of BUD trials assuming an

average enrollment rate of 24 patients per year. For each patient i, the treatment

response Ei and the toxicity outcome Ti become available 12 weeks after treatment.

Within this time window Bayesian stochastic imputation can be used to determine
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the randomization probabilities. In the first scenario, BUD1, BUD2 and BUD3 select

in 64.4%, 61.5% and 62.1% of all simulated BUD trials the dose with the highest

utility, compared to 65.2%. 67.3% and 65.6% when the outcomes are immediately

available after randomization, see Table 7.2. The operating characteristics with

delayed outcomes are similar for the remaining three scenarios, the proportion of

simulated trials that select the optimal dose decreases between 1% to 4 % for BUD1,

2% to 10% for BUD2, and 2% to 10% for BUD3.

5.2 Combination therapies

We can now consider a therapy that combines two agents. The first drug is adminis-

tered at one of three different dose levels D1 = {d1
1, d

1
2, d

1
3}, and the second has four

dose levels D2 = {d2
1, d

2
2, d

2
3, d

2
4}. Combination therapies require typically a larger

sample size compared to single-agent trials [78]. We simulated trials with N = 100

patients.

We consider four simulation scenarios (see Table 7.3), and simulated 1,000 trials

under each scenario. In scenarios one and three the combinations with the highest

utility are (d1
2, d

2
2) and (d1

1, d
2
4). In scenario two all combinations have similar response

and toxicity probabilities, and the combination (d1
2, d

2
4) has slightly higher utility

than the other combinations. In scenario 4, combinations (d1
1, d

2
4) and (d1

2, d
2
3) have

both optimal utility, see supplementary Table 7.3.

For BUD simulations we used again the same three information measures I(Σi)

as in Section 5.1. In all simulations the first patient is assigned to dose (d1
1, d

2
1). The

hyperparameters µ`,r1 , µ`,2 − µ`,1, · · · for βr` ∼ N(µ`,r,Ψl,r), r = 1, 2 have, for both

` = E, T , means (−0.5, 0.25, 0.25) for the drug r = 1 and (−0.5, 0.25, 0.25, 0.25) for

the second drug. We also specify E[µ`,3j ] = 0, λ1
` = λ2

` = 1.5 and λ3
` = 1 for ` = T,E.

We compare BUD designs to three alternative designs; the Bayesian optimal

interval (BOIN) design of Lin and Yin [40], the dose finding design DFcomb of

Riviere et al. [51] and the dose finding design of Yin and Yuan [78] (YY design).
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The first two designs use only toxicity endpoints to determine a combination dose d

with toxicity profile close to a target toxicity level θT .

The YY design is a two stage design. Let θT and θE be upper-toxicity and

lower-efficacy parameters. In the initial stage, N1 patients are randomized to identify

a set of candidate dose combinations such that Pr(pT,d < θT |ΣN1) > ∆T , where

∆T ∈ [0, 1] is a predefined threshold. In the second stage N2 patients are randomized

with equal probabilities to the identified subset of doses d. If during the second

stage the posterior Pr(pE,d > θE |Σi) falls below the threshold ∆E , then dose d is

dropped. At the end of the study, among all dose levels that remained active the

YY design selects the dose that maximizes Pr(pE,d > θE |Σi).

The BOIN design assigns cohorts of patients sequentially to different dose levels.

Given the current cohort ` at combination (d1
i , d

2
j ), the design escalates to either

(d1
i+1, d

2
j ) or (d1

i , d
2
j+1) if less than t1` toxicity events occurred. The definition of t1`

is described in Yuan et al. [81]. If more than t2` , but less than t3` , toxicity events

occurred, than the dose is de-escalated to either (d1
i−1, d

2
j ) or (d1

i , d
2
j−1). Finally, if

more than t3` events occur the current dose and all doses (d1
k, d

2
l ), k ≥ i, l ≥ j are not

considered anymore, and the combination (d1
i , d

2
j ) is reduced. When the design has

to choose between (d1
i+1, d

2
j ) and (d1

i , d
2
j+1), or between (d1

i−1, d
2
j ) and (d1

i , d
2
j−1), the

combination with the lower estimated toxicity is preferred [40]. At the end of the

trial an isotonic regression model is fitted, and a targeted toxicity probability θT is

used to select d such that p̂T (d) ≈ θT .

The DFcomb design of Riviere et al. [51] has similar characteristics. Let ∆E and

∆D be thresholds for dose escalation and de-escalation, such that ∆E+∆D > 1. If pa-

tient i was assigned to dose d = (d1
l , d

2
j ), and Pr(pT,d < θT |Σi) is larger than a thresh-

old ∆E , then the dose is increased to d′ in {(d1
l+1, d

2
j ), (d1

l , d
2
j+1), (d1

l+1, d
2
j−1), (d1

l−1,

d2
j+1)}; the combination with posterior mean E[pT,d′ |Σi] closest to the target p0

T is

preferred. If instead the posterior Pr(pT,d ≥ θT |Σi) is larger than ∆D, then the

dose is reduced to the d′ in {(d1
l−1, d

2
j ), (d1

l−1, d
2
j+1), (d1

l , d
2
j−1), (d1

l+1, d
2
j−1)} which

has an expected toxicity event closest to the target probability p0
T . Finally, if



5.2 Combination therapies 25

Pr(pT,d < θT |Σi) < ∆E and Pr(pT,d ≥ θT |Σi) < ∆D then the next patient is

assigned again to the current dose d. When the maximum sample size N is reached

this design selects the dose d that maximizes Pr(θT − δ ≤ pT,d ≤ θT + δ|ΣN ), with

δ > 0.

For BOIN and DFcomb, we select design parameters that match the optimal

dose combinations across designs, including the proposed BUD designs. Similarly for

the YY design we selected (N1, N2) = (25, 75) patients and tune (θT , θE) to obtain

the same target dose across designs.

Figure 7.3 shows the number of times each dose combination is selected at the

end of the trial. Doses are ordered from light to dark according to their utility. In

Scenario 1, BUD1 and BUD2 select the optimal dose (dark blue) in 67.4 and 73.7%

of all simulated trials, compared to 50.6%, 25.3% and 42.2% for BOIN, DFcomb, and

YY, respectively. In Scenario 2, where most doses have similar utility, BUD designs

select the optimal dose with frequencies at least 7.5%, 6% and 26% higher than

the DFcomb, BOIN and YY designs. Similarly, in Scenario 3 BUD designs select

the optimal dose more frequently than the three alternative designs. In Scenario 4,

with two optimal dose combinations, BUD2 performs best and selects in 67% of the

simulations one of the two optimal combinations compared to 56.3% and 47.3% for

BUD1 and BUD3, 51.6% for BOIN, 24.6% for DFcomb and 18.8% for YY.

Column B of Figure 7.2 shows the average number of responders and toxicity

events in a hypothetical cohort of 100 patients treated with the recommended dose.

The recommended dose combination varies across simulations. In Scenario 1, 3,

4 BUD designs achieve a higher average number of treatment responses than the

alternative designs, but with a slightly larger number of toxicity events. In Scenario

3, the expected number of responders for the BUD designs is 54.3, 56.0 and 48

compared to 30.2, 19.7 and 26.5 for the BOIN, DFcomb and the YY designs. The

expected number of adverse events is between 30.2 and 33.3 for BUD designs, 27.7

BOIN, 22.4 for DFcomb and 31.1 for the YY design.
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5.3 Dose finding with biomarkers

We consider the SBRT study of Chapter 2. It sequentially assigns patients to

J = 4 dose levels. Figure 7.4 summarizes four scenarios that we considered. For

instance, in the first scenario the probability of toxicity equals (0.05, 0.07, 0.10, 0.15)

for dose d1, · · · , d4 when the EUD summary is close to zero and it increases to

(0.4, 0.42, 0.45, 0.46) when the EUD is equal to its maximum. The first column of

figure 7.4 shows the marginal densities of the EUD summaries Qi(dj), j = 1, · · · , J

across patients.

