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Abstract – Tipping events in dynamical systems have been studied in many contexts, often
modelled by the decay of critical modes, system states which are tending towards bifurcation,
characterised by increased return times to stable equilibria. Temporal scaling properties of time
series data can be used to detect the presence of a critical mode by estimating the decay rate, and
indicators of changes in these properties may therefore be used to provide an early warning signal
(EWS) for an impending tipping event. The lag-1 autocorrelation function (ACF(1)) indicator
and the detrended fluctuation analysis (DFA) indicator have previously been used in such a way;
in this paper we introduce a novel scaling indicator based on the decay rate of the power spectrum
(PS). We compare the ACF(1), DFA- and PS-indicators using artificial data; data from a model
which includes a bifurcation point; and sea-level pressure data along the paths of 14 tropical
cyclones. By using the PS-indicator with such data, we show that the new indicator may be used
to provide an EWS in a context where the ACF(1)- and DFA-indicators fail.

Copyright c© EPLA, 2018

Introduction. – Tipping events have been studied in
many climatological and ecological contexts [1–6]. These
tipping points, which may be thought of as qualitative
changes in the underlying dynamical systems, have been
modelled by the decay of stable equilibria [7], which we
refer to as critical modes as they approach the critical
threshold leading to a bifurcation. They are identified by
their rate of decay, known as critical slowing-down, which
can be estimated from the scaling properties of the system
time series in the proximity of the tipping point.

The authors of [7] associate critical slowing-down with
increasing return times to the critical mode, which is mod-
elled as an autoregressive process and thus the lag-1 au-
tocorrelation function (ACF) is used to detect the critical
slowing-down. The lag-1 ACF, or ACF(1), can therefore
be used as a predictive indicator of tipping points [8], or
early warning signal.

Furthermore, due to the scaling properties, it is pos-
sible to use longer-term autocorrelations of a time se-
ries as an indicator, the power-law decay rate of the
ACF with increasing time lag is one such example. De-
trended fluctuation analysis (DFA) averages the variance
over non-overlapping segments of length s of a time series
after subtracting an order n polynomial trend [9].

Since during the critical slowing down of the system
dynamics DFA provides a method to study the scaling
properties, similarly to the ACF, the DFA scaling indica-
tor has been introduced as an alternative to the ACF(1)-
indicator [10]. Both the ACF(1)- and DFA-indicators have
been shown to detect early warning signals of bifurcations
and tipping points in a variety of systems [11,12].

In this paper we propose a novel scaling indicator
based on the power-law decay rate of the power spec-
trum (PS), as the PS scaling exponent is related to the
ACF and DFA scaling exponents [9]. We introduce the
PS-indicator, then compare the performance of the PS-
indicator to the ACF(1)- and DFA-indicators using an ar-
tificially constructed time series. This allows us to compare
the responses to changing scaling exponent β. We further
compare the ACF(1)-, DFA- and PS-indicators when ap-
plied to a time series from a classic example of a model
with a pitchfork bifurcation, where we would at least
expect that the ACF(1)-indicator would provide a very
clear EWS. We then apply the three scaling indicators to
sea-level pressure data along the paths of 14 tropical cy-
clones, in order to assess the suitability of these methods,
particularly the PS-indicator, in providing an EWS in such
a geophysical context. In performing these experiments
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using artificial and real geophysical data, we aim to show
that the new PS-indicator performs similarly to the other
well-studied indicators, as we expect based on the analyti-
cal relationship [9]. Finally, we comment on the sensitivity
of the PS-indicator method to the window-size parameter.

Scaling properties of time series. – Scaling proper-
ties of time series can be measured using three techniques:
the autocorrelation function (ACF), detrended fluctuation
analysis (DFA) and the power spectrum [9,13]. These
three methods are illustrated in fig. 1 where we plot a time
series of artificial data and three scaling curves. The data
is a length 10000 red-noise series, with power spectrum
scaling exponent of β = 0.85. To generate this series, we
first sample from a Gaussian distribution to approximate
white noise, X(t), we then take the fast Fourier transform
of this white noise series (denoted X̂(f)) and then trans-
form this by

Ŷ (f) := X̂(f)
√

f−β. (1)

Finally, we use the inverse fast Fourier transform to ob-
tain the time series Y (t), which has power spectrum S(f)
proportional to f−β .

