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Introduction

Quantum information and quantum optics have reached several milestones during the last two
decades. Starting from the 1980s, when Feynman and Deutsch [1, 2] laid the foundations of
quantum computation and information, in the last years there have been significant progresses
both in theoretical and experimental aspects. A series of quantum algorithms has been proposed
that promise computational speed-up with respect to its classical counterpart. If fully exploited,
quantum computers are expected to be able to markedly outperform classical ones in several
specific tasks. More generally, quantum computers would change the paradigm of what we
currently consider efficiently computable, being based on a completely different way to encode
and elaborate data, which relies on the unique properties of quantum mechanics such as linear
superposition and entanglement. The building block of quantum computation is the qubit, which
incorporates in its definition the revolutionary aspects that would enable overcoming classical
computation in terms of efficiency and security. However recent developments in technologies
claimed the realizations of devices with hundreds of controllable qubits, provoking an important
debate of what exactly is a quantum computing process and how to unambiguously recognize the
presence of a quantum speed-up [3]. Nevertheless, the question of what exactly makes a quantum
computer faster than a classical one has currently no clear answer. Its applications could spread
from cryptography, with a significant enhancement in terms of security, to communication and
simulation of quantum systems. In particular, in the latter case it was shown by Feynman [1] that
some problems in quantum mechanics are intractable by means of only classical approaches, due
to the exponential increase in the dimension of the Hilbert space. Clearly the question of where
quantum capabilities in computation are significant is still open and the hindrance to answer to
these problems brought the scientific community to focus its efforts in trying to develop these
kind of systems. As a consequence, significant progresses have been made in trapped ions [4, 5],
superconducting circuits [6, 7], neutral atoms [8,9] and linear optics [10–12] permitting the first
implementations of such devices.

Among all the scheme introduced, the approach suggested by linear optics, uses photons to
encode information and is believed to be promising in most tasks. For instance, photons are
important for quantum communication and cryptography protocols because of their natural
tendency to behave as "flying" qubits. Moreover, with identical properties (energy, polarization,
spatial and temporal profiles), indistinguishable photons can interfere with each other due to
their boson nature. These features have a direct application in the task of performing quantum
protocols. In fact they are suitable for several recent scheme such as for example graph- and
cluster-state photonic quantum computation [10, 11]. In particular, it has been proved that
universal quantum computation is possible using only simple optical elements, single photon
sources, number resolving photo-detectors and adaptative measurements (KLM scheme) [12],
thus confirming the pivotal importance of these particles. Although the importance of linear
optics has been confirmed in the last decades, its potentialities were already anticipated years
before when (1) Burnham et al. [13] discovered the Spontaneous Parametric Down-Conversion
(SPDC), (2) Hong, Ou and Mandel discovered the namesake effect (HOM) [14] and (3) Reck
et al. showed how a particular combination of simple optical elements can reproduce any
unitary transformation [15]. (1) SPDC consists in the generation of entangled photon pairs
through a nonlinear crystal pumped with a strong laser and despite recent advancements in other
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approaches [16–18], it has been the keystone of single photon generation for several years [19],
due to the possibility to create entangled photon pairs with high spectral correlation. (2) The
HOM effect demonstrated the tendency of indistinguishable photon pairs to "bunch" in the same
output port of a balanced beam splitter, de facto showing a signature of quantum interference.
Finally, (3) the capability to realize any unitary operation in the space of the occupation modes
led to the identification of interferometers as pivotal objects for quantum information protocols
with linear optics [15].

At this point, once recognized the importance of all these ingredients, linear optics aimed to
reach large implementations to perform protocols with a concrete quantum advantage. Unfor-
tunately, the methods exploited by bulk optics suffer of strong mechanical instabilities, which
prevent a transition to large-size experiments. The need for both stability and scalability has led
to the miniaturization of such bulk optical devices. Several techniques have been employed to
reach this goal, such as lithographic processes and implementations on silica materials [20–23].
All these approaches are significant in terms of stability and ease of manipulation, but they
are still expensive in terms of costs and fabrication time and, moreover, they do not permit to
exploit the 3D dimension to realize more complex platforms. A powerful approach to transfer
linear optical elements on an integrated photonic platform able to overcome these limitations has
been recognized in the femtosecond laser micromachining (FLM) [24–26]. FLM, developed in
the last two decades, exploits the mechanism of non-linear absorption in a medium with focused
femtosecond pulses to design arbitrary 3D structures inside an optical substrate. Miniaturized
beam splitters and phase shifters are then realized inducing a localized change in the refractive
index of the medium. This technique allows to write complex 3D circuits by moving the sample
along the desired path at constant velocity, perpendicularly with respect to the laser beam.
3D structures can also be realized either polarization sensitive or insensitive, due to the low
birefringence of the material used (borosilicate glass), enabling polarization-encoded qubits
and polarization-entangled photons to realize protocol of quantum computation [27,28]. As a
consequence, integrated photonics gives us a starting point to implement quantum simulation
processes in a very stable configuration. This feature could pave the way to investigate larger
size experiments, where a higher number of photons and optical elements are involved.

Recently, it has been suggested that many-particle bosonic interference can be used as a
testing tool for the computational power of quantum computers and quantum simulators. Despite
the important constraints that we need to satisfy to build a universal quantum computer [29]
and perform quantum computation in linear optics [12, 30–32], bosonic statistics finds a new
promising simpler application in pinpointing the ingredients for a quantum advantage. In this
context, an interesting model was recently introduced: the Boson Sampling problem [33]. This
model exploits the evolution of indistinguishable bosons into an optical interferometer described
by an unitary transformation and it consists in sampling from its output distribution. The core
behind this model is the many-body boson interference: although measuring the outcomes seems
to be easy to perform, simulating the output of this device, is believed to be intrinsically hard
classically in terms of physical resources and time, even approximatively. For this reason Boson
Sampling captured the interest of the optical community, which concentrated its efforts to realize
experimentally this kind of platforms. This phenomenon can be interpreted as a generalization
of the Hong-Ou-Mandel effect of a n-photon state that interferes into an m-mode interferometer.
In principle, if we are able to reach large dimensions (in n and m), this method can provide the
first evidence of quantum over classical advantage and, moreover, it could open the way to the
implementation of quantum computation based on quantum interference. Although the path
seems promising, this approach has non-trivial drawbacks. First, (a) we need to reach large scale
implementations in order to observe quantum advantage, so how can we scale them up? There
are two roads that we can follow: (a1) to scale with the number of modes with the techniques
developed in integrated photonics, trying to find the best implementation for our interferometers
in terms of robustness against losses and choosing the best implementation, or (a2) to scale up
the number of photons, identifying appropriate sources for this task. Second, (b) in order to
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perform quantum protocols we should "trust" on the effective true interference that is supposed
to occur the protagonist of the phenomenon. For large-scale implementations, simulating the
physical behaviour by means of classical approaches, becomes quickly intractable. In this case
the road that we chose is (1) to identify the transformation that are optimal in discriminating
true photon interference and (2) to use classification protocols as machine learning techniques
and statistical tools to extract information and correlations from output data. In Fig. 0.1 we
report the conceptual scheme of the motivations and the problems which we analysed in this
Thesis.

Quantum computation

Signature of 
quantum advantage?

Linear optics (KLM)

HARD!

Quantum
advantage?

Boson Sampling

Classical
approach

Quantum 
approach

How to scale?

How to validate 
true photon

interference?

Hard!

In progress

Validation problem

Multiplexing SPDC sources

Benchmarking
circuit architectures

On-demand Single photon sources

True quantum
interference?

Scalability?

Miniaturization

Implementation?

Validate against the 
hyphothesis of 

alternative phenomena

Integrated photonics
(FLM)

Goals

Figure 0.1. Conceptual scheme of the thesis: The demonstration the supposed quantum over
classical advantage of quantum computers seems to be difficult to achieve. Boson Sampling is a
promising model which attempts to show this advantage in a simpler experimental realization. In
this thesis we performed our experiments on photonic platforms, focusing on the problem of "how we
can scale up our systems" with optical devices by exploiting SPDC sources in parallel (multiplexing)
and deterministic sources (on-demand single photon sources). Successively we focus on the problem
"how to identify signatures of true photon interference in an efficient and unambiguous way, paying
attention to the scalability of both the photonic implementation (benchmarking architectures) and
computational resources (validation problem).

Following these premises, the main goal of this thesis is to address a solution to these
problems by following the suggested paths. Firstly, we will give an overview of the theoretical and
experimental tools used and, secondly, we will show the subsequent analyses that we have carried
out. Regarding point (a1) we performed several analyses under broad and realistic conditions.
We studied quantitatively the difference between the three known architectures to identify which
scheme is more appropriate for the realization of unitary transformations in our interferometers,
in terms of scalability and robustness to losses and noise. We also studied the problem comparing
our results to the recent developments in integrated photonics. Regarding point (a2) we studied
different experimental realizations which seem promising for scaling up both the number of
photons and the performances of the quantum device. First, we used multiple SPDC sources
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to improve the generation rate of single photons. Second, we performed an analysis on the
performances of on-demand single-photon sources using a 3-mode integrated photonic circuit
and quantum dots as deterministic single photon sources. This investigation has been carried
out in a collaboration with the Optic of Semiconductor nanoStructures Group (GOSS) led by
Prof. Pascale Senellart in Laboratoire de Photonique et de Nanostructures (C2N).

Finally, we focused on problem (b) trying to answer the question of how to validate genuine
multi-photon interference in an efficient way. Using optical chips built with FLM we performed
several experiments based on protocols suitable for the problem. We performed an analysis on
finding the optimal transformations for identifying genuine quantum interference. For this scope,
we employed different figures of merit as Total Variation Distance (TVD) and Bayesian tests to
exclude alternative hyphotheses on the experimental data. The result of these analysis is the
identification of two unitaries which belong to the class of Hadamard matrices, namely the Fourier
and Sylvester transformations. Thanks to the unique properties associated to the symmetries of
these unitaries, we are able to formalize rules to identify real photon interference, the so-called
zero-transmission laws, by looking at specific outputs of the interferometers which are efficiently
predictable. Subsequently, we will further investigate on the validation problem by looking at the
target from a different perspective. We will exploit two roads: retrieving signatures of quantum
interference through machine learning classification techniques and extracting information from
the experimental data by means of statistical tools. These approaches are based on choosing
training samples from data which are used as reference in order to classify the whole set of
output data accordingly, in this case, to its physical behaviour. In this way we are able to rule
out against alternative hypotheses not based on true quantum interference.

In the following, I will present a summary of the work that I have carried out, giving a brief
description of each chapter:

• In Chapter 1 we will introduce briefly the framework of this work and the basics that we
need to introduce our works. In particular we will focus on the concept of computability,
the concept of algorithm with a short description of machine learning. Then we will
give the basics of quantum computation and quantum information describing the main
developments.

• In Chapter 2 we will introduce the topic of multi-boson indistinguishability, discussing the
importance of linear optics for quantum computation and introducing Boson Sampling
as a pivotal model to study the quantum over classical advantage problem by means of
photonic platforms.

• In Chapter 3 we will argue on the techniques we need to realize miniaturized interferometers,
in particular femtosecond laser micromachining, and subsequently we will provide the
experimental tools that we need to generate and manipulate photons for our experiments.

• In Chapter 4 we will focus on how to implement unitary transformations, identifying the
parameters that are pivotal for a scalable implementation. Moreover, we will present a
comparison between two universal schemes and a new, highly-specialized on that enables
more robust and efficient implementations for specific relevant transformations.

• Finally in Chapter 5 and in Chapter 6 we will discuss the validation problem, starting with
a little overview of the context and later on introducing the different models that I have
investigated through these years where several validation protocols have been performed. In
particular Chapter 5 focus on individuating and exploiting particular matrices with specific
symmetries which highlights quantum interference, and in Chapter 6 we rather focus on
pattern recognition techniques and statistical tools to cluster data according to particles
behaviour. We conclude with a work done in collaboration with the group of Pascale
Senellart in C2N, where we exploited quantum dots as on-demand single photons source,
verifying with a tunable optical chip the indistinguishability of such sources (Chapter 7).
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Furthermore, at the end of this manuscript I provide an Appendix Chapter in order to give to
the reader, a deeper analysis of the models and techniques that we developed so far, to allow for
a fully comprehension of the adopted procedures. Finally I want to acknowledge the groups that
collaborated to our works, in particular Politecnico di Milano and IFN-CNR of Milano which
provided us the optical circuits to perform our experiments with the technique of femtosecond
laser micromachining, the Universidade Federal Fluminense and the Perimeter Institute for
Theoretical Physics for carrying out part of numerical simulations, the GOSS group leaded by
Pascale Senellart in C2N for the work related with deterministic single photon sources and last
but not the least the Quantum Information Lab. of Rome where I worked for the whole period
of my PhD project. My work has been supported by fundings QUCHIP and ERC 3D-QUEST.



12

Chapter 1

Classical and quantum information

In this chapter, we introduce the basic concepts of classical and quantum computation theory
which are at the basis of this work, focusing on the points that will be useful in next chapters.
We will describe the basic notions of classical information, defining the concept of algorithm
and the formalism of the computational class theory. Then we briefly introduce the main topics
of machine learning theory and its applications. Finally, we will discuss some useful quantum
information and computation tools, which allow us to describe general properties of a quantum
computer before moving to a more complete description of this device in the context of linear
optics.

1.1 Classical computation
In the last century the theory of computation was separated from mathematics and it became an
independent academic discipline. Starting from the pioneering works during the second World
War by Alonzo Church [34] and Alan Turing [35], the improvement of classical computation led
to a proliferation of works diffused in different areas and to new developments in technologies.
The basic idea was that to translate mathematical operations into an automatic process, but
there are problems regarding the introduction of a formal definition. Moreover, Gödel in 1930
enunciated the famous incompleteness theorem [36], stating that it is impossible to create a
complete and coherent mathematical system. More formally, he proved that for any computable
axiomatic system powerful enough to describe the arithmetic of the natural numbers: (1) if the
system is consistent, it cannot be complete and (2) the consistency of the axioms cannot be
proved within the system. The question that arise is: what can I define as computable? To
answer the question we will now introduce the concept of algorithm in the next section.

1.1.1 The concept of algorithm

The goal of the theory of computation, is to find which kind of functions can be calculated through
an automatic process, thus introducing the concept of sequential computation. Information
and data are represented by means of dichotomic digits, the bits, with binary numeration (0, 1)
particularly suitable for technology. They can be seen from a hardware perspective as states
ON/OFF of an electric device. Consequently, the procedure used to combine these states defines
strings of instructions for specific purposes. It is thus important to define in a formal and rigorous
way the intuitive idea of computable function. From one side, the approach is to focus on the
concept of computability, trying to identify which classes of problems are theoretically solvable.
From the other side, we want to determine which problems can be solved by a computer without
specific constraints imposed by the size of the problem itself.
Thus, let us now introduce the concept of algorithm. An algorithm is a procedure, expressed
in its most general and high-level form, to solve unambiguously, with a finite sequence of



1.1 Classical computation 13

(a) (b)

Figure 1.1. Turing machine. Schematic representation of a Turing machine. The calculation begins
with the Start internal state and the head pointing to the first cell of the tape, with the input encoded
in the tape status. Then, at each step, the internal status changes and the head moves, changing the
tape content, according to the program lines.

instructions, a specific problem. A computing machine is a system which maps an input
to an output, deterministically or governed by a probability distribution. Algorithms and
computer machines work by performing a sequential number of operations which define a given
computation. Nevertheless, for each algorithm in order to formally define the process, it must
exists a model which describe the "behaviour" of the procedure. Basically, we need to define a
model of computation: in computability theory and computational complexity theory, a model
of computation is the definition of the set of allowable operations used and their respective costs.
This is also useful to analyze the cost of such algorithms in order to measure the complexity of
the procedure in execution time and memory space. In other words, by assuming a certain model
of computation, it is possible to analyze the computational resources required or to discuss the
limitations of algorithms or computers. There are several models of computation suitable for
different kinds of algorithms and applications such as Markov approach, combinatorial logic,
λ-calculus and register machines [37]. For the sake of brevity but completeness we focus only on
the so-called Turing machines which is the basis of every model of computation. In fact, it is
conjectured that every algorithm defined under a specific computational model can be mapped to
a problem solvable with the formalism of a Turing machine with at most a polynomial overhead in
the number of computational resources. For a more exhaustive description on the computational
complexity we refer to the section 1.1.4. Let us thus introduce the Turing machine (TM) as the
formal building block of the theory of computation.
A Turing Machine (TM) is constituted by four elements:

• An infinite tape, composed by cell. Each cell is filled with a final set of symbols {a1, . . . , am}
belonging to a given alphabet Σ comprehensive of blank symbol for no active operation.
For example Σ = {0, 1, blank}. A read-write head points at a specific cell during each
calculation step. After each step it can read and change the symbols of the current cell,
and move left or right to the adjacent tape cell.

• A finite state control, which is an internal state of the machine that can span over a
finite set of states S = {s1, . . . , sf , H}, comprehensive of an initial state s0 and a final state
sf . H is the Halt state which ends the execution.

• A program, i.e. a finite list of lines structured by a sequence of determined functional
operations:

s̄ = fs(s, a) ā = fa(s, a) d = fd(s, a) (1.1)
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In other words, given a specific set of inputs and configurations, the machine changes its state
and move to another cell through simple discrete instructions set by the algorithm, until the
Halt command.

ti : si, ai =⇒ ti+1 : s̄i, āi, di ∀i (1.2)

It is worth noting that this model represents the first formal theory on the sequential processing
and accomplishes determined operations step by step following the path ruled by the algorithm.
However, it is possible to define another type of TM which introduces a probabilistic approach
to the problem and that is believed to solve specific problems even faster. This model is named
probabilistic Turing machine (PTM) and differs from the previous one because the choice between
available transitions at each point is performed according to some probability distribution:

s̄2, ā2, d2
1−p←−− si, ai

p−→ s̄1, ā1, d1 (1.3)

One of the central questions of complexity theory is whether randomness adds power; that is, is
there a problem which can be solved in polynomial time by a probabilistic Turing machine but
not a deterministic Turing machine? Or can deterministic Turing machines efficiently simulate
all PTMs with at most a polynomial slowdown? We will discuss more in detail the implication
of this statement in section 1.2.
Let us introduce, in the next section, the motivations that brought to the need of finding a new
approach for the computation.

1.1.2 The Church-Turing thesis

It is then with the introduction of a general model theory about TMs and the realization of the
first transistors, that we lay the foundation of modern computability. Let us thus introduce the
so-called Universal Turing machine UTM which incorporates the functioning of all the other
TMs:

Definition 1.1: Universal Turing machine

Let T be a generic Turing machine and let nT an integer number which identifies univocally
T for a specific algorithm, we define Universal Turing machine U as:

U(nT , x) = T (x). (1.4)

Specifically, given an input x and an identifier nT , the universal Turing machine returns a
specific Turing machine T that will return its output.

The idea is that, the program, the alphabet and the set of states are fixed, while the first part of
the initial state of the tape encodes the functioning of the TM to be simulated. This formalism,
once extended to a bigger class of problems, leads to a rigorous approach to the theory of
computation. This extension is embodied into the two independent seminal works of Alonso
Church [34] and Alan Turing [35] to identify the class of algorithms which are "computable",
which are usually combined in the conjecture of Church-Turing thesis (CTT):

"The class of functions computable by a Turing machine corresponds exactly to the class of
functions we would naturally regard as being computable by an algorithm."

which means that all possible formalizations of the intuitive notion of computing are equivalent,
and can be fully captured by the TM formalism. This strong statement constituted the basement
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for all subsequent developments of computational complexity theory. But what exactly does
computable mean?
There is still some ambiguity in the concept of what is computable and what is not. In 80s,
David Deutsch tried to reinterpret this statement in a more physical way. Indeed, he switched
the view from computation to simulation: in its own reformulation of the CTT, a computing
machine is able to perfectly simulate a physical system if the two are computationally equivalent
under a suitable choice of the program and the input-output labeling of the computing machine
(or, in other words, if one cannot be able to distinguish a black box containing a physical system
or its simulator just by looking at its inputs and outputs). So, he formulates the new version of
the conjecture giving a wide breath on the possible implementations by physical means. The
new conjecture, named "physical Church-Turing thesis" (PCTT) states that

"Every finitely realizable physical system can be perfectly simulated by a universal model computing
machine operating by finite means".

At this point the attention started to focus on computer performances. The notion of efficient
calculation, which is the main criteria for understanding the complexity behind a computational
task, is of pivotal importance for modern computational theory. At the same time, it relies on
a quite strong simplification: an algorithm is considered efficient if the required resources for
its execution scale polynomially with the size of the input. The simplification lies obviously in
the fact that nothing is said about the order of the polynomial; still, this distinction between
“easy" (polynomial) and “hard" (exponential) computational problems seems to capture the main
picture of the panorama of algorithmic complexity. A more detailed description on the field of
computational classes will be introduced in section 1.1.4.
Moreover in 1960s and 1970s there were several studies to find possible alternatives to the Turing
model, but it was observed that any computational model can be reproduced or "simulated" by a
Turing machine with at least a polynomial overhead. This implication suggest an immediate
change on CTT by introducing the Strong Church-Turing thesis (SCTT):

"Any algorithmic process can be simulated efficiently using a Turing machine."

It is worth noting that this strong implication relies on the word efficiency. Indeed, if the
conjecture holds true, no matters what kind of model or device we use to perform our computation,
that machine can be simulated efficiently by means of Turing machines, thus allowing to
concentrate the analysis on computational efficiency of programs only to the TM model.
In the last 50 years there were several attacks on SCTT, but the first threat to the conjecture
arrived from Robert Solovay and Volker Strassen in 70s, which exploited randomness as crucial
part in the implementation of the algorithms [38] to retrieve the final result with a good
approximation in an efficient way. Consequently, probabilistic programs pose a challenge to
SCTT suggesting that there are problem that can be solved efficiently in probabilistic machines,
while deterministic Turing machines cannot. Nevertheless the problem is easily solvable by
introducing a little change in the SCTT. Combining the physical reinterpretation of the PCTT
and adding a strong contribution due to the randomness, we can formulate the so-called Extended
Church-Turing thesis (ECTT) which is comprehensive of both claims:

"Any physical system can be simulated on a probabilistic Turing machine with at most a polynomial
overhead in the size of the system to be simulated"

Such statement has very strong computational and scientific implications, since it says that every
aspect of Nature can be captured by a UTM. It was Feynmann’s and Deutsch’s works in early
80s that exposed how quantum mechanical processes can open the door to a new paradigm of
computational which cannot be framed by the Turing machine methods. We will introduce, in
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more details in the next sections, the quantum computation and the reason why this approach
can fulfil the request to overcome the ECTT.

Let’s do for the moment a step back by discussing the principal discoveries of modern compu-
tation. In the last decades, the developments of this area both in theoretical and technological
aspects, brought to a progressive proliferation of important topics. Computer science and
telecommunications introduced the so-called " Society of Information", as a consequence of this
development, there have been several needs to satisfy, as for example the enormous amount
of data and information that spread quickly. The need to control this significant quantity of
data, brought computer scientists to develop algorithms and techniques that aim to classify and
reinterpret them in an efficient way. To mention the most diffused we can recognize techniques
such as Bayesian inference, data mining and machine learning. Following this road, we will
introduce the latter since it represents a frontier application of computer science which is believed
to be pivotal for future applications in society. We give a non-exhaustive description of the
machine learning field, and later we give more details on the computational classes, which
represent the ingredients to understand how to frame quantum computation respect classical one
from the point of view of computational efficiency.

1.1.3 Machine Learning

Computation theory developed extensively during the last six decades. Basic protocols have
been widely used in order to elaborate and properly classify data in several fields of science.
The next step is to evolve the way we think about computation, providing something which is
beyond the simple concept of data processing. Is it possible to build algorithms which are able
to learn from data itself? This question introduces the idea of machine learning: which aims
to comprehend the behaviour hidden in raw data, to give a prediction on a subsequent process.
Machine learning finds several applications in computer science, in the development of search
engines and anti-spam control, in neural networks, in math economy, or in the analysis of large
markets.

The advantage of machine learning with respect to fields as data mining and statistical analysis,
is the possibility to avoid some statistical constraints imposed by the previous models. Hence,
we have more freedom in analyzing complex real-life data sets, where samples are dependent,
where there is excess noise, and where the distribution is entirely unknown or skewed. It was in
1997 that Mitchell introduced a formal definition of what is machine learning [39]:

Definition 1.2: Machine learning

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T , as measured by P , improves
with experience E.

This definition is meant to be more operational rather than in cognitive terms. Basically it
underlines the question: "Can machines do what we, as thinking entities, can do?". In the
proposal he explores the various characteristics that could be possessed by a thinking machine.
The second question is "How can we represent data in order to be ’understood’ by learning
algorithms?". The answer relies on a formal encoding of data sets through features. A feature
is a measurable heuristic property of the phenomena. Learning algorithms work with features,
therefore a careful selection of features will lead to a better model. [40] The multidisciplinary
nature of machine learning is reflected in how features are viewed. There exist two kind of feature
representations:

• Geometric view: we can represent features as tuples, vectors in a high dimensional space
(the feature space). Thus features are grouped into a feature vector. Let d denote the
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number of features. One vector of the canonical basis {e1, e2, . . . , ed} of Rd is assigned to
each sample j. Let xij be the weight of a feature i in a data sample j. Thus, a feature
vector xj for the object j is a linear combination of the canonical basis vectors:

xj =
d∑
i=1

xij ej (1.5)

By writing xj as a column vector, we have xj = (x1j , x2j , . . . , xdj). For a collection of N
data instances, the xij weights form a d×N matrix. Since the basis vectors of the canonical
basis are perpendicular to one another, this implies the (often violated) assumption that
the features are mutually independent. The assignment of features to vectors depends on
user choice an thus it is arbitrary. Consequently, a feature may be assigned to any of the
vectors of the canonical basis. With use of the geometric view, distance functions, norms
of vectors, and angles help in the design of learning algorithms.

• Probabilistic view: In this case, each feature is a random variable, defined as a function
that assigns a real number to every outcome of an experiment. A discrete or continuous
random variable takes any of a specified finite or countable list of values which are bounded
by a specific interval. Similarly to the representation of features group into a feature
vector in the geometric view, in this case, the probabilistic view has a multivariate random
variable for each data instance: (X1, X2, ..., Xd). A joint probability function or density
function describes the distribution. The random variables are independent if and only if
the joint probability decomposes to the product of the constituent distributions for every
value of the random variables:

P (X1, X2, ..., Xd) = P (X1)P (X2) · · ·P (Xd). (1.6)

In both cases, collecting more features should enhance the discrimination power and thus the
effectiveness in the learning process, however it has been shown that only relevant features helps
the algorithm to converge.
Irrespective of the approach taken, we can distinguish two major group of machine learning
algorithms (see Fig. 1.2):

• Supervised learning: In this group, algorithms work manipulating labeled data points.
We denote a label by y. The training set is thus a collection of pairs of data points and
corresponding labels: {(x1, y1), (x2, y2), ..., (xN , yN )}, where N is the number of training
instances. Labels may have a discrete or continuous numerical range, leading respectively
to a regression or classification problem. A supervised learner predicts the label of instances
after training on a sample of labeled examples, the training set. At a high level, supervised
learning is about fitting a predefined multivariate function to a set of points.

• Unsupervised learning: in this scenario the labels are missing. The task is to find structure
in the samples on its own. Most algorithms belonging to this group, attempt to clustering
data instances by means of discriminator function such as the Euclidean distance between
data. The clusters may be embedded in one another, and the density of data instances
often varies across the feature space; thus, clustering is a hard problem to solve in general.

We can also consider the merged case where input data is a mixture of labeled and unlabelled
examples. In this case the model must learn the structures to organize the data as well as make
predictions. Consequently, there are several branches that defines the widespread zoo of machine
learning algorithms [39, 40]: regression is concerned with modelling the relationship between
variables that is iteratively refined using a measure of error in the predictions made by the
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(a) (b)

Figure 1.2. Unsupervised and supervised learning. a) In supervised scenario, we provide a labeled
training set of data which identify a sample of input-output correlations. b) No labels are given to
the learning algorithm, leaving it on its own to find structure in its input. Images taken from Ref. [40]

model. Instance-based learning models, as the k-Nearest Neighbour, are decision problem that
typically compare new data using a similarity measure in order to find the best match and make
a prediction. Decision tree methods construct a model of decisions based on actual characteristics
hidden in the samples. Bayesian methods are those that explicitly apply Bayes’ Theorem for
problems such as classification and regression. Artificial Neural Networks are models that are
inspired by the structure and/or function of biological neural networks in order to find structures
in data. Deep Learning methods are a modern update to Artificial Neural Networks that exploit
abundant cheap computation. They are concerned with building much larger and more complex
neural networks. Clustering methods, like regression, describes the class of problem and the class
of methods where data are classified in cluster according to their features. Clustering procedures
are typically organized by the modelling approaches such as centroid-based and hierarchical. All
methods are concerned with using the inherent structures in them to best organize the data into
groups of maximum commonality. Honourable mentions for this group are K-Means, K-Medians
and Hierarchical Clustering which will be discussed more deeply in Chapter 5, section 6.1.

Nevertheless, the fast development of computation leaded to an important and tricky question:
how efficient can an algorithm be to perform a specific task? What are the resources necessary
to implement such algorithms? The answer for all these questions are related to the so-called
complexity classes theory which we introduce in the next section.

1.1.4 Computational complexity

Complexity theory aims to determine the number of resources required to solve a specific class of
computational problems. Therefore, it is necessary to define a "hardness estimator" in order to
compare different computational problems between them. First of all we must introduce two
typologies of computational classes in which we can identify and divide the algorithms with
respect to their hardness in terms of used sources:

• Polynomial problems: the time Tc and the number of resources needed to solve a problem
is Tc = O(tk).

• Superpolynomial problems: the time Tc and the number of resources needed to solve a
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problem grows faster of any power Tc = o(tk) ∀k, and they are also called exponential
problems.

For example, sum and multiplication belong to the polynomial class since we need only O(N2)
number of resources, while factorization is a well known problem which is believed to belong
to the superpolynomial class. In fact the best classic algorithm grows as τ = eo(n

1
3 (logn)

2
3 ). But

what does it mean "efficient"? If we want to go to a more formal description of complexity we
need to define its meaning. Thus we define efficient computation as:

Definition 1.3: Efficient computation

A computational process is efficient if it belongs to P, where P is the class of problems for
which it exists a Turing machine M and a polynomial p such that ∀x ∈ {0, 1}n we have
that:

1. M(x) stops after a number of steps shorter than p(|x|)

2. M(x) accepts x if and only if x ∈ L

Moreover, we can define NP (Non-Deterministic Polynomial), as the class of decision problems
whose solution can be verified in polynomial resources. A well-known problem in this group is
factoring, which aims to find non-trivial factors of an integer. It is immediate to see in this case
the difference in terms of computational resources between finding a solution (exponential) and
verifying at (polynomial).
If we want to determine univocally the efficiency of an algorithm we need to define a metric which
does not depend on the development of technology. For this reason, the reference line is assigned
to the concept of probabilistic Turing machines, following the ECTT enunciate. This means
that if we are able to identify with the term "efficient" an algorithm which exploits polynomial
resources, the investigation of complexity classes become independent from the model itself by
mapping the hardness to a PTM.
The next step is to identify specific tools to study the problem associated to the complexity of
algorithms. Consequently we introduce the asymptotic notation, a methodology used to estimate
the principal resources involved. In this case we introduce two classifications of resources

• Time: given a TM T , we say that T solves a problem in time g(n) if, given an input with
lenght n, T produces an outcome in g(n) steps.

• Space: given a TM T , we can say that T solves a problem in space g(n) if, given an input
with lenght n, T produces an outcome in g(n) cells, neglecting input-output dimensions.

g(n) must be a growing monotonic function to be a benchmark for the resources in time and
space. The asymptotic notation reduces, shortly, to a study of three different quantities:

• O: we say that g(n) = O(f(n)) if ∃c ≥ 0, n0 ∈ N, : |g(n)| ≤ c|f(n)| ∀n > n0 which
provides an upper bound.

• Ω: we say that g(n) = Ω(f(n)) if ∃c ≥ 0, n0 ∈ N, : |g(n)| ≥ c|f(n)| ∀n > n0 which
provides a lower bound.

• Θ: we say that g(n) = Θ(f(n)) if g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n)) which does not
assume any difference in terms of performance in the best or worst case.
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These tools provide a starting point to classify algorithms in specific classes defined by the runtime
and space required. Before introducing the list of the main classes of computational complexity
we have to describe in minimum terms what is the relation between them [41]. Therefore, we
define DSPACE and DTIME as the classes of languages decided by TM of respectively of space
and time complexity t(n). In the case of Non-Deterministic Turing Machines we can associate
the same statement for these two classes at the same way: NSPACE and NTIME.
We are ready to introduce the main classes. We have already shown the classes P and NP, and
it is easy to show that the same definition holds in the context of DSPACE and DTIME [41].

P = ∪k≥1 DTIME[nk] NP = ∪k≥1 NTIME[nk] (1.7)

Consequently, we are able to construct a hierarchy of computational classes based on the concepts
of time-space resoruces and boundary conditions, as previously done for the classes P and NP.
Besides, the polynomial scaling we can identify also the L and NL which scale with a logarithmic
number of resources. Finally, let us introduce shortly the main computational classes, which are
reported also in Fig. 1.3a:

• #P: The class #P [42] is a class of counting problems of the form “how many solutions
are there for a specific NP problem?". To compare the class #P to decision problem classes
like P or NP we have to define a decision problem class based on #P . We can do this
using the concept of oracle, which is defined as a black box able to solve, in a unit time,
problems belonging to a specific class. We can define the class AB as the class of problems
which are in class A if we have access to an oracle for problems in class B; a class of this
form is P#P , which identifies decision problems solvable in polynomial time by a TM with
an oracle for #P problems.

• PSPACE: It is the class of decision problems, solvable with a polynomial-size memory
(with no restriction on time).

• EXP: the class of problems solvable in exponential time.

A decision problem is said to be A-hard if every problem in the class A can be reduced to it
using polynomial resources, and A-complete if it is both in A and in A-hard. There are several
computational problems which are fundamental as critical boundaries for a robust definition of
hierarchies. For example it exists:

• NP− complete: problems in this class are the most difficult of NP. It is not known
whether the factoring decision problem is NP-complete, but the general belief is that this
is not the case. This is because NP-complete problems in general have multiple solutions,
while factoring is unique; another evidence is given by the fact that the fastest algorithms
for NP-complete problems typically take order of en time, while the so-called number field
sieve is able to factorize an n-bit integer with order of en3 log 2

3 (n) steps.

What is the relationship between classes, and how do we define the boundaries? For instance,
P ⊆ NP , but up to now there is no formal proof on this statement and it remains one of the
great questions in complexity theory. More in general, we know that:

P ⊆ NP ⊆ PSPACE ⊆ EXP (1.8)

where at least one inclusion has to be strict, because it can be shown that P 6= EXP. Let’s
individuate how #P problems are related to the previously described. The #P problems involve
checking an exponential amount of different patterns in exponential time with polynomial memory,
so that P ⊆ P#P ⊆ PSPACE:
What about the problems that we can hope to solve by introducing probabilistic randomness
with PTMs [43,44]? In this case we introduce the class
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(a) (b)

Figure 1.3. Relations between complexity classes. a) Relationship between some of the main
complexity classes. b) Zoom on the supposed relations between BQP and other computational classes.

• BPP (Bounded Probabilistic Polynomial): the class of decision problem solvable by a PTM
in polynomial time with probability p ≥ 2

3 (so that one can run the algorithm several times
and take majority voting). This class is strictly linked to the “physically solvable problems"
of the ECTT. It is not clear which is the relationship between BPP and NP, but we do
know only the following demonstrated statements [43] BPP ⊆ NPNP and BPP ⊆ P#P.

It is possible to identify a relation between the classes by generalizing P and NP to oracle
machines. This is called the polynomial hierarchy (PH) of complexity classes, and with PH
we denote the union of all these infinite levels. It is strongly believed that each of the levels
constitute a more powerful class than the lower levels (which justifies the term “hierarchy") [44].

The quantum analogous of BPP, can be introduced by describing the quantum analogue of TM,
that is substituted by a Quantum Turing machine QTM. We define a QTM considering the same
road followed with the description of the TM, indeed we have an internal state s, a tape position
x, I/O write device and a tape configuration c. The main differences are two: (1) the overall
generic state is a superposition of the form ∑

i=1 αi |s, x, c〉 (2) the program is substituted with
a unitary operation. Thus, in the case of a QTM, after the measure, the superposition collapse
to a particular state with probability |αi|2. It is also possible to define a Universal QTM as done
for the TM, furthers details are given in Ref. [46, 47].

Making a parallelism respect to the relation between TMs and BPP we say that .
is called BQP [45]:

• BQP (bounded-error quantum polynomial time): is the class of decision problems solvable
by a quantum computer in polynomial time, with an error probability of at most 1/3 for
all instances. A decision problem is a member of BQP if there exists an algorithm for
a quantum computer (a quantum algorithm) that solves the decision problem with high
probability and is guaranteed to run in polynomial time. It is the computational class of
problems solvable by a TM with the capability to associate a quantum circuit (see Section
1.25) of polynomial size with respect to the initial state [46].

How do this class compare to the others we mentioned? We can say that it is supposed to hold
this relation:

P ⊆ BPP ⊆ BQP (1.9)

The inclusion with BPP depends from the fact that a QTM can exploit the intrinsic randomness
of measurement outcomes. Nevertheless the best upper bound for the class describing QTM has
been given in [47]

BQP ⊆ P#P ⊆ PSPACE (1.10)
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meaning that every problem solvable in poly-time by a QTM can be solved using poly-space
with a classical TM. Combining equations (1.9) and (1.10), we can write:

P ⊆ BPP ⊆ BQP ⊆ P#P ⊆ PSPACE (1.11)

Looking at the previous equation, one can see that we do not have any absolute result about
the fact that quantum computers are more powerful than classical ones (it is believed that
BPP 6= BQP, but it is still an open problem). In the last years, a great deal of attention has
been devoted to investigate the relation between BQP and NP (see Fig. 1.3). The common
belief is that quantum computers are able to provide an exponential speed-up for some specific
NP problems (like Factoring) by exploiting some internal structure of those problems, which is
missing in NP-complete problems, for which they can provide only a quadratic speed-up.
Let us now introduce formally in the next sections, the concept of quantum computation.

1.2 Quantum computation
Despite the promising development of classical computation, there is an intrinsic fabrication
limit when we want to improve the calculation process, because at the state-of-art of technology,
miniaturization of the devices is prohibitive due to the constraints imposed from the microscopical
realm to the possibility to have deterministic and controllable stages. Therefore, these needs
brought to search for alternative theories of computation that are more physical and near to
nature behaviour. The field of quantum computing was initiated by the work of Paul Benioff [48],
Yuri Manin in 1980 [49], Richard Feynman in 1982 [1] and David Deutsch in 1985 [2]. In particular
Feynman in 1982 showed the limits of classical simulation to reproduce the behaviour of the
quantum realm due to high difficulties in analysing the system for large scales. He introduced
the basic concept of a quantum-like computing which uses quantum mechanics as a tool for the
quantum simulation itself. Several theoretical developments have been made in this field, in the
last three decade, the superior capabilities of the quantum computer for certain problems.
One could ask, at this point, what is the origin of the supposed computational superiority of
quantum computing, where basically the strongest point is marked by the quantum parallelism
procedure. In the next section we will introduce the basic tools which constitute the building
blocks for quantum computation, superposition and entanglement. It has been argued that it is
indeed entanglement, rather than just superposition to provide the basis of the computational
complexity of simulating quantum systems [50]. The reason lies on the possibility to reproduce
the phenomenon also with classical waves, consequently quantum mechanics is not necessary to
reproduce these kind of phenomena. There is no quantum counterpart for entanglement and
has been demonstrated [51] that it is necessary for a large class of computational problems to
achieve a quantum-over-classical computational speedup. However, there are situations in which
a quantum advantage (although small) is present without the use of entanglement [52,53]. In the
next section we present the fundamental tools useful for a more detailed description of quantum
computation.

1.2.1 Qubit and density matrix

Quantum information and computation are built on the concept of the quantum bit or qubit.
Qubits are the expression of quantum superposition and they are described as two-level quantum
systems {0, 1}. There are several ways to implement a qubit by means of photons [54, 55],
ion traps [4], NMR [56], NV centers in diamonds [57], atoms [58, 59] and superconducting
models [6,7,60] This is due to its dichotomic natural predisposition for encoding, consequently it
can be represented for example as ground-excited levels in an atom or vertical and horizontal
polarizations. A general qubit is represented as a superposition of states in the computational
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base {0, 1}:

|Ψ〉 = α |0〉+ β |1〉 =
(
α

β

)
(1.12)

where α and β are complex numbers which represent the amplitudes of the quantum state, and
for this reason they have to satisfy the normalization relation |α|2 + |β|2 = 1. From (1.12), by
means of the normalization condition, it is possible to show an alternative form, that is:

|Ψ〉 = cos θ2 |0〉+ eiφ sin θ2 |1〉 =
(

cos θ2
eiφ sin θ

2

)
. (1.13)

The variables θ and φ contains the full description of the qubit on the Bloch sphere: θ represents
the information regarding the possibility to find a state in a specific eigenstate and the azimuth
angle φ describes the phase difference between the eigenstates of its computational basis. Any
kind of qubit can be defined as a point in the Bloch sphere, even in the inner part. We define pure
state a point on the surface, while a mixed state falls into the sphere itself. The Bloch sphere is
formally analogous to the Poincaré sphere used to describe the polarization of radiation. It is
pretty intuitive to find a correspondence between the degree of polarization of photons and the
degree of purity of the qubits. A mixed state is different respect to the pure case because it is not
possible to represent it as a superposition of states as in Eq. (1.12) and in a real experimental
condition, te mixed state is the most realistic behaviour description of the phenomenon that we
can consider. Nevertheless, to insert mixed states in the theory, we need to introduce the density
matrix formalism.

Figure 1.4. Bloch sphere: spherical representation of all possible combinations of a qubit in the
computational bases (linear, diagonal and circled) . The state lies on the surface of the sphere if is a
pure state. Any qubit built in a laboratory will be necessary an incoherent combinations of pure states
(mixed states), thus they lies in the inner region, where the modulus of the vector is minor than 1.
The poles represents the eigenstates, the polar angle θ contains the information on the probability to
find the system in either one or the other eigenstate, while the azimuth angle φ is the phase difference
between the two eigenstate components of the qubit.

Suppose to have N copies of a generic state |ψk〉 without any knowledge of the system and to
know, instead, the probability that |ψk〉 will be an outcome. If |ψ〉 is a pure state, then the
density matrix is described as:

ρ = |ψ〉 〈ψ| (1.14)
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that satisfy the relation ρ2 = ρ. The importance of density matrices holds when we consider an
incoherent blend of pure states {|ψk〉}, in fact in this case the formula reads:

ρ =
∑
k

pk |ψk〉 〈ψk| (1.15)

where 0 < pk ≤ 1 represents the associated probability for each state |ψk〉 and the normalization
condition reads ∑k pk = 1. In this case, dealing with an incoherent ensemble of qubits, we have
necessarily the property ρ2 6= ρ. Despite the purity of the system, there are several rules that we
have to impose in order to associate a density matrix:

• ρ = ρ†. The matrix has to be hermitian (observable).

• Tr(ρ) = 1. The diagonal elements of ρ represent the populations of pure states in the
ensamble, and the trace is the sum of the probabilities in the entire space.

• ρ not negative. All the eigenvalues have to be real.

If the elements ρii on the diagonal represent the population, that is the probability for which the
ith-state has been measured, then the terms ρij for i 6= j describe the coherence between the
ith and the jth state. Consequently coherence term exist if and only if exist both ρii and ρjj .
Density matrices fully characterize a closed quantum system and it is a powerful tool to retrieve
the value of some observales measured on the system, in fact, given a generic observable A with
eigenvalues ai, we can compute the mean value through the ρ:

〈A〉 = Tr(ρA) =
n∑
k=1

pk 〈ψk|A |ψk〉 (1.16)

It is possible to diagonalize a density matrix in order to retrieve information regarding the purity
of the system, through the number of non zero eigenvalues on the diagonal representation. Indeed
after the diagonalization, a pure state is described as ρ = diag (1, 0, . . . , 0) while in the mixed
case there are several non-zero contributions ρ = diag (λ1, . . . , λn), where λi are the eigenvalues.
It is worth noting that it is not possible to write a generic mixed state as a superposition of pure
ones. In fact given for example without lose generality a state ρ = ∑2

a=1 pa |ψa〉 〈ψa|, it is always
possible to choose another representation |φ1〉 = ∑2

a=1
√
pa |ψa〉 and |φ2〉 = ∑2

a=1
√
pa |ψa〉 where

for particular ka and ga we get another similar description of the density matrix:

ρ =
2∑

a=1
pa |ψa〉 〈ψa| =

1
2

2∑
a=1
|φa〉 〈φa| . (1.17)

Therefore, there is no unique way to decompose any density matrix into a set of pure states, thus
providing the evidence for the need of this formalism.
We can also define the dynamics of a density matrix ρ = ρ(t). Using the Schroedinger equation:

dρ

dt
= − 1

i~
[H, ρ] =⇒ ρ(t) = U(t, t0) ρ0 U

†(t, t0). (1.18)

we see that the generic evolution is provided by a unitary operator in the Heisenberg scheme,
thus fully characterizing the system for each time t.
We are now able to use these tools to perform quantum computation. Qubits and density matrices
play an important role, because with a proper combination of them in higher dimensions, we
are able to realize supposed alternative kinds of computation which are not reproducible by a
classical approach. The measurement at the end is retrieved quantum mechanically but the
information is classical in the sense that we have to get access to results. From this point of view,
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it seems that there is no advantage to explore a parallel computing through the superposition
property. To understand this point it can be useful to focus on this example : let’s think of a
different kind of classical computer, which uses an ensemble of 4 bits as its elementary information
cell. The amount of information in the cell would simply be one over 24 = 16 possible states
allowed to the 4-bit combination. In other words, to identify the state of n classical bits we
would need a single integer I ∈ [1, 2n]. For quantum states the situation is different: because
of the superposition principle, the state of a “qudit", i.e. a D-dimensional quantum system, is
described by 2D complex numbers which correspond to an amount of hidden information which
is exponential with the number of qubits. This is strictly related to the fact that the state of two
qubits cannot be in general expressed just as a single product state, but rather as a superposition
of product states. There is also another genuine quantum property of fundamental importance
in physics and quantum computation which is the entanglement. It has no counterpart in the
classical world and it is believed that the core of the superiority of quantum computing in terms
of processing is due not really at the parallelism but rather on entanglement. For this reason it
is fundamental to introduce it.

1.2.2 Entanglement

Let us introduce two systems, A and B, living respectively to two distinct Hilbert spaces HA
and HB. A generic state of the two system is the vector:

|ψ〉AB =
∑
ij

aij |i〉A |j〉B (1.19)

where {|i〉A} and {|j〉B} represent respectively two complete computational bases for the system A
and B, and aij are complex amplitudes which satisfy the probability normalization ∑ij |aij |2 = 1.
This new state belongs to a bigger Hilbert state of dimension d = dA × dB which is the tensor
product of the separate one HAB = HA ⊗HB.

It is worth noting that there are two different way to describe a quantum state, besides the
density matrices formalism, which strictly depend on the link between degrees of freedom. We
can identify two classes: separable and entangled states. A quantum state is separable when it
is possible to decompose it as a product of a wave functions for the first system A and for the
second B as

|ψ〉AB = |ψ〉A ⊗ |ψ〉B (1.20)

otherwise it is called entangled, such as for instance:

|ψ〉AB = |0〉A |0〉B + |1〉A |1〉B√
2

. (1.21)

From the experimental point of view, we can say that a separable state can be initialized locally
for the two systems A and B. Conversely, an entangled state is forced to link the two systems
and the correlation between the subspaces exists independently from the basis chosen to represent
the whole system. It is interesting to show the simple case of the so-called Bell states:∣∣∣Φ+

〉
= |0〉 |0〉+ |1〉 |1〉√

2
∣∣Φ−〉 = |0〉 |0〉 − |1〉 |1〉√

2
. (1.22)

∣∣∣Ψ+
〉

= |0〉 |1〉+ |1〉 |0〉√
2

∣∣Ψ−〉 = |0〉 |1〉 − |1〉 |0〉√
2

. (1.23)

which represent an entangled basis for a d = 4 system of two qubits. In the same way, we can
define separable and entangled states through the density matrix formalism:

ρAB =
∑
i

pi ρ
(A)
i ⊗ ρ(B)

i (1.24)
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Therefore, they can be used to develop basic quantum tools for quantum computation.
Entanglement is of fundamental importance since it highlights the inner correlations between
quantum states. It is interesting to stress that this correlation seems to be in conflict with the
general idea of classical locality. It was underlined in a historical work of Einstein, Podolsky
and Rosen [61] that these states are in opposition to special relativity and leading to abandon
the concept of localism and realism. Therefore to justify its existence, it was conjectured that
quantum mechanics is incomplete and has to be ruled by a deterministic hidden theory in a
deeper level. In 1964 John Bell formulates his famous inequality [62] to shed light on this aspect
providing a mathematical tool which could be tested experimentally. Following this road, several
experiments has been made [63–66] to verify such tests.

