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Abstract: This paper presents the first methodological proposal of estimation of the ΛVaR.
Our approach is dynamic and calibrated to market extreme scenarios, incorporating the need of
regulators and financial institutions in more sensitive risk measures. We also propose a simple
backtesting methodology by extending the VaR hypothesis-testing framework. Hence, we test our
ΛVaR proposals under extreme downward scenarios of the financial crisis and different assumptions
on the profit and loss distribution. The findings show that our ΛVaR estimations are able to capture
the tail risk and react to market fluctuations significantly faster than the VaR and expected shortfall.
The backtesting exercise displays a higher level of accuracy for our ΛVaR estimations.
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1. Introduction

The global financial crisis has made risk measurement and its backtesting a primary concern for
regulators and financial institutions. Over the past two decades, the value at risk (VaR) has become the
most popular method to assess the risk exposure of financial investments. One of the reasons for its
widespread use is that the Basel Committee on Banking Supervision (1996a) has suggested that banks
use an internal VaR model for the calculation of their regulatory capital. Thus, authorities around the
world have endorsed VaR as the best practice or as a regulatory standard.

Despite its popularity, VaR has been extensively criticized by academics. For instance,
Artzner et al. (1997, 1999) have underlined some of the theoretical shortcomings of VaR as a risk
measure. Specifically, VaR might penalize diversification since it is not subadditive and does not
capture the tail risk. This is so because it does not consider losses greater than the VaR amount.
In addition, the recent global financial crisis has highlighted the lack of sensitivity of the VaR.
Financial risk managers have addressed the difficulty of a rapid adjustment of its confidence levels.
As a consequence, VaR may lead to under-forecasting of risk estimates before the crisis or even
over-forecasting of them post-crisis.

Therefore, both regulators and financial institutions have recently increased their interest in more
sensitive risk measures and their backtesting. In particular, the Minimum Capital Requirements for
Market Risk by the Basel Committee (2016) has proposed to move to the expected shortfall (ES),
known also as conditional value at risk (CVaR), which was introduced by Artzner et al. (1997).
This measure of risk, which is defined as the expected value of losses exceeding VaR, can solve some of
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the issues with the VaR and has sounder theoretical properties (i.e., it fulfills subadditivity). However,
many studies have pointed out the challenges of delivering a robust forecasting and backtesting of the
ES (see Gneiting 2011; Embrechts and Hofert 2014). Additional concerns about the ES backtesting are
expressed by the Basel Committee (2016), which requires that the backtesting regulatory framework
will still be based on VaR.

In a recent paper by Frittelli et al. (2014), a new risk measure is proposed: the lambda value at
risk (lambdaVaR or ΛVaR) as a generalization of the VaR. The novelty of the ΛVaR is considering
a function Λ that depends on the profits and losses (P&Ls) of the risk factors, instead of a constant
confidence level λ. For how it is built, the ΛVaR assigns more risk to heavy-tailed P&L distributions
and less in the opposite case. Thus, the ΛVaR should be able to discriminate the risk among assets
with the same VaR at level λ but different tail behaviour of the P&L distribution. However, in this
theoretical paper, there is no explanation of how the ΛVaR should be computed. The function Λ can be
either increasing or decreasing, but the authors do not propose any particular shape of the Λ function
or a method for its estimation.

The objective of this study is twofold: first, to provide a methodological proposal of estimation for
the ΛVaR and, second, to test its effectiveness as a regulatory alternative to VaR. Our methodological
approach makes the ΛVaR able to incorporate the actual market conditions, allowing for the reservation
of more capital in crisis periods and less in normal market situations. We base the computation of
the Λ function on order statistics of the historical distribution function of some selected market
benchmarks. The parameters are recalculated for each out-of-sample period, allowing the ΛVaR to
capture the market changes and assess the different reactivity of the assets to the market variations.
Thus, our ΛVaR estimations are able to discriminate the risk among assets with different tail behaviour
in respect to the market. In addition, the ΛVaR can be specified differently according the particular
risk profile. We call this method of estimation, ‘dynamic benchmark approach’. We also propose a
simple backtesting methodology by extending the VaR hypothesis-testing framework by Kupiec (1995)
to the ΛVaR in order to have an initial evaluation of the ΛVaR accuracy1.

We test our ΛVaR effectiveness as a regulatory alternative to VaR under extreme downward
scenarios of the financial crisis and different assumptions on the P&L distribution. We compare these
estimates with those of the VaR and the ES, highlighting the different levels of reactivity to bad changes
in financial markets. Hence, we perform a backtesting exercise where we compare VaR and ΛVaR
estimations’ accuracy.

The remainder of the paper is organized as follows. Section 2 describes the new risk measure,
the ΛVaR, from a theoretical point of view, and our proposal of estimation. Here, the backtesting
methodology is also illustrated. Section 3 shows the results of the empirical test, consisting in the
computation, backtesting, and comparison of the risk measures. Section 4 concludes.

2. Method

2.1. Current Risk Measures and ΛVaR

Because of its simple formulation and interpretation, the VaR is the most popular tool for
measuring financial risk. Let X be the random variable that models asset returns (i.e., profit and
loss, P&L) and F(x) = P(X ≤ x) its cumulative distribution function. We denote by P the set of all
the distributions. The VaR of a financial asset at the confidence level λ, where 0 < λ < 1, is defined as
the λ-right quantile of its P&L distribution over a certain holding period. Formally,

VaRλ(X) = − sup {x : F(x) ≤ λ} . (1)

1 See Corbetta and Peri (2017) for a detailed study on the backtesting of the ΛVaR. The authors improved on the backtesting
of the ΛVaR and based their empirical findings on the ΛVaR estimation proposal introduced in the current paper.
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In other words, VaRλ represents the maximum loss x that may occur such that the probability of
losing more than the amount x is lower than λ over a certain time horizon. The main advantage of the
VaR is that a single number immediately provides the idea of the amount of capital that should be
allocated to cover the risk of a financial asset. On the other hand, the VaR has many critics. Academics
have pointed out that VaR might penalize diversification because of its lack of subadditivity; that is,
the risk of the portfolio in terms of the VaR may be larger than the sum of the risks of its components.
In addition, practitioners have noticed its lack of sensitivity, especially during changes in the economic
cycle. It seems to be difficult to rapidly decrease the confidence level when a crisis period occurs and
to increase it post-crisis. Moreover, the VaR does not allow practitioners to discriminate the risk of
financial positions having the same λ-right quantile but a different tail thickness, thereby failing to
capture extreme events.

The experiences from the global financial crisis have raised additional doubts about the
accuracy of internal VaR models. These serious concerns have prompted the recent response by
the Basel Committee (2016) to move to another risk measure known as the expected shortfall (ES),
which was introduced by Artzner et al. (1997). Formally, the ES of an asset X at confidence level λ,
where 0 < λ < 1, is given by

ESλ(X) = E[−X|X ≤ −VaRλ(X)] =

∫ λ
0 VaRs(X)ds

λ
. (2)

By definition, this risk measure is able to capture the tail risk. In addition, it does not discourage
diversification since it satisfies the subadditivity property. However, several studies have found that
the most significant issue associated with the ES is the difficulty of achieving robust estimation and
backtesting (see Gneiting 2011; Embrechts and Hofert 2014).