The ACF scaling exponent (γ), fig. 1(b), is the power-
law decay rate of the autocorrelation function with in-
creasing lag (s) [9]. Denote by C(s) the autocorrelation
with lag s of time series X , then the scaling is defined as

C(s) ∼ s−γ , (2)

for long-range correlations. Following [10], we measure the
exponent in the range 10 ≤ s ≤ 100. For short-range cor-
related data, C(s) decays exponentially and only ACF(1)
is indicative of data variability in proximity to a tipping
point.

The DFA scaling exponent (α) is measured following [9],
fig. 1(c). Where F (s) is the DFA function of time series
X , with segment length (scale) s, we have

F (s) ∼ sα. (3)

In this paper we consistently use an order-2 polynomial
during the detrending step of DFA. Following the ap-
proach of [10], we measure the DFA exponent in the tem-
poral range 10 ≤ s ≤ 100, which is sensitive to changes in
the system dynamics similarly to ACF(1).

The power spectrum scaling exponent (β) is calculated
by estimating the slope of the power spectrum S(f) of the
data, plotted on logarithmic axes [13], from which one can
obtain β via the scaling relationship

S(f) ∼ f−β. (4)

Here, the power spectrum is approximated by the peri-
odogram, obtained from the absolute value of the fast
Fourier transform. We measure the exponent (slope) in-
side the frequency range 10−2 ≤ f ≤ 10−1 corresponding
to the time range of 10 to 100 units, to put the technique
in agreement with with the ACF and DFA methods, as
above.
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Fig. 1: Analysis of artificial red noise with scaling exponents
measured using three different methods. (a) Red noise with a
power spectrum scaling exponent of 0.85. (b) The ACF of the
red noise data is calculated for different lags and the exponent
(negative slope) measured in the range 10 ≤ s ≤ 100 (dashed
lines). We note that the ACF(1)-indicator (C(1)) is 0.64. The
ACF of a white noise series is also plotted for comparrison, in
this case C(s) = 0 for s ≥ 1 and the exponent is also zero.
(c) DFA calculated for the data and the exponent (slope) mea-
sured in the range 10 ≤ s ≤ 100. (d) The power spectrum of
the data, and the exponent (negative slope) measured in the
frequency range 10−2 ≤ f ≤ 10−1.

Analytically, the three scaling exponents have the linear
relationship:

α =
1 + β

2
= 1 − γ

2
(5)

in the asymptotic range [9]. We therefore expect that a
measurement of β could be used in an application where
α or γ are conventionally used, to provide an alterna-
tive metric for EWS, which may be informative in cases
where other indicators fail to detect an approaching tip-
ping point.

PS-indicator applied to artificial data. – In order
to estimate an early warning signal for a tipping point,
we calculate the value of an indicator in a sliding window
of length N points along the time axis, in the range t1 ≤
t ≤ tN , then in the range t2 ≤ t ≤ tN+1, and so on, thus
following the example of [8] where the ACF(1)-indicator (a
measurement of lag-1 ACF, distinct from the ACF scaling
exponent γ) is used. In that paper, the length of the
window is chosen to be 10% of the length of the time series.
In order to quantify uncertainties we will consider a range
of window lengths. We first, however, take a fixed window
length of 100 points in order to compare our PS-indicator
to the ACF(1)-indicator used by [8] and the DFA-indicator
used by [10], when applied to artificial data, illustrated in
fig. 2. This experiment is in agreement with an equivalent
result in [14].

