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Abstract
Several network-data envelopment analysis (DEA) performance assessment models have been proposed in the literature;

however, the conflicts between stages and insufficient number of decision-making units (DMUs) challenge the researchers.

In this paper, a novel game-DEA model is proposed for efficiency assessment of network structure DMUs. We propose a

two-stage modeling, where in the first stage network is divided into several sub-networks; we at the same time categorize

input variables to measure efficiency of sub-networks within each input category. In the second stage, we calculate

efficiency of the network by aggregating efficiency scores of sub-networks within each category. In this way, the issue of

insufficient number of DMUs when there are many input/output variables can be handled as well. One of the main

contributions of this paper is assuming each category and stage as a player in Nash bargaining game. Using the concept

borrowed from Nash bargaining game model, the proposed game-DEA model tries to maximize distances of efficiency

scores of each player form their corresponding breakdown points. The usefulness of the model is presented using a real

case study to measure the efficiency of bank branches.

Keywords Data envelopment analysis � Network DEA � Game DEA � Bargaining game � Performance assessment �
Additional inputs � Banking

1 Introduction

Efficiency scores of decision-making units (DMUs) is one

of the important criteria that managers and policy makers

use for future planning to improve the performance of the

DMUs. Several parametric and nonparametric methods in

measuring efficiency have been proposed, e.g. corrected

ordinary least-squares (COLS), stochastic frontier analysis

(SFA), data envelopment analysis (DEA) [1]. Perhaps a

nonparametric method, DEA, proposed by Charnes et al.

[2] is the most popular approach for measuring efficiency.

DEA is an evaluation methodology for measuring the

relative efficiency of homogenous DMUs when there are

multiple inputs and multiple outputs.

Since DEA has been introduced, its application has been

verified for solving a wide range of problems. For example,

DEA has been applied to evaluate the efficiency of the

banks, agriculture, hospitals, universities, airlines, envi-

ronmental sustainability, supply chain management and

many other areas (see Emrouznejad and Yang [3] and

Emrouznejad and De Witte [4]).

Here we present the first DEA model has been proposed

by Charnes et al. [2].

Suppose there are n DMUs, where each DMUjðj ¼
1; . . .; nÞ consumes m inputs, xij (i = 1, …, m), to produce

s outputs, yrj (r = 1, …, s).Considering ur (r = 1, …, s)

and vi (i = 1, …, m) as relative importance of each output,

and input, respectively, the DEA formulation to calculate

the relative efficiency of a given DMUO is presented as

follows [2]:
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Max
Xs

r¼1

uryro

s.t.

Xs

r¼1

uryrj �
Xm

i¼1

vixij � 0; j ¼ 1; . . .; n

Xm

i¼1

vixio ¼ 1;

ur [ 0; r ¼ 1; . . .; s;

vi [ 0; i ¼ 1; . . .;m

ð1Þ

where xio and yro are the ith input and rth output of under

assessing DMU (DMUO).

Model (1) runs for each DMU, and the efficiency scores

are calculated as well as relative importance of inputs and

outputs. One of the issues with using DEA is large number

of input and output variables when there is not enough

number of DMUs. It is a rule of thumb that the relation

between the number of DMUs (n) and the number of inputs

(m) and outputs (s) is usually be 3(m ? s)\ n [5].

Accordingly, DEA may not be able to distinguish DMUs if

we consider all relevant inputs and outputs, since it

requires large number of DMUs. Therefore, researchers

usually eliminate some of the variables if number of DMUs

is not large enough. However, this means ignoring some

information which may leads to incorrect performance

evaluation. This is an important shortcoming in DEA, since

in the most real-world applications, the number of existing

DMUs is not sufficient as compared to number of input and

output variables. Researchers have tried to addresses this

issue using various approaches, e.g. a multivariate statis-

tical approach for reducing the number of inputs and out-

puts proposed by [6]. Cook and Zhu [7] proposed a simple

ratio analysis for classifying inputs and outputs. Specifi-

cally, to overcome the mentioned limitation and to increase

the discrimination power of DEA, Rezaee et al. [8] applied

the Nash bargaining game model to determine the effi-

ciency of DMUs when the number of DMUs is insufficient,

by comparing DMUs while dividing them in two different

categories of measures in the competitive environment. In

the proposed approach by Rezaee et al. [8] each category of

inputs is assumed to act as an independent bargaining

player for a better payoff. They have applied the model to

measure the efficiency of to 24 thermal power plants.

