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Abstract— In this work, we propose an approach that relies
on cues from depth perception from RGB-D images, where
features related to human body motion (3D skeleton features)
are used on multiple learning classifiers in order to recog-
nize human activities on a benchmark dataset. A Dynamic
Bayesian Mixture Model (DBMM) is designed to combine
multiple classifier likelihoods into a single form, assigning
weights (by an uncertainty measure) to counterbalance the
likelihoods as a posterior probability. Temporal information is
incorporated in the DBMM by means of prior probabilities,
taking into consideration previous probabilistic inference to
reinforce current-frame classification. The publicly available
Cornell Activity Dataset [1] with 12 different human activities
was used to evaluate the proposed approach. Reported results
on testing dataset show that our approach overcomes state of the
art methods in terms of precision, recall and overall accuracy.
The developed work allows the use of activities classification
for applications where the human behaviour recognition is
important, such as human-robot interaction, assisted living for
elderly care, among others.

I. INTRODUCTION

Human behaviour is an important issue in indoor environ-
ments namely for assistant and service robots applications.
By exploring recent advances in human pose detection using
an RGB-D sensors, many researches have been focused on
activity recognition [2] [3] [4]. Works relying on an RGB-D
sensors usually extract the human body silhouette and 3D
skeleton from depth images for computing motion features.
In [5], maximum entropy Markov model (MEMM) for
human activities classification was adopted where features
were modelled using a skeleton tracking system combined
with Histogram of Oriented Gradient (HOG) [6]. In [7], each
activity is modelled into sub-activities, while object affor-
dances and their changes over time were used with a multi-
class Support Vector Machine (SVM) for the classification.
In [8], a bag of kinematic features was used with a set of
SVMs for activity classification.

Other works on recognition of human activities focus their
research on how to efficiently model the attributes to suc-
cessfully obtain reliable classification [9] [10] [11]. In [12],
a descriptor which couples depth and spatial information to
describe humans body-pose was proposed. This approach is
based on segmenting masks from depth images to recognize
an activity.

Our research aims at developing artificial cognitive skills
towards endowing a robot to identify human behaviours in
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order to cope and interact with humans. In this context,
a robot that can recognize human everyday activities will
be useful for assisted care, e.g., interacting with elderly
people and monitoring them regarding strange or non-usual
behaviours. We use a RGB-D sensor in order to perceive the
environment. RGB-D data is used to generate a human 3D
skeleton model with semantic matching of body parts linked
by its joints. Based on this model, we extract periodical joints
motion and distances to describe multi-classes of actions.
This work thus brings contributions on human everyday
activities recognition using a new method called Dynamic
Bayesian Mixture Model (DBMM).

We incorporate temporal information in the classification
model propagating previous information to reinforce the
classification in the next time instant. This model is inspired
in the well-known Dynamic Bayesian Network (DBN) mod-
elling. DBMM allows the combination of multiple classifiers
into a single form, assigning a weight (confidence level)
given by an uncertainty measure (entropy) after analysing
the previous behaviour of each single classifier. We will
demonstrate that the proposed DBMM counterbalances sin-
gle classifiers, achieving classification performance superior
than benchmark methods.

The structure of the paper is as follows: Section II
presents the background of the Bayesian Mixture Models
and introduces the proposed approach; Section III presents
the proposed feature models using the 3D skeleton and the
learning stages; Section IV reports the obtained results; and
Section V brings the conclusion and final remarks.

II. PROBABILISTIC CLASSIFICATION MODEL

In order to increase classification performance on “un-
seen” human activity recognition, in this work we propose
a combination of single classifiers through the DBMM.
The concept of Bayesian Mixture Models (BMM) is used
and integrated into a dynamic process that incorporates the
temporal information (i.e., frame by frame classification).
In our approach, a DBMM is learned in order to combine
conditional probability outputs (likelihoods) from single clas-
sifiers. A weight is assigned to each classifier according to
previous knowledge (learning process), using an uncertainty
measure as confidence level.