The mean functions µ` for the Gaussian prior β` ∼ N(µ`,Ψ`), ` = E, T , equals

µ`j = γ`0 + γ`1dj , with (truncated) normal prior for γ`0 ∼ N(−1.5, 1) and γ`1 ∼

N(1.5, 1)I(γ`1 > 0). Similarly, for βQ = (βQ1 , · · · , β
Q
J ) ∼ N(µQ,ΨQ) we use µQj = 1.5,

j = 1, · · · , J , and set (λT , λQ, λS) = (1, 1/2, dJ − d1).

For each scenario we simulated 1,000 trials using a BUD design that utilizes EUD

biomarkers for dose assignments. Similar to Sections 5.1 and 5.2, we consider the

same three information measures, the posterior variance of the utility u(d?, Qi), the

posterior entropy of the optimal dose d?(Qi), and the average mean squared difference

between the utility of the optimal dose d?(Qi) and d̂?i−1(Qi) = arg mindE([u(d,Qi)−

u(d?(Qi), Qi)]2|Σi−1, Qi). We indicate the corresponding BUD designs with BUD1-

EUD, BUD2-EUD and BUD3-EUD. To quantify the advantage in using biomarkers

we also simulated trials using BUD designs without incorporating biomarkers as

discussed in Section 5.1.

Similar to previous examples in Sections 5.1 and 5.2, the last column of Figure 7.2

shows for a future group of 100 patients, each treated with the recommended dose,

accordingly with the trial results, the expected number of efficacy and and toxicity

events. The use of biomarkers’ information tends to reduce the expected number of

toxicity events, because patient with high EUD values and risk of toxicity are treated

at lower dose levels. In scenario 1 BUD-EDU designs recommend personalized doses,

that lead on average to 79.8, 80.5 or 81.0 patients without toxicities (BUD1-EDU,
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BUD2-EDU and BUD3-EDU) and 17.6, 18.5 and 19 patients that respond to the

treatment. In Scenario 4 where the probability of toxicity correlates substantially

with the EUD summaries, the BUD-EDU designs reduce the expected number of

toxicity events by approximately 50% to 30% compared to BUD designs without

biomarkers; 59.4, 58.9, 58.2 for BUD1, BUD2 and BUD3 compared to 30.3, 39.9, 40

for BUD1-EDU, BUD2-EDU and BUD3-EDU, respectively.
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Chapter 6

Discussion

We proposed and evaluated Bayesian uncertainty directed (BUD) dose finding designs.

This class of designs utilize information metrics to achieve accuracy in the final

selection of dose levels with optimal or nearly optimal clinical utility at completion

of the trial. A BUD design assigns sequentially patients to candidate dose levels d

accordingly to a score Si(d) that weights the expected information gain Gi(d) and

the estimated utility E[u(d)|Σi−1]. The approach allows the statistician to tailor the

utility function u to the clinical context. Interestingly, BUD designs similar to CRM

designs, with scores defined primarily by the expected utility E[u(d)|Σi] (i.e w2 ≈ 0)

lead on average to a substantial number of patients assigned to suboptimal doses.

In contrast, score functions that account for the expected information increments

Gi(d) are more likely to identify dose levels with high utility, and tend to assign

suboptimal doses in a lower fraction of the enrolled patients.

Various information measures can be used. We discussed three examples. The

choice of the information measure can be guided by the operating characteristics of

BUD designs, using simulations, under plausible scenarios. The BUD approach is

applicable to a variety of dose finding problems, we discussed three applications; (i)

a single agent dose finding trial, (ii) a dose finding trial to optimize a combination

therapy of two agents, and (iii) a dose finding design that seeks to match individual

biomarker profiles to effective and non-toxic radiation intensities.
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We compared BUD designs to alternative designs using simulations. Across

scenarios BUD designs have good performances in selecting dose levels with high

clinical utility.
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Chapter 7

Figures and Tables
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Figure 7.1. Proportion of times each dose was selected at completion of the study as
the optimal dose across 1,000 simulations (N = 30) of a BUD trial (top row) and the
average number of patients treated with each dose (bottom row). Column (A) shows the
sensitivity of the BUD design to the information exploration weight w2 = 0, 0.1, · · · , 0.9, 1.
Columns (B) and (C) show the performance of the BUD design for different overall
sample sizes of the trials with either w2 = 0.2 or w2 = 0.9.
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Dose Design
d, (pE , pT , ud) bCRM LJ BUD1 BUD2 BUD3

d1, (0.05, 0.02, 0.56) 5.4 (3.1) 2.9 (2.9) 1.1 (1.7) 1.0 (2.0) 0.8 (2.3)
d2, (0.08, 0.05, 0.55) 7.2 (3.1) 4.5 (2.7) 2.9 (1.9) 1.3 (2.7) 2.4 (3.3)
d3, (0.15, 0.07, 0.57) 14.8 (5.2) 9.6 (4.3) 4.9 (3.8) 6.4 (4.1) 5.2 (4.5)
d4, (0.28, 0.10, 0.62) 38.2 (9.5) 24.9 (8.6) 25.9 (11.6) 24.0 (11.3) 26.0 (10.8)

d5, (0.43, 0.12, 0.68) 34.4 (8.8) 59.4 (12.0) 65.2 (10.7) 67.3 (9.7) 65.6 (8.9)
d1, (0.15, 0.10, 0.56) 17.8 (06.5) 13.8 (5.9) 8.2 (3.2) 6.9 (3.1) 7.0 (3.2)
d2, (0.18, 0.12, 0.56) 23.4 (07.1) 15.8 (6.7) 11.7 (6.6) 12.8 (5.9) 12.7 (6.0)

d3, (0.38, 0.15, 0.63) 46.5 (11.6) 61.5 (11.3) 65.6 (7.6) 65.7 (7.2) 67.1 (7.0)
d4, (0.40, 0.36, 0.53) 12.1 (03.4) 8.3 (4.7) 11.8 (8.4) 10.9 (8.7) 10.1 (8.7)
d5, (0.60, 0.65, 0.46) 00.2 (01.2) 0.6 (1.2) 2.7 (4.1) 3.7 (4.8) 3.1 (4.9)
d1, (0.10, 0.05, 0.56) 7.4 (3.8) 3.1 (3.5) 1.3 (1.8) 0.6 (1.8) 1.7 (2.5)
d2, (0.20, 0.07, 0.60) 21.0 (6.1) 11.1 (4.1) 7.3 (2.4) 5.9 (2.3) 6.2 (3.6)
d3, (0.25, 0.10, 0.60) 36.3 (9.8) 16.9 (6.8) 12.5 (6.5) 10.6 (5.6) 12.3 (6.3)

d4, (0.50, 0.15, 0.69) 26.2 (6.4) 57.9 (10.4) 67.0 (10.3) 68.9 (10.7) 66.4 (9.6)
d5, 0.54, 0.35, 0.60) 9.1 (3.6) 11.0 (5.0) 11.9 (8.7) 14.0 (9.4) 13.4 (7.7)
d1, (0.18, 0.12, 0.56) 25.9 (8.6) 17.0 (6.9) 4.4 (7.5) 4.8 (2.5) 6.5 (3.2)
d2, (0.23, 0.18, 0.55) 22.9 (6.7) 18.9 (6.7) 9.4 (12.4) 7.6 (4.3) 7.7 (5.3)

d3, (0.40, 0.20, 0.62) 31.5 (8.5) 39.5 (8.5) 41.4 (6.5) 40.9 (6.9) 40.7 (6.6)
d4, (0.44, 0.25, 0.61) 16.8 (4.2) 23.1 (5.8) 38.9 (2.2) 40.8 (9.4) 37.4 (9.0)
d5, (0.48, 0.45, 0.51) 2.9 (1.7) 1.5 (1.9) 5.9 (1.1) 5.9 (6.6) 7.7 (5.7)
d1, (0.02, 0.10, 0.49) 6.0 (3.4) 4.4 (4.2) 1.2 (2.0) 1.7 (2.2) 0.6 (2.3)
d3, (0.10, 0.12, 0.49) 20.5 (6.8) 10.3 (5.1) 2.7 (5.3) 2.7 (4.7) 2.6 (5.2)

d4, (0.42, 0.15, 0.63) 56.8 (13.5) 66.5 (12.0) 68.3 (8.1) 69.3 (7.8) 64.7 (7.4)
d4, (0.45, 0.30, 0.61) 15.6 (4.3) 18.4 (6.8) 26.3 (9.4) 25.0 (9.5) 30.6 (9.4)
d5, (0.50, 0.60, 0.52) 1.1 (1.6) 0.4 (1.6) 1.5 (5.0) 1.3 (5.6) 1.5 (5.4)