We construct artificial data of length 104 points by
stitching together 50 time series of 200 points. To generate
each sub-series we use the same method as used for fig. 1
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Fig. 2: Artificial data with ACF(1)-, DFA- and PS-indicators.
(a) A time series is constructed by concatenating 50 sub-series
of length 200 where the scaling exponent β within each sub-
series is constant and increases over the whole series from 0
(white noise) to 2. (b)–(d) The ACF(1)-, DFA- and PS-
indicator methods are applied with window size 100. As the
PS-indicator increases from 0 to 2, the ACF(1)-indicator in-
creases from 0 to 1, and the DFA scaling exponent α increases
from 0.5 to 1.5. Lines are added to show the linear trends;
note that the ACF(1)-indicator does not increase linearly as it
approaches 1.

(see eq. (1)) with values of β such that the value varies lin-
early from 0 (no transformation, equivalent to white noise)
to 2 [15]. We expect, therefore, that the PS-indicator β
will increase linearly from 0 to 2. Because of the relation-
ship between the indicators we also expect that the DFA-
indicator will increase linearly, as demonstrated in fig. 2.
We have chosen this artificial time series, rather than, for
example, the Ornstein-Uhlenbeck process [16–18], to pro-
vide an example specifically suited to the PS-indicator and
to reflect the result in [14] where this series was used.

PS-indicator applied to model data. – We now ap-
ply the PS-indicator to a system including a bifurcation
point, expecting that we will observe behaviour compara-
ble to the ACF(1)- and DFA-indicators. We use a typical
bifurcating system described by the stochastic differential
equation

ż(t) = − ∂

∂z

(
z4 +

(
3 − t

200

)
z2

)
+ σηt, (6)

where σ = 0.05 and the ηt are independent samples from a
Gaussian distribution. Equation (6) is integrated numeri-
cally with a time step of δt = 0.05 from t = 1 to t = 1000,
and sampled with Δt = 1. In the range t < 600 the system
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Fig. 3: ACF(1)-, DFA- and PS-indicators applied to
model data. (a) Data from 100 runs of the model (see
eq. (6)). (b)–(d) The mean ACF(1), DFA and PS-indicators
(window size 100), with error bars of one standard deviation.
The values of all the indicators begin to rise before the bifur-
cation, as expected, at around t = 500, although it is most
noticeable for the ACF(1)-indicator.

has a single stable node z = 0, the system then bifurcates
after t = 600 into a double-well potential with stable nodes
at z = ±0.05

√
t − 600, z = 0 becomes unstable.

The system is integrated 100 times to produce 100 time
series of length 1000, see fig. 3(a). The EWS indicators are
then applied to the 100 time series and the mean of all 100
indicator series is plotted with error bars of one standard
deviation. We have performed this with the ACF(1)- and
DFA-indicators (fig. 3(b), (c) and the new PS-indicator
(fig. 3(d)). The ACF(1)-indicator provides a clear EWS
as expected, there is a definite increasing trend starting
at around t = 400. We see a similar trend with the PS-
indicator, so the validity of the PS-indicator as an EWS is
illustrated in principle. However, this indicator has high
variance, and the mean at t = 600 does not rise above
the upper error bound (one standard deviation, 1σ) for
t < 500. This means that at the early development of the
trend in the PS-indicator in live monitoring of this dynam-
ical system, the rise of the indicator may be attributed to
its stochastic variability.

It is necessary to note that the pitchfork bifurcation was
chosen because in this case ACF(1) provides a clear EWS.
Therefore, it is a good testbed for the PS-indicator, by
analogy.