Figure 1 depicts an overview of our approach (learning
and classification steps) where single classifiers are joint and
used as weighted posterior distributions in a designed general
dynamic model to classify everyday activities.
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Fig. 1: Overview of our proposed approach for human everyday activities recognition using the proposed DBMM strategy
for single classifiers combination.

A. Bayesian Mixture Models

Bayesian modelling has often been used for multimodal
fusion [13]. Mixture models are known as distributions of
parametric forms with multiple components where the prob-
ability distributions are commonly assumed Gaussian. Here,
the mixture model allows the combination of heterogeneous
classifier models into a single form. This way, a global
classifier can be updated as a filter using the weighted
mixture of classifiers. The general BMM is given as follows:

P(A) =
N

∑
i=1

wi×Pi(A), (1)

where N is the number of components (here represented by
the number of classifiers); wi is the weight of each Bayesian
classifier output Pi(A), and ∑

N
i=1 wi = 1.

The weights computation can be estimated from differ-
ent ways. In this work, we propose the DBMM using an
uncertainty measure as confidence level to weight multiple
classifiers as detailed in sequel.

B. Proposed DBMM - Dynamic Bayesian Mixture Model

The DBMM is comprised of a set of models A =
{A1

n,A
2
n, ...,A

T
n } where At

n is a model with n attributes, i.e.,
observed variables generated for some dynamic process at
each time instant t = {1,2...,T}. DBMM can be represented
as Π = (ϕ,θ) with a model structure ϕ composed of n
classifiers combined in a mixture model, and with the param-
eters θ . The DBMM has the following general probability
distribution function for each class C:

P(C,A) =
T

∏
t=1

P(Ct |Ct−1)×
n

∑
i=1

wi×Pi(A|Ct). (2)

We assumed the process holds the Markov property (recur-
sion) by taking the posterior of the previous time instant as
the prior for the present time instant (i.e., a dynamic update).
The formalization of the DBMM for a specific time instant is
achieved by rewriting (2), then obtaining the general model
for classification as follows:

P(C,A) = βP(Ct |Ct−1)×∑
n
i=1 wi×Pi(A|Ct),

with
{

P(Ct |Ct−1)≡ 1
C (uniform), t = 1

P(Ct |Ct−1) = P(Ct−1|A), t > 1
,

(3)

where:
• P(Ct |Ct−1) is the class transition probability distribu-

tion among class variables over time. A class C at time
t (Ct ) is conditioned to the class at time t− 1 (Ct−1).
This step describes the non-stationary behaviour of the
process and is applied recursively, where the previous
posterior of each class becomes the current prior, thus it
can be seen as a reinforcement from t−1 to the current
classification at t.

• Pi(At) is a-posteriori result of each single classifier
model ψi ∈ Ψ at time t. In this work, i = {1,2,3}
representing three single classifiers.

• The weight w in the model is estimated using an
Entropy-based confidence measure. Details are given in
the following subsection.

• β = 1
∑ j

(
P(Ct

j |C
t−1
j )×∑

n
i=1 wi×Pi(A|Ct

j)
) is a normalization fac-

tor avoiding the problem of numerical stability once
continuous update of belief is done, i.e., product in each
frame between the mixture model and prior, making that
C escapes from a large decimal number with probability
close to zero at the end of many multiplications.

C. Assigning Weights using Entropy

The Shannon entropy H [14] can be used as a measure
of the uncertainty associated with a random variable. In
the DBMM framework, H is adopted as a confidence level
to update the global probabilistic model. The weights are
obtained using the entropy value for each single classifier.
In a Bayesian framework, each model contributes to the
result of the inference in proportion to its probability. The
mixture model is presented directly as weighted sums of the
distributions, then the combination of different models into
one can be obtained.



We can compute the entropy of the posterior probabilities
previously observed as follows:

H(Pi(A)) =−∑
i

Pi(A) log(Pi(A)), (4)

where Pi(A) = P(C|A) represents the conditional probability
given the model of a specific classifier Ψ = ψi, i = {1, ...,3},
computed for a class C given a set of features model A =
{A1,A2, ...,An}. From the learning stage, a likelihood is given
by a probability density function (pdf ) P(A|C).

