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CHAPTER I 

Cerebellum anatomy and physiology 

The term cerebellum literally means “little brain” and it is 

located dorsally to the brainstem underlying occipital and temporal 

lobes of the cerebral cortex. Although the cerebellum accounts for 

approximately 10% of the brain’s volume, it contains over 50% of 

the total number of neurons in the brain.  

The cerebellum consists of two major parts (Figure 1a-b). A 

part is composed of inner white matter and another part of the outer 

grey matter. The white matter consists in the cerebellar deep nuclei 

(of cerebellum nuclei). The cerebellar deep nuclei are the sole output 

structures of the cerebellum. These nuclei are encased by a highly 

convoluted sheet of tissue called cerebellar cortex, which contains 

almost all of the neurons in the cerebellum. A cross-section through 

the cerebellum reveals the intricate pattern of folds and fissures that 

characterize the cerebellar cortex (Figure 1a).  

Like the cerebral cortex, cerebellar gyri are reproducible 

across individuals and have been identified and named (Larsell, 

1934; 1937). Two major fissures running medio-laterally divide the 

cerebellar cortex into three primary subdivisions. The posterolateral 

fissure separates the flocculonodular lobe from the corpus cerebelli, 

and the primary fissure separates the corpus cerebelli into 

a posterior lobe and an anterior lobe (Figure 1b). 
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Figure 1. a) Cerebellar deep nuclei and cerebellar cortex in representative brain section. b) 

Midsagittal cross-section of cerebellum showing the three primary lobes. 

 

The cerebellum is also divided sagittally into three zones that 

run from medial to lateral (Figure 2). The vermis (from the Latin 

word for “worm”) is located along the midsagittal plane of the 

cerebellum. Directly lateral to the vermis is the intermediate zone. 

Finally, the lateral hemispheres are located lateral to the 

intermediate zone. 
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Figure 2. Anatomical subdivision of the cerebellum. Vermis, paravermal zones and intermediate 

hemispheres are showed.
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1.1 Functional subdivisions of the cerebellum 
 
The anatomical subdivisions described above correspond to 

three major functional subdivisions of the cerebellum (Figure 3). 

Vestibulocerebellum. The vestibulocerebellum comprises 

the flocculonodular lobe and its connections with the lateral 

vestibular nuclei. Phylogenetically, the vestibulocerebellum is the 

oldest part of the cerebellum. As its name implies, it is involved in 

vestibular reflexes (such as the vestibuloocular reflex) and in 

postural maintenance.  

Spinocerebellum. The spinocerebellum comprises the 

vermis and the intermediate zones of the cerebellar cortex, as well 

as the fastigial and interposed nuclei. As its name implies, it receives 

major inputs from the spinocerebellar tract. Its output projects to 

rubrospinal, vestibulospinal, and reticulospinal tracts. It is involved 

in the integration of sensory input with motor commands to produce 

adaptive motor coordination. 

Cerebrocerebellum. The cerebrocerebellum is the largest 

functional subdivision of the human cerebellum, comprising 

the lateral hemispheres and the dentate nuclei. Its name derives 

from its extensive connections with the cerebral cortex, via the 

pontine nuclei (afferents) and the VL thalamus (efferents). It is 

involved in the planning and timing of movements. In addition, the 

cerebrocerebellum is involved in the cognitive functions. 
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Figure 3. Functional subdivision of the cerebellum. Vermis and paravermal zones (intermediate 

hemispheres): spinocerebellum; flocculonodular lobe: vestibulocerebellum; lateral cerebellar 

hemispheres:cerebrocerebellum.  
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1.2 Basic structure of the cerebellar cortex  
 

Throughout its highly-convoluted extent, the cerebellum can 

be divided into three cortical layers with the same basic neuronal 

circuitry everywhere, which involves five main cell types (Figure 4). 

The most conspicuous of these are the Purkinje cells, which form an 

orderly monolayer interposed between the granular and molecular 

layers, extending their planar dendritic trees into the molecular layer 

above. As these cells are the sole output neurons of the cerebellar 

cortex they are central to cerebellar cortical information processing. 

The granular layer below the Purkinje cells derives its name from the 

small, densely packed granule cells that send their axons into the 

molecular layer, where they bifurcate to become parallel fibres 

(Figure 4). These course parallel to the long axis of each folium and 

as a result they intersect the fan-like dendritic trees of many Purkinje 

cells. Mossy fibre afferents target granule cells and, therefore, excite 

the Purkinje cells indirectly through the granule cell–parallel fiber 

pathway, which causes the Purkinje cells to discharge 'simple spikes' 

(conventional action potentials). They also contact various types of 

interneuron in the cerebellar cortex, both directly and indirectly 

through the parallel fibres. 

The other main class of cerebellar afferent is the climbing 

fibres, which arise exclusively from the inferior olive, a well-defined 

complex of sub-nuclei in the ventral part of the caudal brain stem 
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(Armstrong, 1974, 1990; Brodal & Kawamura, 1980). In marked 

contrast to the indirect influence of mossy fibres, the climbing fibres 

make direct synaptic contact with Purkinje cells (Figure 4). Moreover, 

each Purkinje cell receives input from just one climbing fibre, but the 

contact is so extensive that climbing fibres generate the largest 

depolarizing event seen in any neuron: a highly characteristic burst 

of impulses known as a climbing fibres response (Thach, 1967) or 

complex spike (Hawkes, 1997). 

 

 

 

 

 

 

 

 

 

Figure 4. Basic structure of the cerebellar cortex. There are two main afferents to the cerebellar 

cortex: climbing fibres, which make direct excitatory contact with the Purkinje cells, and mossy 

fibres, which terminate in the granular layer and make excitatory synaptic contacts mainly with 

granule cells, but also with Golgi cells. In some cases, the stem axons of climbing and mossy 

fibres also provide collaterals to the cerebellar nuclei en route to the cerebellar cortex. The 

ascending axons of the granule cells branch in a T-shaped manner to form the parallel fibres, 

which, in turn, make excitatory synaptic contacts with Purkinje cells and molecular layer 

interneurons — that is, stellate cells and basket cells. Typically, parallel fibres extend for several 
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millimetres along the length of individual cerebellar folia (Brand et al., 1976; Pichitpornchai et al., 

1994). With the exception of granule cells, all cerebellar cortical neurons, including the Purkinje 

cells, make inhibitory synaptic connections with their target neurons.   
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1.3 Concepts and models of cerebellar function 
 

The importance of the cerebellum in the coordination of 

movement is undisputed (Babinski, 1899, 1906; Holmes, 1917, 

1939; Chambers, 1955a; Dow & Moruzzi, 1958). However, in the 

last two decades a growing body of evidence indicates that it is also 

involved in several cognitive processes (Thach, 1967; Schmahmann, 

1997). Cerebellar networks show long-term synaptic plasticity 

(Ekerot & Kano, 1985; Ito, 1989, 2001; Hansel et al., 2001), which 

indicates that experience-dependent adaptive and learning 

processes are also a salient feature of cerebellar function (Robinson, 

1976; Ito, 1984; Thach, 1998). Such an adaptive capacity is a key 

feature of many current theories of cerebellar function. 

Indeed, modeling has a long tradition in cerebellar studies 

and models differ in many respects (Houk et al., 1996). Some 

models address the involvement of the cerebellum in specific reflex 

behaviours, such as the adaptive regulation of gain in the vestibulo-

ocular reflex (Boyden et al., 2004), or the role of the cerebellum in 

classical conditioning of eye-blink reflexes (Hesslow & Yeo, 2002). 

More general cerebellar models range from those inspired chiefly by 

cerebellar cytoarchitecture and the physiological properties of its 

constituent neurons - historically starting with the timing theory by 

Braitenberg & Atwood (1958) and the learned pattern recognition 

theories, (Marr, 1969; Albus, 1971)- to those motivated more 
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by Control Theory (Kawato & Gomi, 1992; Wolpert & Kawato, 1998). 

The model presented here builds on a specific tradition that 

emphasizes the division of the cerebellum into a collection of 

'modules' defined by structure–function relationships. These 

modules are thought to form the basis for information processing 

performed by the cerebellum (Oscarsson, 1979; Voogd & Bigaré, 

1980).  
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CHAPTER II 
 

The Cerebellum: cognition and emotion 
 

2.1 From motor to cognitive cerebellum 
 
In the last two centuries, the functional interpretation of the 

cerebellum has undergone many changes. For over 100 years, the 

cerebellum has been considered to be strictly involved in motor 

control but in the past two decades, increasing evidences have been 

showed on non-motor cerebellar functions.  

The first experimental studies on the cerebellum highlighted 

its role in controlling voluntary movement, specifically in the 

coordination of movement rather than in its genesis. The cerebellar 

contribution to non-motor functions has not been recognized for a 

long time and the cognitive and personality changes described in 

patients affected by cerebellar diseases were considered as an 

epiphenomenon of concomitant brain diseases. 

Phylogenetic study on the evolution of the cerebellum showed 

that the phylogenetically most recent areas of the cerebellum (lateral 

portions of the hemispheres) have developed in parallel with the 

associative areas of the cerebral cortex (Leiner & Dow, 1986). On the 

basis of these observations Dow (1974) hypothesized that the lateral 

hemispheres of the cerebellum and the associative cortical areas are 

functionally interconnected. 
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However, most of the interest in high cognitive cerebellar 

functions has stemmed from well-described anatomical evidences of 

cerebello-cortico-cerebellar connections with non-motor cortical 

areas including the premotor, prefrontal, and parietal areas.  

In 1997, Middleton and Strick proposed that cerebro-

cerebellar connectivity is based on discrete “parallel circuits”. These 

parallel loops are organized such that cerebellar regions that receive 

input from a given cortical area relay output back to the same 

cerebral area, thus forming parallel segregated circuits. Cortical 

regions that mediate such organization include the premotor, 

prefrontal, and parietal areas, which are not only concerned with 

various aspects of motor functions but also cognitive and emotional 

domains (Strick et al., 2009; Grimaldi & Manto, 2011). With regard 

to the cerebellum, cognitive regions have been identified in the 

posterior lobes (Krienen et al., 2009) while cerebellar vermis is 

appropriately named “limbic cerebellum”. 

The suggestion that the cerebellum is involved in cognitive 

and affective processes is based in part on observations of patients 

with lesions confined to the cerebellum.  

In 1998, Schmahmann and Sherman described the 

“cerebellar cognitive affective syndrome” (CCAS). The CCAS was 

described in 20 patients with focal lesions confined to the cerebellum. 

The CCAS characterized by clinically relevant cognitive and 
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behavioural dysfunctions including disturbances of EFs, visuospatial 

disorganizations, difficulty with producing logical sequences, 

language difficulties and personality changes. The authors prove that 

cognitive and emotional changes might be even principal 

manifestations of cerebellar lesions. The authors hypothesized that 

the CCAS reflects “dysmetria of thought”, analogous to “dysmetria 

of movements” resulting from damage to the anterior lobe of the 

cerebellum. Their concept of “dysmetria of thought” describes and 

explains the impairments of higher-order behaviours that result 

when the distributed neural circuits subserving cognitive operations 

are deprived of cerebellar modulation. The CCAS supports evidence 

suggesting that the cerebellum is an important part of a set of 

distributed neural circuits that subserve higher-order processing.  

In 2011, Tedesco and colleagues examined the CCAS with 

regard to lesion topography in a large group of subjects with 

cerebellar damage, by analyzing the neuropsychological assessment 

compared with the lesion. The authors concluded that the locations 

of lesion provide an understanding of the connectivity between 

cerebellum and cortical areas involved in each cognitive domain. Of 

the various cognitive domains, the ability of sequence was the most 

adversely affected in nearly all subjects, supporting the hypothesis 

that sequencing is a basic cerebellar operation.  
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The involvement of the cerebellum in the modulation of 

cognitive and affective functions is now confirmed by numerous 

experimental evidences. 

In line with studies on lesions, functional magnetic resonance 

imaging (fMRI) data on healthy subjects have demonstrated 

cerebellar activation in several cognitive functions such as in 

emotional behaviour (Stoodley & Schmahmann, 2009). 

The cerebellar anatomo-functional connections suggest that 

the cerebellum is part of different networks of the neocortex-

including frontal and parietal regions typically involved in high-order 

cognitive processing- suggesting its role outside the motor control.  
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2.2 Cerebellum and language 
 
At the beginning of the twentieth century, it has been 

suggested that the cerebellum plays a crucial role in motor speech 

production. However, the cerebellum seems to be involved in 

linguistic processes not only basically motor. During the past two 

decades, a variety of higher-order deficits of speech production has 

been noted in patients with cerebellar lesions, including transient 

mutism following resection of posterior fossa tumors in children. 

More recent studies pointed to a cerebellar contribution to central-

auditory functions, speech perception and higher-order linguistic 

processes such as speech timing, phonological aspects of lexical 

access, and top-down mechanisms of language. 

Clinical and experimental evidences showed that different 

neuroanatomic parts of the cerebellum are critically implicated in a 

variety of speech and language functions. 

Ackermann (1992) has suggested that the cerebellum is 

important for the creations of a verbal code, highlighting its role in 

sequencing of verbal stimuli and morphological and syntactic 

computation of speech. 

Agrammatism has been observed in patients with right focal 

cerebellar lesions. Silveri and colleagues (1994) reported a case of 

right cerebellar infarction associated with transient expressive 

agrammatism. The authors hypothesized that the complex morpho-
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syntactic operations allow the construction of syntactically correct 

sentences are represented in the left posterior associative areas. 

These operations would require a temporal modulation provided by 

a functional system that could include the contralateral cerebellum. 

Leggio and collaborators (1995, 2000) studied patients with 

focal or degenerative left and right cerebellar lesions and showed 

that cerebellar damage specifically affects phonological fluency.  

Different fMRI studies have shown activation of the right 

cerebellar hemisphere during linguistic tasks such as verbal fluency 

(Schlosser et al., 1998), covert verb generation (Papathanassiou et 

al., 2000), generation of verbs (Frings et al., 2006) confirming that 

patients with right cerebellar lesions were significantly more 

impaired than patients with left cerebellar lesions.  

In conclusion, experimental evidences showed that different 

parts of the cerebellum are implicated in a variety of speech and 

language functions. The neuroanatomical substrate subserving the 

role of the cerebellum in non-motor language processing is a 

reciprocal network of crossed cerebro-cerebellar connection between 

the cerebellum and the supratentorial, limbic and associative 

cortices. In addition, neuroimaging studies consistently showed a 

lateralized involvement of the right cerebellar regions in non-motor 

linguistic processes. 
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2.3 Cerebellum and visuo-spatial processing  
 
There are consistent reports of altered visuospatial abilities in 

subjects with cerebellar pathologies; furthermore, experimental 

evidences indicate the importance of the cerebellar involvement in 

spatial cognition. 

Based on the anatomical connections of the cerebellar 

hemispheres with the contralateral cerebrum, the right cerebellar 

hemisphere is thought to be associated with language processing 

and the left cerebellar hemisphere with visuo-spatial functions. 

The function of the cerebellum in spatial navigation has been 

clearly demonstrated in rats and mice. The studies using rats with 

surgical hemicerebellar lesion and a Morris Water Maze paradigm 

showed that cerebellar injury can cause a severe impairment in the 

ability of using spatial strategies. After the cerebellar lesion, animals 

showed inefficient exploration strategies with a tendency to swim 

circulating. They did not completely lose the ability to detect spatial 

relationships, but this process was possible only after a very 

prolonged training (Petrosini et al., 1996). In addition, if the lesion 

was performed after the learning phase, the animals' performance 

remained unchanged as if they had not undergone any damage 

(Petrosini et al., 1998; Leggio et al., 1999). Some studies, instead, 

have suggested that such impairments are linked to the inability to 

organize and execute complex and effective exploration behaviours 
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(the procedural component of navigation) rather than to the failure 

to develop an internal map of the environment (the declarative 

component of navigation) (Leggio et al., 1999). 