The new risk measure introduced by Frittelli et al. (2014), the ΛVaR, may be a valid alternative.
The ΛVaR is a generalization of the VaR and is based on the fact that the confidence level can change
and adjust according to the risk factor P&L.

Specifically, it considers a function Λ instead of a constant confidence level λ. Formally, given a
monotone and right continuous function Λ : R→ [λm, λM] with 0 < λm ≤ λM < 1, the ΛVaR of the
asset return X is a generalized quantile represented by the map ΛVaR : P → R defined as follows:

ΛVaR(F) := − sup {m ∈ R | F(x) ≤ Λ(x), ∀x ≤ m} . (3)

Intuitively, the ΛVaR of the financial position X is given by the smallest intersection between F
and Λ if both are continuous. The function Λ plays a key role in the definition of the ΛVaR and adds
flexibility. From a theoretical point of view, no particular properties are required by Λ, which can be
either increasing or decreasing. In addition, ΛVaR satisfies the mathematical properties of interest
from a risk management point of view (Burzoni et al. 2017; Frittelli et al. 2014).

In Section 2.2, we propose a methodology to compute the ΛVaR, and we explain our Λ choices,
the assumptions behind them, and the empirical implications. See Figure 1 for a clearer understanding
of this.
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Figure 1. Increasing and decreasing ΛVaR. ΛVaR coincides with the smallest intersection between
the P&L distribution and the Λ function. ΛVaR is able to capture different tail behaviour of return
distributions better than VaR. For instance, in the figure on the top, Total has thicker tails than Microsoft.
They have the same 2% VaR (∼= 0.075) but Total’s 2% ΛVaR (∼= 0.1) is higher than Microsoft’s 2% ΛVaR
(∼= 0.0875). In the figure at the bottom, the same happens for Telefonica and Unilever.

2.2. The Proposal of ΛVaR Estimation: A Dynamic Benchmark Approach

This section contains a guide to the estimation of the ΛVaR and our methodological proposal.
As discussed in Section 2.1, the flexibility of the ΛVaR stems from the possibility of choosing the
function Λ instead of fixing a confidence level λ. From a theoretical point of view, Λ is a right
continuous function taking values on the interval [λm, λM] with 0 < λm ≤ λM < 1. No additional
constrictions are required on this function, which can be either increasing or decreasing.

The estimation of the ΛVaR consists in four main steps: 1. fixing the Λ range of values, [λm, λM];
2. deciding the Λ direction (increasing or decreasing); 3. choosing the Λ functional shape; 4. estimating
the Λ parameters.

Concerning the choice of the Λ range of values, we first fix the minimum λm close to 0, specifically
0.001; we have proved, computationally, that a further reduction of λm would determine an increase in
the capital requirement without any benefit in terms of reduction in the number of violations. However,
the main issue is the choice of the maximum, λM, that we call the ΛVaR confidence level. This choice
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reflects the bank risk aversion profile. Common opinion and empirical evidence have shown a level
of doubt about high confidence levels for the VaR. In addition, the Basel Committee has recently
proposed the calibration of new risk measures for extreme scenarios. This might suggest considering a
confidence level below 1%. Hence, our first choice is λM equal to 1%, defining 1% ΛVaR. However,
from a managerial point of view, banks may consider the use of new risk measures that release capital
in the case of higher confidence levels. For this reason, in Section 3, we also examined a ΛVaR with
λM values equal to 1.5% and 2%.

Regarding the second step, we suggest that the decision on the Λ direction should be taken
according to the expectation about the economic cycle. In the case of a bearish market trend, increasing
function Λ should make it easier to detect downside scenarios and reduce the number of overdrafts
between the realized P&L and the ΛVaR estimations. On the other hand, a decreasing Λ may be more
convenient in periods of expected growth, allowing for a reduction in the capital aside, which may
boost the investments.

The third step consists in examining different functional forms of continuous Λ. In the increasing
case, it turns out to be an immediate and, at the same time, sensible specification to have a Λ function
that is obtained by linear interpolation. Formally, we divide the real line of the P&L and probabilities in
n + 1 intervals, where n is the number of data points used for the interpolation. Let us denote with πi
and λi, where i = 1, 2, ...n, the extremes of the interpolating intervals on the P&L and probability axis,
respectively. For any P&L amount x < π1, we fix Λ(x) = λ1 = λm, for x ≥ πn we fix Λ(x) = λn = λM,
and when π1 ≤ x < πn we suggest that

Λ(x) =
n−1

∑
i=1

1[πi ,πi+1)

(
(x− πi)

λi+1 − λi
πi+1 − πi

+ λi

)
. (4)

In the decreasing case, for x < π1, we fix Λ(x) = λM, for x ≥ πn we fix Λ(x) = λm, and when
π1 ≤ x < πn we fix Λ as follows:

Λ(x) =
n−1

∑
i=1

1[πi ,πi+1)

(
(x− πi)

λn−i − λn−i+1

πi+1 − πi
+ λn−i+1

)
. (5)

The final step of the Λ calibration consists of the estimation of λi and πi. Here, the financial
manager’s aversion or propensity towards the risk plays a crucial role. In the increasing case, more Λ is
shifted on the right of the P&L axis, the ΛVaR absolute value is larger, and the capital allocated as risk
protection is thus larger. In the decreasing case, the situation is reversed; financial managers adopting
a prudential approach may choose Λ to be more translated on the left. These considerations have a
direct impact on the choice of the points πi. In particular, if the objective is to strengthen the capital
requirement, the points πi will be arranged on the right, in the increasing case, or on the left, in the
decreasing case; on the contrary, if the objective is to release capital, the points πi will be arranged
more on the left, in the increasing case, or on the right, in the decreasing case.

First, we fix the points λi, adopting a neutral approach. With the exception of λ1 and λn, which are
fixed equal to the minimum (λm = 0.001) and maximum (λM = 0.01) Λ value, respectively, the other λi
values are determined by an equipartition of the interval (0, λM], specifically λi = λM/(n− 1)× (i− 1)
with i = 2, ..., n− 1. On the other hand, another scale that thickens the points close to the maximum
λM (or the minimum λm) would determine an increase (or decrease) of the concavity of the Λ function
between π1 and πn, and this would have an impact on the capital requirement depending on the Λ
direction. One could choose to modify the capital requirement by varying either the vertical coordinates
(on the probability axis) or the horizontal coordinates (on the P&L axis) of the Λ function or even
both. We prefer to maintain a neutral approach on the vertical coordinates of Λ and provide different
ΛVaR specifications by varying only the horizontal coordinates as described in the paragraph below.
However, there are no restrictions on this point and other solutions can be experimented, although the
number of ad hoc choices on the model should remain limited.
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Finally, we estimate the points πi using the following approach, which we call dynamic benchmark
approach. We calibrate Λ on the statistics of the tail historical distribution of selected benchmarks.
The idea is to compare the tails of an asset P&L distribution with a function Λ that directly depends on
the tails of the market historical distribution. In such a way, we make the capital requirement decision
depend on the behaviour of the risk factor returns in comparison with market returns. With this
choice, we expect that the ΛVaR is able to incorporate the recent market changes and the particular
asset reactions faster than other risk measures. This approach is dynamic since the Λ function is
continuously recalculated by using the same rolling window of the risk measure and maintained
constant throughout the out-of-sample period. However, the Λ function must be unique for each risk
factor, so the calibration cannot depend on specific features of the assets under analysis.