Knowing H, the weights w for each classifier i is estimated
by:

wi =
1−
(

Hi
∑

n
i=1 Hi

)
∑

n
i

(
1−
(

Hi
∑

n
i=1 Hi

)) , i = {1, ...,n}, (5)

where wi is the weight result for each one of the n possible
classifiers; Hi is the current value of entropy resultant from
(4) for each classifier. The denominator in (5) guarantees that
∑i wi = 1.

Given the confidence for each classifier that can be ob-
tained by analysing the performance of each classifier after a
period of time, the general model of classification will then
have the knowledge of the most reliable belief, thus each
classifier score will be smoothed by continuously multiplying
the classification belief by the correspondent weight.

D. Single Classifier Models Integrated in the DBMM
The first classifier used in the DBMM is a naive Bayes

(NB). Assuming the features are independent from each other
given the class variable, thus different pdf (i.e., one for each
feature model) is used, obtaining the following expression:

P(Ci|A) = αP(Ci)
N

∏
j=1

P(A j|Ci), (6)

where α = 1
∑i P(A|Ci)P(Ci)

is a normalization factor ensuring
that the left side of the equation sums up to one over Ci; N
is the number of independent feature models.

The second classifier used in the DBMM is a Bayesian
classifier without the naive assumption and modelled by
a mixture of Gaussian distributions (GMM). The GMM
learning process uses the Expectation Maximization (EM)
algorithm to estimate the parameters of each individual den-
sity function which attempts to find the maximum likelihood
estimation of a parameter. A global parameter that needs to
be set is the number of clusters kmax. An optimal kmax can be
estimated by Minimum Description Length (MDL) penalty
function.

Finally, the third classifier adopted in this work is a multi-
class SVM with a linear kernel. To obtain proper probabilistic
outputs, the SVM scores are converted into a distribution by
using a Sigmoid function as follows:

y =
1

(1+ e− f (x))
, (7)

where f (x) is the SVM output, and y is the normalized value
between [0,1].

III. 3D SKELETON-BASED FEATURES AND LEARNING
PROCESS

In this work, the features rely on existent relations between
body parts to capture motions with meaningful characteristics
of a person performing an activity. The features used for ac-
tivities recognition are extracted only from the 3D skeleton.

Skeleton detection is made given the raw data containing
the depth images, then the human skeleton is tracked using
the SDK (Software Development Kit) for RGB-D sensor:
the OpenNi’s [15] skeleton tracker is used for obtaining the
locations of the 15 joints of the human body.

A set of features A = {A1,A2, ...,An} are then extracted
from such skeleton as shown in Figure 2.

Fig. 2: Example of RGB-D images and the skeleton (Top
row: RGB images; bottom: depth images with the skeleton
in yellow). Fig. from the Cornell Activity Datasets [1].

We considered the skeleton frame of reference obtaining
all joints relative to the torso centroid instead of using the
sensor frame of reference. This step is applied for redun-
dancy reduction in the data to better represent the features
during an activity. This is done by defining the centroid of
the torso as origin and computing the joints distances to the
torso centroid.

Figure 3 presents an example of relative and absolute
motion during an activity, as well as some types of features
that we used in this work, distance between hands, distance
between hands and face, distance between shoulder/hip and
feet (stand or sit position), and changes in direction of the
hands, elbows and head by computing the distances of the
initial position of the member to the current position in {x,y}
directions.

Fig. 3: An example of absolute (purple) and relative motion
patterns from the skeleton joints (red, green, blue, yellow)
is shown in the left, while examples of features are given
in the right image: distances between body parts and torso
inclination.