In humans, several clinical studies have confirmed the 

involvement of the cerebellum in spatial abilities. Patients with 

cerebellar damage showed worse performances than healthy 

controls, in tasks involving visual-constructional processing (Molinari 

et al., 2004), in mental rotation tasks (Tagaris et al., 1998), in tasks 

assessing discrimination and orientation of lines (Molinari et al., 

2004). In addition, the performance was worst in patients with left 

cerebellar lesion than patients with right cerebellar lesion (Molinari 

et al., 2004). 

Stoodley (2012) using fMRI has shown in healthy subjects 

that the left cerebellar hemisphere appears more active during the 

execution of tasks related to space navigation (Moffat et al., 2006), 

confirming a lateralization of visuospatial functions in the left 

cerebellum. 

Tedesco and colleagues (2017) studied how the cerebellum 

mediates the processing of sequential information in a navigational 

space and determine whether this involvement is influenced by the 

modality of the presentation of spatial sequences using 2 types of 

navigational tasks: the Walking Corsi Test and Magic Carpet, a 

modified electronic version of first one. The authors hypothesize that 
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the patients affected by cerebellar lesion performed significantly 

worse than control one on the electronic version because of a specific 

deficit in detecting and ordering single independent stimuli as a 

sequence. Authors concluded that the cerebellum is involved in 

spatial navigation and in processing sequential information through 

mechanisms activates from observation. This study suggests that 

cerebellum plays a specific role in allowing to process sequential 

information about routes. 

In conclusion, experimental, clinical, and fMRI data have 

clearly demonstrated the involvement of the cerebellum in spatial 

functions and in processing sequential information through 

observation.  
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2.4 Cerebellum and attention 
 
As previously reported, the real revolution in the vision of the 

cerebellum is derived from the study by Schmahmann and Sherman 

(1998) who postulated the existence of a CCAS. The deficits have 

been attributed to the disruption of the neural circuits linking the 

prefrontal, temporal, posterior parietal and limbic cortices with the 

cerebellum. Since prefrontal and posterior parietal circuits are 

supposed to be crucial for attention, their close anatomical 

connections with the cerebellum indicate a cerebellar relevance for 

these functions as well.  

Akshoomoff and Chourchesne (1994; 1997) have shown the 

first evidence about a possible role of the cerebellum in attention. 

They found that patients with damage to the neocerebellum were 

significantly impaired in the ability to rapidly shift attention between 

ongoing sequences of auditory and visual stimuli (Akshoomoff & 

Courchesne, 1992) and in rapidly shifting their attention between 

visual stimuli that occurred within a single location. 

Gottwald and colleagues (2003, 2004) conducted a study that 

led to find deficits in patients with focal cerebellar lesions in particular 

aspects of attention. In particular, the authors found deficits in 

divided attention and working memory attentional tasks (Gottwald 

et al., 2003). Further analysis revealed that patients with right-sided 
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lesions were in general more impaired than those with left-sided 

lesions (Gottwald et al., 2004). 

Steinlin and collaborators (2007) studied children affected by 

posterior fossa malformations; the analyses revealed deficits in 

attention, processing speed, visuospatial functions and language. In 

addition, patients with ablation of left cerebellar tumor are more 

compromised compared to patients with right cerebellar tumor 

(Steinlin et al., 2003). 

Functional imaging studies on attention demonstrated the 

activation of the cerebellum in attentional tasks.  

Allen and colleagues (1997) were the first to emphasize 

attentional activation of the cerebellum. In a focus attention task 

they found BOLD responses in posterior parts of the left cerebellar 

hemisphere, whereas in a motor (manual) control condition 

responses the activations were localized in more anterior parts. 

Other studies have reported cerebellar responses for tasks assessing 

shifts of attention between modalities and paradigms involving 

spatial shifts of visual attention with emphasis on the lateral 

hemispheres and/or the posterior vermis. 

Studies in non-human primates pointed out that the 

association areas of the posterior parietal cortex and prefrontal 

areas, both critical for focused attention, are connected via ventral 

pontine nuclei to the cerebellum.  



25 
 

Further indications about a link between the cerebellum and 

attention come from studies describing morphological abnormalities 

in patients with attention deficit hyperactivity disorder (ADHD). 

ADHD is known as a disturbance of EFs. Anatomical correlates have 

been shown in the prefrontal cortex (PFC), in the basal ganglia and 

in the cerebellum. Studies concerning anatomical features of the 

cerebellum, as measured by quantitative MRI, have shown smaller 

posterior inferior vermis (lobules VIII–X) in children with ADHD 

(Berquin et al., 1998; Castellanos et al., 2001). 

Moreover, attentional deficits are described in studies with 

autistic patients. MRI studies report that autistic children have 

smaller cerebellar vermal volume as compared to typically 

developing children (Webb et al., 2009) and postmortem studies in 

autistic population report microanatomic abnormalities of the 

cerebellum.  

Cerebellar contributions to attention have been suggested 

from both patient and functional imaging studies. According to these 

results, the discussion about the cerebellar’ contribution to 

attentional processes is still controversial. It’s clear that these 

studies support the idea of a cerebellar role in different attentional 

abilities regardless their motor aspects, but it is not clear if there is 

a functional dominance attributable to left or right cerebellar 

hemisphere. 
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2.5 Cerebellum and psychiatric disorders 
 
The CCAS is characterized by impairments in multiple 

cognitive domains and regulation of affect. This syndrome represents 

a disruption of the cerebellar contribution to distributed neural 

circuits linking different regions within the cerebellar posterior lobe 

with cortical association and limbic areas that subserve higher order 

perceptual processing, intellectual functions and emotion.  

Considering the closing cerebro-cerebellar circuits, the 

cerebellar vermis is appropriately named “limbic cerebellum” that 

involves the vermis and fastigial nucleus. An emotional dysregulation 

occurs when a lesion involves the limbic cerebellum. Posterior lobe 

lesions were particularly important in the generations of the CCAS 

and the vermis was consistently involved in patients with pronounced 

affective presentation.  

Levisohn and colleagues (2000) reported affective changes, 

including irritability, impulsivity, agitation, and apathy in children 

after cerebellar tumor resection. 

Personality change with blunting of affect or disinhibited and 

inappropriate behaviour was a prominent feature in the cerebellar 

patients, particularly those with large or bilateral infarcts in the 

territory of the posterior inferior cerebellar artery and in patient with 

lesions of the vermis and the paravermian structures. Flattening of 

affect or disinhibition manifested as overfamiliarity, flamboyant and 
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impulsive actions, and inappropriate and flippant comments. 

Behaviour was regressive and childlike, and obsessive-compulsive 

traits were occasionally observed. 

The affective component of the CCAS is grouped according to 

five major domains that conceptualized the neuropsychiatry of the 

cerebellum: attentional control, emotional control, autism spectrum 

disorders, psychosis spectrum disorders and social skill set 

(Schmahmann, 2016).  

Studies have also shown that the cerebellum is implicated in 

many psychiatric disorders including attention deficit hyperactivity 

disorder, autism spectrum disorders, schizophrenia, bipolar disorder, 

major depressive disorder, and anxiety disorders (Philips et al., 

2015).  

Many recent studies have reported a strong association 

between the structural and functional abnormalities of the 

cerebellum and psychiatric disorders. 

Multiple neuroumaging studies have also showed cerebellar 

changes in psychiatric disorders (Tomasi et al., 2012; An et al., 

2013; Wang et al., 2013). In a PET study, cerebellar hypo-perfusion 

was evidenced in ADHD patients, involving the more medial part of 

cerebellar cortices (Di Tommaso et al., 2012). 

Many volumetric studies have revealed decrease cerebellar 

volume along with other brain regions in children with ADHD. The 
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cerebellar volume reduction is mainly localized in the posterior 

vermis (Castellanos et al., 2002; Mackie et al., 2007; Ivanov et al., 

2014). 

Studies that investigated the autism spectrum disorder (ASD) 

found that in infants the cerebellar damage can predict the 

occurrence of autism in older age (Limperopoulos et al., 2007). 

Several studies reported three main cerebellar abnormalities in 

patients with ASD: diminished Purkinje cells (Tsai et al., 2012; Wang 

et al., 2014; Skefos et al., 2014), reduced cerebellar volume, and 

interrupted feedback pathways between cerebellar and cerebral 

areas (Townsend et al., 2001; Catani et al., 2008; Hanaie et al., 

2013). Hypo-perfusion within cerebellar hemispheres was observed 

in autism (Rumsey & Ernst, 2000). 

Neuroimaging studies on schizophrenic patients have found 

that the cognitive deficits exhibited in some patients are related to 

cerebellar dysfunction; in particular, it was found abnormal cortico-

cerebellar connections (Ueland et al., 2004; Konarsk et al., 2006; 

Laidi et al., 2015). Structural brain imaging studies have found 

reduced cerebellar volume in patients affected by schizophrenia, 

including diminished vermis volume (Levitt et al., 1999; Nopoulos et 

al., 1999, 2001; Okugawa et al., 2002; Keller et al., 2003). 

Functional imaging studies in patients with schizophrenia revealed 

reduced blood flow in the cerebellar cortex and vermis during the 
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performance of many cognitive tasks such as attention, memory, 

including both short-term and working memory tasks (Crespo-

Facorro et al., 2007), and social inferences (Andreasen et al., 2008). 

Reduced cerebellar volume has been reported in several 

studies and case reports of patients affected by bipolar mood 

disorder (Jurjus et al., 1994; Brambilla et al., 2002; Monkul et al., 

2007; Baldacara et al., 2011). In a population of multiple-episode 

bipolar disorder patients, the volume of the V3-vermal subregion of 

the cerebellum was significantly reduced, while the volume of V2-

vermal subregion was smaller in multiple-episode patients than first-

episode patients (Mills et al., 2005). 

Also, in patients with major depressive disorder (MDD) 

various cerebellar abnormalities have been described (Brambilla et 

al., 2002). Yucel and collaborator (2013) found a significantly 

smaller vermis in MDD patients compared to healthy controls.  

In the vermal areas of the cerebellum an increase of blood 

flow has also been linked to symptoms of MDD (Guo et al., 2012, 

2013). Acutely depressed patients on various antidepressant 

medications showed an increased cerebellar activity and blood flow 

in the vermis when compared to remitting or healthy subjects (Guo 

et al., 2012, 2013). These findings were positively correlated with 

the severity of the depressive episodes, severity of cognitive deficits, 

and resistance to antidepressant medications suggesting that 
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cerebellar activation patterns could reflect a trait marker for 

depression. 

In addition, a cerebellar impairment has been reported in 

anxiety disorders and it has been linked to increased arousal present 

in post-traumatic stress disorder (PTSD), generalized anxiety 

disorder (GAD) (Abadie et al., 1999), and social anxiety disorder 

(SAD). Most studies on anxiety and the cerebellum suggest a 

hyperactivity of the cerebellum. In a study conducted on healthy 

subjects performing moderate exercise and complex mental task, 

increased cerebellar and vermal activity was evidenced in PET 

scanning (Critchley et al., 2000). Cerebellar hyperactivity correlated 

positively with increased blood pressure and heart rate, highlighting 

a possible cerebellar role in the regulation of sympathetic activity, 

which may explain its role in anxiety disorders.  

To conclude, the cerebellum is not only the device of motor 

coordination but also it has an essential role in the modulation of 

personality, mood and affect. An evolving body of knowledge has 

revealed the role of the cerebellum in several psychiatric disorders 

and personality changes providing further clinical evidences that the 

cerebellum is an essential node in the distributed neural circuitry 

subserving higher-order behaviours. 
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2.6 Functional topography of the cerebellum 
 

The cerebellum is topographically arranged and contributes 

to a wide range of behaviours. This functional heterogeneity is 

possible because of the highly organized anatomical connections with 

the areas engaged in vestibular, sensorimotor, cognitive and 

emotional processing via cerebro-cerebellar circuits.  

A set of large folds are conventionally used to divide the 

overall structure into ten smaller lobules. 

The ten lobules are grouped in the anterior lobe (lobules I 

through V) and in posterior lobe (lobules VI through IX); the lobule 

X comprises only the flocculonodular lobe.  

Bolk (1906) was the first that hypothesized the existence of 

a topography in the motor functions of the cerebellum.  

Psychological experiments in cats and fMRI studies in humans 

revealed the presence of sensorimotor homunculi in lobules III-VI 

and lobule VIII. In contrast, projections from the association areas 

(prefrontal, posterior parietal, and superior temporal, posterior 

parahippocampal and cingulate areas) are mainly localized to lobules 

VI and VII (Kelly & Strick 2003; Stoodley & Schmahmann, 2010). 

Using fMRI Stoodley and colleagues (2012) showed the 

regions active during different tasks consistent with description of 

the cerebellar homunculi. 
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Right-handed finger-tapping activated right cerebellar lobules 

IV-V and VIII, verb generation engaged right cerebellar lobules VI-

Crus I and a second cluster in lobules VIIIB-VIIIA. Mental rotation 

activation peaks were localized to medial left cerebellar lobule VII 

(Crus II). A 2-back working memory task activated bilateral regions 

of lobule VI-VII.  

The cerebellar functional topography identified in the study of 

Stoodley and colleagues (2012) reflects the involvement of different 

cerebro-cerebellar circuits depending on the demands of the task 

being performed: overt movement activated sensorimotor cortices 

along with contralateral cerebellar lobules IV-V and VIII, whereas 

more cognitively demanding task engaged prefrontal and parietal 

cortices along with cerebellar lobules VI and VII. 

In stroke patients, focal lesions also provided insights into 

cerebellar structure-function relationship. Clinical studies suggested 

that the cerebellar anterior lobe is principally engaged in motor 

control, the cerebellar vermis is involved in affective processing and 

the posterior cerebellum contributes to complex cognitive 

operations. Also, consistent with the crossed cerebro-cerebellar fiber 

pathway, linguistic impairments can arise following right cerebellar 

hemisphere lesions, whereas visuo-spatial difficulties may follow left 

cerebellar hemisphere damage. 
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 Motor and somatosensory representations show largely 

overlapping activation pattern, with the major cluster focused in 

lobule V and the adjacent part of lobule VI and a second cluster in 

lobule VIII. The motor and somatosensory coordinates are right 

lateralized.  

The strongest activation peaks for the language tasks are 

lateralized to right lobule VI, Crus I/II and midline lobule VIIAt (Crus 

II).  

Resting state functional connectivity magnetic resonance 

imaging and task-based functional MRI in humans also supported 

these structural and functional connectivity patterns.  

Anatomical studies showed three major cerebellar 

connectivity patterns:  

1) Peripheral and brainstem vestibular afferents are 

connected with the flocculonodular lobe, fastigial nucleus, and the 

oculomotor vermis in lobule VII; 

2) Spinal cord and sensorimotor regions of the cerebral cortex 

are linked with primary sensorimotor areas in the cerebellar anterior 

lobe (lobules I-V), medial lobule VI and a second representation in 

the posterior lobe in lobule VIII, together with the related 

sensorimotor nuclei (globose, emboliform, and dorsal part of the 

dentate nucleus); 
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3) The prefrontal, posterior parietal, temporal and cingulate 

association and paralimbic cortices are reciprocally linked with the 

posterior cerebellum in lobules VI and VII, and the ventral part of 

the dentate nucleus.  

The cerebellar hemispheres are linked with cerebral 

association areas, whereas the posterior vermis and fastigial nucleus 

are interconnected with limbic system structures including 

hypothalamus, septum and amygdala. The fact that the cerebellum 

is reciprocally connected to a broad range of limbic structures 

including the amygdala, hippocampus, and septum, as well as the 

cerebral cortex including the prefrontal areas, provides a strong 

neuroanatomical argument in favor of cerebellar involvement in 

emotion regulation.  