We set the points πi on the basis of the n order statistics of the benchmark historical P&L
distributions. We propose taking four points πi, so n = 4. In our opinion, this number of points
represents a good trade-off between fitting accuracy and function parametric complexity. However,
this choice does not substantially affect the results. We fix π1 equal to the smallest order statistic;
that is, the minimum of all the benchmark returns, π1 = min (rmin1, ...rminj, ...rminB), where rminj is the
minimum return of the j-th benchmark, and B is the total number of benchmarks. We fix π2, π3, and π4

equal to the maximum, mean, and minimum of their historical λ%-VaR, respectively. The choice of
the confidence level λ for the benchmarks’ VaR depends on the risk aversion profile. In the case of
an increasing Λ, a 5%-VaR represents a more prudential choice than a 1%-VaR, since 5%-VaR order
statistics shift the Λ function more to the right. The converse holds in the case of a decreasing Λ.
The rolling window used for computing the 1–5%-VaR of the benchmarks should be the same used for
computing the VaR and ΛVaR of the risk factors.

For instance, if we test the ΛVaR on equity markets, good benchmark candidates are the equity
indexes that have the highest volume of transactions and that represent the markets in which the
bank’s trading activity is concentrated. In our empirical test, we selected the S&P500 (US), the FTSE
100 (UK), and the EURO STOXX 50 (Eurozone). Alternatively, the selection of these benchmarks as
well as the interval of confidence for their VaR computation can be done externally by the regulator.
Figure 1 shows two examples of the ΛVaR estimations for the increasing and decreasing cases.

In conclusion, more advanced and sophisticated Λ estimations may be considered provided that
the mathematical properties of the ΛVaR are preserved. However, increasing the Λ complexity is not
consistent with the purpose of this study. Our benchmark approach is easy to compute and allows for
a better understanding of the new risk measure.

2.3. Backtesting Method

The reliability and accuracy of a risk measure depend on its ability to predict and cover
future unexpected losses. For this reason, the risk measure should be backtested with appropriate
methods. According to the Basel Committee on Banking Supervision (1996b), the backtesting, that is,
the statistical procedure of comparing realized profits and losses y with forecast risk measures x,
is essential in the validation process of risk management internal models (see Jorion 2007).

The Basel Committee on Banking Supervision (1996b) has set up a regulatory backtesting
framework for internal VaR models in order to monitor the frequency of exceptions; this is known
as the traffic light approach. This procedure is carried out by comparing the last 250 daily 1% VaR
estimates with the corresponding daily P&L outcomes. The accuracy of the model is then evaluated
by counting the number of exceptions during this period. Many alternative proposals have been
introduced in the literature for VaR (see Campbell 2005; Christoffersen 2010; Berkowitz et al. 2011 for
a detailed review). On the other hand, the backtesting of ΛVaR has been studied only recently by
Corbetta and Peri (2017).

In this paper, we propose using, for the backtesting of the risk measures, the unilateral hypothesis
test by Kupiec (1995), which is the first VaR method introduced in the literature and is the most widely
known and used. This is also one of the simplest tests in that it allows for an intuitive interpretation and
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comparison of the VaR and ΛVaR backtesting performances. Kupiec’s test, known as unconditional
coverage (UC) or portion of failure (POF) test, measures whether the number n of exceptions y < x
over a specific number of observations N in the backtesting window is consistent with the confidence
level λ. The VaR model should be accepted if the frequency of exceptions over the specific time
interval, λ̂, does not significantly differ from the confidence level, λ. Hence, the null and the alternative
hypothesis for the POF test are given by

H0 : λ = λ̂ =
n
N

, H1 : λ̂ > λ. (6)

Under H0, where the VaR is considered to be ‘correct’, the number of exceptions over the selected
time period follows a binomial distribution. Thus, the POF test is conducted with the following
log-likelihood ratio:

LRPOF = −2 ln
(

(1− λ)N−nλn

(1− ( n
N ))N−n ( n

N )n

)
∼ χ2

1. (7)

Asymptotically, as the number of observations N goes to infinity, the test will be distributed as
a χ2 with 1 degree of freedom. If the LRPOF statistic exceeds the critical value of the χ2

1, the model
should be rejected. This critical level depends on the test confidence level. However, the choice of the
confidence level is based on the balance of two types of errors: a type I error to reject a correct model
and a type II error to accept an incorrect model. Increasing the significance level implies larger type I
errors but smaller type II errors, and vice versa. Best practice suggests the use of a confidence level at
least equal to 5% to control the type II errors, which can be very costly.

We extend the VaR backtesting framework to the ΛVaR while maintaining the same structure
and fundamental meaning. Being a generalized quantile, the confidence level of the ΛVaR changes
according to the Λ function. A good candidate for the ΛVaR confidence level is the maximum of the
Λ function, max(Λ). Hence, we propose adjusting the POF test by considering the max(Λ), under
the null hypothesis, instead of λ. In particular, the null and the alternative hypothesis for the ΛVaR
test become

H0 :
n
N
≤ max(Λ), H1 :

n
N

> max(Λ). (8)

This is still an unilateral hypothesis test with the same critical region as the VaR test (see Casella
and Berger 2002). Hence, it can be conducted by using the same log-likelihood ratio and critical value
of the VaR test. The risk model is validated if the relative number of the exceptions does not exceed the
target level of exceptions given by max(Λ). This adjustment provides information about the ΛVaR’s
accuracy and an immediate interpretation. Indeed, it verifies whether the coverage objective given by
the Λ maximum has been reached. However, it has some limitations, which have been highlighted
by Corbetta and Peri (2017) in their literature review. Here, we prescind from providing a complete
framework on the backtesting of the ΛVaR.

3. Empirical Analysis

In this section, we test our methodology to compute the ΛVaR, the so-called dynamic benchmark
approach, proposed in Section 2.2. We examine the different ΛVaR specifications and their
implementation under different assumptions of the P&L distribution. We compare the ΛVaR
estimations with those of the VaR and ES and perform a backtesting exercise.