On the other hand, many recent publications focused on

network structure of decision-making units. In real-world

applications, most DMUs have complex network structure;

hence, considering a simple structure which contains only

one stage for all DMUs may not be logical. In Fig. 1, three

types of classical network DEA structure including typical

two-stage, parallel and serial structures are presented

(Fig. 1a–c, respectively) [9].

The network DEA models have been applied to evaluate

the efficiency of a wide variety of applications, such as

universities [10], electricity power production and distri-

bution plants [11], investment trust corporations [12],

production systems [13], sustainability of supply chain

management systems [14, 15], energy saving and emission

reduction [16], banking [17], bus transit systems [18],

airlines [19], and insurance industry [20].

It is obvious that analyzing efficiency of complex

organizations with network structures is more realistic than

non-network structures analysis. Illustrated structures in

Fig. 1 clearly show that intermediate inputs and outputs in

all stages can be considered by network DEA, whereas the

classical DEA model considers the initial inputs and final

outputs of a DMU only. Also, the classical DEA model

optimizes the efficiency score of a DMU, by calculating the

ratio between weighted initial inputs and final weighted

outputs. In contrast, in the network DEA models, not only

the score of the whole network is calculated but also the

efficiency score of each stage is obtained by considering

ratios of weighted inputs to weighted outputs in each single

stage.

Another important shortcoming of classical DEA is its

sensitivity to structure of the network. Applying classic

DEA in network structure confronts some conflicts due to

the fact that the output of a stage is an input for a subse-

quent stage; hence, the complexity of this issue must be

handled in the model. The issue is that while the classic

DEA model tries to maximize the efficiency of first stage

by increasing the intermediate outputs in the first stage, the

model is expected to decrease these outputs since they are

needed for using as inputs in the following stage simulta-

neously. Some researches applied the classic DEA

methodology separately for each stage without considering

the link between the two stages to assess the efficiency in

network structure DEA. Wang et al. [21] and Seiford and

Zhu [22] were the first researchers who studied these

conflicts. Other researchers focused on linked network

DEA approaches, relational network DEA approach and

game theory models (cooperative and non-cooperative

approaches) [for more information see Halkos et al. [23]).

For example Kao and Hwang [24] proposed an approach

which combines efficiency scores of the two stages in a

multiplicative (geometric) manner. Chen et al. [25] used a

weighted additive model to aggregate two stages and

decomposed the efficiency of the overall process. Du et al.

[26] proposed a Nash bargaining game model to assess the

efficiency of DMUs that have two-stage structure. Specif-

ically, Du et al. [26] considered each stage as a player in

Nash bargaining game.

In network DEA models, especially where a DMU has

more than two stages (multi-stage structures), beside the

problem of conflicts between stages, the number of
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assessed DMUs should be large enough due to variety

number of inputs and output used within sub-networks. In

the current paper, we apply two-player and three-player

Nash bargaining game model to overcome the shortcom-

ings of classic DEA in the DMUs with network structure

when the number of DMUs is not sufficient. Considering

the case of bank branches, we first identify the network

structure, using the most common input and output vari-

ables in the literature and by considering the expert opin-

ions. This structure is presented in Fig. 2 that considered a

Fig. 1 Network structure of DMUs using DEA models.

Fig. 2 Proposed network DEA structure
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network with five sub-process; m1 and m2 are the number

of inputs in sub-process 1 and sub-process 3, respectively.

Where L1 is the number of inputs for sub-process 2 which

are outputs from sub-process 1. Also L3 is the number of

inputs for sub-process 4 which are outputs from sub-pro-

cess 3. L2 and L4 are the number of additional inputs in sub-

process 2 and sub-process 4, respectively. D1 shows the

number of sub-process 5 inputs which are the outputs from

sub-process 2 (sub-network 1). D2 represents the number of

inputs of sub-process 5 which are output of sub-process 4

(sub-network), where s is the number of outputs from sub-

process 5 which are final outputs of network.