Baumann and Mattingley (2012) used fMRI to identify neural 

activity patterns within the cerebellum in healthy human volunteers 

as they categorized images that elicited each of the five primary 

emotions: happiness, anger, disgust, fear and sadness. They 

advanced the hypothesis that the five emotions evoked spatially 

distinct patterns of activity in the posterior lobe of the cerebellum. 

This study has provided the first evidence in healthy humans that 

distinct subregions of the cerebellum are responsive during the 

experience of happiness, anger, disgust, fear and sadness. These 

findings also revealed overlaps between the activation patterns for 
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selected emotions, indicating the existence of shared neural 

networks. For instance, the authors detected partial overlap in 

activations associated with fear and anger (paravermal lobules VI 

and Crus I), anger and disgust (vermal lobule IX), and happiness 

and sadness (vermal lobule VIIIA).  

These findings provide further support for a cerebellar role in 

motor, cognitive and emotional tasks and better establish the 

existence of functional subregions in the cerebellum. 
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CHAPTER III 
 

The Executive Functions
 

3.1 Executive Functions models and definitions 
 
Executive Function (EFs) has an umbrella term used for 

diversity cognitive processes, including planning, working memory, 

attention, inhibition, self-monitoring, self-regulation, and initiation 

carried out by the frontal lobes. At the most basic level, EFs are the 

abilities that enable a person to establish new behavioural patterns 

and ways of thinking and to introspect upon them.  

EFs involve different abilities and cognitive processes that 

allow selecting and monitoring behaviours to achieve specific goals 

and cannot be considered as a unitary function (Logan, 1985; 

Bellebaum & Daum, 2007). EFs generally refer to “higher-level” 

cognitive functions involved in the control and regulation of “lower-

level” cognitive processes and goal-directed, future-oriented 

behaviour. 

There has been a historical linkage of these “higher-level” 

processes with the frontal lobes although it has been proposed that 

subcortical structures are involved in EFs by means of specific 

anatomical connections.  

EFs are extremely complex to define and there is lack of 

consensus about taxonomy of EFs processes. 
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Phineas Gage (1823-1860) is one of the earliest – and most 

famous – documented cases of severe frontal brain injury. Thanks 

to him we know that the frontal lobes are involved not only in 

cognitive processes but also in behaviour and personality. Gage is 

the index case of an individual who suffered major personality 

changes after brain trauma. Gage was an American railroad 

construction foreman remembered for accident in which a large iron 

rod was driven completely through his head, destroying much of his 

brain's left frontal lobe, and for that injury's reported effects on his 

personality and behaviour over the remaining twelve years of his life. 

Several theories have been proposed over the last 25 years 

to categorize and better understand EFs. By the 1950s, the 

neuroscientists became more interested in understanding the role of 

the PFC in behaviour.  

Broadbent (1953) described differences between automatic 

and controlled processes, otherwise referred to as the filter model, 

and proposed that a filter serves as a buffer that selects information 

for conscious awareness.  

According to Luria (1966) the frontal lobes contain a system 

which governs the ability of planning and monitoring during new 

tasks. Luria proposed also that this system is hierarchical in structure 

and consists of at least three cortical zones built one above the other. 

The zones are the orbitofrontal, cingulate, and dorsolateral cortex. 
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According to Luria, whereas the orbitofrontal cortex modulated social 

control and the cingulate cortex was responsible for the generation 

of goal-directed behaviour, the neuropsychological functions of the 

frontal cortex were localized within dorsolateral prefrontal regions.  

In 1975 Posner proposed that there is a separate executive 

branch of the attentional system responsible for focusing attention 

on selected aspect of the environment. 

Logan (1985) supported that EFs may be distinguished in: 

making choices about alternative strategies for processing 

environmental stimuli; constructing or instantiating a version of the 

chosen strategy to enable performance on the task; controlling and 

coordinating execution of the strategy during real time performance 

on the task; disabling or disengaging the strategy in response to 

change goals or changes in task environment that make the current 

strategy inappropriate.   

Norman and Shallice (1986) have argued that EFs operates 

in a “supervisory” or “executive” capacity over the rest of the 

cognitive abilities and described situations in which EFs are involved. 

Their model supports a cognitive system known as the supervisory 

attentional system (SAS) that plays a part in different processes, 

such as in novel and non-routine situations, and exerts an executive 

influence onto automatic schema selection. The SAS would also 

provide help when conflicting schemas are activated or when the 
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situation requires responding in a schema-incongruent way. The 

authors suggested that automatic processes do not require executive 

control.  

Goldman-Rakic (1987) has proposed a neuroanatomical 

model of the frontal lobe, specifically on the prefrontal cortex (PFC). 

In this model the PFC is part of a network which includes the parietal 

and temporal cortices such as the limbic structures and has the role 

to guide the behaviour. 

Baddeley and Hitch (1974, 1994) proposed a similar system 

as part of their model of Working Memory (WM), arguing there must 

be a component which he referred to as the “central executive”. They 

proposed that the central executive system actively regulates the 

distribution of limited attentional resources and coordinates 

information within verbal and spatial memory buffers. This concept 

of the central executive system was based on Norman and Shallice’s 

analogous SAS, which is proposed to control cognitive processing 

when novel tasks are involved, or existing habits must be 

overridden.  

Smith and Jonides (1999) postulated that EFs include: 

focusing attention on relevant information and processes and 

inhibiting irrelevant ones (“attention and inhibition”); scheduling 

processes in complex tasks, which requires the switching of focused 

attention between tasks (“task management”); planning a sequence 
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of subtasks to accomplish some goal (“planning”); updating and 

checking the contents of  working memory to determine the next 

step in a sequential task (“monitoring”) and coding representations 

in working memory for time and place of appearance (“coding”).   

Diamond (2013) has proposed inhibition, working memory 

and cognitive flexibility as core aspects of EFs.  

Other authors have proposed multifactorial models of EFs. In 

these studies, factor analysis has been used as a mathematical 

strategy to analyze the structural correlation of neuropsychological 

test batteries (Ardila et al., 1994, 1998; Ponton et al., 1994; 

Ostrosky et al., 1999).  

Applying these multifactorial models Miyake and colleagues 

(2000) studied a normal population and have highlighted three 

executive processes moderately related to each other, but clearly 

separable. These EFs are mental set shifting (“Shifting”), information 

updating and monitoring (“Updating”), and inhibition of reflexive 

responses (“Inhibition”).  

Pineda and Merchan (2003) reported an orthogonal structure 

of five factors in normal healthy young. Factor 1 corresponds to the 

cognitive activities of organization and flexibility. Factor 2 could be 

considered sustained attention. Factor 3 could represent speed of 

inhibitory control. Factor 4 could be considered as visual-motor 

speed. Factor 5 included verbal fluency. 
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In the end, multifactorial models assume that EFs are not a 

single activity, but rather a complex system, formed by different 

cognitive operations such as anticipation, goal selection, 

organization, planning, monitoring, shifting, controlling time, speed, 

and using environmental feedback to modify behaviour (Lezak, 

1995; Della Sala et al., 1998). 
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3.2 Neuroanatomy of Executive Functions 
 

Executive disorders and their association with frontal lobe’s 

lesions have received significant contributions very late in the history 

of neuropsychology and cognitive neuroscience.  

The attention to the frontal lobes is documented from the 

second half of the nineteenth century, with the description of the 

famous case of Phineas Gage (Harlow, 1848), and the systematic 

experimental tests carried out on animals by italian Bianchi (1922). 

Bianchi argued that the frontal lobes are the neuroanatomical 

site for the coordination and integration abilities because the frontal 

lobes receiving input from numerous motor and sensory areas of the 

cerebral cortex. Bianchi has identified also the major alterations 

resulting from frontal lobe injuries. These included defects in 

attentive control, memory disorders, inability to coordinate the 

various phases of a goal-oriented process, and emotional regulation 

disorders with consequent changes in social behaviour, alterations in 

motivation, and apathetic behaviour (Bianchi, 1922). 

Frontal lobe functions have, however, been conceived for a 

long time as a unified and poorly differentiated control system. 

Today we know that the neuroanatomy underlying EFs is 

complex and involves numerous cortical and subcortical circuits.  

Recent advances in cognitive neurosciences show that, whilst 

the frontal lobes play an important part in EFs, the frontal lobe 
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contribution is just one part of a wider network on brain involvement. 

Although EFs are commonly thought as “frontal lobe” functions, the 

frontal lobes are necessary but not sufficient for intact executive 

functioning. Today, we know that the terms “frontal lobe behaviour” 

do not accurately describe the complex, multifaceted behaviours and 

associated neuroanatomy involved in executive functioning. 

The frontal cortex is composed by:  

The Dorsolateral prefrontal cortex (DLPFC) which contains 

heteromodal association cortex and has dense bidirectional 

connections with most cortical areas and a number of subcortical 

structures (most predominantly the caudate nucleus). The DLPFC is 

involved in planning and organization, working memory, maintaining 

goal - directed behaviours, and self - monitoring for the purpose of 

modifying behaviours in response to task demands. The posterior 

aspect of the DLPFC is involved in modulating the allocation of 

attention to competing stimuli (Petrides & Pandya, 2002). 

The Ventrolateral prefrontal cortex which receives 

motivational and emotional information from the limbic system and 

highly integrated sensory information from both anterior and 

posterior association cortices. This allows the binding of sensory 

information with particular emotional and visceral states for decision 

making based on the emotional valence and behavioural significance 

of stimuli (Sakagami & Pan, 2007). The Ventrolateral prefrontal 
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cortex also appears to play a role in judgment, encoding, and 

retrieval (Petrides & Pandya, 2002). 

The Orbitofrontal cortex is primarily involved in impulse 

control, inhibition of responses, and regulation of comportment. It 

also integrates input from sensory systems and more visceral limbic 

and paralimbic areas to play a role in regulating emotion, reward, 

and punishment systems which are involved in decision making 

(Schoenbaum et al., 2006). 

The Medial frontal cortex is composed of paralimbic cortex 

(Kaufer, 2007). The functions of the medial frontal cortex include 

modulation of attention, arousal, and motivation; disruption of this 

area is linked to apathy and abulia (Filley, 2000; Kouneiher et al., 

2009). 

Long-range afferent connections convey higher order sensory 

information to the frontal cortex, which in turn responds to internal 

and external stimuli with a flexible and adaptive behaviour.  

Recently, a series of parallel frontal-subcortical circuits that 

link regions of the frontal lobes to subcortical structures have been 

described. Indeed, all frontal-subcortical circuits originate in the 

frontal cortex and form loops connecting the striatum (caudate, 

putamen, and ventral striatum), globus pallidus, thalamus and the 

cerebellum and returning back to the frontal cortex (Alexander et al., 
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1986; Alexander & Crutcher, 1990; Alexander, 1994; Monchi et al., 

2006). 
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3.3 Fronto-cerebellar circuits 
 
By using viral tracing techniques in nonhuman primates, the 

identification of multiple, segregated fronto-cerebellar circuits has 

challenged the traditional view that motor control comprises the 

complete repertoire of the cerebellum (Leiner et al., 1986; 

Schmahmann, 1991; Middleton & Strick 1994, 2001; Kelly & Strick, 

2003). 

Krienen and Buckner (2009) used functional connectivity MRI 

(fcMRI) in humans to identify 4 topographically distinct cerebellar-

frontal circuits that target 1) motor cortex, 2) DLPFC, 3) medial 

prefrontal cortex, and 4) anterior prefrontal cortex. Direct 

comparisons of right- and left-seeded frontal regions revealed 

contralateral lateralization in the cerebellum for each of the 

segregated circuits. The authors find that the regions of the 

cerebellum functionally coupled with PFC occupy a significant extent 

of the cerebellar posterior hemisphere. The cerebellar regions 

associated with motor cortex areas correspond to lobules IV--VI and 

VIIIB (Schmahmann et al., 1999, 2000). The DLPFC correlations 

appear in regions that correspond to Crus I and Crus II of the 

cerebellum (Schmahmann et al. 1999, 2000). 

Habas and colleagues (2009) studied the role of the 

cerebellum in several non-motor systems by using resting state 

functional connectivity MRI. They found that the executive networks 
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consist of a right and a left executive network. These networks entail 

the PFC, the orbitofrontal cortex, the superior parietal cortex, the 

angular gyrus, the caudate nucleus and primarily the Crus I and Crus 

II of the cerebellum with limited extension into lobules VI and VIIB 

and the rostral hemisphere of lobule IX.  
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3.4 The Dysexecutive Syndrome 
 
The term “dysexecutive syndrome” was introduced in the 

1980s to describe impairments in EFs. 

An executive impairment occurs not only after a frontal lobe 

injury because, as previously said, the frontal lobe is an integral part 

of distributed network between cortical regions and subcortical 

regions. All components of these networks are important for task 

performances, and lesions at any point in the system cause deficits 

that look like “frontal” damage.  

From a clinical point of view the term of “dysexecutive 

syndrome” refers to the complex of symptoms that characterize the 

impairment of EFs including problems in planning, organizing 

behaviours, disinhibition, perseveration, reduced fluency and 

initiation (Repovs & Baddeley, 2006; Ardila, 2013).  

Actually, according to the different abilities involved in the 

executive system, diverse types of dissociations have been described 

in patients with PFC damage (Eslinger & Damasio 1985; Boone, 

1999). Taking into account the site of injury an anatomical distinction 

can be made between dorsal and ventral cortices, which can be 

considered cognitive and affective, respectively. Further, clinical and 

experimental researches converged to indicate the fractionation of 

frontal subprocesses and the initial mapping of these subprocesses 

linked to discrete frontal regions.  
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Indeed, patients with PFC damage can be selectively impaired 

in neuropsychological tests investigating each of the executive 

processes (Stuss & Benson, 1986).  

It is worth noting that executive deficits are not only caused 

by lesions in the PFC, but also by subcortical lesions (Willingham, 

1992; Goel & Grafman, 1995). Indeed, cortico-subcortical circuits 

which connect the PFC, the basal ganglia and the cerebellum via the 

thalamus are believed to serve as neuroanatomical substrates of 

executive processing and play a critical role in EFs (Heyder et al., 

2004).  

Therefore, dysexecutive symptoms occur in most 

neurodegenerative diseases and in many other neurologic, 

psychiatric, and systemic illnesses. In patients with degenerative 

basal ganglia disorders, such as Parkinson’s disease (PD), deficits 

have been described in problem solving, reasoning, concept 

formation and complex memory task which require the self-initiated 

strategic organization of encoding and retrieval. Furthermore, in PD 

patients an impairment in inhibiting irrelevant stimulus and 

responses have been evidenced (Pollux & Robertson, 2002). These 

deficits are generally attributed to dysfunction of the PFC-basal 

ganglia circuits (Zoppelt & Daum, 2003). 
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3.5 Cerebellum and Executive Functions 
 
Over the last twenty years several neuroanatomical and 

functional neuroimaging studies showed the presence of extensive 

connections between the cerebellum and cortical association areas 

resulting in a true revolution in the vision of cerebellar functions 

(Schmahmann & Pandya, 1989; Schmahmann, 1991; Leiner et al., 

1991; Ivry, 1997; Tagaris et al., 1998; Harrington & Haaland, 1999; 

Fink et al., 2004). 

As already said, studies on primates have shown the 

existence of reciprocal connections between the prefrontal cortex 

and specific areas of the cerebellum (Alexander, Crutcher & DeLong, 

1990; Joel & Wiener, 1994; Middleton & Strick, 1997). 