In the next section we introduce the description of circuit model of computation.

1.2.3 Circuit model of computation

Quantum computing aims to process quantum data to boost the computational process in terms
of speed and resources. Nowadays, one of the principal problems regarding the implementation
of a controllable quantum computer relies on the high requested level of control. In the last
decades several efforts have been made to build a quantum device. For an incomplete list, we
can mention quantum Turing machines [47], cluster states [67], quantum random walks [30],
adiabatic [68], permutational [69] and one-clean-qubit [70] models. Moreover in the last decades
strong improvements have been made for the implementation of quantum devices in the field of
quantum annealing [71–73] and digital and analogic quantum computers and simulators with
superconducting circuits [74,75], although criticisms arise in scientific community for the capability
to fully control those devices in a quantum regime as for example the D-Wave systems [76].

Although the techniques developed so far are still not sufficient for a full description of a
quantum computer, the building blocks of such devices are, at least half of models, the same
from a conceptual point of view, because they lie on the idea of quantum circuits. We will
briefly introduce the basics of the circuital model in quantum perspective. In particular, it
is fundamental to list a set of rules or constraints in order to focus on the real targets for a
near future implementation of a quantum device. A first step in this direction was done by the
recognized DiVincenzo’s criteria [29] introduced in 2000, to identify a checklist of properties that
a quantum computer must have:

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000..0〉.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A universal set of quantum gates.

5. A qubit-specific measurement capability.

6. The ability to interconvert stationary and flying qubits.

7. The ability to faithfully transfer qubits between distant locations.

The motivations behind the criteria are intuitive. We need a scalable and well characterize
physical system because we have to assure a good computation without losing information during
the manipulation process (1) as in the same way, we must have access to the initialization to the
qubits in order to perform several new algorithms restarting the calculation independently (2).
Nowadays, the decoherence of qubits is one of the most important problem in quantum platforms,
since single qubits when interacting with the environment, lose information during the process
(3). A figure of merit to estimate the efficiency has to be linked with the number of operations
nop executed inside the coherence time τQ of the system. The coherence time is defined as the
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(a) (b)

Figure 1.5. Quantum circuital model. (a) Example of a quantum circuit in the gate representation.
It is worth noting the similarity between the classical and quantum one, where single-qubit gates act
on a single line, while two-qubit gates as the CNOT in this case connect different lines. In principle it
is possible to extend the connection using 3-qubit gates as for example the Toffoli gate. In this case it
is shown a representation of an error correction protocol. (b) Manipulation of a qubit on the Bloch
sphere. The gates introduced in Section 1.2.4, can perform a full transformation of the qubit on the
sphere. Ref. [45].

time in which the global wave function remains the same in the deviations of its temporal phase.
In this sense, the estimator takes in account the ratio of bad calculations through the relation
nop = τQ/τact, where τact is the time in which is active the computation. Consequently, estimated
errors can be solved by appropriate quantum algorithm for error corrections [45]. Then, we need
to have access to a full set of universal quantum gates in order to reproduce any kind of quantum
algorithm by using a small set (4), as for classical computation. We need an apparatus of measure
which unambiguously and properly converts the quantum process into a set of classical bits
for final post-processing analysis (5). The last constraints (6-7) are linked to a communication
framework.

Let us now introduce the logic hidden in the circuital model for quantum computation [77]:
we can imagine a quantum computer as a set of n qubit, for which the wave function evolves in
a 2n-dimensional complex Hilbert space H built through the states |in−1, . . . , i1, i0〉 generated
from the computational base {ik}. While a classical state of a computer can be written in binary
notation with an integer belonging to i ∈ [0, 2n − 1], with i = in−1 2n−1 + · · · + i1 2 + i0 and
ik = (0, 1), the state of a quantum computer with the formalism of the circuit model is described
as

|ψ〉 =
2n−1∑
i=0

ci |i〉 =
1∑

in−1=0
· · ·

1∑
i1=0

1∑
i0=0

cin−1...i1i0 |in−1〉 ⊗ · · · ⊗ |i1〉 ⊗ |i0〉 =

=
1∑

in−1=0
· · ·

1∑
i1=0

1∑
i0=0

cin−1...i1i0 |in−1, . . . , i1, i0〉 (1.25)

with cin−1...i1i0 coefficients conveniently normalized [77, 78] representing a quantum n qubit
register. If we ignore the coupling with the environment, the 2n × 2n matrix associated to
the evolution of the qubit register must be unitary, therefore the operation is reversible. More
generally, this matrix has dimension 2k × 2k because it acts on k qubits and represents a set of
gates which implements a unitary transformation over the Hilbert space (C2)⊗k.
In the next section, we will briefly introduce the gates necessary for a universal quantum
computation.
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1.2.4 Logic Quantum gates

In the classical circuit model, it turns out that there in a set of single- and two-bit gates that are
universal, meaning that every circuit can be realized from that finite set. The same holds true for
the quantum circuit model where the only gates the we can exploit to perform any kind of possible
algorithm are single-qubit gates, Hadamard gates, Phase gates and CNOT gates [45,77,78]. A
single-qubit gate, which performs the elementary operations on a single qubit, can be seen as
2× 2 unitary matrices acting on the vector of the amplitudes describing the single quantum state
(α, β). It is important to mention the single-qubit Pauli gates

X =
(

0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(1.26)

and the Hadamard H and the Phase gate δ/2

H = 1√
2

(
1 1
1 −1

)
δ/2 =

(
1 0
0 eiδ

)
. (1.27)

Pauli matrices are related to the rotation operator in the Bloch sphere by equation of the
form Rx(θ) = e−iθ

X
2 = cos

(
θ
2I
)
− i sin

(
θ
2X
)
. The action of the Hadamard matrix can be

visualized in the Bloch sphere as a rotation of π/2 about the ~y axis, followed by a reflection
through the xy plane. It transforms qubits from a computational base to another as for example
H |0(1)〉 = |+(−)〉, where {|+〉 , |−〉} is the diagonal base. It is very simple to show that it is
possible to connect different qubit gates with Hadamard gates through this relation that holds
true

HXH = Z HYH = −Y HZH = X. (1.28)

To make our set universal, we need to introduce also two-qubit gates and in particular the
Controlled-NOT (CNOT) gate, which flips one of the qubits in input (target) if the other
(control) is set to 1. The matrix representation in the bases {|i, k〉} with i, k ∈ [0, 1] is

CNOT =


1 1 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.29)

we now briefly discuss why it represents an universal set of gates, describing the operation on a
generic vector of the Hilbert space:

• Going from a point to another point on the surface of a sphere can be seen as a rotation
under some axis (up to a phase factor) which in turn can be decomposed into three rotations
RiRjRz around two orthogonal axis ~i and ~j.

• choosing δ = π/4 we select a π/8-gate. This gate corresponds, up to a phase, to Rz(π/4).
It can be shown that π/8 and H gates can give a rotation of an irrational multiple of 2π
around the axis ~n = (cos (π/8), sin (π/8), cos (π/8)). Since the angle is irrational, several
rotations of the same angle can approximate any angle to arbitrary accuracy.

• Finally, given the fact that we can compose a rotation around an axis i with the Hadamard,
to give a rotation around an axis orthogonal to i, it follows that a single-qubit operation
can be approximated with arbitrary accuracy using the Hadamard and π/8 gates. The
Solovay-Kitaev theorem [79] states that this approximation can be done to an accuracy ε
using O(log2(1

ε )) gates form the discrete set.
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These gates represent a universal set, since every multi-qubit unitary operation can be decomposed
in a circuit composed of them [80]. Indeed, this is just one of the several possible universal sets.
Still, it is important to note that the implementation of an arbitrary unitary by a quantum
circuit is in general not efficient. In fact, quantum computation is basically limited to unitary
transformations that can be realized by a polynomial sequence of 2-local unitaries [81].

1.3 Quantum algorithms
In this section we introduce a non-exhaustive list of the main quantum algorithms that have
been theorized in the last two decades which highlight the hidden characteristics of quantum
mechanics which manifest as a possible superior approach to the computation. We will introduce
the logic behind a quantum algorithm, with a review on the different classes and typologies.

1.3.1 Overview on quantum algorithms

The idea of quantum computation was born three decades ago in the early 80’s with the works
of Feynmann and Deutsch. Since then, the field developed fast starting from the first theoretical
quantum algorithm by Shor, Deutsch and Grover [2,82,83] which give the feeling for a real threat
to ECTT. Nowadays several improvements have been made both theoretically and experimentally,
and most algorithms improve the computational runtime providing a speed-up respect to its
classical counterpart. Let us mention a few remarkable results of algorithms based on: Quantum
Fourier transform algorithms, amplitude amplification and quantum walks.

Quantum Fourier Transform based algorithms: this class is based on the quantum
counterpart of the discrete Fourier transform (DFT) which provides a significant speed-up in
the computation [45]. The Fourier transform of a N vector y = (y1, y2, . . . , yN ) acts on each
component executing this transformation for each k:

xk −→
1√
N

N−1∑
j=0

yj e
2πijk
N (1.30)

while the quantum Fourier transform acts on a quantum basis |j〉 as:

|y〉 −→ 1√
N

N−1∑
j=0

e
2πijk
N |k〉 (1.31)

which is a unitary transformation and can thus be implemented with the formalism of the circuital
model. Consequently the QFT represents a rotation of the Hilbert space, thus a change of the
computational basis. It is worth noting that the generic transformation of a generic state which
is a linear superposition of the computational vectors will be

2N−1∑
j=0

cj |j〉 −→
2N−1∑
k=0

xk |k〉 with xk = 1√
N

N−1∑
j=0

cj e
2πijk
N (1.32)

where cj are the amplitudes, for which it follows that the unitary matrix associated with the
transformation has elements Ujk = 1√

2N
e2πijk/2N . Using properly Hadamard and Phase shifters

gates it is possible to retrieve the Fourier transform on N qubits as it shown in Fig. 1.6. It is
worth noting that to transform 2N amplitudes we require only O(N2) quantum gates instead
of O(N 2N ) gates in classical situation thus providing a computational boost. The best known
upgrade of the QFT requires O(N logN) quantum gates [84].
Simon’s algorithm solves with O(N) queries so-called decision tree problems [85]. Shor’s algorithm
for which the classical problem is believed to belong to the NP complexity class, tries to factoring
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Figure 1.6. QFT circuit: circuital representation of quantum Fourier transform acting on N qubits.
Each node is properly transformed by a single-qubit gate in order to retrieve after the entire evolution,
the discrete Fourier transform on the input qubits. Ref. [45].

an arbitrary long integer in polynomial time and for this reason belongs to the BQP class.
Moreover there is a substantial difference between the classical and the quantum approach: in fact
the best known classical algorithm to factorize large integers runs in time eO((logN)1/3(log logN)2/3),
while the quantum approach show a strong reduction in computational run time O((logN)3). It
is interesting because the classical hardness of this system is widely exploited in RSA public-key
cryptosystems [86] to protect bank codes. Another algorithm is the quantum phase estimation
which is used to determine the eigenphase of an eigenvector of a unitary gate given a quantum
state proportional to the eigenvector and access to the gate. The algorithm is frequently used as
a subroutine in other algorithms.

Algorithms based on amplitude amplification: Amplitude amplification is a technique
that allows the amplification of a chosen subspace of a quantum state. Applications of amplitude
amplification usually lead to quadratic speed-ups over the corresponding classical algorithms. A
honourable mention between the algorithms in this group is the Grover’s algorithm [83]. The goal
of this procedure is to find an element in an unstructured database with N entries with a number
of resources which scales as O(

√
N) respect to its classical best known counterpart (O(N)).

Although the purpose of Grover’s algorithm is usually described as "searching a database", it
may be more accurate to describe it as "inverting a function". Roughly speaking, if we have a
function y = f(x) that can be evaluated on a quantum computer, Grover’s algorithm allows us to
calculate x when y is given. Inverting a function is related to the searching of a database because
we could come up with a function that produces one particular value of y ("true", for instance) if
x matches a desired entry in a database, and another value of y ("false") for other values of x.

Grover’s algorithm can also be used for estimating the mean and median of a set of numbers,
and for solving the collision problem. The algorithm can be further optimized if there is more
than one matching entry and the number of matches is known beforehand. Grover’s algorithm
can be used to crack passwords as well.

Algorithms based on quantum walks: Quantum walks [30] are the quantum analogue of
classical random walks [87], i. e. the study of the dynamic of one or more particles (walkers)
which can move in a random manner, continuously or at discrete time steps, through a discrete
space. Classical random walks are of fundamental importance in the study of stochastic and
Markov processes. The generalization to quantum walks implies the possibility for the walker
to be in a superposition state of many positions. In continuous-time quantum walks [31], the
state is uniquely determined by the position wavefunction of the particle on a graph, and its
continuous evolution is determined by the Schrödinger equation |ψ(t)〉 = e−iHt |ψ(0)〉, where the
Hamiltonian is proportional to the adjacency matrix of the graph. In discrete-time quantum
walks [30] the system is described by the position of the walker and by an auxiliary entity named
coin, which encodes the probability of taking the left or right direction at the upcoming step. In



1.4 Quantum computation with linear optics 31

the case of a discrete quantum walk on a line, the coin will be a two-level system, α |→〉+ β |←〉
and the unit step U of the walker will be given by the application of the coin flip operator C
over the coin state (frequent is the case of the Hadamard coin) followed by the shift operator

S = |→〉 〈→| ⊗
∑
i

|i+ 1〉 〈i|+ |←〉 〈←| ⊗
∑
i

|i− 1〉 〈i| (1.33)

If we introduce a measurement of the coin state between the application of operators C and S,
we retrieve the classical random walk. Instead, keeping the quantum correlations between different
positions will give rise to completely different phenomena, caused by quantum interference. In
particular, the limiting distribution after many steps shows a completely different behaviour
in the two cases, as the quantum case give rise to a strongly non-Gaussian distribution with
variance larger than the linear trend typical of the classical case. More generally, the complex
interference patterns (quantum carpets [32, 88]) and the revival of the wavepackets at certain
periods [89,90] typical of quantum walks have no analogue in classical random walks. One of the
main point of interest in quantum walks is the investigation of quantum transport phenomena,
with potential applications to understand processes such as energy transfer within photosynthetic
complexes [91] or to connect distant quantum registers (for example by exploiting wavepacket
revivals occurring in different positions [92]). From the point of view of quantum computing,
quantum walks represents a computational model of their own, as they have been demonstrated
to allow universal quantum computation [93]. Up to now, they have been successfully applied
as algorithmic tools in problems such as estimating the volume of convex bodies [94], finding
satisfying conditions for Boolean formulas [95] or approximating permanents [96]. In general, their
key property is the ability to search and sample from an exponentially large set of combinatorial
structures using only local operations. This point will be fundamental for the purpose of our
work.

1.4 Quantum computation with linear optics
The realization of a scalable quantum device which is able to provide a superpolynomial speed-up
over its classical simulation would be an outstanding evidence of the fact that BQP 6= BPP,
with strong consequences over ECTT’s tenability. Although the general thought about this
realization is negative because of fundamental limitations such as influence of noise [45], in this
scenario, several techniques started to develop and testing the first implementation with different
platform. As we already mentioned, there are many possible physical schemes to implement
qubits and quantum gates, each one with its own advantages with respect to the others. However,
the choice of the scheme is strictly related to the way we are able to implement it experimentally.
Despite ion traps or cold atoms implementations can make qubit interact in a highly controlled
way, they have very low coherence times compared to photonic schemes. Photons can be well
isolated from the environment, they have potentially infinite coherence time, but do not interact
with each other. Because of this, while satisfying the first point is rather easy, the realization of
quantum gates is demanding. For this reason, using photons implementations could provide a
fascinating long-term development for this field. For example, the employment of schemes such
as cluster-state quantum computation and graph quantum computation [10,11] are believed to
be promising because they are suitable for photonics chip implementations [97] and they are
tolerant to noise [98]. This could be the key for realization of future large-size experiments.

However the use of photons as quantum information carriers, linear optical elements, such
as fibers, beamsplitters and waveplates, and the capability to move them around and perform
quantum operation on them, have found so far its development in the so-called linear optical
quantum computing (LOQC) [12]. LOQC has been the subject of intensive research over the
last 20 years, and it is still subject of deep analysis and a candidate for the development of
quantum computing [99] despite the difficulties in scaling-up and noise control. A possible route to
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implement two-qubit gates has been proposed in the seminal work of Knill, Laflamme and Milburn
(KLM) [12], and consists in exploiting feed-forward mechanisms to get measurement-induced
effective nonlinearities. This scheme is currently at the basis of the development of LOQC.
However the experimental requirements for implementing universal quantum computing remain
unfeasible with the current technologies, despite some improvements to the protocol [99, 100].
Photons remains one of the most feasible mean to achieve quantum computation thanks to
its natural behaviour to transmit information along space. Although, they are non-interacting
particles, the desired interaction is assured by the interference between photons. If we consider
a state an indistinguishable photon state |ψ〉 = ∑

i αi |i〉, and we inject it into a passive linear
interferometer, the outcome probability is given by

Pr
ψ→φ

= |〈φ |ψ〉|2 = |
∑
i

β∗i αi|2 =
∑
i

|βi|2|αi|2 +
∑
i 6=j

β∗i βjα
∗
jαi (1.34)

It is intuitive understand the difference respect to the classical case. The additional term∑
i 6=j β

∗
i βjα

∗
jαi represents the interference among possible paths with i 6= j and highlights the

richness due to the quantum behaviour. This contribution is non-zero until decoherence provided
by the interaction with the environment is negligible.
In this situation, the investigation of the power of passive linear optics with non-interacting
photons naturally came along. In early times, there was general consensus over the fact that,
regardless of the input state, no universal quantum computer could ever be built using only
linear interferometers, nor even gaining any computational advantage. Later on, a series of
results on hardness of simulation of linear interferometers started to come along: the output
of a linear interferometer fed with coherent states is computable in polynomial time [101].
Any interferometer processing Gaussian states, even with added quadratic nonlinearities, can
be simulated classically [102]. The probability of measuring a particular basis state in any
n-photon linear optical circuit can be computed to within ±ε additive error in a time which
scales polynomially with n and 1/ε (Gurvit’s algorithm) [103]. The availability of adaptive
measurements, i.e. the ability to modify the quantum operations in the network after intermediate
measurements, makes linear optics universal for quantum computation either with single photons
or Gaussian states in input (KLM scheme). If one have access to non-demolition measurement
(which means that the post-measurement state is available after the measurement) this is true
even with coherent states [12].

No one of the above results seemed to prefigure any possible quantum advantage from using
passive linear optics alone. However several investigations on quantum communications, quantum
key distribution and many-body quantum interference on this interferometric platforms seem to
highlight some features on computation complexity and on the reliability of such particles to
perform mid-term protocols.
The comprehension of the common operations of LOQC protocols pass trough the quantum field
theory and the description of optical elements. We can describe the quantum electromagnetic
field as a potential vector with wave-plane expansion by means of the creation and annihilation
operators a and a† [104]:

a |n〉 =
√
n |n− 1〉 a† |n〉 =

√
n+ 1 |n+ 1〉 (1.35)

where the operators follow the commutation relations provided by the bosonic statistic:[
ak, a

†
l

]
= δk,l

[
ak, al

]
=
[
a†k, a

†
l

]
= 0. (1.36)

This formalism identify, if we are in zero-losses condition, the so-called Fock states. we can
assume the optical elements as for examples beam splitters (BS) and phase shifters (PS) are
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unitary, thus providing the desired lossless condition. An optical circuit can be shortly described
as an m- mode interferometer, that are m optical modes defined on the Fock space. In this case,
the Hamiltonian will be

H =
∑
j,k

Ajk a
†
j ak (1.37)

that is a quadratic form on the creation operators. If we change the representation into Heisenberg
form we can resume the behaviour of a passive linear interferometer as

ai −→
∑
j

Uij bj (1.38)

where Uij are the element of the unitary matrix which identify the evolution. One of the
fundamental components of linear optics, as shown before, are beam splitters (BS), which mix
the optical modes respect to typology of the input injected. It can be seen as a 2× 2 unitary
matrix:

UBS =
(

cos θ e−iφ sin θ
eiφ sin θ cos θ

)
. (1.39)

Angle θ corresponds to the transmitted and reflected beam, while the angle φ introduce a phase
between the two beams. In the same way, we define another fundamental optical element: the
phase shifter (PS). Usually, it consists in a material with refraction index different respect to the
air, thus introducing as relative δ phase on the field.

UBS =
(

1 0
0 eiδ

)
. (1.40)

These optical elements, together with other components can realize one- and two- (probabilistic)
quantum gates [105–107]. Moreover, it is possible to realize universal circuital schemes by means
of ancillar qubits [45], non-linear effects [108,109] and ultrafast laser technologies [110,111].
To perform protocols of quantum computation by means of linear optics elements, we can exploit
the degrees of freedom of single photons. For this reason let’s see in which way it is possible
to represent the qubit through photon encoding. We can say that the state of each photon is
expressible as a wave-packet

â†i (τi) =
∫ ∞
−∞

dωi fi(ωi) e−iωiτi â†i (ωi) (1.41)

where i = 1, 2, 3 identify the spatial mode ki, τi is the delay due to the propagation and fi(ωi) is
the wave function spectral function peaked to the frequency ω0 and bandwidth δω

fi(ωi) = 1
4√2πδω2

e−
(ωi−ω0)2

4δω2

How can we represent the qubit by means of a wave-packet?

1. temporal encoding: we use a Mach-Zehnder (MZ) interferometer to encode the qubit. Path
lengths must be chosen with a difference near to the coherence length of the photon. If we
identify the path with |0〉MZ o |1〉MZ , the photon state before the collapse is described by
th superposition |ψ〉 = α |0〉MZ + β |1〉MZ , with

|0〉MZ =
∫ ∞
−∞

dzf

(
t− z/c
δt

)
e−iω0(t−z/c)â†(z) |0〉 (1.42)

|1〉MZ =
∫ ∞
−∞

dzf

(
t− z/c+ τ

δt

)
e−iω0(t−z/c+τ)â†(z) |0〉 (1.43)

Its robustness suggests that temporal encoding is useful for communication protocols.
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2. Polarization encoding: the encoding is performed through the exploitation of the po-
larization degree of freedom. In this case the state is described by the superposition
|ψ〉 = α |H〉+ β |V 〉, with

|H〉 =
∫ ∞
−∞

dkf(k) e−iωktâ†H(k). (1.44)

|V 〉 =
∫ ∞
−∞

dkf(k) e−iωktâ†V (k). (1.45)

3. Occupation mode encoding: the trick is to exploit different propagation modes, that
is, the basis state is defined by occupation numbers. In this way, the superposition
|ψ〉 = α |0〉+ β |1〉 is realized distinguishing |0〉 e |1〉, respectively, the situation where we
have 0 or 1 photons per mode.

4. Transverse spatial-mode encoding: we can encode trough the orbital angular momentum
on spatial modes. Any spatial mode of a laser beam can be written in terms of solutions of
the paraxial Helmotz’s equation [110]. If the system has cylindric symmetry, solutions of
the equation are the Laguerre-Gauss modes

u(r, φ, z) =
√

2p
π(l + p)

1
ωz

(
r
√

2
ωz

)|l|
L|l|p

(2r2

ω2
z

)
e
− r2
ω2
z

+ik r2
2Rz ei(2p+|l|+1)ζzeilφ (1.46)

where ωz = ω0

√
1 +

(
λz
πω2

0

)2
is the spot size , Rz = z

(
1 +

(
πω2

0
λz

)2)
the radius of curvature,

ζ(z) = arctan (z/zR) is the Gouy’s phase and φ = arctan (y/x). The fundamental property
of these kind of encoding relies on the capability to carry the angular orbital momentum
with a phase factor eilφ. To build a computational basis, we can choose to represent states
with orbital momentum, as for example l1 = +~→ |0〉 e l−1 = −~→ |1〉.

1.5 Discussion
Linear optics and photons are one of the most promising candidates to perform basic operation
of quantum computations and communication. Currently, the continuously increasing number of
entangled qubits with ions and superconducting qubits makes them the best systems for local
information processing. Nevertheless, to connect two of such local stations, photons appear to
be the most natural candidates. Indeed, the speed of transmission and the low-noise properties
of photons constitute extremely important characteristics to account for quantum technologies.
Encoding information on a single photon is relatively easy and moreover is secure because
any not controlled measurement that affects the system corrupts inevitably the information,
thus protecting from eavesdropping. Recently, several ideas arose to ascertain the advantage
to use many-body bosonic interaction in order to test a computational advantage in quantum
computation. In next chapter we will introduce the most recent development in this field from
the perspective of many-body bosonic interference phenomenon.
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Chapter 2

Multi-bosons interference and Boson
Sampling model

In this Chapter we introduce the main topic of this work, that is the use of many-body bosonic
interference to implement a non-universal model that promises a quantum computational advan-
tage with relatively low experimental effort. We start from a theoretical background on bosonic
coalescence, then we will introduce the Boson Sampling problem that is believed to be hard
to compute for classical computers. Moreover, we will describe an improved version of Boson
Sampling, which exploits an advanced application of SPDC sources in order to significantly boost
the quantum computation power in terms of generation rate. All these topics represent the
justification of the research that I have carried out and they are a necessary introduction for the
problem of quantum certification of genuine quantum interference.

2.1 Indistinguishable Particles
In nature there are many examples of systems made of particles of the same species, i.e. with
same mass, spin and charge. The electrons in an atom, for instance, are identical particles. In
classical physics it is also possible to keep track of single particles even though they look identical.
In fact we can always, in principle, follow the trajectory of each particle at each instant of time.
In quantum mechanics, however, identical particles are truly indistinguishable: the concept
of trajectory does not exist and we cannot specify more than a complete set of commuting
observables for each of the particles.
For simplicity, consider a system with just two particles. Suppose k′ is a collective index of
quantum numbers describing the system. Since we are dealing with two identical particles, the
wavefunctions Ψ(k1, k2) and Ψ(k2, k1), i.e. after a particles exchange, must represent the same
quantum state, and therefore they must differ only by a phase factor [112]:

Ψ(k1, k2) = eiαΨ(k2, k1) . (2.1)

If we repeat the exchange of the two particles, obtaining again Ψ(k1, k2), we find:

e2iα = 1 =⇒ eiα = ±1 , (2.2)

that is, the wave function of a system of two identical particles must be either symmetric or
antisymmetric under the exchange of the two particles. As a result, we have the spin-statistics
theorem [112]:

Theorem 2.1: Spin-Statistics

Systems of identical particles with integer spin (s = 0,±1, . . .), known as bosons, have
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wave functions symmetric under exchange of any pair of particle labels. The wave function
is said to obey the Bose-Einstein statistics.
Systems of identical particles with half-odd-integer spin (s = ±1/2 , ±3/2 , . . .), known as
fermions, have wave functions antisymmetric under exchange of any pair of particle labels.
The wave function is said to obey the Fermi-Dirac statistics.

This fundamental law was discovered by Wolfgang Pauli [113] and it has been largely supported
by experimental evidences.

Moreover it has been observed that in two-dimensional systems, we can individuate quasipar-
ticles that can be observed to obey statistics ranging continuously between Fermi–Dirac and
Bose–Einstein statistics. These particles are named anyons and are represented, given two
identical particles an the action of the exchange operator, as

Ψ(x1, x2) = eiθ Ψ(x2, x1) (2.3)

this particles can be seen as a generalization of bosons and fermions and they were introduced
in the seminal work of Leinaas and Myrheim in 1977 and independently from Wilczek in
1982 [114,115]. These particles have found interest in quantum information field because it is
believed that those particle can provide a powerful tool for topological quantum computing [116].
In parallel experimental works with photonics architectures demonstrated the importance of this
quantum state in governing the behaviour of quantum walks [27].

Let us now focus on the previous statistics introduced: bosonic and fermionic in order to
highlight why they are important and how they are connected to this manuscript work. In
general, given a quantum system of N identical particles, the global state of the system, both
symmetric (S) and antisymmetric (A), is described by a linear superposition of all possible
permutations p of product states [117]:

|k1, k2, . . . , kN 〉S =

√∏
j nj !
N !

∑
p

∣∣∣kp(1), kp(2), . . . , kp(N)
〉
, (2.4)

|k1, k2, . . . , kN 〉A =
√

1
N !

∑
p

sgn(p)
∣∣∣kp(1), kp(2), . . . , kp(N)

〉
, (2.5)

with nj the number of repetitions in the exchange. Now, to completely characterize the quantum
state, we have to take in account the signs due to particle exchange, thus we need to compute two
quantities, for asymmetric and symmetric state. Thus, we can define the following definitions,
given a N ×N matrix:

Det(U) :=
∑
σ∈SN

N∏
i=1

sgn(σ) aiσ(i) Per(U) :=
∑
σ∈SN

N∏
i=1

aiσ(i) , (2.6)

respectively as the determinant and the permanent of a matrix, where SN contains all the
permutations σ relative to the set {1, 2, . . . , N}, and sgn(σ) is +1 or -1 whether the permutation
is even or odd. Let us introduce an example of an application of these two quantities to build
a system with two identical fermion particles. The simplest way to approximate the wave
function of a many-particle system is to take the product of properly chosen orthogonal wave
functions of the individual particles. For the two-particle case with coordinates x1 and x2, we
have Ψ(x1, x2) = ψ1(x1)ψ2(x2) as follows by the Hartree-Fock approximation in the case of
fermionic particles [112]. In order to take in account the statistics we have to consider a linear
superposition which contain the action of the exchange. Therefore, if we build a matrix with the
single terms we can retrieve the wave function:
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1√
2
Det

(
ψ1(x1) ψ1(x2)
ψ2(x1) ψ2(x2)

)
=⇒ Ψ(x1, x2) = 1√

2
(ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)) (2.7)

The choice between determinant and permanent is pivotal in order to distinguish the behaviour
of the quantum system. In particular, as a generalization, the wave function of a N -particle
fermionic system is given by the Slater determinant, by considering a N ×N matrix U :

Ψ(A)
k1,...,kN

(x1, . . . , xN ) = 1√
N !

Det


ψk1(x1) ψk1(x2) · · · ψk1(xN )
ψk2(x1) ψk2(x2) · · · ψk2(xN )

...
... . . . ...

ψkN (x1) ψkN (x2) · · · ψkN (xN )

 . (2.8)

Otherwise, for a globally symmetric wave function, that is, a bosonic quantum system, we need
to compute the permanent:

Ψ(S)
k1,...,kN

(x1, . . . , xN ) = 1√
N !

Per


ψk1(x1) ψk1(x2) · · · ψk1(xN )
ψk2(x1) ψk2(x2) · · · ψk2(xN )

...
... . . . ...

ψkN (x1) ψkN (x2) · · · ψkN (xN )

 . (2.9)

These two expressions could appear very similar, but they are extremely different in terms of
computational complexity. The calculation of the determinant scales polynomially with the input
size, so it is in the computational class P and therefore tractable on a classical computer. For
the permanent, instead, there is no efficient algorithm able to compute it efficiently. Indeed,
it scales exponentially with the input size and, consequently, it is intractable for a classical
computer. In particular, it was pointed out by Valiant [42] that the permanent calculus belongs
to the ]P-hard class. This difference in computational complexity relies on the permutation
signs, which alternate in determinants allowing some terms to cancel out. For permanents this is
not possible and the computation becomes much harder. We will provide further details on the
computational complexity of evaluating permanents in Section 2.4.
In the following section we describe how quantum interference between photons can be described
using permanents, even for the simple case of only two photons impinging on a beam-splitter.
Moreover, this approach will be useful to understand the Boson Sampling problem.

2.2 Hong-Ou-Mandel effect

The Hong-Ou-Mandel (HOM) effect is a quantum phenomenon due to two-photon interference
on a beam-splitter (BS) [14]. It occurs when the two photons are indistinguishable and impinge
on a 50:50 BS from different input modes (a, b). There are four possibilities for the photons at
the output:

1. The photon entering from mode a is reflected and the other one entering from mode b is
transmitted.

2. The photon entering from mode a is transmitted and the other one entering from mode b
is reflected.

3. Both photons are transmitted.

4. Both photons are reflected.
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Figure 2.1. Possible scenarios for two photons impinging on a 50:50 BS: "from left to right" the photon
entering from mode a is reflected and the other one is transmitted, the photon entering from mode a is
transmitted and the other one is reflected, both photons are transmitted, both photons are reflected. If
the photons are indistinguishable, the last two cases cancel each other, due to destructive interference
process. This effect is known as Hong-Ou-Mandel effect.

The beam-splitter reflectivity (R) and transmissivity (T ) determine the relative probabilities
of reflection and transmission. When the photons are perfectly indistinguishable, a destructive
interference occurs between the possibilities 3. and 4., making them exit always from the same
output mode, c or d according to scenarios (1) and (2) (2.1).
Formally, we can describe the HOM effect using the second quantization formalism, that is
exploiting the Fock states and the creation and annihilation operators, which obey the bosonic
commutation rules:

[â†i , â
†
j ] = [âi, âj ] = 0 , [â†i , âj ] = δij . (2.10)

The action of a BS is described by the matrix [118]:

B̂ =
(

t ir
ir t

)
, (2.11)

where t and r are the transmission and reflection coefficients, related to T and R by the
expression1:

t2 + r2 = T +R = 1 . (2.12)

Having indicated the input modes as (a, b), the two-photons initial state is described by the Fock
state: |ψ〉(in)

a,b = â†aâ
†
b |0, 0〉a,b = |1, 1〉a,b. In order to determine the output probabilities, we have

to find out how the input modes transforms after the BS. This transformation is easily carried
out thanks to the matrix equation:(

â†a
â†b

)
= B̂

(
â†c
â†d

)
=⇒

{
â†a = t â†c + ir â†d
â†b = ir â†c + t â†d

(2.13)

Hence, we can rewrite the input state obtaining:

|ψ〉(in)
a,b = |1, 1〉a,b = â†aâ

†
b |0, 0〉a,b = (t â†c + ir â†d)(ir â

†
c + t â†d) |0, 0〉c,d ⇒

|ψ〉(in)
a,b = irt |2, 0〉+ irt |0, 2〉+ (t2 − r2) |1, 1〉

, (2.14)

where the coefficients are the probability amplitude for each two-photon Fock state. Hence,
requiring our beam-splitter to be 50:50, i.e. t2 = r2 = 1/2, we see that the last term in (2.14)

1We are referring to a lossless beam-splitter.
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vanishes due to destructive interference.
Thus, under the indistinguishability hypothesis, two photons interfering on a symmetric BS can
only exit from the same output port:

|ψ〉(in)
a,b = 1√

2
(|2, 0〉+ |0, 2〉)c,d . (2.15)

Now, let us consider the general case in which a state |n,m〉 enters a general BS. Such beam-
splitter is described by the unitary matrix B̂G:

B̂G(θ, φ) =
(

cosθ e−iφsinθ
e−iφsinθ cosθ

)
, (2.16)

with cosθ and sinθ being the transmission and reflection amplitudes respectively. Assuming
φ = π/2, and supposing the photon number conservation, we expect at the output of the
beam-splitter:

|n,m〉 −→
n+m∑
p=0

fp |p, n+m− p〉 . (2.17)

It is worth noting that, if we let the state |N,N〉(in) enter a symmetric beam-splitter, the output
state will be only occupied by even photons, that is:

|N,N〉(in) = iN

2NN !

N∑
p=0

(
N

p

)√
2p!(2N − 2p)! |2p, 2N − 2p〉(out) . (2.18)

Experimental evidences of this phenomenon was first obtained in Ref. [14]. In 2.2 it is
reported an example of HOM dip: coincidence counts are plotted with respect to the relative
delay between the photons. We can observe that the minimum, corresponds to a relative delay
shorter than their coherence time. Theoretically the coincidences should vanish, however the
actual experimental indistinguishability can be only partial, this is why they do not.

(a) (b)

Figure 2.2. Coincidences number trend with respect to the relative two-photon delay. When the
relative delay is shorter than their coherence time, the coincidences number drops due to destructive
interference. The minimum value corresponds to the case of bunched photons exiting from the same
output.

Experimental information about the degree of indistinguishability is given by an important figure
of merit of the Hong-Ou-Mandel effect, the dip visibility. It is defined as:

V = 1− Q

C
, (2.19)
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where C are the coincidences between distinguishable photons, outside of the dip, while Q are
the coincidences between indistinguishable photons, that is inside the dip.
Let us show how the output probabilities are related to permanents. In detail, the initial state
transforms with the matrix B̂, thus, if we identify the definition matrix Û (2.6) with B̂, we see
that the probability to have |1, 1〉 is proportional to the matrix permanent:

B11 =
(

t ir
ir t

)
, (2.20)

that is, Per(B11) = (t2 − r2). Similarly, the output probabilities for the states |2, 0〉 and |0, 2〉
are proportional, respectively, to the permanents of the matrices

B20 =
(
t ir
t ir

)
, B02 =

(
ir t
ir t

)
. (2.21)

To sum up, one can calculate the output probabilities starting from the permanent of the sub-
matrices a given unitary transformation Û . These sub-matrices are built by the cross selection
among the columns and rows relative to the occupied input and output modes respectively. If a
bunched input/output arrives on the BS, the corresponding column/row has to be taken n-times,
where n is the number of bunched photons on that mode. For example, the sub-matrix B20 has
been obtained by selecting the two columns of the matrix B (input |1, 1〉) and twice the first row
(output |2, 0〉).

2.3 The Boson Sampling model

The boson sampling model, introduced by Aaronson and Arkhipov (AA) in 2011 [33], can be
interpreted as a generalised Hong-Ou-Mandel effect, that is, a n-photons through an arbitrarily
complex linear optical circuit (See Chapter 3).

(a) (b)

Figure 2.3. Analogy between a Galton’s board and a Boson Sampling platform. (a) The
Galton’s board is composed by k identical balls dropped one by one into a lattice made of pegs, each
of which randomly scatters each incoming ball onto other pegs and, at the end, the balls are collected
in different containers (b) Case of a 5-mode boson sampling device with 3 input photons. Note the
analogy between the two protocols, where instead of balls and pins, we use n-boson states and m-mode
interferometers.

The Boson Sampling represents a non-universal model for quantum computation and consists
of sampling from the output probability distribution of indistinguishable bosons evolving in a
linear optical interferometer.
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It is the quantum analogue of the Galton’s board, a device used to illustrate the binomial
distribution. (see Fig. 2.3a). Boson Sampling is very similar to the Galton’s board, but it
uses identical bosons, instead of classical spheres, sent from different starting points. The main
differences between the two processes is referred to how we calculate the output probability
distribution. For a Boson Sampling device, the dimension of the output Hilbert space scales
exponentially with the number of bosons n and modes m, as:

dim(H ) =
(
m+ n− 1

n

)
, (2.22)

This is the core of the problem, because from one side, enlarging the system, the Hilbert space
grows exponentially, from the other, calculate permanents is not efficient in n. It is worth noting
that the Boson Sampling problem is not thought as a calculation problem, or in other words,
these devices does not calculate permanents because in order to do so, we have to wait an infinite
amount of time to obtain the full output distribution. Instead the problem is focused on sampling
from the output distribution.
A sampling problem S is a collection of probability distributions (Dx)x∈{0,1}∗ , input string
composed of x ∈ {0, 1}n. To “solve” S means to sample from Dx, given x as input [33,119]. In
other words, we would like to sample the outcomes of n indistinguishable photons entering in
a m-modes interferometer, represented as an m ×m unitary matrix Û . To this purpose, we
need the output probability distribution, which can be obtained classically by computing the
permanent, by extracting the submatrices related to each input-output combination considering
fixed the input. Due to the intrinsic algorithmic complexity of the permanent, one cannot predict
the outcomes with a classical computer without an exponential overhead in time or physical
resources. Why do we need indistinguishable particles? If we consider the same problem, but
instead, injecting distinguishable bosons, the matrix elements are non-negative real numbers.
This makes us able to approximate the permanent in probabilistic polynomial time, by the
Jerrum, Sinclair and Vigoda algorithm [96]. In the quantum case, by contrast, the matrix
elements are complex numbers and given a general matrix A ∈ Cn×n, and even approximating
Per(A) to within a constant factor is a ]P-complete task. Hence, sampling from the output
distribution of non-interacting bosons, appears a task solvable only by quantum simulators. In
particular, integrated photonics devices are currently considered as the most promising tool for
a scalable implementation of this model and moreover because photons solve the problem in a
natural way. Let us now proceed with a formal description of the model, how permanents are
linked to the output distributions. The privileged experimental condition for the Boson Sampling
is the collision-free case, in which only one photon per mode at the device’s output is collected,
therefore the Hilbert space dimension HCF , to:

dimHCF =
(
m
n

)
. (2.23)

Nevertheless, it was demonstrated by Arkhipov [120], that n photons entering from the same
input mode of an m� n2 interferometer, tend to exit from separate output modes. Consider
now an input state, whose representation in the Fock basis is given by:

|ψ〉in = â†1 . . . â
†
n |01, . . . , 0m〉 , (2.24)

where â†i is the photon creation operator in the i-th mode. The input state evolves according to
a unitary matrix Û , which acts as a map on the creation operators:

Û : â†i →
m∑
j=1

Ûi,j b̂
†
j , (2.25)
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where m is the number of modes and b̂†j is the creation operator in the j-th output mode. Thus,
the state will transform as:

Û |t1, . . . , tn〉 =
n∏
i=1

1√
ni!

 m∑
j=1

Ûi,j b̂
†
j

 |0〉 . (2.26)

Since we have to take in account all the possible output configurations, the output state is:

|ψ〉out =
∑
S

γS |s1, . . . , sm〉 , (2.27)

where sj is the number of photons in each jth output mode2 and γS is probability amplitude,
relative to the configuration S.
If we identify the input state with |T 〉 and the output one with |S〉, the output probability
associated to a specific configuration S is:

PS = | 〈S| Û |T 〉 |2 = |γS |2 . (2.28)

It was demonstrated by Scheel [121] that the probability amplitudes for indistinguishable bosons,
and thus the probability, are related to the permanents by:

γS = Per(US,T )√
s1! . . . sn!

√
t1! . . . tn!

, (2.29)

where US,T is the n× n sub-matrix of U , obtained by repeating si times its ith column and tj
times its jth row. It is now more clear, the difference between considering indistinguishable rather
than distinguishable particles. In fact, in the case of distinguishable particles, the probability is

|γS |2 = Per(|US,T |2)
s1! . . . sn! , (2.30)

which is computed starting from non-negative real numbers. Thus it is possible apply the
Jerrum’s algorithm and simplify the problem.

Now, to better understand the relationship between the permanent and the submatrices,
let’s consider an example. Suppose two photons enter the first two inputs modes (1, 2) with
the remaining modes in the vacuum state and let’s assume to be in the case of collision-free
condition. Let us estimate the amplitude of measuring the two photons exiting from the output
modes (2, 3). There are two ways in which this could occur: either the first photon comes out
from mode 2 and the second from mode 3, or vice-versa, they swap and the first photon reaches
mode 3 and the second mode 2:

1 2 1 2

2 3 2 3

, (2.31)

therefore there are 2! = 2 ways in which the photons can exit the outputs. Hence, the amplitude
probability can be written as:

γ{1,2} = U12U23︸ ︷︷ ︸
photons don’t swap

+ U13U22︸ ︷︷ ︸
photons swap

. (2.32)

Now, looking at the matrix representation of the unitary operator Û :

U =


U11 U12 U13 U14 U15
U21 U22 U23 U24 U25
U31 U32 U33 U34 U35
U41 U42 U43 U44 U45
U51 U52 U53 U54 U55

 , (2.33)

2Since we are dealing with the collision-free case, sj can only be 0 or 1.
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we see that γ{1,2} is the 2 × 2 permanent, corresponding to the submatrix built by the cross
selection among the input columns and the output rows.
In general, having fixed the input/output modes, with n photons there are n! way in which
they can reach the outputs and the associated probability amplitude will be related to an n× n
submatrix permanent.
As already mentioned, in terms of computational complexity, the permanent is strongly believed
to be intractable by means of a classical computer. In the following section, we are going to
present with more details the connections between the permanent and the complexity classes.

2.4 The computational complexity of Boson Sampling
The boson sampling strength, in showing real evidences of the quantum-over-classical computation
advantage, lies in the hardness to calculate permanents with classical algorithms.
The evaluation of the permanent belongs to the ]P complexity class, which is related to counting
problems. We have introduced in previous chapters the classes P and NP, that, instead, are
related to decisional problems. Thus, to compare the former class with the latter two, we
introduce another class based on decisional problems but referred to the ]P one. To this scope,
as mentioned in Section 1.1.4, we can use the concept of oracle, which is defined as a black box
able to solve, in a unit time, problems belonging to a specific class. Supposing A and B are two
complexity classes, we can define the class AB as the class of problems which are in class A
if we have access to an oracle for problems in class B. With this definition we define P]P, as
the class that corresponds to decision problems solvable in polynomial time by a TM, given an
oracle for ]P problems. ]P problems can require checking an exponential amount of different
patterns, which can be done in an exponential amount of time with polynomial memory, so that
the following relation holds:

P ⊆ P]P ⊆ PSPACE . (2.34)

It is possible to identify a subgroup with an internal hyerarchy among the different complexity
classes encountered up to now. It is composed by the sequence P,NP, NPNP, NPNPNP ,. . ., and
it is called Polynomial Hierarchy (PH). It is strongly believed that each of the levels constitutes
a class more powerful than the lower levels (which justifies the term “hierarchy”). The widely
accepted conjecture that P 6= NP. Since the ability to count solutions to NP problems allows
to climb all the way up to the top of the PH, the classes P]P and PH are related as follows:

PH ⊆ P]P ⊆ PSPACE . (2.35)

In this context, the Boson Sampling problem is efficient since the required physical resources
scale polynomially with m and n, conversely with the classical case. The core of the problem
relies on the fact that Boson Sampling is a solution devised to overcome the limit of Troyansky
and Tishby in [122], where we move from the calculation of the permanent to the problem of
sampling. In the following we briefly discuss the proof of the hardness for the exact Boson
Sampling and its more difficult approximated version [33].

Exact Boson Sampling: The hardness of the problem relies on the computational effort to
evaluate permanents. A formal proof is reported in Ref. [33], based on precedent remarkable
results in the study of computational complexity:

1. Stockmeyer’s approximate counting: estimating to within a multiplicative error the proba-
bility that a polynomial-time randomized algorithm accepts a certain input is in BPPNP.
This is true even if the probability to be estimated is exponentially small [123].
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2. It is always possible to efficiently write an n× n complex matrix A as a submatrix of an
m×m unitary matrix (withm > 2n), modulo a rescaling of A by a factor of ε < 1/||A|| [122].

Now, suppose to have an efficient classical algorithm A for exact Boson Sampling; using point (2)
one could insert any n× n matrix X in the upper-left corner of a unitary matrix U by rescaling
it of a factor 1/||X||, and run A setting U as the unitary and (11, 12, ...1n, 0n+1, ...0m) as the
input Fock state . The number of times that A will output the state with all photons in the
first n modes will be proportional to the squared permanent of the upper-left n× n scattering
matrix, i.e. the rescaled X. But then, we could also use Stockmeyer’s counting algorithm to
estimate the same probability to within multiplicative error, even if the rescaling of X decreases
exponentially this probability. This implies that, if A exists, then estimating the square modulus
of a permanent is in BPPNP. But then, using this fact, AA have shown how to calculate the
permanent of a matrix in BPPNP with a binary search. In fact, consider the matrix Xr of which
we want to compute the permanent with the x11 entry replaced by x11 + r. By searching over r
and using A to approximate the permanent square, one can exactly find such that |Per(Xr∗)| = 0.
With this value, by solving a linear equation, the calculation of Per(X) can be reduced to the
calculation of the permanent of the bottom-right (n 6= 1) × (n 6= 1) submatrix of X. This
procedure can be iterated to find efficiently the permanent of X, which is in conflict with the
proof from Valiant [42] of the #P-hardness of calculating the permanent. More in particular,
this result would imply that a #P-complete problem (and, as a consequence, every #P problem)
can be solved in BPPNP, which would mean that [43]:

BPP ⊆ NPNP , (2.36)

BPP ⊆ P]P . (2.37)

For the BPP quantum analogue, that is BQP, the following relation with P]P as described in
Ref. [47] holds :

BQP ⊆ P]P ⊆ PSPACE (2.38)

which would mean that the entire polynomial hierarchy is contained in its third level. This kind
of collapse would be a very striking result in computational complexity theory (even more than
proving that BQP = BPP!), and it is considered extremely unlikely, concluding the proof that
an efficient algorithm for the exact Boson Sampling cannot exist.