PS-indicator applied to tropical cyclones. – We
now apply the PS-indicator to data from a real geophysical
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Fig. 4: ACF(1)-, DFA- and PS-indicator methods applied to
sea-level pressure data. (a) Data from the 14 tropical cyclones.
(b)–(d) The mean ACF(1)-, DFA- and PS-indicators (window
size 100), with error bars of 1 standard deviation. The ACF(1)-
indicator does not provide a clear EWS in this case. The DFA-
indicator shows a noticable increasing trend just before the
event. The PS-indicator appears to rise around 50 hours before
the cyclone event.

system. We use hourly, one-dimensional sea-level pres-
sure data from observation stations within 2 km of the
landfall locations of 14 tropical cyclones. The data is ob-
tained from the HadISD2005 dataset, available from the
UK MetOffice [19]. The 14 cyclones were selected for
falling close to one of these stations, and being ranked
category 4 or 5, using the Saffir-Simpson scale, at the
time of landfall. The 14 selected are: Atlantic hurri-
canes Andrew (1992), Opal (1995), Floyd (1999), Charley
(2004), Frances (2004), Jeanne (2004), Katrina (2005),
Rita (2005), Ivan (2006) and Ernesto (2006); typhoons Zeb
(1998), Megi (2010) and Flo (1990); and Cyclone Hudhud
(2014).

We do not attempt to provide an analytical descrip-
tion of the tropical cyclone data and it does not appear to
contain a bifurcation in the same sense as the pitchfork bi-
furcation (eq. (6), fig. 3). However, there is a transitional
tipping point in the sense that the pressure drops sud-
denly when the cyclone passes over, and this most likely
affects the dynamics of the fluctuations, providing a de-
tectable EWS. We center the time series for each cyclone
on the minimum pressure value (fig. 4(a)), which time we
call t = 0. This cannot be called analogous to the bifurca-
tion point at t = 600 in the pitchfork bifurcation example,

but is a common feature which is convenient to use for
the purpose of comparison. We use the same method as
used for the bifurcating model data in the previous section,
applying the indicator in a sliding window of 100 points
to all 14 time series and plotting the mean of all 14 in-
dicator series, with error bars of one standard deviation.
Again, we apply both the ACF(1)- and DFA-indicators
(fig. 4(b),(c)) and the new PS-indicator (fig. 4(d)). The
ACF(1)-indicator, in this case, does not appear to pro-
vide a clear EWS, whereas the PS-indicator does show an
increasing trend starting at around 50 hours before the
minimum pressure.

Sensitivity of the method to window size. – The
method described provides an estimate of the changes in
the PS scaling exponent in a window of 100 points. It is
desirable to use a very large number of points to give an
accurate estimate of the scaling exponent from the peri-
odogram, less sensitive to periodic oscillations in the data
and also with less variability over time. However, one
must compromise this since the window size must corre-
spond to the time scale of the phenomenon under inves-
tigation; of course there is also a limit imposed by the
length of the time series data. We require a window size
such that the indicator variance is significantly small that
we can see the EWS, but that the rise in the indicator
value before the tipping event is large enough so that we
can recognise it as an EWS.

It is useful to produce a contour plot of the mean value
of the indicator over time, with window size on the y-axis.
We expect that the EWS apparently becomes stronger
with decreasing window size, above a certain size where
the variability becomes so large that it is not possible to
detect an EWS. In this way, we make a subjective choice
as to the optimum window size to use in each context and
assume that we can reasonably expect that this choice can
be applied to new data from the same source.

In fig. 5 we see that there is an increasing trend in the
PS-indicator towards the end of the time series with al-
most all window sizes. The exceptions occur periodically
where the window size is approximately 12n±1 for integer
n, using these window sizes the indicator is approximately
1.5 over the whole series. Note that the most obvious sig-
nals occur with window sizes 102, 114 and 126. Using
larger values (e.g., 174) the useful variability in the indi-
cator is smoothed out so that the trend towards the end
of the series is less obvious.

The periodic pattern in the contour plot (fig. 5) is
caused by an oscillation with period ≈ 12 hours in the
sea-level pressure data, likely caused by tidal influences.
In this context it is therefore essential to consider the sen-
sitivity of the method to the window size parameter, as
we have done here.