As it can be seen, this network has a hybrid structure of

serial network and parallel network. While the trend of

sub-processes 1, 2 and 5 (and similarly; sub-process 3, 4

and 5) is a serial network, the trend between sub-processes

1 (and 2) with sub-processes 3 (and 4) is parallel. As shown

in Fig. 2, both problems of conflicts between stages and

shortage of the number of DMUs may happen in this

structure.

In proposed two-player and three-player Nash bargain-

ing game model, we consider two and three distinct sub-

networks, respectively. Also, each sub-process is assumed

as a player which bargains with other players for a better

payoff. Note that this payoff is the efficiency of each

individual stage.

The rest of this paper is organized as follows: Sect. 2

provides a review on Nash bargaining game. This is fol-

lowed by the approach developed for performance assess-

ment of network DEA based on bargaining game model in

Sect. 2.2. Also, the theoretical properties of proposed

models are discussed in Sect. 2.3. In order to show the

capability of the proposed model, a real case study of an

Iranian banking system is studied in Sect. 3. Section 4

shows the applicability of the proposed model in measuring

efficiency of bank branches by analyzing the results.

Finally, conclusion and direction for future research are

drawn in Sect. 5.

2 Proposed approach

2.1 Bargaining game

Nash bargaining game model is a cooperative game theory

model which first introduced by Nash Jr. [27] for two-

person games and extended by Harsanyi [28] for n-person

games. Bargaining game model divides the benefits

between players based on their competition and bargaining

power. The n-person Nash–Harsanyi bargaining game

model is:

max
X2S

YN

i¼1

ðUiðXÞ � diÞ

s.t.

UiðXÞ� di 8i 2 1; . . .;Nf g
X 2 S

ð2Þ

where Ui and di are utility and breakdown point of player i,

respectively. di is parameters of the model. It should be

noted that players would withdraw from the game, if they

obtain benefits lower than their breakdown point. In fact,

breakdown point is the starting point for bargaining. X is a

discrete variable for continuous strategy in game theory

context. Ui is the utility of player i in strategy X. S is the

feasible set of the model. In model (2), the feasible set must

be convex and contain some payoff vectors in a way that

benefit of each player is greater than its breakdown point

[27].

In this paper, each sub-process and inputs’ category is

considered as a player in Nash bargaining game model and

the efficiency score for each one is considered as utility of

that player. Borrowing the idea of Nash bargaining game

model as a one of cooperative models in game theory, the

goal of the proposed approach is maximizing the overall

efficiency of a sub-network or network by considering the

efficiency scores of each sub-network or inputs’ category

as a player. We have used the Nash bargaining game model

since, firstly, the Nash bargaining model is a cooperative

model which chooses a strategy to maximize the utility of

all players, simultaneously. Hence, by considering each

sub-processes and input categories as the players, the

optimal weights to maximize the efficiency of sub-net-

works can be obtained by considering the weights of

inputs/outputs as strategies and efficiency of each sub-

process as its utility. Secondly, by dividing the network

into sub-networks and sub-networks into sub-process and

considering each sub-process as a player, the number of

inputs/outputs used for evaluation of each player can be

decreased and so DEA can be used even with small number

of DMUs.

2.2 Breakdown points in proposed model

The breakdown point is the determining parameter in

model (2). Binmore et al. [29] argued that the choice of

breakdown point completely depends on players’ view-

points and is a matter of modeling judgment in Nash bar-

gaining game. To evaluate efficiency of DMUs using

proposed game-DEA model in this paper, the breakdown

point must be calculated for each category and sub-process

which are considered as a player in Nash bargaining game

model. To estimate the breakdown points, we use the

approach proposed by Du et al. [26]. They added a virtual
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DMU with the maximum amount of inputs while producing

the least amount of output values for each stage. Suppose

xi
max = max j{xij}and yr

min = min j{yrj} for each player.