A total of 14 features to characterize 12 activities (as
described in Section IV) are used as follows:
• The distances between hands and face, between the

left and right hands, shoulders and feet, hip and feet,
distance between the initial position of the hands at
instant t0 and the next frames are similarly computed
using the Euclidean distance. Let {x,y,z} be the 3D
coordinates of some body member b = { f ,h,w,s, fe, t}
meaning the face, hands, waist/hip, shoulders, feet and
torso receptively, which are given by the skeleton com-
putation, where the index j denotes a specific joint of the
3D skeleton. All the distances are computed as follows:

δ{ jb1, jb2} =
√

( jx
b1− jx

b2)
2 +( jy

b1− jy
b2)

2 +( jz
b1− jz

b2)
2.
(8)

• To find out if the two hands are close to the face at
same time, we compute:

δ{ jhh, j f } =
√
( jx

h1− jx
f )

2 +( jy
h1− jy

f )
2 +( jz

h1− jz
f )

2 +

+
√
( jx

h2− jx
f )

2 +( jy
h2− jy

f )
2 +( jz

h2− jz
f )

2.

(9)
The smaller this value, the smaller the distance between
the two hands and face.

• To compute the torso inclination, the initial distance
between the shoulders to the feet is represented by
δ{ js, j fe} as in (8), and consequently the difference to
the consecutive frames is also computed, then we have:

ι = δ
t=0
{ js, j fe}

−δ
t
{ js, j fe}

. (10)

Positive values of ι represents the torso inclination and
the negative ones are the opposite direction.

• The difference between the initial hand position at time
t = 0 (for left and right hands) and the consecutive
frames, as well as the left and right elbows and the
head in x and y coordinates are computed similarly as
shown in (10). Thus, 10 feature vectors are acquired for
the variations of hands, elbows and head in both, x and
y coordinates.

In case of modelling the features from a specific single
hand to the face, to avoid misunderstanding of right or left-
handed person, we extract the features by selecting from both
hands the one that has more distance variations relative to
the face position during the motion.

A. Learning by Fitting Probability Density Functions

For the NB Classifier, a set of valid parametric probability
distributions were tested using the Bayesian Information
Criterion (BIC) [16] for model selection, a score is assigned
for each pdf describing the best distribution to represent
the data. The list of distributions used to fit the data
were: Beta, Birnbaum-Saunders, Exponential, Extreme value,
Gamma, Generalized extreme value, Generalized Pareto,
Inverse Gaussian, Logistic, Log-logistic, Lognormal, Nak-
agami, Normal, Rayleigh, Rician, t location-scale, Weibull.

Among all tested pdf, usually the three distributions se-
lected were: Generalized Extreme Value Distribution, useful

to model the smallest or largest value among a large set
of random values allowing a continuous range of possible
shapes; t Location-Scale Distribution, useful for modelling
data distributions with heavier tails than the normal distri-
bution; and Weibull Distribution, positive only for positive
values of x, zero otherwise.

Figure 4 shows some examples of probability distribution
selection given different feature vectors (changes in direction
of the right hand and torso inclination). These distributions
were acquired for different activities, namely rinsing water
and wearing contact lens.
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Fig. 4: Examples of probability distribution selection for the
NB classifier using the modelled features. The left image
presents the right hand change in directions and the image
at right side shows the torso inclination. The values are in
mm.

The learning process for the second classifier is obtained
by using all features vector as a multidimensional informa-
tion through the GMM learning.

The entire set of GMM parameters is denoted as θ =
{(w j,µ j,Σ j)}k

j, where µ j represents the mean of a specific
cluster j, the covariance matrix is represented by Σ j, and
w j represents the weight of the cluster, which specifies how
likely each Gaussian is selected. The EM algorithm is used
to estimate the set of GMM parameters θ (input) and any
µ j,Σ j, is denoted as Gaussian according to the following
expression:

φ(x|µ j,Σ j),

, 1
(2π)d/2|Σ j |1/2 exp

(
− 1

2 (x−µ j)
T Σ
−1
j (x−µ j)

)
.

(11)

The pdf for the combination of the k models to search
for the most likely combination θ of models to explain the
observed data is obtained by (12). This means a learning of
mixture models, so that we are searching for the combination
of the proper clusters that better describes the input data,
achieving the subset of feature values xi, representing the
proper cluster j, where j = {1, ...,k}.

P(xi|θ) =
k

∑
j=1

w jφ(xi|µ j,Σ j), (12)

where w j > 0, ∑
j
k w j = 1 and θ = {(w j,µ j,Σ j)}k

j. More
details about the theory and use of the EM algorithm and
the GMM learning can be found in [17].