In particular, we want to test the ability of the risk measures to capture and react to extreme
downward scenarios; for this reason, we chose data spanning over the global financial crisis.
We compute the risk measures for a selection of stocks quoted in different developed countries
that were severely affected by the crisis (the United States, the United Kingdom, Germany, France,
Spain, and Italy) and are part of market indexes with the highest volume of stock exchanges; that is
the S&P500, the FTSE 100, and the EURO STOXX 50. In order to better understand the behaviour of
the new risk measure, we select stocks from different industries (financial, utilities, communications,
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information technology, consumer staples, and energy) and with different responses to the market
changes. These comprise the stocks of Citigroup Inc. (C UN Equity) and Microsoft Corporation (MSFT
UW Equity) for the United States, Royal Bank of Scotland Group PLC (RBS LN Equity) and Unilever
PLC (ULVR LN Equity) for the United Kingdom, Volkswagen AG (VOW3 GY Equity) and Deutsche
Bank AG (DBK GY Equity) for Germany, Total SA (FP FP Equity) and BNP Paribas SA (BNP FP Equity)
for France, Banco Santander SA (SAN SQ Equity) and Telefonica SA (TEF SQ Equity) for Spain, and
Intesa Sanpaolo SPA (ISP IM Equity) and Enel SPA (ENEL IM Equity) for Italy. The dataset is composed
of daily data from January 2005 to December 2011. The results of the descriptive statistics are collected
in Table A1 of the Appendix A together with a brief discussion.

Risk Measures Computation, Backtesting, and Comparison

The first step of our analysis is to test our ΛVaR specifications and compare its forecasts with
the risk measures proposed by the current regulation, the VaR, and the ES. The aim is to evaluate
the ability of the new risk measure to incorporate extreme downward scenarios and cover the risk
of the trading book. For a complete analysis, we compare the ΛVaR models in the previous section
with three different VaR models, one for each confidence level of 1%, 2%, and 3%. We add to
the analysis the computation of the ES at a 2.5% level of confidence, as recently suggested by the
Basel Committee (2016). Specifically, we calculate the 1-day VaR, ΛVaR, and ES over a time horizon
of 1 year (250 days) for the 12 equities previously described. In order to evaluate the behaviour and
reactivity of the ΛVaR to different market phases and compare it with the VaR and ES, we compute
the risk measures over the period from January 2005 to December 2011, which includes the evolution
of the recent global financial crisis.

The robustness of our empirical results is assessed by conducting three simulation studies
concerning different assumptions of the P&L distributions, using, specifically, Monte Carlo Normal
models, historical simulations, and GARCH models with Student-t increments. We have chosen the
historical simulation technique since it is widely used by practitioners who appreciate its model-free
nature. GARCH models of the returns are vastly assumed in the finance and economics literature
(among others see Engle 2001; Engle et al. 2008; Samitas and Kampouris 2017). The Monte Carlo
simulation exercise consists of the generation of 10,000 values for the P&L distribution. The simulations
are based on the estimation of the parameters over the last 250 P&L observations for the historical and
Normal assumptions, while 500 P&L observations are considered for the GARCH approach.

The second objective of this analysis is to gauge the ΛVaR’s accuracy in comparison to the VaR.
Hence, we conduct a backtesting exercise for the VaR and ΛVaR models. We compare the realized
ex-post daily P&L with the daily VaR/ΛVaR estimates over a time period of a year. In particular,
we split the analysis into six different two-year rolling windows (250 days for the risk measure
computation and one year for the backtesting). We perform the backtesting method described in
Section 2.3 for all of the 12 stocks and the ΛVaR and VaR models previously specified.

Figure 2 exhibits the first fundamental result of this analysis: the ΛVaR is the most prudential
approach and has the highest reactivity to market conditions. This figure displays the realized
out-of-sample P&L and the risk measures under historical simulation; specifically, the 1% VaR,
1% ΛVaR, and 2.5% ES for a significant sample of the selected equities during the different phases of
the recent financial crisis. During the 2008 crisis year, the ΛVaR is more conservative and reacts to
adverse market conditions faster than the other risk measures. During the first year after the crisis,
the ΛVaR maintains the most prudential approach and guarantees the highest reactivity to unexpected
downturns (i.e., Volkswagen). However, in the more stable periods before 2007, the behaviour of the
ΛVaR is in line with the behaviour of the 1% VaR and 2.5% ES in preserving the highest risk protection.
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Figure 2. Different reactivity to market fluctuations of VaR, ES and ΛVaR under historical simulation.
The ΛVaR is the most conservative measure and has higher reactivity to adverse market conditions
than the VaR and the ES. Its behaviour is in line with the other risk measures during stable periods.

The backtesting exercise shows the second fundamental result of our analysis: the ΛVaR has the
highest accuracy. We discuss the backtesting results under the assumption of historical simulation
of the P&L distributions. In order to provide an overview of the model’s accuracy and show the
robustness of the backtesting results, we aggregate the POF test outcomes and violations at the level
of the VaR as well as the increasing and decreasing ΛVaR models. Table 1 reports the evolution over
time of the average number of violations and the POF acceptance rate for each of the risk models.

During 2006, the POF null hypothesis is always accepted for the 1% and 2% VaR and for the ΛVaR
models. The inaccuracy of the VaR models increases when the confidence level increases. During the
US subprime crisis of August 2007, we observe a significant decrease in the acceptance rate for all
the VaRs together with the decreasing ΛVaR models, moving from 97 to 72% and from 100 to 83%
on average, respectively. Contrary to this, the increasing ΛVaR models maintain a 100% acceptance
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rate. The impact of the global financial crisis in 2008 highlights the significantly higher reactivity of the
ΛVaR models. The table displays a severe underestimation of the risk for all the VaR models, with the
POF test acceptance rate equal to 0%. Contrary to this, the POF acceptance rate stays at 100% for all of
the increasing ΛVaR models, even though the decreasing ΛVaR models are less accurate during the
crisis, with an average acceptance rate of 54% and 46% for the 1% ΛVaR and 1.5% ΛVaR, respectively.
The evolution of the average number of violations supports these considerations. The 1% VaR model,
in spite of having the highest accuracy among the other VaRs, shows a drastic increase in the average
number of violations, moving from 3.42 in 2006 to 11.58 in 2008. On the other hand, the increasing
ΛVaR models register an average number of violations of around 1.17 during 2006 and retain a number
of around 3.92 during the 2008 crisis. During 2009, the first response by the VaR models comes from
the 1% VaR. It starts to incorporate the effects of the crisis, reaching a 100% acceptance rate, whereas
the 2–3% VaR models persistently underestimate the risk. The decreasing ΛVaR models significantly
increase their acceptance rate to 100% on average; the increasing ΛVaR models maintain the best
response to the crisis independently by the confidence level. During 2010, the other VaR models’
acceptance rate increase to 87% on average, while the ΛVaR models are comprehensively accepted.
The 2011 economic downturn confirms the observations discussed before for 2008, with an extremely
positive level of reactivity of the increasing ΛVaR models in comparison to the decreasing ΛVaRs;
however, the latter respond better than the VaRs. The trend of the average number of violations
endorses these conclusions. Additional details about violations and Kupiec’s POF for each of the
equities and risk models are displayed in Appendix B. Due to space constraints, we only display the
results of the 2008 crisis year.