Since each DMU uses maximum amount of inputs to

produce the least amount of outputs, efficiency scores

obtained by classic DEA for (xi
max, yr

min) represents the

least achievable efficiency for each player. We use this

approach to determine breakdown point for each player.

2.3 Network game-DEA model

Consider a network structure process shown in Fig. 2. It is

supposed that there are n DMUs where each DMU has five

different sub-processes. Because of multi-stage structure of

DMUs and the number of inputs and outputs in each sub-

process, both problems of conflicts between stages and

needed number of DMUs are considered in this study. Note

that the sufficient number of DMUs is obtained using

Eq. (3), considering the structure shown in Fig. 2:

n[ 3ðm1 þ m2 þ L1 þ L2 þ L3 þ L4 þ D1 þ D2 þ sÞ ð3Þ

where m1, m2, L1, L2, L3, L4, D1, D2 and s are the number

of inputs and outputs in each category and sub-network

which have been defined in previous section.

In our proposed game-DEA model, we have separated

each network (shown in Fig. 2) to three different sub-net-

works. Also for sub-networks 1 and 2 inputs are divided in

two different categories (category m1 and m2 inputs for

sub-network 1 and category m3 and m4 inputs for sub-

network 2). For sub-network 3, inputs are categorized in

‘‘inputs which are outputs from sub-network 1’’ and ‘‘in-

puts which are from sub-network 2’’ (see Fig. 3 for more

details). It should be noted that dividing a network into

sub-networks must be based on the operation within each

DMU. The proposed structure is for the case we will be

using later in banking efficiency, as it will be shown each

sub-network has a defined task. Also, categorizing of inputs

must be rational. The procedure of identifying the sub-

networks, network’s structure, inputs/outputs and catego-

rizing the inputs is explained in detail in Sect. 3.

In sub-networks 1 and 2, there are two types of inputs,

each considered to be a player in sub-process 1 and second

sub-process 2. We, therefore, proposed a model to evaluate

the efficiency of each sub-network (e1o; e
2
o) using three-

person bargaining game model. The outputs from sub-

networks 1 and 2 are considered to be input to sub-network

3, as so we used two players bargaining game model for

efficiency assessment (eo
3). Finally, efficiency of DMUO, eo,

is calculated using geometric mean of e1o; e
2
o and eo

3. In the

proposed model, the sufficient number of DMUs is:

n[max
3ðm1 þ L1Þ; 3ðm2 þ L1Þ; 3ðL1 þ L2 þ D1Þ; 3ðm3 þ L3Þ;

3ðm4 þ L3Þ; 3ðL3 þ L4 þ D2Þ; 3ðD1 þ sÞ; 3ðD2 þ sÞ

( )

ð4Þ

Therefore, as shown in Eq. (4) in comparison with

Eq. (3), the needed number of DMUs in our model is

significantly low.

Fig. 3 Structure of DMUs: sub-networks and categorized inputs
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2.3.1 Game-DEA model for sub-network 1

In our proposed game-DEA model, each network is sepa-

rated (shown in Fig. 2) to three different sub-networks.

Also for sub-networks 1 and 2, inputs are arranged in two

different categories. For sub-network 1, the first and second

types of inputs in sub-process 1 have been considered as

two different players. Sub-process 2 is the third player (as

shown in Fig. 3). Based on model (2) and in order to assess

the efficiency of sub-network 1, the proposed three-person

bargaining game DEA model can be expressed as follows: .

max e1o ¼
PL1

l¼1 q
11
l p11loPm1

i¼1 v
11
i x11io

� h1FT

 ! PL1
l¼1 q

11
l p11loPm2

k¼1 v
12
k x12ko

� h1ST

 !