The fronto-cerebellar circuit radiates from the CPF dorso-

lateral to the cerebellum. The projections of the cerebellum originate 

from the lateral part of hemispheres and project through the dentate 

nucleus and the thalamus contralateral to the PFC. The latter is 

connected to the cerebellum via the pontine nuclei (Schmahmann, 

1997; Heyder et al., 2004;). 

 The cortico-ponto-cerebellar circuit transmits to the 

cerebellum information not only from the motor and premotor areas, 

but also from most of the associative cortical areas (Nyby & Jansen, 

1951; Brodal, 1978; Wiesendanger et al., 1979; Glickstein et al., 

1985; Fries, 1990; Schmahmann & Pandya, 1989, 1991). 
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Ramnani and colleagues (2006) showed that in humans, 

cerebellar projections from the prefrontal cortex are more developed 

when compared with those of non-human primates. They proposed 

that these connections are rapidly increased during evolution, 

parallel to prefrontal cortex itself. 

Such connections between the cerebellum and the PFC can be 

considered the possible anatomical-functional substrate which sees 

the cerebellum also involved in the control of EFs (Daum & 

Ackermann, 1997; Schmahmann, 1997; Daum et al., 2001; Heyder 

et al., 2004).  

The particular role of the cerebellum in EFs domains has been 

shown to be modulation rather than generation of executive 

processes considered to be specific of the cerebral cortex (Dow, 

1974; Snider & Maiti, 1976; Heath, 1977). 

The concept of cerebellum as incorporated into a distributed 

cortico-subcortical neural system subserving EFs is based on the 

observation of existence of numerous connections between the PFC 

and cerebellum and vice-versa (Middleton & Strick, 1994, 2001; 

Strick et al., 2009; Alexander et al., 2012).  

According to the neuroanatomical and neuroimaging 

evidences, an increasing number of clinical studies supported the 

cerebellar involvement in different and specific neuropsychological 

functions within the executive domain.  
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Data supporting the hypothesis of a cerebellar role in the 

modulation of EFs come from studies in which they were used tasks 

of planning, such as the "Tower of London" and "Tower of Hanoi."  

Grafman and colleagues (1992) showed that patients affected 

by cerebellar atrophy had difficulty to solve problems of the tower of 

Hanoi task.  

Subsequently, Goel and Grafman (1995) found similar 

impaired performances in patients with cerebellar atrophy and in 

patients with disorders involving subcortical structures linked to the 

frontal lobes such as the thalamus and basal ganglia. These 

executive alterations may be due to difficulty in assembling a 

sequence of events or actions in a "plan". The cognitive planning can 

be seen as an analogue of the complex motor procedures, which 

require a series of movements in order to implement a sequence 

(Pascual-Leone et al., 1993).  

According to Willingham (1992), the frontal cortices program 

the various steps of an action plan. Therefore, prefrontal cortex 

injuries could lead to deficits in planning action plans while a damage 

to subcortical structures, such as the thalamus and basal ganglia, 

compromise the automated acquisition of the action plan. Damages 

to the cerebellum, instead, do not guarantee the correct 

implementation and the correct sequence of the various steps of the 

plan "programmed" by the frontal cortices (Willingham, 1992). 
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Several studies have shown that lesions to the cerebellum 

may cause impairment of planning and problem-solving abilities such 

as reasoning (Hallett & Grafman, 1997), verbal fluency and other 

words generation abilities (Appollonio et al., 1993). A lesion of the 

cerebellum may cause, also, impairment in the organization, the 

encoding and retrieval of strategies (Bürk et al., 1999, 2003). 

Schmahmann and Sherman (1998), describing the CCAS, 

reporting EFs deficits related to planning, set shifting, abstract 

reasoning, working memory and verbal fluency. Schmahmann and 

Sherman (1998) describe the cerebellum as a mediator of these 

functions which deficits follow a breakdown in fronto-cerebellar 

connections. 

Ravizza and Ivry (2001) observed higher error rates in 

cerebellar lesioned patients compared to controls in the Wisconsin 

Card Sorting Test (WCST).  

Abel and colleagues (2007) compared EFs in patients affected 

by PD and in patients affected by degenerative cerebellar diseases 

in order to differentiate the role of basal ganglia and cerebellum in 

the executive control. Both groups of patients showed impaired 

performances in EFs tasks but with a different clinical profile. While 

the PD group showed a selective increase of non-perseverative 

errors in the WCST, the cerebellar group showed a high number of 
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both perseverative and non-perseverative errors together with 

significant lower performances than PD group in attention tasks.  

Cumulative evidence of the cerebellum’s involvement in 

higher cognition processes has led to the development of theories 

which attempt to understand its precise function. 

There are differences between lesions of the PFC and lesions 

of the cerebellum. The differences are found and identified in the 

severity of executive deficits: in fact, cerebellar damage determines 

milder deficits compared to those found in the presence of PFC 

damage. 

 The finding of neuropsychological executive deficits in 

patients affected by cerebellar damage (Schmahmann, 1998; 

Bellebaum & Daum, 2007) is supposed to be caused by a defect in 

modulatory activity exerted by the cerebellum on the cognitive 

functions primarily accounted from the frontal areas (Schmahmann 

& Pandya, 2004).  

Daum and colleagues (2001) have proposed that the PFC may 

be the structure primarily involved in the generation of specific 

operations, while the cerebellum serves to optimize and automate 

the processes necessary to the frontal operations. 

Very recently fMRI studies in healthy subjects have 

demonstrated a direct involvement of specific cerebellar lobuli in EFs.  
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Keren-Happuch and collaborators (2014) reviewed 88 

neuroimaging studies and found that EFs tasks activated Crus 1 

bilaterally, left Crus 2 right Lobule VI and midline Lobule VII. 

In conclusion, lesions of cerebellum and basal ganglia mimic 

deficits resulting from cortical lesions but with qualitative 

differences. 

It has been suggested that if the frontal circuit seems 

involved in initiating, sequencing or inhibiting a series of behaviours 

or actions, the cerebellar-cortical circuit seems to play a role when 

these activities need to be optimized, acquired and carried out 

quickly (Passingham, 1995). 
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CHAPTER IV 
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4.1 Introduction 
 
There is a consensus that the lateral prefrontal cortex and 

basal ganglia together with the cerebellum play a critical role in 

Executive Functions (EFs) (Heyder et al., 2004) as described in 

Chapter 3.  

The cerebellar involvement in EFs is supported by the 

existence of specific anatomical connections with the lateral 

prefrontal cortex (Middleton & Strick, 1994), but remains unclear. 

We described the fronto-cerebellar circuits in the previous chapters. 

As previously said, it has been hypothesized that the role of 

the cerebellum in motor and non-motor domains is related to an 

"over-function" that allows an automatic modulation and 

optimization of behaviour thanks to the specificity of neural sub-

circuits within the cerebro-cerebellar system (Schmahmann, 1991, 

1996, 2000, 2004; Thach, 1987, 1992; Bloedel, 1997; Schmahmann 

& Sherman, 1998). Numbers of experimental evidences have 

suggested that the cerebellum have also a role in modulation and 

optimization of EFs (Schmahmann & Pandya, 1989; Schmahmann, 

1991; Leiner et al., 1991; Ivry, 1997; Schmahmann & Sherman, 

1998; Tagaris et al., 1998; Harrington and Haaland, 1999; Karatekin 

et al., 2000; Ravizza & Giorgi, 2006; Bellebaum & Daum 2007; Riva 

et al., 2013; Noroozian, 2014; Marien et al., 2015; Mak et al., 2016; 

Corben et al., 2017; Kansal et al., 2017). 



58 
 

In recent years, several authors described a "dysexecutive 

syndrome" in cerebellar diseases, hypothesizing that such syndrome 

could be the primary cause of cognitive deficits and behaviour 

alterations reported in patients with cerebellar damage (Torrens et 

al., 2008; Brega et al., 2008). 

Actually, before the description in 1998 of the Cerebellar 

Cognitive Affective Syndrome (CCAS), a syndrome of cognitive 

deficits was reported by Luria (1964) in a patient with cerebellar 

tumor called “pseudo-frontal” syndrome. The patient presented with 

neuropsychological symptoms that at first sight appeared to be 

consistent with frontal lobe pathology. On further inspection, the 

author demonstrated a “pseudo-frontal” rather than a “frontal” 

syndrome, and reported that these symptoms were related not to 

frontal pathology, but to a cerebellar tumor (Luria, 1964).  

Many comparative studies report the existence of deficits 

within various aspects of EFs in patients with either focal lesions 

(Gottwald et al., 2004; Starowicz-Filip et al., 2013; Mak et al., 2016) 

or atrophy (Burk et al., 2001; Suenaga et al., 2008; Ma et al., 2014) 

of the cerebellum.  

An impairment of the EFs was described as one of the main 

symptoms of the CCAS (Schmahmann & Sherman, 1998). 

Gottwald and colleagues (2004) founded deficits in the 

Semantic and Phonemic Fluency Tests, in the Similarities and Hand 
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Movements Tests and in the Stroop Color-Word Test in patients with 

cerebellar focal lesion. 

Starowicz-Filip and colleagues (2013) described a patient 

with an ischemic stroke in the right cerebellar hemisphere, who 

showed the typical symptoms of a frontal damage. He manifested 

euphoric mood, disorganized behaviour, lack of criticism and mental 

plasticity, tendency to shorten the personal distance, alterations in 

Trail Making Test, Wisconsin Card Sorting Test, Stroop Color-Word 

Test and Word Fluency Test. 

Mak and collaborators (2016) investigated the EFs in 30 

patients after cerebellar surgery. The patients showed deficits in the 

Wisconsin Card Sorting Test, the Stroop Color-Word Test and the 

Trial Making Test.  

An impairment of the EFs was described also in different 

populations of patients with degenerative disorders of the 

cerebellum. 

Suenaga and colleagues (2008) evaluated cognitive 

impairment in 18 patients with spinocerebellar ataxia type 6 (SCA6). 

They founded an impairment in Semantic and Phonemic Verbal 

Fluency Test. Mild deficits were present also in the Rule Shift Cards 

Test.  

Moreover, neuropsychological studies showed that significant 

cognitive deficits, especially those affecting frontal lobe related to 
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the EFs in patients affected by spinocerebellar ataxia type 1 (SCA1) 

(Burk et al., 2001), spinocerebellar ataxia type 2 (SCA2) (Burk et 

al., 1999) and spinocerebellar ataxia type 3 (SCA3) (Maruff et al., 

1996; Kavai et al., 2004). 

Although the research studies reported above clearly showed 

a cerebellar involvement in executive domain, they have been 

focused only on single subcomponent of EFs (Suenaga et al., 2008; 

Starowicz-Filip et al., 2013; Ma et al., 2014; Gottwald et al., 2014) 

and no systematic study has been yet implemented to characterize 

the EFs profile in patients affected by a cerebellar pathology. 

Aim of the present research project was to draw up 

a neuropsychological profile of EFs impairment in patients affected 

by cerebellar pathology and to characterize the cerebellar role in the 

different EFs sub-components (Miyake et al., 2000). To do that, we 

used an extensive neuropsychological battery to assess the various 

aspect of EFs in patients with focal or atrophic cerebellar. 

Moreover, advanced neuroimaging techniques were used to 

analyze the cerebellar damage and to investigate the 

neuroanatomical substrate of the executive profile of the cerebellar 

patients.  

In the following sections, three studies will be reported.  
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In the first study, the executive profile of cerebellar patients 

was deeply investigated using an extensive neuropsychological 

battery. 

In the second study an exploratory factor analysis of the 

behavioural data was performed in order to characterize the 

cerebellar involvement in specific sub-components of the EFs.  

In the third study the correlation between the behavioural 

performance and the cerebellar damage was analyzed. 
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4.2 Study 1: Behavioural investigation of the 
Executive Functions profile in patients with 
cerebellar pathology 

 
4.2.1 Rationale 
 

The cerebellum has been proposed to be one of the 

subcortical structures involved in EFs (Schmahmann & Pandya, 

1989; Schmahmann, 1991; Leiner et al., 1991; Ivry, 1997; 

Schmahmann, 1997; Tagaris et al., 1998; Harrington & Haaland, 

1999; Grossi & Trojano, 2005; Bellebaum & Daum, 2007).   

Specifically, executive deficits have been described in patients 

with cerebellar pathology, even if they resulted less severe than 

those reported in patients with lesions in the frontal lobe (Daum et 

al., 2001; Schmahmann & Pandya, 2004; Torrens et al., 2008; Brega 

et al., 2008; Tedesco et al., 2011).  

Nevertheless, the cerebellar executive profile in patients 

affected by cerebellar pathology has never been characterized.  

Aim of the present study was to examine the EFs profile in 

patients affected by degenerative or focal cerebellar damage in order 

to characterize the dysexecutive syndrome of cerebellar origin.  

Patients underwent an extensive EFs neuropsychological 

battery that also included the “Behavioural Assessment of the 

Dysexecutive Syndrome” (BADS) (Wilson et al., 1996) to assess the 

skills involved in everyday life problems associated with the 
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dysexecutive syndrome (Eslinger and Damasio, 1985; Manes et al., 

2009).  
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4.2.2 Materials and methods 
 
Participants 

Forty-one patients affected by cerebellar pathology (CbT) 

were recruited from the IRCCS Santa Lucia Foundation rehabilitation 

hospital (Rome, Italy). Patients were affected by focal (FCb n.18) or 

degenerative (Ca n.23) cerebellar damage.  

None of the patient had a history of neurological or mental 

illness. All patients underwent a comprehensive neurological 

examination by an expert neurologist. Motor impairment was 

quantified by using the International Cooperative Ataxia Rating Scale 

(ICARS: Trouillas et al., 1997) (Table 2 and 3). The score of ICARS 

ranges from 0 (the absence of any deficit) to 100 (the presence of 

all deficits to the highest degree) and evaluates 4 aspects of the 

symptomatology of ataxia (postural and gait disturbances, kinetic 

disturbances, speech disorders, and oculomotor disorders) (Trouillas 

et al., 1997). 

According to the inclusion criteria, each patient underwent an 

MRI examination to exclude the presence of macroscopic extra-

cerebellar abnormalities.  

All patients did not present any clinical or radiological 

evidence of extra-cerebellar involvement or increased intracranial 

pressure at the time of testing.  
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General intellectual level was assessed by means of 

“Raven's coloured progressive matrices PM47” (Raven, 1947) and 

used as inclusion criterion.  

An extensive neuropsychological battery was administered by 

a trained neuropsychologist.  

The experimental procedures were approved by the ethical 

committee of IRCCS Santa Lucia Foundation and of Sapienza, 

University of Rome (Department of Psychology). 

The work has been carried out in accordance with the 

Declaration of Helsinki. Written consent was obtained from each 

participant. 

A group of 43 healthy subjects (CT) with no history of 

neurological or psychiatric illness was recruited as control subjects. 

As demonstrated by the One-way ANOVA, the CbT and the CT groups 

were well-matched for age (F(1,82)=.003; p=.955) and education 

level (F(1,82)=1.583; p=0.211).  

Main demographic characteristics of each group are reported 

in Table 1.  
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Table 1 - Demographic characteristics of patients and control groups reported as mean and 

standard deviation (sd).  

CbT= total cerebellar patients; Ca=group of patients affected by cerebellar atrophy; FCb= group 

of patients affected by focal cerebellar lesion; CT= control group.  

 

Fourteen out of the 18 patients with cerebellar atrophy had a 

genetic diagnosis (Friedreich ataxia= 1; SCA 1= 1; SCA 2= 6; SCA 

8= 1; SCA 15= 2; SCA 28= 1; episodic ataxia= 4) and 5 presented 

idiopathic cerebellar ataxia (ICA).  

The main characteristics of the patients with cerebellar 

atrophy are reported in Table 2.  