Table 7.1. Proportion of times each dose was selected as the optimal dose across simulations,
and the average number of patients treated with each dose (in parenthesis). We used
1,000 simulations of a trial with N = 30 patients using either the Bayesian uncertainty
directed designs (BUD1, BUD2 and BUD3), the Bivariate Continual Reassessment
Method (bCRM), the Liu and Johnson (LJ) Design. The optimal dose is shown in bold.
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Dose Design
d, (pE , pT , ud) BUD1 BUD2 BUD3 BUD1 BUD2 BUD3

Treatment Outcomes are: immediately 12 weeks after enrollment
available

d1, (0.05, 0.02, 0.56) 1.1 (1.7) 1.0 (2.0) 0.8 (2.3) 1.3 0.7 1.0
d2, (0.08, 0.05, 0.55) 2.9 (1.9) 1.3 (2.7) 2.4 (3.3) 2.1 2.4 2.6
d3, (0.15, 0.07, 0.57) 4.9 (3.8) 6.4 (4.1) 5.2 (4.5) 7.6 10.9 8.0
d4, (0.28, 0.10, 0.62) 25.9 (11.6) 24.0 (11.3) 26.0 (10.8) 24.4 24.5 26.3

d5, (0.43, 0.12, 0.68) 65.2 (10.7) 67.3 (9.7) 65.6 (8.9) 64.4 61.5 62.1
d1, (0.15, 0.10, 0.56) 8.2 (3.2) 6.9 (3.1) 7.0 (3.2) 7.6 7.4 5.5
d2, (0.18, 0.12, 0.56) 11.7 (6.6) 12.8 (5.9) 12.7 (6.0) 13.8 15.5 18.1

d3, (0.38, 0.15, 0.63) 65.6 (7.6) 65.7 (7.2) 67.1 (7.0) 61.5 56.5 57.5
d4, (0.40, 0.36, 0.53) 11.8 (8.4) 10.9 (8.7) 10.1 (8.7) 12.3 15.7 13.5
d5, (0.60, 0.65, 0.46) 2.7 (4.1) 3.7 (4.8) 3.1 (4.9) 4.8 4.9 5.4
d1, (0.10, 0.05, 0.56) 1.3 (1.8) 0.6 (1.8) 1.7 (2.5) 1.2 0.6 0.6
d2, (0.20, 0.07, 0.60) 7.3 (2.4) 5.9 (2.3) 6.2 (3.6) 6.0 5.2 8.5
d3, (0.25, 0.10, 0.60) 12.5 (6.5) 10.6 (5.6) 12.3 (6.3) 12.8 10.5 13.0

d4, (0.50, 0.15, 0.69) 67.0 (10.3) 68.9 (10.7) 66.4 (9.6) 64.1 64.9 59.8
d5, 0.54, 0.35, 0.60) 11.9 (8.7) 14.0 (9.4) 13.4 (7.7) 15.9 18.8 18.1
d1, (0.18, 0.12, 0.56) 4.4 (7.5) 4.8 (2.5) 6.5 (3.2) 5.5 5.2 4.4
d2, (0.23, 0.18, 0.55) 9.4 (12.4) 7.6 (4.3) 7.7 (5.3) 9.6 6.9 10.4

d3, (0.40, 0.20, 0.62) 41.4 (6.5) 40.9 (6.9) 40.7 (6.6) 37.9 37.9 35.3
d4, (0.44, 0.25, 0.61) 38.9 (2.2) 40.8 (9.4) 37.4 (9.0) 39.2 40.2 39.4
d5, (0.48, 0.45, 0.51) 5.9 (1.1) 5.9 (6.6) 7.7 (5.7) 7.8 9.8 10.5
d1, (0.02, 0.10, 0.49) 1.2 (2.0) 1.7 (2.2) 0.6 (2.3) 1.1 1.1 1.1
d3, (0.10, 0.12, 0.49) 2.7 (5.3) 2.7 (4.7) 2.6 (5.2) 4.5 3.3 4.9

d4, (0.42, 0.15, 0.63) 68.3 (8.1) 69.3 (7.8) 64.7 (7.4) 64.5 59.1 61.8
d4, (0.45, 0.30, 0.61) 26.3 (9.4) 25.0 (9.5) 30.6 (9.4) 27.7 34.5 29.6
d5, (0.50, 0.60, 0.52) 1.5 (5.0) 1.3 (5.6) 1.5 (5.4) 2.2 2.0 2.6

Table 7.2. Proportion of times each dose was selected as the optimal dose across simulations,
and the average number of patients treated with each dose (in parenthesis). Results are
based on 1,000 simulations of a trial with overall sample size of N = 30 patients and an
average enrollment of 24 patients per year. For each patient, the treatment response
and the toxicity outcome become available 12 weeks after enrollment.
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Figure 7.2. Expected number of patients in a hypothetical future cohort of 100 patients
treated with the recommended dose d̂? that respond to treatment (top row), the expected
number of patients with a toxicity event (second row), and the average utility (bottom
row). Results are based on 1,000 simulated single-agent trials (Column A), combination-
therapy trials (Column B) and personalized dose finding trials (Column C), using either
the Bayesian uncertainty directed designs (BUD1, BUD2 and BUD3), the Bayesian
continual reassessment method (bCRM), the Liu and Johnson design (LJ), the BOIN
design of [40], the DFcomb design of [51] or the YY design of [78].
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Dose of agent 2
Dose of agent 1 d2

1 d2
2 d2

3 d2
4

Scenario 1
d1

1 0.54 (0.10, 0.10) 0.53 (0.15, 0.15) 0.52 (0.38, 0.35) 0.45 (0.40, 0.50)
d2 0.53 (0.15, 0.15) 0.64 (0.42, 0.18) 0.53(0.45, 0.40) 0.48 (0.48, 0.52)
d1

3 0.50 (0.44, 0.45) 0.46 (0.48, 0.55) 0.33 (0.50, 0.80) 0.30 (0.55, 0.90)
Scenario 2

d1
1 0.58 (0.08, 0.01) 0.58 (0.10, 0.02) 0.56 (0.13, 0.08) 0.56 (0.15, 0.10)
d1

2 0.56 (0.10, 0.05) 0.58 (0.18, 0.09) 0.59 (0.28, 0.15) 0.60 (0.34, 0.18)
d1

3 0.57 (0.15, 0.07) 0.59 (0.23, 0.10) 0.58 (0.30, 0.15) 0.57 (0.35, 0.18)
Scenario 3

d1
1 0.50 (0.15, 0.20) 0.51 (0.20, 0.22) 0.52 (0.25, 0.25) 0.65 (0.58, 0.28)
d1

2 0.48 (0.22, 0.30) 0.42 (0.28, 0.45) 0.39 (0.30, 0.52) 0.49 (0.60, 0.60)
d1

3 0.39 (0.26, 0.50) 0.35 (0.30, 0.60) 0.34 (0.33, 0.65) 0.42 (0.64,0.75)
Scenario 4

d1
1 0.57 (0.15, 0.08) 0.57 (0.20, 0.12) 0.57 (0.23, 0.15) 0.75 (0.68, 0.18)
d1

2 0.62 (0.45, 0.22) 0.67 (0.60, 0.26) 0.75 (0.80, 0.28) 0.65 (0.85, 0.45)
d1

3 0.62 (0.65, 0.40) 0.63 (0.78, 0.48) 0.65 (0.85, 0.50) 0.59 (0.90, 0.65)