Table 2 shows the results with the Monte Carlo and GARCH models with Student-t increments.
Notice that the Normal simulation approach has, in most of the cases, a lower average acceptance
rate than the historical simulation and GARCH models. This is coherent with the results present in
the literature that show that the Normal distribution does not fit the tails of the returns’ distribution
well. The GARCH model is the best approach to the ΛVaR estimations outside the crisis, while
historical models perform better during the crisis; the reason for this is that the historical distribution
is computed using the returns realized in the previous 250 days, so it considers the downturn effect
of the beginning of the crisis; this is not the case with the GARCH models, where the estimation
of the parameters is based on the previous two years of observations. Regarding the performance
of the ΛVaR models with respect to the VaR, in terms of the average number of violations and the
test acceptance rate, these results parallel the findings for the historical simulation case. The highest
average acceptance rate of the 1.5% increasing ΛVaR models with respect to the 1% case is worth
noting here. This may imply that a better approximation of the P&L distribution allows for an increase
in the interval of confidence of the ΛVaR models.

To summarize, this empirical application highlights that our ΛVaR models are able to capture
downside risks and react to adverse market conditions faster than VaR and ES models, thereby
maintaining a behaviour in line with the other risk measures in more stable periods. In addition,
the ΛVaR models have a significantly higher level of accuracy than the VaR models. Specifically,
the increasing ΛVaR models register a higher performance in crisis periods.



Risks 2018, 6, 17 11 of 18

Table 1. Time evolution of the average number of violations and Kupiec test under the historical simulation assumption. The table shows the evolution over the
global financial crisis of the average number of violations and the percentage of portion of failure (POF) acceptance, aggregated at the level of the VaR, as well as the
increasing and decreasing ΛVaR models.

Violations (Historical Simulation) Kupiec’s POF-Test (Historical Simulation)

2006 2007 2008 2009 2010 2011 2006 2007 2008 2009 2010 2011
(T = 261) (T = 259) (T = 260) (T = 261) (T = 263) (T = 264)

VaR
1% 3.42 5.33 11.58 0.75 3.08 6.83 100% 83% 0% 100% 92% 50%
2% 5.25 9.17 16.50 1.17 5.50 10.25 100% 83% 0% 67% 92% 50%
3% 9.33 15.42 22.58 2.92 7.58 14.83 92% 50% 0% 50% 83% 42%

6 9.97 16.89 1.61 5.39 10.64 97% 72% 0% 72% 89% 47%

ΛVaR 1% (decr)
linear (VaR 5%) 2.25 3.67 7.00 0.67 2.00 4.25 100% 83% 42% 100% 100% 83%
linear (VaR 1%) 2.17 2.33 5.75 0.67 1.58 4.00 100% 83% 67% 100% 100% 83%

2.21 3.00 6.38 0.67 1.79 4.13 100% 83% 54% 100% 100% 83%

ΛVaR 1% (incr)
linear (VaR 5%) 1.17 1.00 3.92 0.42 0.92 2.75 100% 100% 100% 100% 100% 100%
linear (VaR 1%) 1.17 1.00 3.92 0.42 1.00 2.75 100% 100% 100% 100% 100% 100%

1.17 1.00 3.92 0.42 0.96 2.75 100% 100% 100% 100% 100% 100%

ΛVaR 1.5% (decr)
linear (VaR 5%) 3.33 5.00 10.83 0.75 3.00 6.67 100% 83% 33% 100% 100% 58%
linear (VaR 1%) 2.92 3.67 8.50 0.67 2.33 5.92 100% 83% 58% 100% 100% 67%

3.13 4.33 9.67 0.71 2.67 6.29 100% 83% 46% 100% 100% 63%

ΛVaR 1.5% (incr)
linear (VaR 5%) 1.17 1.00 3.92 0.42 0.92 2.75 100% 100% 100% 100% 100% 100%
linear (VaR 1%) 1.17 1.00 3.92 0.42 1.00 2.83 100% 100% 100% 100% 100% 100%

1.17 1.00 3.92 0.42 0.96 2.79 100% 100% 100% 100% 100% 100%
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Table 2. Time evolution of the average number of violations and Kupiec test under the Monte Carlo Normal and GARCH models. This table details the evolutions
over the global financial crisis of the average number of violations and the percentage of POF acceptance, aggregated at the level of the VaR and the increasing and
decreasing ΛVaR models.

Violations (Montecarlo Normal) Kupiec’s POF-Test (Montecarlo Normal)

2006 2007 2008 2009 2010 2011 2006 2007 2008 2009 2010 2011

VaR
1% 4.42 6.92 15.17 1.5 4.25 9.5 83% 50% 0% 100% 83% 25%
2% 6.92 10 19.58 3 5.92 13.58 100% 50% 0% 83% 83% 33%
3% 9.08 12.5 22.67 3.92 8 17.17 83% 58% 0% 58% 75% 25%

6.81 9.81 19.14 2.81 6.06 13.42 89% 53% 0% 81% 81% 28%

ΛVaR 1% (decr)
linear (VaR 5%) 4.33 6.58 14.33 1.5 3.83 9.08 92% 50% 0% 100% 83% 25%
linear (VaR 1%) 4.17 5.5 13 1.17 3.33 8.75 92% 83% 0% 100% 92% 33%

4.25 6.04 13.67 1.33 3.58 8.92 92% 67% 0% 100% 88% 29%

ΛVaR 1% (incr)
linear (VaR 5%) 1.83 2.67 8.33 0.75 1.58 5.17 100% 92% 25% 100% 100% 58%
linear (VaR 1%) 1.92 3.83 10.17 1.08 2 5.58 100% 75% 8% 100% 92% 58%

1.88 3.25 9.25 0.92 1.79 5.38 100% 83% 17% 100% 96% 58%

ΛVaR 1.5% (decr)
linear (VaR 5%) 5 7.92 16.17 2.17 4.75 11.08 92% 58% 0% 100% 92% 33%
linear (VaR 1%) 4.83 6.67 13.67 1.75 4.08 10.42 92% 83% 8% 100% 100% 33%

4.92 7.29 14.92 1.96 4.42 10.75 92% 71% 4% 100% 96% 33%

ΛVaR 1.5% (incr)
linear (VaR 5%) 1.83 3.25 8.67 0.75 1.67 5.25 100% 92% 58% 100% 100% 92%
linear (VaR 1%) 2.42 4.92 11.58 1.08 2.5 5.83 100% 75% 33% 100% 92% 83%

2.13 4.08 10.13 0.92 2.08 5.54 100% 83% 46% 100% 96% 88%
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Table 2. Cont.