  

Group Patients M/F Age Education
Total 

ICARS 
score 

CbT 
41 20/21 

47.59 
(11.32) 

12.98 
(3.30) 

25.92 
(17.76) 

Ca
23 18/5 

45.48 
(11.68) 

13.30 
(2.34) 

35.04 
(17.38) 

FCb
18 

14/4 50.28 
(10.54) 

12.56 
(4.26) 

14.26 
(9.75) 

CT 
43 15/28 

47.44 
(12.11) 

13.91 
(3.48) 

- 
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Table 2 - Clinical characteristics and total ICARS scores of the patients with cerebellar atrophy. 

ICARS= international cooperative ataxia rating scale. ICA= idiopathic cerebellar ataxia. SCA2= 

spinocerebellar atrophy type 2. SCA 8= spinocerebellar atrophy type 8. SCA 1= spinocerebellar 

atrophy type 1. SCA 15= spinocerebellar atrophy type 15. SCA 28= spinocerebellar atrophy type 

28 

The main characteristics of the patients with focal cerebellar 

damage are reported in Table 3.  

The neuroradiological descriptions of the focal cerebellar 

lesions have been reported in detail in the third experimental study. 

Patients Age Education Gender Etiology Total 
ICARS 
score 

CB1 63 13 M ICA 49 
CB2 63 13 F SCA2 24 
CB3 50 13 M ICA 30 
CB4 

46 13 F Friedreich 
Ataxia 59 

CB5 
25 13 M Friedreich 

Ataxia 78 
CB6 41 18 F SCA2 28 
CB7 51 13 M ICA 44 
CB8 52 13 M SCA8 42 
CB9 50 8 F ICA 68 
CB10 38 12 F SCA2 33 
CB11 42 13 F SCA2 47 
CB12 53 11 F ICA 21 
CB13 46 13 F Episodic Ataxia 9 
CB14 58 13 F Episodic Ataxia 16 
CB15 

29 11 M Friedreich 
Ataxia 25 

CB16 24 16 F SCA1 33 
CB17 36 13 F SCA2 37 
CB18 24 11 F Episodic Ataxia 8 
CB19 51 14 F SCA15 44 
CB20 54 18 F SCA2 27 
CB21 56 13 F SCA15 35 
CB22 42 18 F SCA28 21 
CB23 52 13 F Episodic Ataxia 28 
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Table 3 - Clinical characteristics and ICARS scores of the cerebellar patients affected by focal 

cerebellar lesion. ICARS= international cooperative ataxia rating scale. R= cerebellar lesion on 

the right side; L= cerebellar lesion on the left side; Bil= Bilateral cerebellar lesion. 

Patients Age  Education Gender Diagnosis Side Total 
ICARS 
score 

CB24 30 18 F Ischemic R 4.5 
CB25 46 8 F Ischemic R  21 
CB26 57 13 M Ischemic R  17.5 
CB27 67 5 M Ischemic R  34.5 
CB28 50 13 M Ischemic R  7 
CB29 46 13 M Ischemic R 16.5 
CB30 44 18 M Ischemic L 5 
CB31 55 18 F Ischemic L  8.5 
CB32 60 13 M Ischemic L  20 
CB33 53 8 M Surgical L  28 
CB34 59 18 M Ischemic L 9.5 
CB35 38 16 F Ischemic L 31.5 
CB36 52 13 F Ischemic L 3 
CB37 36 13 M Ischemic L 2 
CB38 45 8 M Ischemic Bil 9 
CB39 72 5 M Ischemic Bil 14.26 
CB40 49 13 M Ischemic Bil 16 
CB41 46 13 M Ischemic Bil 9 
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General Neuropsychological Assessment 

A neuropsychological battery was administered by a trained 

neuropsychologist in order to assess the patients’ general cognitive 

profile.  

The following cognitive domains were investigated: 

intelligence [Raven's coloured progressive matrices PM47 (Raven, 

1947)]; verbal comprehension [Token Test (De Renzi & Vignolo, 

1962)], verbal memory [forward and backward digit span, prose 

memory test (Spinnler & Tognoni, 1987)], visuo-spatial abilities and 

visuo-spatial memory [forward and backward Corsi Test (Corsi, 

1972), delayed (DR) recall and copy of Rey-Osterrieth complex 

figure test (Caffarra et al., 2002)], and attention [Multiple Features 

Targets Cancellation Task (Marra et al., 2013)].  

All tests were administered in the Italian version and the 

scores obtained were adjusted for age and level of education 

according to the Italian normative data, when available. 

 

Executive Functions Assessment 

Standardized Tests 

The EFs have been extensively investigated by using the 

standardized tests described below. 
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 Tower of London Test (Krikorian et al., 1994) was used 

to identify impairments in planning processes involved 

in generating a plan to accommodate novel demands.  

 The verbal fluency test was used to evaluate the ability 

to generate words fluently in a phonemic format 

(Phonemic Fluency Test) (Borkowsky et al., 1967; 

Caltagirone et al., 1995;) or from overlearned 

concepts (Semantic Fluency Test and Action Verbal 

fluency test) (Tombaugh et al., 1999; Woods et al., 

2005). 

 The Stroop Color-Word Test (Caffarra et al., 2002) 

was used to assess the selective attention and the 

sensitivity to interference.  

 The Wisconsin Card Sorting Test (Heaton, 1993) was 

used to assess the cognitive flexibility and 

perseverations, abstract thinking and the ability to set 

shift.  

The executive abilities measured by standardized tests are 

reported in Table 4. 
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Executive Functions Test 

Planning and problem solving Tower of London Test 

Generating of unusual strategies based 
on categorical representations  Phonemic Fluency Test 

Spontaneous oral generation of words 
based on a specified semantic category

Semantic Fluency Test-Animal 
naming

Ability of verbs production in the 
absence of external stimuli Action Verbal Fluency Test 

Selective attention and response 
inhibithion Stroop Color-Word Test 

Cognitive flexibility and perseverations, 
abstract thinking and the ability to set 

shift 
Wisconsin Card Sorting Test  

 

Table 4 - Executive Functions abilities measured by each test. 

 

Behavioural Assessment of the Dysexecutive 

Syndrome (BADS) 

In addition to the standardized executive tests, the 

“Behavioural Assessment of the Dysexecutive Syndrome” (BADS) 

(Wilson et al., 1996) was administered in order to specifically assess 

the skills and demands involved in everyday life (Wilson et 

al., 1996). Indeed, recent criticisms on neuropsychological tests for 

the executive abilities have been focused on the difficulty of 

interpreting test scores in the light of their importance for patient 

outcomes (Wilson, 1993; Sbordone, 1996). These criticisms were 

based on two empirical observations: first, the results of tests which 

assess a single cognitive function are often unable to predict 

outcome with robust reliability or validity, while those tests that 
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assess a range of cognitive functions provide the best estimate of 

outcome (Tupper & Cicerone, 1990; Girard et al., 1996); second, 

patients may perform adequately on a battery of tests of cognitive 

functioning within a structured testing environment, yet exhibit 

significant impairment in less structured situations (Shallice & 

Burgess, 1991; Mountain & Snow, 1993; Wilson, 1993; Reitan & 

Wolfson, 1994). The BADS (Wilson et al., 1996, 1998), was 

developed in response to these limitations.  

BADS consists of 6 subtests. The abilities measured by BADS 

subtest are reported in Table 5. 

The Rule Shift Cards Test examines the subject’s ability to 

correctly respond to a rule and to shift from one rule to another; 

investigates persevering tendencies, cognitive flexibility, and subject 

ability to properly respond to a rule by inhibiting a previously learned 

approach. This measure uses 21 nonpicture playing cards and it 

assesses the ability to change from one pattern of responding to 

another. In the first part of the test, subjects are instructed to 

answer “Yes” to a red card and “No” to a black card. In the second 

part, subjects are instructed to respond “Yes” if the card which has 

just been turned over is the same color as the previous turned card 

and “No” if the color was different. These rules, typed on a card, are 

left in full view throughout to reduce memory constraints. Time 

taken, and number of errors are recorded in both parts.  
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The Action Program Test was created to provide subjects with 

a novel, practical task that required the development of a plan of 

action to solve a problem. The task has five steps to its solution. The 

subject is presented with a rectangular stand into one end of which 

is set a large transparent beaker with a removable lid that has a 

small central hole in it. Into the other end of the stand is set a thin 

transparent tube at the bottom of which is a small piece of cork. The 

beaker is two thirds full of water. To the left of the stand is placed a 

metal rod (roughly L-shaped) which is not long enough to reach the 

cork, and a small screw top container on its side, with its top 

unscrewed and lying beside it. Subjects are asked to get the cork out 

of the tube using any of the objects in front of them but without 

lifting up the stand, the tube, or the beaker and without touching the 

lid with their fingers. There is no time limit for this task, but if a 

subject has not made any attempt at carrying out the next stage 

after 2 minutes, or is perseverating an inappropriate action, then a 

prompt is given. 

The Key Search Test enables to examine the subject's ability 

to plan an effective and efficient plan of action and the subject's 

ability to monitor his/her own performance. In these task subjects 

are given an A4-sized piece of paper with a 100-mm square in the 

middle and a small black dot 50 mm below it. The subjects are told 

to imagine that the square is a large field in which they have lost 
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their keys. They are asked to draw a line, starting on the black dot, 

to show where they would walk to search in the field to be sure to 

find their keys.  

Temporal Judgment Test assesses the cognitive estimation’s 

ability. The test contains four short questions about time duration for 

common events that take from a few seconds (how long does it take 

to blow up a party balloon?) to several years (how long do most dogs 

live?). Subjects are asked to make their best guess, related to two 

things that are usually counted in minutes, one that is usually 

counted in years, and one in seconds. 

In Zoo Map Test subjects are required to show how they 

would visit a series of designated locations on a map of a zoo. 

However, when planning the route certain rules must be obeyed. The 

map and rules have been constructed so that there are only four 

variations on a route that can be followed in order that none of the 

rules of the test are infringed. There are two trials: in the first trial, 

the subject must create a route following the specific rules (high 

demand), in the second, the subject is simply required to follow a 

set of written instructions to produce an error-free performance (low 

demand). Comparing performances between the two trials allows a 

quantitative evaluation of a subject's spontaneous planning ability 

when structure is minimal, versus their ability to follow a concrete 

externally imposed strategy when structure is high. 
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The Modified Six Elements Test assesses subject's ability to 

plan, organize, and monitor behaviour. The Modified Six Elements 

Test is a simplified version of the original Shallice and Burgess 

(1991) test where the subject is instructed to do three tasks 

(dictation, arithmetic, and picture naming) each of which is divided 

into two parts (A and B). The subject must attempt each of the six 

subtasks within a 10-minute test period, and organize the time 

(using a stopwatch). They are not allowed to do two parts of the 

same task consecutively. This test measures the ability to distribute 

the execution of several tasks in a limited period of time. 

 

Table 5 - Executive Functions abilities measured by BADS subtest. 

 

 

 

 

Executive Functions Test 

Cognitive flexibility, persevering 
tendencies, inhibition abilities,  

rule learning
Rule Shift Cards Test 

Planning and problem solving Action Program Test 

Strategy formation and self-monitoring Key Search Test 

Cognitive estimation Temporal Judgment Test 

Spontaneous planning and ability to follow 
a concrete externally imposed strategy 

Zoo Map Test 

Planning, organizing, and behaviour 
monitoring 

Modified Six Elements Test  
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Data analysis  

In a first step a one-way analysis of variance (ANOVA) was 

used to compare each variable between total cerebellar patients 

group (CbT), regardless the etiology, and controls (CT).  

In a second step, an analysis of variance (ANOVA) was used 

to compare each variable between each cerebellar group (Ca and 

FCb) and controls (CT) in order to better characterize the EFs profile 

considering the damage type (focal or degenerative). When 

significant differences were observed, post hoc comparisons were 

performed using Bonferroni post-hoc test, and P-values were 

reported.  

All statistical analysis were performed using Statistical 

Package for the Social Sciences (SPSS version 23). 
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4.2.3 Results 
 

General Neuropsychological assessment 

Intellectual level of the cerebellar patients and control group 

was preserved (Raven’47-adjusted score) (Table 6). 

 

Group Raven '47 
CbT 28,37 

(3.85) 
Ca 28,46 

(3.47) 
FCb 28,26 

(4.39) 
CT 30.41 

(2.08) 
Cut-off 18.96 

 

Table 6 - Mean and standard deviation (sd) at Raven’47 of the cerebellar patients and control 

group. Cut-off is reported. CbT= total cerebellar patients; Ca=group of patients affected by 

cerebellar atrophy; FCb= group of patients affected by focal cerebellar lesion; CT= control group.  

 

The mean scores and standard deviations for each 

neuropsychological test and for each group (CbT, Ca and FCb) are 

reported in Table 7.  

No of the values were inferior to the cut off levels in all 

neuropsychological tests. 
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Table 7 - means and standard deviations (sd) of CbT, Ca and FCb at neuropsychological 

assessment. 

DR Rey Osterrieth figure: delayed recall of Rey-Osterrieth complex figure test; MFTC= Multiple 

Features Targets Cancellation Test. 

CbT = total cerebellar patients; Ca=group of patients affected by cerebellar atrophy; FCb= group 

of patients affected by focal cerebellar lesion. 
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Executive Functions Assessment in total cerebellar 

patients 

Standardized Tests 

The results obtained from the total group of patients (CbT) 

and control group (CT) for the EFs standardized tests are 

summarized in Table 8.  

 

 Stroop Color -Word Test WCST 

 
Interference 

Time 
Interference 

Errors 
Total 
Errors 

Perseverative 
Responses 

Perseverative 
Errors 

CbT 24.40 1.43 23.42 13.01* 11.74* 

(13.06) (2.53) (17.44) (11.07) (9.17) 
CT 22.38 0.89 16.69 8.50 7.95 

(8.45) (1.75) (15.30) (8.44) (6.85) 
 

Table 8 - Performances of CbT, and CT groups. The data are reported as means and standard 

deviation (sd). CbT= total cerebellar patients; CT= control group.  

*p<0.05 significant difference between CbT and CT. 

 

The ANOVA between CbT and CT showed a main group effect. 

Significant differences resulted in: Phonemic Fluency Test 

(F(1,82)=8.764; p=.004) (Figure 5); Semantic Fluency Test 

(F(1,82)=5.315; p=.024) (Figure 6); Action Verbal Fluency Test 

(F(1,82)=6.689; p=.011) (Figure 7); and in the number of 

 
Tower of London 

Test 
Phonemic 

Fluency Test 
Semantic 

Fluency Test 
Action Verbal 
Fluency Test  

CbT 29.88 30.31* 26.81* 15.07* 

(3.44) (11.07) (7.01) (5.57) 
CT 31.02 37.22 30.95 18.09 

(2.50) (10.34) (9.24) (5.13) 
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Perseverative Responses (F(1,82)=4.441; p=.038) and Perseverative 

Errors (F(1,82)=4.640; p=.034) of the Wisconsin Card Sorting Test 

(Figure 8). 

  

 

 

 

 

 

 

 

Figure 5: Phonemic Fluency Test - CbT= total cerebellar patients; CT= control group. *p<0.05 

significant difference 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Semantic Fluency Test - CbT= total cerebellar patients; CT= control group. *p<0.05 

significant difference 
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Figure 7: Action Verbal Fluency Test - CbT= total cerebellar patients; CT= control group. 

*p<0.05 significant difference 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Wisconsin Card Sorting Test (Perseverative Responses; Perseverative Errors) 

- CbT= total cerebellar patients; CT= control group. *p<0.05 significant difference 
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Performances at “Behavioural Assessment of the 

Dysexecutive Syndrome” (BADS) 

The ANOVA between CbT and CT showed a main group effect. 