Approximate Boson Sampling: The hardness of approximating Boson Sampling cannot be
regarded as rigorously demonstrated by AA, because is based on two unproven conjectures [101].
Still, these two “weak points" are considered very weak assumptions by the computational
complexity community, and are well believed to hold [119]; indeed, they can be regarded as much
“safer" assumptions than believing that factoring is not in BPP. First, we need to introduce
the Haar-random unitaries and Gaussian matrices. The Haar measure [124] is the best way to
define the analogous of the uniform measure on unitary matrices. An operative procedure to
pick a Haar-random m×m unitary is to draw the first row as a random unit vector in Cm, then
the second as another random unit vector orthogonal to the first, and so on. In their work, AA
prescribed Haar-random unitaries to be encoded in the m-mode interferometer. Since a random
choice of the unitary is necessary to avoid any simplification/spoiling of the computational
complexity. Next, we can define a complex Gaussian matrix X as a matrix whose entries are
complex random values following a Gaussian distribution with a fixed mean and sigma (in our
case, 0 and 1 respectively). The reason behind the interest in Gaussian matrices is that they
naturally come as submatrices of random unitaries, as demonstrated by AA [33]. Because of
this fact, the hardness demonstration of approximate BS is essentially based on proving the
complexity of Gaussian Permanent Estimation (GPE).
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Let us define two versions of this computational problem: estimating the square modulus of the
permanent with additive error, or estimating the permanent with multiplicative error. More
formally, given a n× n GM X,

1. Permanent anti-concentration: ∀X ∼ Nm×m
C ∃ a polynomial Q | ∀ (m, d) > 0:

prob

(
Per(X) <

√
m!

Q(m, 1
δ )

)
< δ (2.39)

2. Gaussian permanent estimation (GPEX): Approximating Per(X) for a matrix X ∼
Nm×m
C of independent and identically distributed random Gaussian elements to within a

multiplicative (×) error is a #P-hard problem.

The proof of the hardness then goes through the following results [33]:

Theorem 1 (GPE± and Boson Sampling). If an efficient classical algorithm exists to sample
from a distribution ε-close to the Boson Sampling distribution in total variation distance, then
|GPE|2 with an additive (±) error is in BPPNP.
Theorem 2 (Haar-unitary hiding). : Any n × n submatrix of an m × m Haar random
unitary is close in variation distance to a gaussian matrix if m > n5log(2n).

The loop closes when we take in account the Haar-random measure, randomly selecting the
unitary matrix in order to avoid reductions of the computational complexity. Using the above
conjectures, Aaronson and Arkhipov finally state that a classical polynomial-time algorithm for
the approximate Boson Sampling would imply the collapse of PH.

2.4.1 Experimental requirements for Boson Sampling

At this point we should stress the requirements that we need to "disprove"3 the Extended Church
Turing Thesis (ECTT). The experiment will require the generation of n-photon Fock states, with
a high degree of indistinguishability, to be injected in stable and low-loss m-mode linear optical
interferometers, and finally collected and sent to an array of m photodetectors. Let us now
identify the "boundaries" respect to the number of photons and modes, showing the scalability
problems related to post-selection. Concerning the number of photons n, one could roughly
identify three different regimes:

3 ≤ n ≤ 10 Regime where there are the first experimental attempts exploiting n-
bosons interference with a medium size interferometer.

10 ≤ n ≤ 50 In this regime, computers start to suffer, since, the best known classical
algorithm to compute permanents calculation (Ryser’s algorithm [125])
requires O(2nn2) operations. This is the region where a quantum device
will start surpassing a classical computer.

n ≥ 50 In this region the classical simulation becomes intractable. In principle
we do not want to go beyond for technological reasons but also because:
1) since the ECTT is an asymptotic statement, it could never be formally
disproved by any experiment, which could only provide strong evidence
against it. 2) in the high-computational-complexity regime, certifying
the correctness of the quantum device’s output becomes a hard task.

3It is worth noting that a real proof cannot exist because, the ECTT itself is a conjecture. Consequently we
can only see an evidence of the declared superiority of these quantum machines.
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Moreover, the problem is not only circumscribed to photon generation but it also referred to
the collection. In fact, because of experimental losses and non-unity detector efficiencies, any real
experiment will require post-selection to obtain a fair sample of n-fold coincidence at the output
of the interferometer. Since the post-selected rate will suffer of an exponential slowdown ηn (due
to the probability to observe a n-fold coincidence event), it becomes very hard to perform an
experiment with a very large number of photons, which means, that the ECTT could never be
challenged in the very-high complexity regime. What can we say about the number of modes?
There are two lower bounds that have to be fulfilled, according to AA [33]:

m > n2 The reason is basically to remain in the collision-free regime, where the
events with more than one photon per mode occurs with low probability.
Even if AA expressed the belief that hardness-of-simulation still holds
even in the m ∼ n regime, there would be less theoretical support in this
condition.

m > n5 log(n)2 (often reported in literature as m > n6 or m > n5.1): this is required for
the Haar-Unitary Hiding Theorem to hold. AA believes that the bound
can be lowered down to a much more feasible m > n2.

In practice, m > n2 has become the standard bound for the implementations of Boson
Sampling. There is also an experimental reason not to lower this bound further: in the collision-
free regime, it is possible to use non-number-resolving detectors (which give a “click" if one or more
photons hit the sensitive area) which are much more compact and cheap than number-resolving
ones [126]. One could say that, since the Boson Sampling complexity scales exponentially with
the number of photons because of the hardness of calculating the permanent, it should scale
exponentially as well in m because of the increase in the number of possible output configurations(m
n

)
. This would be true if a classical simulation of Boson Sampling would necessarily imply

reconstructing the whole probability distribution (
(m
n

)
permanents of n× n matrices) and then

sampling from that distribution. This is not true, since we are dealing with a sampling problem,
that does not necessarily imply a full simulation of the system.

Following this road, further investigations have been performed to explore the scalability of
its implementations and in order to provide bounds to satisfy with large scale demonstrations.
In Ref. [127], AA analyzed Boson Sampling in the case of photon losses, while the level of
error tolerance allowed in practical implementations, fabrication imperfections in the quantum
circuit and investigations of alternative protocol have been analyzed extensively in Ref. [128–130],
Ref. [131, 132] and Ref. [133], respectively. The definition of a real bound to prove a concrete
advantage of quantum machines over classical computers is still an open problem and this
attack can be addressed to further developments of hardware architectures [134] and sampling
methods [135]. Moreover Clifford and Clifford [136] have been introduced recently a new
sampling algorithm for Boson Sampling which requires O(n2n + poly(m,n)) time resources
plus an additional O(m2) space resources, clearly enhancing the number of photons and mode
required to find evidences of a real quantum advantage. In Table 2.1 we list the Boson Sampling
experiments performed in the last five years.

2.5 Scattershot Boson Sampling
The Boson Sampling problem aims to find concrete evidences that quantum protocols can be
more efficient than the classical ones. However, in order to show the differences in terms of
resources employed we have to discuss the scaling of n and m 2.4.1. Experimentally, one of the
main difficulties in scaling up the complexity of Boson Sampling devices is the simultaneous
generation of a large number of indistinguishable photons. From the first proof-of-principle
demonstrations for small size Boson Sampling experiments [137–140], several theoretical and
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Year Authors m n Platform Source

2013 Spagnolo et al. [146] 5 3 FLM SPDC

2013 Broome et al. [137] 6 3 in-fiber SPDC

2013 Spring et al. [138] 6 3 SoS SPDC

2013 Tillmann et al. [139] 5 3 Si SPDC

2013 Crespi et al. [140] 5 3 FLM SPDC

2014 Spagnolo et al. [198] 13 3 FLM SPDC

2014 Carolan et al. [199] 21 5 Si2N3 SPDC

2015 Carolan et al. [22] 6 6 SoS SPDC

2015 Tillmann et al. [220] 5 3 FLM SPDC

2015 Bentivegna et al. [149] 13 3 FLM SPDC

2016 Crespi et al. [182] 8 2 FLM SPDC

2017 Loredo et al. [143] 6 4 in-fiber QD

2017 He et al. [142] 8 5 bulk QD

2017 He et al. [145] 9 2 fused-quarz QD

Table 2.1. List of Boson Sampling experiments performed from 2013 to nowadays.

experimental works have reported a significant advance in number of modes and photons, by means
of different techniques [141] and sources [142,143]. However, despite significant improvements
in technologies, currently the most widely used source remains the Spontaneous Parametric
Down Conversion (SPDC). In this context, the scalability of these sources as the relevance
of the detectors’ efficiency have been studied in [144]. Its advantages are the high photon
indistinguishability, collection efficiency and relatively simple experimental setups. Beyond these
features, the SPDC suffers two important drawbacks:

• since the process is spontaneous, the phenomenon is non-deterministic;

• the laser pump power, and hence the source brilliance, has to be kept low to prevent
unwanted higher-order terms in the generation process.

These disadvantages place strict limitations on the implementations of Boson Sampling ex-
periments. In order to use the SPDC sources at their best possibilities and to increase the
generation rate, Lund et al. have introduced a new scheme named by asAaronson Scattershot
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Boson Sampling (SBS) [147,148]: a generalization of the Boson Sampling problem that exploits
the full capabilities of SPDC to get an exponential enhancement in the generation rate with
respect to the the standard version.

Figure 2.4. a), Standard Boson Sampling experiment. A n-photon Fock state is injected into a linear
interferometer. The outcome depends on the probability distribution retrieved by their evolution
b), Scattershot configuration. In this case we have m heralded single-photon sources, one for each
input port, that are coupled to the interferometer. n photons (n < m) are probabilistically generated
from SPDC sources and injected into the interferometer. Each detected n-photon event at the
interferometer’s output can be assigned to its corresponding input state by the heralding detectors,
Ref. [149].

The idea is the following: we know that the photon generation is due to SPDC sources and it
is not efficient, but very simple to use. Consequently this scheme, involves the connection of k,
with k > n, parametric down conversion sources to different input ports of the interferometers in
order to boost the generation rate while exploiting their individual case of implementation (see
Fig. 2.4).
Suppose each SPDC crystal yields a single photon with probability ε per pulse. By pumping
all k sources with simultaneous laser pulses, n photons will be simultaneously generated in a
random, but heralded [149] set of input ports with probability equal to:

P =
(
k
n

)
εn , (2.40)

which for k � n represents an exponential improvement in generation rate with respect to the
usual, fixed-input Boson Sampling.
Thus, the task of the Scattershot Boson Sampling is to sample from the output probability
distribution given a random set of input configurations. In other words, it is the problem of
sampling from the input/output joint probability distribution. All of these features suggest that
the SBS approach to Boson Sampling will be decisive in future, larger experiments designed
to reach the quantum advantage regime. Note that the pump laser power does not need to be
increased k-fold, as the laser can sequentially pump each SPDC source with very little loss to
down-converted photons. In this way, the ratio between one-pair production rate and higher
order terms can be kept low, as in the standard space-multiplexed heralded photon sources.

What about computational the complexity of SBS? Intuitively, one could say that increasing
the number of possible inputs should (at least) keep the same complexity of the original problem.
Further details on Scattershot Boson Sampling computational complexity, refer to [147].

We will now discuss how SBS may bring within reach an experimental regime approaching
quantum advantage. Let us consider experiments with N = 2000 events. In this regime, with high
probability each recorded event is sampled from a different input state, provided that

(m
n

)
� N

and assuming the use of one SPDC source per input mode. To get an insight into the hardness
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Figure 2.5. Simulation of SBS experiment. Time required with a laptop to calculate N = 2000 Boson
Sampling probability distributions, each one corresponding to a different input configuration, as a
function of the number of modes m, for different number of photons n. The simulation is performed
by using a brute-force approach: for each event, an input is drawn uniformly and the full probability
distribution is calculated to sample a single event. Ref. [149].

of calculating the whole output distribution corresponding to a SBS experiment, we illustrate the
required computational time on a standard laptop in Fig. 2.5. The main advantage of the SBS
approach is to decrease the experimental run-time with respect to the usual, fixed-input setup.
We get an estimated runtime of ∼ 108 seconds for a 2000-event, fixed-input BS experiment with
n = 4, m = 100. The corresponding SBS experiment uses k = 100 SPDC sources in parallel,
resulting in a simulated quantum runtime of ∼ 50 seconds. These estimates clearly illustrate
the boost in computational speed provided by the Scattershot approach. Moreover, it has been
shown that the computational resources for the Scattershot implementations, reduce the bound
for quantum advantage to nearly 7 photons [150].

In Chapter 5 we will show our work reported in Ref. [149], introducing the first experimental
Scattershot approach to the Boson Sampling.

2.6 Discussion
The study of the phenomenology associated to many-body evolution of bosonic states in an inter-
ferometer, as pointed out, if we compare the quantum approach versus the classical computation,
the latter is believed to be hard to compute, due to the hardness of the problem. At this point
the important question is: "how can we be sure that the output distribution corresponds to a
genuine outcome of many-body quantum interference of indistinguishable states?". For short sizes
it is not evident the problem because we can still deal with a reasonable little calculus to retrieve
the output distribution and verify the sampling trough the probabilities. Nevertheless, if we
want to study the protocol for larger sizes, at this regime we cannot be sure (considering the fact
that we are dealing with a same problem) if the outcomes corresponds to the indistinguishable
behaviour or not. This is due to the exponential increase in m and n of the number of possible
output states, in addition to the permanent calculus. In Chapter 5 we will deal with this problem,
focusing on the so-called validation problem or, what protocol we can use to certify true quantum
interference in an efficient way. This is important not only for Boson Sampling itself but also to
certificate quantum interference which is at the core of LOQC.
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Chapter 3

Linear optics experiments with
integrated photonics

In this Chapter we introduce the field of integrated photonics, describing the most diffused
techniques whose permit the implementation of any unitary transformation, using only phase
shifters and beam splitters. We firstly discuss the linkage between unitary transformation and
interferometry showing the algorithms involved for the fabrication of such structures. As following,
we will focus on the description of the most known techniques, focusing in particular to the
femtosecond laser writing which lies at the core of the platforms used in this PhD project.

3.1 Experimental realization of any unitary matrix
We start by describing the motivations behind the development of integrated photonics. Re-
markably, the starting point is the question: "how can I implement any unitary transformation
on the optical modes?" The answer is positive. This question was answered by Reck, Zeilinger,
Bernstein and Bertani [15], who demonstrated that any discrete finite-dimensional unitary
operator acting on m optical modes can be realized in the laboratory using optical devices,
more precisely using a sequence of two-dimensional beam-splitters and phase shifters. Indeed,
given a set of linear optical elements, we know that they can be always described by a uni-
tary matrix. If we assign to each optical device a specific matrix (e.g., the BS matrix), the
whole system unitary representation can be obtained by the matrix product among all the devices.

(a) (b)

Figure 3.1. (a) A Mach-Zender interferometer made with 50 : 50 beam-splitters, phase shifters and
mirrors. (b) Corresponding transformation dependent on the parameters (ω, φ). Ref. [15].

The experimental realization of the most general element belonging to U(2) is already known. It
uses a lossless beam-splitter matrix with a phase shifter at one output port, and transforms an
input state with modes (k1, k2) into the output state with modes (k′1, k′2):(

k1
k2

)
=
(
eiφ sinω eiφ cosω

cosω −sinω

)(
k′1
k′2

)
, (3.1)
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where ω is a parameter describing the reflectivity
√
R = sin(ω) and the transmittance

√
T =

cos(ω) of the beam-splitter. The parameter φ can be realized by an external phase shifter after
the BS. Varying the input port phases, the beam-splitter matrix performs any transformation
in U(2) [151]. A varying reflectivity beam-splitter can be substituted by a Mach-Zender (MZ)
interferometer with 50 : 50 BSs (Eq. 3.1).
Following this approach, one can perform an experiment equivalent to any unitary matrix U(N)
by using beam-splitters and phase shifters devices, such that the full N -dimensional Hilbert space
can be factorized in successive U(2) transformations, acting on its two-dimensional subspaces.

By this approach any arbitrary unitary operator can be built only with beam-splitters and phase
shifters. It is possible to verify that the maximum number of beam-splitters needed to build a
general N -dimensional matrix is [15]:(

N
2

)
= N(N − 1)

2 . (3.2)

Figure 3.2. A triangular array of beam-splitters implementing a 5× 5 unitary matrix. Each diagonal
row reduce the effective dimension of the Hilbert space by one.

Since this number grows quadratically, i.e. O(N2), it represents an efficient scaling law for
experiments in higher-dimensional Hilbert spaces. The practical implementation of this method
involves a triangular array of beam-splitters: each diagonal row reduce the effective dimension
of the Hilbert space by one (3.2). However, its physical realization with conventional optical
techniques results to be out of reach. Indeed, with a rather high number of modes, the size of
the interferometric network grows too much, reducing the overall stability and, finally increasing
the losses.
This problem can be overcome thanks to the technology of integrated photonics through optical
confinement of light in small size optical chips. Let us introduce in more details this technology
in next sections.

3.2 Two-dimensional waveguides
The basic concept of optical confinement is quite intuitive. A medium of refractive index n2
embedded in a medium of lower refractive index n1 acts as a light “trap” within which optical
rays remain confined by multiple total internal reflections at the boundaries if n2 >> n1. The
light is transported through the inner medium without radiating into the surrounding medium.
The most widely used of these waveguides is the optical fiber, made of two concentric cylinders
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of low-loss dielectric material such as glass. Integrated optics is the technology of integrating
various optical devices and components all into a single chip. Optical waveguides provide the
connections between these components and such chips represent the optical version of electronic
integrated circuits. In the following we give a brief description of two-dimensional waveguides
and of the coupling between them (for an in-depth analysis see e.g. [110]).

As before, we can consider a rectangular dielectric waveguide which is a cylinder of refractive
index n1 with square cross section and width d, embedded in a medium of slightly lower refractive
index, namely n2. The components of the wavevector k = (kx, ky, kz) of guided light must satisfy
the condition

k2
x + k2

y ≤ n2
1 k

2
0 sin2 θc (3.3)

where θc = cos−1(n2/n1) and k0 is the wave vector in the vacuum. Depending on the waveguide
size and on its refractive indices, the number M of guided modes satisfying equation (3.3) is

M = 1
4π (dn1 k0 sin θc)2

√
n2

1 − n2
2. (3.4)

M is proportional to the cross section as d, thus, having fixed n1 and n2, single mode waveguides
can be realized by simply adopting a proper cross section1. If two waveguides are sufficiently
close such that their fields overlap, light can be coupled from one into the other. Optical power
can be transferred between the waveguides, an effect that can be used to make optical couplers
and switches. Power is transferred between two waveguides in a periodic way: the light jumps
back and forth from one waveguide to the other until their fields overlap. In the simple case of
two identical waveguides - labeled 1 and 2 - brought close together for a length z, by injecting
light into the first waveguide, the output power Pi(z) with i = 1, 2, will be:

P1(z) = P1(0) cos2(Cz)
P2(z) = P1(0) cos2(Cz + φ)

(3.5)

where C is the coupling coefficient and φ is a phase difference between the two fields.

3.3 Integrated circuit fabrication techniques
Several techniques have been developed to build waveguides into a small size chip. Such approaches
to largely improve performance of quantum optics experiments since spatial mode matching,
which is crucial for classical and quantum interference, since nearly perfect in such an architecture.
The first experiment on integrated quantum photonics was reported in 2008, on silica-on-silicon
(!SoS) waveguide quantum circuits that are fabricated and used to achieve quantum logic gates
with high fidelity [152]. Coupling between waveguides, to realize BS-like operations, may be
achieved when two waveguides are brought sufficiently close together that the evanescent fields
overlap: this system is known as directional coupler (Fig. 3.3) [110]. The coupling depends
on the separation between the two (or more) waveguides and on the interaction length. In the
following, let’s thus introduce the most recent techniques: lithography and femtosecond laser
micromachining Femtosecond laser micromachining (FLM), which are nowadays widely adopted.

3.3.1 Lithography

Lithography is described as the transfer of a pattern to a photosensitive material by selective
exposure to a radiation source. A photosensitive material is a material that changes its physical
properties when exposed to a radiation source. If we selectively expose a photosensitive material

1The diameter is ∼ 4µm as for single mode fibers
2Ref.https://www.rp-photonics.com/fiber_couplers.html

https://www.rp-photonics.com/fiber_couplers.html
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Figure 3.3. Left: refractive index profile of a directional coupler. Right: simulation of the amplitude
2field behaviour in a directional coupler, where the interaction length is chosen to reach a specific
value of the reflectivity. A full description of the methodology used is provided in Section 3.4.

to radiation (e.g. by masking some of the radiation) the pattern of the radiation on the material
is transferred to the material exposed, as the properties of the exposed and unexposed regions
differs [20,21]. In lithography for micromachining, the photosensitive material used is typically
a photoresist. When the photoresist is exposed to a radiation source of a specific wavelength,
the chemical resistance of the resist changes. On the other hand, if the resist is placed in a
developer solution after selective exposure to a light source, it will etch away one of the two
regions (exposed or unexposed). If the exposed material is etched away by the developer and the
unexposed region is resilient, the material is considered to be a positive resist. If the exposed
material is resilient to the developer and the unexposed region is etched away, it is considered
to be a negative resist. By simply varying the pattern of the exposed region it is possible to
realize different circuits in which the surviving resist acts as a waveguide. This type of waveguide
can only be arranged in 2-dimensional configurations and present squared cross sections. In
particular, since the squared geometry is not isotropic, this waveguide does not allow the optimal
propagation of gaussian modes thus preventing their use for manipulation of polarized light.

Silicon waveguides: These circuits are realized through lithographic techniques, with all the
related disadvantages, but the possibility to exploit the huge technology expertise and supply
chain from electronic industry, as well as the full compatibility with CMOS technology, are strong
incentives. Indeed, silicon circuits are tipically realized using electron beam or optical lythography
and reactive ion etching, mainly using CMOS manufacturing tools [153]. The silicon crystal is
transparent in the 1.3µm − 1.6µm region. The most used configurations involve rectangular
shape silicon waveguides (n = 3.47) surrounded by a SiO2 bottom cladding (n = 1.44) and a
top cladding of of SiO2 or air. The high index contrast provides all the advantages of a strong
mode confinement, such as the possibility to have waveguides with sub-micrometric sections,
tight bends (with radius down to 3µm) and very dense and compact circuits. Rectangular
section are preferable to minimize the scattering losses induced by surface imperfections, which
are much higher at the sidewalls with respect to top and bottom surface, due to characteristic
fabricative errors of processes like electron beam lithography. The strong light confinement in
silicon waveguides makes them possible candidates as integrated probabilistic single photon
sources. Even if a silicon crystal lacks χ(2) nonlinearity due to its centrosymmetric structure,
the high field intensity allows to exploit the χ(3) nonlinearity to generate photon pairs through
spontaneous four-wave mixing [154, 155]. The use of optical resonators [156] to enhance the
power density has proven its efficiency in boosting photon generation. The large thermo-optic
response of the silicon has advantages and disadvantages. To maintain the stability of the circuits
a control in temperature is indeed necessary, and high-power effects happening in microring
resonators has to be kept under control. At the same time, thermal tuning can be easily achieved
in such devices, thanks to the very strong dependence of the resonance wavelength from the
effective optical path.
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3.3.2 Femtosecond laser micromachining

Femtosecond laser micromachining (FLM) is a fabrication technique in which a femtosecond
laser beam is used in order to induce structural changes in the transparent material. The very
first demonstration of FLM was done in 1994, when it was employed to create surface ablation
features on silica and silver substrates [157,158]. Subsequently, Davis et al. [159] managed to
write for the first time optical waveguides in the bulk of various transparent materials. Nowadays,
just two decades after these very first demonstrations, FLM has evolved into a very powerful
and versatile experimental tool for several applications [24–26]. The inscription of integrated
devices is achieved by focusing the femtosecond laser beam with the use of a common microscope
objective into the bulk of a transparent material. This gives rise to a series of nonlinear absorption
processes that lead to a permanent, local modification of the refractive index of the material. By
translating the sample, using a system of three dimensional translational stages, it is possible to
realise various different structures such as simple optical waveguides, or more complex waveguide
circuits. The motivation to adopt this method, over other integration techniques, is a number of
very important advantages as presented below:

Figure 3.4. Scheme of femtosecond laser writing: directional couplers are written on a borosilicate glass,
simply translating a focused laser beam along the chip. Non-linear absorption of the medium, change
permanently the refraction index. Then, we can choose the desired coupling between waveguides
setting properly distance among them and orientation through space. Ref. [28].

1. Three-dimensional capabilities. It is possible to inscribe different 3D geometries at different
depth of the glass: this is a unique feature of this tecnique.

2. Rapid device prototyping (the device pattern can be easily changed by a simple software
control).

3. Simpler and less expensive production plants: we do not need clean rooms or very expensive
machines to write circuits and the designing process is done by a simple software, thus
avoiding all the consuming steps required by other techniques such as mask prototyping in
photolithography.

We shall focus on the femtosecond micromachining of bulk transparent materials, i.e.,
materials that do not have any linear absorption at the wavelength of the femtosecond laser
as for example borosilicate glass. There are unique advantages in favour of femtosecond laser
micromachining of transparent materials over other photonic-device fabrication techniques. First,
the nonlinear nature of the absorption confines any induced change to the focal volume. This
spatial confinement, combined with laser-beam scanning or sample translation, makes it possible
to model geometrically complex structures in three dimensions. Second, the absorption process
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is independent of the material, enabling optical devices to be fabricated in compound substrates
of different materials. Third, FLM can be used for the fabrication of an ‘optical motherboard’,
where all interconnects are fabricated separately, before (or even after) bonding several photonic
devices to a single transparent substrate. When a femtosecond laser pulse with a high enough
peak pulse intensity is focused into a material, an optical breakdown is observed. The laser pulse
energy is partially transferred to the electrons in the short duration of the pulse. The highly
excited electrons thermalize with the ions and alter the material permanently. Depending on
the degree of excitation, cracking, void formation or localized melting occurs. In the absence
of impurities, carriers are generated initially by multiphoton absorption, promoting electrons
from the valence to the conduction band. Several photons must be incident on an electron at
the same time for the process to occur with a high probability. The micromachined feature size
will depend on many experimental parameters: E (the pulse energy), τ (the pulse duration) and
NA (the focusing numerical aperture). However, under special conditions, exposure to multiple
pulses can further change the feature size.

In the next section we will introduce in more details the main features of this technique, in
particular regarding the malleability to realize very complex circuits inside and the choice of a
good material to implement quantum information tasks without significant losses.

3.4 Directional couplers properties

Integrated optical circuits are built upon architectures of directional couplers (DC), with ad-
ditional specific geometries to account for the deformation-induced phase shifts. Despite the
clear mathematical structure, and differently from the development of miniaturized electronic
circuits, linear optics does not have a unique manifacturing technique. The most common
material adopted for the fabrication of integrated photonic circuits, as well as for optical fibers,
is fused silica. There are indeed several advantages in considering silica as the medium for the
propagation:

• low birefringence (B = (7 ± 1) 10−5, and order of magnitude lower than silica) and low
propagation losses (∼ 0.01 dB).

• low temperature dependence (no random changes with phases).

• very large spectral region of operations (UV to infrared).

Using a pulsed laser with high repetition rate, it is possible to induce a isotropic thermal
diffusion that provides a fusion around the focal point, that creates a waveguide with a circular
cross section3. In this way it is possible to avoid to choose a specific shape of the laser beam. The
writing process is based on controlling phase shifters and transmissivities by changing its optical
path during the translational movement. According to the equation (3.6) we can individuate
three features: (a) Controlled deformation of the S-bent waveguide at the input of each directional
coupler and coupling geometry allow independent control over the phase shift and transmissivity.
(b) The deformation is given by a non-linear coordinate transformation, which is function of a
deformation coefficient d. The graph shows the undeformed S-bend together with a deformed
one; the experimental dependence of the induced phase shift on the deformation parameter d.
(c) Control over the transmissivity of the directional coupler is performed by modulating the
coupling coefficient; this is achieved by changing the waveguide spacing in the coupling region by
rotating one arm of the directional coupler out of the main circuit plane. Let us now discuss in
more details, how DC are modulated.

3At wavelength of 800 nm, the waveguide supports a Gaussian mode with 8µm diameter to 1/e2
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(a) (b)

Figure 3.5. a) Scheme of a 3D directional coupler, where we define all the relevant geometric parameters.
b) Controlled deformation and rotation of the S-bent waveguide at the input of each directional coupler
allow independent control over the phase shift and transmissivity. The graphs show the variation of
phase and trasmittivity with the two parameters. Ref. [138].

Controlling phase shifters: to control phase shifters Ref. [138] proposed to extend the optical
path by performing an S-bend with this coordinate transformation (see Fig. 3.5)

y(x) = −h2 cos
[2π
L
x

]
−→ y(x+ δ(x)) = −h2 cos

[2π
L

(x+ d sin 2π
L
x)
]

(3.6)

with particular precision during the bending in order to avoid losses as possible.

Controlling transmissivities: to control transmissivities and phase shifter at the same time,
it is used the 3D geometry capability, rotating the waveguide around its axis. In this way,
we do not modify the S-bending. The transmissivity in directional couplers have the form
T = sin2(k(s)Z). The transmissivity depends on the distance between the two arms at the
interaction length which decays exponentially through its coupling constant (k = k0 e

−s
s0 ). Thus,

displacing the waveguides in a 3D arrangement, by changing the angle α it is possible to obtain
any desired transmissivity as shown in the following equation:

T = sin2
(
e

log(k0L)−
√
C1−C2 cosα

s0

)
(3.7)

where s is the interaction length between beam splitters, C1 and C2 are expressions that take in
account parameters h and L (see Fig. 3.7).

3.4.1 Tunable phases

One of the key advantages of FLM is that the fabricated devices are extremely stable and robust,
and after the writing process, the interferometer is permanent without any chance to control
inner phases. Recent works showed how it is possible to tune inner phases even with the case of
borosilicate glasses [160,161].

Flamini et al. [161], demonstrated recently a thermally reconfigurable MZ for 1550 nm in
alumino-borosilicate glass, that operated based on thermo-optic modulation.
In their approach, the MZ consisted of two symmetric directional couplers with balanced splittings,
fabricated 70µm beneath the glass surface. The arms of the interferometer where made 12 mm
long and were placed at different depths, one at 14µm and the other at 115µm. Above the
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shallow arm a gold resistor was fabricated by sputtering a thin film of gold and then pattering it
with FLM ablation as shown in Fig. 3.6. By applying a small voltage to the electrode, phase
modulation was achieved due to thermal index change. The phases change according to a linear
realization:

Φ = φ1 − φ2 = Φ0 +
∑
i

αi Pi (3.8)

where Pi are the powers dissipated from the resistors and αi coefficients linked to the heaters.
In this way, the devices were able to achieve a full 2π phase shift and fringe visibilities greater
than 95%. This method can be used not only to modulate an interferometer phase, but also to
impose arbitrary phases to waveguide devices in general.

Figure 3.6. Illustrative image that shows the two procedures to realize a photonic chip with a tunable
phase. a) The interferometer is written into the glass following the standard procedure as shown in
previous sections. b) After gold coating the sample top surface, the resistors are built by ablation using
the same femtosecond laser. Accurate alignment (∼ 1µm) between the resistors and the waveguides
arms is achieved by using the reference markers inscribed on the glass surface together with the
interferometers. Ref. [161].

Tunable optical chips are believed to be a keystone for further developments in integrated
photonics. In Table 3.1 let us report a table with the state-of-art of photonic chip developed so
far

3.5 Description of the experimental tools used for generation,
manipulation and collection of single photons

In this section we will describe briefly the tools that we exploited to perform our experiments.
Photons generation and manipulation have been carried out through a probabilistic source of kind
χ2: the Spontaneous Parametric Down Conversion (SPDC). In SPDC [13,171,172] the pump
field excite the second order polarization of a nonlinear crystal, generating outcoming radiations
at frequencies Es and Ei, with momentum ks and ki. There are two possible configurations
for the linear polarizations of outcoming photons, dictated by material dispersion and crystal
orientation with respect to the pump beam polarization: in type I SPDC, the two outcoming
photons have the same polarization, which is orthogonal to the polarization of the pump, while
in type II they have orthogonal polarizations. Also, in type I the two photons are emitted at the
opposite point of the same cone, while in type II the two cones (ordinary and extraordinary) are
slightly non-centered. The phase matching condition requires:

ωp = ωi + ωs (3.9)
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Year Authors Platform Nphas (m,n) λ

2009 Smith et al. [162] SoS 1 (2,2) 830

2009 Matthews et al. [163] SoS 1 (2,4) 780

2011 Shadbolt et al. [164] SoS 8 (6,2) 808

2012 Bonneau et al. [165] Ti:LN 1 (2,2) 1550

2012 Bonneau et al. [166] SoI 1 (2,2) 1550

2014 Jin et al. [167] LN 1 (4,2) 1560

2014 Metcalf et al. [168] SoS 1 (6,3) 830

2015 Flamini et al. [161] FLM 1 (2,2) 1550

2015 Carolan et al. [22] SoS 30 (6,6) 808

2016 Pitsios et al. [175] FLM 2 (5,2) 785

2017 Harris et al. [23] SoS 176 (26,1*) 1570

Table 3.1. Non-exhaustive list of experiments performed with tunable integrated circuits. First
demonstrations of reconfigurable circuits for quantum information tasks have been reported in the
last years. While SoS-based devices can benefit of the know-how and the facilities developed for the
electronics components, the unique advantages in versatility, mode-matching and compatibility with
telecom optical fibers offered by FLW photonic circuits make this technology promising for larger scale
implementations. Here, n is the number of photons, m is the number of modes of the interferometer,
λ is the work wavelength and is the number of phases reconfigurable. The circuit in is tunable also in
polarization. The circuit * inject coherent laser in each input
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~kp = ~ki + ~ks (3.10)

which, in practice, translates in conditions over the propagation directions of the outcoming
photons with respect to the pump direction and the crystal axis, for specific signal and idler
wavelengths. Concerning the photon number, the general output of SPDC is a squeezed state [173]
of the form:

|Ψ〉 =
√

1− λ2
∞∑
n=0

λn |ψ〉i |ψ〉s (3.11)

where λ is the squeezing parameter, and n is the number of photons. Consequently, no genuine
Fock state can be produced via SPDC. The most followed approach when needing single-photon
Fock states consists in having λ << 1 , so that most of the times no downconversion happens,
but the ratio between the numbers of single pair generations and the number of double pair
generation (which is equal to λ ) is low, and the heralding of an idler from a non-number-resolving
detector implies with high probability a single-photon signal. This characteristic, of course, comes
at the cost of a reduced source brilliance. In practice, one has to compromise between g(2) and
generation rate. Number-resolving detectors can of course help in discriminating higher-order
terms, but they are much less compact and cheap. SPDC sources have been, and still are,
the main tool of quantum optics experiments. Other possible sources exploited are non-linear
generation of χ3 as for example Four-Wave Mixing [16, 17]. Basically, this effect is present in
every medium that exhibits non linearity with the constraint of phase-matching and the most
promising material that provides strong χ3 are silicons. Usually this kind of sources needs of
long interaction region and they are very useful when we deal with fully integrated sources.

Nevertheless, if we provide a high power peak and if we keep the integrated power low
(to avoid pairs unwanted), SPDC remains the most diffused source in the optical community
(as we showed in chapter 2). This is due to its natural predisposition to the collection, high
indistinguishability of photon pairs (nearly 98% of visibility) and because it is possible to generate
(thanks to the phase matching conditions) couple of entangled photons (Bell states) with same
of orthogonal polarization, depending on the type. The only drawbacks are the non-efficient
generation and the probabilistic behaviour which do not permit full control of the source and
very long experimental runtime.

In this thesis we will use mostly this kind of sources for the generation of 2- and 3- photon
states. At this point, if we want to obtain indistinguishable photons, we have to manipulate
them in a controllable way. In Fig. 3.7 it is shown the generation and manipulation stage that
acts before the injection in the integrated device. Here we give a brief description of the setup:
single photons were generated at 785 nm with a type II parametric down-conversion process
pumping a crystal (2-mm long BBO) with a 392.5 nm wavelength Ti:Sa pulsed laser (pump
laser for SPDC generated previously by BiBO with a second harmonic generation). The two
photons are spectrally filtered by means of 3 nm interferential filters (F), and coupled into single
mode fibers. The walk-off effect is compensated by the usage of HWP and BBO/2 arranged
properly in order to correct deviation of the group velocity and spatial momentum [110]. The
indistinguishability of the photons is then reached by a polarization compensation stage (PC),
and by propagation through delay lines for each possible path (used to adjust the degree of
temporal distinguishability) before injection into the interferometer via a single mode fiber array.
The generalization to a multiple input configuration has been employed in the same way and it
is discussed in details at the beginning of Chapter 5. After the evolution through the integrated
devices, photons are collected via a multimode fiber array and counted with photo-detectors. A
reliable single photon detector is a device able to detect energies of the order of 10−19 joules,
with high efficiency, low dark counts (false positives), a small timing jitter (i.e. variation in
temporal response) and a high maximum count rate. An additional characteristic is the ability
to resolve the number of incoming photons: non-photon-number-resolving detectors are on-off
devices that can only distinguish between zero and non-zero photons (apart from efficiency).



3.5 Description of the experimental tools used for generation, manipulation and collection
of single photons 60

Figure 3.7. The photon source (IF, HWP, PBS, PC, PDC, DL and SMF). (b) Photon injection
(extraction) before (after) the evolution through the interferometer. DL, delay lines with motorized
stages; FA, fibre array; HWP, half-wave plate; F, interferential filter; PBS, polarizing beam splitter;
PC, polarization compensator; PDC, parametric down-conversion; SMF, single-mode fibre

Avalanche photodiodes (APD) tipically use, as active area, a semiconductor lattice with an
applied voltage greater than the diode breakdown voltage. An incoming photon with an energy
greater than the separation between valence and conduction band, if absorbed, will be able to
create an electron-hole pair, which will be accelerated creating a detectable avalanche discharge.
This so called “Geiger mode" operation allows to reach very good efficiencies in the visible range
(between 50% and 85%, with tens or few hundreds Hz of dark count rates). Data are finally
post-selected by an electronic device which is able to retrieve n-fold coincidences between the
clicks of the APDs. To measure full-bunching outputs, we used to put in cascade fiber beam
splitters (FBS) to each output mode. One FBS for 2-photon contributions and two FBS for
3-photon contributions in order to emulate number resolving detectors [126].

Discussion
In this Chapter we discussed how to translate our optical transformations in a more suitable and
compact platform in order to provide scalability to our systems. In fact, the procedures adopted
in bulk optics suffer of this important drawbacks which does not permit so far to realize large
size experiments. With the technique of femtosecond laser micromachining we are able both to
realize any unitary operation (supported by the milestone work of Reck [15]) by exploiting the
3D geometry capability and the considerably easier approach to the writing compared to other
techniques as for example lithography. Moreover, we saw that the recent developments and the
current state-of-art give us the possibility to explore a dynamical approach on the implementation
of our devices by means of thermo-optical resistors which provide tunable phases. First notable
experimental realization with the latter approach are described in Ref. [160] where they explored
for the first time HOM interference in a tunable beam splitter at Telecom wavelength and
furthermore two remarkable applications in contextuality [174] and quantum simulation [175].

In the next chapter we will focus on one of the main work which deals with identifying and
characterize the best architectures that we can use to easily retrieve good signature of many-body
quantum interference with photonic chips. These results will be directly used to validate this
phenomenon in Chapter 5.
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Chapter 4

The quest for the best photonic
platform implementation

In this context, given suitable techniques to implement miniaturized interferometers into little-size
chip, it is essential to identify suitable schemes to implement interferometric networks within
an integrated platform. As showed in Ref. [15], Reck et al. proposed a universal algorithm
to implement an arbitrary unitary transformation by decomposing it in a suitable network of
only beam splitters and phase shifters. However its triangular layout lacks a perfect symmetry,
thus making it highly sensitive to internal losses that lower the adherence of the implemented
transformation to the ideal one. Recently, two different architectures have been proposed for
the implementation of linear optical networks. A first scheme has been reported in Ref. [178],
which ultimately corresponds to a rearrangement of the scheme of Ref. [15] in a symmetric
layout. While keeping the same number of optical elements and the capability of implementing
an arbitrary unitary transformation, this scheme presents reduced sensitivity to losses within the
interferometer. A second scheme, inspired by the classical algorithm of Cooley and Tukey [179]
for the fast Fourier transform, has been proposed recently in Refs. [180,181] and implemented
experimentally in Refs. [170, 182] by FLM. This layout, though not supporting arbitrary unitary
evolutions, allows to implement a significant class of linear optical networks with a substantial
reduction in the number of necessary optical elements. Such class of matrices includes the
Hadamard ones, with a notable example provided by the Fourier transformation that is widely
employed in a large set of quantum information protocols [45,77]. In the next sections we will
introduce two new architectures, the Rectangular and Fast schemes, which have been analysed
extensively in comparison with Triangular one, showing the difference in terms of performance
with a large number of modes and the behaviour with respect of internal losses. The sequent
works reported have been carried out during my research project, focusing on search for the best
implementation to design our devices.

• Flamini, F., Spagnolo, N., Viggianiello, N., Crespi, A., Osellame, R. and Sciarrino, F.,
Benchmarking integrated linear-optical architectures for quantum information processing.
Scientific Reports, 7, 15133 (2017) [176]. In this work I contributed to the discussion and
the development of the simulation which I partially carried out.

• Flamini, F., Viggianiello, N., Bentivegna, M., Spagnolo, N., Mataloni, P., Crespi, A.,
Ramponi, R., Osellame, R. and Sciarrino, F. Generalized Quantum Fast Transformations
via Femtosecond Laser Writing Technique. Interdisciplinary Information Sciences, 23,
115-118, (2017) [177]. In this work I contributed to the development of the theory and the
proofs.
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4.1 Rectangular decomposition
Two decades after the original paper, an improvement respect Reck’s decomposition has been
proposed by Clements et al. [178]. In their work, they demonstrate a new design for universal
multiport interferometers based on an alternative arrangement of beam splitters and phase
shifters. This new scheme outperforms that by Reck et al. [15] in terms of compactness and
optical losses.
Specifically, Reck’s unitary decomposition can be summarized by the formula:

Û = D

 ∏
(m,n)∈S

Tm,n

 , (4.1)

where S defines a specific ordered sequence of two-mode transformations, Tm,n is the sub-unitary
extracted for the decomposition (see Fig. 3.1b for an analogy) and D is a diagonal matrix of
complex elements with modulus equal to one. The unitary decomposition introduced by Clements
moves from the intuition that any element in row n or m of U can also be nulled by multiplying
U with a T−1

m,n matrix. The protocol consists of nulling successive diagonals of U , in such a way
that the sequence of Tm,n and T−1

m,n, multiplying U from left and right respectively, guarantees
that nulled elements of U are not affected by subsequent operations.
Exploiting this decomposition, we obtain the following expression:

 ∏
(m,n)∈SL

Tm,n

 Û
 ∏

(m,n)∈SR

T−1
m,n

 = D , (4.2)

where SL and SR are the pairs of (m,n) indices for the Tm,n or T−1
m,n matrices given by the

decomposition. The last expression can be rewritten as:

Û =

 ∏
(m,n)∈STL

T−1
m,n

D
 ∏

(m,n)∈STR

Tm,n

 . (4.3)

An illustration of the order in which the elements of a 5-dimensional Û are nulled is represented
below [178]:

15
7 14
6 8 13
2 5 9 12
1 3 4 10 11

, (4.4)

where the bottom left matrix element is the first to be nulled, while the following elements are
nulled in consecutive diagonals. Black elements located in column i are those cancelled by the
matrix T−1

i,i+1, the blue elements located in row i, instead, are those cancelled by the matrix Ti−1,i.
After these steps, U is a lower triangular matrix (see (4.4)), which by virtue of its unitarity must
be diagonal. It can be demonstrated that, if D consists of single-mode phase-shifts, then for any
T−1
m,n matrix one can find a matrix D′ of single-mode phases and a matrix Tm,n such that:

T−1
m,nD = D′ Tm,n . (4.5)
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In this way we can put equation (4.3) in the Reck’s form (4.1), that is:

Û = D′

 ∏
(m,n)∈S

Tm,n

 . (4.6)

By construction, equations (4.3) and (4.6) physically corresponds to the multiport interferometer
shown in 4.1.

Figure 4.1. Clements design for a 5× 5 interferometer. The left-hand side reports a two-dimensional
representation, while the right-hand side is the equivalent bulk representation of the circuit.

Comparing the two interferometric architectures presented we see that, while both have the same
number of beam-splitters, the Clements’ scheme is quite smaller than the Reck’s one of a factor
two in the circuital depth. In practice, what changes is the depth of the interferometer,
that is the longest path through the interferometer, enumerated by counting the number of
beam-splitters traversed by that path. Precisely, for an N × N interferometer, the Reck de-
sign [15] has an optical depth of 2N − 3, whereas the Clements one has an optical depth of
N . The minimization of the optical depth of an interferometer is a fundamental task, since
area of the circuit is an important constraint for the fabrication of planar waveguide structures.
Furthermore, propagation losses are reduced in interferometer with small optical depth. Hence
interferometers built according to last design will suffer from only about half the propagation
loss of an interferometer built according to the Reck architecture.

4.2 Fast decomposition
The general method to realize an arbitrary unitary transformation using passive linear optical
devices, was introduced by Reck et al [15] and later improved by Clements et al [178]. They
provided a decomposition of a unitary of dimension m as a sequence of m(m−1)/2 beam-splitters
and phase shifters, that is O(m2) elements.
However, in the special case of the Discrete Fourier Transform (DFT) matrices, a more efficient
method has been proposed [180,181], which takes advantage of the DFT symmetries to significantly
reduce the number of linear optical elements required. Based on the classical algorithm of Cooley
and Tukey [179], who first introduced the Fast Fourier Transform (FFT) as a more efficient way
to calculate the DFT, Barak and Ben-Aryeh [181] developed a quantum analogue in the linear
optics domain.

Before providing a formal description of the Barak and Ben-Aryeh decomposition method,
let us observe that a Discrete Fourier transform implemented by using quantum states is called
Quantum Fourier Transform (QFT). For 2n computational quantum states, representing n
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qubits, the 2n-dimensional DFT matrix is represented by the unitary matrix [181]:

QFT (n) = 1
2n/2



1 1 1 1 . . . 1
1 u u2 u3 . . . u2n−1

1 u2 u3 u4 . . . u2(2n−1)

1 u3 u4 u5 . . . u3(2n−1)

...
...

...
... . . . ...

1 u2n−1 u2(2n−1) u3(2n−1) . . . un(2n−1)


, (4.7)

where u = e2πi/2n . It has been shown that any n qubit unitary transformation can be imple-
mented by at most 2n−1(2n−1) BS and phase shifter combinations. The Cooley–Tukey algorithm
improves this relation breaking down the 2n×2n unitary matrix into n2n−1 qubit transformations.
The algorithm uses n stages of 2n−1 transformations, where in each stage the input is given by
the output of the previous one. This algorithm leads to the concept of Quantum Fast Fourier
Transform qFFT. This approach, valid for 2p-dimensional Fourier matrices, requires only m

2 logm
beam-splitters and phase shifters, thus, compared with the Reck and Clements schemes, it en-
hances the compactness and scalability of the platform for a more reliable experimental realization.