PD1

d¼1 w
1
dz

1
doPL1

l¼1 q
11
l p11lo þ

PL2
b¼1 q

12
b p12bo

� h2Sp

 !

s.t.
PL1

l¼1 q
11
l p11loPm1

i¼1 v
11
i x11io

� h1FT
PL1

l¼1 q
11
l p11loPm2

k¼1 v
12
k x12ko

� h1ST
PD1

d¼1 w
1
dz

1
doPL1

l¼1 q
11
l p11lo þ

PL2
b¼1 q

12
b p12bo

� h2Sp

PL1
l¼1 q

11
l p11ljPm1

i¼1 v
11
i x11ij

� 1 j ¼ 1; . . .; n

PL1
l¼1 q

11
l p11ljPm2

k¼1 v
12
k x12kj

� 1 j ¼ 1; . . .; n

PD1

d¼1 w
1
dz

1
djPL1

l¼1 q
11
l p11lj þ

PL2
b¼1 q

12
b p12bj

� 1 j ¼ 1; . . .; n

v11i ; v12k ; q111 ; q12b ;w1
d [ 0; i ¼ 1; . . .;m1;

k ¼ 1; . . .;m2; l ¼ 1; . . .; L1; b ¼ 1; . . .; L2;

d ¼ 1; . . .;D1:

ð5Þ

where h1FT, h1ST and h2SP are breakdown points for first

category of inputs, second category of inputs and sub-

process 2, respectively. First, second and third constraints

are bargaining breakdown points constraints, where the

efficiency of each category and sub-network must be

greater than its breakdown point. Fourth, fifth and sixth

constraints are related to efficiency, where the efficiency

must be\ 1.

Lemma 1 Feasible set of model (5) is convex.

Proof

ðv0111 ; v0112 ; . . .v011m1
; v0121 ; v0122 ; . . .; v012m2

; q0111 ; q0112 ; . . .; q011L1
; q0121 ;

q0122 ; . . .; q012L2
;w01

1 ;w
01
2 ; . . .;w

01
D1
Þ

and

ðv00111 ; v00112 ; . . .v0011m1
; v00121 ; v00122 ; . . .; v0012m2

; q00111 ; q00112 ; . . .; q0011L1
;

q00121 ; q00122 ; . . .; q0012L2
;w001

1 ;w001
2 ; . . .;w001

D1
Þ

are feasible solutions for model (5). For any k 2 [0, 1], we

have:

kv011i þ ð1� kÞv00111 [ 0; i ¼ 1; . . .;m1

kv012k þ ð1� kÞv0012k [ 0; k ¼ 1; . . .;m2

kq011l þ ð1� kÞq0011l [ 0; l ¼ 1; . . .; L1

kq012b þ ð1� kÞq012b [ 0; b ¼ 1; . . .; L2

kw01
d þ ð1� kÞw01

d [ 0; d ¼ 1; . . .;D1

For example, consider the constraint

PL1

l¼1
q11
l
p11
loPm1

i¼1
v11
i
x11
io

� h1FT,

since
PL1

l¼1 q
11
l p11lo [ 0 and

Pm1

i¼1 v
11
i x11io [ 0, then this

constraint is equal to h1FT
Pm1

i¼1 v
11
i x11io �

PL1
l¼1 q

11
l p11lo , for

all j = 1,…,n. Therefore, we have:

h1FT
Xm1

i¼1
kv011i þ ð1� kÞv00111

� �
x11io ¼ kh1FT

Xm1

i¼1
v011i x11io

þ ð1� kÞh1FT
Xm1

i¼1
v00111 x11io

� k
XL1

l¼1
q011l p11lo þ ð1� kÞ

XL1

l¼1
q0011l p11lo

¼
XL1

l¼1
kq011l þ ð1� kÞq0011l

� �
p11lo

It is assumed that data related to DMUs are positive. The

similar proof can be used for other constraints; conse-

quently, the feasible region is convex. h

Now, assume t1 ¼
Pm1

i¼1 v
11
i x11io

� ��1
, t2 ¼

Pm2

k¼1

�

v12k x12koÞ
�1
, t3 ¼

PL1
l¼1 q

11
l p11lo þ

PL2
b¼1 q

12
b p12bo

� ��1
, l1l ¼

t1q
11
l , l2l ¼ t2q

11
l , l3d ¼ t3w

1
d, �v

11
i ¼ t1v

11
i , �v12k ¼ t2v

12
k , �q11l ¼

t3q
11
l and �q12b ¼ t3q

12
b . Accordingly, we have l2l ¼ t2

t1
l1l ,

hence by denoting c = t2/t1, model (5) converts into the

following nonlinear model:

max e1o ¼
XL1

l¼1

l1l p
11
lo � h1FT

 !
XL1

l¼1

cl1l p
11
lo � h1ST

 !