Finally, the third classifier is a linear-kernel SVM that
has been implemented using the LibSVM package [18].
Normalization was applied to the features set in such a way
that the values of minimum and maximum obtained during
the training stage were applied on the testing set. The SVMs
were trained according to the ‘one-against-one’ strategy, with
soft margin (or Cost) parameter set to 1.0, and classification
outputs were given in terms of probability estimates.

IV. EXPERIMENTAL RESULTS

A. Human Everyday Activities Dataset
Our approach was evaluated using the publicly available

Cornell Activity Datasets: CAD-60 [1] [5]. This dataset com-
prises video sequences of human everyday activities acquired
from a RGB-D sensor. There are 12 human everyday activ-
ities performed by 4 different subjects (two male and two
female, one of them being left-handed) in 5 different environ-
ments: office, kitchen, bedroom, bathroom, and living room.
The 12 activities are: rinsing mouth, brushing teeth, wearing
contact lens, talking on the phone, drinking water, opening
pill container, cooking (chopping), cooking (stirring), talking
on couch, relaxing on couch, writing on whiteboard, working
on computer. Additionally, and for generalization purposes,
the CAD-60 dataset has two more activities (random and
still) which are used only during classification performance
on testing sets.

Table I summarizes the dataset information, i.e., number
of frames performed by each person for each activity of this
dataset in different scenarios.

TABLE I: CAD-60 dataset: number of frames performed by
each person for the 12 activities in this dataset divided into
five different scenarios.

Person
Location Activity 1 2 3 4 Total

Bathroom

rinsing mouth 1746 1446 1503 1865 6560
brushing teeth 1351 1675 1783 1580 6389
wearing lens 835 1415 822 1100 4172
random+still 2962 2352 3007 3063 11384

Bedroom

talk. on phone 1525 830 1288 1308 4951
drinking water 1587 778 1310 1529 5204

opening container 749 963 621 1012 3345
random+still 2962 2352 3007 3063 11384

Kitchen

cook. chopping 1565 1664 1754 1910 6893
cook. stirring 1346 1349 1467 1835 5997

drinking water 1587 778 1310 1529 5204
opening container 749 963 621 1012 3345

random+still 2962 2352 3007 3063 11384
talk. on phone 1525 830 1288 1308 4951

Living drinking water 1587 778 1310 1529 5204
room talk. couch 1681 1539 1712 1812 6744

relax. couch 1447 1497 1379 1853 6176
random+still 2962 2352 3007 3063 11384

Office

talk. on phone 1525 830 1288 1308 4951
writ. board 1792 1637 1597 1792 6818

drinking water 1587 778 1310 1529 5204
work. computer 1265 1530 1222 1662 5679

random+still 2962 2352 3007 3063 11384

B. Classification Results
As long as the CAD-60 dataset brings the activities for

each scenario, we are also using the same strategy [5] used

by all the approaches reported in [1]. We will present the
classification results in terms of Precision (Prec), Recall
(Rec) and confusion matrix for each scenario and overall
(shown in Fig.5). The assessment criteria was done adopting
the leave-one-out cross validation test. The idea is to verify
the capacity of generalization of the classifier by using the
strategy of “new person”, i.e, learning from different persons
and testing with an unseen person. The classification is made
for each individual frame to account for the accuracy of the
frames correctly classified.
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Fig. 5: Classification Results: Leave-one-out cross-validation
confusion matrix for each scenario and the overall confusion
matrix using the DBMM for the “new person” setting.

Figure 5 shows the classification results where the last
column of each confusion matrix has the random activity as
neutral class, enclosing the activities that were not classified
with a high confidence, thus when the classification is smaller
than 0.5, even with correct classification, we set as neutral.
This is done to show the confidence characteristic of our
approach. For each scenario we have added a new activity
(random+still movements) as presented in the last row of
the confusion matrices. Notice that, the random activity was
not trained, but tested against the other trained activities
expecting the random+still movements will be set in the last
column (random).