The algorithm demonstrated by Barak and Ben-Aryeh, for implementing Fourier matrices with
passive optical circuits, is based on the following steps [181]:

1. The algorithm decompose the action of the matrix into n discrete transformations. Each
partial transformation consists of 2n−1 interactions between pairs of optical modes;

2. At the stage k all modes are distributed in 2k−1 groups, containing 2n−k+1 input modes
each. Within each group, the mode j is coupled through a beam splitter with the input
j + 2n−k belonging to the same group, after a multiplication by a phase factor e

f(k,m)
2k with

f(k,m) = ∑k−1
s=0 mk−s2s;

3. Successively it perform a permutation of the outputs,

4. The fast implementation of the QFT can be assembled recursively out of two 2n−1-
dimensional QFT circuits,

5. The unitary matrix U(α, β, γ, δ) in the action which links input/output modes at each step,
is defined as

eiα
(

cosβei(γ+δ) sin βei(−γ+δ)

− sin βei(γ−δ) cosβei(−γ−δ)

)
(4.8)

To retrieve the QFT in the BB scheme, all the beam splitters are set balanced (50:50) while
the phase shifts vary in discrete steps multiples of π/2n. The general transformation has
the form (j = 0, 1, . . . , 2n−1)

U

(
π

2n−1 − j + 1
2n ,

π

4 , π
2n+1 − j + 1

2n ,
π

2

)
(4.9)

For a large number of qubits, the number of optical elements required with the BB scheme
is reduced by a factor of 2n/n, which makes the algorithm suitable for practical realizations.
In the case of a n-qubit–2n-dimensional discrete Fourier transform, we obtain the following
decomposition:

QFT (n) = R(n)SnnS
n
n−1, . . . , S

n
2 , S

n
1 , (4.10)
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where R(n) is a permutation matrix rearranging the outputs.
The algorithm uses only n2n optical elements. Thus, for a large number of qubits, we find that
the number of beam-splitters and phase shifters needed is significantly reduced by a factor of
2n/n.
The procedure to design interferometers implementing the fast Fourier transform is now described
in the general case of m = 2n modes, where n is an integer number.
Each optical mode, k ∈ [1,m], can be numbered accordingly to its binary representation and can
be associated to the set (b1, . . . , bn)k. The {bi} are ordered from the most significant, b1, to least
significant, bn.
Once obtained the n-dimensional vector (b1, . . . , bn), its components can be thought as the
coordinates of the vertices of a n-dimensional hypercube in Rn. An example with n = 3 is
provided in Fig. 4.2 [182]. The algorithm consists of n steps. The j-th step connects all pairs
of modes that differ only for the j-th bit. Each waveguide position in the cross-section plane
can be defined by suitably projecting in two dimensions the vertices of the hypercube. At every
FFT step, the pairs of modes that have to interact are connected by directional couplers. Such
connections correspond to all the edges of the hypercube with a given direction. The scheme
of an 8-mode interferometer is showed in Fig. 4.3 [182]. The inset shows which modes are
connected by directional couplers at each step k. At each step, only the modes corresponding to
the vertices connected by parallel edges interact. The phase shifters {Pi}, instead, specify the
amount of phase shift to introduce on specific modes. For a full description of the integrated
implementation see Appendix Note 8.2. A good strategy for an integrated implementation of a
QFT matrix exploits the peculiar features of the femtosecond laser-writing technique. Indeed,
Reck and Clements schemes are efficiently built with planar structures. In comparison, the
complex arrangement of pairwise interactions, necessary for the FFT and Quantum Fast Fourier
Transform (qFFT) algorithm, cannot be easily implemented using a planar architecture.

Figure 4.2. Planar projections of an hypercube of dimension p = 3. The numbered vertices correspond
to the possible position of the waveguides in the cross-section of a 3D interferometer implementing
the FFT. Each connection between the vertices corresponds to a directional coupler in a given section
of the interferometer. Geometrical scheme taken from [182].

The essential structure of such fast architectures presents some interesting advantages with
respect to the other universal schemes. First, the depth of the circuit scales only logarithmically
with the size of the interferometer, i.e. with the number of optical modes, leading to an even more
compact operation area and to reduced propagation losses. Moreover, the layout is fully symmetric
and naturally fits a description in terms of qubit states, thanks to the binary interactions between
the modes.
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Figure 4.3. Internal structure of an 8-mode interferometer implementing the qFFT. Input and output
modes have been relabeled in order to obtain the effective Fourier transformation and the to minimize
the bending losses. The insets shows the waveguides disposition and coupling among the modes.
Figure taken from Ref. [182].

4.2.1 Hadamard matrices

Fast decomposition allow to realize a QFT by exploiting the symmetries of these kind of matrix in
order to cross specific modes, reducing significantly the circuit depth. However, this architecture
can be used to implement also unitaries which belong to a bigger class of transformations [177]: the
class of Hadamard transformations. A matrix belonging to this class is defined as an orthogonal
matrix of complex numbers, in which all the elements have a unitary modulus. Indeed, the
Fourier matrix is a particular case of this general class. Notable representatives of the Hadamard
class are the Sylvester (US) transformations, which are unitaries where all the elements are real
and are equal to ±1. Sylvester matrices are described as 2n-dimensional unitary matrices given
respectively by

UH(2n) = H(2n) =
(
H(2n−1) H(2n−1)
H(2n−1) −H(2n−1)

)
(4.11)

being H(20) = (1), H(2) =
(

1 1
1 −1

)
and n any positive integer. The unitary matrix is finally

retrieved by multiplying for a normalization factor S(m) = 1√
m
H(m) where m is the matrix

dimension. The scheme proposed by Barak and Ben-Aryeh [180, 181], is particular suitable
for these kind of matrices. It is possible to generalize their scheme to span a whole class of
generalized Hadamard transformations [177] by keeping fixed the interferometric structure and
tuning the parameters of the beam splitters and phase shifters. Let us show how can we retrieve
a general closed-form expression [177] of the element Ua,b for the most general 2n-dimensional
fast unitary transformation. We will show how can we identify Fourier and Sylvester from this
formula.

U
(n)
a+1, b+1 = ei br φ

ξ
(a,b)
r
r + i π2 a

(n)
r ⊕b

(n)
r

n∏
s=1

cosχ(n,s)
a,b (4.12)
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where a, b ∈ [0, 2n − 1] label the input/output modes and some shorthand notations have been
used, following the Einstein summation convention

χ
(n,s)
a,b = θ

s,f
(a,b)
s
− π

2 |a
(n)
s − b(n)

s | ξ(a,b)
r = 1 + 2n−r + b mod 2n−r +

⌊ a

2n−r+1

⌋
2n−r+1

(4.13)

where f (a,b)
s = 1 + b + (a(n)

r − b
(n)
r ) 2n−r and m

(n)
r equals the r-th digit of the n-bit binary

representation of m, being bxc the integer part of the real number x.
In general, any m-dimensional photonic architectures can be described in terms of consecutive

layers s of optical elements Ls, made up of a network of phase shifters and beam splitters mixing
a subset of modes no more than once each. Specifically, each matrix Ls consists in turn of a
layer B(s) of beam splitters, coupling a set of pairs of modes (k1, k2), and m

2 phase shifters ei φs,k1

placed for each pair on one of the two interacting modes (k1, k2). The particular sequence of
mode interactions {(k1, k2)} depends on the triangular, square or fast designs. While clearer for
the first two, the geometry of the third scheme for a 2n-dimensional unitary transformation is
slightly more complex and arises from the binary representations of the optical modes. Using
τs,k for the beam splitters transmissivities on mode k , the beamsplitters layer is described by
the matrix

B
(s)
k1,k2

≡


τs,k1 k1 = k2
i (1− τ2

s,k1
)1/2 (k1, k2) ∈ {(α, β)}(n,s)

0 otherwise

(4.14)

where {(α, β)}(n,s) = {( a+ 2s b, a+ 2s b+ 2s−1 )} are the pairs of modes interacting in the layer
s, with a ∈ {1, .., 2s−1} , b ∈ {0, .., 2n−s − 1}. For example, the 8-dimensional quantum Fourier
transform is obtained, modulo a relabeling of the output modes [181], by choosing τs,k =

√
2−1

and φ2,7 = φ2,8 = φ3,4 = π
2 , φ3,6 = π

4 and φ3,8 = 3π
4 . Similarly, the Sylvester transformation

corresponds to the choice τs,k =
√

2−1 and φs,k = 0.

In the next sections we will introduce the procedure to reconstruct unitary matrices by means
of single photon measurements.

4.3 Tomography of unitary matrices implemented with Fast de-
composition

In this section we will focus on the procedure chosen to reconstruct a unitary matrix implemented
with the Fast scheme by means of single-photon and two-photon measurements. In particular we
will show reconstructed matrices in the case of Fourier and Sylvester implementations. In Fig.
4.4 are reported the scheme of Sylvester and Fourier matrices using Fast decomposition.

Several algorithms have been developed to perform the reconstruction of a unitary linear
transformation [183–186]. One first difference among the various procedures resides in the amount
of exploited knowledge about the physical structure of the interferometer. The reconstruction
can be performed considering the device as a black box, whose only known information is the
n-photon input-output relation [185–187], considering classical resources [188] or considering
the device as a complex structure whose elementary constituents’ arrangement is partially or
completely known. Here, we adopt the second approach for the reconstruction of our matrices.
With this approach, the retrieval of the unitary transformation is based on the characterization
of the constituent optical elements, that is, beam-splitters and phase shifters.

The knowledge of the inner structure can in principle provide advantages of the algorithm,
which are:
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Figure 4.4. Conceptual scheme of reconstruction process. a, Scheme of the experimental approach
for the reconstruction. A photon source based on parametric down-conversion produces pairs of
photons that can be used to measure HOM visibilities to retrieve phases from any possible input
combination of a unitary transformation, with photo-detection at the output. b, Internal structure
for the 4- and 8-mode laser-written Fourier and Sylvester interferometers. Known the architecture, we
can parametrize inner phases and reflectivities and apply the protocol.

Significance: Given two different reconstructed matrices having the same fidelity with the ideal
one, a unitary transformation reconstructed by adopting this approach is closer to the
implemented one. Indeed, the constraints on the architecture can highlight possible internal
symmetries otherwise ignored by other methods.

Unitarity: Other algorithms which treat the system as a black box may in general give a non-
unitary matrix as output of the reconstruction [183]. The subsequent need for recovering
a unitary transformation may thus alter, to some extent, the result of the reconstruction
process.

Characterization: Ultimately, further information is obtained by focusing on the properties of
the elementary optical components. Specifically, this reconstruction method permits to
investigate the tolerance to their unavoidable fabrication imperfections, by comparing their
retrieved characteristics with those of the ideal ones.

However, the formal proof of this advantages is still in study. To perform the reconstruction,
i.e. to characterize the single components within the integrated architecture, it is necessary to
gain information on both the transmittivities {τ} and the relative phases {φ} associated to each
element. Since the inner structure for implementation is similar both for Fourier and Sylvester
matrices, we will use this information to apply the same algorithm for the reconstruction of the
unitaries. In the following we will illustrate the procedure adopted.

The reconstruction algorithm is made up of two independent stages, corresponding to the
separate retrieval of the transmittivities {τ} and the phases {φ}. The estimate of the two sets of
parameters is performed via a maximum-likelihood method. In Fig. 4.5 we report the schemes of
the internal structure of the implemented interferometers.

Estimate of the transmittivities

Information on the |U (d)
S |i,j can be obtained directly with single-photon measurements, recalling

that the scattering probability from modes i to j is indeed exactly |U (d)
S |2i,j . Thus, by experi-
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Figure 4.5. Internal structure of the 4-mode device (a) and the 8-mode device (b) for Sylvester
implementation. A different notation for {τ} and {φ} is adopted with respect to Eqs. of 4.2.1. Red
boxes: beam-splitters. Green boxes: fabrication phases relevant for the algorithm. Blue boxes: relative
output losses. For the Sylvester transformations, all beam-splitters have transmittivities τid = 2−1/2

and all phases are 0.

mentally measuring all the d2 scattering probabilities [P̃ (d)
S ]i,j , it is possible to look for the set

{τ} that best reproduces the values registered. This can be done, via a maximum likelihood
procedure, by numerically minimizing the χ2

τ quantity

χ2
τ =

d∑
i,j=1

 [P̃ (d)
S ]i,j − |U (d)

S |2i,j
[σ(d)
P̃S

]i,j

2

, (4.15)

where σ(d)
P̃S

are the experimental errors associated to the measured probabilities P̃ (d)
S . However,

the set {τ} found in this way is insensitive to possible external losses in the output of the device
(see Fig. 4.5 for the Sylvester case). Such unavoidable relative losses modify the transformation
actually implemented, entailing biases in the distribution of the moduli. To overcome this issue
it is sufficient to introduce a second, non-unitary diagonal transformation D(η1, η2, ..., ηd) acting
after the device. Thus, defining

M
(d)
S = D(η1, η2, ..., ηd)U (d)

S =


η1 0 . . . 0
0 η2 . . . 0
...

... . . . ...
0 0 . . . ηd

U (d)
S , (4.16)

and including the {η} in the parametrization of the unitary, it is possible to obtain an estimate
of the actual relative losses {η̃} involved, as well as a set of transmittivities {τ̃} which properly
takes them into account.

The retrieved values of the output losses for the 4-mode and the 8-mode Sylvester devices, as
well as the transmittivities {τ̃}, are reported in Table 4.1. Note that since the method permits
reconstruction of relative losses only, one of the parameters must be taken as a reference (for
instance, η1).
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4-mode device: {η̃} 4-mode device: {τ̃} 8-mode device {η̃} 8-mode device {τ̃}
η̃1 = 1 τ̃

(1)
1,3 = 0.6879± 0.0003 η̃1 = 1 τ̃

(1)
1,2 = 0.669± 0.008

η̃2 = 1.134± 0.002 τ̃
(1)
2,4 = 0.7195± 0.0003 η̃2 = 0.94± 0.02 τ̃

(1)
3,4 = 0.621± 0.007

η̃3 = 1.147± 0.002 τ̃
(2)
1,2 = 0.7139± 0.0003 η̃3 = 1.07± 0.02 τ̃

(1)
5,6 = 0.639± 0.008

η̃4 = 0.961± 0.002 τ̃
(2)
3,4 = 0.7031± 0.0003 η̃4 = 0.93± 0.02 τ̃

(1)
7,8 = 0.630± 0.008

η̃5 = 0.96± 0.02 τ̃
(2)
1,3 = 0.750 ± 0.007

η̃6 = 1.05± 0.02 τ̃
(2)
2,4 = 0.715 ± 0.007

η̃7 = 1.01± 0.02 τ̃
(2)
5,7 = 0.755 ± 0.007

η̃8 = 1.02± 0.02 τ̃
(2)
6,8 = 0.729 ± 0.006
τ̃

(3)
1,5 = 0.748 ± 0.008
τ̃

(3)
2,6 = 0.723 ± 0.007
τ̃

(3)
3,7 = 0.774 ± 0.006
τ̃

(3)
4,8 = 0.755 ± 0.007

Table 4.1. Relative losses {η̃} and transmittivities {τ̃} reconstructed from the first step of the algorithm
for the 4- and 8-mode devices in the case of Sylvester implementations.

The values of {τ̃} are to be compared with the expected one (τid = 2−1/2). In all estimates, the
experimental errors are obtained by a Monte Carlo approach on the reconstruction process.
Let us now define U (d)

τ as the temporary matrix obtained by inserting the {τ̃} in the decomposition
of U (d)

S .

Estimate of the phases

Once we have the estimate of the set {τ̃}, it is possible to apply the same procedure to find
the values of the phases {φ̃} that best reproduce further experimental measurements. This is
done by minimizing a second χ2

φ quantity, which compares the measured visibilities (Ṽ m,n
i,j ) of

the two-photon HOM dips/peaks with the ones (V m,n
i,j ) expected from the unitary U (d)

τ . Note
that the expected values are parametric in the unknown phases {φ̃}. The visibilities are defined
as V m,n

i,j = (Dm,n
i,j − Q

m,n
i,j )/Dm,n

i,j , being Dm,n
i,j the transition probability from inputs (i, j) to

outputs (m,n) with distinguishable particles and Qm,ni,j the one with indistinguishable photons.
The visibilities V m,n

i,j are measured by recording the output coincidences as a function of the
relative delay ∆τ , and by fitting the experimental interference pattern with the function

Cm,ni,j (∆τ) = Bm,n
i,j [1− V m,n

i,j ] exp
(
−∆τ2/(2σ2

τ )
)
. (4.17)

The χ2
φ quantity to be minimized for the reconstruction algorithm is defined as

χ2
φ =

d∑
i,j,m,n

 Ṽ m,n
i,j − V m,n

i,j

σṼm,ni,j

2

(4.18)

where the sum is extended over all the measured input-output combinations. Note that visibilities
are independent of the output losses. Here, for each visibility, the error σṼm,ni,j

is obtained from the
fitting procedure. Conveniently choosing the two-photon input states to inject, whose visibilities
depend on all the relevant phases, it is in principle possible to complete the reconstruction
using only one state. However, to improve the reconstruction stability, for both devices we
measured an overcomplete set of data. For Sylvester interferometers, in the 4-mode case, we
recorded all possible 36 collision-free two-photon visibilities. In the 8-mode case, all collision-free
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visibilities for 8 two-photon input states {(2, 5), (2, 6), (2, 8), (3, 7), (3, 8), (5, 7), (5, 8), (6, 8)} have
been recorded, for a total number of 224 visibilities.
The estimated values for the phases are reported in Table 4.2.

4-mode device: {φ̃} 8-mode device {φ̃}
φ

(1)
3 = (+0.229± 0.004) rad φ

(1)
4 = (+0.38± 0.02) rad
φ

(1)
8 = (+0.36± 0.01) rad
φ

(2)
6 = (−0.19± 0.03) rad
φ

(2)
7 = (+0.43± 0.02) rad
φ

(2)
8 = (−0.04± 0.03) rad

Table 4.2. Relevant phases {φ̃} reconstructed from the second step of the algorithm for the 4- and
8-mode devices.

Note that in the case of Sylvester matrices, thanks to the internal symmetries in the evolution
through the interferometer, it is possible to describe the action of this unitary with fewer phases
than those actually present in the devices (see scheme of Fig. 4.5). First, input phases are
irrelevant when the system is injected with Fock states, and thus can be all set to 0. In the case
of the 4-mode device, for instance, only one phase is relevant for the algorithm, and we can thus
set φ(1)

4 = 0 for the sake of simplicity. In the case of the 8-dimensional Sylvester transformation,
the functional dependence on all the 4+4 phases of the two internal layers can be compressed in
that on only 5 phases (φ(1)

3 = φ
(1)
7 = φ

(2)
5 = 0), eventually involving differences between them.

Once all the parameters {τ̃} and {φ̃} are known, the actual implemented unitary transforma-
tions Ũ (d)

fS can be obtained by inserting the obtained values in the decomposition.

The real and imaginary parts of the reconstructed transformation are compared with the Sylvester
transformations in Fig. 4.6 (for the 4-mode device) and in Fig. 4.7 (for the 8-mode device). The
overall data obtained from the reconstruction process for both Fourier and Sylvester matrices,
is shown in Fig. 4.8. In the final step, in order to verify that we performed the correct
implementation, we calculated the fidelities

F (d) = 1
d

∣∣∣∣Tr(U (d) † Ũ (d))
∣∣∣∣ (4.19)

for both Fourier and Sylvester transformations. With the ideal 4- and 8- dimensional Sylvester
transformation, the fidelities are respectively F (4)

US
= 0.99807±0.00005 and F (8)

US
= 0.9813±0.0005.

In the case of Fourier matrices the fidelity between the reconstructed unitary and the theoretical
one is F (4)

UF
= 0.9822±0.0001, the fidelity between the reconstructed unitary and the ideal 8-mode

is F (8)
UF

= 0.9527 ± 0.0006, thus confirming the high quality of the fabrication process in both
implementations.

4.4 Benchmarking performances for different implementations
Here we focus on the analysis of the robustness of our implementations, making a comparison
between different schemes. This work is reported in [176]. A crucial requirement towards
the identification of optimal architectures for the implementation of large size interferometers
is a detailed knowledge of the tolerance to fabricative errors, namely propagation losses and
imperfections in the parameters of the optical elements. Indeed, in all quantum information
applications the applicability of a given experimental platform is limited by the maximum amount
of noise tolerable in the interferometric networks.
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Figure 4.6. Results of the unitary reconstruction process for the 4-mode device. a Real part and c
imaginary part of the implemented interferometer Ũ (4)

fS . Lighter regions in the bars represent the error
in the reconstruction process. b Real part and d imaginary part of the Sylvester matrix U (4)

S .

Figure 4.7. Results of the unitary reconstruction process for the 8-mode device. a Real part and c
imaginary part of the implemented interferometer Ũ (8)

fS . Lighter regions in the bars represent the error
in the reconstruction process. b Real part and d imaginary part of the Sylvester matrix U (8)

S .

In this section we focus on this topic, presenting our work on the analysis of the performance
of the main photonic architectures under imperfect operational conditions presented in the
previous sections. First, we compare briefly the performances of the first two schemes, which
were shown to be universal for unitary evolutions, for the implementation of Haar-random
transformations of increasing size (for further details refer to our paper [176]). Second, we
compare the operation of the three schemes for the implementation of Fourier and Sylvester [169]
interferometers, which represent the fundamental building blocks in a significant number of
relevant quantum information protocols. For our numerical benchmark we employ as figures
of merit the fidelity [178] and the total variation distance, as good estimators of the distance
between ideal and imperfect implementations in relevant applications. Our analysis highlights
the advantages and limitations of each scheme, providing an essential reference point for the
design of future larger-scale photonic technologies, whose optimal configurations may well benefit
from a joint integration.

Modelling non-ideal unitary implementations

In the following we will refer to the C- (Clements et al. [178]), R− (Reck et al. [15]) and F -
(Fast [181]) designs looking at their fixed, solid photonic architectures. This aspect is especially
relevant if we are to choose the layout of a fully reconfigurable quantum circuit [22], which is
designed to be multi-purpose and optimal when averaging over all its applications of interest.
In general, the two main factors affecting the implementation of photonic quantum circuits are
propagation losses and imperfect settings of the parameters describing the optical elements.

• Losses: Coupling losses at the input/output of any circuits remain relevant aspects in
practical situations; however, their effect can be regarded as independent of the internal
photonic architecture adopted and, thus, they will not be included in our study. Propagation
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Figure 4.8. Representation of the reconstructed experimental transformation UdF and UdS . Coloured disks
represent the moduli of the reconstructed matrix elements (all ideally equal to d−1/2 for both matrices,
where d is the matrix dimension). Arrows represent the phases of the unitary matrix elements (green:
reconstructed unitary, blue: ideal matrix). Left: results for Fourier U8

F and U4
F . Right: results for

Sylvester U8
S and U4

S .
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Figure 4.9. Table summarizing the main features of the three architectures. Image taken from [176]

losses, occurring in both straight and bent waveguides, play instead the main role in spoiling
multipath interference. Their impact was shown to be mitigated by a more compact and
symmetric interferometric structure [178], where optical modes interact with each other in
a balanced way. Though photon losses unavoidably occur all along the circuit, a simple
and effective way to analyse their effect is that of inserting constant losses at the output of
each two-mode unit cell.

• Fabricative noise: Imperfect control over the fabricative parameters naturally leads to
deviations from the ideal evolution on the circuit while keeping the unitariety of the
process. The source of noise, arising from imperfect fabrication of the beam splitters and
phase shifters associated to the Tm,n has a different nature depending on the practical
realization. Recent technological achievements have enabled the realization of reconfigurable
quantum circuits [22, 23], where generic beam splitters are implemented as Mach-Zehnder
interferometers with two cascaded symmetric beam splitters and one tunable phase shift. In
this case, which will be at the core of our analysis, noise arises from imperfect fabrication of
the fixed symmetric beam splitters and from a non-perfect control over the thermo-electric
or electro-optic phase manipulation [22, 161, 174, 175], which becomes non-negligible for
large-scale circuits or with high-speed tunings.

To focus our study around realistic values for the above mentioned sources of imperfections,
we will consider femtosecond laser writing as the reference fabrication technology, as it is the
only one capable to realize all the three considered architectures. In this case, typical bending
losses with respect to straight waveguides are of the order of 0.5 dB/cm, which corresponds to
0.2 dB per directional coupler. Realistic values for fabrication errors at each directional coupler
are of 0.21 rad for the phase shifters [265] and about 1-2% for the beam splitter transmissivities.
These values do not change significantly considering a 2D or 3D architecture and, concerning
phase shifts, a quite higher accuracy down to about 0.01 rad can actually be reached with an
active control through thermo-optic phase shifters [160]. Therefore, we can consider as realistic
fabrication tolerances 0.01 for the beam splitter transmissivity and 0.01 rad for the active phase
control.

Our investigation on the performances of the three architectures was carried out by introducing
various levels of noise on the optical elements and losses after each unit cell. Our Monte Carlo
simulations proceed through the following steps:

1. sample a unitary transformation U according to the Haar measure;

2. apply C or R algorithms to retrieve the parameters (ωi, φi) according to Eq.(4.20);
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T
(i)
k,k+1 =


1 0
− sinωi e−ıφi cosωi
cosωi e−ıφi sinωi

0 1

 UR,C =
m(m−1)

2∏
i=1

T
(i)
k,k+1 (4.20)

3. implement each T (i)
k,k+1 as a Mach-Zehnder with input phase shift φi and τi,1 = τi,2 = 2−1/2:

T (i) → −ı

 τi,2 ı
√

1− τ2
i,2

ı
√

1− τ2
i,2 τi,2

(e−ıωi 0
0 eıωi

) τi,1 ı
√

1− τ2
i,1

ı
√

1− τ2
i,1 τi,1

(1 0
0 eıφi

)
(4.21)

4. introduce Gaussian noise on the four parameters (τi,1, τi,2, ωi, φi), by sampling new values
from a normal distribution centered on the ideal ones and with widths σBS and σPS
respectively for (τ1, τ2) and for (ω, φ);

5. generate new unit cells from the noisy values, adding possible losses diag(ηi) at the output,
and rebuild the noisy U .

This simple procedure allows us to investigate the effect of noise and losses on the C- and R-
designs for the implementation of Haar random unitaries. Incidentally, our numerical simulations
confirm that predictions would be remarkably different if, instead of generating every time a
new unitary according to the Haar measure, we directly generated sets of uniformly distributed
random parameters (ωi, φi) to -mistakenly- speed up the calculation. Subsequently, the same
analysis is repeated for all three architectures (C, R and F ) focusing on the implementation of
the Fourier and the Sylvester transformation.

Benchmarking Haar-random interferometers

The results of our first analyses are shown in Fig.4.10. The figure of merit adopted to compare
the two architectures is the fidelity [178]

F = |
Tr(U †imp U)√

mTr(U †imp Uimp)
|2 (4.22)

being U a m×m unitary transformation and Uimp its imperfect implementation. Thanks to
the rescaling factor in the denominator, accounting for the contribution of lossy implementations,
this fidelity is particularly suitable to characterize non-unitary transformations. Fig. 4.10a,b
show the deterioration of F for increasing values of losses η per unit cell and size m of the circuit
for the C- and R- designs. In this simulation, optical elements are assumed to be immune to
fabrication noises in order to isolate the η-contribution. As pointed out in Ref. [178], the C-design
is more resilient to internal losses than the R- design, thanks to the almost total balance between
the mode interactions. Moreover, as the heuristic non-linear fit suggests (see Supplementary Note
1), also the scaling of the fidelity is much more favourable for the former architecture, features
that pushes C as a promising candidate for large-scale platforms or where, due to technical
issues inherent to the specific implementation, it is not possible to guarantee a low level of losses
in each optical element. We observe that, as already pointed out in Ref. [178, 192], inserting
additional lossy elements in the R-scheme allows to compensate for the imbalance, at the price
of significantly increasing the total amount of losses. Fig. 4.10c,d show instead the average effect
of a noisy implementation of the optical components over the fidelity. Similarly to the previous
analysis, our simulation is carried out for different levels of noise σ = 0, . . . , 0.020 and different
sizes m = 4, . . . , 128, aiming to retrieve a more complete feeling of its scaling. Noise is assumed
to be of equal intensity at this stage on both beam splitters transmissivities (σBS) and phase
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Figure 4.10. Haar-random with losses and noise. Noise and losses affect the implementation of
Haar-random unitaries in different ways in the C- and R-designs. a, c, average fidelity F for different
levels of loss η per beam splitter and size m of the interferometer in the C (a) and R (c) designs. Note
the difference in vertical scale, due to the more balanced structure of C where the dependency on η
arises from the slight path asymmetry of the outer waveguides. b, d, average fidelity F for different
levels of noise σ in the optical elements and size m, averaged over 500 noisy unitaries. Here noise is
treated equally on both beam splitters and phase shifters, namely σ = σBS = σPS . Note that the
scaling is identical in (b) and (d) since, averaging over the unitaries, the deterioration of F is due to
the number of noisy elements, which is the same in the two schemes. Surfaces: heuristic non-linear
fits of the data.

shifts (σPS), i.e. σ = σBS = σPS , in order to capture the scaling of the performance in a unique
three-dimensional plot. Our simulations confirm previous qualitative estimates [178] concerning
the similarity of the scalings of the average fidelity in the two architectures, providing a clear and
quantitative picture of its dependency on the fabrication noise over the optical elements. Such
a similar trend is observed also when investigating their performance in the case of crosstalk
between thermal shifters.

After this preliminary stage, more general investigations have been carried out by considering
different levels of noise over the fabrication transmissivities and phases, i.e. studying the practical
situation where σBS 6= σPS . Results of this analysis are shown in the contour plots of Fig. 4.11
for different sizes of the interferometers, highlighting a number of interesting features. First,
the qualitative dependency on the noise seems to remain fixed while increasing the dimension
of the circuit, though the average fidelity rapidly drops to low values already at m = 64,
for intensities of noise that are within the tolerances of current technology, in particular for
reconfigurable circuits. Moreover, we observe that the two sources of noise affect the fidelity
in a similar way, with an intensity approximately double for the one on the transmissivities
in the Mach-Zehnder. Thus, while dynamic control over the phases can in principle mitigate
the effects of noisy implementations, non-ideal values of the transmissivities of the symmetric
beam splitters remain critical when looking at large-scale implementations. To focus our analysis
on the circuit size allowed by current technology, we have considered as a reference current
top-level implementations for quantum applications. Circuits with up to m = 16 have been
reported for non-reconfigurable femtosecond laser written circuits [265], m = 6 for universally
reconfigurable lithographic circuits [22] and m = 26 for reconfigurable lithographic circuits that
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Figure 4.11. Haar-random with non-ideal transmissivities and phase shifts. Fabrication
imperfections and errors in real-time control over the phases are in general on different scales,
depending for instance if we are considering (un)balanced beam splitters or (not-)reconfigurable phase
shifters. Here noisy Haar-random implementations are investigated under different values of σBS and
σPS , to analyze the separate contribution of each source of error to the final unitary transformation.
Since the average robustness against noise of the C- and R-designs is equivalent (see Fig.4.10), here
the contour plots are shown for the C scheme for m = 32 (a), 64 (b), 128 (c), 256 (d) and 1024 (e)
(see Supplementary Note 2 for the optimized decomposition adopted for these simulations).

do not implement a fully arbitrary unitary matrix [23]. Reasonable sizes achievable in the near
future thus can be m = 32 or m = 64 depending on the level of reconfigurability required.
However, looking at future large-scale implementations, we see that for m = 1024 even a very
low level of noise makes the average fidelity drop to values as low as ∼ 0.90. Note the shift in the
axes scales between the four left contour plots (m ≤ 256) and the one on the right (m = 1024).
Thus, for an efficient scaling a technology leap will be required not only in the circuit size but
also on the level of fabrication tolerances.

So far, we adopted as figure of merit the fidelity of the quantum process. Though perfectly
suitable to benchmark noisy transformations, this quantity fails in general to highlight more
complex many-particle phenomena. Partial deviation from their ideal symmetric structures can
then spoil the interference effects in the output distributions. For this reason, we investigated
the performance of noisy architectures also in the scope of multiphoton output probability
distributions, employing as figure of merit the total variation distance (TVD) between the ideal
(P ) and actual (P̃ ) n-photon distributions:

TV D(P, P̃ ) = 1
2
∑
i

|pi − p̃i|. (4.23)

Indeed, the TVD plays a relevant role in testing statistical hypotheses since the quantity 1−TV D
is a lower bound on the sum of Type I and Type II error rates [222]. From a practical point of
view, TV D(P, P̃ ) is also a simple and natural metric to quantify the discrepancy between the
two probability distributions P and P̃ . Results for this analysis are shown in Fig. 4.12: again,
noise affects almost equally the C and R architectures when averaging over all the input/output
states. The slight difference in favour of the R-design may not be practically appreciable in real
experimental conditions and it rapidly becomes negligible for higher values of (n,m). Thus, the
two architectures behave equally as far as lossless multiphoton investigations are concerned.

We conclude from our analysis that the C- and R-designs are ultimately equivalent in terms
of resilience to noise when averaging over all input/output configurations. On one side, the single
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Figure 4.12. Multiphoton interference in noisy Haar-random interferometers. Several appli-
cations require to evolve many-photon states in large-scale quantum circuits. The total variation
distance (TVD) is in this sense a good estimate of the goodness of an experimental implementation,
being it a natural measure of the distance between two probability distributions . Here, plots compare
the ideal and noisy output probability distributions relative to n = 1, 2, 3-photon collision-free states,
averaged over all the inputs. For each n, 100 unitaries are sampled and implemented according to
the C- (green) and R- (red) designs setting σBS = σPS = σ. Our analysis confirms on one hand the
prediction of Fig.4.10c,d, where the R-design is found to be slightly more robust against noise, but on
the other it shows how this difference seems to become negligible for increasing values of n. Surfaces:
heuristic non-linear fits of the data.

optical elements affect in a different way the elements of the unitary transformation in the two
schemes, being the C and R parameters more localized respectively in the upper corner and
central part of the unitary matrix. However, for practical noise levels and general multi-input
applications, this difference does not give rise to any effective deviation between the two schemes.
In contrast, the two architectures behave differently when it comes to lossy implementations,
where the symmetric C-design outperforms the R scheme.

Analysis of Hadamard matrices

Here we will focus on the performances of such architectures in the specific cases of Fourier and
Sylvester transformation which will be important in the next Chapter. We use the fidelity in Eq.
(4.22) as a figure of merit to compare the two architectures:
being U a m×m unitary transformation and Uimp its imperfect implementation. Thanks to the
rescaling factor in the denominator, accounting for the contribution of lossy implementations, this
fidelity is particularly suitable to characterize non-unitary transformations. Now, though the C-
and R-designs are universal for unitary evolutions, often it is desirable to have circuits optimized
for specific relevant tasks. It is the case of the quantum Fourier [82,182,201] or Sylvester [169]
transforms, which have importance on their own in different scopes of quantum information
processing.

We investigate the performance of the Fast (F ) scheme [181,182] for the implementation of
generalized Hadamard transformations [177] and compare it with the average performance of
the two universal designs. In Fig. 4.13 is shown the comparison. In the Fast scheme, being the
circuit completely symmetric, the structure is totally immune to constant propagation losses,
beating even the highly resilient C-design. The F -design is also more resilient to noise, thanks
to the reduced depth of the circuit which lowers the number of noisy optical elements from
m
2 (m − 1) to m

2 logm. A benchmark summary of this comparison is reported in Table 4.3 for
both the quantum Fourier transform and the Sylvester interferometers.
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Figure 4.13. Generalized Hadamard transformations with C-, R- and F designs. While
universal for unitary decompositions, the C- and R- architectures offer suboptimal solutions for the
implementation of specific classes with higher symmetries. The Fast architecture is optimized for
the implementation of the quantum Fourier transform and the class of Hadamard transforms. a),
Average fidelity as a function of losses per unit cell and network size (blue, green and red surfaces for
F -, C- and R-designs respectively). Full symmetry between the optical paths cancels out the effect
of constant losses per unit cell in the F - design. b), Fast architectures (blue surface) are also more
resilient to fabrication noise, thanks to the reduced depth of the circuit. Here, only one (orange)
surface is shown for both C- and R-designs, assuming equal resilience to noise. Surfaces: heuristic
non-linear fits of the data. Image taken from [176].

Quantum Fourier transform and Sylvester

m = 64 m = 128 m = 256

σBS → 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02

σPS = 0.001
0.999 0.995 0.981 0.998 0.994 0.976 0.998 0.992 0.972

0.994 0.975 0.904 0.987 0.950 0.817 0.975 0.903 0.667

σPS = 0.01
0.998 0.994 0.980 0.997 0.993 0.975 0.997 0.992 0.971

0.984 0.966 0.895 0.969 0.933 0.803 0.938 0.870 0.644

σPS = 0.02
0.995 0.991 0.976 0.994 0.989 0.971 0.993 0.988 0.968

0.956 0.939 0.870 0.917 0.882 0.759 0.838 0.770 0.575
Table 4.3. Benchmarking Hadamard transformations. Generalized Hadamard transformations

benefit from optimized architectures, obtained from the efficient algorithms [179,181] developed for
the fast quantum Fourier transform. Here, average Fidelities (in each row, F : up; average of C and
R: down) are reported for each combination of size m and noises σBS , σPS , averaging over 100 noisy
unitaries. Data for the Fourier and Sylvester transformations are displayed in a single table since the
values in the two cases are equal within a discrepancy lower than ∼ 0.001.

Discussion
Photonic technologies promise to enable the application of several quantum information protocols,
ranging from fundamental research to quantum computation and optical quantum networks. In
this chapter we have provided a description of the most diffused integrated photonics techniques
and we performed a brief analysis of the performance of the three main interferometric schemes,
namely the triangular [15] and square [178] designs and the Fast [181] architecture, under realistic
conditions of losses and noise.

Fast architectures represent a specialized design to implement a significant class of unitary
evolutions, highly optimized for the realization of Fourier and Sylvester (Hadamard class) quantum
transformations. Our results quantitatively highlight the improved performance of this scheme
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with respect to the universal ones, thus making it the preferred choice in this context. According
to this analysis we expect that Fast architectures can play a key role among photonic platforms
in synergy with the universal schemes, to fully benefit from the unique advantages of both
designs. In Chapter 5 we will see deeply the usage of this platform by exploiting its resilience
and robustness to imperfections to validate genuine quantum interference of indistinguishable
boson states.
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Chapter 5

Quantum certification of many-body
bosonic interference in photonic
chips

In this chapter we will present different approaches and tools to generate many-body bosonic
interference and subsequently we will focus on how to identify a signature of indistinguishabiliy
by employing different validation protocol. We begin the description focusing on the task of "how
can I scale up my system" by describing the experimental realization of the Scattershot Boson
Sampling using three SPDC sources to generate random inputs. Subsequently we will focus on
how to validate our data performing different protocol with our integrated platforms. We will
perform an analysis on the optimal unitaries which are suitable for addressing genuine quantum
interference. Following these road, we targeted two unitaries belonged to the class of Hadamard
matrices, namely Fourier and Sylvester matrices, which allow us to introduce validation protocols
based on the so-called suppression law which is a intrinsic property of these matrices. Finally we
will investigate alternative protocols based on machine learning techniques and statistical tools.
In Chapter 4 we discussed on the importance to search for the best implementation in order
to avoid significative losses to perform correctly our protocols. Here we show how using FLM
with combination of the Fast architecture we can find alternative models in order to generate
and individuate a good signature of true particle interference without employing the calculus
of the permanent and thus avoiding to reconstruct the output distribution of these devices.
This Chapter represent the second part of PhD work and we report our results respectively
in these papers, in which I contributed mainly in the development of the experimental setup,
characterizations and data analysis and secondly to the simulations of our model, except for
where I listed as first author where I contributed equally likely in all fields:

• M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mat-
aloni, D. J. Brod, E. F. Galvao, A. Crespi, R. Ramponi, R. Osellame and F. Sciarrino.
Experimental scattershot boson sampling. Sci. Adv., 1, e1400255 (2015) [149].

• A. Crespi, R. Osellame, R. Ramponi, M. Bentivegna, F. Flamini, N. Spagnolo, N. Viggianiello,
L. Innocenti, P. Mataloni and F. Sciarrino. Suppression law of quantum states in a 3D
photonic fast Fourier transform chip, Nat. Comm., 7, 10469 (2016) [182].

• F. Flamini, N. Viggianiello, T. Giordani, M. Bentivegna, N. Spagnolo, A. Crespi, G.
Corrielli, R. Osellame, M. A. Martin-Delgado and F. Sciarrino, Observation of Majoriza-
tion Principle for quantum algorithms via 3-D integrated photonic circuits, preprint at
arXiv:1608.01141, (2016) [170].

• N. Viggianiello, F. Flamini, M. Bentivegna, N. Spagnolo, A. Crespi, D. J. Brod, E. F.
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Galvao, R. Osellame and F. Sciarrino. Optimal photonic indistinguishability tests in
multimode networks, preprint at arXiv:1710.03578, (2017), submitted to Optica [208]

• N. Viggianiello, F. Flamini, L. Innocenti, D. Cozzolino, M. Bentivegna, N. Spagnolo, A.
Crespi, D.J. Brod, E. F. Galvao, R. Osellame and F. Sciarrino. Experimental generalized
quantum suppression law in Sylvester interferometers, Preprint at arXiv:1705.08650, (2017)
[193].

The last two works are currently in submission (see "List of Publications" at the end of the
manuscript).

5.1 Experimental Scattershot Boson Sampling

According to the extended Church-Turing thesis (ECTT), any physical system can be simulated
efficiently, with at most a polynomial overhead in its size, by a classical computer. However, since
the advent of quantum computation, the ECTT has been questioned, although the available
empirical evidences were not sufficient to dismiss the ECTT as a central dogma of computer
science. A more feasible challenge to the ECTT is provided, as introduced in the previous Chapter
2, by Boson Sampling. This task consists on simulating output events of n bosons entering in
the n different input ports of a m > n modes interferometer implementing an arbitrary unitary
matrix U . Consequently, one draws output events with probability P (S;T ;U), through S and T
(the input and output state respectively), which corresponds to the permanent of the submatrix
of U that contains only the rows and columns matching the occupied input and output modes:

P (S, T ;U) = |Perm(U)|2 Mp,q = Usp,tq (5.1)

It is desirable to choose the matrix U randomly, in order to avoid regularities that could simplify
the classical simulation. Unitaries are selected randomly thanks to the Haar measure [194], which
defines the uniform distribution analogous on the topological space of the unitary matrices. This
particular choice has been made in order to avoid any computational simplification due to alleged
symmetries of the unitary operator. Enlarging the number of injected photons n, the permanent
calculation becomes intractable with classical algorithms, due to a superpolynomial use of
resources. Analysis of the hardness of this problem have been studied in details in Refs. [33,121].
The believe on the studies and the claims regarding the complexity of this model, makes the
Boson Sampling the good candidate to find real evidences of the quantum-over-classical speed
up. Moreover, the phenomena at the core of this model is bosonic interference which has several
applications in different fields [12]. By employing integrated photonics, Aaronson’s model is a
good platform to study in detail, the effect of true quantum interference.

To identify signatures of many-body quantum interference we used as testing platform Boson
Sampling experiments. We performed such experiments by evolving indistngushable photons
into implementations of Haar-random unitaries matrix on photonics chips with the technique
of FLM. From Chapter 3 and 4 we described the experimental tools and the importance to
efficiently address such implementations by the search of best architecture. First experimental
attempts have been carried out with small scale chips in Refs. [137–140] and showed the first
Boson Sampling experiments by paving the way to further studies in large scale implementations.
Rather than increasing the number of modes, the hardness of such phenomena relies in increasing
the number of photons n which interfere in these device. Thus, it is extremely important to
provide an enhancement on the generation rate of n-indistinguishable photon states. Nevertheless,
with SPDC sources, this can be really complicated, since the process of photon-pair generation is
not-efficient at all. There is, however, a backdoor as illustrated in section 2.5, where we can focus
rather than increasing the number of photons but improving the generation of fixed n-photon
states. This approach has been called Scattershot Boson Sampling (SBS) and in this section we
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will describe the first experimental demonstration that we have carried out in our laboratories.
Our work is reported in Ref. [149].

Here we report experimental results on SBS experiments using a 13-mode integrated photonic
chip. We use up to six PDC photon sources to obtain data corresponding to 2- and 3-photon
interference by heralding all the inputs configurations, thus sampling both from input and output
probability distributions. As an additional step we perform the test on a different 9-mode
chip where we emulate the same behaviour by injecting into different inputs manually, giving a
signature of the robustness of the protocol.

To measure n-boson interference we prepare the state by manipulating polarization and
relative delay in order to achieve good indistinguishability with minimum visibility observed
for different pairs of 0.87± 0.03. For this reason, 2-photon HOM have been performed for each
input combination as a preliminary stage to individuate the precise temporal region by means
of delay lines. For the 9-mode chip, the input state was created by a 4-photon SPDC source
(crystal Cα in Fig. 5.1b), with one of the photons used as a trigger. Our preliminary experiment
involved simulating the statistics of a Scattershot Boson Sampling experiment in the 9-mode
chip by manually connecting 20 different sets of input modes to the source, via a fiber array, and
uniformly mixing the data corresponding to different input states.

Figure 5.1. Overall conceptual scheme of the experiment. In each of the 3 BBO crystals (Cα, Cβ and
Cδ), photon pairs are generated via Type II parametric down conversion process. The two possible
polarization combinations for the two generated photons, HV and VH, constitute two equal SPDC
sources enfolded in the same crystal, each one exciting a different trigger (photon v) and a different
input mode (photon H). The only exception is given by source S2, whose outputs are both injected
in the chip. Sources are also time-multiplexed, since pulses generating photons in crystal Cδ are
produced before the ones generated in Cα and Cβ . Each input is associated to specific mode of the
13-optical chip. Ref. [149].

We used a total of six PDC sources (S1 to S6 in Fig. 5.1b) to perform the SBS experiment.
We simplified the implementation by enfolding two equal sources in each crystal, corresponding
to the two possible vertical/horizontal polarization combinations for the photon pair generated.
Hence, the six sources S1-S6 are created using only the three crystals Cα, Cβ and Cγ . One such
source (Source S2) prepares photons I and III, which enter the interferometer respectively in fixed
modes 6 and 8. The other five PDC sources produce random, but heralded, single photons, which
are coupled to different input ports of the chip. We further increased the input variability by
distributing photon VII randomly among four different input ports, via an optical fiber switcher
with switching rate comparable to the obtained experimental count rate.

For both chips, the output photons are collected by a multimode fiber array, and multiphoton
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Figure 5.2. Multiple input Boson Sampling in a 9-mode device and Scattershot Boson
Sampling in a 13-mode device. a, Density plot of the number ni,j of events detected for each of
the 1680 input (i) and output (j) combinations used in our Boson Sampling experiments with the
9-mode chip. b, Density plot of the number ni,j of events detected for each of the 2288 input (i) and
output (j) combinations used in our Scattershot Boson Sampling experiment with the 13-mode chip.
c,d, Number ni,j of events detected for a two-photon Scattershot experiment with the 13-mode chip
for input states (9,11) (c) and (11,13) (d). Ref. [149]

coincidences are detected by avalanche photodiodes, coordinated by an electronic data acquisition
system capable of registering events with an arbitrary number of photons. Syncronization of
pairs from the same crystal is achieved by HOM measurements, while syncronization of photons
belonging to different crystal is reached exploiting stimulated emission with a pulsed laser seed.
The observed number of events corresponding to each input/output combination for the 9- and
13-mode chips are shown respectively in Figs. 5.2a and 5.2b. Note the sparseness of the data
set, as only a few events corresponding to each input/output combination are observed (if any).
This is an expected feature of more complex Boson Sampling experiments whose number of
possible input-output combinations may far exceed the number of observed events. Furthermore,
in Figs. 5.2c and 5.2d we show the results for 2-photon experiments, in which each input is a
doubly-heralded 2-photon state.

Moreover, in this experiment, we exploited time-multiplexing [195] to achieve quantum
interference between photons generated by different pulses. The direct consequence is an increase
of the n-photon generation rate using a fixed number of SPDC sources. This was done by
introducing appropriate delays, so that photons from Sources S5 and S6 are produced by a
different pump pulse than those generated by all the other sources (see Fig. 5.1c).
It is worth noting how with this approach we can explore higher orders of the Hilbert space by
exponentially increase the generation rate of n-fixed photon injected. The same setup has been
used also for further studies as we will see in the next chapter. The only difference consists in
injecting 2-photon states in our devices instead of 3, thus considerably enhancing the photon
counts.