Violations (GARCH Model) Kupiec’s POF-Test (GARCH Model)

2006 2007 2008 2009 2010 2011 2006 2007 2008 2009 2010 2011

VaR
1% 3 6.83 15.17 0.25 0.75 4.17 100% 75% 0% 100% 100% 67%
2% 5 11.17 19.58 0.92 2.08 7.83 83% 58% 0% 75% 92% 67%
3% 7.5 14.08 22.67 1.92 3.08 12.08 100% 58% 0% 50% 75% 67%

5.17 10.69 19.14 1.03 1.97 8.03 94% 64% 0% 75% 89% 67%

ΛVaR 1% (decr)
linear (VaR 5%) 2.83 5.58 14.33 0.25 0.33 4.08 100% 83% 0% 100% 100% 75%
linear (VaR 1%) 2.67 4.75 13 0.17 0.17 3.75 100% 83% 0% 100% 100% 75%

2.75 5.17 13.67 0.21 0.25 3.92 100% 83% 0% 100% 100% 75%

ΛVaR 1% (incr)
linear (VaR 5%) 0.5 0.75 8.33 0 0.25 0.58 100% 100% 25% 100% 100% 100%
linear (VaR 1%) 0.5 1.17 10.17 0 0.5 0.75 100% 100% 8% 100% 100% 100%

0.5 0.96 9.25 0 0.38 0.67 100% 100% 17% 100% 100% 100%

ΛVaR 1.5% (decr)
linear (VaR 5%) 3.92 7.58 16.17 0.5 0.92 5.75 100% 75% 0% 100% 100% 75%
linear (VaR 1%) 3.33 5.83 13.67 0.25 0.5 5.42 100% 83% 8% 100% 100% 83%

3.63 6.71 14.92 0.38 0.71 5.58 100% 79% 4% 100% 100% 79%

ΛVaR 1.5% (incr)
linear (VaR 5%) 0.5 0.83 8.67 0 0.5 0.67 100% 100% 58% 100% 100% 100%
linear (VaR 1%) 0.5 1.58 11.58 0 0.67 0.83 100% 100% 33% 100% 100% 100%

0.5 1.21 10.13 0 0.58 0.75 100% 100% 46 % 100% 100% 100%
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4. Conclusions

The global financial crisis has made risk measurement and its backtesting a primary concern for
regulators and financial institutions. Several issues concerning the VaR and doubts raised about the ES
have caused us to examine alternative risk measures. A good candidate to overcome these issues seems
to be the ΛVaR. This study presents the first methodological proposal of estimation of the ΛVaR.

We estimated the ΛVaR based on order statistics of the distribution of certain selected market
benchmarks. This approach allows the ΛVaR to discriminate the risk among assets with different tail
behaviour and capture the specific reactions to market fluctuations. In addition, the parameters of the
ΛVaR are constantly recalculated to incorporate changes in market conditions and can be specified
according to different risk attitudes. We also propose backtesting methodology by extending the VaR
hypothesis-testing framework.

We tested our approach under different assumptions of the P&L distribution and during different
phases of the global financial crisis. We experimented with different estimations of the ΛVaR and
used several confidence levels. The first finding displays the significant ability of the ΛVaR estimates
to capture extreme downward scenarios and react to financial market changes faster than the VaR
and ES. The results of the backtesting exercise display the significantly higher accuracy of our ΛVaR
specifications during different phases of the global financial crisis, increasing the confidence level up
to 1.5%. Results are confirmed using different assumptions on the P&L distributions.

This study sheds some light on the importance of incorporating recent mark trends in the risk
measure for assessing the bank capital requirement. This may lead to a prompt adjustment of the
bank’s capital to unexpected downturns and assure, overall, a higher stability of the financial system.
Hence, the paper provides insights into the Basel Committee’s reviews of the future role of internal
models in determining the bank capital requirement. To this end, future research will be focused
on the backtesting of the ΛVaR, the computation of the ΛVaR with other risk factors, and the final
aggregation of ΛVaR values.

Author Contributions: The authors contribute equally to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Descriptive Statistics of the Dataset

Table A1 provides the annual descriptive statistics of the daily logarithmic returns for all the stocks
and indexes in each 1-year window throughout the financial crisis. The annual mean log returns vary
significantly across the time windows. They are all positive in 2006, ranging from 1.46% for Citigroup
to 53.31% for Volkswagen, whereas the annual standard deviation is quite small, with a maximum
value of 28.84% for Volkswagen. As a consequence of the 2007 U.S. subprime mortgage crisis, all the
annual mean returns of the financial equities show a significant drop, with the exception of Banco
Santander. The minimum daily return was −40.96% for the Royal Bank of Scotland on 7 October 2007
because of the large exposure to Lehman Brothers. During the 2008 global financial crisis, the fall of the
annual mean returns encompassed all stocks and was accompanied by a significant increase in annual
volatility. Unsurprisingly, the worst slumps in the annual mean returns were reported by the financial
equities, in particular the Royal Bank of Scotland, −219.88%, and Citigroup, −139.97%, which also
accounts for the highest annual volatility of 113.21%. However, in 2010, the returns of Royal Bank of
Scotland and Citigroup returned to positive values, whereas the effects of the financial crisis persisted
in all Eurozone equities. In 2011, there was a further downturn in all of the equities’ returns, with the
exception of that of Unilever.

The skewness values are negative for many stocks and time windows, indicating that the empirical
distributions of the stocks’ daily returns are skewed to the left. The kurtosis values are well above 3
for all of the stocks and time windows, indicating deviations from the Normal distribution and the
presence of fat tails. This is also confirmed by the Jarque–Bera (JB) test, which rejects the normality
assumption at the 5% significance level for most of the stocks and time windows under investigation.
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Table A1. Annual descriptive statistics for the equities and indexes in each year under analysis. The dataset includes 12 stocks belonging to the S&P500, the FTSE
100, and the EURO STOXX 50. The dataset contains six 1-year windows from January 2006 to December 2011. For each stock and index, we report the minimum
daily return, the maximum daily return, the annual mean (the average daily return is annualized), the annual standard deviation (the daily standard deviation is
annualized), skewness, kurtosis, the Jarque–Bera (JB) test statistic, and its null hypothesis h (h = A if H0 is accepted and h = R otherwise).