The results obtained from patients (CbT and FCb) and control group 

for the “Behavioural Assessment of the Dysexecutive Syndrome” are 

summarized in Table 9.  

 

 Behavioural Assessment of the Dysexecutive Syndrome 

  

Rule 
Shift 
Cards 
Test 

Action 
Program 

Test 

Key 
Search 

Test 

Temporal 
Judgment 

Test 

Zoo 
Map 
Test 

Modified 
Six 

Elements 
Test  

CbT 22.85 6.07* 8.68 2.59 9.41* 4.54* 
(4.19) (1.94) (2.95) (1.19) (6.34) (1.27) 

CT 23.98 7.07 8.79 2.74 8.00 5.23 
(3.58) (2.20) (3.22) (0.98) (0.00) (0.97) 

 

Table 9 - Performances of CbT and CT groups. The data are reported as means and standard 

deviation (sd). CbT= total cerebellar group; CT= control group.  

*p<0.05 significant difference between CbT and CT. 

 

Significant differences between CbT and CT resulted in: 

Action Program Test (F(1,82)=4.780; p=.032) (Figure 9); Zoo Map 

Test (F(1,82)=23.584; p=.000) (Figure 10) and in Modified Six 

Element Test (F(1,82)=.7.874; p=.006) (Figure 11). 

No significant differences were found in: Rule Shift Card Test 

(F(1,82)=1.723; p=.193); Key Search Test (F(1,82)=.025; p=.874); 

and in Temporal Judgment Test (F(1,82)=.442; p=.508). 
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Figure 9: Action Program Test - CbT= total cerebellar group; CT= control group. *p<0.05 

significant difference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Zoo Map Test Test - CbT= total cerebellar group; CT= control group. *p<0.05 

significant difference 
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Figure 11: Modified Six Elements Test - CbT= total cerebellar group; CT= control group. 

*p<0.05 significant difference 
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Executive Functions assessment in patients with focal 

and degenerative cerebellar damage 

Standardized Tests 

The results obtained from ANOVA between patients (Ca and 

FCb) and control group for the EFs standardized tests are 

summarized in Table 10.  

The ANOVA between Ca, FCb and CT showed significant 

differences in: Phonemic Fluency Test (F(2,81)=5.386; p=.006) Action 

Verbal Fluency Test (F(2,81)=4.728; p=.011), in the number of Total 

Errors (F(2,81)=3.342; p=.040), Perseverative Responses 

(F(2,81)=4.454; p=.015) and Perseverative Errors (F(2,81)=4.385; 

p=.016) of the Wisconsin Card Sorting Test.  

No significant differences were found in Tower of London Test 

(F(2,81)=1.520; p=.225), in the Semantic Fluency Test (F(2,81)=2.729; 

p=.071), in “Stroop Color-Word Test” (Interference Time 

F(2,81)=1.288; p=.282; Interference Errors F(2,81)=1.852; p=.163). 

A post hoc analysis by means of Bonferroni correction 

evidenced a different profile between Ca and FCb groups considered 

separately. 
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  Stroop Color-Word Test WCST 

 
Interference 

Time 
Interference 

Errors 
Total 
Errors 

Perseverative 
Responses 

Perseverative 
Errors 

Ca 22.36 0.98 19.52 10.26 9.57 

(7.84) (1.34) (14.61) (8.71) (7.70) 
FCb 27.02 2.01 28.41* 16.53* 14.53* 

(17.57) (3.48) (19.82) (12.90) (10.32) 
CT 22.38 0.89 16.69 8.50 7.95 

(8.45) (1.75) (15.30) (8.44) (6.85) 
 

Table 10 - Performances of Ca, FCb and CT groups. The data are reported as means and standard 

deviation (sd). Ca=group of patients affected by cerebellar atrophy; FCb= group of patients 

affected by focal cerebellar lesion; CT= control group.  

**p<0.05 significant difference between CT and Ca. 

*p<0.05 significant difference between CT and FCb. 

 

Ca patients showed significantly lower scores than control 

subjects in the Phonemic Fluency Test (p=0.005) (Figure 12).  

No significant differences between Ca and CT emerged in: 

Tower of London Test (p=.428); in Semantic Fluency Test (p=.278); 

in Action Verbal Fluency Test (p=.553); in Stroop Color-Word Test 

(time effect p=1.000; error effect p=1.000); in the number of Total 

         

 
Tower of London 

Test 
Phonemic 

Fluency Test 
Semantic 

Fluency Test 
Action Verbal 
Fluency Test  

Ca 29.87 28.28** 27.32 16.26 

(3.31) (10.17) (6.01) (5.32) 
FCb 29.88 32.91 26.17 13.56* 

(3.71) (11.90) (8.25) (5.66) 
CT 31.02 37.22 30.95 18.09 

(2.50) (10.34) (9.24) (5.13) 
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Errors (p=1.000), Perseverative Responses (p=1.000) and 

Perseverative Errors (p=1.000) of the Wisconsin Card Sorting Test. 

 

 

 

 

 

 

 

 

 

 

Figure 12: Phonemic Fluency Test - Ca=group of patients affected by cerebellar atrophy; FCb= 

group of patients affected by focal cerebellar lesion; CT= control group.  

*p<0.05 significant difference 

 

FCb patients showed significantly lower scores than control 

subjects in the Action Verbal Fluency Test (p=0.009) (Figure 13), in 

the number of Total Errors (p=0.035), Perseverative Responses 

(p=0.010) and Perseverative Errors (p=0.011) of the Wisconsin Card 

Sorting Test (Figure 14). 
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Figure 13: Action Verbal Fluency Test - Ca=group of patients affected by cerebellar atrophy; 

FCb= group of patients affected by focal cerebellar lesion; CT= control group. *p<0.05 significant 

difference 
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Figure 14: Wisconsin Card Sorting Test (number of Total Errors; Perseverative 

Responses; Perseverative Errors) - Ca=group of patients affected by cerebellar atrophy; FCb= 

group of patients affected by focal cerebellar lesion; CT= control group. *p<0.05 significant 

difference 

 

No significant differences between FCb and CT emerged in: 

Tower of London Test (p=.545); in Phonemic Fluency Test (p=.457); 

in Semantic Fluency Test (p=.127) and in Stroop Color-Word Test 

(Interference Time p=.400; Interference Errors p=.196). 
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Performances at “Behavioural Assessment of the 

Dysexecutive Syndrome” (BADS) 

The results at the “Behavioural Assessment of the 

Dysexecutive Syndrome” obtained from patients (Ca, FCb) and 

control group are summarized in Table 11. 

  

Behavioural Assessment of the Dysexecutive Syndrome 
Rule 
Shift 
Cards 
Test 

Action 
Program 

Test 

Key 
Search 

Test 

Temporal 
Judgment 

Test 
Zoo Map 

Test 

Modified 
Six 

Elements 
Test  

Ca 22.87 5.61** 8.30 2.74 10.09** 4.61 
(4.40) (1.90) (3.18) (1.39) (5.31) (1.31) 

FCb 22.83 6.67 9.17 2.39 8.56* 4.44* 
(4.16) (1.94) (2.73) (0.92) (7.69) (1.29) 

CT 23.98 7.07 8.79 2.74 14.56 5.23 
(3.58) (2.20) (3.22) (0.98) (2.58) (0.97) 

 

Table 11 - Performances of Ca, FCb and CT groups. The data are reported as means and standard 

deviation (sd). Ca=group of patients affected by cerebellar atrophy; FCb= group of patients 

affected by focal cerebellar lesion; CT= control group.  

**p<0.05 significant difference between CT and Ca. 

*p<0.05 significant difference between CT and FCb. 

 

The ANOVA between Ca, FCb and CT showed significant 

differences in: Action Program test (F(2,81)=3.760; p=.027), Zoo Map 

Test (F(2,81)=12.296; p=.000); and Modified Six Element Test 

(F(2,81)=4.004; p=.022). 

No significant differences were found in Rule Shift Card Test 

(F(2,81)=.851; p=.431), in Key Search Test (F(2,81)=.400; p=.671) 

and in Temporal Judgement Test (F(2,81)=.739; p=.481).  
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A post hoc analysis by means of Bonferroni's correction 

evidenced a different profile between Ca and FCb groups considered 

separately. 

Ca patients showed significantly lower scores than control 

subjects in the Action Program Test (p=.023) (Figure 15). 

 

 

 

 

 

 

 

 

 

Figure 15: Action Program Test- Ca=group of patients affected by cerebellar atrophy; FCb= 

group of patients affected by focal cerebellar lesion; CT= control group. 

*p<0.05 significant difference 

 

No significant differences between Ca and CT emerged in: 

Rule Shift Card Test (p=.841); Key Search Test (p=1.000); 

Temporal Judgment Test (p=1.000) and in the Modified Six Elements 

Test (p=.112). 

FCb patients showed significantly lower scores than control 

subjects in the Modified Six Elements Test (p=.048) (Figure 16).  
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Figure 16: Modified Sex Elements Test- Ca=group of patients affected by cerebellar atrophy; 

FCb= group of patients affected by focal cerebellar lesion; CT= control group. 

*p<0.05 significant difference 

 

No significant differences between FCb and CT emerged in: 

Rule Shift Card Test (p=.915); Action Program Test (p=1.000); Key 

Search Test (p=1.000) and in Temporal Judgment Test (p=.752).  

The Zoo Map Test is the only test in which both Ca groups 

and FCb performed significantly worse than control group (p=.002; 

p=.000) (Figure 17).  
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Figure 17: Zoo Map Test -Ca=group of patients affected by cerebellar atrophy; FCb= group of 

patients affected by focal cerebellar lesion; CT= control group. 

*p<0.05 significant difference 

 

In conclusion, the cerebellar damage in our patient cohort 

affects only specific tasks and differences in the executive 

impairments between Ca and FCb have been evidenced.  
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4.2.4 Conclusion – Study 1 
 

In this first study, we investigated the role of the cerebellum 

in the EFs, studying different executive aspects in patients with 

atrophic or focal cerebellar lesions.  

For the first time, it has been used an extensive executive 

battery for the detection of impairments caused by damage of the 

prefrontal cortex, including “real life” difficulties. 

Our results showed that the CbT group was impaired only in 

specific abilities assessed by executive function tests and not in all 

tests (Table 12) and that Ca and FCb were significantly impaired in 

different executive tasks when their performances were analyzed 

separately (Table 13). 
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Table 12 - The orange rectangles indicate tests in which cerebellar total group perform 

significantly worse than CT. 
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Table 13 - The blue rectangles indicate tests in which the group of patients affected by cerebellar 

atrophy perform significantly worse than CT. 

The red rectangles indicated tests in which the group of patients affected by focal cerebellar lesion 

perform significantly worse than CT. 

 

In particular, Ca patients showed significantly lower scores 

than control subjects in the Phonemic Fluency Test and in Action 

Program Test.  
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To perform a fluency task, the individual, typically will 

generate words within a subcategory and, when this subcategory is 

exhausted, he or she will switch to a new one. Switching, involves 

frontal-lobe processes such as strategic search processes and 

cognitive flexibility in shifting from one subcategory to another.  

Therefore, Phonemic Fluency Test, requires the 

implementation of unusual strategies to search the words and 

complete the task. Indeed, it is worth noting that in the Phonemic 

Fluency Test the words must be retrieved from a phonemic category, 

which is rarely done in everyday speech production, so that 

participants must suppress the activation of semantically or 

associatively related words and must resort to novel retrieval 

strategies (Luo et al., 2010; Katzev et al., 2013).  

Also, the Action Program Test, that assesses the ability to 

develop a plan of action to solve a novel problem, requires to 

generate an unusual and new strategy. 

FCb patients showed significantly lower scores than control 

subjects in the Action Verbal Fluency Test, Wisconsin Card Sorting 

Test and in the Modified Six Elements Test. In these tasks the subject 

has to mentally coordinate and manipulate the information that may 

be associated with a verb (Piatt et al., 1999), and to make 

abstraction and organize the behaviour on the basis of external 

feedback as the context requires.  
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Both groups of patients had difficulties in planning a route to 

solve a problem as showed by the performance obtained in the Zoo 

Map Test.  

In conclusion, considered the different profiles of the 

cerebellar patients according to the focal or degenerative nature of 

their cerebellar damage and taking into account the multifactorial 

models about the EFs (Stuss et al., 1995; Miyake et al., 2000; Fisk 

& Sharp, 2004), we may hypothesize that a cerebellar damage may 

affect specific EFs subcomponents. 

In the next section we examined the underlying factor 

structures of previous EFs tests using principal components analysis 

in order to better characterize the EFs profile in presence of a 

cerebellar pathology.  
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4.3 Study 2: An exploratory factor analysis of the 
executive functioning  

 
4.3.1 Rationale  

 
As reported in the chapter 3, the EFs require the involvement 

of complex neuronal circuits that include not only the frontal lobe but 

also other cortical, subcortical and cerebellar regions (Dirnberger et 

al., 2005; Zgaljardic et al., 2006; Leh et al., 2010).  

In the first study we used an extensive neuropsychological 

battery to assess specific aspects of EFs in patients with focal or 

degenerative cerebellar damage. Our results demonstrated that the 

executive profile is different depending on the etiology of the 

cerebellar damage.  

The multifactorial model (Mirsky et al., 1991; Robertson et 

al., 1996; Miyake et al., 2000; Bondi et al., 2002; Pineda et al., 

2003; Vaughan & Giovanello et al., 2010; Rose et al., 2011; Schmidt 

et al., 2015) assumes that EFs are not a single activity, but a 

complex system formed by different cognitive operations such as 

anticipation, goal selection, organization, planning, monitoring, 

shifting and time control (Lezak, 1995; Della Sala et al., 1998).  

Several authors used factor analysis to investigate the 

structure of EFs and identify the factors underlying EFs (Mirsky et 

al., 1991; Miyake et al., 2000; Bondi et al., 2002; Pineda et al., 
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2003; Vaughan & Giovannello et al., 2010; Rose et al., 2011; 

Schmidt et al., 2015).  

By using the factor analysis in a healthy population Miyake 

and colleagues (2000) highlighted three executive processes that 

moderately correlate each another, but that are clearly separable: 

the mental set shifting (“Shifting”), the information updating and 

monitoring (“Updating”), and the inhibition of reflexive responses 

(“Inhibition”).  

Testa and collaborators (2012) examined the underlying 

factorial structure of 19 EFs tests in a non-clinical sample. 

Exploratory factor analysis revealed a model comprising six 

independent factors: Prospective Working Memory, Set-Shifting and 

Interference Management, Task Analysis, Response Inhibition, 

Strategy Generation and Regulation, and Self-Monitoring and Set-

Maintenance. 

Neuropsychological investigations in populations with frontal 

lobe damages have significantly contributed to demonstrate the 

multidimensional and dissociable nature of EFs (Duncan et al, 1997; 

Burgess et al., 1998; Robbins et al., 1998).  

Focusing on the cerebellum, although clinical and neuro-

radiological studies have proved its direct involvement in EFs, there 

are no studies that provide information about its role in specific 

subcomponent of EFs.  
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The issue of the present study was to clarify whether the EFs 

alterations evidenced in the two groups of cerebellar patients (see 

study 1) were due to a global alteration of the EFs or to latent specific 

components common to the tests we used in precedent section. To 

this aim we investigated whether the different tests were grouped 

according to common executive processes that could explain the  

different executive profiles detected in the patients affected by focal 

or degenerative cerebellar damage.   

To this purpose a factor analysis was applied on the EFs tests 

scores obtained by a large heterogeneous population of patients and 

healthy subjects. 
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4.3.2 Materials and methods 
 
Participants 

Forty-one patients affected by degenerative or focal 

cerebellar damage (CbT) and 43 healthy subjects (HS) were included 

in this study and considered as a single group. The subjects are the 

same enrolled in the study 1. The demographic characteristics of 

each group have been already reported in Table 1.  