In the next section we will focus on a deeper problem which relies on validating our platform
by trying to overcome the problem on identifying signatures of true many-body interference in a
reasonable runtime by means of our classical apparatus.
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5.2 The problem of certification
Despite several progresses in finding a suitable model to reach the so-called quantum advantage,
a tricky problem arises which enhance the hardness of the problem even more. As we increase
the size of the system in number of modes and photons, predict the output distribution by means
of classical calculations become rapidly intractable. What about the correct certification of our
data? Supposing that we can reach a situation where in the near-future technology we are able to
build a stable and lossless platform to measure true many-body quantum interference and thus
perform our quantum protocol. Can we trust on the correctness of our data? In principle we have
to validate the output of such devices, but here the same original problem manifests from another
point of view. Indeed, under the conditions when classical computers are not able to perform
the permanent calculation, we cannot verify if the output distribution we are looking is true
many-body interference or not. Verify this feature is hard as the sampling the output distribution,
or in another words, it has the same complexity of Boson Sampling itself. Moreover, being a
sample problem, since we are dealing with small size platforms, we are able to experimentally to
retrieve our data in a reasonable time, while with higher Hilbert spaces, the sampled distributions
become considerably flat, thus it gives us not sufficient elements to validate. To sum up, a
posteriori verification of the output probability distribution, experimentally obtained, results
essential and strictly necessary in order to trust on our data and the functioning of our device.

output
unknown device

processing

? = boson sampling ? = alternative sampler

Figure 5.3. Validation of Boson Sampling experiments. An agent has to discriminate whether a
finite sample obtained from an unknown device has been generated by a quantum device implementing
the Boson Sampling problem or by an alternative sampler.

Even though such experimental conditions have not been achieved yet, their realization in the
next future is not so far. Consequently many validation protocols have been proposed, that is,
protocols applied to the output probability distribution data and used to certify if such data have
been produced by a boson sampler or not. In other words, to certify a boson sampler, one needs
to verify predictions following from equation (5.1) and rule out models that yield these predictions
without true many-boson interference. A first insight into the validation issue was obtained
by Gogolin et al [196], who showed that so-called symmetric algorithms fail to distinguish the
distribution of experimental data from the trivial, uniform one. Thus, the first question to answer
was how a boson sampling distribution could be distinguished from a uniform sampling one.
Aaronson and Arkhipov in 2014 [197] argued that it was unreasonable to restrict the statistical
analysis to symmetric algorithms only and, moreover, they proposed a validation protocol that
efficiently discern the boson sampling distribution from a uniform sampling distribution.

The Aaronson and Arkhipov test is named Raw Norm Estimator (RNE) and is based on the
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estimator P defined by the following expression

P =
n∏
i=1

n∏
j=1
|Ai,j |2 (5.2)

The estimator P has been shown to be correlated with the boson sampler probability associated
with that event, but it does not involve any permanent calculation. This feature is extremely
important, since makes the test computationally efficient. After having calculated the estimator,
the test decides if the outcome is more likely to arise from boson sampling, that is P > (n/m)n,
or from uniform sampling, P < (n/m)n. In this sense, at each event, an integer coefficient C is
increased or decreased by a unity, depending on which distribution the event belongs.

  

a) b)

c) d)

Figure 5.4. List of previous experimentally tested validation protocols. a) Validation test
with RNE. a 7-Haar random unitary has been experimentally implemented. By collecting data and
applying the test of AA they were able to discriminate uniform sampler from Boson sampler. b)
Likelihood-ratio test performed on 9- mode chip. Brute force approach is not efficient because we
have to deal with calculus of the permanent, but we are able to discriminate a more general behaviour
for the device, framing on the difference in terms of distinguishability c) Bayesian test on Boson
sampler data versus uniform and classical samplers. It requires very low samples to discriminate
the two behaviour but it is still not efficient in n. d) Clouding test which is able to discriminate
distinguishable particles in a quantum walk approach (blue), conversely considering a Haar random
matrix (red) we cannot distinguish the numbs significantly. Images taken from [198–200].

It is worth noting that in this case, we do not pass through the calculus of the permanent, so it
is efficient to calculate scaling n and m. Unfortunately, such single-particle estimator does not
contain hints of genuine quantum interference.

The discrimination between distinguishable and indistinguishable photons is the second case
we analyse. We aim to validate a boson sampling distribution, obtained with indistinguishable
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photons, from the output distribution obtained when distinguishable photons [198] are sent
into the same boson sampling input modes and evolve with the same unitary matrix. In
this case, the events are associated through a probability pi (qi) to come out according to
an indistinguishable (distinguishable) output distribution and discriminated with a parameter
R = pi/qi and subsequently divided according to it. This model is more physical in the sense
that we compare a reasonable phenomenon that occurs often during this experiment, but it is
suffers of a drawback: it must pass through the calculus of the permanent so it does not scale
well when we increase the size.

Carolan et al. [199] proposed a method which relies on the natural behaviour of bosons to bunch.
The great advantage of this method is that the emergence of bosonic clouds provides away to
predict multimode correlations in the transition from the distinguishable to the indistinguishable
regime, avoiding the calculation of matrix permanents that describe the relative probabilities for
the multimode detection events.

Bentivegna et al. [200,211] proposed a different road which relies on a bayesian probabilistic
approach. Equal a priori probabilities, Q and R, are assigned to two different hypothesis,
respectively the boson sampling and an alternative one. For each sampled event x, let qx be the
corresponding probability associated to it under the hypothesis Q, and rx the corresponding
probability under hypothesis R. With the Bayes theorem we address more confidence to events
through the conditionate probabilities. The main advantage of the Bayesian approach is that it
allows to perform validation tests against a large set of alternative hypotheses, since no additional
assumption is required for the alternative sampler R. Although it needs only few events to
converge, it does not scale well with the number of photons because it has to calculate the
permanents in each iteration.

At the end, all of these methods are not sufficient to reach the goal. In figure 5.4 we reported
the previous experimental attempts to this protocol. Now, despite problems with the efficiency
for large sizes, these models are not able to discriminate a many-body bosons interference
respect to semi-classical approximation of such state, namely mean field state with a sampling
problem [201–203]. Within this description a multimode Fock state is approximated by the
macroscopically populated single particle state:

|Ψ〉 = 1√
n

n∑
r=1

eIθr
∣∣∣Φin

jr)
〉

(5.3)

where the phase θr are undefined. The state 5.3 evolves into:

Û |Ψ〉 = 1√
n

[
m∑
q=1

∣∣∣Φ(out)
jr

〉 ( n∑
r=1

eiθr Ujr,q

)]
(5.4)

The last relation specify that each particle occupies the output mode 1 ≤ q ≤ m with probability
given by:

P (mf)
q = |

〈
φ(out)
q

∣∣∣ Û |Ψ〉|2 = 1
n

∣∣∣∣ n∑
r=1

eiθrUjr,q

∣∣∣∣2 (5.5)

Hence, the mean-field sampler contains those aspects of many-boson dynamics that survive
in the semi-classical limit. The mean-field approximation results as a fundamental test for
each certification protocol previously analysed, but we will show in the next chapter the work
that we spent during my PhD project in which we will search for an alternative validation test
which relies not only to the statistical behaviour of bosonic ensemble but we will exploit several
techniques which are based on laws of particular symmetrical matrices belonged to specific
classes of symmetry, statistical tools and last but not the least on machine learning techniques.
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In the next sections we will see the work that we have carried out experimentally focusing on
the techniques and which devices occur to realize the validation protocol implemented in our
laboratories. In specific we will discuss and analyse in detail in the approach that we used. For
further details at the end of this manuscript there are Appendices that stressed the concepts
reported in the following sections, providing other detailed on the techniques used.

5.3 Suppression law of quantum photonic states
As pointed out previously, all protocols seen are not efficient in terms of scaling of photon number
since it requires the calculation of n× n matrix permanents.
The protocol, here described, instead, relies on computable quantities1. It is based on the sup-
pression of specific output configurations in an interferometer implementing an np-dimensional
Fourier matrix, with p ∈ N. Experimental test on with this protocol has been done with n = 2
and p = 2, 3 [182,201].
The quantum suppression law [201] can be thought as a generalization of the 2-photon/2-modes
Hong-Ou-Mandel effect, where only one state were suppressed. It depends on the specific unitary
transformation being implemented and on the symmetry of the input state. In particular, let
us consider a cyclic input, i.e. an n-photon Fock state over m = np modes, where the occupied
modes jsr are determined by the relation:

jsr = s+ (r − 1)np , (5.6)

with r = 1, . . . , n and s = 1, . . . , np−1. The parameter s takes into account the fact that there are
np−1 possible n-photon arrangements with periodicity np−1, which simply differ by a translation
of the occupational mode labels. For example, with n = 2 and p = 2 there are 21 = 2 possible
cyclic states, i.e. |1010〉 and |0101〉.
The evolution determined by the Fourier matrix results in the suppression of all output states
for which the following relation does not hold:

mod
(

n∑
l=1

kl, n

)
= 0 , (5.7)

where kl is the output mode of the l-th photon.
Hence, suppression laws are applied to certify the presence of true many-body granular interference
during the evolution in the interferometer, ruling out alternative hypotheses which would result
in similar output probability distributions. In particular, this interference patterns cannot be
simulated by distinguishable photons or any other simulated bosonic state, which, by contrast,
can reproduce macroscopic interference effect as the boson clouding [199].
The degree of violation D of the suppression law is quantified by the following expression:

D = Nforbidden

Nevents
=

∑
(i,j)forbidden

PDi,j (1− Vi,j), (5.8)

the ratio between the number of observed events in the forbidden output states divided by the
total number of events, where PDi,j are the classical probabilities and Vi,j are the visibilities of
HOM dips. If a Fock state is injected in an interferometer implementing a Fourier matrix with no
experimental imperfections, a violation D = 0 would be observed. In the case of distinguishable
photons there is no suppression law, and the violation would be simply the fraction of suppressed
outputs, each one weighted with the number of possible arrangements of the n distinguishable
particles (D) in that output combination. In the case of two-photon states, the weighting factor

1The experimental work has beeen carried out during my PhD project and the paper is published in Nature
Communications in Ref. [182]
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is 2 for collision-free outputs and 1 otherwise, and a degree of violation of 1/2 is expected. On
the contrary, in the case of two-photon Mean Field state (MF), bunching effects occur leading
to an expected degree of violation of half the weighted fraction of suppressed outputs (1/4 for
two-photon MF). It has been shown that the fraction of forbidden outputs is always large [201].
Hence, a comparison of the observed value of D with the expected one represents an efficient way,
in terms of necessary experimental runs, to discriminate between Fock states, distinguishable
particles states and MFs.

In this work we experimentally tested this validation protocol by exploiting the femtosecond
lase micromachining with the Fast scheme (see Fig. 4.3). The observations have been carried
out with two-photon Fock states injected into 4-mode and 8-mode qFFT interferometers (see
Appendix 8.2 for the detailed implementation). The peculiar behaviour of Fock states compared
to other kinds of states is investigated, showing in principle the validity of the certification
protocol for the identification of true granular n-particle interference, which is the source of a
rich landscape of quantum effects such as the computational complexity of Boson Sampling. The
experiment was carried out with the experimental setup described at the end of Chapter 3 with a
4- and 8- mode Fourier matrix. We measured all the output HOM dips and peaks for the cyclic
states (where in Fig. 5.5 is shown the measurements for a cyclic input of 8-mode chip) and we
calculated all the violations following Eq. (5.8).

As shown in Fig. 5.6, blue shaded regions in the plots correspond to the cases where the
hypothesis of distinguishable particles can be ruled out. Red regions correspond to the cases
when both the hypotheses of distinguishable particles and mean field state can be ruled out,
and true two-particle interference is present (see Appendices 8.1 and 8.3 for further details on
modelling partially distinguishable photons and discrimination from coherent light).

Even if this method is highly promising, it suffers an important disadvantage: conceptually it
differs from the boson sampling. Indeed, in the boson sampling model, the unitary matrix has
to be chosen randomly, so that the computational complexity is not reduced. Instead, Fourier
matrices has well-defined symmetries and moreover we have still to calculate the probabilities for
the unsuppressed states for a large set of input-output combinations, thus giving a not efficient
protocol to validate quantum interference. This makes, de facto, the problem still unsolved.
In section 5.5 we will present a new platform which is implemented with the Fast scheme. We
will introduce the Sylvester matrix [169] as an optimal platform to accertain true quantum
interference. In the next section, instead, we will provide a further analysis on Fourier matrices
using our implementation, focusing on a different perspective which regards the computability.

5.4 Observation of Majorization Principle for quantum algo-
rithms via 3-D integrated photonic circuits

In this section we will discuss of another work carried out during my PhD project where we
focused on the computational efficiency of Quantum Fourier Tranform (QFT) [45] and validation
protocol on Fourier matrices [182, 201]. In fact, quantum computation although holds the
promise to greatly improve the capabilities of computational platforms, the unprecedented
massive machine resources offered by the parallel processing alone is destined to fail, due to the
non-deterministic nature of any measurement process. Follow this road, quantum algorithms
have been properly tailored to exploit the power hidden in quantum resources challenging this
limitation [204]. In this context, we can yet search for a guiding principle that helps us formulate
or discriminate whether a new quantum algorithm is truly efficient. Such criterion may arguably
be provided by the Majorization Principle (Majorization Principle (MP)) [205–207]. Intuitively,
the Majorization principle says that the notion of quantum parallelism is not a sufficient ingredient
to achieve speedup, for which a certain degree of interference is necessary to guarantee that
the convergence of the algorithm is reached efficiently. Specifically, MP is believed to provide a
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(a)

(b)

Figure 5.5. Suppression law in a 8-mode qFFT integrated chip. (a) Set of 28 measured
coincidence patterns (raw experimental data), corresponding to all collision-free output combinations
for the input (2,6) of the 8-mode interferometer. For each output combination, the measured
coincidence pattern as a function of the time delay is shown (points: experimental data, lines: best-fit
curves). Red or green backgrounds correspond to dips and peaks, respectively. For all points, error
bars are due to the Poissonian statistics of the events. In each subplot the measured visibility with
corresponding error and the sample size are reported. For each visibility, the error is obtained through
a Monte Carlo simulation by averaging over 3000 simulated data sets. In each subplot the zero level
coincides with the baseline, while a dashed line represents the number of coincidence events in the
distinguishable limit. (b) Average visibilities of dips (red bars) and peaks (green bars) observed for
the 4 collision-free cyclic inputs [(1,5), (2,6), (3,7), (4,8)]. Darker regions correspond to error bars of
±1 standard deviation. Image taken from [182].
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1,5 12.90(22) ⇥ 10�2 169 55
2,6 9.67(13) ⇥ 10�2 303 115
3,7 8.28(16) ⇥ 10�2 258 103
4,8 7.73(18) ⇥ 10�2 237 97
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1,3 6.34(7) ⇥ 10�2 640 274
2,4 4.27(5) ⇥ 10�2 855 388

Figure 5.6. Validation with Fourier matrices. Observed violations Dobs as a function of the path
difference |∆x| = c|∆τ | between the two photons. (a), Data for the 4-mode interferometer. Tables:
violations Dobs(0) at ∆x = 0 and discrepancies (in sigmas) with the expected values for distinguishable
particles (DD) and MFs (DMF), for the cyclic inputs of the two interferometers. Dobs(0) are calculated
following formula (5.8), while expected values for the other two cases are DD = 0.5 and DMF = 0.25.
Error bars in all experimental quantities are due to the Poissonian statistics of measured events. All
theoretical predictions in solid lines are calculated from the reconstructed unitaries, obtained from
different sets of experimental data to ensure statistical independence. Image taken from [182].

necessary condition that must hold to produce an optimal algorithm with a quantum speedup.
Moreover, it is considered as part of the general toolbox for the design of quantum algorithms,
while the complete set of governing rules remains an open problem.

Here we report on the experimental observation of the Majorization Principle in both a
Quantum Fourier Transform (QFT) and a recent quantum validation protocol to certify genuine
many-boson interference [201]. In this work it was crucial to exploit femtosecond laser writing
technique [24,157–159] which thanks to its property to design architectures with 3-dimensional
topology, it was possible to enable the decomposition in discrete steps [181, 182] in order to
observe the protocol.

Majorization Principle

The Majorization Principle lies to the fact that the probability distributions of the outcomes of
an algorithm, are updated throughout each step. Given two probability distributions (~x, ~y), let
(~x↓, ~y↓) be the same vectors with their components sorted in decreasing order. We say that ~y↓
majorizes ~x↓ (~y↓ � ~x↓) if and only if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i , ∀ k ∈ {1, ..., d} (5.9)

The concept of majorization can be extended in a natural way to quantum algorithms. Let
|ψ(s)〉 represent the state of the register of a quantum computer at a step s of the algorithm. We
can associate to |ψ(s)〉 a vector of probabilities p(s) by writing the register in the computational
basis |j〉, so that p(s)

j = |〈j|ψ(s)〉|2. Consequently, a quantum algorithm is said to undergo
a direct (reversed) majorization if and only if p(s) ↓ ≺ p(s+1) ↓ (p(s) ↓ � p(s+1) ↓) for all steps
s [206]. An intuitive reason for the physical connection between quantum processing and direct
(reversed) majorization is that of a neat flux of probability towards (away from) the result of the
computation, which makes the distribution steeper (flatter) throughout the algorithm.
The principle can now be stated as follows [205]:



5.4 Observation of Majorization Principle for quantum algorithms via 3-D integrated
photonic circuits 92

Majorization Principle: In all optimal and efficient quantum algorithms, the set of sorted
probabilities associated to the quantum register must obey either a direct or a reverse step-by-step
majorization.

All known quantum algorithms which are both optimal and efficient, i.e. with a quantum speedup
over the best classical algorithm, have been proven to satisfy the conjectured MP with a direct
or reverse majorization [207]. It is worth noting that this validity has already been proved in
other algorithms as Grover-like [83] and phase estimation-like [82] as for several ones [207]. The
common motivation is that quantum speed-up is always associated to step-by-step majorization,
while different story for non-efficient ones.

Figure 5.7. Majorization Principle in quantum Fourier transform. (a) Conceptual scheme for
the experimental observation of the Majorization Principle in (b) an 8-dimensional quantum Fourier
transform: by implementing the QFT with its fast architecture, it is possible to decompose the
evolution in three steps, corresponding to the three layers of beam splitters (purple) and phase shifters
(blue) between which a step-by-step majorization is observed. Image taken from [170].

Majorization Principle in a fast QFT

Here, to observe the MP we implemented the QFT routine encoding qubits in optical modes of a
photonic chip. The transformation has been implemented by adopting the scheme developed
by Barak and Ben-Aryeh [181] to reduce the required number of optical elements. As shown in
Chapter 3 this scheme represents the quantum analogue of the Fast Fourier Transform (qFFT),
the well-known classical algorithm to efficiently calculate the discrete Fourier transform.

We used this scheme not only because it is more efficient than the standard algorithm but
also because we are able to observe the reversed majorization step-by-step that naturally emerges
from this decomposition, as shown in Fig.5.7. The observation was carried out by injecting
single-photon Fock states, generated via a type-II parametric down-conversion source, into three
8-mode integrated interferometers {I1, I2, I3} corresponding to partial implementations of the
qFFT protocol. The number of fabricated interferometers Is, each consisting of s layers of
beamsplitters and phase shifters, corresponds to the number of layers in the decomposition
of an 8-dimensional QFT. The last interferometer I3 performs the complete 8-mode qFFT,
where one photon encodes 3 qubits over the optical modes. The fidelities Fs between the
reconstructed transformations in the Is and the ideal unitaries obtained with the decomposition
are F1 = 0.9954± 0.0002, F2 = 0.9921± 0.0005 and F3 = 0.9527± 0.0006, thus confirming the
quality of the fabrication process. For each input state i and each partial transformation Is, the
output probability distributions pi have been retrieved for the eight output states. The most
convenient tool to convey the validity of the Majorization Principle is offered by the Lorenz curves,
continuous piecewise linear functions representing the partial cumulatives Cp(k) = ∑k

i=1 p
↓
i for

the k most probable outcomes. For the MP to be satisfied, the curves Cp at each step of the
QFT must not cross, due to the inequality (5.9). As shown in Fig.5.8, a step-by-step reversed
majorization is then observed between the output distributions of the three interferometers Is,
i.e. by comparing Cp(1)(k), Cp(2)(k) and Cp(3)(k) according to (5.9).
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Figure 5.8. Lorenz diagrams for a QFT Majorization experiment, with a single photon encoding three
qubit on the first layer I1 (blue), first and second layer I2 (green) and complete structure I3 (orange) of
the 8-dimensional Fourier interferometer. For each intermediate Is, eight diagrams are shown relative
to all possible single-photon input states. Each curve represents the partial cumulative probabilities
Cp(k) for the k most probable outcomes. Error bars are smaller than the markers. Image taken
from [170].

Majorization Principle in a validation protocol

Here we followed the same line to test if the MP is observed also for the validation protocol
presented in section 5.3. The efficiency of this validation algorithm are crucial features for the
hard-to-simulate regime, hence we expect the MP to be satisfied.
The experimental work was carried out by injecting two-photon states into the three 8-mode
integrated interferometers {I1, I2, I3} implementing partial instances of the qFFT. While the
photonic circuit is still the Fourier interferometer, the computational problem is now fundamentally
different from the former. Specifically, the MP in the validation protocol involves a two-photon
coalescence mechanism which goes beyond the single-particle evolution of the QFT. Moreover,
the very unitary transformation is not the same as the QFT. Now, in fact, the elements of the(8+2−1

2
)

= 36-dimensional scattering matrix are the transition amplitudes connecting the two-
photon input/output states: the original QFT matrix elements get scrambled by the permanent
function and new symmetries appear in this evolution. To observe the MP the whole set of
outcomes has to be recorded, which required the measurement of the eight bunching events (i, i),
i.e. when photons exit on the same mode. This measurement was carried out by adding, at the
end of the fiber array coupled to the output of the interferometer, additional fiber optic splitters
to redirect the bunched photons in two separate detectors. A detection system was then able
to register all the one-to-one coincidences. For all three Is, the output distributions p(s) of 4
two-photon input states have been measured and plugged into (5.9) to test the validity of the
MP. All 36 patterns for the partial cumulative probabilities Cp(k) can in fact be divided in 4
distinct classes (Fig.5.9). For further details on the analysis performed to these classes and a
deeper study on the quality of the protocol for different implementations, refer respectively to
Appendices 8.4 and 8.5.

Non-crossing curves are expected when the distribution is the product of two single-photon
QFT (Fig.5.9a). We observe non-crossing curves also for non-cyclic input states, which are
not employed in the validation protocol (Fig.5.9b-c). This latter observation confirms that
majorization does not imply optimality, since the principle does not provide a sufficient condition.
Finally, the non-crossing Lorenz curves relative to the cyclic input of the validation protocol
(Fig.5.9d), manifesting that p(s) � p(s+1) at each stage of the evolution, confirm the operation of
the principle along the algorithm.

In the next section we will focus in deeper details in searching for the best platform to test
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Figure 5.9. Lorenz diagrams for a two-photon Majorization experiment on the first layer I1 (blue),
first and second layer I2 (green) and complete structure I3 (orange) of the 8-dimensional Fourier
interferometer for the validation algorithm. (a) Two photons in the same input mode (5,5). The
distribution is the product of two independent QFT. (b, c) Input modes whose sum is odd (5,6) or
even (5,7). The initial crossing between step 2 and 3 in (b) is due to small fabricative imperfections
enhanced by the sorting and has no physical consequence for MP in the validation protocol, which
works only on the cyclic inputs (d). (d) Cyclic input (2,6) for the validation algorithm. Each
curve is obtained by calculating the partial cumulative probabilities Cp(k) for the k most probable
outcomes with distinguishable (black triangles) and indistinguishable (circles) photons. Shaded areas
are included within the curves corresponding to fully indistinguishable photons (lighter regions)
and to fully distinguishable photons (darker regions), as expected from the reconstructed unitary
transformations. There is a little offset between shaded regions and experimental points due to the
less number of events sorted which imply a larger uncertainty while cumulating. Error bars are smaller
than the markers. Image taken from [170].

many-body quantum interference. We will see that we can individuate optimal unitaries which
are suitable for this purpose as for example the Sylvester [169] and the Fourier [182] matrices.

5.5 Optimal photonic indistinguishability tests in multimode
network

The observation that fundamental particles may be intrinsically indistinguishable is a counter-
intuitive feature of quantum mechanics. As a consequence, their collective behaviour is governed
by quantum statistics, and results in important phenomena such as Bose-Einstein condensation
and the electronic band structure of solids. Moreover, many-body bosonic interference is also at
the very heart of post-classical photonic computation [12,33, 45]. The task of certifying genuine
many-boson interference is thus expected to find numerous applications in photonic quantum
information, for validating the functioning of Boson Sampling experiments [22, 140,146,182,197,
199–201,209–213] and, more generally, as a diagnostic tool for quantum optical devices [214,215].
A well-known approach to experimentally test the degree of indistinguishability between photons
involves the use of the Hong-Ou-Mandel effect [14], for which various generalizations have been
proposed to account for multiple photon sources [216–221]. A natural problem that arises is then
to determine which interferometers allow for an optimal assessment of the indistinguishability of
multiphoton states (see Fig. 5.10).
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In this section we introduce a new approach for the task of discriminating distinguishable
and indistinguishable photon behaviour in multimode photonic networks, and we showed the
experimental demonstration with two-photon inputs in laser-written integrated devices with an
optimal interferometer design, that we performed in our work2. We consider a set-up in which
probabilistic single-photon sources are coupled to different sets of input ports of an interferometer,
as required for instance in Scattershot Boson Sampling experiments [147, 149, 150]. To assess
the optimality of the interferometer we maximize the total variation distance (Total Variation
Distance (TVD)) between the output probability distributions corresponding to indistinguishable
and distinguishable photons, showing that in certain scenarios the optimal solution is provided
by Sylvester interferometers (see Chapter 4 for a full description of this platform). Finally, we
perform a Scattershot Boson Sampling experiment in the 4-mode Sylvester device, and verify
the capability of the developed approach to validate the collected data with a small number of
events.

Sylvester matrices for optimal indistinguishability tests

A linear interferometer is a device that implements a linear map between input and output
creation operators, namely: a†ink →

∑
j Uj,k a

†
outj . A m-mode interferometer is then completely

specified by its corresponding m×m unitary matrix U , which can be decomposed into two-mode
beam splitters and single-mode phase shifters [15]. The evolution of a n-photon state is ruled by
the unitary transformation and by the degree of indistinguishability of the input particles. Let
P = {pi} (Q = {qi}) denote the output probability distribution of an interference experiment
when the input photons, all injected in different input modes, are perfectly distinguishable
(indistinguishable) and the occupation number is detected at each output port.

Figure 5.10. Searching for the optimal indistinguishability test. An unknown multiphoton state
is injected into a multimode interferometer, designed to discriminate between the two hypotheses:
either the photons are indistinguishable (Q) or distinguishable (P ). The internal parameters can then
be tuned until the most efficient test is found, for which the distributions corresponding to the two
hypotheses P and Q are as different as possible, as measured by the total variation distance of the
output distributions. Ref. [208]

The total variation distance (TVD) is then defined as

T (P,Q) = 1
2
∑
i

|pi − qi|. (5.10)

2This work is currently in submission to Optica
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The TVD corresponds to the highest possible difference in probabilities that P and Q can
assign to the same event. It is also closely related to hypothesis testing, since 1− T (P,Q) is a
lower bound on the sum of probabilities of false positive and false negative results [222]. More
practically, a larger value of T (P,Q) means that a smaller set of experimental data is sufficient
to discriminate between the hypotheses that one is sampling from P or Q up to a given level of
confidence.

We consider two scenarios depending on how the input photons enter the interferometer:
(i) the input ports are fixed (see Fig. 5.11a) and (ii) the input combination is randomly
chosen for each event (see Fig. 5.11b). This second situation is typical of more sophisticated
interferometric experiments with multiple probabilistic sources, such as scattershot Boson
Sampling experiments [147, 149]. To search for the optimal platform, a natural symmetry
we can impose on the interferometer is that the output probability for single photons should
be uniform for all input ports. Mathematically, this corresponds to a unitary matrix U with
complex entries of modulus 1/d, known as a Hadamard matrix. A specific subcase is provided by
Sylvester transformations [169], described by m = 2p-dimensional unitary matrices defined by
the recursive rule:

S(2p) =
(
S(2p−1) S(2p−1)
S(2p−1) −S(2p−1)

)
(5.11)

with S(20) = S(1) = (1) and p any positive integer. Another notable example of Hadamard
matrix is the Fourier one.

Figure 5.11. Optimal tests for fixed-input and scattershot configurations. a, Left figure: fixed
input configuration in the n = 2, m = 8 case, where two fixed input modes are injected with single
photons. Right figure: estimate of the distribution p1(T ) of the total variation distance T (P,Q) for
uniformly random unitaries in this scenario, obtained numerically by sampling over 105 unitaries.
For specific choices of input modes, both Fourier (blue vertical bar) and Sylvester (orange vertical
bar) interferometers are optimal. b, Left figure: scattershot configuration in the n = 2, m = 8
case, where different sets of two input modes are picked at random. Right figure: estimate of the
distribution p2(T ) of the average total variation distance T (P,Q) for uniformly random unitaries
in this scenario, obtained numerically by sampling over 105 unitaries. In the scattershot case the
Sylvester transformation (red vertical bar) is optimal, while the Fourier is not. Ref. [208].

For two-photon experiments, we can apply (5.10) to check that the Sylvester transformation
results in a TS = 0.5 independently of which pair of input modes is used, and thus on average
(over different pairs of inputs) T S = 0.5. As we show later, the Sylvester interferometer is optimal
for all possible choices of two-photon input configurations. The Fourier interferometer results
instead in a lower average TF = 0.333, reaching the highest value TF = 0.5 only for cyclic
inputs, i.e. n-photon Fock states in interferometers with np modes, where the occupied modes
jsr are given by jsr = s + (r − 1)np−1, with r = 1, . . . , n and s = 1, . . . , np−1. For two-photon
experiments in interferometers with m = 8 modes, among all known Hadamard matrices the
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Sylvester transformation is again the one with the largest average TVD T S = 0.5 (TS = 0.5, and
thus optimal, for all pairs of inputs). The Fourier interferometer reaches TF = 0.5 for cyclic
inputs, while on average we obtain only TF = 0.3153 due to inputs with lower TVD. Even if
we consider general unitary matrices, for two-photon experiments in m = 4 and m = 8 modes a
random sampling of 105 matrices of each size fails to find matrices outperforming the Sylvester
matrices, which provides evidence for the optimality of Sylvester interferometers. In the n = 2
m = 4 case, the optimality can be proved also via a numerical maximization of the TVD over
the parameters of general 4-mode interferometers.
Interestingly, we found that for scenarios with different number of photons n and modes m, the
optimal interferometers may not even be Hadamard. As an example, for n = 3, m = 4, the best
design we found corresponds to the unitary matrix

U4 = 1
2


1 1

√
2 0

1 −1 0
√

2
1 1 −

√
2 0

1 −1 0 −
√

2

 , (5.12)

with average (over all collision-free inputs) TU4 = 0.53125, beating for example the Fourier
and Sylvester interferometers, which result in T = 0.3125. In Appendix 4.3 we list the best
interferometers we found numerically for a few different scenarios.
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Figure 5.12. Experimental data from Sylvester interferometers and comparison with Fourier
ones. Two-photon experimental data from 4-mode and 8-mode Sylvester interferometer. a,c, Output
probability distributions for (a) input (1,2) of the 4-mode Sylvester interferometer and (c) input (1,5)
of the 8-mode interferometer. Each plot compares the distributions obtained from indistinguishable
(dark yellow) and distinguishable (green) input photons. b,d, Total variation distances between the
measured output distributions for indistinguishable and distinguishable photons in the 4-mode (b) and
8-mode (d) interferometers, plotted for each fixed input (left) and for the multiple input configuration
(right). Orange-Red: Sylvester. Other colour: Fourier. Ref. [208]

Here we report the experimental demonstration of optimal distinguishability tests, which we
carried out using two custom-designed integrated photonic circuits fabricated on a glass substrate
via the femtosecond laser writing technology [24–26]. A possible approach to the implementation
of Fourier and Sylvester matrices on photonic platforms could exploit the decompositions of
Refs. [15, 178], which allow to implement arbitrary unitary operations through an in-plane
cascade of beam-splitters and phase shifters but are sensitive against losses inside the device.
A more effective approach for the implementation of this class of interferometers is found by
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adopting an efficient, scalable and reliable three-dimensional interferometer design (as shown
in Chapter 4) enabled by the interaction between non-first neighbour modes arranged in a
suitable lattice [181] (Fig. 4.4). This architecture presents several advantages with respect to the
conventional decomposition in beam splitters and phase shifters [15, 178]. Indeed, this approach
is efficient since it allows to significantly reduce the number of optical elements from O(m2)
to O(m log m). Furthermore, as shown in Appendices (8.7), it is scalable to a larger number
of modes. Finally, it is also reliable since the depth of the circuit is small [O(logm)] and the
layout is symmetric with respect to the input modes, thus being intrinsically more robust against
internal losses than the decomposition of Ref. [15]. These features permit to achieve higher
fidelities in the implemented devices.

To probe the device for the reconstruction of its internal operation, we injected the interferom-
eters with one- and two-photon states produced via a spontaneous parametric down-conversion
process [13]. The tomographic reconstruction of the processes exploits a priori knowledge of
the internal structure, minimizing a suitable χ2 function with respect to the unknown internal
phases and transmissivities [182]. In section 4.3 we provided more details about the design and
the tomographic reconstruction. All tests have been carried out also on Fourier interferometers
of equivalent dimensions (m = 4, 8), to provide a comparison between the two performances and
highlight the advantages of the new approach. For more details on the implementation of the
Fourier transforms refer to Ref. [182] or Appendix 8.2.

Measurement of the total variation distance

The TVD between distributions obtained from distinguishable and indistinguishable photons has
been estimated experimentally for two-photon experiments in 4-mode and 8-mode Sylvester and
Fourier interferometers. As previously discussed, a distinctive feature of Sylvester interferometers
is that the TVD has the same value for two-photon experiments using any pair of input ports.
This value is never outperformed by Fourier interferometers, being matched only for cyclic inputs.

In the case of the 4-mode Sylvester and Fourier interferometers, all
(4
2
)

= 6 possible pairs
of different input ports have been injected, measuring for each pair all the collision-free output
distributions (that is, events with at most one photon per output port). Additionally, we
included an extra bin in the distribution accounting for the probability of collision events
(see Fig. 5.12a). For distinguishable photons, this collision probability can be calculated
using the measured probabilities for single-photon experiments. For indistinguishable photons,
the additional information provided by the measured two-photon Hong-Ou-Mandel visibilities,
together with the single-photon data, allows for an estimate of the collision probability. The
adoption of this extra bin prevents the appearance of pathological unitaries in our numerical
search, with high values of TVD for the collision-free subspace but unacceptably small probability
of collision-free events, which strongly reduce the amount of detected signal (see Appendices
for more details). Adjusting the distinguishability of the input photons we could then estimate
the TVD according to (5.10). The experimental results are reported in Fig. 5.12b. In the fixed
input case, the Sylvester interferometer (for all inputs) and the Fourier one (only for cyclic
inputs) reaches similar values within the range 0.435 ≤ T (4) ≤ 0.461. When averaging over
all inputs, the 4-mode Sylvester interferometer results in T (4)

S = 0.4465 ± 0.0006, thus clearly
outperforming the Fourier interferometer that yields T (4)

F = 0.4003 ± 0.0016. In the case of
the 8-mode interferometers, all two-photon output events were measured, including those with
collisions (see Fig. 5.12c). We probed the interferometers with three different pairs of input
ports, corresponding to the three classes of input pairs that, for the Fourier interferometer, result
in different TVDs. Again, the TVD for the Fourier interferometer reaches the same value of the
Sylvester only for cyclic input pairs. The measured average values were T (8)

F = 0.314± 0.007 and
T

(8)
S = 0.370± 0.007, where the average T (8)

F was estimated by weighting the three representative
input states by the multiplicity of the corresponding classes with different TVDs (Fig. 5.12d).
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Curiously, the measured T (4)
F and T (8)

F are higher than what was expected theoretically. Indeed,
as we show in Appendix 8.7, a particular feature of the Fourier interferometer design is that
manufacturing errors result in interferometers which are closer to the Sylvester one, thus increasing
the TVD. Our results confirm the theoretical prediction that Sylvester interferometers provide
optimal discrimination between distinguishable and indistinguishable photons in all scenarios
(fixed and multiple input), outperforming, in particular, Fourier interferometers in the multiple
input configuration.

Bayesian hypothesis test

A larger TVD should allow us to discriminate more readily the two hypotheses (distinguishable
or indistinguishable photons). To illustrate this feature, in Fig. 5.13 we show the results of a
Bayesian analysis with data samples numerically generated from the measured distributions,
compared with those expected from ideal interferometers (see Ref. [211], and Appendices 8.9 for
more details on the Bayesian validation test). For a given sample size, we use a likelihood ratio
test [211] to update a prior which initially assigns equal probabilities to the two hypotheses P
and Q, thus assuming no a priori knowledge. To verify the optimality of Sylvester interferometers,
the results obtained are compared with a sample of 104 Haar-random unitaries. The figure of
merit is the confidence probability Pconf that a data sample is assigned to the corresponding
correct hypothesis.

Figure 5.13. Bayesian simulation of hypothesis testing. Probability Pconf of correctly identifying
the type of data sample (distinguishable or indistinguishable photons) in a Bayesian test, as a function
of sample size (number of events), for the Sylvester interferometer. a, 4-mode interferometer, fixed
input states. b, 4-mode interferometer, multiple input configuration. c, 8-mode interferometer, fixed
input states. d, 8-mode interferometer, multiple input configuration. For the 8-mode devices, inputs
used were (2,6), (1,7), (3,5). Dashed curves: theoretical predictions. Solid curves: average of 104

distinct samples generated numerically from the experimentally measured distributions. Red curves:
Sylvester matrix, multiple input configuration. Orange curves: Sylvester matrix, different input states.
Blue regions: contour plots obtained from a numerical simulation over 104 Haar-random matrices.
Simulated data for the Haar-random case include partial photon indistinguishability x = 0.95 equal
to the experimental data, characterized by performing Hong-Ou-Mandel interference in a 50/50
beam-splitter. Ref. [208].
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Note that the dispersion of Pconf for Haar matrices in the fixed input case is larger than in
the multiple input configuration. The analysis performed on the experimental data shows that,
for the tested transformations, very small sample sizes suffice to identify the correct hypothesis
with a high probability of success. Numerical simulations performed on the Bayesian test show
that in presence of partial photon indistinguishability, quantified by a parameter x ∈ [0; 1], the
photons to pass the test if x > 0.788 for the 4-mode interferometer and x > 0.685 for the 8-mode
case (see Appendices 8.8 and 8.9).

Experimental assessment of Scattershot Boson Sampling

Scattershot Boson Sampling has been shown [149] to enable scalable Boson Sampling experiments
using probabilistic single-photon sources, at the cost of using a larger number of single-photon
sources at the input. To show our approach works well for this multiple-input configuration, we
have performed a Scattershot Boson Sampling experiment by connecting each input mode of
our 4-mode Sylvester interferometer to an independent heralded parametric down-conversion
source (see Fig. 5.14a). This single setup simultaneously samples all 6 different two-photon input
states. We have collected data both for the indistinguishable and distinguishable photon cases,
obtained by appropriately adjusting the relative time delay between the input paths. We have
then performed a step forward with respect to the binary Bayesian test applied previously (that is,
evaluating which is the most likely hypothesis between Q and P ). More specifically, we consider a
different scenario where the aim is to assess the output data by estimating the value of the mutual
indistinguishability of the SPDC sources in the scattershot experiment. The set of hypotheses to
be tested is now provided by a convex combination of indistinguishable Q (distinguishable P )
photons H(x) = xQ+(1−x)P . As previously introduced, x ∈ [0; 1] is a continuous real parameter
quantifying the degree of indistinguishability between the photons generated by different sources.
We have then applied Bayesian inference to the measured experimental data to estimate the value
of x, starting from a uniform prior P(x) and subsequently updating the distribution according to
the Bayes rule after the observation of a given data sample (see Appendix 8.11 for more details
on this approach).

Figs. 5.14b-c show the results of the Bayesian inference performed by using the measured
∼ 17000 experimental Scattershot data samples (in this case, no extra bin for collision events has
been included). The final estimated value x̃est of the indistinguishability parameter x, obtained
by using the complete set of experimental data, is x̃est = 0.738± 0.004. Such value is compatible
with the one obtained from a characterization with Hong-Ou-Mandel interference in a 50/50
beam-splitter xHOM = 0.79± 0.06, and with the estimated interval obtained with an alternative
method based on binary likelihood ratio tests xLR ∈ [0.734; 0.742] (see Appendices 8.10 and
8.11).

The performance obtained with the experimental data on Sylvester interferometer are then
compared with the one achievable with Haar random transformations, showing the optimality
of the Sylvester matrix. Indeed, the value of the estimation error σest is lower with respect to
the Haar ensemble (for the same number of measured events Nev). This confirms that Sylvester
interferometers represent a promising platform for the assessment of Scattershot Boson Sampling
experiments.

Discussion

In summary, in this Article we propose a method to search for optimal interferometer designs to
ascertain photon indistinguishability in multiparticle interference experiments, showing that in
certain scenarios Sylvester transformations offer an optimal solution for all input configurations.
We then experimentally implement these interferometers for the first time by exploiting a
novel 3D-architecture with the femtosecond laser-writing technology. We verify the superior
performance of Sylvester interferometers with a Bayesian hypothesis test which correctly identifies
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Figure 5.14. Bayesian inference on experimental Scattershot boson sampling. Inference of
the photon indistinguishability x as a function of sample size (number of events) from two-photon
Scattershot Boson Sampling experimental data in a 4-mode Sylvester chip. a, Experimental scheme
of the Scattershot approach. We use 4-PDC sources to probabilistically inject a different input
state, which is retrieved from heralded 4-fold coincidences (two trigger and two output detectors). b,
Evolution of the estimated value xest as a function of the number of events and c, error σest inferred
on the estimated value xest from the Bayesian posterior distribution with the 4-mode interferometer
(experimental data) as a function of the number of events Nev, compared with Haar-random matrices
(numerical simulations). Red solid line: single data sequence for the Sylvester interferometer. Red
shaded region: interval included within M = 100 different data sequences generated by random
permutations of the experimentally measured data. Blue solid line: average value obtained by
numerically sampled M = 100 Haar-random unitary. Blue shaded region: interval obtained by
numerically sampling M = 100 Haar-random matrices. The value of x adopted for the Haar-random
numerical simulations is equal to the final value x̃est estimated from the full set of experimental data.
Ref. [208].

whether photons are distinguishable or not using very small data sets. Furthermore, we perform
a complete Scattershot Boson Sampling experiment with the implemented Sylvester device,
showing the capability of identifying the collected data in this more complex multiple input
configuration. Several perspectives can be envisaged starting from these results.

On the experimental side, we show that the optimality of Sylvester interferometers suggests
an immediate application in the assessment of scattershot Boson Sampling, that enables scalable
experiments even with probabilistic single-photon sources. Furthermore, this class of transforma-
tions can represent a promising platform for near-future investigations on deterministic single
photon sources [143,223], in order to fully characterize multiphoton interference [142,224], and
as a diagnostic tool in reconfigurable photonic devices [22,23].

On the theoretical side, the identification of optimal interferometer designs for different
interferometer sizes and number of photons is a non trivial and interesting open problem.
Different scenarios occur in the fixed input and in the Scattershot cases. Based on numerical
simulations we can extrapolate that for a single input state, the best unitaries can be obtained
by embedding a n × n unitary matrix in a larger m × m one, acting as the identity on the
unoccupied input modes. Conversely, such operational approach does not hold in the multiple
input case, where finding the best unitary requires a global optimization. Hence, while Sylvester
matrices are optimal for certain sizes, further investigations are necessary to understand the
general structures underlying the optimal unitaries for all (n,m).

5.6 Suppression law with Sylvester interferometers
The search for the optimal unitary transformation brings us to address the Sylvester as one of
the most promising. Following this road, here we introduce3 a generalized law which permits to
predict a larger number of suppressed input-output combinations, further providing a sufficient

3This work is online as a pre-print in [193]
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condition. Let us write an n-photon state r = (r1, r2, ...rn) evolving in a 2p-dimensional Sylvester
interferometer as an n × p binary matrix R, whose n rows are the binary representations of
r1−1, r2−1, ...rn−1. We then identify with NA(r) the matrix obtained by negating the columns
of R specified by a list of indexes A. The input-output combinations r → s and s → r are
suppressed if some A exists for which both the following conditions are satisfied:

NA(r) = r (5.13)
n⊕
k=1

⊕
α∈A

Sk,α = 1 (5.14)

where ⊕ denotes the bitwise product, and S is the binary matrix representation of the state
s (for further details of the theoretical model, refer to Appendix 8.17). This new law results
in a much higher fraction of efficiently-predictable suppressed input-output combinations with
respect to Fourier matrices. More importantly, for fixed m it results in the same large fraction of
suppressed output states for every possible two-photon input combination. This feature is of
particular interest for Scattershot Boson Sampling experiments, where the input state is injected
randomly for each event.
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Figure 5.15. Experimental data with 4-mode device. Measured two-photon probability distribu-
tions P̃m,ni,j in the Scattershot regime for all input-output combinations, being (i, j) the input modes
and (m,n) the output modes. Contributions which are forbidden by the suppression are shown in red,
while non-suppressed ones are shown in green. Error bars (represented as blue rectangles) are due to
Poissonian uncertainties. Black horizontal segments: measured values with distinguishable particles,
with corresponding error bars (grey rectangles). On each subfigure the single violations D(4)

(i,j) for each
input state are reported. Ref. [193].

Consequently, we performed a two-photon Scattershot Boson Sampling experiment [149] to
verify the suppression law, by feeding a 4-mode integrated interferometer with one heralded
photon from each SPDC pair. The output events corresponding to two-photon injection were
then post-selected via four-fold coincidences measurements (two heralding detectors and two
detectors at the output of the device) for all the

(4
2
)
input-output combinations with four SPDC

sources. The experimental setup adopted for the Scattershot approach is shown in Fig. 4.4.
Further details on the generation and detection are reported in the Methods section.

The observed two-photon output statistics are shown in Fig. 5.15 where it is visible the
pattern configuration of peaks and dips described by the Sylvester matrix (U4

S). An effective
figure of merit to estimate if the observed data are compatible with those expected from a fully
interfering multiphoton source is the degree of violation [182, 201] ν = Nforbidden/Nevents, i.e.
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the ratio between the number of observed events in suppressed input-output combinations and
the total number of events. Evaluating the observed violation permits to rule out alternative
hypotheses, on the nature of the injected state. The fact that suppression laws are only partially

Mean MF D

7,8
6,8
6,7
5,8
5,7
5,6
4,8
4,7
4,6
4,5
3,8
3,7
3,6
3,5
3,4
2,8
2,7
2,6
2,5
2,4
2,3
1,8
1,7
1,6
1,5
1,4
1,3
1,2

0.115 0.31 0.57

0.12

0.10

0.00

0.02

0.04

0.06

0.08

Mean MF D

0.115 0.31 0.57

(1
,2
)

(7
,8
)

a b c

Figure 5.16. Suppression law on an 8-mode Sylvester interferometer. a, Two-photon probability
distributions in the distinguishable particle regime. b, Two-photon probability distributions in the
indistinguishable particles regime calculated through the HOM visibilities measured shot by shot for
all input-output combinations. Combinations forbidden by the suppression law are shown in red,
while non-suppressed ones are shown in green. c, Measured violations for all the input combinations.
Cyan bars are the observed violations, with corresponding error bars in blue. Blue line: mean over all
violations. Purple line: Mean Field (MF) threshold. Red line: distinguishable particles (D) threshold.
Ref. [193].

fulfilled from statistics coming from Mean Field states, confirms the diagnostic power of these
tools. In particular, one can show that the expected degree of violation for distinguishable
particles and MF states are respectively 0.66 and 0.4 (considering only collision-free two-photon
inputs and outputs). The overall experimental violation ν, obtained by summing all the measured
events over all possible input-output combination, is found to be ν(4) = 0.238 ± 0.003. The
measured value that are below the two thresholds of respectively 141 (distinguishable) and 54
(MF) standard deviations, can thus unambiguously exclude both these hypotheses (Fig. 5.15).
Indeed, the experimental values of D are below the value 0.4 for the MF state of at least 6
standard deviations σ for all inputs, and below the threshold 0.66 for distinguishable particles of
at least 26σ. The overall violation D, by summing over all possible input-output combination, is
D = 0.238± 0.003.