2006 2007

Min Daily Max Daily Annual Annual Skewness Kurtosis JB H p-Value Min Daily Max Daily Annual Annual Skewness Kurtosis JB H p-Value
Return Return Mean std Return Return Mean std

FP FP −0.0388 0.0334 0.0326 0.1807 −0.3998 3.6305 10.8004 R 0.0119 −0.0434 0.0458 0.0131 0.2053 0.1085 3.6228 4.5312 A 0.0828
SAN SQ −0.0354 0.0340 0.2265 0.1764 −0.3483 3.6016 8.8246 R 0.0194 −0.0450 0.0407 0.0157 0.2112 −0.0848 3.7085 5.5288 A 0.0540

VOW3 GY −0.0664 0.0875 0.5331 0.2884 0.6285 6.8101 167.6764 R 0.0010 −0.0929 0.0775 0.6116 0.3010 −0.0793 6.7672 148.0897 R 0.0010
BNP FP −0.0441 0.0411 0.1838 0.2157 −0.0998 3.2898 1.2895 A 0.4873 −0.0522 0.0501 −0.1345 0.2649 0.0604 3.7158 5.4897 A 0.0548
DBK GY −0.0482 0.0416 0.2132 0.2055 −0.3727 3.7980 12.4206 R 0.0084 −0.0528 0.0419 −0.1578 0.2347 0.0817 3.8776 8.3019 R 0.0222
TEF SQ −0.0404 0.0362 0.2387 0.1532 −0.2186 4.6203 29.3396 R 0.0010 −0.0374 0.0675 0.3186 0.2018 0.3926 5.8767 92.6257 R 0.0010
ISP IM −0.0550 0.0733 0.1883 0.2139 0.4339 6.5060 135.8837 R 0.0010 −0.0594 0.0328 −0.0882 0.1891 −0.2301 5.0088 44.2408 R 0.0010

ENEL IM −0.0575 0.0323 0.1554 0.1322 −1.1327 12.4250 978.7849 R 0.0010 −0.0394 0.0243 0.0257 0.1501 −0.5195 4.3647 30.6449 R 0.0010
C UN −0.0471 0.0300 0.0146 0.1619 −0.4009 5.0078 48.6896 R 0.0010 −0.0826 0.0680 −0.6955 0.3012 −0.1538 6.1061 101.4809 R 0.0010

MSFT UW −0.1274 0.0560 0.0305 0.2274 −2.4345 27.9181 6714.7750 R 0.0010 −0.0481 0.0849 0.1039 0.2299 0.6769 7.4973 229.7779 R 0.0010
RBS LN −0.0334 0.0400 0.1195 0.1571 0.3047 4.3665 23.3198 R 0.0014 −0.4096 0.0879 -0.8447 0.5197 −7.4942 94.7552 90038.2373 R 0.0010

ULVR LN −0.0599 0.0453 0.1291 0.1714 −0.5139 7.4596 218.1719 R 0.0010 −0.0347 0.0568 0.2977 0.2086 0.5671 4.4899 36.5219 R 0.0010

Indexes’ Statistics Indexes’ Statistics

SPX Index −0.0290 0.0220 0.0215 0.1234 −0.2404 3.5449 5.5002 A 0.0545 −0.0413 0.0313 −0.0391 0.1644 −0.5905 4.9352 53.5407 R 0.0010
SX5E Index −0.0341 0.0264 0.1389 0.1461 −0.4683 4.2074 24.3246 R 0.0013 −0.0293 0.0289 0.0622 0.1591 −0.2096 3.4765 4.1959 A 0.0965
UKX Index −0.0244 0.0237 0.1210 0.1225 −0.1826 4.0389 12.6325 R 0.0080 −0.0438 0.0326 −0.0387 0.1830 −0.4193 4.3609 26.6163 R 0.0010
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Table A1. Cont.

2008 2009

Min Daily Max Daily Annual Annual Skewness Kurtosis JB H p-Value Min Daily Max Daily Annual Annual Skewness Kurtosis JB H p-Value
Return Return Mean std Return Return Mean std

FP FP −0.0964 0.1279 −0.3778 0.4800 0.5332 6.8048 162.6412 R 0.0010 −0.0592 0.0854 0.0904 0.2942 0.1161 5.1276 47.7145 R 0.0010
SAN SQ −0.1272 0.1339 −0.7142 0.5410 0.1200 6.0451 97.1911 R 0.0010 −0.0852 0.1257 0.5008 0.4566 0.2267 5.6305 74.2226 R 0.0010

VOW3 GY −0.2086 0.1797 −0.9460 0.6583 −0.8299 10.4683 609.7016 R 0.0010 −0.1717 0.1397 0.4458 0.5869 −0.2108 5.3791 60.8111 R 0.0010
BNP FP −0.1893 0.1613 −0.9074 0.6240 −0.1873 6.3064 115.3370 R 0.0010 −0.1430 0.1887 0.5602 0.6176 0.8090 8.0523 293.1566 R 0.0010
DBK GY −0.1754 0.2125 −1.2575 0.7341 0.2452 7.3222 197.1055 R 0.0010 −0.1269 0.1986 0.5447 0.6598 0.4548 5.8678 94.2840 R 0.0010
TEF SQ −0.0954 0.1022 −0.3257 0.3750 0.0187 6.6780 140.9284 R 0.0010 −0.0377 0.0570 0.1916 0.2015 0.1586 4.1838 15.6458 R 0.0045
ISP IM −0.1846 0.1614 −0.7518 0.5905 −0.1282 8.4487 309.9411 R 0.0010 −0.1665 0.1460 0.2049 0.5107 −0.3946 7.3550 204.0519 R 0.0010

ENEL IM −0.1007 0.1682 −0.6123 0.4222 0.5062 11.0113 679.2366 R 0.0010 −0.1203 0.0743 −0.0059 0.3460 −0.8385 7.6000 249.7127 R 0.0010
C UN −0.3049 0.4290 −1.3997 1.1321 0.4480 10.2519 556.1805 R 0.0010 −0.4917 0.3188 −0.8075 1.2630 −0.5920 11.0411 688.1444 R 0.0010

MSFT UW −0.0861 0.1665 −0.5525 0.4995 0.7136 6.7986 171.5222 R 0.0010 −0.1324 0.0887 0.3860 0.3617 −0.5212 9.2412 417.0772 R 0.0010
RBS LN −0.4981 0.2773 −2.1988 1.0237 −1.6843 18.3559 2574.4868 R 0.0010 −1.0957 0.3050 −0.6141 1.4588 −6.4827 80.8619 64901.8805 R 0.0010

ULVR LN −0.0842 0.0717 −0.1675 0.3922 −0.0967 4.0791 12.5204 R 0.0082 −0.0605 0.0936 0.2483 0.2625 0.5203 6.9602 174.6435 R 0.0010

Indexes’ Statistics Indexes’ Statistics

SPX Index −0.0872 0.1104 −0.4517 0.4304 0.1654 5.6222 72.7629 R 0.0010 −0.0517 0.0656 0.1518 0.2494 0.2158 5.2018 52.4405 R 0.0010
SX5E Index −0.0821 0.1044 −0.5932 0.3899 0.3188 6.5992 139.1742 R 0.0010 −0.0524 0.0588 0.1536 0.2799 −0.1597 3.9723 10.9097 R 0.0116
UKX Index −0.0923 0.0962 −0.6465 0.4000 0.3106 6.6233 140.7746 R 0.0010 −0.0668 0.0443 0.2303 0.2622 −0.2272 3.9021 10.6280 R 0.0124

2010 2011

Min Daily Max Daily Annual Annual Skewness Kurtosis JB H p-Value Min Daily Max Daily Annual Annual Skewness Kurtosis JB H p-Value
Return Return Mean std Return Return Mean std