Table 7.3. Simulation scenarios for the combination therapy trial. The table shows the
probabilities of toxicity pT,d and efficacy pE,d, and the corresponding utility u(d) for a
combination treatment and candidate dose levels d ∈ D1×D2. Bold numbers correspond
to the highest utilities.
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Figure 7.3. Proportion of simulations in which each combination dose d = (d1, d2) was
selected as the optimal dose at completion of the trial. Dose combinations d are ordered
accordingly to their utility u(d). Light colors correspond to combinations with low utility.
BUD1, BUD2 and BUD3 correspond to three Bayesian information directed designs
with different information measures. We compare BUD designs to three alternative
designs indicated as BOIN design [40], DFcomb design [51] and YY design [78].
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Figure 7.4. Simulation scenarios. Column (A) shows the marginal distribution of the EUD
summaries. Columns (B) to (E) show the probability of efficacy (dashed lines) and
toxicity (solid lines) across patients EUD values (first row) and the corresponding utility
(second row) for each candidate dose levels.
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Part II

Inference in Adaptive Trials

under Time Trends in the

Patient Population





41

Chapter 1

Introduction

Changes in patient population have always represented a substantial issue in clinical

trials. Standard inference in clinical trials assumes that the recruited patients’

characteristics don’t change over the time, and the probability of the response to

treatment remains constant during the study period. Since trials recruit patient

for a long period, time trends in the patient population can constitute a potential

source of bias in clinical trials. We investigate and assess the consequences of

unknown changes in patients population for Response Adaptive Randomization

(RAR) designs and propose procedures which correct treatment effect estimates for

time trend and reduce inflation of the type I error rate. We incorporate time trends

into the model outcome using Generalized Additive Models (GAMs). A parametric

bootstrap is then used to account for potential time trend and estimate type I error

rates. Through simulations studies under different time trends, we investigated the

proposed methods in multi-arm clinical trials and platform trials.

Traditionally, clinical trials have been designed as two arm-study, where each

experimental therapy is compared to the standard of care. However, when more than

one promising treatment is available, conducting a multi-arm study is more efficient

([23], [73], [49], [15], [21]). Since the factors which affect the response to treatment

are often unknown, randomization has been introduced as a method of assigning

patients to treatments because it permits statistical inference without confounding
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factors. Balanced randomization (BR) assigns patients to control and experimental

arms at pre-specified ratio which is constant over the time. Doubts concerning its

ethical implications have continued ( [14]) and alternative approaches that balance

potential benefits to study participants and future patients have been suggested in

[82], [20],[53], [63], [37], [73] and others. Designs utilize response adaptive allocation

procedures, which use the observed outcomes to assign patients to the most promising

treatment with higher probability.

Recently, an new class of adaptive procedures known as platform trials has been

introduced ([21], [30], [80], [70], [71]). A platform trial design allows the addition of

new experimental arms to an ongoing trial. Standard multi-arm clinical trials require

that all the therapies are at the same stage of development when the trial starts. This

is often not possible. Since clinical trials enroll patients over many years, it is very

likely that during this time a promising treatment emerges. The capability to add

and to remove arms to ongoing trials represents a great advantage to save resources

because no new trial has to be opened. Cancer studies as I-SPY 2, STAMPEDE,

AML15 and AML16, the schizophrenia trial CATIE, and the international HIV trial

2NN are few examples of platform trials ([8], [29], [39], [11], [21], [68]). Nonetheless,

since adaptive designs present poor frequentist operating characteristics compared

to BR designs, the use of RAR approaches is criticized in many clinical settings

([33], [69], [59]).

The main drawback of employing adaptive treatment allocation arises from the

potential presence of time trends in the prognostic mix of the patients accruing to

the trial ([33]). Unlike the BR procedure which seeks to maintain balance at each

point of the trial, and is less affected by fluctuations in potential outcomes that

occur as sample enrollment proceeds ([26]), time trends are recognized as a probable

source of bias in adaptive clinical trials. Many authors ([16], [76], [12],[75]) and in

particular Altman and Royston [2] have underlined how adaptive randomization

can lead to biased treatment effect estimate when the patient population changes

dramatically during the trial. Despite the early stage in which this problem was
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noticed, few methods have been proposed to deal with this problem ([31], [22], [41],

[71]).

In this work, we investigate the effect of time trends on detecting the treatment

effect when using data-adaptive allocation and propose a method to provide corrected

estimation and inference under time trends. The patient population may change in

different ways as a function of time, and the change is likely to be gradual instead

of at a single time point. The outcome may be monotony improving if therapies for

patients with poor outcome become available during the course of the trial. The

change can also be cyclic, if seasonal changes such as the flu have an effect on patient

outcome, such as in asthma trials. To capture potentially complex change in patient

population, we suggest to use splines within the framework of a generalized additive

model Generalized Additive Model (GAM) ([27]) to estimate treatment effects while

accounting for time trends.

Because of the dependence among patients, standard Z statistics obtained from

GAM are not valid and inference cannot be readily carried out. We propose a

parametric bootstrap procedure for testing efficacy that extends the previous scheme

proposed by Rosenberger and Hu [54]. The testing procedure can be used for

any adaptive designs and estimators of the treatment effect. To show the general

suitability and the efficiency of the method, we consider both frequentist and Bayesian

RAR designs. We apply our procedure to the Randomized Play the Winner (PTW)

algorithm by Li [38], to the Doubly Adaptive Biased Coin Design (DABCD) by

Eisele [20] and to the Bayesian Adaptive Randomization (BAR) design by Thall and

Wathen [63]. For all of the three RAR designs, we investigate the precision of the

proposed estimator and study the related operating characteristics under different

setting of trends.

The next chapter are organized as follows. Chapter 2 presents the response

probability model and the testing procedure to handle the time trend. In Chapter 3

we describe briefly the outcome-adaptive multi-arm trial designs that we consider.

Chapter 4 provides a simulation studies to evaluate the proposed testing algorithms.
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We conclude with a discussion in Chapter 5.
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Chapter 2

Method

We consider a Phase II clinical trial that assigned up to N patients to either A

experimental arms or to the control. For each patient i, Ci = a indicates that

the i−th patient has been randomized to arm a = 0, ..., A, where a = 0 is the

control arm. Let’s denote also by N ′a(i) the number of patient randomized to

a before the i-th arrival and by Na(i) the number of observed outcome for arm

a at the i-th enrollment. Let Yi be a binary outcome that assumes 1 if the pa-

tient i responds positively to the therapy and 0 otherwise. Finally, we denote by

Σi = {(N ′a(j), Na(j), Yj , Cj); j = 1, ..., i} the data available at the i−th enrollment.

Assuming that the probability of the response to treatment is constant over the

time, Yi|Ci = a has a Bernoulli distribution with response probability θa, for each

a = 0, ..., A. The treatment effect of each experimental arm a can be tested as

H0
a : θa − θ0 ≤ 0 versus H1

a : θa − θ0 > 0

In presence of time trends, assuming i.i.d within an arm may lead to a biased

estimate for the treatment effect and an inflated or deflated type I error rate in

testing. We introduce a method to account for possible time trends when estimating

the treatment effect and testing the global null hypothesis at the end of the trial.
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2.1 Estimation of the treatment effect

In this Section, we specify a probability model where the response probabilities

depend on both the assigned treatment and the enrollment time. Since true potential

time trend is unknown, we adopt a flexible spline-based approach that is able to

capture any type of smooth trend. The outcome probability of patient i enrolled at

time ti is modeled through a GAM ([27]) with a probit link function

P (Yi = 1|β,Ci = a, ti) =

Φ(β0 + fβ(ti)) a = 0

Φ(β0 + βa + fβ(ti)) a > 0
(2.1)

where fβ(·) is a cubic smoothing spline with J knots ([19]). The model 2.1 assumes

that the effect of time trend acts equally on patient in the control and experimental

arms, and does not interact with the treatment effect. Thus, the treatment effect of

the arm a is describe by the regression coefficient βa, ∀a > 0.

The global null hypothesis is that there is no difference between the response rate

of patient treated with therapy Ci = a > 0 and the control, e.g H0
a : E[Yi|β,Ci =

a]− E[Yi = 1|β, Ci = 0] ≤ 0,∀i, or equivalently by considering

H0
a : βa ≤ 0 versus H1

a : βa > 0.