 

Executive tasks 

All the tests administered in the first study were included in 

the factor analysis. 

The measures used as dependent variables for each test and 

the respective mean scores and standard deviations are reported in 

Table 14. 

  



103 
 

Instrument Measure used Mean Sd 

Standardized Tests 

Tower of London Test Total correct trials 30,46 3,04 

Phonemic Fluency Test Total number of words 33,85 11,19 

Semantic Fluency Test-
Animal naming 

Total number of words 28,93 8,44 

Action Verbal Fluency 
Test 

Total number of words 16,62 5,53 

Stroop Color-Word Test Interference Time 23,37 10,92 

Interference Errors 1,15 2,17 

Wisconsin Card Sorting 
Test (W.C.S.T.) 

Total Number of Errors 19,98 16,63 

Perseverative Responses 10,70 10,01 

Perseverative errors 9,80 8,24 

BADS 

Rule Shift Cards Test Total score 23,43 3,94 

Action Program Test Total score 6,58 2,14 

Key Search Test Total raw score 8,74 3,09 

Temporal Judgment Test Total raw score 2,67 1,09 

Zoo Map Test Sum of raw scores in the Zoo 
Map One and Zoo Map Two 

12,05 5,47 

Modified Six Elements 
Test 

Total number of subtasks were 
rules were complied 

4,89 1,18 

 

Table 14 - Variable label for each EFs measure selected for the statistical analyses.  

 

Data analysis  

In order to examine the cognitive components underlying the 

performances on the selected executive measures, a principal 

component analysis (PCA) with Oblimin with Kaiser Normalization 

(10 iteractions) was used (Floyd & Widaman, 1995). 
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2-way analysis of variance (ANOVA) was used to compare 

factorial values between cerebellar patients groups (Ca and FCb) and 

healthy subjects (HS). Tukey HSD post-hoc test was performed when 

appropriated (for p<.05). 

Data analyses was performed by Statistical Package for Social 

Sciences (SPSS 23). 
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4.3.3 Results 
 
Factor analysis of Executive Functions Tests in 

cerebellar patients and healthy controls 

The EFs tasks loaded onto three factors that explained 

54.237% of the variance (Table 15). The scree plot indicated a multi-

dimensional factor structure (Figure 18).  

Total Variance Explained 

 

Component

Initial Eigenvalues 

Rotation Sums of 

Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

1 4.881 32.543 32.543 3.579 

2 1.696 11.307 43.850 3.956 

3 1.558 10.387 54.237 1.703 

4 1.214 8.091 62.329  
5 1.031 6.876 69.204  
6 .929 6.193 75.397  
7 .804 5.361 80.758  
8 .678 4.520 85.278  
9 .664 4.425 89.703  
10 .534 3.559 93.262  
11 .386 2.574 95.836  
12 .299 1.992 97.828  
13 .256 1.708 99.536  
14 .065 .430 99.966  
15 .005 .034 100.000  

Table 15 - Extraction Method: Principal Component Analysis 
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Figure 18: Scree plot – Scree Plot of multidimensional factor structure 
 

 

In Table 15 the goodness of fit indexes of three factors model 

has been shown. 

 

 

 

 

 

 

 

 



107 
 

Neuropsychological measures 
Factor loading 

Factor 
1 

Factor 
2 

Factor 
3 

Tower of London Test (total trials) .342 -.194 -.183 

Phonemic Fluency Test (number of words) .718 .043 -.053 

Semantic Fluency Test (number of words) .748 -.010 -.137 
Action Verbal Fluency Test (number of 
words) .776 -.137 .003 

Stroop Color-Word Test (Interference Time) -.207 -.063 .877 

Stroop Color-Word Test (Interference Errors) .005 -.069 .874 

W.C.S.T. (Total Number of Errors) -.091 .932 -.082 

W.C.S.T. (Perseverative Responses) -.079 .929 -.047 

W.C.S.T. (Perseverative Errors) -.086 .948 -.061 

Rule Shift Cards Test .451 -.382 -.042 

Action Program Test .587 .077 -.087 

Key Search Test .359 -.099 .120 

Temporal Judgment Test -.234 -.25 -.195 

Zoo Map Test .525 -.118 .079 

Modified Six Elements Test .058 -.587 .008 
 

Table 15 - Rotated component matrix loadings of orthogonally rotated factors extracted by 

principal factor analysis. 

 

Factor one comprised eight measures: the Tower of London 

Test, the Phonemic Fluency Test, the Semantic Fluency Test, the 

Action Verbal Fluency Test, the Rule Shift Cards Test, the Action 

Program Test, the Key Search Test and the Zoo Map Test. It 

explained 32.543% of variance in the battery. This factor was 

thought to reflect “Planning”. Indeed, although various cognitive 

abilities, such as judgment and reasoning, are required to solve the 

tests belonging to the factor one, this factor can be considered 



108 
 

representative of “Planning” because all the tests require the ability 

to solve a new problem evaluating different steps before acting, to 

evaluate information or situations, to break down the problem into 

key components, to consider various ways of approaching, and to 

choose the most appropriate way of solving it. All these tasks also 

include specific rules that must be adhered to.  

Factor two comprised four measures: three of them were 

from the WCST (Total number of errors, Perseverative responses, 

Perseverative errors) and the other one is the Modified Six Elements 

Test. It explained 11.307% of the total variance. This factor was 

thought to reflect “Set Shifting”. The tests belonging to the factor 

two require a good capacity to process, manage and shift between 

more concurrent stimuli. This factor also needs the ability to modify 

the behaviour in response to external feedback.   

Factor three comprised two measures deriving from the 

Stroop Color Word Test (Interference Time and Interference Errors). 

It explained 10.387 % of the total variance. This factor was thought 

to reflect “Response Inhibition”, that is a measure of inhibiting 

inappropriate responses. The Stroop Color Word Test concerns one’s 

ability to deliberately inhibit dominant or automatic responses when 

necessary and the ability to deliberately suppress a dominant 

response in the presence of a nonessential stimuli (Logan et al., 

1997). 
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In conclusion, in the present study the factor analysis of the 

executive measures revealed a model that comprises three factors. 

This model is consistent with previous reports on multifactorial 

models (Mirsky et al., 1991; Pineda et al., 2000; Miyake et al., 2000; 

Fisk & Sharp, 2004; Vaughan & Giovanello, 2010; Lerner & Lonigan, 

2014). 

 

Profile of the cerebellar groups in factors 

A 2-way ANOVA was performed to analyze the mean 

differences between groups of subjects and the dependent variables 

to understand whether there is was an interaction between groups 

(groups: subjects with degenerative cerebellar damage (Ca), 

subjects with focal cerebellar lesion (FCb), and healthy subjects 

(HS)) and factors (factors: Planning, Set Shifting, and Inhibition) on 

the executive tests.  

There was a main effect of groups x factors interaction 

(F(4,160)=3.753; p=.006).  

The post-hoc test (Tukey HSD) showed that in Planning both 

Ca and FCb groups performed significantly worse than HS (p=.005; 

p=.049).  

In Set Shifting FCb performed significantly worse than HS 

(p=.009). 
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In Inhibition no differences between Ca, FCb and HS 

(p=1.000; p=.208) were reported. 

The plot of the mean of "executive factors" values for each 

combination of groups and factors are reported in Figure 19. 

 

Figure 19: Plot of "executive factors" mean values for each combination of groups and factors. 

Ca=group of patients affected by cerebellar atrophy; FCb= group of patients affected by focal 

cerebellar lesion; HS= Healthy subjects.  

*significant difference between HS and Ca. 

**significant difference between HS and FCb. 
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4.3.4 Conclusion – Study 2 
 

The goal of the second study was to better understand the 

structure of executive tasks administered in the study 1, analyzing 

whether they were grouped according to a common executive 

process. We used a factor analysis to identify the latent structure 

underlying the performances observed in the cerebellar patients. 

The factor analysis confirmed the existence of different 

subcomponent of EFs that account for the performances resulted 

impaired in our population samples. 

In particular, three dissociable components were found: - 

Planning, - Set Shifting, and - Inhibition. 

The factors we found in our population samples are similar to 

the factors reported by several authors in literature (Pineda et al., 

2000; Miyake et al., 2000; Fisk & Sharp, 2004; Weintraub et al., 

2005; Brandt et al., 2009; Vaughan & Giovanello, 2010; Rose et al., 

2011).  

The factor “Planning” was proposed by Weintraub (2005) and 

Brandt and colleagues (2009). The authors advanced that this factor 

comprised tests requiring strategy formation and application as well 

as tests requiring creativity and novelty. 

The factor Set Shifting, and the factor Inhibition can be 

considered comparable to those proposed by several authors (Pineda 
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et al., 2000; Miyake et al., 2000; Fisk & Sharp, 2004; Vaughan & 

Giovanello, 2010; Rose et al., 2011).  

Our results demonstrated that the patients affected by 

cerebellar degenerative disorders and the patients affected by 

cerebellar focal lesions are impaired in tasks belonging to factor one 

and two. However, they differ from each other regarding the 

executive subcomponents that result affect.  

Indeed, the patients with cerebellar degenerative disorders 

are impaired only in Planning, while the patients with focal cerebellar 

lesions are impaired both in Planning and Set Shifting. 

Taking into account these findings we thus examined in detail 

the relationship between the EFs subcomponents and their 

relationship with the brain structural alterations.  

It could be hypothesized that on one hand the two groups of 

patients affected by a different cerebellar damage have an 

involvement of the same lobules that explain the common 

impairment in “Planning”; on the other hand, they selectively and 

differ so that only the patients with cerebellar focal lesions are also 

impaired in Set Shifting. 

In the next section we used Voxel-Based morphometry (VBM) 

to determine the degree and the pattern of pathological 

microstructural changes of the cerebellar gray matter in patients 

with degenerative or focal cerebellar damage. 
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4.4 Study 3 - Gray matter reduction and lobule 
alterations associated with executive 
dysfunction: an MRI study 

 
4.4.1 Rationale 

 
In the precedent section the executive data have been 

analyzed using the Factor Analysis that identified three distinct 

executive factors namely “Planning”, “Set-shifting” and “Inhibition”, 

thus confirming the existence of multifactorial model of EFs (Mirsky 

et al.,1991; Robertson et al.,1996; Boone et al., 1998; Miyake et al., 

2000; Bondi et al., 2002; Pineda et al., 2003; Giovanello et al., 

2010; Rose et al., 2011; Schmidt et al.,2016). 

The results also showed that patients with degenerative 

disorders and patients affected by focal lesion of the cerebellum 

differ from each other regarding the executive subcomponents 

involved.  

Indeed, the patients with degenerative disorders of the 

cerebellum were uniquely impaired in “Planning” factor while the 

patients with cerebellar focal lesion were impaired in “Planning” and 

“Set Shifting”. Overall, these findings suggest that the cerebellum 

plays a role in executive processes and that different patterns of 

cerebellar structural alteration may lead to impairment in selective 

executive subcomponents.  

However, the mechanisms through which the cerebellum 

subserve higher order functions, still remain largely debated and to 
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be clarified. Consistent with the discovery of distinct cerebellar 

functional modules segregated in parallel cerebello-cortical loops 

(Strick et al., 1993; Middleton & Strick, 1994, 1996; Schmahmann 

& Pandya, 1997), several studies addressed the importance of the 

topography of cerebellar damage in cognition (Tavano et al., 2007; 

Stoodley & Schmahmann, 2010). 

More recently, the introduction of advanced neuroimaging 

techniques, have provided a great insight into understanding the 

relation between structure and function in the brain in vivo, thus 

proving particularly useful in the case of cerebellum. Among these 

techniques, Voxel Based Morphometry (VBM) is a method of brain 

image analysis that essentially allows the detection of local changes 

in the composition of brain tissues (grey or white matter) which may 

be correlated with behavioural performance (Ashburner & Friston, 

2000). 

Aim of the third study was to investigate the neuroanatomical 

correlates of the patients’ executive impairment by using advanced 

neuroimaging techniques.  

In order to assess the relationship between cerebellar 

damage and executive deficits, in the next section it has been 

characterized, in vivo, the extent of cerebellar damage and the 

pattern of cerebellar alterations has been to correlate with the 

patients’ executive performances. VBM has been used to localize and 



115 
 

quantify the cerebellar GM loss in patients with neurodegenerative 

disorders, while a detailed assessment of the macroscopic cerebellar 

lesions, in terms of extension and location, has been performed in 

patients with focal lesions  

This allowed to map the topographic organization of EFs 

within distinct cerebellar subregions and better clarify the cerebellar 

role in executive processing. We hypothesized that, in presence of a 

cerebellar pathology, different profiles of EFs alterations are related 

to the extension and specific site of the cerebellar damage.  
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4.4.2 Materials and methods 
 
Participants 

Twenty-seven patients with cerebellar pathology (CbT) were 

recruited from the IRCCS Santa Lucia Foundation rehabilitation 

hospital (Rome, Italy). Patients were affected by cerebellar 

neurodegenerative disease of different etiology (Ca n.16) or 

unilateral focal (FCb n.11) damage of the left (n=6) or right (n=5) 

side (Table 16). 

 

 

 

 

 

 

 

 

Table 16-Demographic characteristics of patients reported as mean and standard deviation (sd). 

CbT= total cerebellar patients; Ca=group of patients affected by cerebellar atrophy; FCb= group 

of patients affected by focal cerebellar lesion; HS= Healthy Subjects.  

  

According to the inclusion criteria, the absence of any 

additional brain abnormality was further investigated by an expert 

neuro-radiologist and performed by visual inspection of conventional 

MRI scans acquired as part of this research study.  

Main clinical and demographic characteristics of Ca and FCb 

are reported in Table 17 and 18, respectively.  

Group Patient Gender (M/F) Age Education 

CbT 27 10/17 44.82 (9.90) 13.59 (3.08) 

Ca 16 2/14 43.69 (10.61) 13.50 (2.80) 

FCb 11 8/3 46.45 (9.02) 13.73 (3.58) 

HS 
25 

6/19 53.88 (5.99) 
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All patients underwent a comprehensive neurological 

examination and motor deficit was assessed using a quantitative 

ataxia scaling method (International Cooperative Ataxia Rating 

Scale, ICARS, Trouillas et al., 1997), whose global score ranges from 

0 (absence of any motor deficit) to 100 (presence of motor deficits 

at the highest degree).  

A group of 25 healthy subjects (HS) with no history of 

neurological or psychiatric illness was also recruited as control group.  

This research study was approved by the Ethics Committee of 

Santa Lucia Foundation, according to the principles expressed in the 

Declaration of Helsinki. Written informed consent was obtained from 

each subject. 
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Patients Age  Education Gender Etiology 

CB1 46 13 F Friedreich 
Ataxia 

CB2 41 18 F SCA2 

CB3 51 13 M ICA 

CB4 50 8 F ICA 

CB5 42 13 F SCA2 

CB6 53 11 F ICA 

CB7 46 13 F Episodic 
Ataxia 

CB8 58 13 F Episodic 
Ataxia 

CB9 29 11 M Friedreich 
Ataxia 

CB10 24 16 F SCA1 

CB11 36 13 F SCA2 

CB12 24 11 F Episodic 
Ataxia 

CB13 51 14 F SCA15 

CB14 54 18 F SCA2 

CB15 42 18 F SCA28 

CB16 52 13 F Episodic 
Ataxia 

 

Table 17 - Clinical characteristics of the patients with cerebellar atrophy. ICA= idiopathic 

cerebellar ataxia. SCA2= spinocerebellar atrophy type 2. SCA 8= spinocerebellar atrophy type 8. 