FP FP −0.0427 0.0737 −0.1226 0.2254 0.1622 5.7403 79.3164 R 0.0010 −0.0585 0.0476 −0.0037 0.2457 −0.2340 3.7736 8.7549 R 0.0197
SAN SQ −0.0987 0.2088 −0.3645 0.4453 1.4085 15.3195 1663.5904 R 0.0010 −0.0870 0.0913 −0.2924 0.3823 0.1693 4.0687 13.4584 R 0.0068

VOW3 GY −0.0629 0.0745 0.7057 0.3498 −0.0003 3.2736 0.7800 A 0.5000 −0.0736 0.0994 −0.0464 0.4342 0.1226 3.5902 4.3738 A 0.0893
BNP FP −0.0770 0.1898 −0.1405 0.4181 1.1895 13.1948 1141.6031 R 0.0010 −0.1399 0.1564 −0.4380 0.5922 0.2772 5.8701 91.5016 R 0.0010
DBK GY −0.0755 0.1210 −0.1624 0.3301 0.4727 7.2044 193.4445 R 0.0010 −0.0927 0.1428 −0.2762 0.4869 0.3426 6.0348 103.6490 R 0.0010
TEF SQ −0.0761 0.1131 −0.1291 0.2619 0.5956 13.1055 1078.5520 R 0.0010 −0.0590 0.0497 −0.2306 0.2695 −0.1712 4.2022 16.7312 R 0.0037
ISP IM −0.0808 0.1796 −0.3890 0.4205 1.0616 11.3222 768.4168 R 0.0010 −0.1720 0.0980 −0.3756 0.6431 −0.5304 4.4557 34.7431 R 0.0010

ENEL IM −0.0574 0.0767 −0.0574 0.2226 0.1074 6.9702 164.6747 R 0.0010 −0.0816 0.0703 −0.1689 0.3213 −0.4818 4.7037 41.0263 R 0.0010
C UN −0.0676 0.0731 0.4268 0.3605 −0.0866 3.7236 5.7664 R 0.0494 −0.1774 0.1290 −0.5406 0.4876 −0.5330 8.0922 289.8362 R 0.0010

MSFT UW −0.0407 0.0388 0.0029 0.2103 -0.2385 3.7083 7.5948 R 0.0272 −0.0529 0.0433 −0.0408 0.2129 −0.2159 4.5799 28.7242 R 0.0010
RBS LN −0.1955 0.1200 0.2371 0.5011 −0.4706 9.3214 425.4745 R 0.0010 −0.1315 0.0958 −0.6427 0.5344 −0.1668 3.7965 7.9866 R 0.0241

ULVR LN −0.0828 0.0611 0.0314 0.2176 −0.6901 9.8276 505.4270 R 0.0010 −0.0272 0.0366 0.1324 0.1687 0.1154 3.3345 1.7682 A 0.3672

Indexes’ Statistics Indexes’ Statistics

SPX Index −0.0400 0.0348 0.2020 0.1642 −0.2917 4.4570 25.6590 R 0.0011 −0.0670 0.0457 0.0300 0.1969 −0.6397 7.5329 237.5537 R 0.0010
SX5E Index −0.0482 0.0985 −0.0503 0.2363 0.7062 10.4500 598.9229 R 0.0010 −0.0654 0.0590 −0.1819 0.2885 −0.2408 4.5356 27.7334 R 0.0010
UKX Index −0.0358 0.0471 0.1329 0.1748 −0.0519 4.6341 27.9268 R 0.0010 −0.0466 0.0379 −0.0307 0.2004 −0.3651 4.3841 26.2260 R 0.0010
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Appendix B. Violations and Kupiec’s Portion of Failure Test 2008

Table A2. Violations and Kupiec’s POF test for each equity and risk model. The table displays the violations, the POF test statistic (log-likelihood ratio, LR), and the
outcome (H0) for all the stocks and risk models during the 2008 crisis year (A = accepted and R = rejected).

Violations and Kupiec’s POF-Test 2008

FP FP SAN SQ VOW3 GY BNP FP DBK GY TEF SQ ISP IM ENEL IM C UN MSFT UW RBS LN ULVR LN

VaR

1%
LR 9.711 15.210 15.210 15.210 24.852 7.297 18.253 7.297 43.847 28.383 18.253 9.711
H0 R R R R R R R R R R R R

VIOL 9 11 11 11 14 8 12 8 19 15 12 9

2%
LR 10.439 17.230 17.230 17.230 22.401 5.016 19.756 14.830 30.998 22.401 14.830 6.653
H0 R R R R R R R R R R R R

VIOL 14 17 17 17 19 11 18 16 22 19 16 12

3%
LR 13.864 35.598 22.612 13.864 25.038 6.860 35.598 18.039 27.553 27.553 13.864 4.132
H0 R R R R R R R R R R R R

VIOL 20 29 24 20 25 16 29 22 26 26 20 14

ΛVaR 1% (decreasing)

linear (VaR 5%)
LR 3.280 7.297 0.654 7.297 12.356 0.654 3.280 5.141 7.297 5.141 12.356 3.280
H0 A R A R R A A R R R R A

VIOL 6 8 4 8 10 4 6 7 8 7 10 6

linear (VaR 1%)
LR 0.654 3.280 0.059 7.297 9.711 0.152 0.654 3.280 7.297 1.762 12.356 0.654
H0 A A A R R A A A R A R A

VIOL 4 6 3 8 9 2 4 6 8 5 10 4.000

ΛVaR 1% (increasing)

linear (VaR 5%)
LR 0.059 0.152 0.059 0.654 1.762 0.152 0.654 3.280 1.762 0.654 1.762 0.654
H0 A A A A A A A A A A A A

VIOL 3 2 3 4 5 2 4 6 5 4 5 4

linear (VaR 1%)
LR 0.059 0.152 0.059 0.654 1.762 0.152 0.654 3.280 1.762 0.654 1.762 0.654
H0 A A A A A A A A A A A A

VIOL 3 2 3 4 5 2 4 6 5 4 5 4

ΛVaR 1.5% (decreasing)

linear (VaR 5%)
LR 3.361 8.811 4.955 8.811 15.990 2.027 8.811 2.027 30.880 13.431 11.033 3.361
H0 A R R R R A R A R R R A

VIOL 8 11 9 11 14 7 11 7 19 13 12 8

linear (VaR 1%)
LR 0.987 6.779 0.289 4.955 11.033 0.229 0.289 2.027 30.880 3.361 11.033 0.987
H0 A R A R R A A A R A R A

VIOL 6 10 5 9 12 3 5 7 19 8 12 6

ΛVaR 1.5% (increasing)

linear (VaR 5%)
LR 0.229 1.143 0.229 0.003 0.289 1.143 0.003 0.987 0.289 0.003 0.289 0.003
H0 A A A A A A A A A A A A

VIOL 3 2 3 4 5 2 4 6 5 4 5 4

linear (VaR 1%)
LR 0.229 1.143 0.229 0.003 0.289 1.143 0.003 0.987 0.289 0.003 0.289 0.003
H0 A A A A A A A A A A A A

VIOL 3 2 3 4 5 2 4 6 5 4 5 4
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