The results show that using our designed ensemble, we
obtained improvements in the classification compared with



other state of the art methods presented in [1]. Actually,
our results overcame all works presented in the ranked table
(precision and recall rates) at the CAD-60 website up to
the current date. The overall measure obtained in this work
(taking the non-trained random activity into consideration to
calculate the precision and recall rates) were: global precision
91.26% and recall 89.56%. For comparison purposes, Table
II summarizes the results from single classifiers and a simple
averaged ensemble compared with the proposed DBMM
for the living room (scenario with more misclassification),
demonstrating that our approach outperformed the other
classifiers. Table III presents the classification rates for the
“new person” tested in each scenario. Finally, Table IV shows
our approach compared with other state of the art methods
that used the CAD-60. This table shows only some selected
works (the ones with higher precision) up to date.

TABLE II: Results on the living room scenario of CAD-
60 dataset (“new person”) using single classifiers, a simple
averaged ensemble (AV) and the proposed DBMM.

Activities: 1-talk.on phone; 2-drink.water; 3-talk.couch; 4-relax.couch.
Location Act. SVM Bayes NB AV DBMM

Liv.Room

1 96.5% 92.8% 44.9% 78.1% 100%
2 92% 82.1% 71.4% 81.8% 98.9%
3 99% 98.3% 100% 99.1% 100%
4 82.9% 85.6% 75% 81.1% 96.4%

Average: 92.6% 89.7% 72.8% 85% 98.8%

TABLE III: Performance on the CAD-60 testing dataset
(“new person”). Results are reported in terms of Precision
(Prec) and Recall (Rec).

DBMM
Location Activity Prec Rec

Bathroom

rinsing mouth 52.53 % 100.00 %
brushing teeth 99.86 % 100.00 %
wearing lens 99.95 % 100.00 %
random+still 100.00 % 47.87 %

Average 88.10 % 86.97 %

Bedroom

talking on phone 70.44 % 100.00 %
drinking water 100.00 % 99.75 %

opening container 99.58 % 100.00 %
random+still 100.00 % 81.74 %

Average 92.50 % 95.37 %

Kitchen

cooking chopping 47.65 % 99.12 %
cooking stirring 99.49 % 99.43 %
drinking water 99.35 % 100.00 %

opening container 99.64 % 100.00 %
random+still 99.95 % 50.18 %

Average 89.22 % 89.75 %
talking on phone 46.06 % 100.00 %

Living room drinking water 100.00 % 98.89 %
talking on couch 96.83 % 100.00 %
relaxing on couch 99.50 % 96.42 %

random+still 99.93 % 49.29 %
Average 88.46 % 88.92 %

Office

talking on phone 85.14 % 100.00 %
writing on whiteboard 100.00 % 100.00 %

drinking water 100.00 % 98.85 %
working on computer 99.91 % 100.00 %

random+still 99.98 % 92.88 %
Average 97.01 % 98.34 %

Overall Average 91.06 % 91.87 %

TABLE IV: Comparison of methods that used the CAD-60.

Method Prec. Rec.
Proposed DBMM 91.1% 91.9%
Zhang et al. [8] 86% 84%

Koppula et al. [7] 80.8% 71.4%
Gupta et al. [12] 78.1% 75.4%

Ni et al. [11] 75.9% 69.5%
Yang et al. [9] 71.9% 66.6%

Piyathilaka et al. [10] 70% 78%
Sung et al. [5] 67.9% 55.5%

V. CONCLUSION

A probabilistic approach, named DBMM, for activities
recognition using 3D skeleton features from RGB-D images
was proposed. DBMM combines multiple classifiers into
a designed dynamic model given a confidence level for
each single classifier. An uncertainty measure to weight
each single classifier during a learning phase is computed
and afterwards the general classification model compensates
the probability outputs into a single distribution form. This
weighting strategy demonstrated to be very effective given
a set of suitable feature models. The CAD-60 dataset was
used to evaluate the performance of our approach. Results
show that our approach is suitable for activities recognition.
The classification performance overcame other state-of-the-
art methods ranked at the CAD-60 website. Future work will
address exploitation of our approach in other applications.
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