XD1

d¼1

l3dz
1
do � h2Sp

 !
s.t.
XL1

l¼1

l1l p
11
lo � h1FT

c
XL1

l¼1

l1l p
11
lo � h1ST

XD1

d¼1

l3dz
1
do � h2Sp

XL1

l¼1

l1l p
11
lj �

Xm1

i¼1

�v11i x11ij � 0 j ¼ 1; . . .; n
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c
XL1

l¼1

l1l p
11
lj �

Xm2

k¼1

�v12k x12kj � 0 j ¼ 1; . . .; n

XD1

d¼1

l3dz
1
dj �

XL1

l¼1

�q11l p11lj �
XL2

b¼1

�q12b p12bj � 0 j ¼ 1; . . .; n

Xm1

i¼1

�v11i x11io ¼ 1

Xm2

k¼1

�v12k x12ko ¼ 1

XL1

l¼1

�q11l p11lo þ
XL2

b¼1

�q12b p12bo ¼ 1

l1l ; l
3
d; �v

11
i ; �v12k ; �q111 ; �q12b ; c[ 0; i ¼ 1; . . .;m1;

k ¼ 1; . . .;m2; l ¼ 1; . . .; L1; b ¼ 1; . . .; L2;

d ¼ 1; . . .;D1:

ð6Þ

Model (6) is nonlinear model in objective function and

has (n ? 1) constraints.

To standardize efficiency score of sub-network 1 cal-

culated by (6), we use the following equation:

e1So ¼ e1o
max

j
e1j

ð7Þ

Lemma 2 Model (6) is always feasible and the upper

bound of its objective function is equal to unit.

Proof Consider an arbitrary solution as follows:

l1l ¼
1

L1p
11
lo

; l3d ¼
1

D1z
1
do

;

�v11i ¼ 1

m1x
11
ij

; �v12k ¼ 1

m2x
12
kj

; 8j

�q11l ¼ 1

2L1p
11
lj

; �q12b ¼ 1

2L2p
12
bj

; 8j

h1FT ¼ h1ST ¼ h2Sp ¼ 0;

8
>>>>>>>>><

>>>>>>>>>:

It is clear that above solution is a feasible solution for

Model (6). h

2.3.2 Game-DEA model for sub-network 2

Similar to sub-network 1, for sub-network 2, we considered

first and second types of inputs in sub-process 3 as two

different players and sub-process 4 as third player (as

shown in Fig. 3). Similar to the previews subsection, the

converted proposed three-person bargaining game-DEA

model to assess the efficiency of this sub-network in

DMUO can be expressed as:

max e2o ¼
XL3

l¼1

l1l p
21
lo � h2FT

 !
XL3

l¼1

cl1l p
21
lo � h2ST

 !

XD2

d¼1

l3dz
2
do � h4Sp

 !

s.t.

XL3

l¼1

l1l p
21
lo � h2FT

c
XL3

l¼1

l1l p
21
lo � h2ST

XD2

d¼1

l3dz
2
do � h4Sp

XL3

l¼1

l1l p
21
lj �

Xm3

i¼1

�v21i x21ij � 0 j ¼ 1; . . .; n

c
XL3

l¼1

l1l p
21
lj �

Xm4

k¼1

�v22k x22kj � 0 j ¼ 1; . . .; n

XD2

d¼1

l3dz
2
dj �

XL3

l¼1

�q21l p21lj �
XL4

b¼1

�q22b p22bj � 0 j ¼ 1; . . .; n

Xm3

i¼1

�v21i x21io ¼ 1

Xm4

k¼1

�v22k x22ko ¼ 1

XL3

l¼1

�q21l p21lo þ
XL4

b¼1

�q22b p22bo ¼ 1

l1l ; l
3
d; �v

21
i ; �v22k ; �q21l ; �q22b ; c[ 0; i ¼ 1; . . .;m1;

k ¼ 1; . . .;m2; l ¼ 1; . . .; L1; b ¼ 1; . . .; L2;

d ¼ 1; . . .;D1:

ð8Þ

It should be noted that all proven lemmas in Sect. 2.3.1

are also valid for model (8).