SCA 1= spinocerebellar atrophy type 1. SCA 15= spinocerebellar atrophy type 15. SCA 28= 

spinocerebellar atrophy type 28 
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Patients Age Education Gender Diagnosis Side 

CB24 30 18 M Ischemic R 

CB25 46 8 F Ischemic R  

CB26 57 13 M Ischemic R  

CB27 50 13 M Ischemic R  

CB28 46 13 M Ischemic R 

CB29 44 18 M Ischemic L 

CB30 53 8 M Surgical L  

CB31 59 18 M Ischemic L 

CB32 38 16 F Ischemic L 

CB33 52 13 F Ischemic L 

CB34 36 13 M Ischemic L 
 

Table 18- Clinical characteristics of the cerebellar patients affected by focal cerebellar lesion. R= 

cerebellar lesion on the right side; L= cerebellar lesion on the left side. 

 

MRI acquisition protocol 

All subjects underwent an MRI examination at 3T (Magnetom 

Allegra, Siemens, Erlangen, Germany) that included the following 

acquisitions: 1) dual-echo turbo spin echo [TSE] (TR=6190 ms, 

TE=12/109 ms); 2) fast-FLAIR (TR = 8170 ms, 204TE =96 ms, 

TI=2100 ms); 3) 3D Modified Driven Equilibrium Fourier Transform 

(MDEFT) scan (TR=1338 ms, TE=2.4 ms, Matrix=256 × 224 × 176, 

in-plane FOV = 250 × 250 mm2, slice thickness=1 mm). TSE and 

fast-FLAIR scans of patients were reviewed by an expert neuro-

radiologist in order to characterize the brain anatomy and exclude 

the presence of macroscopic abnormalities in extracerebellar 

structures. For the HS, the same scans were also inspected in order 
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to exclude any pathological conditions and ensure that they met the 

inclusion criteria.  

 

Image processing 

The cerebellum was pre-processed individually using the 

Spatially Unbiased Infratentorial Template (SUIT) toolbox 

(Driedrichsen et al., 2009) implemented in Statistical Parametric 

Mapping [Wellcome Department of Imaging Neuroscience; SPM-8 

(http://www.fil.ion.ucl.ac.uk/spm/). The procedure involved: 

cropping and isolating the cerebellum from the T1 anatomical 

images; normalizing each cropped image into SUIT space; reslicing 

the probabilistic cerebellar atlas into individual subject space using 

the deformation parameters from normalization. Finally, the images 

were smoothed using a 8-mm FWHM Gaussian kernel.  

 

Quantification of cerebellar gray matter changes in 

patients with neurodegenerative disorders 

Voxel based morphometry (VBM) was used to identify 

differences between Ca patients and HS in regional cerebellar volume 

and statistical analyses were performed on grey matter (GM) maps 

entered into a voxel-wise two-sample t-test analysis for assessing 

between group differences in regional GM cerebellar volumes. Age 

and sex were set as variables of no interest. Results were considered 
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significant at p values <0.05 after FWE cluster-level correction 

(clusters formed with p<0.001 at uncorrected level). 

 

Lesions characterization in focal cerebellar patients 

For each FCb patient, a detailed assessment of the 

macroscopic cerebellar damage, including lesion volume and 

localization, was performed.  

Each lesion was manually outlined on normalized T1 

anatomical images using the FSL view image viewer from the FMRIB 

software library (FSL, www.fmrib.ox.ac.uk/fsl/) and anatomically 

localized with reference to the SUIT atlas (Diedrichsen et al., 2009).  

The involvement of specific cerebellar structures (lobules, 

vermis, nuclei) was then evaluated. 
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4.4.3 Results 
 
Results of the VBM in patients with degenerative 

cerebellar damage. 

The VBM analysis demonstrated a cluster of significantly 

lower GM volume (cluster size:43754 voxels) in the Ca patients 

compared to HS.  In addition to the general atrophy as detected by 

conventional MRI visual inspection, the following cerebellar regions 

demonstrated a significantly smaller local volume: the lobules I-IV 

and V-VI in the anterior lobe and the lobule VIIIa, posterior vermis 

(lobule IX), lobule IX and X (Figure 20). 

All these regions were symmetrically distributed within the 

cerebellum.  

 

 

 

Figure 20: significant pattern of cerebellar atrophy (in red). 
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Results of lesions characterization in focal cerebellar 

patients 

The anatomical distribution of tissue damage in terms of 

cerebellar structures involved by each lesion is reported in Table19.  

 

Table 19- Lesion characteristics of the patients affected by focal cerebellar lesions. PICA= 

posterior inferior cerebellar artery. R= cerebellar lesion on the right side; L= cerebellar lesion on 

the left side; PICA=posterior inferior cerebellar artery; AICA= anterior inferior cerebellar artery; 

SCA= superior cerebellar artery; DCN= deep cerebellar nuclei; ANT= anterior cerebellar lobe; 

POST= posterior cerebellar lobe; Hem= cerebellar hemisphere.  

FCb showed a pattern of lesions involving the lobules I-IV and 

V-VI in the anterior lobe, the lobule VI, the lobule VIIa (Crus I and 

Crus II) and VIIb. In FCb the dentate nucleus is involved (in green). 

The overlap of the lesions in dentate nucleus is reported in cyan 

(Figure 17). 
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Figure 17: pattern of lesions of the focal cerebellar patients (in blue). Dentate nucleus lesion is 

in green. Overlap in dentate nucleus is in cyan. 

Overlap of the cerebellar damage 

In addition, we examined within cerebellum the subregions in 

which cerebellar damage overlap among between the two groups.  

The overlap between the focal cerebellar lesions of FCb 

patients and the rate of atrophy of Ca patients is shown in Figure 18. 

The overlap is shown in the lobules I-IV and V-VI.  

 

 

 

 

 

 

 

Figure 18: Overlap of cerebellar damages (in pink) among groups.  
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4.4.4 Conclusion – Study 3 
 
Aim of the study 3 was to investigate, in a cohort of patients 

with cerebellar neurodegenerative disorder or focal lesions, the 

specific pattern of cerebellar damage and its relationship with the 

patients’ executive impairment. 

The present findings suggest the cerebellum to be part of the 

neural network subserving EFs and distinct cerebellar subregions to 

support different EFs subcomponents.  

To summarize, neuropsychological assessment showed that 

both Ca and FCb were impaired in “Planning” executive tasks, while 

a selective impairment in performing “Set Shifting” tasks was only 

found in FCb group. When looking at cerebellar structural alterations, 

we found a selective involvement of distinct cerebellar subregions 

among the two groups with an overlap of the cerebellar damage 

localized in the lobules I-IV and V-VI. 

In our interpretation, the fact that both groups of patients 

were impaired in Planning tasks may be explained by this common 

pattern of structural alterations. The lobule VI of the cerebellum is 

part of the most phylogenetically recent part of the cerebellum (Kelly 

and Strick 2009), and shows connections with associative regions in 

the cerebral cortex, including prefrontal regions. Functional 

connectivity data also supported these evidences showing that lobule 

VI largely correlates with anterior prefrontal cortex (Krienen and 
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Buckner, 2009) and contributes to the executive control network 

(Habas et al., 2009). Additionally, cerebellar lobules VI, together 

with medial prefrontal cortex, has been found to be uniquely active 

during planning of goal-directed aimed movements (Boyd et al., 

2009). On the other hand, although the involvement of anterior 

motor cerebellar lobules (I-V) seem to be counter-intuitive, we 

speculate that this datum could be related to the fact that performing 

Planning tasks engages significant motor components (Kansal et al., 

2017).  

Interestingly, lesion assessment of FCb patients showed that 

the cerebellar damage selectively extended to lobule VIIa (Crus I 

and Crus II) and VIIb, known to have the strongest prefrontal 

connectivity, and dentate nucleus, the main cerebellar output 

channel to cerebral associative areas. Consistently, we found that 

many executive processes were involved in FCb group, compared to 

Ca, also affecting Set Shifting ability. This suggest that, according to 

the cerebellar functional topography, the anatomical distribution of 

the cerebellar damage is important in determining the specific 

pattern of functional alteration. 

Set Shifting is the ability to adapt to changing environments 

by permitting shifts from one mental state (cognitive set), directed 

toward a particular reaction tendency, to another, thus suggesting 
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an high attentional and working memory engagement (Orellana & 

Slachevsky, 2008).  

Functional connectivity data indicate that lobule VII 

participates in 3 functional sub-networks including dorso-lateral 

prefrontal, inferior parietal and lateral temporal areas (Buckner et 

al., 2011), strictly related to attentional processes. Additionally, 

lobule VII has been shown to be strongly activated by working 

memory and executive function tasks (Stoodley & Schmahmann, 

2009).  

The importance of deep cerebellar nuclei in cognition has 

been demonstrated by anatomical (Strick et al., 2009) and 

functional MRI data (Habas, 2010). The deep cerebellar nuclei 

facilitate the cerebello-thalamo-cortical projections and the 

cerebellar cortex, thus being an important element of the cerebellar 

microcomplexes.  

Interestingly, our findings may further support the functional 

significance of the deep cerebellar nuclei when evaluating cognitive 

impairments showing that the executive performances tends to be 

worse in the presence of deep cerebellar nuclei damage, as 

previously proposed by Tedesco and colleagues (2011).  

Overall, these data further emphasize that the site of the 

cerebellar lesion is a key factor in outcome. 
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CHAPTER V 
 

General Discussion
 

Cerebellar damage has long been linked to an exclusive 

alteration in motor domain (Babinski, 1899, 1906; Holmes, 1917, 

1939; Chambers, 1955a; Dow & Moruzzi, 1958). Nevertheless, in 

the 19th century, a number of clinical, anatomical, 

neuropsychological and functional observations suggested that the 

cerebellum is involved in cognitive processes (Schmahmann & 

Sherman, 1998).  

However, the issue about the cerebellar contribution to 

executive processes is still controversial and it is difficult to draw 

unitary conclusions. 

There are several evidences of altered EFs (including mental 

flexibility, scheduling capacities, verbal working memory and verbal 

fluency) in cerebellar patients (Schmahmann & Sherman, 1998). 

Lack of mental flexibility (perseveration of gesture or while drawing, 

inhibition difficulties, etc.) has been reported in these patients, 

together with impaired planning and decreased attentional abilities 

(Gottwald et al., 2004). 

These impairments could be a consequence of an alteration 

in the connection between the cerebellum and the prefrontal cortex 

(PCF).  
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Some studies reported different performances in EFs tasks 

between patients affected by cerebellar damage and patients with 

lesions of the frontal lobe (Casini & Ivry, 1999; De Oliveira Cardoso 

et al., 2014). In particular, Casini and Ivry (1999), suggested that 

the alterations in temporal perceptual tasks can be related to the 

attention demands in frontal patients and to a more specific timing 

problem in cerebellar patients.  

De Oliveira Cardoso and colleagues (2014) investigated the 

differences in decision making between patients with cerebellar and 

frontal strokes using the Iowa Gambling Task (IGT). The authors 

demonstrated that the cerebellar patients display less severe 

impairments in decision making than the frontal patients but, 

anyway, they are less preserved than healthy subjects. 

These data suggest that while the frontal lobes may be the 

most important brain structures for the EFs, the cerebellum might 

also play an active role in this cognitive domain.  

To better understand the characteristics of the EFs 

performances in cerebellar population we investigated in detail the 

EFs using an extensive neuropsychological battery. Subsequently, 

we used an exploratory factor analysis of the behavioral data to 

characterize the cerebellar involvement in specific sub-components 

of the EFs and to identify the cognitive constructs that underlie the 

performances in patients with focal or atrophic damage. Finally, we 
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investigate the neuroanatomical correlates of the patients’ executive 

impairments by using advanced neuroimaging techniques. 

The analysis on the behavioral data demonstrated that the 

cerebellar patients were impaired only in specific EFs tasks.  

In particular, the factor analysis evidenced that the executive 

variables were grouped in three components: - Planning, -Set 

Shifting, and –Inhibition.  

Taking into account these factors both the patients affected 

by degenerative damage and those affected by focal cerebellar lesion 

showed a selective impairment in test assessing the ability to 

develop a plan of action in novelty situations (Planning), but only the 

patients with focal lesion showed a selective impairment in tests that 

require to organize the behavior on the basis of an external feedback 

(Set Shifting).  

The impairment in planning ability is in line with the theory 

that the cerebellum is necessary to generate an internal 

representation of actions (Ito, 2008). 

According to this concept, the cerebellum forms (through a 

learning process) an internal model that reproduces either the 

dynamics of a body part formed and adjusted as a movement is 

repeated. Schmahmann (2010) suggested that the cerebellum 

regulates the speed, consistency and appropriateness of cognitive 

processes, based on an analogy between the control of the 
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movement of body parts and the manipulation of mental 

representations associated with an implicit information processing. 

Therefore, planning ability requires to that the cerebellum to 

creates a copy of an operative model thanks to the feedback and 

feedforward connections with the PFC. This ability is damaged in both 

patient groups of our population sample. 

Moreover, we founded that the patients affected by cerebellar 

focal lesion are also impaired in set shifting tasks. In set shifting 

tasks it is required the ability to integrate predictions about the 

consequences of an action in the internal representations and to 

update the internal models in order to adapt them to the different 

situations. This allows to shift from a cognitive set to another 

(Orellana & Slachevsky, 2008). 

The ability to generate, modify and adjust an internal 

operative model represents the cerebellar specificity in the predictive 

brain (Koziol et al., 2014).  

According to the VBM results, the patterns of behavioural 

alterations in the two patient populations could be explained by the 

localization of cerebellar damage. Interestingly, both patients’ 

groups showed an alteration in the anterior portion of the cerebellum 

(lobule I-V) and in the lobule VI, that is in the most phylogenetically 

recent part of the cerebellum (lobule VI) and in regions involved in 

motor coordination. The involvement of these lobules may subtend 
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the planning impairment (Manto et al., 2012). Indeed, the lobule VI, 

together with medial prefrontal cortex, has been found to be 

uniquely active during planning of goal-directed aimed movements 

(Boyd et al., 2009).  

Moreover, lesion characterization showed that, differently 

from the patients with cerebellar degeneration, in the patients with 

focal cerebellar damage also have an involvement of lobule VIIa 

(Crus I and Crus II) and VIIb and dentate nucleus. Accordingly, the 

patients affected by focal damage showed a more diffuse executive 

impairment than the patients affected by degenerative damage, also 

affecting Set Shifting ability. This suggests that, according to the 

cerebellar functional topography, the anatomical distribution of the 

cerebellar damage is important in determining the specific pattern of 

functional alterations (Stoodley et al., 2012).  

To conclude, the patients affected by degenerative and focal 

damage show specific impairments in executive tasks, that are 

related to the neuroanatomical alterations of specific cerebellar 

regions. In the present study it has been advanced the hypothesis 

that, in presence of a cerebellar pathology, different profiles of EFs 

alterations depend on the localization of cerebellar damage. 

All in all, the present data support the idea of the existence 

of a “dysexecutive cerebellar syndrome” different from the 

“dysexecutive syndrome” caused by frontal damage. The 
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“dysexecutive cerebellar syndrome” is characterized by impairments 

in specific EFs tasks according to the cerebellar damage localization.  

This aspect has to be kept in mind when it is set up a 

rehabilitation program and indicates that in presence of a cerebellar 

lesion an executive evaluation is needed.  

Limitations to this study are largely related to the sampling 

size. Population was composed by heterogeneous participants 

affected by different degenerative pathology and different focal site 

of lesion.  

Future researches are needed is warranted in discovering if 

clear patterns emerge from on a larger population of participants and 

on specific sub-populations of cerebellar patients investigating in 

order to investigate the anatomical correlations between EFs 

performances and specific lobules as well as specific cerebello-

cortical and cerebello-cortical networks. 
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