The suppression law has been experimentally verified also with a Sylvester 8-mode chip,
where the full set of

(8
2
)

= 28 two-photon input states has been investigated separately. In Fig.
5.16 we report the full set of 28× 28 probabilities, retrieved from the HOM visibilities measured
for all input-output combinations. The figure shows a good agreement with the expected ideal
pattern of suppressions showed in Fig. 5.10. In this case, one can show that the theoretical
degree of violations for distinguishable particles and MF states are respectively 0.57 and 0.31.
Measuring all two-photon coincidences for the Hilbert space with no-bunching contributions
(no-collision events) we are able to retrieve the degrees of violation for all input states. The mean
value of the violations is ν̄(8) = 0.115±0.002 which is well below the theoretical bounds predicted
for MF and distinguishable particles. This provide us a good indication that it is possible to rule
out these alternative hypothesis.

Discussion

In this work we introduced and verified experimentally a novel suppression law occurring in
Sylvester interferometers with indistinguishable photon inputs. This choice of the unitary
transformation ensures a large fraction of suppressed input-output combinations, even for large
numbers of photons and modes (see Fig. 5.17). The emergence of forbidden combinations in
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Figure 5.17. Analysis of suppressed input-output combinations. Fraction of suppressed in-
put/output pairs, among the total number of

(
m
n

)2 pairs of collision-free input/output states for
various values of the number of modes m and the number of photons n. The number of forbidden
combinations have been evaluated by a numerical approach in order to evaluate the complete landscape.

this scenario can be exploited to certify genuine multiphoton interference in a Scattershot Boson
Sampling experiment, where the full set of possible states is employed. Indeed, random input
generation has been recognized as a promising approach to greatly enhance the events rate in
SPDC-based Boson Sampling experiments. The protocol based on the suppression law is able to
rule out efficiently-computable alternative models which show coarse-grained interference effects,
thus providing a mid-term large scale validation for Boson Sampling experiments.
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Chapter 6

Exploiting machine learning
techniques for validation protocols

In this Chapter we introduce a novel approach to the validation problem. Rather than building
our tests upon our limited physical intuition of Boson Sampling distributions, we propose using
machine learning and statistical tools to teach computers to identify true photon interference. In
the following we report the first work based on pattern recognition and clustering techniques and
the second one which exploits correlations between output modes and statistical tools to classify
the physical behaviours.

These works are reported in the following papers, where I contributed mainly in carrying out
the simulations in the first work, while contributing in the experimental realization and in data
analysis in the second.

• I. Agresti, N. Viggianiello, F. Flamini, N. Spagnolo, A. Crespi, R. Osellame, N. Wiebe and
F. Sciarrino. Pattern recognition techniques for Boson Sampling validation, preprint at
arXiv:1712.06863, (2017).

• T. Giordani, F. Flamini, M. Pompili, N. Viggianiello, N. Spagnolo, A. Crespi, R. Osellame,
N. Wiebe, M. Walschaers, A. Buchleitner and F. Sciarrino. Experimental statistical signature
of many-body quantum interference, Nat. Photon., 12, 173–178 (2018).

6.1 Pattern recognition techniques for Boson Sampling valida-
tion

In this section we will introduce the first approach that we exploited, which focus on validate
true photon interference with pattern recognition techniques. Our approach is based on the
theoretical proposal of Wang and Duan [225], and expands the idea behind, exploiting also to
machine learning techniques to test the output data. The base model consists in a compatibility
test, based on data clustering, performed on experimental sampled data drawn from an untrusted
Boson Sampler as well as a trusted device . More specifically, we will tailor the technique
to operate in an experimental regime available with current technology (N ∼ 3, m ∼ 10 and
collision-free case), preserving its robustness also when applied to larger Hilbert spaces. This
method relies only on experimental data, not requiring any permanent evaluation, and its goal
is to recognize whether two samples drawn from different devices belong the same statistical
population or not. Such approach can be applied to validate an unknown device in the scenario
when a reliable boson sampler is available. We tested this model using numerical simulations
both for small-scale Boson Sampling and Scattershot experiments. We find that, even when
tested on Boson Samplers the model had never seen, the model accurately predicts the correct
result whereas prior methods did not.
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Figure 6.1. Bubble clustering validation scheme. a, A sample is drawn from each of the two Boson
Samplers to be compared. b, The events belonging to one of the two samples are sorted according
to their observation frequency. The state with highest frequency is chosen as the center of the first
cluster. Those events with distance d from the center smaller than a cut-off radius ρ1 are included in
the cluster. c, Starting from the unassigned events, this procedure is iterated until all of the observed
events are included in some bubble. At this point, each cluster is characterized by a center and a
radius. d, The observed events belonging to the second sample are classified by using the structure
tailored from the first sample: each event belongs to the cluster with the nearest center. A χ2 test
with ν = Nbubbles − 1 degrees of freedom is performed to compare the number of events belonging
to the first and second sample by using the obtained cluster structure. This variable quantifies the
compatibility between the samples.

In the regime where a Boson Sampling device is expected to outperform its classical counter-
part, the validation problem has inherently to deal with the exponential growth of the number of
input/output combinations. A promising approach in this context is provided by the field of
machine learning, which studies how a computer can acquire information from input data and
learn throughout the process how to make data-driven predictions or decisions [226]. Significant
progresses have been achieved in this area over the past few years [227, 228]. One of its main
branches is represented by unsupervised machine learning, where dedicated algorithms have to
find an inner structure in an unknown data set. The main unsupervised learning approach is
clustering, where data are grouped in different classes according to collective properties recognized
by the algorithm. Several clustering methods are widely employed [40], such as K-means and
Hierarchical clustering. Being these approaches designed to identify hidden patterns in a large
amount of data, they are promising candidates to be applied for the Boson Sampling validation
problem.

Let us discuss the general scheme of the proposed validation method based on pattern
recognition techniques. Given two samples obtained respectively from a Boson Sampler, that
is a trusted device, and a Boson Sampler to be validated, the sequence of operations consists
in (i) finding a cluster structure inside the data belonging to the first sample, (ii) once the
structure is completed, organizing the data of the second sample by following the same structure
of the previous set, and (iii) performing a χ2 test on the number of events per cluster for the
two independent samples. The χ2 variable is evaluated as χ2 = ∑N

i=1
∑2
j=1

(nij−Eij)2

Eij
, where

index j refers to the samples, index i to the clusters, nij is the number of events in the i-th
cluster belonging to the j-th sample and Eij is the expected value of observed events belonging
to the j-th sample in the i-th cluster Eij = ninj/n, with ni = ∑2

j=1 nij , nj = ∑N
i=1 nij and
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n = ∑N
i=1

∑2
j=1 nij . If the null hypothesis of the two samples being drawn from the same

probability distribution is correct, the evaluated variable must follow a χ2-distribution with ν
= Nclusters − 1 degrees of freedom. This scheme can be applied by adopting different metric
spaces and different clustering techniques. Concerning the choice of the metric, both 1-norm
and 2-norm distances can be employed as distance d between two Fock states Ψ and Φ, namely
d = L1 = ∑M

i=1 |Ψi − Φi| or d = L2 =
√∑M

i=1 |ψi − φi|2, with Ψi and Φi being respectively the
occupation numbers of Ψ and Φ in the i-th mode.

6.1.1 Adopted clustering techniques

Several clustering methods were employed within our validation scheme: (1) a recent proposal
by Wang and Duan [225], whose concept is shown in Fig. 6.1, and two unsupervised machine
learning techniques, (2) agglomerative Hierarchical Clustering and (c) K-means clustering. Two
variations of the latter approach were also examined, to increase the strenght of our model. A
short description of each adopted method follows briefly.

1. The protocol proposed by Wang and Duan [225], and hereafter named bubble clustering,
determines the inner cluster structure of a sample by (i) sorting in decreasing order the
output events according to their frequencies, (ii) choosing the observed state with the
highest frequency as the center of the first cluster, (iii) assigning to such cluster all the
states belonging to the sample whose distance d from its center is smaller than a cutoff
radius ρi, and (iv) iterating the procedure with the remaining states until all the observed
events are assigned.

2. Hierarchical clustering, in its bottom-up version, starts by assigning each observed event
to a separate class. Then, the two nearest ones are merged to form a single cluster. This
grouping step is iterated, progressively reducing the number of classes. The agglomeration
stops when the system reaches a given halting condition pre-determined by the user. In the
present case, the algorithm halts when no more than 1% of the observed events is included
in some cluster containing less than 5 events. All of these smallest clusters are considered
as outliers and removed from the structure when performing the χ2 test. The distance
between two clusters is evaluated as the distance between their centroids. The centroid of
a cluster is defined as the point that minimizes the mean distance from all the elements
belonging to it.

3. K-means is a clustering algorithm where the user has to determine the number of classes
(k) [40, 229,230]. With this method, the starting points for centroid coordinates are chosen
randomly. Then, two operations are iterated to obtain the final cluster structure, that
are selecting elements and moving centroids. The first one consists in assigning each
observed event to the cluster whose centroid has the smallest distance from it. Then,
once the k clusters are completed, the centroid of each cluster is moved from the previous
position to an updated one, given by the mean of the elements coordinates. These
two operations are repeated until the structure is stable. Given a set of k centroids
(c1, ...ck) made of (n1, ..nk) elements (e11, ...e1n1 , ..., ek1, ..., eknk), where

∑k
i=1 ni= N , the

operations of selecting elements and moving the centroids minimize the objective function
1
N

∑k
j=1

∑nk
i=1 d(eij , cj). Several trials were made to determine the optimal number of

clusters, showing that the performance of the test improves for higher values of k and then
reaches a constant level. We then chose to balance the two needs of clusters made up of at
least 5 elements, since the compatibility test requires a χ2 evaluation, and of a high efficacy
of the validation test.

4. Variations of K-Means, different initial conditions can lead to a different final structure.
Hence, the algorithm can end up in a local minimum of its objective function. To avoid this
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issue, we considered three different strategies: (I-II) replacing the random starting condition
with two initialization algorithms, namely (I) K-means++ and (II) a preliminary run of
Hierarchical clustering and (III) building on the same data set several cluster structures.

6.1.2 Numerical results

As a first step, we performed a detailed analysis to identify the best algorithm among the
mentioned clustering methods. More specifically, we proceeded with the two following steps: (i)
a training stage and (ii) a validation stage. The parameter quantifying the capability of each
test to perform correct decisions is the success percentage or, equally, the probability that two
samples drawn from the same statistical population are labeled as compatible while two samples
drawn from different probability distributions are recognized as incompatible.

(i) In the training stage, we applied all the algorithms on a training set of numerically
generated samples of output states, belonging to the collision free subspace of N = 3 photons
evolved through a fixed unitary transformation, with m = 13 modes. For each considered sample
size, the parameters proper of each technique were optimized. To evaluate the success percentages
for each configuration of parameters we sample 500 output events from boson sampling and
distinguishable output distribution. We observe that the best success percentage is obtained for
the K-means++ method with majority voting and employing the L2 distance.

(ii) In the validation stage, we validated the algorithm with the highest success percentage
according to our tests. We divided this task into two steps, by first (ii.a) validating its functioning
for general unitary transformations and then (ii.b) by increasing the dimension of the Hilbert
space. Hence, (ii.a) we performed the test with N = 3 photons evolving through 20 different
Haar-random 13 × 13 matrices. For each matrix we performed 100 tests between compatible
samples and 100 between incompatible ones, by fixing the number of clusters and trials to the
values determined in stage (i). We observed that the chosen approach, K-means++ with majority
voting and employing the L2 distance, permits to achieve better success percentages (Mean
∼ 98%). Then (ii.b) we tested the capability of the chosen validation method to successfully
operate on Hilbert spaces with larger dimensions. More specifically, we progressively increased
the number of photons and of modes, showing that the adopted test permits to validate the data
samples even for larger values of N and m (see Tab. 6.1).

Therefore, we collected data samples corresponding to the Boson Sampling distribution, and
distinct samples obtained with distinguishable particles. The unitary evolution is implemented
by an integrated photonic chip realized exploiting the 3D-geometry capability of femtosecond
laser writing [24–26] and performs the same transformation U employed for the numerical
results used with the training stage. We then performed the same compatibility tests described
previously on experimental data sets with different sizes, by using two methods: K-means++
with majority voting and bubble clustering, both with 2-norm distance (see Appendix 8.13).
The results are shown in Fig. 6.2a, for the case of incompatible samples. This implies that the
reported percentages represent the capability of the test to recognize Boson Sampler fed with
distinguishable photon inputs. Reshuffling of the experimental data was used to have a sufficient
number of samples to evaluate the success percentages (see Appendix 8.15). Hence, the tests
were performed on samples drawn randomly from the experimental data.

6.1.3 Generalization for Scattershot Boson Sampling

The scattershot version of Boson Sampling [149] is implemented with six independent parametric
down-conversion photon pair sources are connected to different input modes of the 13-mode
integrated interferometer as for [149]. We considered a generalization of the proposed algorithm to
be applied for scattershot Boson Sampling. In this variable-input scenario a Boson Sampler to be
validated provides n samples that correspond to n different inputs of the unitary transformation,
that is, n Fock states Φi with i ∈ {1, n}. Hence, our validation algorithm in its standard version
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Output Classification

Photons (N)

3 4 5

Modes (m) Ind. Dis. Ind. Dis. Ind. Dis.

13
20 0 20 0 20 0 Ind

0 20 0 20 0 20 Dis.

20
20 0 20 0 20 0 Ind

0 20 0 20 0 20 Dis.

30
20 0 20 0 19 1 Ind

0 20 0 20 0 20 Dis.

40
20 0 19 1 19 1 Ind

5 15 1 19 2 18 Dis.

50
20 0 19 1 20 0 Ind

3 17 1 19 1 19 Dis.

Ind. Dis.

Overall performance
296 4 Ind.

13 287 Dis.
Table 6.1. Confusion matrix for K-means++ with majority voting by varying N and m

[validation stage, step (ii.b)] Upper table: number of successes for K-means, initialized by K-
means++ and with majority voting, obtained for different values of the number of photons N and
modes m. We adopted the same parameters obtained from stage. Lower table: overall confusion
matrix obtained by summing the results over the number of photons and modes.

needs to perform n separate compatibility tests. Indeed, it would bring n distinct chi-square
variables χ2

i , where the i-th variable would quantify the agreement between the distribution of
the data belonging to the input Φi and the distribution of a sample drawn by a trusted Boson
Sampler with the same input state. Hence, each input state would be tested separately.

In order to extract only one parameter to tell whether the full data set is validated or not, for
all inputs, a new variable can be defined as χ̃2 = ∑n

i=1 χ
2
i . This variable is a chi-square one with

ν = ∑n
i=1 νi degrees of freedom, provided that the χ2

i are independent. We have performed this
generalized test on the experimental data by adopting the same clustering technique previously
discussed in the single input case. We have collected output samples given by 8 different inputs
both with indistinguishable photons and with distinguishable ones. Through the evaluation of
the new variable χ̃2, the algorithm was able to distinguish between a trustworthy scattershot
Boson Sampler and a fake one at the significance level of 5%, using a total number of observed
events up to 5000 events (over all inputs), as shown in Fig. 6.2b. The standard version of the
test, validating each input separately, would require samples of 2000 events per input to reach a
success percentage ≥ 80%, that is, an overall amount of 16000 events. Hence, the generalized
version of the test permits to significantly reduce the amount of necessary resource to validate
scattershot Boson Sampling experiments.



6.2 Experimental statistical signature of many-body quantum interference 110

Figure 6.2. Experimental validation of a small-size Boson Sampling and Scattershot ex-
periment with N=3 and m=13. a Success percentages of the compatibility test performed on
incompatible experimental data sets with different size (indistinguishable against distinguishable
photon inputs), for a significance level of 5%. The darker dots represent the performance of K-means++
with majority voting clustering algorithm, while the lighter ones were obtained with bubble clustering.
b, Success percentages obtained by applying the generalized version of the compatibility test performed
on incompatible experimental data samples of different size, (indistinguishable against distinguishable
photon inputs) for a significance level of 5%. Experimental data sets correspond to 8 different inputs.

Discussion

In this section we have shown that pattern recognition techniques can be exploited to identify
pathologies in Boson Sampling experiments. The main feature of the devised approach relies in
the absence of any permanent evaluation, thus not requiring the calculation of hard-to-compute
quantities during the process. Finally, such approach is scalable to larger Hilbert spaces, thus
being a promising approach for the validation of mid-term experiments.

Looking forward, it is our hope that when building data-driven (rather than first principles)
models for error, cross-validation will be used to report the performance of such algorithms. For
example, our method had 100% classification accuracy for the training data but had roughly
95% accuracy in the test data. Had we only reported the performance of the algorithm on the
training data it would have provided a misleading picture of the method’s performance for larger
Boson Sampling experiments. For this reason it is important that, if we want to use the tools of
machine learning to help validate quantum devices, then we should also follow the lessons of
machine learning when reporting our results.

6.2 Experimental statistical signature of many-body quantum
interference

In this section we want to show a different approach to validate true genuine quantum interference,
which exploits statistical tools. Calculate the permanents, as we showed in previous chapters, is
not efficient because it belongs to the computational class #P [42]. The full characterisation of a
many-body quantum state requires, unfortunately, the entire set of permanents associated to the
scattering matrix which is the pivot of the quantum interference. If we want to investigate higher
order moments, we cannot because permanents depends on high-order correlation functions [231].

However, we can see that there is a large set of correlation functions which are suitable and
accessible for a standard computation which do not require an exponential amount of time and
resources [232]. The important question is whether this correlators can provide a sufficient tool
to validate true boson interference among the fraudulent ones [201].
Here, we experimentally tested the protocol proposed in Ref. [210], which is based on the
correlator Ci,j that exploits the expected value of the number operators:

Ci,j = 〈n̂in̂j〉 − 〈n̂i〉 〈n̂j〉 . (6.1)
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Figure 6.3. Conceptual scheme. The steps of our experimental implementation of the validation
protocol: the generation of three-photon state with the possibility to switch between the alternative
hypothesis of indistinguishable (I) and distinguishable (D) particles, varying the relative time delay
and removing the interference filters; the evolution trough a network of directional couplers and phase
shifters implementing the 7-dimensional random unitary; finally the detection stage to cumulate Nklm
events, including those with more than one photon per mode. The setup enable us to compute the
whole C-dataset consisting of 21 correlators between the all possible output pairs and to classify the
nature of the input state according to its first order moments, in the (NM,CV ) plane.

It quantifies how the number of outgoing photons in modes i and j are correlated (〈·〉 is the
expectation value). The term 〈n̂in̂j〉 contain all the necessary information of the interaction
between particles. As shown in Eq. (6.1) we subtract with the expectation values of the classical
contributions on the single output modes, thus focusing only on the interference part. However,
a single correlator usually cannot show us with sufficient detail the entire structure. For this
reason we have to consider the full set of correlators belonging to the same input, by taking in
account all the i, j with i < j to have an hint of interference pattern. In Ref. [210] is showed that
the behaviour of true bosons and their simulated counterparts (which only exhibit bunching, but
no multi-particle interference) have a strong resemblance. Consequently, a deeper quantitative
understanding is crucial to distinguish the signature of bosonic many-particle interference from
the quantum dynamics of other species. We have to take in account instead, the second and
third moment of the obtained correlator dataset, which can provide us the desired contrast. To
solve the problem, Walschears et al. [210] proposed the normalised mean (NM), i.e the first
moment divided by n/m2, the coefficient of variation (CV), i.e the standard deviation divided
by the mean and the skewness (S) as benchmark parameters. For the analytic solutions of this
quantities, refer to [210]. It is worth noting that this protocol can be performed efficiently because
it requires, if we want to measure the higher moments with sufficient accuracy (independently
from the number of modes and photons), at most the calculus of permanent of 4×4 submatrices1.
Nevertheless, to reach a sufficient accuracy we have to do repeated measurements of correlators
Ci,j for each output combination.

Here we experimentally tested this validation protocol by implementing a Haar random 7× 7
unitary matrix injecting a 3-photon state inside the optical chip for different inputs (see Section
3.5 and Fig. 6.3). The full C-dataset of our boson sampler consists of total amount of

(21
7
)

= 21
correlators. In our setup we have collected events in which three particles are detected in the
output mode’s arrangement (k, l,m). Let us define Nklm, the number of time in which the
(k, l,m) configuration is sampled, N the total sample’s size and niklm, the number operator’s
eigenvalue in the mode i of the output state (k, l,m). The two-mode correlator can be estimated

1This is due to the upper bound setted by the Variance V ar(Ci,j) which has in the analytic formula, in the
worst case a low polynomial power in the creation operators
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Figure 6.4. Experimental output data samples for indistinguishable particles. For both input
states A=(1,4,5) and B=(1,3,6), we measured three-photon data samples (orange) and compared them
with the expected distribution from the reconstructed transformation (blue). a,d) Output data samples,
including all bunching configurations, for input state A withNA=10200 events (a) and B withNB=1800
events (d). The total variation distances (TVD) between the theoretical distributions and experimental
samples are TVD(A) =0.162± 0.004 (a) and TVD(B) =0.205± 0.009 (d). Theoretical distributions
take into account partial indistinguishability between the input photons. b,e) Experimental C-datasets
(orange) corresponding respectively to the input states A and B, compared to the absolute value of
the corresponding sets expected from the reconstructed transformation (blue). c,f) Histograms of
C-datasets for hypothesis D (distinguishable, red) and I (indistinguishable, blue) for input A (c)
and B (f). Error bars in the experimental data samples (a,d) are due to the Poissionian statistics of
photon counting measurements, while error bars in b,e are generated via Monte Carlo simulations
from the experimental data.
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as

Cij = 1
N

(∑
klm
l≥k
m≥l

niklm njklm Nklm −
∑
klm
l≥k
m≥l

niklm Nklm
∑
klm
l≥k
m≥l

njklm Nklm
)

(6.2)

Note that in Eq. (6.2) output configurations with more than one photon per mode are needed,
consequently we took to account this feature. Experimentally, this was done adding cascades of
two fiber beam splitters for each output in order to emulate number-resolving detectors [126] and
measure all bunching contributions. Data are then corrected and analysed taking into account
each loss and splitting ratio of the fiber beam splitters.

Figure 6.5. Assessment of multi-particle interference. At the final stage of the algorithm we plot
our experimental points (yellow disks) in the NM-CV plane, which enhances the separation between
data from distinguishable (D) and indistinguishable (I) photons. The normalized mean (NM) and the
coefficient of variation (CV) are reported for the C-datasets corresponding to the two inputs A and B
and for the two alternative hypotheses (I: blue; D: red). a) Experimental points can be assigned to
one of the two clouds numerically generated by 104 Haar-random unitary transformations for I (blue)
and D (red) particles, according to a given classification algorithm. Here, red and blue circles are the
centroids predicted by RMT. b) Additional information on the adopted implementation is employed.
Clouds (I: green; D: light orange) are numerically generated exploiting knowledge on the implemented
circuit, by sampling 104 random unitaries according to a fixed internal structure, equivalent to the
one adopted for our integrated circuit, and random parameters for the internal beamsplitters and
phase shifters building up the transformation. Furthermore, sampling from different input states is
considered. Consequently, centroids of the new clouds (orange and green squares) do not coincide with
the RMT predictions (red and blue circles). In both plots, the axes of the yellow disks correspond
to 2 standard deviations, as estimated via a Monte Carlo simulation from the experimental data.
Triangles, representing the means of the experimental points A and B for distinguishable (red) and
indistinguishable (blue), fall well in their respective clouds, allowing for a confident discrimination of
the datasets.

We injected two different input states and we calculated for each one the normalized mean
and the coefficient of dispersion with the correlators associated to the post-selected events in
the output. We changed from indistinguishable to distinguishable particles simply removing
interferential filters (gaining a factor 10 in the 3-photon count rate) and delaying of relative
time respect to them. In Fig. 6.4 we reported the measured output distributions of the two
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indistinguishable input states injected A = (1, 4, 5) and B = (1, 3, 6) with correlators associated
to each one calculated with (6.2). In Fig. 6.5 is showed the experimental plot of NM versus
CV where the centroids (black spots) were calculated by means of theoretical prediction given
by random matrix theory (RMT) [233]. The two numbs represent two collective behaviours of
particle sampled with partial distinguishability (dark red) P = 0.63 (see Appendices for the
model used to describe partial distinguishable states) and fully distinguishable (cyan) where each
point is the NM and CV for any sampled Haar matrix generated. Red and blue points represent
the experimental values obtained by injecting the two input states into the integrated device. As
it shown, the two behaviour are well confined in the equivalent numbs as predicted by the Haar
random simulations.

6.2.1 Generalizing the scheme with random forest classifiers

Inspired by the analysis described in the original proposal [210], we investigate the efficacy of
a broader set of estimators to discriminate between datasets with distinguishable and indis-
tinguishable photons. Our approach aims at exploiting summary statistics to identify highly
effective signatures of genuine interference. These quantities include common measures of location,
dispersion and shape for probability distributions and help quantify key global characteristics of a
given dataset in a unique figure of merit. The idea is that data related to particles with different
degrees of distinguishability may exhibit a marked separation in these global characteristics,
reducing the task of validating multi-particle interference to the assignment of an experimental
sample to one of two or more alternative hypotheses. Thus, this task perfectly fits in the scope of
classification problems. To this purpose, we choose a set of 10 estimators and study their efficacy
in making classification algorithms separate clouds of data associated to the two hypotheses of
distinguishable and indistinguishable photons. Following the intuition of Ref. [210], we consider
as input for the classification algorithm the two-mode correlators C-dataset given by Eq.(6.2).
Indeed, the resources required for its evaluation scale polynomially with the dimension of the
problem and they promise to capture hidden correlations highly characteristic for each of the
hypotheses under test.

With regard to the classification, we select among others the random forest classifier (RFC),
a learning method widely adopted for classification tasks for its ability in handling both linear
and highly non-linear dependencies [234]. The basic mechanism of a RFC is to build a collection
of decision trees over the space of the dataset and point by point output the mode of the
classes of the individual trees. Chosen the input data (the C-dataset) and the classifier, we
proceed in generating the input data to feed the RFC, for various numbers of photons n and
modes m. Specifically, we sampled 104 m-dimensional unitary evolutions according to the Haar
measure and, for each transformation, we evaluated the C-dataset in the cases of n-photon
distinguishable and indistinguishable input photons. We then input the two datasets in the RFC,
with hyperparameters properly optimized for this task, and studied the contribution of each
estimator to the whole classification procedure as seen by the classifier itself. The basic idea
behind this analysis is that not all estimators provide the same amount of information to help the
RFC understand the logic on how to assign each point to the various classes. However, thanks
to the mechanism proper of decision trees, which is based on iteratively querying each estimator
about entropic measures, it is possible to construct a ranking of importance by retracing how
successful each estimator has been in performing the assignments (Fig.6.6a). By repeating this
analysis for various combinations of (n,m) we identify a clear subset of summary statistics that
prove to be effective for discriminating the two hypotheses. Moreover, as we progressively varied
the dimensions of the problem, we also retrieve a qualitative trend of their importance, which we
summarized in Fig.6.6b.

Our qualitative analysis suggests at least two results: first, we find that random forests
indeed select two of the first three moments (NM and CV) as highly informative features for the
classification, retrieving the observations at the core of the validation protocol [210]. Furthermore,
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also the qualitative scaling of their importance correctly reproduces the one that was described in
the original proposal via direct numerical simulations: NM and CV become in fact respectively
less and more meaningful as the dimension of the problem increases with (n,m). Similarly,
though still less significant for this task in the range of (n,m) reported in Fig.6.6, also the third

b

NM

NM

CV
TVD

CV

NM
S

…Fr
eq

u
en

cy

x2

x2

x1

x1

I
I
I D

D
D

D

D
I

a

(n,m)

(3,9)
(4,16)
(5,25)
(6,36)
(7,49)
(8,64)
(9,81)

(10,100)

(15,225)

(20,400)

(25,625)

(30,900)

0% 25% 50% 75% 100%

Relative importance in discerning indistinguishability

S K HM M CV TVD MD ROC IQR NM

K

S

CV NM

Figure 6.6. Importance of summary statistics for classification. An arbitrarily large set of estima-
tors can be employed to classify datasets from experiments with different levels of distinguishability. To
grasp the -unknown- relevance of each estimator, a key tool is provided by feature selection techniques
and, in particular, by the Mean Decrease in Impurity (MDI) via random forest classifiers (RFC) [234].
MDI estimates the importance of each estimator as the sum over the corresponding number of splits
in the RFC, weighted by the number of samples it splits (a). Here we show the relative statistical
importance of a specific set of summary statistics according to a RFC, averaged over 200 random
extractions of training sets from datasets of 104 samples (b). Each sample is constructed by generating
a Haar-random unitary transformation and evaluating 10 quantities over the corresponding two-mode
set of correlators (C-dataset) from Eq.(6.2). Here, CV: coefficient of variation; HM: harmonic mean;
IQR: Interquantile range; K: Kurtosis; M: median; MD: median deviation; NM: normalized mean;
ROC: area under the ROC curve for the normalized C-dataset; S: skewness; TVD: total variational
distance of the C-dataset, normalized to 1, from the uniform distribution. All bars in the chart are
ordered according to the legend below.
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moment (S: Skewness) exhibits the same -slowly- increasing trend found in Ref. [210]. Finally,
and importantly, our RFC classification scheme allows to identify those quantifiers that are
near-to-optimal for a given decision problem in terms of, e.g., size and particle types. These
may be quite distinct from, and more efficient than, the lowest order statistical moments of
the C-dataset as employed in Ref. [210]. Furthermore, the hierarchical ordering of different
quantifiers as achieved by the RFC analysis might be a reflection of specific structural properties
of the many-particle interference under scrutiny, and therefore motivates further research. The
capability of assessing their importance makes RFCs very useful to gain effective insights, as
well as to filter irrelevant figures of merit or to capture unknown connections between them.
Moreover, the fact that it does not require detailed knowledge on the system makes this approach
flexible and ready for use where a complete theoretical picture is not available.

Discussion

In this work we experimentally tested the protocol proposed by [210]. We showed that by
measuring the correlators of all possible output outcomes it is possible to use statistical tools to
validate many-bosons interference as normalised mean and coefficient of variation to distinguish
between different particle statistics. We tried to validate also with skewness but we think that for
the experimental condition that we had, we are not able to use it, because the number of modes
and photons are not sufficiently large to discriminate. In principle as pointed out in [210], smaller
sizes of the interferometers provide smaller C-datasets that we can use to calculate higher orders
statistical functions as the skewness and obtain higher statistical significance. Nevertheless, in Fig.
6.5 we showed that our experimental data can successfully discriminate partial distinguishable
particles from fully distinguishable particles and the process is efficient because does not require
the scaling calculation with n thanks to RMT theory that permits us to predict the centroid
of the numbs in a reasonable number of operations. Moreover with RFC we successfully show
that NM and CV are important figure of merit in this task even for small sizes. In parallel we
confirmed the theoretical predictions about the behaviour of the first moments for large size
systems.
From a more general perspective, since these statistical correlators are constructed to individuate
many-particle quantum interference, beyond quantum statistical bunching or anti-bunching
effects, these results improve our knowledge of the quantum many-body dynamics for distinct
particle behaviours. Lastly, all these calculations can be made in an efficient way since the
complexity of the protocol do not scale with the number of photons and modes.

For completeness we list and compare in the following table the validation protocols studied so
far described in Chapter 5 and 6, by highlighting the strong and the weak points in terms of
scalability and efficiency.
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Table 6.2. Comparison between the different validation protocols experimentally implemented with
our photonic platforms. We report the difference in terms of number of modes (m), number of
photons (n), if we need to compute the permanent (efficiency), if it is suitable for SBS-like experiments
(Multi-Input) the architecture scheme implemented, the discrimination power with the system size
(Scalability) and which model can discriminate (Hypothesis).
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Chapter 7

Quantum interference with
deterministic single photon sources

In this Chapter we will see the work that I carried out in collaboration with the GOSS group
leaded by Pascale Senellart. The main goal of this is to test integrated photonics platforms
exploiting on-demand single photon sources. We will address the following two questions: 1) can
we scale-up our systems in terms of single photons generations? 2) Can we use our platforms
and validation protocols to verify indistinguishability of these sources? In collaboration with
IFN-CNR and Politecnico di Milano we built a tunable 3-mode tritter [219] as testing platform.
We connected the two platforms in order to verify the genuine quantum interference provided by
the merged system. Although this work is still in progress, we were able to answer to question 1,
and at the moment we are performing upgrades to the setup in order to answer to the second
question.

We will provide a brief description of the quantum dots used in this experiment describing
the main properties of these sources. Furthermore we will discuss the properties of micropillar
cavities [223] which have been significant for the development of Quantum Dots (QD) in the last
years. Finally we will describe the experimental setup and the analysis that we employ for the
experiment, showing our results. The work is still in progress and we are focusing on how to
validate quantum interference of single photons generated by solid state systems.

The paper of this work is currently in preparation with temporary author list: Carlos Anton,
Guillame Coppola, Juan Loredo , Niko Viggianiello, Fabio Sciarrino, Andrea Crespi, Roberto
Osellame and Pascale Senellart.

7.1 Introduction to quantum dots
In the last decades there were significant progresses in the field of quantum technology, especially
regarding photon generation and storage. Many systems have been explored, such as: ions [4, 5]
superconducting qubits, defects in diamond (NV centers) [235], atoms [8, 9] and semiconductor
quantum dots (QDs) [18, 236–238]. In this context, the ideal photon source is a deterministic
single-photon source which should shot single photons on-demand. Of course, such properties are
very difficult to gather, optical losses inevitably degrade the deterministic nature of the source
even if this one is ideal.

In this context, strong efforts have been made by the solid-state community to develop
alternative single photon sources based on single quantum emitters. The best results in terms of
single photon generation, brightness and photon indistinguishability have been obtained using
semiconductor quantum dots. Semiconductor quantum dots are nanometric insertions of a small
bandgap material in a larger bandgap matrix. The strong confinement of charges in quantum
dots makes the electronic occupancy states discrete, very similarly to the electronic states in
a single atom. In a bulk material, single photons are emitted from a QD quasi-isotropically in
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high refractive index material, limiting the collection efficiency to a few percent. Controlling the
QD emission in photonic structures like microcavities or single mode optical waveguides, it is
possible to observe brightness close to 80% as it has been demonstrated in 2010-2013 [239,240].
The first signal of the good capability of cavities for enhanced emission and the generation of
indistinguishable photons has been demonstrated in 2002 by Santori et al. [241].

This chapter describes the work that I have done in collaboration with the group of Pr.
Pascale Senellart at the Laboratoire de Photonique et Nanostructures (LPN). The group has
developed a long expertise in QD photonic devices, based on cavity quantum electrodynamics
(CQED). A great challenge to study CQED with QDs is that QDs are randomly distributed both
spatially and spectrally. The LPN team developed in 2008 a technique that allows a full control
of the coupling between a single QD and a micro-cavity [242]. This technique, called in-situ
lithography technique [250], allowed them to demonstrate on-demand control of spontaneous
emission of a QD both in the weak and strong coupling regime. In 2010, they demonstrated the
fabrication of an ultrabright source of polarization-entangled photon pairs [243]. Moreover, in
2013, Gazzano et al. fabricated a bright sources of indistinguishable single photons and used it
to implement a two-photon quantum logic CNOT gate [244]. All these results opened the road
for the development of ultra-bright deterministic sources in the context of linear optics.

7.2 Structure of self-assembled quantum dots
First, we introduce the material and the technique developed to build the structure of the
quantum dot for the experiment. A InAs/GaAs quantum dot (QD) is a small cluster of InAs
atoms in a GaAs lattice. Since InAs bandgap is lower in energy as GaAs bandgap, it forms a local
potential well for the carriers in all the directions of space. Due to the lattice mismatch between
GaAs and InAs (the latter having a lattice constant 7% larger), the InAs layer suffers strong
mechanical strain. When the InAs reach a critical thick, it becomes energetically favourable
for the material to change its configuration, permitting the formation of several clusters of few
thousands of atoms. Regarding the surface, the density of quantum dots in the the material can
vary with temperature or with indium flow [245]. The typical densities of InAs dots can vary
from 10 µm−2 to 500 µm−2 . The inner structure consists in a series of lenses laying on a 2D
InAs layer. The lateral size is typically around 10-20 nm with a height of 3 nm, as shown in
Fig. 7.1a and 7.1b. Figure 7.1b shows also the randomness of the QD position as well as the
size dispersion. This random distribution and shape diversity make the coupling of a single QD
with a cavity a very challenging task as it will be shown in the following sections. The InAs
quantum well forming the common base of the QDs is called the wetting layer. In the wetting
layer, the confinement of charges is only in the growth direction (1D), the fundamental energy
level is higher (1.442 eV, corresponding to a emission wavelength of 860 nm) than in the QD
(1.319 eV or 940 nm).

7.3 Occupancy states of a quantum dot
Depending on the laser wavelength, carriers can be generated in the GaAs, in the InAs wetting
layer (WL) or even directly in resonance with an energy level of the QD as illustrated in Fig.
7.2. When created non resonantly, the carriers relax to lower energy levels with a typical
relaxation time of 30-50 ps [246]. When a quantum dot is occupied by one electron-hole pair, the
occupancy state is called exciton (denoted X). Note that contrary to excitons in systems with
less confinement, the exciton is formed by the coulombian interaction between the electron and
the hole. Here, the exciton in a InAs QD is mainly formed by the 3D confining potential. As a
result, it would be more correct to call an exciton an electron hole pair. A negatively or positively
charged exciton is named trion (denoted X+ or X−) [247]. When the dot is occupied by two
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(a) (b)

Figure 7.1. (a) Transmission electron microscopy image of a quantum dot. (b) Atomic Force Microscope
(AFM) image of InAs quantum dots. Image taken from [256].

excitons, the emission line is called biexciton (XX). For all these states, electron/hole pairs can
recombine themselves optically, by emitting a photon at a narrow energy band. A biexciton
decays to an exciton state by emitting a photon at the wavelength λXX . The recombination of
the second exciton leads to emission at a wavelength λX . A negative (positive) trion decays to a
single electron (hole) state. This mechanism of successive carriers relaxation is referred as the
radiative cascade, depicted in Fig 7.2. Consequently, the recombination from a given occupancy
state can be associated to a given wavelength λX , λXX , λX+ or λX− . Because of the Coulomb
interaction, these wavelengths are usually different [248,249].

Figure 7.2. Schematics of the energy-level diagram of a QD. Quasi-resonant excitation, where charges
are created in the p-shell. After the excitation, charges relax to s-shell before recombining and emitting
one photon. Energies marked by a star can change from one sample to another, depending on the
growing conditions. Image taken from [256].

We can thus distinguish three main excitations:

• The non-resonant (above-band) excitation consists in the creation of electron hole pairs
in the continuum associated to the GaAs bulk (>1.51eV at 4K) or in the continuum of the
InAs wetting layer (1.45 eV). Single carriers, electron holes, or excitons scatter in the QD
and relax to the lower-energy levels.

• To minimize the delay induced by the capture of charges in the QD, electron-hole pairs
can also be directly created in a discrete resonance inside the QD: this is called a quasi-
resonant excitation. A strong laser power is required than in non resonant excitation
since the absorption cross-section of a single QD is very small.
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• The resonant excitation consists in the optical creation of pairs directly into the considered
exciton state.

When the temperature is increased the line shape is modified by the exciton phonon coupling
with the broadening of the main emission line (zero phonon line) and the appearance of phonon
sidebands [250]. At temperatures lower than 10K the phonon sideband is low populated, therefore,
the emission of a phonon is more efficient than the absorption of a phonon. Conversely, increasing
temperature, the sidebands become more symmetric and broader. The presence of phonon
sidebands degrade indistinguishability of the emitted photons [251]. For these reasons, the QD is
at near 4K and filtering out the phonon sidebands with spectral filters.

7.4 Phenomenology of quantum dots in a cavity
In this part, we briefly describe the basic theory of emission of a quantum system as a QD in a
cavity. The interaction of an homogeneous system of atoms in a cavity, without considering losses,
is described by an Hamiltonian composed by two separate systems and a term of interaction
(Jaynes-Cummings model) [252]. The emitter is a two-level system that interacts with one
single mode of the electromagnetic field determined by the cavity. The Hamiltonian HJC for the
corresponding emitter-radiation system is given by:

HJC = ~wX |X〉 〈X|︸ ︷︷ ︸
HQD

+ ~wa†a︸ ︷︷ ︸
HCM

+ ~Ω(1)
1

2 (|g〉 〈X|+ |X〉 〈g|)(a† + a)︸ ︷︷ ︸
HI

(7.1)

where HQD,HCM and HI are respectively, the quantum dot two-level system, the photon field
and the interaction term. Let us call δ = w − w0 in order to write respect to the resonance
configuration, then the term HI makes the link between the excited emitter state in a cavity
containing n photons |X,n〉 with the state corresponding to the emitter at its fundamental state
in a cavity containing n+ 1 photons |g, n+ 1〉. If we search for the eigenvectors and eigenvalues
of the Hamiltonian and we choose to be in resonance (δ = 0), we obtain the desired state:

|Ψ±〉 = 1√
2

(|X, 0〉 ± |g, 1〉) (7.2)

Here, we consider the case where the QD is in the excitonic state at t = 0. The exciton resonance
is assumed to be resonant with the cavity mode (δ = 0) which is empty. The initial state is
written |Ψ(t = 0)〉 = |X, 0〉, which is not an eigenstate of the Hamiltonian. Expanding the state
to the eigenvectors and evolving it through the hamiltonian for a generic time t we obtain that
the probability that the QD is at the excitonic state is

PX(t) = |〈X, 0| |Ψ(t)〉|2 = cos2
(

Ω(1)
1 t

2

)
(7.3)

The system oscillates with exchange of energy between the QD and the cavity. These oscillations
are called vacuum Rabi oscillations and at the moment we are considering a lossless system.
In an experimental context we have to add looses to the problem, which result is that the photon
is stored in the cavity with a finite lifetime and the QD can emit photons in other modes of the
electromagnetic field. In the next section we will introduce losses in the model.
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7.4.1 Considering losses: the Purcell effect

In 1946, Purcell [253] observed that, coupling the system to an electrical resonator, the spontaneous
emission rate is increased by a quantity FP called the Purcell factor. In 2005, the evidence of
the Purcell effect with spontaneous emission in a single InAs QD in a 2D photonic crystal has
been demonstrated [254].
In a real cavity, photons are stored for only a finite time T . The decay rate τ describes the
exponential decrease of the electromagnetic energy in the cavity and corresponds to a quality-
factor Q = wm/τ (where wm is the mode linewidth). Evolving the density matrix ρ which takes
into account the whole set of electromagnetic modes [255], we can provide a full description
of the phenomenon. If we solve the system of equation [110] we can distinguish two regimes,
depending on Ω(1)

1 /τ :

• Strong coupling (Ω(1)
1 > τ/2): This regime corresponds to the scenario when the cavity

damping is weak. As seen before, the losses are small enough as to allow another absorption
of the emitted photon. However, the Rabi oscillations are now damped with τ as decay
constant, as depicted by Fig. 7.3. Spectrally, the strong regime coupling is characterized
by the Rabi splitting around the resonance frequency.

• Weak coupling (Ω(1)
1 < τ/2): In this case, the cavity is lossy and the relaxation of the

electromagnetic field is efficient. In this regime, the cavity is empty most of the time.
Figure 7.3 shows the time signature of the weak coupling regime (bottom left) as well as
the spectral signature (top left). The acceleration of the spontaneous emission is spectrally
visible with a broadening of the emission linewidth.

Figure 7.3. Comparison between the two regimes in time and spectrum. Image taken from Ref. [256].

Now in the case of weak coupling, which is of our interest, we can say that if Ω(1)
1 << τ , then the

decay rate is ΓCM ∼ (Ω(1)
1 )2/τ . Consequently, the dipole and the mode electric field are along
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the same direction, we have

ΓCM = 2|µx|2
ε0~

Q

Veff
(7.4)

The emission rate shown by the eq. (7.4) can be compared to the spontaneous emission of the
same emitter in bulk. Consequently, the Purcell factor is defined as the ratio of both rates:

FP = ΓCM
Γ = 3

4π2
Q(λ/n)3

Veff
(7.5)

The results show that the spontaneous emission is largely enhanced with cavities exhibiting small
losses (high quality factor Q) and small effective volumes. shows the first acceleration of the
spontaneous emission of a QD ensemble. It is possible to see that with resonance into the cavity,
the decay rate is extremely faster compared to the bulk and out of resonance.

7.5 Techniques of cavity QD coupling and fabrication
In this section we will describe the devices used in this work. Among different geometries, one can
individuate three main structures of semiconductor cavities to control the spontaneous emission
of a single emitter: microdisks [257], photonic crystals [258] and micropillars [223,259]. These
three structures, where a single QD is coupled with the optical mode of a cavity, were used to
demonstrate the Purcell effect or the strong coupling regime. For simplicity we will focus only
on micropillars cavities which are being used in this experiment.

Micropillars: A micropillar is a cylinder with few micrometer diameter is few micrometers
and a 10 micrometers height. We can distinguish three main parts: the bottom mirror, the
cavity spacer and the top mirror. The mirrors are Bragg reflectors, made of an alternation of
layers with thickness equal to λ/4n where n is the optical index in the layer and λ the resonant
wavelength. In standard structures, the cavity width is λ/n where n is the optical index in the
cavity (which is usually GaAs). Using a top-down process [260], micropillars are fabricated from
a planar cavity where they are etched. The etching process is a crucial step in the fabrication.
The roughness on the edges of the micropillars must be as low as possible in order to maintain a
high Q at low volume.

The Purcell enhancement of spontaneous emission requires two main criteria:

• Spatial matching: The emitter (or dipole) must be located where the electric field of
the mode in the cavity is the strongest. This criterion is one of the most critical: after a
Stransky-Krastanov growth, the QDs are randomly distributed in the plane.

• Spectral matching: The cavity resonance must be at the frequency of the QD optical
transition.

P. Senellart and co-workers developed an original low temperature photolithography technique
to deterministically couple a QD with a micropillar cavity. The technique relies on the overlap
of three optical paths that are used to excite a target QD (∼ 850 nm), to collect their emission
(∼ 930 nm) and to expose a resist layer (at 550 nm) deposited on a planar cavity sample. The
QD position is measured with a ∼ 50 nm accuracy by maximizing its emission. When the QD
position is determined, the 550 nm excitation line is used to define a disk shape in the resist
centred on the QD. This disk will later be used as a direct mask to etch the micropillar. The
disk diameter is adjusted so that the fundamental mode pillar matches the QD emission energy.
After the in-situ lithography step, the resist is developed leading to disks. The planar cavity is
then etched except where the resist was exposed in order to get micropillars that are all centred
on QDs. For a detailed description of the in-situ lithography process refer to [260].
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(a) (b)

Figure 7.4. a) Image that shows a set of pillar built through in situ lithography. b) Top view of a
micropillar. Diagonal axis are the H and V collection modes. Image taken from [260].

7.6 Brightness of quantum dots sources
Given a brief description of the physics and the technology of micropillar quantum dots, let us
introduce a criteria to quantify the performance of the generation rate of the sources:

Definition 7.1: Brightness

In a pulsed regime, we define the Brightness (Br) of a single-photon source as the probability
that one excitation pulse results in the effective emission and collection of one and only one
photon in the first lens of the photonic path.

Hence, the brightness depends both from the extraction efficiency that defines the probability of
collecting an emitted photon and also from the probability that the source emits one photon.
Contrary to SPDC sources, the single-photon purity of a QD source does not degrade with the
pump power. Moreover, the probability that a single QD emits a single photon converges to one
at the saturation:

P (n = 1) −−−−−→
P→Psat

1 (7.6)

Nevertheless, without any modification of its electromagnetic environment, a QD exhibits a
isotropic emission inside a semiconductor material presenting a high optical index. It can be
shown that the fraction of emission exiting the sample in the upper half space is ∼ 2%. In this
case, there is no so much advantage compared to SPDC sources. To overcome these limitations
we couple the quantum dot system with the cavity.
In the case of a semiconductor QD in a micropillar, the brightness of the single-photon source is
proportional to the fraction of photons emitted in the cavity mode. The QD emission in cavity
is similar to that in bulk and the total emission rate is:

Γtot = Γ + ΓCM (7.7)

The fraction of photons emitted in the cavity mode is then given by the ratio β:

β = ΓCM
Γtot

= FP
FP + 1 (7.8)
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Figure 7.5. a) Schematics of the extraction of the photons from a pillar cavity. k1(k2) corresponds to
the cavity damping associated to the top (bottom) mirror of the micropillar while kloss corresponds to
the leaking rates on the walls of the micropillar. b) Right (Left) axis: Detected count rate (Measured
brightness of a micropillar) as a function of the pump power in pulsed regime. Empty symbols and
dashed lines correspond to raw data while full symbols and solid line correspond to multiphoton
corrected data. Image taken from [261].