Discussion. – We have developed a novel indicator of
EWS for tipping points in dynamical systems by estimat-
ing the power-law decay rate of the power spectrum in
a sliding window. We have applied this PS-indicator to
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Fig. 5: Mean PS-indicator for tropical cyclone data (see fig. 4)
calculated using window sizes from 80 to 200. The PS-indicator
appears to rise around 40 hours before the cyclone event in al-
most all cases, the exceptions occur when the window size has
the value 12n ± 1, in these cases the indicator is high (approx-
imately 1.5) over the entire series.

three time series: an artificial example of increasing scaling
exponent; a model including a bifurcation; and sea-level
pressure data measured at the landfall sites of 14 tropical
cyclones.

In the case of high-frequency sampling of data, it is
likely that the autocorrelation would be fluctuating at
very high level (close to maximal value 1) and not pro-
viding any meaningful EWS information. In such cases,
for applying any EWS indicator based on scaling proper-
ties (ACF, DFA or PS), it would be useful to pre-process
the data with some aggregation or averaging, similarly
to [8]. However, this issue is not specific to the new PS-
indicator. Moreover, in many cases a time series is pre-
processed before calculating EWS indicators (for instance,
using Gaussian filter or moving average), which immedi-
ately changes the absolute value of autocorrelation and
other scaling exponents. This means that the values of
autocorrelation change, and it is no longer bounded by
the critical value 1. In such cases, the increasing trend
of an EWS indicator is more informative than its values,
which is a shortcoming of the approach with such data pre-
processing. So far, its impact on the EWS indicators has
not been studied, either in the context of analytical rigour
or in the context of proximity to a tipping point; this must
be a topic of further research in the area of early warning
signals.

On the other hand, the length of the series (always fi-
nite and often imposing finite-size-effect challenges) may
be problematic in case of estimation, for instance, vari-
ance in fixed-size windows. As was demonstrated in fig. 2
(middle panel) of [14], using fixed-size window in studying
a dataset with increasing scaling exponent may generate
a decreasing variance indicator.

We have found that the PS-indicator behaves similarly
to the previously used ACF(1)- and DFA-indicators ap-
plied to the model data, but with larger variance, which
limits its usefulness in situations where the model cannot
be observed multiple times. When applied to the sea-
level pressure data, the ACF(1)- and DFA-indicators do
not appear to provide an EWS. However, the PS-indicator
clearly does begin to increase around 50 hours before the
lowest pressure, about the same point that the decreasing
trend in pressure becomes visible, suggesting that it can
provide a detectable EWS in this context.

The approaching cyclone is chosen as an example of
a system which has not previously been studied using
tipping-point EWS methods, and for which the dynam-
ics of the system are unknown, thus providing a “blind”
experiment. The passing cyclone is not modelled as a
phase transition, and it is not known whether there ex-
ists a critical point such that we might claim universality
of the scaling exponents. Rather, we have a time series
which superficially resembles other geophysical tipping-
point examples (see [11]), thus we wish to experiment
with our existing EWS methods, and then compare the
performance of our new indicator. In this sense, it is a
heuristic investigation of the properties of the new tech-
nique, with comparison with similar methods. We re-
port our findings to facilitate further investigation of this
technique.

We conclude that the PS-indicator is a novel and useful
technique which behaves similarly to the related ACF(1)-
and DFA-indicators in idealised systems. It also shows
signs of providing a useful EWS for the real geophysical
system of impending tropical cyclones, where the ACF(1)-
indicator fails.

REFERENCES

[1] Scheffer M., Carpenter S., Foley J. A., Folke C.

and Walker B., Nature, 413 (2001) 591.
[2] Livina V., Kwasniok F., Lohmann G., Kantelhardt

J. and Lenton T., Clim. Dyn., 37 (2011) 2437.
[3] Veraart A. J., Faassen E. J., Dakos V., van Nes

E. H., Lürling M. and Scheffer M., Nature, 481
(2012) 357.

[4] Ashwin P., Wieczorek S., Vitolo R. and Cox P.,
Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng.
Sci., 370 (2012) 1166.

[5] Gsell A. S., Scharfenberger U., Özkundakci D.,
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