Denoting by β̂a the estimator of βa, we use the statistic Ta = β̂a/sd(β̂a) to test

the null hypothesis H0
a at significance level α, for each arm a > 0. Large positive

values of the test statistics show evidence against the null hypothesis.

2.2 Testing procedure

We suggest to test the hypothesis discussed in Subsection 2.1 by adopting a bootstrap

procedure similar to the algorithms in Rosenberger and Hu [54], Trippa et al. [67]

and Ventz et al. [71]. We first discuss the procedure assuming no early stopping rule

and extend the procedure for early stopping. The testing procedure starts from the
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realization of a multi-arm trial T generated under a design d with potential time

trend.

2.2.1 A bootstrap test for trials without early stopping rules

Given a trial T generated under a design d, we estimate the response probability

model in 2.1 and compute a test statistics Ta for each arm a. For each arm a that

we want to test, we generate B trials under design d with probability of response to

the treatment for i-th patients equals to

P (Yi = 1|Ci = a′, ti) =

Φ(β̂0 + f̂β(ti)) a′ = a

Φ(β̂0 + β̂a′ + f̂β(ti)) a′ 6= a
(2.2)

where β̂0, β̂a′ and f̂β(·) denotes the estimated coefficients from the GAM model.

For each b, with b = 1, ..., B, we compute the test statistics T ∗,ba , and estimate

the p-value as

p̂(Ta) =
∑B
b=1 I(T ∗,ba ≥ Ta)

B

The null hypothesis is rejected at level α if p̂(Ta) < α.

Algorithm 2 bootstrap hypothesis testing without stopping rules

1: Input 1: Trial T and trial design d

2: Input 2: Arm a and definition of test statistics Ta
3: Estimate the GAM response probability model in 2.1.

4: Compute the test statistic Ta
5: for b = 1, ..., B do

6: Simulate a study under design d with response probabilities of patients
7: in 2.2

8: Compute T ∗,ba
9: end for

10: Estimate p̂(Ta) =
∑B

b=1 I(T ∗,ba ≥Ta)
B .

11: Output: Reject H0
a if p̂(Ta) ≤ α
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2.2.2 A bootstrap test for trials with stopping rule for futility

We extend the procedure describe in the Subsection 2.2.1 to allow early stopping for

futility. Exactly as in Ventz et al. [71], an experimental arm is dropped for futility

after the enrollment of the i−th patient if the posterior probability of treatment effect

is lower a threshold fi,a. Here, we define fi,a = f × (Na(i)/n′E)g, where f ∈ [0, 1],

g > 0 and n′E denotes a desired maximum number of patients in each experimental

arm. The boundary, so defined, increases adaptively from 0 to 1 as the number of

observed outcomes tends to the desired sample size for the arm.

We estimate the response probability model for a trial T generated under d. We

compute the test statistics Ta for a > 0 and define Sa = 1 if arm a was not stopped

early. For each arm a that we want to test and that was not stopped early during

the trial T , we simulate B trials under d with early stopping rule for futility by using

the same response probabilities as in Subsection 2.2.1. Then, for each simulated

trial b, we compute the test statistics T ∗,ba and we set S∗,ba equals to zero if the arm

a was dropped early for futility and equal to 1 otherwise.

Unlike before, we need to correct the procedure by accounting for the fact that

the arm a may have been stopped early in some simulated trials. We estimate the

probability that the arm a is not stopped early for futility as the empirical proportion

of trials that have not been dropped over the total B trials. The corrected p-value is

estimated as p̂(Ta) = P̂ (T ∗a )× P̂ (S∗a) where

P̂ (T ∗a ) =
∑
b:S∗,ba =1 I(T ∗,ba ≥ Ta)∑B

b=1 I(S∗,ba = 1)
and P̂ (S∗a) =

∑B
b=1 I(S∗,ba = 1)

B
.

If p̂(Ta) ≤ α, the null hypothesis is rejected at level α.
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Algorithm 3 bootstrap hypothesis testing with stopping rule for futility

1: Input: Trial T and trial design d

2: Input 2: Arm a and a definition of test statistics Ta
3: if Arm a is not stopped early T then

4: Estimate the GAM response probability model in 2.1.

5: Compute the test statistic Ta
6: for b = 1, ..., B do

7: Simulate a study under d with early stopping rule and
8: with response probabilities of patients in 2.2

9: if arm a is dropped then S∗,ba = 0
10: else S∗,ba = 1
11: end if
12: if S∗,ba = 1 then Compute T ∗,ba
13: end if

14: end for

15: Estimate P̂ (T ∗a ) =
∑

b:S∗,ba =1
I(T ∗,ba ≥Ta)∑B

b=1 I(S∗,ba =1)
and P̂ (S∗a) =

∑B

b=1 I(S∗,ba =1)
B .

16: Estimate the p-value as p̂(Ta) = P̂ (T ∗a )× P̂ (S∗a)

17: Output: Reject H0
a if p̂(Ta) ≤ α

18: end if
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Chapter 3

Response Adaptive

Randomization designs

We apply the bootstrap procedure to several adaptive designs. In this Chapter we

summarize the considered designs.

3.1 The Randomized Play the Winner

Several randomized extensions of Zelen’s original determinist "play-the winner" ([82])

have been proposed in the past years ([74], [3], [53]). Wei [74] considers a randomized

version of the "play-the winner" ([75]) for multi-arm clinical trials. Consider an

urn with A different particles, one for each treatments. In the proposed multi-arm

design, a success of the treatment a generates a particle of type a, and a failure

on treatment a generates 1/(A − 1) particles of other A − 1 types. However, if

one treatment performs extremely poorly, then it is unreasonable to add the same

number of particles of that type to the urn ([6]). Li [38] proposed a scheme that

only generates particles of the type of the success, without adding anything to the

failures. Each patient i is randomized to arm a with probability proportional to the

number of particles a in the urn after i− 1 patients
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P (Ci = a|Σi) ∝
1 +

∑i−1
j=1 YjI(Ci = a)
1 +N ′a(i)

for a = 1, ..., A.

3.2 The Doubly Adaptive Biased Coin Design

The DABC, proposed by Eisele [20], is a RAR design where the assignment of the

patients is driven by both the proportion of subjects allocated to each arm and a

vector of target proportions {ρa} that depends on response rate. For instance, the

Neymann allocation has the target allocation is defined as ρa ∝
√
θa(1− θa). Since

θa is unknown, the target vector is replace by the quantity ρ̂a, estimated from the

accumulated data. The probability that patient i is assigned to treatment a is given

by

P (Ci = a|Σi) ∝ ρ̂a(i)× qa(i)

where qa(i) = (ρ̂a × (i+ 1)/(N ′a(i) + 1))β , with β > 0. So defined, qa(i) ensures

that if the current proportion of subjects allocated to the arm a is smaller than the

target, the randomization probability to arm a for the next patient is larger than

ρ̂a(i).

3.3 The Bayesian Adaptive Randomization design

The aim of a BAR design is to treat patients during the trial with the more

efficient treatment. After a burn-in period where patients are randomized with

equal probability to the arms, BAR uses the data accumulated during the trial to

increase the probability of assigning the patients to treatments that show being most

promising. The outcome model can be completed by setting a prior θa ∼ Beta(v1, v2)

for each response probability of arm a. The BAR procedure assigns patient i to arm

a with probability
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p(Ci = a|Σi) ∝

p(θa > θ0|Σi)h`(i) if a ∈ A

c(i)exp {−b× [N ′0(i)−maxa∈AN ′a(i)]} if a = 0

where b > 0, c =
∑
a∈A p(θa > θ0|Σi)h1(i)/A and the function h(·) is an increasing

function of the sample size (Thall and Wathen [63]). At the beginning h(·) is equals

to zero and the randomization is balanced among the arms. As the sample size

increases, h(·) increases and the patients are allocated to the arm with higher

probability of positive response.

3.4 Extensions to platform trials

We apply the bootstrap procedure also to platform trials. We consider the RAR

designs presented in Section 3.1, 3.2 and 3.3 to allow the addition of new arms by

adopting the approach of Ventz et al. [71].