This quantity becomes rapidly predominant when FP increases. For instance, if the QD decay
rate is accelerated by a factor 5, the QD emits more than 80% of photons in the mode. Combined
to an efficient extraction of the photons from the cavity, this device can be a bright source.
Indeed the brightness (Br) of the source is then given by:

Br = px β η (7.9)

where px is the occupation factor of the QD state and η the probability that one photon emitted
in the cavity mode is effectively released by the top mirror of the micropillar and collected by
the first lens. Here, because the fundamental mode of a micropillar is highly directional:

η = ktop
ktop + kbottom + kloss

(7.10)

where the coefficients ktop, kbottom and kloss correspond respectively to the cavity damping rates
through the top mirror, the bottom mirror and the wall losses of the pillar as depicted by Fig 7.5
The probabilities px and η are respectively inherent to the QD and to the cavity, while β = FP

FP+1
results from the coupling of the dot with the optical mode of the cavity.

7.7 Experimental properties and details to obtain photolumi-
nescence (PL) emission

The sources subject of our analysis are formed by a set of different QDs built each one in
micropillars by the lithographic process. In this section we will briefly describe the main
requirements that we need in order to correctly observe single photons signals provided by the
dot. First of all, the photolumiscence (PL) signal generated by coupling a laser beam with the
cavity is retrieved with a back-scattering geometry. In other words, the output signal from
the micropillar is both scattered laser and single photons. Moreover if the laser has a certain
polarization, the emission signal is expected to have the same component. Thus if we want
to extinguish and separate the laser from dot signal we can not do it by means of waveplates
(discriminate with polarization) or gratings (discriminate with wavelenght, not possible because
it is a resonant excitation λlaser = λdot).
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Luckily, there is a property hidden in the solid structure of the micropillar that solve our
problems. Here we describe shortly the qualitative behaviour. We assume that the QD axis
are rotated of 45◦ respect to cavity’s axis. When we excite with |H〉 polarization, we create an
exciton state |H〉 = (|X〉+ |Y 〉)

√
2 and we collect a |V 〉 with the minus instead. In presence of

fine splitting ∆FSS , the V polarization is an eigenstate of the system, consequently, there is no
emission in this polarization. With the absence of fine splitting, the state evolves accordingly to
Schroedinger’s picture from |Ψ(t = 0)〉 = (|X〉+ |Y 〉)

√
2 into

|Ψ(t)〉 = eiωX t√
2

(|X〉+ ei∆FSS/~ |Y 〉) (7.11)

with ∆FSS = δ(ωX − ωY ). After a short time t ∝ π/∆FSS the state presents a maximal overlap
with the V state. Both polarized exciton states can radiatively decay in the cavity H and V
modes respectively. The collected PL is thus related to the spontaneous emission of the V
exciton state in the V mode of the pillar. The higher the splitting, the faster the evolution of
the state is. In practice, the polarization rotation time induced by the fine splitting is of the
same order as the accelerated radiative decay time, thus no oscillations of the |V 〉 population
are observed. Consequently, we can collect V polarized emitted quantum dots while filtering
scattered H polarized excitation laser with linear polarizers and wave plates. For a more detailed
theoretical description refer to [256].
Finally, we list three ingredients that we have to take in account in order to extract a bright
excitation with good indistinguishability.

1. Power Rabi’s oscillations: In the presence of an oscillatory driving field, a two-state
quantum system follows a cyclic behaviour called Rabi oscillations (15− 50 ps of duration
in a pulse). During the excitation, the system cyclically absorbs photons and emits them
by stimulated emission. In the case where the pump is in resonance with the two-level
system, the probability of finding the excited state oscillates with a unitary contrast with a
pulsation (Ω1 is the Rabi frequency) is: P (t) = 1/2 sin2(Ω1t/2). It is possible to indirectly
measure this effect with power measurements.
Since the pulsation of the oscillation depends on the pump power 1/E ∝

√
P , the devel-

opment of the photoluminescence reflects the Rabi oscillations (see Fig. 7.6). During the
pulse, the population oscillates due to the interaction with the field. After the pulse, the
system relaxes to the ground state by emitting spontaneously a photon. The best situation
in terms of indistinguishability (avoiding also scattered laser) and brightness is slight below
π-pulse (lowest reflected laser, highest dot emission) which is defined as the lowest pump
power where there is the first maximum.

2. Voltage control: In order to achieve a full control of the chargers inside the dot, the
solid-state system has been doped with Si atoms we changed the structure of the doping in
order to improve the charge control, thus stabilizing the Fermi level close to the QD. In Fig.
7.7 we showed the scheme of voltage control, where, pillars after fabricated with the doping,
are organized in diodes in order to apply direct voltage on top. The effect of applying
voltage is to blue-shift (positive V) or red-shift (negative V) the photoluminescence emission
of the QD.
If apply to much positive voltage there is the chance that other carriers interact with
the QD disturbing the indistinguishability (different transitions), conversely if apply to
much negative voltage, the band is stretched and there is a significative probability to have
tunneling effects of the electrons, which gives different line transitions, thus degrading the
indistinguishability as well. Typical values of applied voltages on our samples are in range
Vrange = [−0.4, 0.3]V in order to satisfy these conditions.
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Figure 7.6. Schematics of the observation of the Rabi oscillations observed by changing the excitation
power given a fixed pulse duration. The behaviour of the Rabi oscillations are similar of a dumped
harmonic oscillator in terms of applied power and photoluminescence signal retrieved.

3. Filtrage of the sideband: temperature and optical alignment are crucial to enhance
the indistinguishability. We have to confine our excitation in order that only the desired
spectral line is excited. In other words we must focus on resonant excitation (in our case
925 nm). Moreover, to filter the residual phonon sideband (which grows with temperature,
but is partially limited by the cavity, because it forces to emit in a specified mode) we
used interferential filters which select only the excitation line at the price of transmittivity
which is reduced at least of a factor 2.

7.8 Merging deterministic single photon sources with integrated
devices

In this section we will present the main work by first describing experimental setups and second
the analysis of the data retrieved by the merged system of deterministic single photon sources
(QD source setup) and integrated photonics (FLM). We used a 3-mode chip which implements
a tritter device [219] with a tunable control of an inner phase. The experiment deals with the
generation of 3-photon indistinguishable state to inject into the tritter in order to study the
enhanced output rate (with respect to SPDC-like experiments) and individuating the quantum
interference occurring in, by employing validation protocols techniques.

We will subdivide the description in three steps: 1) tritter specifications, 2) experimental
setup both for source (S) and tritter (T) with analysis of preliminary characterization of (S) and
(T) and 3) analysis of tritter output data and brief discussion on results.

7.8.1 Tritter specifications

The tritter device is built in a borosilicate glass with the technique of FLM, where a golden layer
on the top surface (see Fig. 3.6) enables the possibility to apply voltage and tune a phase [161].
We build inside 4 devices, each one with a tunable phase. In this experiment we chose to inject a
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(a)

(b)

Figure 7.7. Voltage control. a) Microscope image of the three diodes in our sample (denoted A,B and
C). Each diode is connected to several devices made of a surrounding frame contacting the diode and
a micropillar embedding a single QD. b) This figure reports the shifting process when we apply the
voltage on diodes. Image taken from [223].
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3-photon state (one for each input) into the 3-mode chip which implements a U3 Fourier matrix.
If particles are fully indistinguishable, the unitary matrix provides the sequent transformation
through the Fock space:

|Ψ〉in = |1, 1, 1〉 ==⇒
U3

1√
3
|1, 1, 1〉+

√
2

3 |3, 0, 0〉+
√

2
3 |0, 3, 0〉+

√
2

3 |0, 0, 3〉 (7.12)

However, we can observe bunched states only by using number resolving detectors [126] which can
discriminate between 1 or n photons on the same detector. For this reason, in this experiment
we focus on the performances of the merged system by comparing with SPDC experiment with
the same device [219], rather than trying to sample from the full output distribution.

In Fig. 7.8 is shown the circuit implemented in the optical chip with the Reck scheme [15].
In this case we want to implement a Fourier transformation by choosing opportunely the phases
into the circuit.

Figure 7.8. Layout of a planar circuit realizing the tritter operation with the Reck scheme [15]. This
includes three directional couplers, which should have nominally reflectivities setted as R1 = 50%,
R2 = 33.3%, and an electrically tuneable phase-shifter ϕ.

The phase ϕi of the i-th device is governed by the electrical power Pi dissipated on the related
resistor, according to a linear relation ϕi = αi Pi + Φi where Φi is constant. Experimental
characterizations were performed at the wavelength of 910 nm, however these values do not
strongly depend on the wavelength, in fact α ∼ 5.34 rad/W for both frequencies. The dissipated
power follows trivially the Joule’s law P = V 2/R where V and R are respectively voltage and
resistance. In Fig. 7.9 we report the experimental reflectivities and transmissivities characterized
by Milan group, of the four device implemented:

Figure 7.9. List of reflectivities the four device implemented. We performed an interpolation between
the two wavelenght, to extract a value which is near to the experimental condition in which we are
working (wavelenght of dot emission).

Given these values, we perform a numerical simulation to individuate the phase in which the
final implemented transformation is the closest to the ideal U3 Fourier matrix. We perform
a minimization search using the mean (on the three inputs) of the TVDs of single photon
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probabilities between the ideal case (IFou) and the parametric chip (PFou knowing the inner
structure and the reflectivities):

f(ϕ) = [13

m∑
j=1

[12

m∑
i=1
|PFoui,j [ϕ]− IFoui,j | ]] =⇒ ϕ∗ = ϕMin[f(ϕ)] (7.13)

where ϕ∗ is the phase where the function is minimum. Performing this simulation for all listed
device, we chose the implementation which maximizes the fidelity between ideal and simulated
case, that is Dev. 12 with FDev.12 = 0.995. We extracted the associated voltage to the phase
V ∗ =

√
ϕ∗−φ0
α0

R0 = 2.8V , where R0 = 60 Ω, φ0 = 0.81 rad and α0 = 5.41 rad/W .
In this experiment we will use this Dev. 12 as main platform for our studies.

7.8.2 Setup of quantum dot sources and analysis.

Let us introduce the experimental setup regarding the excitation stage. The conceptual image is
reported in Fig. 7.10. We used as a source of excitation, a pulsed tunable Ti-Sapph Tsunami
laser with Γ = 82MHz of repetition rate. By employing of monochromators we can increase the
pulse duration from 2− 3 ps to 15− 20 ps. This is necessary because the cavity modes are larger
than the normal one provided by the Tsunami (∼ 10 ps). In this way we can excite the sample
with both polarizations, depending on the usage that we want to do with the two cavity modes
with respect to indistinguishability and brightness. In order to increase both counts rates and
indistinguishability, we built a Multiplication of Pulses (MOP) in bulk increasing the number of
pulses per second. Without the MOP, we have a pulse each tp = 12.3ns, while by using cascades
of beam splitters with paths delayed properly, we obtained bunches of 3 pulses for each tp. The
relative delays of the pulses in each bunch, if we put the first as a reference are 0, 2.5, 5ns.

Figure 7.10. Conceptual image of the experimental setup. A Tsunami pulsed laser generates a
beam with λ = 925nm and a spectrometer shape the spectra in order to adapt the coupling with
the micropillar cavity. We built a multiplication of pulses (MOP) to enhance the generation rate and
the indistinguishability between emissions belonging to different pulses. With a linear polarizer we
select a polarization and with a telescope we collimate the beam before focusing on the sample with a
confocal geometry stage through a N = 0.75 objective. The laser beam is aligned with respect the
top surface of the cryostation chamber. The QD is conserved at a temperature of 8K in order to
avoid sidebands emissions. The photoluminescence signal and the laser are backscattered on the same
path. A combination of waveplates and PBS filters the residual laser, while photoluminescence signal
according to Eq. (7.11) can pass through the path by extinguishing mostly half of the signal.

For our experiment we chose to use both MOP and standard version to compare the generation
rates. By increasing the number of bunches we observed a gain in brightness of a factor 3 with
respect to the standard case. After the generation of the bunches we select polarization with
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a polarizer (P) and we collimate the beam before the sample. The beam has to be collimated
in the far field for two reasons: to prepare it for the focusing objective before the sample and
because we want that the photoluminescence signal is maximized if we want to put an etalon
(Fabry-Perot interferometer) to increase the indistinguishability. Subsequently using a PBS, we
filter the residual polarization and the beam goes to an objective which focus on the sample.
The sample in analysis was grown by molecular beam epitaxy (MBE) on a n-doped (100) GaAs
substrate. It consists of a GaAs cavity containing an InGaAs quantum dot layer, surrounded by
two distributed Bragg reflectors with 30 pairs for the bottom and 20 for the top.

The sample is inserted into a closed-cycle cryostation Montana S50 at a temperature of
T = 8K in order to reduce sideband emissions. Into the cryo chamber we can control the position
of the sample with respect to the laser beam by using a 3-axis translational stage with sensibility
of ∼ 20nm. The pillars are electrically connected with voltage control and combined with a
p-i-n doping of the InAs/GaS layers, this geometry allows applying a bias to the structure, a
critical tool to finely tune the QD resonance to the cavity mode energy as well as to stabilize the
charge environment of the QD [223].

Subsequently, both photoluminesce signal and residual scattered laser are back-reflected
towards the PBS. By employing a HWP and QWP, we can minimized the laser component by
leaving the intact the PL signal. If we look at eq. (7.11), we know that the emission is in a
superposition between H and V cavity modes thanks to the fine splitting ∆FSS and the QD can
emit both H and V according to its evolution.
Finally, the photoluminescence signal is sent to the tritter stage after a polarizer and a telescope.
All preliminary measures have been made with a high resolution spectrometer.

Before installing the tritter setup, we performed several tests to ascertain the good quality of
our sources, such as good brightness and high indistinguishability. All of these measurements
have been performed in the condition of resonant excitation. First we analysed the properties of
micropillar cavities such as radiative decay time and reflection signal and second we employed
different figures of merit to quantify the performances: second-order autocorrelation g(2)(0)
measurements for the purity and mean wave-packet overlap M for indistinguishability. Data
were extracted as outputs of Hong-Ou-Mandel and Hanbury Brown and Twiss setups. Exploiting
APDs and a HydraHarp 400 correlator we are able to retrieve histograms of coincidences events.

Properties of micropillar cavities: we selected the two sources (namely A13 and B18)
which are most promising in terms of generation rates and consequently we studied the radiative
decay time and we looked the reflectivity at the output to identify the wavelenght of the cavity
modes:

• Lifetimes and decay time τD: we measured for A13 the lifetime using a higher resolved in
time Fast APD which has a resolution ∆t = 4 ps which permits to observe a more detailed
behaviour. We perform a linear fit on logarithmic scale on data employing this fitting
function f(a, t0, τ) = a− (t− t0)/τ , for which we retrieved a lifetime of τA13 = 128.9 ps.
We report in Fig. 7.11 the elaborated data. It is worth noting that on the same curve
there are two behaviour that we recognize: the effective decay times and the answer of the
fastAPD. In order to properly analyse data, we have to focus only on the lifetime region of
data, avoiding the second part of the descent (see Fig. 7.11b).

• Analysis on cavity modes: the observed reflectivity corresponds to a 3 ps laser coming
through the input fiber, going through a HWP (angle choosing the mode you excite and
look at), being reflected on the sample, going back through the same HWP (as Identity
polar transform), and through the same fiber. We use APC fibers and fibered BS before to
be able to collect the back-reflection. From this analysis we retrieved the width and the
distance of the H and V modes. In this case for A13 we have ∆λH,V = 0.115± 0.005 nm
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while the width for both modes is λw = 0.105± 0.008 nm. In Fig. 7.12 we reported the
waveplates scan and the peak profile of the H and V mode of our micropillar.

Analysis of purity and indistinguishability: Here we focus on studying the purity and the
indistinguishability of the selected sources exploiting the figures of merit g(2) and M . The mean
wave-packet overlap M , in the standard configuration (i.e. without MOP) is deduced by [241]:

M = 1
1− ε

[
2g(2)(0) + R2 + T 2

2RT − A0
A−1 +A+1

(
2 + g(2)(0)(R2 + T 2)

2RT

)]
(7.14)

where 1− ε is the visibility of the interferometer typically around 0.98, R = 0.48 and T = 0.5 are
the reflectivity and transmissivity of the beam splitter in the HOM setup. A0 is the area of the
central peak, while A±1 are the previous and subsequent peak with respect to the central one.
Areas are corrected taking into account the background noise. If we assume a near 50:50 beam
splitter we can rewrite the formula in a more handy version:

Muncorr = 1− 2A0
〈Aside〉

Mcorr = 1− 2A0
〈Aside〉

− 2g(2) g(2) = A0
〈Aside〉

(7.15)

where A0 is the area at the central peak and 〈Aside〉 is the mean of the area for peaks after
A±1 if we do not use MOP, while if we use it we have to take in account only the nearest
peaks. In Fig. 7.13 we show the analysis performed on our source, where all measurements
have been done with a time bin of ∆t = 126 ps. Retrieved M and g(2) are M = 65 ± 5%
and g(2) = 0.032± 0.003. If we use the etalon for the same analysis we find better purity and
indistinguishability values, losing a factor ×4 in the count rates. As an example, in the case of
pillar B18 (which was an old pillar not the subject of our experiment) we obtain with etalon a
Meta = 90± 4% and g(2)

eta = 0.012± 0.002. The value of g(2) depends on multi-photon generation
of the source and residual scattered photons of laser which are not extinguished with waveplates.
The motivation regarding the low indistinguishability observed in A13 is due to a non-perfect
control of cryostation. In fact we suppose that there are leaks in the chamber such that we
can not reach the nominal temperature showed by the controller. As a consequence, there are
contributions of phonon sideband that spoils the indistinguishability.

7.8.3 Tritter apparatus and analysis of experimental data

Here we describe the second part of the setup which regards the probabilistic generation of a 2-
or 3-photon state, the tritter stage and the detection.
After the characterization of our sources, we address the photoluminescence signal in the tritter
apparatus. In order to generate a 3-photon state, we must delay subsequent pulse accordingly
to the length of each path. We use a cascade of two fiber beam splitter (FBS) and we put
two additional fibers (Delay 1 and 2) to synchronize them. Being a passive gate, there is only
one configuration of 3 subsequent pulses for which we can work. In this case, being n = 3
photon and C = 3 different pulses we have σ = nC = 27 configurations, thus the probability to
observe one specific 3-photon event is PFBS = 1/27. HWP and QWP are used to manipulate
polarization, while with delay lines we can synchronize each path by adjusting the relative delay
with a sensibility of 30 µm. The tritter is aligned with a single-mode fiber array in input and
an multi-mode fiber array in output, where each output is connected with an APD. Finally a
HydraHarp 400 correlator elaborates TTL signals from the APD and write in the computer. A
post-processed analysis is necessary to retrieve 2- and 3- photon correlations.

Below we list the efficiency in transmission for each step of the propagation:

• efficiency of passive probabilistic demultiplexer ηPPD = 0.8,
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(a)

(b)

Figure 7.11. Lifetimes of A13 pillar: logaritmic plot the lifetime of A13. It is possible to recognize
two curve trend which correspond to real lifetime and fastAPD decay answer. a) In log scale, the
lifetime of A13 is fitted with linear function. b) exponential decrease provided by the fastAPD, in the
data analysis we have to take in account also this behaviour and perform the real fit only on a partial
set of data.
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(a)

(b)

Figure 7.12. Measurements of cavity modes H and V: a) Measurement performed with a scan on
the waveplates in order to find the working region (angle of the waveplate) to select H and V mode. b)
Analysis of the excitation of the dot to extract informations of the center peaks of the cavity modes
and their width. In this way we can choose to perform resonant fluorescence with both cavity modes.
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(a) M with MOP (A13)

(b) g(2) (A13)

(c) M with etalon (B18, no MOP)

(d) g(2) with etalon (B18)

Figure 7.13. g(2) and M measurements on A13 in resonant fluorescence with and without
etalon: a) M measurements using MOP. b) g(2) measurements without MOP. c) and d) M (Red)
and g(2) (Green) examples measurements on B18 (old micropillar) respectively using an etalon to filter
the sideband without employing MOP. All measures have been performed with a standard HBT setup.
Quantities have been retrieved from the ratio between central peak area and mean of side peaks areas.
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Figure 7.14. Conceptual image of the tritter setup. With a polarization control we are able to
change the power of the signal. A 3-photon state is generated with a certain probability by injecting
into probabilistic passive demultiplexer (PPD): two fiber beam splitters (FBS) in cascade, delaying
with additional fibers (delay 1 and 2) each path (choosing length accordingly to the presence of MOP
or not). HWP, QWP and delay lines are used on each path to manipulate polarization and temporal
delay with micrometer scale. Fiber arrays single mode (input) and multi mode (output) are aligned
with respect to the chosen device in the tritter. With an external voltage control we are able to
apply current on the resistance. Single photons data are measured with 3 APDs, each one attached
to an output fiber and a correlator (with clock provided by the Tsunami) elaborates the TTL signal
writing the result on a computer. Post-processed analysis is performed to retrieve 2,3-fold coincidence
measurements.

• efficiency coupling with collimators in delay lines (DL) ηDL = 0.9,

• tritter input/output efficiency ηtrit = 0.4,

• detectors efficiency at λ = 925 nm is ηAPD = 0.25.

Analysis of 2-photon correlation of tritter output data: After characterizing losses and
properties of our sources, we generate a 3-photon state with the PPD by selecting with delays
only 1 of 27 combinations having 3 photons distributing in 3 paths. Referring to Fig. 7.10, if
we use MOP we have bunches of three peaks for each pulse of the laser repeated every 12 ns.
The relative delays for peaks belonging to each bunch are 0, 2.5, 5 ns. If we consider all possible
combinations of clicks between photons distributed to different pulses and paths of the PPD we
have: 0, 2.5, 5, 7.5, 10 ns which are labelled as timetags 0,1,2,3,4 respectively. These 3 photons
can give correlation peaks. For example, 2 photon arriving at APDs A and B at timetags 1 and
2 will give a a count in the peak at +2.5 delay (it is symmetric with respect to negative delays
because of different BNC lenghts). This configuration makes a complex behaviour at the output
pattern of the tritter.
In the following we will briefly describe the model that we employ to analyse our data.

1. Each bunch can give 9 peaks (positive and negative delays), as follows from the description
above. Two different bunches can overlap partially with the nearer one.

2. We consider the whole tritter setup (Fig. 7.14) as an implementation of several unitary
matrices in cascade. The system is described by 3 waveguides (path 0, 1 and 2). At each
gate we apply the beam splitter and phase shifters transformation following how are they
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distributed along the path. In other words, for each layer there are matrices

UBS =

 T R 0
R T 0
0 0 1

 Uφ =

 eIφ1 0 0
0 eIφ2 0
0 0 eIφ3

 (7.16)

where R and T are known and the position of the beam splitter on the matrix is associated
with the connection of the paths.

3. We model the degrees of freedom of the three photons, in this way:

(a†)Mp (t) (7.17)

where p = 0, 1, 2 is the index of the optical path, M = i, j, k is the color index relative
to the indistinguishability properties regarding the source (spectra,phase and temporal
profile) and t = 0, 1, 2, 3, 4 is the timetag. Let’s clarify the meaning for M : we say that all
three photons are indistinguishable when they have the same index i, we have index j if
the second photon is distinguishable respect to the first and index k if the third photon is
distinguishable respect to the second. For now, we take into account all possibilities, we
will sort out only at very end. If we are interested in characterizing the g(2), we need to
introduce, in the same spirit, new colours i1, j1, . . . . Then, each contribution is factorized
by a

√
1− g(2) +

√
g(2). This means we have a 1 − g(2) probability of having the single

photon alone, and a g(2) probability of having this single photon mixed with a photon of
the laser.

4. We multiply properly each layer described at point (2) according to the whole transformation
and we build all the combinations of Cσ = (a†)M1

p1 (t1) · (a†)M2
p2 (t2) · (a†)M3

p3 (t3). In this case
the first layer is the matrix referred to APDs clicks. At the end we retrieve a 2D matrix
X where each element correspond to a particular configuration Cσ of paths, colours and
timetags which are distributed according to their collective behaviour (interference or not).

5. From X we select only configurations in which we are interested. We sum over the
colors index (because APDs are insensitive to different colors). The simulation sort out
combinations by factorizing and simplifying the expressions. We select all the combinations
and we assign in specific temporal bins according to the action of APD clicks matrix.

6. This procedure provides the set of peaks for Bunch 1. If we want to see what happens
for different bunches, we apply the algorithm on another bunch and we sum peaks at the
boundaries of each one in order to take in account also intersections between different
bunched contributions. For example Bunch 1 has (2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20 ns)
which partially overlap with the Bunch 0.

Performing the simulation for different bunches we found a good agreement between the model
that we built and the 2-photon correlation data. The result is reported in Fig. 7.15. We also
report a g(3) density plot as a result of 3-photon correlation data between APD A,B and C using
coherent laser. In the latter case, the target is to reproduce the experimental conditions and
same amount of statistics that we will employ with singles photons. This is just a preliminary
step that we did before the measurement with single photons which is still in progress. What we
would expect from the single photon measurement is an enhancement of counts at 0 delay for
both APDs.
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(a)

(b)

Figure 7.15. 2- photon correlation and preliminary coherent measurements on output data
from the tritter device. a) g(2) measurement performed using MOP configuration. Simulation
(green) and elaborated data (blue). b) g(3) measurement performed using MOP configuration with
coherent. In this measure we focused to simulate the final measurement with single photons by setting
the same experimental conditions as we will do for single photons. Each line of the 3D plot represent
g(2) measurement of APD 1 and 2 with respect APD 0.



7.9 Discussion and future developments 139

7.9 Discussion and future developments

Let us discuss on the comparison between the best SPDC sources and QD systems. Ref. [223]
demonstrated how micropillar cavities for quantum dot single photon sources are promising
in terms of scalability and indistinguishability. They compared in a brightness versus mean
wave-packet overlap graph, the performances of their dot with respect of the state-of-art of SPDC
sources, clearly showing an advantage in terms of brightness, given a good indistinguishability.
In this experiment we reached ∼ 2× 106 Hz only considering the source signal (with MOP we
gain a factor 3), while if we consider SPDC-like experiments we obtain an heralded 3-photon
state ∼ 100− 200 Hz, assuming the same repetition rate and same detector efficiency for both
implementations. If we want to build a 3-photon state with the PPD we lose a factor ∼ 30 on
the rate, due only to the probabilistic gate. If we calculate the ratio between rate of 3-photon
state in the case of micropillar systems and SPDC sources, we gain considering QD with respect
to SPDC, a factor ∼ 300. The question now is: how does it scale the rate of n-fold photon with
the the number of photons? Let us assume the same repetition rate, detector efficiency, the same
optical losses in the chip. hence in order to generate n-photon state, with SPDC we have to wait
for higher order of pair generation, while with QD system we have to add cascade of FBS for the
demultiplexer. Thus, we can distinguish two behaviours in the generation rate R:

RSPDC ∝ (ηSPDC)n/2 RQD,PPD ∝ (ηQD,PPD)n n−n (7.18)

where ηSPDC ∼ 0.015 is the probability to generate a pair per pulse and ηQD,PPD ∼ 0.3 is the
probability to generate 1 photon per pulse 1. In Fig. 7.18 is showed the curve trend for the three
systems.

Figure 7.16. Comparison of the performances for large implementations. Probability P (n) to
observe a n-photon state at the output of listed sources. Following equations (7.18), SPDC and QD
sources with PPD follow the same curve trend with respect to the generation of n-photon states.
This is due to the probabilistic generation (for SPDC) and selection (for PPD) that exponentially
decrease the P (n). Using an active demultiplexer (AD) we can overlook the exponential factor in
PPD approach, thus scaling the generation rate. Simulation takes in account optical losses during the
propagation and we assume the same collection efficiency at the output.

1This efficiency is retrieved by knowing the signal arriving into APD considering reversely the efficiency
of detector (0.25), optical (0.9) and coupling losses (0.35) in realistic implementations of micropillar source
experiments.
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The scaling in the number of photons is linked to the capability of provide a n-photon state. The
weakness for scaling the number of photon in QD systems, is referred to the probabilistic gate for
which we have only n−n probability to observe the desired synchronized n-photon state, given n
paths and n photons. For future tests it should be necessary to upgrade the system changing the
probabilistic passive demultiplexer (PPD) to an Active Demultiplexer (AD) [262]. In this way, we
are able to select actively the n-photon state during the propagation, by tuning reflectivities and
switching paths of the fiber beam splitters thus omitting the decreasing exponential probabilistic
factor n−n in PPD case.

For future improvements of the setup, we will exploit active demultiplexer and perform further
studies on the indistinguishability of our sources trying to solve the problems with cryostation
system. At the moment we did not perform other measurements with these condition because
we can not correctly select the temperature inside the dot chamber in order to eliminate the
contributions of the phonon sideband.
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Conclusions and perspectives

The goal to realize quantum computers seem to be nearer than we think. Up to now there are
been several improvements not only from the technological point of view (regarding sources
[5,8,16,223,259], prototype-calculators [5,6,22,26] and detectors [126]) but also in the development
of theories which provides us a better comprehension of the quantum physics associated to this
phenomena. In particular it is important to understand the phenomenon of quantum interference
which could pave the way for a solid computational scheme. Photonic implementations have
demonstrated extreme accuracy and versatility, and the advances in the photonic integration
techniques are allowing the realization of more and more complex networks [12]. In this context,
Boson Sampling [33] hold the advantage to be the suitable platform to observe this kind of events.
In fact if we consider the model proposed by Aaronson in 2011, it has not immediate practical
uses, besides a recent proposal using squeezed state to map the problem into another well known
in solid state physics which can be used to reconstruct molecular vibronic spectra [263]. Indeed,
Boson Sampling is one of the most promising candidate to highlight quantum advantage respect
to its classical counterpart with a very simple and feasible platform. In the run of the so-called
quantum advantage there is still a lot of work to do, in particular by increasing the number of
photons and modes. Although several ideas to overcome the problem with different approaches
in bulk [147, 149] or integrated photonics [22, 142, 264] have been proposed, however it seems not
easy to achieve this target. Moreover, recent studies arose the challenge between classical and
quantum, from the boson sampling point view. This because there have been improvements in
classical computation [134] and in theory [135] that extend the countdown even further. However,
the main interest in Boson Sampling remains in the proof-of-principle of quantum computational
advantage, which would have deep implications in many fields.

However, what I would like to transmit with this thesis, is not the importance of Boson
Sampling itself, but the very phenomenon at the core of this model. It relies on many-body
indistinguishable bosonic interference which is important because we can use it as an optimal
platform to find new interesting topics in quantum computation. The task of certifying genuine
many-boson interference is thus expected to find numerous applications in photonic quantum
information [12], for validating the functioning of Boson Sampling experiments, as a parallelism
for quantum simulation [265] and more generally, as a diagnostic tool for quantum optical devices.

In this work we begin with two question: (1) "how to scale our systems" and (2) "how to
validate genuine quantum interference efficiently". Regarding point (1) we exploit an advanced
setup for random-input generation SPDC sources in parallel and subsequently we focused on
analyse and compare the performances of deterministic single photon sources with respect to
probabilistic ones. Regarding point (2) we have seen different approaches to certificate true
quantum interference reporting our experimental verifications of validation protocol proposing
different approaches to the problem exploiting specific unitaries and machine learning techniques.
We investigated on the search of the optimal unitary useful for this task and we found out that
the best choice for this task among all possible unitaries extractable from the Haar measure are
the Fourier and Sylvester matrices. We experimentally observed the validity of the suppression
laws, discovering that Sylvester matrices as suitable platforms for Scattershot-like experiments.
Furthermore, we have been usage also of machine learning techniques and statistical tools to
highlight patterns provided by these classification protocols. We believe our work contributed to
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enrich the analysis of how to identify true quantum interference by employing several validation
techniques which are suitable for medium-large sizes systems. Moreover, these results could
pave the way for pushing optical community in the search and the development of tools and
techniques which focus on how to scale our system and how to certificate interference.

To perform our experiments we exploited femtosecond laser micromachining2 as a promising
solution for experiments in small size optical chips, as shown in chapter 3, where we fully
investigated and described the capabilities and the limitations in terms of implementations.
Indeed, the presence of chip losses, summed to not efficient generation and non unity detector
efficiency can slow down anyway the scalability of our systems. There are several perspectives
to list, but the most important one is to reach the situation in which we are able to merge
generation, photonic platforms and detection all together3. For this reason we worked on realize
a merged system between quantum dot sources and integrated device observing a significant
increase in the count rate. A challenge for the future will be to find a way to develop this
approach to a larger number of particles by employing active demultiplexers. Another important
requirement, is to develop detectors with efficiency close to the unity, because, as we mentioned
in previous chapters, even if we have bright sources and high transmissive optical chips, we still
have to deal with the exponential decrease of the rate of simultaneous n-boson state measured
with post-selection.

2Devices realized in collaboration with IFN-CNR and Politecnico of Milan.
3This is the main target of the research project QUCHIP in which partially I collaborate: http://www.quchip.

eu/

http://www.quchip.eu/
http://www.quchip.eu/
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Chapter 8

Appendices

8.1 Appendix Note 1: Multiphoton emission terms [5.3]
The main sources of experimental imperfections in the state preparation are due to multi-photon
emission terms occurring in SPDC processes and to non-unitary indistinguishability of the two
photons. Here we perform a numerical analysis on how these two effects lead to the presence of
added noise in the suppressed contributions, making harder to violate the validation criteria.
The role of non-unitary indistinguishability in multiphoton interference, and in particular in
Boson Sampling, has been discussed in several works [220,266,267]. In our works, we model this
effect by considering an input state of the form:

ρ = α|1, 1〉〈1, 1|+ (1− α)|1a, 1b〉〈1a, 1b|, (A1)

where α represents the degree of overlap of the two-photon state, and |1a, 1b〉 stands for two
distinguishable photons. Hence, the output probability distribution is the weighted mixture of
the distributions PQi,j (indistinguishable photons) and PDi,j (distinguishable photons).
Multiphoton emission is due to the probabilistic nature of the photon-pair generation in SPDC
sources. Being g the nonlinear gain of the process, the output of an SPDC source in the low gain
limit can be written as

|ψ〉 ∼ |0, 0〉+ g|1, 1〉+ g2|2, 2〉. (A2)

Multiphoton emission then leads to the probabilistic injection of input states different from
the expected one. Since losses are present in the apparatus and non photon-number resolving
detectors are employed, these multiphoton events generated by multiphoton emission cannot
be discriminated from the events generated by the correct input state. Furthermore photons
belonging to different pairs can present a lower value of distinguishability than photons belonging
to the same pair. Note that in the discussed configuration the lower is the distinguishability
between different pairs, the higher is the noise contribution due to multiphoton emission. Indeed,
for full indistinguishability between different photon pairs the noisy state injected in the cyclic
inputs presents the same symmetry of the correct input |1, 1〉, and thus some suppressed events
are present reducing the amount of additional noise.

In Appendix Figure A1 we show the results reported in our work [182] for numerical calcula-
tions for the two noise effects for values of α (non-unitary overlap), g (non linear gain), and losses
corresponding to our experimental implementation. In our case α ∼ 0.98 (estimated from the
visibility of an Hong-Ou-Mandel experiment in a 50/50 beam-splitter), while g ∼ 0.12 (estimated
from single-photon counts and two-photon coincidences of the source). For the sake of simplicity,
losses have been grouped in two main contributions (input and output). The overall input ηin
and output ηout transmissivities, including also coupling efficiency of the source and detection



8.2 Appendix Note 2: Interferometer design in the 2p-modes case [5.3] 145

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.00

0.05

0.10

0.15

0.20

0.25

(1
,2

)

output combination (i,j)

(1
,1

)

(3
,4

)
(4

,4
)

(1
,2

)
(1

,1
)

(8
,8

)
(7

,8
)

output combination (i,j)

a b

PQ
i,jPQ

i,j

Appendix Figure A1. Numerical analysis of noise contributions due to imperfect state
preparations. Comparison of the output probability distributions for a cyclic input with an ideal
two-photon state (blue bars), a two-photon state with non-unit overlap (green bars), and an input
state with multiphoton emission terms (orange bars). The unitary adopted is the Fourier matrix. The
parameters used in the different cases are described in the text. The distributions for the multiphoton
emission terms are obtained from a numerical simulation of the process with 106 events. (a) 4-mode
interferometer and (b) 8-mode interferometer.

efficiency, were in our case (ηin ∼ 0.1, ηout ∼ 0.28 for 4-mode device) and (ηin ∼ 0.085, ηout ∼ 0.23
for 8 mode device). Propagation losses in the device have been equally distributed in the two
parameters (ηin and ηout). We observe that the two effects of multiphoton emission and non-unit
overlap lead to similar noise contributions, that is, the observation of events in suppressed outputs.
Both imperfections in our experiment can thus be modeled with the input state of Eq. (A1), by
considering an effective overlap parameter αeff ∼ 0.95.

8.2 Appendix Note 2: Interferometer design in the 2p-modes
case [5.3]

In the following, we will schematically discuss the procedure to design an interferometer by
implementing the quantum Fast Fourier Transform (qFFT) in the general case of m = 2p modes,
for some integer p.

• Each optical mode (waveguide) k ∈ [1,m] can be numbered according to its binary
representation and can be associated to the set

(b1, b2, ..., bp)k

where bi = −1 or +1 if the i-th bit of the binary representation of k is 0 or 1 respectively.
The ordering of the bis is intended to be from the most significant bit b1 to the least
significant bit bp.

• The p-element vector (b1, b2, ..., bp) represents the coordinates of the vertices of a p-
dimensional hypercube in Rp.

• The optical qFFT algorithm [1] consists of p steps. The j-th step connects, making them
interact, all the couples of modes that differ only for the j-th bit. (Proper phase terms are
also added and a final relabelling of the outputs is needed, but this is not relevant here).

• The position of each waveguide in the cross-section plane can be defined by suitably
projecting in two dimensions the vertices of the hypercube. Each step of the qFFT
corresponds to connecting, by directional couplers, the couples of modes that have to
interact in that step. In particular, such connections corresponds to edges of the hypercube
with a given direction, all parallel to each other (note that the edges of a p-dimensional
hypercube are placed along p possible directions).
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• It is worth noting that with this layout, in each step, modes that have to be connected
by couplers are all at the same relative distance and the projection of the couplers on the
plane are all parallel lines. This means that such couplers can be all identical (except for
deformations that may be needed for introducing phase terms) and waveguides never cross.
This avoids parasitic coupling between modes that should stay separated and unwanted
differences in the optical paths of the mode connections.

8.3 Appendix Note 3: Discrimination from classical light [5.3]
The measured two-photon data can be discriminated from classical light by using a test which
involves both collision-free and bunching contributions [266, 267]. We performed this test to
discriminate classical light in our work [182]. It is based on the two-mode correlation matrix,
which is defined as Γi,j = 〈a†ia

†
jajai〉. For two-photon input states, this reads Γi,j = (1 + δi,j)PQi,j ,

where PQi,j is the output probability. The correlation matrix for classical light must obey the
following inequality for all (i, j):

Wi,j = 1
3

√
Γ(cl)
i,i Γ(cl)

j,j − Γ(cl)
i,j < 0 (A3)

A violation of this inequality indicates that the collected data present correlations which are
stronger than those achievable with classical light.
We then applied this test to our experimental data, corresponding to the two cyclic inputs injected
in the 4-mode interferometer. The experimental correlation matrix Γ̃i,j , shown in Appendix
Figure A3a-b, has been retrieved from single-photon measurements and two-photon visibilities.
The violation parameters W̃i,j and the corresponding errors σi,j can then be obtained from Γ̃i,j .
We observe a violation of inequality (A3) of more than 68 standard deviations, for all suppressed
contributions in both cyclic inputs (see Appendix Figure A3c). This shows that the observed
correlations cannot be reproduced by classical light.

8.4 Appendix Note 4: Classes for 2-photon output probabilities
with Fourier interferometers [5.4]

Due to the symmetries of a Fourier transform it is possible to classify the input states in groups
with the same 2-photon output distribution pk,li,j , being (i, j) and (k, l) the input and output
2-photon states respectively. For pairs of indistinguishable photons injected into an interferometer
implementing (U)i,j = ui,j we have

pk,li,j ∝
∣∣per ck,li,j ∣∣2 =

∣∣uk,iul,j + uk,jul,i
∣∣2 (8.1)

which in the case of a Fourier transformation becomes proportional to the quantity
∣∣e2πß ki

d e2πß lj
d +

e2πß kj
d e2πß li

d

∣∣2. From here, observing that
∣∣eßα + eßβ∣∣2 ∝ cos2(β−α2 ), we directly find

pk,li,j ∝ 1 + cos
(2π
d

(l − k)(j − i)
)

(8.2)

Let us now define the quantities ∆kl = |k − l| and ∆ij = |i− j|, whence

pk,li,j ∝ 1 + cos
(2π
d

∆kl ∆ij

)
(8.3)

Suppose that the input modes (i, j) belong to the same class Ca,b of the input modes (a, b), over
a set of classes whose cardinality is yet to be determined. Let us also write ∆ij = ∆ab ± r, with
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Appendix Figure A2. Planar projections of hypercubes of dimension p up to 4. The numbered
vertices correspond to the possible position of the waveguides in the cross-section of a 3D interferometer
which implements the quantum Fast Fourier Transform. Each connection between the vertices
corresponds to a directional coupler in a given section of the interferometer.
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Appendix Figure A3. Discrimination of two-photon data with respect to classical light.
Two-photon correlations Γ̃i,j obtained from experimental data for the two cyclic inputs in the 4-
mode interferometer: (a) input modes (1,3) and (b) input modes (2,4). (c) Experimental results
for the discrimination test against classical light with the 4-mode interferometers and two-photon
input: number of standard deviation for which the parameter W̃i,j violates Eq. (A3) for each output
combination. Blue bars: input modes (1,3). Green bars: input modes (2,4).

r < d. We then require, for the two pairs of inputs (i, j) and (a, b) to belong to the same class,
that pk,li,j = pk,la,b, i.e.

cos
(2π
d

∆kl ∆ij

)
= cos

[2π
d

∆kl (∆ij ± r)
]

(8.4)

from which we need to satisfy mod
(
∆kl r, d

)
= 0. Thus, for each ∆kl there are d

2 + 1 different
classes, corresponding to the values r = 0, 1, 2, ..., d2 . �

8.5 Appendix Note 5: Majorization and fidelity of the operation
[5.4]

We have investigated the quality of the qFFT and the validation protocol for instances with a
different strength of majorization. To this aim, we have introduced a new figure of merit for
majorization, which captures most of the relevant aspects of a Lorenz diagram:

M = 1
2(m− 1)(n− 1)

n−1∑
s=1

m−1∑
k=1

δ
(s)
k

(
1 + sign(δ(s)

k )
)

(8.5)

where m is the number of states in the quantum register, n is the number of steps in which the
algorithm is decomposed and the δ(s)

k represent the differences between the Lorenz curves at
steps s and s+ 1 for a fixed level of imperfections σ. The estimatorM can be easily understood
as the arithmetic mean over all the steps and numbers of components involved in the cumulatives.
Using the new estimator, we show in Fig. 8.1 how the likeness to the ideal QFT (here judged
with the Fidelity F ) and the probability of success for the validation protocol (judged by the
ratio of successes Rs of correctly witnessing the injection of Fock states) change for increasing
values ofMσ, for as many levels of fabrication imperfections σ. The results in Fig. 8.1 show
that, for increasing values ofMσ, the values of F and Rs increase monotonically, confirm once
more the significance to the Fidelity of the two operations for majorization. Therefore, MP is a
valuable tool in realistic experimental scenarios for testing whether the efficiency of a quantum
algorithm is mantained throughout the wholeimplementation process.

We have also carried out numerical investigations about the occurrence of majorization
in a broader scenario, in the scope of realistic devices involving fabricative noise and more
unstructured architectures. As a first case, we checked if the Majorization emerges when
a different decomposition of the unitary transformation is employed. More specifically, we
considered the Reck decomposition [15] which can be exploited to decomposed a generic Haar
random unitary in a sequence of beam-splitters and phases. By picking a large sample of random
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Figure 8.1. Significance to the fidelity of an operation for majorization. The strength of the majoriza-
tion, estimated by the figure of meritMσ, is evaluated at different levels of noise and is put in correlation with
the Fidelity F of the QFT (left) and with the probability of success RS for the quantum validation protocol
(right). Our devices have an error tolerance of σ=0.05, which corresponds toM0.05 = 0.18 and F0.05 = 0.95,
which is compatible with the Fidelity measured between our reconstructed transformation and the ideal QFT.

Rc1-
a b

●

●

●

●

●

●
●

● ● ●

■

■

■

■

■

■

■

■

■ ■

◆ ◆
◆

◆

◆
◆

◆

◆

◆ ◆

FourierFourier

Haar- randomHaar- random

0.000 0.005 0.010 0.015 0.020
0.0

0.2

0.4

0.6

0.8

1.0

Symmetry breaking ⟶

F
ab
ric
at
io
n
no
is
e

⟶
Rc1-

● ●

●

●

●

●

●

●

●
●

●
●

■
■

■

■

■

■

■

■

■ ■

■
■

◆
◆

◆

◆

◆

◆

◆
◆ ◆ ◆

◆ ◆

qFFTqFFT

Haar- randomHaar- random

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

1.0

Symmetry breaking ⟶

⟵
F
ab
ric
at
io
n
no
is
e

Figure 8.2. Occurrence of majorization in realistic devices. The probability P of having a majorization
between the steps of the qFFT (a) and of the Fourier validation protocol (b) in the Barak and Ben-Aryeh
scheme (P = 1 − Rc) is studied numerically for increasing levels of symmetry of the architecture and of
noise in the fabrication process (blue, corresponding to our device and behaving like the ideal qFFT for this
plot: σ = 0.05; orange: σ = 0.1; green: σ = 0.15). The X-axis represents the gaussian noise σ admitted
on the decomposition of the virtual quantum walk, modeled in the same way as for the fabrication noise.
For each curve, corresponding to a different level of fabrication noise, each point is obtained by averaging
over 103 noisy transformations. This noise leads to a different majorization in the two algorithms, since
imperfections can make the probability distributions more peaked (a) or flat (b). For a sufficiently strong
degree of decoherence, modelled by the quantum walks introduced between each step, the qFFT behaves more
similarly to a Haar-random unitary and no majorization is asimptotically observed in this case.

unitaries from the Haar measure, and by decomposing them according to the Reck decomposition,
the Majorization has never been observed for different ways of defining the steps.

To further investigate this aspect, in Fig.8.2 we study the probability of a crossing between
any of the partial transformations with a transition from the ideal efficient qFFT to the Reck-
decomposed Haar-random unitary, for different levels of fabrication error tolerances (qFFT
breaking) and decoherence strength between the steps (symmetry breaking). Here, the fabricative
imperfections are modelled with a gaussian noise centered on the ideal value of the internal
parameters, while for the progressive disintegration of the high level of symmetry present in the
BB scheme we have adopted the following model. We have inserted a weak quantum walk between
each step, coupling each mode with all the others so as to introduce a degree of decoherence in
the structured architecture. To model the quantum walk we take the identity transformation
between each step, decompose it with the Reck scheme and introduce some gaussian noise in
the parameters of its beam splitters and phase shifters. Putting back together the decomposed
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noisy identity we are able to simulate a quantum walk of tunable intensity. As shown in Fig.8.2,
any undesired noise allowed in the architecture breaks the conditions for the observation of
majorization constraints (and thus the Majorization Principle). This analysis also confirms the
quality of the implementation and the efficacy of the novel 3D architecture adopted for the
decomposition.

8.6 Appendix Note 6: Optimal distinguishability for different n
and m [5.5]

In this Appendix Note we report results on the optimal interferometer designs we found for the
task of testing the hypotheses of distinguishable vs. indistinguishable photons, as we increase
the number of photons n and modes m. As in the main text, the figure of merit is the total
variation distance between the two distributions. In Appendix Table A1, we report the TVD
for combinations of two possible choices. The first is whether we only consider a single input,
in which case we choose that input which displays the greater TVD (in order to eliminate
ambiguities related to relabeling of the modes), or the average TVD over all possible inputs,
which might be more useful for a Scattershot implementation, where one wants to test several
different probabilistic sources at once. The second choice is whether we allow collision outcomes
(i.e. where multiple photons exit in the same mode) or not. In the latter case, one might wish
to compute the TVD between the normalized distributions restricted to coincidence outcomes,
but that poses a problem: in some cases (e.g. in the Hong-Ou-Mandel effect) there are no
collision-free outcomes, and this means that the renormalized distributions, and thus the TVD,
are not well-defined. This has the undesired side-effect of creating pathologies in the numerical
search. In order to deal with this, for the collision-free situation we actually bin all collision
events as a single “no-detection” event in the probability distribution before computing the TVD.

For each combination of these choices and of values of n and m, we also sampled 10000
Haar-random matrices (except {m,n} equal to {3, 8} and {2, 16}, where we sampled 2500, and
{4, 8}, where we sampled 100 matrices, due to computational constraints) in order to search for
non-Hadamard interferometers that performed better than Sylvester or Fourier matrices. Often
the best Haar-random matrix suggested an analytical optimal which we obtained by inspection.
These are represented by Ui in the table and discussed below.
Let us now discuss some interesting features of Appendix Table A1:

(i) If we restrict ourselves to a fixed set of inputs, then for a given number of photons n,
adding extra modes does not seem to help. In fact, the best TVD in this case for m > n
seems to be obtained by embedding an n× n matrix in the m×m one that acts as the
identity in the remaining modes. As an example, consider the case n = 2 - the best TVD is
the same as obtained by the HOM effect, and the corresponding unitary is simply a beam
splitter between two of the modes.

(ii) The same as above naturally does not hold when we average over all inputs. In this case,
considering a smaller matrix embedded in the larger one is clearly only optimal for a small
fraction of the inputs. A notable example is for the case of 3 photons in 4 modes. In that
case, embedding a 3-mode Fourier transform is optimal for the single-input scenario (case
U5), but the optimal interferometer for the average case is U4, which consists of a cascade
of one 50:50 beam splitter between two modes (say, pair {1, 2}) followed by two parallel
beam splitters (between pairs {1, 3} and {2, 3}).

(iii) Comparing only the Fourier (Fm) and Sylvester (Sm) matrices, for the n = 2 case, we see
that if we only look at a single input they are always tied. However, when looking at the
average case, the value for the Sylvester is unchanged, but the Fourier decreases. This is a
consequence of the fact that, while the Sylvester matrix is symmetric over all inputs, the
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m n U Col, Max No-col, Max Col, Avg No-col, Avg
2 2 F2 0.5 0.5 0.5 0.5

3 2
F3 0.3333 0.3333 0.3333 0.3333
U1 0.5 0.5 0.3333 0.3333
U2 0.3951 0.3951 0.3951 0.3951

3 3 F3 0.6667 0.1111 0.6667 0.1111
U3 0.5 0.5 0.5 0.5

4

2 S4 0.5 0.5 0.5 0.5
F4 0.5 0.5 0.3333 0.3333

3

S4 0.3125 0.125 0.3125 0.125
F4 0.3125 0.125 0.3125 0.125
U4 0.5625 0.5 0.5313 0.375
U5 0.6667 0.3333 0.4167 0.2778
U6 0.5 0.5 0.5 0.5

4
S4 0.75 0.1563 0.75 0.1563
F4 0.75 0.0938 0.75 0.0938
U7 0.5 0.5 0.5 0.5

8

2 S8 0.5 0.5 0.5 0.5
F8 0.5 0.5 0.3153 0.3153

3

S8 0.3125 0.2188 0.3125 0.2188
F8 0.4112 0.2813 0.3407 0.2545
U8 0.6667 0.3333 0.1012 0.0912
U9 0.5 0.5 0.0536 0.0536
Ua 0.4893 0.4311 0.3658 0.3087

4

S8 0.75 0.2813 0.5375 0.275
F8 0.75 0.3047 0.4337 0.2501
U10 0.75 0.5 0.2536 0.2013
Ua 0.5359 0.3388 0.4293 0.2776

16 2 S16 0.5 0.5 0.5 0.5
F16 0.5 0.5 0.3147 0.3147

Appendix Table A1. TVD between distinguishable and indistinguishable photon distributions. Columns
indicates the setting: Max (highest TVD over inputs) or Avg (TVD averaged over inputs), and Col
(collision outcomes are considered) and No-col (all collision outcomes are gathered into a single no-click
event). Sn and Fn are the Sylvester and Fourier matrices of size n, resp., and Ui are other noteworthy
matrices as described in the text. Bold numbers correspond to the highest values in that setting and
{n,m} pair.

a For these sizes, it was not always possible to identify the best matrices by inspection, so each
column might represent a different Haar-random matrix.
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Fourier matrix has different TVDs for different sets of inputs, as observed in Fig. 4 in the
main text.

The notable matrices in Appendix Table A1 are (up to permutation of the modes) as follows:

U1: A 50:50 beam splitter between {1, 2} followed by another between {2, 3}.

U2: It is the matrix

U2 =

1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

 (8.6)

U3: A single 50:50 beam splitter, with identity on the remaining mode.

U4: A 50:50 beam splitter between {1, 2} followed by two parallel ones, between {1, 3} and
{2, 4}.

U5: A 3-mode Fourier transform, with identity on the remaining mode.

U6: Two parallel 50:50 beam splitters, between {1, 3} and {2, 4}.

U7: A single 50:50 beam splitter, with identity on the remaining modes.

U8: A 3-mode Fourier transform, with identity on the remaining modes.

U9: A single 50:50 beam splitter, with identity on the remaining modes.

U10: A 4-mode Fourier transform, with identity on the remaining modes.

8.7 Appendix Note 8: Total variation distance for 3D interfer-
ometers with fast architecture

Here we discuss the TVD between the distributions with indistinguishable and distinguishable
particles when the interferometer is implemented with fast architecture. The layout for the
4-mode and 8-mode devices are shown in Appendix Figure 4.5. We restrict our attention to the
case where all directional couplers are symmetric (and thus with transmittivities τ (n)

s,ks
= 2−1/2).

Sylvester or Fourier interferometers can be recovered by inserting appropriate values for the
fabrication phases φ(n)

k .
We performed a numerical simulation of the TVD by generating N = 105 different unitary

transformations according to the Barak and Ben Aryeh architecture, with transmittivities
τ

(n)
s,ks

= 2−1/2 and random, uniformly distributed, phases φ(n)
k for n = 2 photons and m = 4, 8

modes. This permits to evaluate the effects of fabrication noise in the output distributions of
the implemented interferometers. In the fixed input case, we observe that cyclic inputs always
lead to the optimal value T (P,Q) = 0.5, independently of the values of phases φ(n)

k . Fabrication
errors in the optical phases within the interferometers will thus not affect the obtained results
in this scenario. In the multiple input configuration, on the other hand, we observe a different
scenario. In the 4-mode case, the maximum and the minimum values of the TVD are obtained
respectively for the Sylvester and the Fourier transformation (see Appendix Figure A4a). In the
8-mode case, the maximum is still obtained for the Sylvester interferometer, while a (very) small
subset of unitaries presents a lower value of the TVD with respect the Fourier transformation
(see Appendix Figure A4b). For the N = 105 set of randomly generated unitaries, the obtained
minimum is T (P,Q) ∼ 0.298, while the value for the Fourier is T (P,Q) ∼ 0.315.

Our simulations thus indicate that fabrication noise in the implementation of Fourier in-
terferometers will tend to result in an increased value of the TVD, with respect to the ideal
Fourier transformation. As we have seen in the main text, this was indeed what was observed
experimentally in the two devices we characterized.
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8.8 Appendix Note 9: Bayesian validation test
The aim is to discriminate between two hypotheses Q, corresponding to a Boson Sampling device
and P , corresponding to the evolution obtained with distinguishable particles. To this end, it is
possible to employ a Bayesian test as shown in [200]. At the initial stage, no a priori knowledge
is assumed on the system. This translates into uniform prior probabilities Pr(Q) = Pr(P ) = 0.5.
After the measurement of Nevents events, the ratio between the conditional probabilities associated
to the two hypotheses is updated according to Bayes’ rule:

R = Pr(Q|Nevents)
Pr(P |Nevents)

=
Nevents∏
i=1

(
qi
pi

)
, (8.7)

where x is the index of each sampled event, qx and px are the corresponding probabilities
associated to the two hypotheses Q and P respectively. Thus, the confidence probability for
hypothesis Q of indistinguishable particles after Nevents reads:

Pr(Q|Nevents) = 1
N

Nevents∏
i=1

(
qi
pi

)
, (8.8)

where N is a normalization constant.
This test can be applied in two different scenarios, namely when the incoming data are gener-

ated by a Boson Sampling device (ind) or by distinguishable particles (dis). When the incoming
data are generated by indistinguishable particles, Prind(Q|Nevents) represents the conditional
probability associated to hypothesis Q (that is, the correct guess), while Prind(P |Nevents) repre-
sents the probability associated to hypothesis P (that is, the wrong guess). Analogous definitions
are obtained when the data are generated by distinguishable particles, where Prdis(Q|Nevents)
corresponds to the wrong guess and Prind(Q|Nevents) to the correct guess.
The confidence probability of the test can be then defined as:

Pconf = 1
2 [Prind(Q|Nevents) + Prdis(P |Nevents)] . (8.9)

Conversely, Perr = 1− Pconf represents the average error probability of the test.

8.9 Appendix Note 10: Bayesian test on the experimental data
Here we provide more details on the application of the Bayesian validation test on the experi-
mental data. For each input state, Msample = 104 distinct samples were generated numerically
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from the experimentally measured two-photon distributions with indistinguishable photons and
distinguishable particles, the latter obtained by applying a suitable time delay ∆τ between the
photons larger than their coherence time. For each data sample, Gaussian noise was introduced
in the distribution according to the experimental errors. Then, for each data sample the Bayesian
test was applied using event data sets of increasing size Nevents. In the 4-mode case, the full set
of input states have been measured in the no-collision subspace, and the cumulative contribution
of collision events has been included in an extra bin (see Section “Measurement of the TVD” of
main text). The confidence probability Pconf is thus averaged over all input configurations. In the
8-mode case, three input states have been measured by detecting also the collision events. For
the Sylvester interferometer, all input states are equivalent, and thus an average with uniform
weights has been performed.

8.10 Appendix Note 11: Partial photon distinguishability in the
binary Bayesian test

Here we discuss the role of partial photon distinguishability in the Bayesian test when discriminat-
ing between hypotheses P and Q. More specifically, we analyzed the case when the experimental
data are generated from photon sources with partial photon distinguishability. In the two-photon
case, this means that the actual two-photon distribution can be approximated as a convex
combination hi(x) = xqi + (1− x)pi, where x ∈ [0, 1] is a real parameter quantifying the degree
of indistinguishability between the photons (x = 1 corresponds to the perfect indistinguishable
case). We keep the Q (P ) hypotheses to be the distributions with perfectly indistinguishable
(distinguishable) photons, while we allow partial distinguishability on the data to determine the
threshold on the indistinguishability x below which the Bayesian test inverts its outcome. To
this end, we performed some numerical simulations shown in Appendix Figure A5 for the 4-mode
and 8-mode implemented Sylvester interferometers by applying the test to numerically generated
data samples calculated from the reconstructed unitaries Ũ (4)

fS and Ũ (8)
fS . We then evaluated the

asymptotic confidence probability Pconf after collecting a large number of events (Nev ∼ 1000), as
a function of the parameter x. When Pconf > 0.5 (Pconf < 0.5), the full experiment is attributed
to hypothesis Q (P ). We observe that, in the 4-mode case, data with x > 0.788 are still assigned
to indistinguishable particles even in presence of partial distinguishability (x > 0.685 in the
8-mode case).

8.11 Appendix Note 12: Bayesian test on scattershot Boson
Sampling experimental data

In this Appendix Note we describe the Bayesian inference method applied in the main text on the
scattershot Boson Sampling data, and describe a related alternative approach based on binary
likelihood ratio tests.

Bayesian inference to ascertain photon indistinguishability

Bayesian inference has been applied in the main text on the scattershot Boson Sampling data.
More specifically, the binary set of hypotheses Q and P is replaced by the convex combination
hi(x) = xqi + (1− x)pi described in the sequent section. Thus, experimental data are assumed to
be described by the combination hi for a given value xtrue of the indistinguishability parameter x.
Then, the value of x for the collected data is retrieved from a given data sample by performing
single-parameter Bayesian estimation. Namely, a uniform prior P(x) is assumed for x, quantifying
the total a-priori ignorance on the parameter. The conditional probability of x after N measured
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Appendix Figure A5. Confidence probability Pconf as a function of the photon distinguishability x,
averaged over 104 distinct samples generated from the distribution calculated from the reconstructed
unitary transformations Ũ (4)

fS and Ũ (8)
fS . After Nev ∼ 1000 events: a, 4-mode Sylvester interferometer

and b, 8-mode Sylvester interferometer. After Nev ∼ 105 events: c, 4-mode Sylvester interferometer
and d, 8-mode Sylvester interferometer. Shaded regions: fixed input configuration, interval comprising
the curves for each individual state. Solid Lines: multiple input configuration.

events is obtained from the Bayes rule:

P(x|i1, . . . , iN ) = P(i1, . . . , iN |x)P(x)
N

, (8.10)

where (i1, . . . , iN ) is the recorded data sample, P(i1, . . . , iN |x) is the conditional probability
of obtaining the data sample for a given value of x, and N is a normalization constant. The
estimated value of the parameter (and its associated error) after N measured events are retrieved
from the distribution P(x|i1, . . . , iN ) as:

xest =
∫ 1

0
xP(x|i1, . . . , iN )dx, (8.11)

and

σest =
[∫ 1

0
(x− xest)2P(x|i1, . . . , iN )dx

]1/2
. (8.12)

The method has been applied on scattershot Boson Sampling experimental data, and the
results are shown in Fig. 5.13 of the main text. More specifically, starting from the overall
collected data sample of ∼ 17000 events, we generated numerically 100 different data sequences,
in order to evaluate the variability of the test when the data sequence is changed. By using the
overall data set, the final estimated value of x is x̃est = 0.738± 0.004, which is compatible with
the one retrieved from Hong-Ou-Mandel interference with two of the SPDC sources in a 50/50
beam-splitter: xHOM = 0.79± 0.06.

Convex hypothesis test with likelihood ratios

A different approach based on binary likelihood ratio tests can be employed to identify the value
of x that better describes the experimental data. As in the previous case, the hypothesis is that
data are described by the convex combination hi(x) = xqi + (1− x)pi for some value xtrue of x.
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This approach relies on the likelihood ratio test described in Appendix Note 4, and is divided in
two stages.

Stage A. The first stage of the test exploits experimental data to identify a threshold value
xth where the binary decision test becomes ambiguous. More specifically, let us consider the
case where the experimental data pass the binary test for the hypothesis Q. Then, the test is
performed with the same data by fixing the hypothesis Q and by using as alternative hypothesis
H(x). The test is repeated by tuning the value of x until the ratio R(x) between the hypotheses
Q and H(x) lead to an ambiguous results:

R(x) =
Nevents∏
i=1

qi
xqi + (1− x)pi

. (8.13)

The value of xth then corresponds R(xth) = 1. Analogously, if experimental data pass the test
for the hypothesis P the test is performed between P and H(x) thus evaluating the ratio:

R(x) =
Nevents∏
i=1

xqi + (1− x)pi
pi

. (8.14)
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Appendix Figure A6. Evaluation of the indistinguishability x through the convex hypothesis test based
on the likelihood ratio approach. a, First stage of the test with the experimental data to determine
the value of xth. b, Second stage of the test with numerically simulated data. Left figure: plot of
log10 R

′ as a function of y (indistinguishability of the numerically generated) data for the full interval
y ∈ [0; 1]. Right figure: highlight in an interval close to R′ = 1. Solid line: variability of R′ as a
function of y when each point is evaluated from a single-data set. Shaded region: interval for R′
obtained by generating 100 distinct data samples for each value of y. The interval included within the
blue ruler identifies the interval for the estimate y′.

Stage B. The second stage employs simulated data from the unitary transformation. The
test is now performed by keeping fixed the two hypothesis to Q and H(xth) (or P and H(xth)
if the data pass the initial test for P ). Numerically simulated data sample of size Nsim are
generated from the distribution H(y) for different value of y, and the binary likelihood ratio test
is performed by evaluating:

R′ =
Nsim∏
i=1

qi
xthqi + (1− xth)pi

or R′ =
Nsim∏
i=1

xthqi + (1− xth)pi
pi

(8.15)

This procedure is repeated by tuning y until a value y′ is obtained for which the test is ambiguous
(R′ = 1). This value of y′ is an estimate of the parameter y. Intuitively, this second stage
determines the value of the photon indistinguishability that leads to an ambiguous result for the
same value of xth obtained from experimental data.

We have then applied the test to the experimentally measured scattershot Boson Sampling
data. In Stage A, we obtained xth ' 0.9872 by using the full data sample (see Appendix
Figure A6a). In Stage B, we performed the likelihood test between hypotheses P and H(xth) by
generating samples of Nsim = 105 data from the distributions H(y) for different values of y. The
distributions pi and qi for the convex combination are calculated from the reconstructed unitary
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transformation Ũ (4)
fS . To give an estimate of the error associated to y′ and take into account the

effect of using a finite number of samples, in Stage B we generated 100 distinct data samples of
size Nsim for each value of y. This allows to obtain an interval for the estimate y′. By naming
y′ = xLR, we obtain xLR ∈ [0.734; 0.742] (see Appendix Figure A6b). This interval is compatible
with the value x̃est obtained via Bayesian inference.

8.12 Appendix Note 13: Efficiency of the different pattern recog-
nition techniques [6.1]

From Appendix Note 13 to 16 we will discuss the pattern recognition techniques used in our work
to validate Boson Sampling data. Specifically, the main strength of K-means clustering [189] lies
in the ability of the algorithm to learn, through a certain number of iterations, a locally optimal
cluster structure for the experimental data to be analyzed. This feature is clearly highlighted
when we compare the performances of the compatibility test, that is the resulting p-values, when
we adopt K-means clustering and bubble clustering. In Appendix Fig. A7 a we compare two
incompatible samples, i.e. one drawn from a trustworthy Boson Sampler and one from a Boson
Sampler fed with a distinguishable three photon input. In Appendix Fig. A7 b we instead compare
two compatible samples, both drawn from a trustworthy Boson Sampler. Bubble clustering is
not iterative and the resulting cluster structure is deterministic for a given data set. Indeed,
the algorithm chooses the cluster centers accordingly to the observation frequency of the output
states and assigns the elements only once. On the other hand, K-means is not deterministic,
since the final cluster structure depends on the centroids inizialization, and, through the selection
of the centroids and the corresponding assigned elements, it is guaranteed to locally optimize its
objective function, 1

N

∑k
j=1

∑nk
i=1 d(eij , cj) [190]. Having considered this feature of K-means, we

performed 200 tests both on the two compatible samples and on the incompatible ones, using
100 different uniformly drawn random inizializations, and 100 K-means++ inizializations. The
pattern recognition techniques based on K-means, given its objective function convergence to
local minima property, improve the test’s result after each iteration, being able to recognize
whether the samples are compatible or not with better results than bubble clustering, that is,
leading to a smaller p-value, with incompatible samples and a greater p-value with compatible
samples. The p-value quantifies the significance of the χ2 test result, since it gives the probability
of obtaining a greater value of the χ2 variable, if the null hypothesis of compatible samples is
true.

8.13 Appendix Note 14: Finding the optimal number of clusters
for K-Means [6.1]

All clustering techniques investigated in the present study are characterized by several parameters
that have to be tuned to ensure the right operation for the algorithm. K-means clustering, in
particular, requires the user to set the number of clusters forming the structure. The approach
we used to set this parameter in the training stage consisted in multiple trials of the compatibility
test on sets of the same size and varying the number of clusters. The success percentage of the
test increases significantly as the number of cluster is raised, especially in the case of incompatible
samples, as shown in Appendix Fig. A8. The increase in the number of clusters was halted by
requiring that clusters are composed of at least 5 elements, to ensure the correct operation of the
compatibility test (that requires the evaluation of a χ2 variable).
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Appendix Figure A7. K-means clustering vs bubble clustering. a), P-values obtained by the
application of our compatibility test on two compatible samples of 2000 events, both drawn from
a trustworthy Boson sampler, with N=3 and m=13. The blue horizontal line indicates the result
obtained by using the cluster structure given by bubble clustering. The darker and lighter dots
represent the p-values obtained respectively from the application of the test on the cluster structures
obtained by K-means, initialized by uniformly drawn random centroids and by K-means++, at each
iteration. Since the cluster structure obtained by v is not deterministic, we performed the mean on
the p-values corresponding to 100 different inizializations. The red dashed line indicates the p-value
above which the two samples are recognized as compatible. b), P-values obtained by the application
of our compatibility test on two incompatible samples of 2000 events, one drawn from a trustworthy
Boson sampler and the other from a Boson Sampler fed with a distinguishable photon input. The
blue horizontal line indicates the result obtained via bubble clustering. The darker and lighter dots
represent, respectively, the p-values obtained by K-means, initialized by uniformly drawn random
centroids and via K-means++ inizialization. Since the cluster structure obtained by K-means is not
deterministic, we performed the mean on the p-values corresponding to 100 different inizializations.
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Appendix Figure A8. Success percentages vs number of clusters (k). Success Percentages of
the compatibility test, with K-means clustering, obtained by comparing numerically generated samples
of 1000 events with N=3 and m=13 drawn from the Boson Sampling distribution and from the
distribution given by distinguishable photon inputs, as a function of the number of cluster. The darker
and lighter dots represent the percentages corresponding respectively to compatible and incompatible
samples. The percentages here indicated are evaluated considering 5% as significance level for the χ2

test.

8.14 Appendix Note 15: Halting condition for hierarchical clus-
tering [6.1]

The choice of the halting condition for Hierarchical clustering attempts to balance two conflicting
requisites: the number of clusters and their minimum size. Firstly, there is the need to have
clusters with at least 5 elements, to make the χ2 test meaningful. However, the minimum size is
not the optimal choice as halting condition, since there is no control over the number of clusters
and there is the risk that the algorithm stops with too few clusters remaining. An excessively low
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number of clusters, less than 3, can compromise the correct operation of the test. We therefore
chose to remove outlier elements in the data, neglecting them in the final cluster structure. This
is done by requiring that the algorithm stops when a predetermined fraction of the elements
belongs to clusters with less than 5 elements. The fraction was then tuned to maximize the
efficiency of the validation test, while monitoring the amount of data taken away.

8.15 Appendix Note 16: Reshuffling of the experimental data
[6.1]

Our evaluation of the experimental success percentages of the validation test uses 100 sets of
three data samples, two compatible and one incompatible. Having such a number of data allows
to perform 100 compatibility tests between compatible samples and 100 between incompatible
samples. The required sample size to ensure more than 0.8 probability to recognize two incompat-
ible samples is 500 events. This sample size implies that, for each input mode occupation list, we
would need at least 5x104 events drawn from the distribution with distinguishable photon input
and 10x105 events drawn from the corresponding Boson sampling distribution. Since the amount
of experimental data available was not sufficient, we adopted a reshuffling of the experimental
data. To this purpose, starting from a set of Nexp output events sampled experimentally, we
picked randomly the number of events corresponding to the required sample size Ne among the
available data, as long as Ne < Nexp. This approach may bring a small bias in the results. To
quantify this bias, we performed a numerical simulation, comparing the trends of the success
percentage as a function of the sample size, with and without reshuffling. The trend is the same,
but the growth is slower. Specifically, as reported in Appendix Figure A9, numerical simulations
show that, for the investigated sample sizes, reshuffling of data does not affect the result of the
validation algorithm adopting K-means clustering, initialized with K-means++. This analysis
implies that the success percentages obtained experimentally and showed in Fig. 3 b and Fig. 4
of the main text are reliable.
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Appendix Figure A9. Reshuffling of the data. a Success Percentages of the compatibility test
performed on incompatible samples, with N=3 and m=13, with K-means clustering initialized with
K-means++. The lighter and darker dots represent the percentages corresponding respectively to
reshuffled and to not reshuffled data. b Success Percentages of the compatibility test on incompatible
samples, with N=3 and m=13, adopting K-means clustering initialized with K-means++, with
majority voting. The lighter and darker dots represent the percentages corresponding respectively to
reshuffled and to not reshuffled data. The percentages here indicated are evaluated considering 5% as
significance level for the χ2 test.

8.16 Appendix Note 17: Assigning new data with machine learn-
ing techniques [6.2]

Machine learning techniques can be employed to assign new data to one of the two classes of the
statistical test, namely indistinguishable photons (class B) or distinguishable particles (class D).
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We have here verified the performances obtained with three different techniques in the NM -CV
plane, namely (i) nearest centroid, (ii) k-nearest neighbor and (iii) support vector machines with
a linear classifier. (i) The nearest centroid method assigns the new datum to the class with
lowest distance d between the datum and the class centroid. The latter are calculated (efficiently)
by employing the random matrix theory results reported in Ref. [210]. Note that the nearest
centroid method requires the calculation of only two distances for each new datum to be classified,
and thus the method is computationally efficient. (ii) The k-nearest neighbor method exploits
the shape of the points distribution for the two classes. More specifically, given a training set of
Ntraining points for each of the two classes, the distance d is calculated between the new datum
and all points of the training set for B and D and sorted in increasing order. Majority voting
is applied to the k lowest distance values, where k is a parameter that can chosen by the user.
At variance with the previous technique (i), 2Ntraining distances have to be evaluated for each
new datum to be assigned. Furthermore, the parameter k can be optimized to minimize the
error probability. (iii) A support vector machine is constructed to find the optimal way to divide
the parameter space in two regions corresponding to the two classes. As for technique (ii), a
training set of Ntraining points for both class D and B. In this case, we employed a linear classifier
which searches for the optimal hyperplane separating the two regions. The new datum is then
assigned according the determined separation. In all cases (i)-(iii), the figure of merit is the error
probability Perr, defined as Perr = (PB→D + PD→B)/2. Here, PB→D is the probability to wrongly
assign a datum corresponding to indistinguishable photons to the class D, and conversely for
PD→B.
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Figure 8.3. a Optimal k value obtained from numerical simulations for the k-nearest neighbour method.
b-f Error probability obtained for the three methods for b, n = 2, c, n = 3, d, n = 4, e, n = 5, f,
n = 6. Red points: nearest centroid approach. Black points: k-nearest neighbour. Blue points: support
vector machine with linear classifier.

We then performed numerical simulations for each of the three techniques (i)-(iii). For the
nearest centroid method, we numerically generated Ns = 100000 Haar random matrix, evaluated
the statistical quantities (NM, CV) from the two-mode correlators Ci,j for both indistinguishable
photons and distinguishable particles, and then estimated the average error probability Perr. For
the k-nearest neighbour and the support vector machine, the simulations have been performed by
generating Nr = 100 different training sets of size Ntraining = 1000, and for each training set the
error probability has been estimated from Ns = 1000 Haar random matrices. In the k-nearest
neighbour case, the analysis has been performed by finding numerically the optimal value for k
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(see Fig. 8.3a). In Figs. 8.3b-f we report the error probabilities for the three techniques (i)-(iii),
for 2 ≤ n ≤ 6. We observe that the k-nearest neighbour and the support vector machine methods
present comparable error probabilities, greatly outperforming the nearest centroid one.

8.17 Appendix Note 18: Suppression laws for Sylvester inter-
ferometers [5.6]

In this Section we discuss in detail the suppression law for Sylvester interferometers adopted in
section 5.6.

Preliminary definitions

Let us begin by defining some notation used throughout this Section. We are interested in the
transition amplitudes between states of n photons in m modes, and restrict ourselves to the
case n ≤ m. We denote such states as |r〉 := |r1, . . . , rm〉, where rk is the number of photons
in the kth mode and ∑m

k=1 rk = n. The set of all such states is denoted by Gn,m. We refer to
the particular states where all ris take only values 0 or 1 as collision-free, and the set of all
collision-free states is denoted by Qn,m. It is easy to see that |Gn,m| =

(m+n−1
n

)
and |Qn,m| =

(m
n

)
.

Let us now define two useful alternative representations for such states.

Definition 8.1

(MAL and BM representations). Let |r〉 = |r1, . . . , rm〉 ∈ Gn,m. We can define the following
two representations of this state.

• Mode Assignment List (MAL): an n-dimensional vector r̃ := (r̃1, . . . , r̃n) listing the
mode occupied by each particle.

• Binary matrix (BM): States with m = 2p, for some positive integer p, can also be
represented as an n× p binary matrix R as follows. For a given MAL r̃ := (r̃1, . . . , r̃n)
describing the state, the ith row of R corresponds to the binary representation of
r̃i − 1 (padded with zeros on the left so it has length p).

Since photons are indistinguishable, the ordering of elements in the MAL is meaningless, and
we conventionally choose the list to be in increasing order. Correspondingly, the ordering
of the rows of two binary matrices is irrelevant, i.e. if R and R′ are related only by a
permutation of the rows, they represent the same physical state, and this we denote as
R ∼ R′.

Example 1. For m = 8 and n = 4, consider the state |r〉 = |1, 1, 1, 0, 0, 0, 0, 1〉. It has the
corresponding MAL r̃ = (1, 2, 3, 8), and its BM representation is the 4×3 matrix

R =


0 0 0
0 0 1
0 1 0
1 1 1

 . (8.16)

The following definitions are also convenient shorthands used throughout this Section.
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Definition 8.2

Let R be the n×p BM representation of some state |r〉. Let A be some subset of the columns
of R. We denote by NA(R) the matrix obtained by flipping each bit in the columns of R
specified in A. If r̃ is the MAL associated with R, we denote by NA(r̃) the MAL associated
with NA(R).

Example 2. For m = 8 and n = 4, consider the state |r〉 = |1, 1, 1, 1, 0, 0, 0, 0〉,
corresponding MAL r̃ = (1, 2, 3, 4) and BM representation

R =


0 0 0
0 0 1
0 1 0
0 1 1

 . (8.17)

Then we have the following possibilities when A consists of a single element

N {1}(R) =


1 0 0
1 0 1
1 1 0
1 1 1

 , N {2}(R) =


0 1 0
0 1 1
0 0 0
0 0 1

 , N {3}(R) =


0 0 1
0 0 0
0 1 1
0 1 0

 . (8.18)

Clearly N {2}(R) ∼ N {3}(R) ∼ R, since they are related to each other by permutations of their
rows, whereas N {1}(R) represents a different state. The set A can also contain more than a
single element. For example:

N {1,3}(R) =


1 0 1
1 0 0
1 1 1
1 1 0

 , N {1,2,3}(R) =


1 1 1
1 1 0
1 0 1
1 0 0

 , (8.19)

and so on.

Definition 8.3

(Sylvester matrices) Let US be an m-dimensional unitary matrix of the form US(m) ≡
H(m)/

√
m, with H(m) defined recursively as

H(2p) :=
(
H(2p−1) H(2p−1)
H(2p−1) −H(2p−1)

)
, (8.20)

for each positive integer p, and with H(1) := 1. We refer to US(m) as normalized Sylvester
matrix and to H(m) as Sylvester matrix. The m dependence of US and H will be omitted
when clear from the context.

An analytic expression for the (i, j) element of a Sylvester matrix can be given in the form:

[H(2p)]i,j = (−1)iB�jB , (8.21)

where iB and jB are the binary representations of i − 1 and j − 1 respectively, and � is the
bitwise dot product.
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Suppression law for Sylvester matrices

In this Section we present a test which generalizes that of [169], predicting a higher fraction of
suppressed pairs. This test can be assessed with a computational cost increasing only polynomially
in m and n.

Let us begin with the following two straightforward Lemmas, the proof of which we leave as
an exercise for the reader.

Lemma 8.1

Let Sn be the set of permutations of {1, . . . , n}, and let τ ∈ Sn be a permutation different
from the identity such that τ2 = 1. Then we can uniquely associate to each σ ∈ Sn another
(different) permutation στ ≡ τ ◦ σ, where ◦ denotes the composition of permutations.

Lemma 8.2

Let r̃, R and NA be as in Definitions 8.1 and 8.2. Then NA(r̃) = r̃ if and only if NA(R) ∼ R.
This, in turn, happens if and only if there is a permutation τ ∈ Sn such that NA(R) = Rτ ,
where Rτ is obtained from R by applying the permutation τ to the rows of R. Now, if τ is
such a permutation, we have

1. τ 6= 1,

2. τ2 = 1,

3. for each σ ∈ Sn, NA(Rσ) = Rτ◦σ

4. all columns of R in A have an equal number of 1s and 0s,

5. all columns of R not in A have an even number of 1s and an even number of 0s.

We are now ready to state the main result of the Section:

Theorem 8.1

Let |r〉 and |s〉 be two states of n particles in m = 2p modes, with corresponding MAL
representations r̃ and s̃, and BM representations R and S. If there is a subset A of the
columns of R such that 

NA(R) ∼ R,
n⊕
k=1

⊕
α∈A

Skα = 1,

(8.22a)

(8.22b)

then the transition from |r〉 to |s〉 (and consequently also that from |s〉 to |r〉), when
transversing the Sylvester interferometer, is suppressed.

Proof. The transition amplitude from |r〉 to |s〉 can be written as

A := 1√
r1! . . . rm!s1! . . . sm!

Per (Ur,s) , (8.23)
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where Per(U) denotes the permanent of U . In the equation above, Ur,s is the matrix defined
element-wise as

[Ur,s]i,j := 1√
m

[H(2p)]r̃i,s̃j , (8.24)

where, recall, H(2p) is the Sylvester matrix (cf. Definition 8.3).
Using Eqs. (8.21), (8.23), and (8.24), and denoting Mi the ith row of matrix M , we obtain

A = D
∑
σ∈Sn

n∏
k=1

(−1)Rσ(k)�Sk = D
∑
σ∈Sn

(−1)E(σ), (8.25)

where B �C denotes the bitwise dot product between vectors B and C, defined as B �C :=⊕p
α=1BαCα, D is a constant factor, and we defined

E(σ) ≡
n⊕
k=1

Rσ(k) � Sk =
n⊕
k=1

p⊕
α=1

Rσ(k),αSk,α. (8.26)

The actual value of E(σ) is unimportant here, only its parity matters. Since we are interested in
whether A = 0, we will ignore the constant factor D in Eq. (8.25).

Clearly, for A to vanish, we need exactly half of the permutations to be such that (−1)E(σ) = 1.
A necessary and sufficient condition for this to hold is if, for each permutation σ, we can uniquely
assign another permutation σ′ such that E(σ′) = 1 ⊕ E(σ). From Lemmas 8.1 and 8.2, we
know that if condition (8.22a) holds we can uniquely associate to each σ another permutation
στ ≡ τ ◦ σ, where τ is the permutation such that NA(R) = Rτ . Using στ in Eq. (8.26) we have

E(στ ) =
n⊕
k=1

p⊕
α=1

Rτ(σ(k)),αSk,α =
n⊕
k=1

(⊕
α∈A

Rτ(σ(k)),αSk,α

)
⊕

⊕
α/∈A

Rτ(σ(k)),αSk,α

 . (8.27)

Using now the explicit expression for NA(R) and Lemma 8.2, we have

NA(Rσ) = Rτ◦σ ⇐⇒
{

1⊕Rσ(k),α = Rτ(σ(k)),α, α ∈ A,
Rσ(k),α = Rτ(σ(k)),α, α /∈ A.

(8.28)

Inserting these into Eq. (8.27), we obtain

E(στ ) = E(σ)⊕
[
n⊕
k=1

⊕
α∈A

Sk,α

]
= E(σ)⊕ 1, (8.29)

where in the last step we used Eq. (8.22b). Using this last result into Eq. (8.25) we conclude
that

A = C
∑
σ∈Sn

(−1)ER,S(σ) = C
∑

σ∈Sn: E(σ) even

[
(−1)E(σ) + (−1)E(στ )

]
= 0, (8.30)

which proves that the input-output pair (|r〉 , |s〉) is suppressed.

Example 4. Consider the state |r〉 = |1, 1, 1, 1, 0, 0, 0, 0〉 from Example 2. We have
NA(r̃) = r̃ for A = {2}, A = {3}. and A = {2, 3}. Theorem 8.1 predicts suppression of all
output states whose BM representation has an odd number of 1s in either the second column,
the third column, or in the second and third columns combined. For example, the states
s̃ = (3, 6, 7, 8), s̃ = (2, 6, 7, 8), and s̃ = (4, 6, 7, 8), having BM representations

0 1 0
1 0 1
1 1 0
1 1 1

 ,


0 0 1
1 0 1
1 1 0
1 1 1

 , and


0 1 1
1 0 1
1 1 0
1 1 1

 , (8.31)

respectively, are all suppressed.
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Remark. (Efficiency) To check if Theorem 8.1 applies to a given input-output pair, one has to
verify condition 8.22 for each one of the 2p − 1 = m − 1 possible (non-empty) subsets of the
p columns of R and S, which requires only a polynomial (in n and m) number of elementary
operations. Hence, the proposed suppression law is efficiently verifiable.
While Eq. (8.22b) gives a sufficient condition for an input-output pair to be suppressed, it is not
necessary. For most input states, not all suppressed outputs satisfy Theorem 8.1. In the next
Section we give estimates of the which fraction of all states our test identifies as suppressed.

Estimates on fraction of suppressed states

In this Section, we give estimates on the fraction of suppressed input-output pairs identified by
the conditions of Theorem 8.1, particularly focusing on upper bounds and asymptotic limits
(in the number of modes m and photons n). Throughout this Section, we are still restricted to
m = 2p for some integer p, which means all binary matrices are n×p, and to n ≤ m. The fractions
we obtain consider mainly the set of all possible states, Gn,m, which has |Gn,m| =

(m+n−1
n

)
elements. At the end of this Section we discuss the applicability of our results to the restriction
of no-collision states.

We begin by restating the two conditions of Theorem 8.1 informally, as they would be used
in a test. For simplicity, we refer to the states |s〉 and |t〉 of the Theorem as input and output
states, respectively, although any conclusions can be extended to the case where the roles of
input and output are reversed. With this in mind, we note that Condition 8.22a concerns only
inputs, and we restate it as:

Condition I: For a given input with BM representation R, check whether R has any subsets
of columns A such that negating those columns of R results in R up to a permutation of the
rows (i.e. NA(R) ∼ R).

Let us call A the set of all such subsets of columns A. For the state in Example 2, for instance,
A = {{2}, {3}, {2, 3}}. If Condition I finds no such A, the test fails to identify any suppressed
transitions. Also, as a consequence of Lemma 8.2, the test only works if n is even. Assuming
that Condition I yielded some non-empty A, we can test for Condition 8.22b, which is a test
only on the outputs and which we restate as:

Condition II: Consider any output with BM representation S and any A ∈ A. If the
columns A of S contain an odd number of 1s, the transition from R to S is suppressed.

For simplicity, we begin by estimating how many output states are suppressed given that Condition
I identified a non-empty set A for some input. Before that, we need one final definition. We say
that the elements of A are independent if none can be replaced by a sequence of the others. That
is, if there is no A ∈ A and A1, A2, . . . , Ak ∈ A\{A} such that NA1(NA2 . . . (NAk(X))) = NA(X)
for all binary matrices X. To illustrate this, consider Example 2. There, A = {{2}, {3}, {2, 3}}.
Clearly, negating columns {2, 3} of a binary matrix is the same as negating column {2} followed
by column {3}. Furthermore, Condition II can only be satisfied for {2, 3} if it is satisfied by
either {2} or {3}. Thus, including {2, 3} in A does not give any new suppressions beyond those
identified by {2} and {3}, so we can safely drop it (we could have dropped either {2} or {3}
instead, to the same effect). Since the binary matrices have p columns, there can be at most p
independent elements in A. We are now ready to state the following.

Corollary 8.1

Let A be the set identified by Condition I for some input state, and suppose it contains q
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independent elements. Then the fraction of outputs in Gn,m (i.e. including collision states)
that Condition II identifies as suppressed is equal to 1− 1

2q + O
(

logm
n

)
.

Proof. Suppose initially that there is a single element A ∈ A, say A = {1}. The corresponding
suppressed outputs are those whose BM representation contains an odd number of 1s in the first
column. These consist of approximately half of all possible states, which can be seen as follows.
Let us write the binary matrix S of some such output as

S =
(

S1 S′
)
, (8.32)

where S1 is its first column and S′ a matrix of the remaining p− 1 columns. Since all matrices
that are equivalent up to a permutation of the rows correspond to the same state, we can assume
without loss of generality that the 1s in S1 occupy the first slots. This means there are only
n+ 1 possibilities for S1, and it is easy to see that n/2 of them satisfy Condition II. Since this
holds irrespective of the choice of S′, we conclude that (n/2)/(n+ 1) = 1/2 + O(1/n) out of all
states are suppressed. The argument follows through almost unchanged for any A, even if it
spans several columns.

Suppose now A has q independent elements. By the previous paragraph, the first element of
A, let us call it A1, leads to a suppression of approximately (i.e. up to O(1/n)) half of all outputs.
The second element, A2, also leads to a suppression of approximately half of all outputs—but now
there is an overlap with those identified by A1. Since the two are independent, approximately
half of the elements identified by A2 have already been identified by A1 (e.g., approximately half
of the matrices with an odd number of 1s in the first column also have an odd number of 1s in
the second column). Thus the new suppressions identified by A2 correspond only to 1/4 +O(1/n)
of all states. Each subsequent independent element of A further divides the remaining set of
unsuppressed states by half, and we conclude that Condition II in fact identifies 1−1/2q+O(q/n)
of all states as suppressed. Since q ≤ p = log(m), this gives the claimed asymptotic behavior.

Corollary 8.1 shows that any input which satisfies Condition I has at least 1/2 of all outputs
suppressed, and this fraction can, in principle, be as high as 1− 1/m if Condition I identifies p
independent elements in A. It is thus essential to identify how many inputs effectively satisfy
Condition I in order to determine the overall fraction of suppressed pairs. Indeed, Theorem
8.1 treats input and outputs asymmetrically, and as a consequence Condition I is much more
stringent than Condition II.

Corollary 8.2

Only an exponentially-vanishing subset of the inputs is detected by the test of Theorem 8.1.

Proof. Let us begin by counting how many inputs have a particular element A in their set A.
Consider initially that A = {1}. For Condition I to hold in this case, we need half of the elements
of the first column of R to be 1 (cf. Lemma 8.2). Since we are free to rearrange the rows as
desired, we can assume that R is ordered as follows

R =
(

1n/2 R1
0n/2 R2

)
, (8.33)

where 1n/2 and 0n/2 are vectors of n/2 1s and 0s respectively, and R1 and R2 are (n/2)× (p− 1)
binary matrices. For R to satisfy N {1}(R) ∼ R, we must have R1 ∼ R2, and in fact we can
further reorder the rows of R have such that R1 = R2. We can now count how many binary
matrices satisfy these constraints. Clearly we have no choice over the first column and over R2,
so we only need count all possibilities for R1. Given the form chosen for R above, it is clear that
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any two choices for R1 that are equal upon permutation of the rows represent the same state,
and should not be counted twice. This leads to a cumbersome combinatorial problem, since we
need to tally all possibilities for R1 up to permutations, but the number of permutations changes
depending on whether R1 has repeated rows. A shortcut to this calculation is to realize that we
can formally map R1 back to a MAL representation, as in Section 8.17 and, subsequently to a
quantum state of n/2 photons in 2p−1 = m/2 modes. Thus, the number of possibilities for R1 is((n+m)/2−1

n/2
)
.

Consider next another possibility, that A = {1, 2}. The counting in this case is similar to
before, but a little trickier, because we need to keep track of how many choices we have for the
first two columns such that N {1,2}(R) ∼ R. Let us once more order the matrix as follows:

R =
(

1n/2 a1 R1
0n/2 a2 R2

)
, (8.34)

where 1n/2 and 0n/2 are defined as before, a1 and a2 are two binary vectors of length n/2 and
R1 and R2 are (n/2)× (p− 2) binary matrices. We want R to be ordered in such a way that
N {1,2}(R) ∼ R implies R1 = R2, to reuse part of the previous argument. This immediately
implies that a2 is obtained from a1 by negating its elements. We know that a1 and a2, together,
must contain n/2 1s, due to Lemma 8.2, but that is already guaranteed by the fact that they
are negations of each other1. From the freedom of reordering rows, we can assume that the
1s in a1 occupy the first positions. This leaves (n/2 + 1) possibilities for a1. Combining
that with the

((2n+m)/4−1
n/2

)
possibilities for R1 as in the previous paragraph, we get a total of

(n/2 + 1)
((2n+m)/4−1

n/2
)
possibilities. How does this compare with the case A = {1}? We can use

the following asymptotic expression for the binomial coefficient
(n
k

)
(
n

k

)
≈ (n− k/2)k

kke−k
√

2πk
, (8.35)

which holds when n is both large and much larger than k. By using this expression it is easy to see
that, in the limit of both m and n large with n ≤ m, (n/2 + 1)

((2n+m)/4−1
n/2

)
grows exponentially

slower than
((n+m)/2−1

n/2
)
, and so we can use the latter as an upper bound. In fact, as we consider

sets A comprising of more columns, the constraints tend to become more restrictive and the
number of matrices that satisfy them decreases. So we will use

((n+m)/2−1
n/2

)
as an upper bound

on the number of states that satisfy Condition I for any A.
We are now ready to give an upper bound on the number of states that satisfy Condition I for

some nonempty A. Since there are p columns in the binary matrices, There are 2p − 1 = m− 1
possible As that can appear in A. By the inclusion-exclusion principle, we would need to sum
the number of states that satisfy Condition I for each possible A, then subtract those that have
been counted multiple times because they satisfy it for more than one A. It is simpler, however,
to use the union bound, which in this case says that the number of states is upper-bounded by
(m− 1)

((n+m)/2−1
n/2

)
. Recall now that the total number of states is

(n+m−1
n

)
. Using an asymptotic

formula for the binomial coefficient, it is clear that the fraction of states detected by the test is
exponentially small in the limit of large n and m, as claimed.

So far, we have considered only the full set of states (i.e, including collision states) in the
estimates of suppressed fractions, but the restriction to no-collision states is often more useful. For
example, no-collision outputs are the only detected outcomes when the experiment is performed
using bucket detectors (i.e. that do not distinguish one photon from many). More importantly,

1Note that, whenever a1 has 1/4 of the 1s, we are double-counting some matrices that were already included in
the case A = {1}. But in the asymptotic limit they form a negligible fraction of the cases, so we do not worry
about this correction.
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experimental implementations typically consider inputs with no more than a single photon per
mode. This is also relevant for boson sampling applications, being input state with at most
one photon per mode the appropriate choice for its computational hardness. Thus, it would be
interesting to obtain versions of Corollaries 8.1 and 8.2 where both the suppressed pairs and the
set of all states included this restriction. Unfortunately, some pathological instances arise when
we try to specialize the previous results in that way. To see that, consider the case where n = m.
There, we have a single no-collision state, and it satisfies Condition I. Thus, we conclude that
100% of inputs in that case have suppressed outputs! As we now argue, it is still possible to show
a weaker version of Corollary 8.2 for no-collision inputs.

Consider the regime where m = O
(
n2). Experiments are often done in this limit, especially

since it seems to be a requirement for the computational hardness of the boson sampling model [33].
It is easy to show that the set of no-collision states is not a negligibly subset of all states in
this regime, due to the so-called birthday paradox. To illustrate this suppose m = n2 holds
exactly, in which case the fraction of no-collision states among all states is

(n2

n

)
/
(n2+n−1

n

)
. Using

Stirling’s approximation, one obtains that this tends to 1/e in the limit of large n. Since the set
of no-collision states is only polynomially small in the set of all states, a no-collision version of
Corollary 8.2 must still hold—even if all inputs that satisfy Condition I were concentrated in
the no-collision subset, they would still be an exponentially small fraction of it. This argument
shows that the conclusion of Corollary 8.2 can be extended to the no-collision case in the limit
m = O

(
n2), and we leave it as an open question whether it holds in general.

Corollary 8.2 also has consequences for the application of Theorem 8.1 as a test for validating
boson sampling experiments. As argued in [201], suppressed events in Hadamard matrices
(such as the Sylvester or Fourier matrices) could be useful as a way to witness partial photonic
indistinguishability.

Corollary 8.2 shows that in Scattershot BosonSampling experiments [147–149], where inputs
are chosen uniformly at random from all no-collision states, the number of suppressed events
detected by Theorem 1 vanishes exponentially. On the other side, when specific input states that
satisfy Condition I for many different As are employed, Theorem 1 might provide a favorable
scaling. Indeed, we showed that as many as 1−O(1/m) out of all outcomes can be suppressed,
but we leave a formal description of such a test for future work, as well as the question of whether
the Sylvester matrix is optimal for this task.
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