Let A2, ..., AK be the groups of experimental arms added to the ongoing trial

and M2, ...,MK the arrivals of the Mk-th patient, for k = 2, ...,K. When a group of

new treatments is included to the trial, the sample size of the study is increased by

nk additional patients. The designs are modified by multiplying the randomization

probabilities during the trial for a scaling function qk(i). For PTW and BAR, the

assignment rules to an experimental arm are multiply by a Gompertz function define

as

qk(i) = r0 + r1exp
{
−exp(N ′(k)(i)−mk

}
whereN ′(k)(i) is the amount of patients randomized to the k-th group of experimental

arms and mk, r1, r0 > 0 are tuning parameters. When a sufficient number of

patients are allocated to treatments in group k, e.g. N
′(k) > mk, we have that

qk(i) ≈ r0 and patients are randomized to treatments according to standard PTW

or BAR. For DABC, when new treatments are added, the target is re-defined and

to avoid extremely unbalanced, the allocation probabilities become proportional to
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max(ρ̂a(i)× qa(i), w(i)), where w(i) ∝ 1/(1 +
∑
k;a∈Ak

I(Mk ≤ i,N ′a(i) < n′E)) and

n′E represents a desired maximum number of patients in each experimental arm.

See [71] for a more careful discussion.
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Chapter 4

Simulation studies

In this Chapter, we discuss the operating characteristics of the presented procedures

in both standard multi-arm clinical trials and platform trials. We initially investigate

the precision of the estimator of the treatment effect. We compare the estimate of

the treatment effect obtained through the GAM model with the estimate achieved

with no trend adjustment (NTA).

For each design discussed in Chapter 3 and for a BR design where patients are

allocated to the arms with equal probabilities, we simulate 1000 trials and compute

the treatment effect as 100 ∗∆a. For GAM, we consider ∆a = βa, for each a > 0.

For NTA, ∆a is defined as the difference between the estimate response rate of arm

a and the control on a probit scale. This definition guarantees a fair comparison

between the two treatment effect estimates.

Afterwards, through a simulation study, we assess the impact of time trends

on the type I error rates and on the power of the test. We compare the proposed

hypothesis testing which accounts for time trends with the test where time trends

are not considered. In the NTA approach, the operating characteristics are still

computed following the bootstrap procedures previously discussed, but the test

statistic considered is the standardized difference between the estimated response

probability of an arm a and the control. In this case, response rates are estimated

assuming i.i.d. variables.
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We fix a nominal level at 0.05 and run 1000 trials for all the RAR designs

explained in Chapter 3 and for a BR design where patients are equally likely to be

assigned to any arm of the trial. The number of bootstrap is set equal to 1000 in

all the simulations. For the multi-arm clinical trial, we compute the type I error

rates and the power of the test by using the Algorithm 2. For the platform trial

we investigate also the ability of the method to preserve the type I error level in

presence of stopping rule for futility, both Algorithm 2 and Algorithm 3 are then

implemented.

Figure 6.1 shows the four different trends of success rate of a treatment over

time that we examine in all the investigations. Trend 0 corresponds to absence of

time trend in the date; Trend 1 describes a situation in which the success rate has a

monotone decreasing behavior that corresponds to a population’s change towards

more fragile patients. In Trend 2 the success rate is represented as a periodical

function that describes a seasonal effect on the patient population (for example

patients may be weaker during the winter). Finally, Trend 3 describes a success rate

that increases monotonically and that describes a population’s change towards more

healthier patients.

4.1 Multi-arm Clinical Trial

We consider a Phase II multi-arm clinical trial with three experimental arms, all

available at the beginning of the study, and a control arm. The true regression

coefficients are set equal to (0.13, -0.5, 0, 0.55), which correspond to the vector

of true outcome probabilities of (0.55, 0.35, 0.55, 0.75) in absence of trend. The

trial enrolls up to 240 patients, with an accrual rate of six patients per month and

the outcome of each patient becomes available after 8 weeks from the treatment.

For the BR design, we specify the allocation ratio such that patients are equally

randomized among the arms, e.g. q0/qa = 1/(A+ 1) for each a = 1, .., A. For the

PTW, we fix the particles to add to the urn when a success is observed equal to 1
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for all the arms. For DABC design, we follow Hu and Zhang [32] and use a target

allocation as ρa(θ) ∝
√
θa, for a = 1, .., A, and ρ0(θ) ∝ maxa>0

√
θa for the control.

We also fix β = 3. Finally, for BAR, we define h(i) = β × [N ′a(i)/N ]γ and set

(β, γ, b) = (3, 1.5, 0.5).

Initially, we examine the impact of time trends on estimates of treatment effect

for the different randomized procedures. Panel A of Figure 6.2 shows the estimated

treatment effect of Arm 3 across 1000 simulations for BAR.The true treatment effect

is equal to 55% and is represented by by the black line. When the data are not

affected by trend or the trends are monotonic, both NTA and GAM estimates result

almost correct with a bias of about 1%. Under seasonal trend, instead, the NTA

estimator is more biased than the proposed estimator, and the treatment effect

estimates are 41.52% for NTA and 54.01% for GAM. We extend the study of the

estimated treatment effect to the other designs. The results are reported in Table 6.1.

The estimators perform almost equally in absence of trend also for the other designs.

In presence of monotonic trends, the estimates of treatment effect obtained through

the GAM model are slightly more accurate for BAR, PTW and DABC, while for the

BR the NTA estimates are almost unbiased. A substantial improvement is given by

adopting the proposed method when the data follows a periodical behavior. For all

the designs, NTA estimator is less correct, while the estimate of the treatment effect

obtained through the GAM model is accurate. The estimates reported by NTA are

13.48%, 12%, 15.62% and 10.46% lower than the true value for BAR, DABC, PTW

and BR, respectively. The treatment effects estimated by the proposed method,

instead, have a bias of 1% for BAR, 1.5% fro DABC, 3.2% for PTW and 1% for BR.

Next, we explore the frequentist operating characteristics of the testing procedure

illustrate in Subsection 2.2. Results are summarized in Table 6.2. As expected, if the

outcome probabilities don’t change during the study, the type I error rates is better

controlled by the NTA than the proposed method. When the population changes

towards more fragile patients, the type I error rate without adjustment decreases to

around 4% while the proposed method is more able to target the predefined nominal
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value. When the patient population changes systematically, the type I error rate

without any action for time trend increases to 6% for BAR and decreases to 4.5%,

2.2% and 3.9% for BR, PTW and DABC, respectively. Under same trend, the values

obtained from our bootstrap procedure are 4.8% for BR, 5.6% for PTW, 6.0% for

DABC and 5.0% for BAR. Finally, the power of the test obtained without trend

adjustment tend to be similar to rates computed through the suggested model. An

exception is Trend 2, where under BR and BAR the NTA present a higher power

(73.8% and 85.6% against 65.5% and 78.9%).

4.2 Multi-arm Platform Trial

Platform trials are considered a direct extension of RAR procedures. For their

capability of adding new experimental arms during the course of a study, the

attention on this type of design is becoming higher over the time. Unfortunately,

also changes in the recruited patients’ characteristics are more likely to occur during

a platform trial. In this Section, we illustrate the operating characteristics of the

previous RAR schemes when they are extended to platform trials through the

approaches proposed by Ventz et al. [71] and summarize in Section 3.4.

We consider a Phase II multi-arm clinical trial that wants to assign up to 150

patients to either one of two experimental arms or to a control arm. As before,

accrual rate is 6 patients per months and the response to the therapy is observable

after 8 weeks from the treatment. Two new experimental treatments become available

approximately 16 months after the beginning of the trial (M2 = 102 and A2 = 2)

and the overall sample size is increased by 100 additional patients. Following [71],

we modify the power function h(·) as h(·) = β[N ′(k)/nk]γ , for k = 1, 2 and fix

(β, γ, b) = (3, 1.5, 0.5). The tuning parameters for the Gompertz function are set

as (r0, r1) = (1, 3) and (m1,m2) = (30, 30). The rest of the parameters remain

unchanged with respect to Subsection 4.1 As before, we investigate as first the

precision of the estimator of treatment effect. For that purpose, we consider a
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scenario where the two arms added after the beginning of the trial are the less

efficacious and the more promising. Thus, we set the true regression coefficients as

(β0, β1, β2, β3, β4) = (0.13, 0, 0.25, 0, 0.55); if the time trend is null, the true outcome

probabilities are (θ0, θ1, θ2, θ3, θ4) = (0.55, 0.55, 0.65, 0.55, 0.75).

Figure 6.2, Panel B, represents the estimated treatment effect for Arm 4, when it

is added after the assignment of 102 patients, across 1000 simulated BAR trials. The

true treatment effect is showed by the black line and it is equal to 55%. According

to Section 4.1, when the outcome probabilities are not subject to changes in the

patient population, both estimates result correct. In Trend 1 and Trend 3, GAM

estimates the treatment effect correctly as 55.18% and 56.5%, while the estimates

obtained with NTA are not accurate, 40.24% and 67.74%, respectively. In Trend 2,

the NTA approach shows a strong bias and the estimate of the treatment effect is

35% lower than the true value, against a bias of 1.26% for the GAM model. Table

6.3 reports the simulated results also for the other designs. The GAM model is

unable to accurately estimate the treatment effects for the added arms under a PTW

scheme. This results in extremely high bias for the GAM model. On the other hand,

the bias reported by the NTA approach is much lower (around 10%). For the other

designs, the two methods perform equally well in absence of trend. In presence of

any time trend, the values obtained through the GAM model are generally more

correct. The estimates of the treatment effect for all the arms have a bias between

0-3%. NTA, instead, reports a very a higher bias for the added arms in Trend 1, 2

and 3. In Trend 2, the treatment effect estimates of Arm 4 are between 30% and 44%

lower than the true value. In Trend 1 and 3, the bias of ∆4 estimates are between

12% and 17% and around 10%, respectively.

We consider a different scenario to better evaluate the ability to protect the

type I error inflation of the proposed method. We set the following scenario

(β0, β1, β2, β3, β4) = (0.13, 0.25, 0.55, 0, 0), and Arm 3 and Arm 4 become avail-

able after that 102 patients have been already enrolled into the study. The cor-

responding true outcome probabilities in absence of trend are (θ0, θ1, θ2, θ3, θ4) =
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(0.55, 0.65, 0.75, 0.55, 0.55). The corresponding type I error rates are computed across

1000 simulated trials and the values are reported in Table 6.4. In a platform trial

the presence of any kind of trend has a very strong impact on the type I error rate.

If no adjustment for trends in the patient population is considered, the type I error

inflates drastically. When the probabilities of a response to treatments decrease

(Trend 1), and not adjustment is made, the type I error rates increase to around

8% for BR and PTW, and to more than 20% for BAR, while is reduced to 1.8% for

DABC. Under the same trend, the proposed method is able to preserve the type I

error close to the nominal value for all the designs. When the population changed

towards healthier patients (Trend 4), the effect of the presence of trend is stronger

and rates for NTA increase more than 7%, 25%, 40%, 25% for BR, PTW, DABC

and BAR, respectively, against the 4%, 4.9% and 5.3 % for BR, DABC and BAR

obtained from our bootstrap procedure. Under seasonal trends, we observed an

inflation of the type I error rates for PTW (23.0%) and BAR (12%) and a deflation

for BR (1.4%) and DABC (12%) when no modification for time trend is provided.

Rates sufficient close to the nominal level are obtained for BR, DBC and BAR for

the GAM adjustment, but a reduction to 2.1 is observed for PTW.

Finally, we investigate the performance of the proposed method when stopping

rule for futility is introduced to the procedure ( see Subsection 2.2.2). We set the

parameters of the threshold fi,a as (f, g, n′E) = (.3, 1.5, 50) for all the designs and

we simulate 1000 trials for each design. As before, the method obtains rates near to

desired nominal value and protect the type I error by an extreme inflation. Besides

the PTW that performs very poorly in all the trends, the other designs target the

predefined type I error. Results are showed in the last column of Table 6.4. In Trend

1, DABC and BAR presents a rate almost equal to 5% and then preserve better the

type I error respect to BR design (about 6%). Under seasonal trend, BAR controls

better the nominal level, while BR and DABC reports a rates around 4%. Lastly, in

Trend 4, the type I error rate has an inflation only of 1% for BAR and BR, and is

well-preserved for DABC.
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Chapter 5

Discussion

We propose and evaluate procedures to handle possible changes in patients pop-

ulation’s characteristics during a clinical trial. The procedures start by modeling

the response probability to a treatment as function of the enrollment time of each

patient. We adopt a semi-parametric model, which assumes a constant treatment

effect over the course of the study and an equal time trend effect for each patient that

is independent from allocation. Next, we suggest a general parametric bootstrap

algorithm for testing efficacy and preserving the type I error inflation. The algorithm

is feasible to any clinical trial design and any estimator. Through the manuscript,

we discuss and compare four randomization schemes.

We applied the procedures to a standard multi-arm clinical trial and later we

extend the comparison to multi-arm platform trials. The procedures were robust to

changes in patient population and significant improvements were observed about

the control of the type I error rate when experimental arms are added to an ongoing

study.

This work represents one of the few contribute about this issue in literature, and

we are aware that further researches are needed to asses the potential impact of time

trend in multi-arm clinical trials. Different scenarios may be considered, and a more

rigorous study of the power need to be conducted. Moreover, accounting directly for

time trends by using alternative adaptive-allocation rules in an ongoing study or
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exploring the effect of time trends on RAR procedures with biomarkers represent

the next challenges to be investigated.
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Chapter 6

Figures and Tables



64 6. Figures and Tables

0.3

0.5

0.7

0 100 200 300
Overall Sample Size

Tru
e S

uc
ce

ss
 R

ate

Trend

0

1

2

3

Time trends

Figure 6.1. True success rate under different time trend assumptions during the trial.
The true response probability at the beginning of the study is equal to 0.55. Trend 0:
Success rate in absence of trend. Trend 1: Success rate decreases monotonically over the
time. Trend 2: Success rate has a periodic behavior. Trend 3: Success rate increases
monotonically over the time
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Figure 6.2. Treatment effect estimates as 100 ∗∆a, for a > 0. The black line corresponds
to the true value of the treatment effect (55%). Results are based on 1000 simulated
BAR trials using either the GAM model (GAM) and the No Trend Adjustment approach
(NTA). Panel A: Treatment effect estimates of an initial experimental arm. The overall
sample size is 240 patients. Panel B: Treatment effect estimates of an experimental arm
added after 102 patients. The overall sample size is 250 patients. Different trends are
considered: 0) Absence of time trend in the patients population during the trial. 1)
The true outcome probabilities decrease monotonically for all treatment arms. 2) The
true outcome probabilities follows a seasonal trend. 3) The true outcome probabilities
increase monotonically for all treatment arms.
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NTA GAM
Design BR,PTW,DABC,BAR BR,PTW,DABC,BAR
Scenario 100*(∆1,∆2,∆3)=( -50, 0 , 55)
Arm Trend 0
1 -51.24, -52.20, -53.83, -50.90 -51.88, -52.98, -54.36, -51.7
2 1.72, 1.44, 0.89, 0.31 1.56, 1.43, 0.83, -0.06
3 55.83, 57.67, 54.35, 56 56.12, 58.30, 54.84, 56.40

Trend 1
1 -49.40, -47.79, -47.69, -40.99 -50.96, -60.18, -57.46, -53.54
2 2.08, 0.46, 3.00, 7.02 2.41, 0.35, 1.91, 0.01
3 55.0, 49.17, 54.85, 54.07 56.69, 56.16, 57.08, 56.25

Trend 2
1 -39.47, -32.00, -40.00, -19.87 -50.97, -50.84, -52.04, -50.83
2 2.82, 2.03, 0.35, 15.30 2.60, 3.07, 1.00, -0.28
3 44.54, 39.38, 43.00, 41.52 56.01, 58.27, 56.58, 54.01

Trend 3
1 -48.78, -56.39, -51.74, -59.49 -50.71, -53.07, -52.20, -50.91
2 2.37, 2.46, 1.60, -6.43 2.14, 2.46, 1.94, 0.42
3 55.35, 58.21, 57.01, 54.02 57.25, 56.69, 58.87, 55.50

Table 6.1. Treatment effect estimates as 100 ∗∆a, for a > 0, across 1000 simulated trials
with all initial experimental arms and an overall sample size of 240 patients using either
the GAM model (GAM) and the No Trend Adjustment approach (NTA). Different trend
situations are explored: 0) Absence of time trend in the patients population during
the trial. 1) The true outcome probabilities decrease monotonically for all treatment
arms. 2) The true outcome probabilities follows a seasonal trend. 3) The true outcome
probabilities increase monotonically for all treatment arms. For each trend, trials are run
under balanced randomization (BR), play the winner design (PTW), doubly adaptive
biased coin design (DABC) and Bayesian adaptive randomization (BAR).
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NTA GAM
Design BR, PTW, DABC, BAR BR, PTW, DABC, BAR
Scenario (∆2,∆3)=( 0, 0.55)
Arm Trend 0
2 5.0, 5.0, 4.0, 4.7 5.1, 5.1, 5.8, 5.4
3 75.0, 76.1, 75.0, 83.4 74.3, 78.2, 78.3, 83.0

Trend 1
2 4.1, 4.0, 4.3, 4.2 4.9, 4.1, 4.7, 5.5
3 76, 73.5, 79.5, 85.4 74.9, 77.6, 78.5, 84.9

Trend 2
2 4.5, 2.2, 3.9, 6.0 4.8, 5.6, 6.0, 5.0
3 73.8, 49.5, 60.0, 85.6 65.5, 70.4, 74.0, 78.9

Trend 3
2 4.0, 6.7, 5.2, 5.3 5.2, 6.1, 4.8, 5.9
3 71.3, 77.2, 69.0, 82.6 68.0, 80.7, 72.2, 75.0

Table 6.2. Empirical type I error rates and power based on 1000 simulated trials with all
initial experimental treatments and an overall sample size of 240 patients, an accrual
rate of 6 patients per month and a delay outcome of 8 weeks. Results are obtained
under balanced randomization (BR), play the winner design (PTW), doubly adaptive
biased coin design (DABC) and Bayesian adaptive randomization (BAR) by using either
the GAM model (GAM) or the No Trend Adjustment (NTA) procedure. Different
time trends are considered: 0) Absence of time trend in the patients population during
the trial. 1) The true outcome probabilities decrease monotonically for all treatment
arms. 2) The true outcome probabilities follows a seasonal trend. 3) The true outcome
probabilities increase monotonically for all treatment arms.
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NTA GAM
Design BR,PTW,DABC,BAR BR,PTW,DABC,BAR
Scenario 100*(∆1,∆2,∆3,∆4)=( 0, 25, 0, 55)
Arm Trend 0
1 -0.14, 0.08, 0.30, -3.20 -0.03, 0.09, 0.32, -3.71
2 24.42, 25.09, 23.88, 22.22 24.49, 25.33, 24.04, 22.05
3 2.56, 4.40, 1.86, -2.02 2.75, 24.08, 2.24, -2.71
4 56.06, 51.13,56.20, 53.82 56.47, 227.47, 57.22, 56.5

Trend 1
1 1.2, 0.41, 0.43, 5.50 1.39, 0.37, -1.41, -1.86
2 24.13, 21.90, 25.58, 23.65 25.20, 25.36, 23.84, 22.51
3 - 14.38, 11.13, -7.89, -5.73 3.47, 87.25, 0.83, -1.02
4 38.32, 65.19, 43.45, 40.24 57.41, 100.17, 54.76, 55.18

Trend 2
1 0.71, 0.54, -1.15, 7.33 1.17, 0.64, -0.98, -0.89
2 19.96, 18.13, 18.30, 17.93 24.37, 24.77, 23.13, 23.89
3 -32.69, 34.45, -19.75, -6.26 2.68, 87.25, 1.43, 1.04
4 11.14, 66.45, 21.09, 25.08 55.77, 219.51, 54.75, 53.74

Trend 3
1 -0.04, 0.13, -1.43, -8.53 -0.07, 0.28, 0.13, -1.39
2 27.73, 25.75, 23.28, 19.02 24.30, 24.67, 25.23, 22.48
3 19.35, -10.31, 13.01, 6.98 0.92, 143.97, 3.09, 0.97
4 73.32, 22.00, 66.01, 67.74 62.76, 552.94, 57.22, 56.50

Table 6.3. Treatment effect estimates as 100 ∗∆a, for a > 0, across 1000 simulated trials
with four experimental treatments and an overall sample size of 250 patients using
either the GAM model (GAM) and the No Trend Adjustment approach (NTA). The
trial starts with two experimental arms and the control. Arms 3 and 4 are added
at M2 = 102. Different trend situations are explored: 0) Absence of time trend in
the patients population during the trial. 1) The true outcome probabilities decrease
monotonically for all treatment arms. 2) The true outcome probabilities follows a seasonal
trend. 3) The true outcome probabilities increase monotonically for all treatment arms.
For each trend, trials are run under balanced randomization (BR), play the winner
design (PTW), doubly adaptive biased coin design (DABC) and Bayesian adaptive
randomization (BAR).
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NTA GAM GAM
with Stopping Rule

Design BR, PTW, DABC, BAR BR, PTW, DABC, BAR BR, PTW, DABC, BAR
Scenario (∆2,∆3,∆4) = (0.55, 0, 0)
Arm Trend 0
2 64.1, 83.9, 71.2, 77.0 67.0, 79.9, 74.1, 82.7 66.0, 76.0, 71.0, 80.7
3 8.2, 17.2, 13.1, 26.1 4.2, 4.8, 6.1, 4.6 6.6, 4.0, 6.4, 4.2
4 7.5, 15.9, 13.4, 25.7 4.9, 4.8, 5.8, 5.7 6.2, 8.0, 4.6, 6.0

Trend 1
2 69.1, 75.8, 73.3, 79.6 67.8, 84.2, 76.1, 82.2 66.4, 80.0, 75.7, 79.1
3 8.2, 8.7, 1.8, 22.8 4.7, 5.2, 5.2, 4.6 6.4, 12.0, 5.0, 4.8
4 8.0, 8.5, 1.3, 25.3 5.1, 5.3, 5.0, 5.7 6.7, 8.0, 4.8, 4.9

Trend 2
2 69.0, 59.3, 51.7, 77.1 58.0, 79.1, 63.3, 70.7 58.3, 72.2, 64.1, 72.2
3 1.4, 23.0, 0.1, 12.3 4.2, 2.1, 4.3, 5.9 3.8, 3.3, 4.0, 5.4
4 0.9, 22.6, 0.1, 12.1 4.6, 2.1, 4.5, 5.8 4.1, 3.0, 4.1, 4.8

Trend 3
2 66.6, 77.9, 63.1, 78.5 62.5, 77.9, 66.6, 73.3 60.7, 72.7, 65.8, 72.7
3 7.9, 25.2, 48.4, 25.7 3.4, 0.1, 5.7, 3.7 5.9, 1.5, 5.5, 6.1
4 8.7, 25.5, 45.4, 24.1 4.4, 0.1, 4.9, 5.3 5.5, 1.5, 5.0, 6.1

Table 6.4. Empirical type I error rates and power across 1000 simulated trials with
two initial experimental treatments (Arm 1 and 2) and two new arms (Arm 3 and 4)
added at M2 = 102. The overall sample size is 250 patients, with an accrual rate of
6 patients per month and a delay outcome of 8 weeks. Results are obtained under
balanced randomization (BR), play the winner design (PTW), doubly adaptive biased
coin design (DABC) and Bayesian adaptive randomization (BAR) by using either the
GAM model (GAM) or the No Trend Adjustment (NTA) procedure. Different time
trends are considered: 0) Absence of time trend in the patients population during
the trial. 1) The true outcome probabilities decrease monotonically for all treatment
arms. 2) The true outcome probabilities follows a seasonal trend. 3) The true outcome
probabilities increase monotonically for all treatment arms.
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