Similar to Eq. (7), to standardize efficiency score of sub-

network 1 calculated by (8) we use the following equation:

e2So ¼ e2o
max

j
e2j

ð9Þ

2.3.3 Game-DEA model for sub-network 3

In sub-network 3, we consider the outputs from sub-net-

work 1 and sub-network 2 as two different players (as

shown in Fig. 3). The proposed two-person bargaining

game-DEA model to assess the efficiency of sub-network 3

in DMUO can be expressed as follow:
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max e3o ¼
Ps

r¼1 uryroPD1

d¼1 w
1
dz

1
do

� h52Sp

 ! Ps
r¼1 uryroPD2

h¼1 w
2
hz

2
ho

� h54Sp

 !

s.t.
Ps

r¼1 uryroPD1

d¼1 w
1
dz

1
do

� h52Sp
Ps

r¼1 uryroPD2

h¼1 w
2
hz

2
ho

� h54Sp
Ps

r¼1 uryrjPD1

d¼1 w
1
dz

1
dj

� 1 j ¼ 1; . . .; n

Ps
r¼1 uryrjPD2

h¼1 w
2
hz

2
hj

� 1 j ¼ 1; . . .; n

w1
d;w

2
h; ur [ 0;

d ¼ 1; . . .;D1; h ¼ 1; . . .;D2; r ¼ 1; . . .; s:

ð10Þ

It easily can be shown that all proven lemmas in

Sect. 2.3.1 are also true for model (10).

Similar to proposed three-person game-DEA models, let

t1 ¼
PD1

d¼1 w
1
dz

1
do

� ��1
, t2 ¼

PD2

h¼1 w
2
hz

2
ho

� ��1
, l1r ¼ t1ur,

l2r ¼ t2ur, x1
d ¼ t1w

1
d and x2

h ¼ t2w
2
h. By these assumptions

we have l2r ¼ t2
t1
l1r ; therefore, by denoting c = t2/t1, model

(10) converts into following nonlinear model:

max e3o ¼
Xs

r¼1

l1r yro � h52Sp

 !
c
Xs

r¼1

l1r yro � h54Sp

 !

s.t.
Xs

r¼1

l1r yro � h52Sp

c
Xs

r¼1

l1r yro � h54Sp

Xs

r¼1

l1r yrj �
XD1

d¼1

x1
dz

1
dj � 0 j ¼ 1; . . .; n

c
Xs

r¼1

l1r yrj �
XD2

h¼1

x2
hz

2
hj � 0 j ¼ 1; . . .; n

XD1

d¼1

x1
dz

1
do ¼ 1

XD2

h¼1

x2
hz

2
ho ¼ 1

l1r ;x
1
d;x

2
h; c[ 0; d ¼ 1; . . .;D1; h ¼ 1; . . .;D2;

r ¼ 1; . . .; s:

ð11Þ

To standardize the efficiency score of sub-network 3

calculated by (11), we use the following equation:

e3So ¼ e3o
max

j
e3j

ð12Þ

2.3.4 Efficiency scores of whole network

Using models 6, 8 and 11, first the efficiency scores of each

sub-network have been obtained. Then the efficiency of the

entire network is calculated using the average of all sub-

networks. Although different approaches can be used for

calculating mean value, the weighted sum mean, harmonic

mean, geometric mean and weighted geometric mean were

used. According to the final results, weighted geometric

mean was selected as the best repression for efficiency

score of the entire network. The considered procedure for

obtaining mean value is as follows:

By assessing the efficiency of sub-networks as explained

above, the efficiency of DMUO can be calculated as:

Eo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1So Þa1 � ðe2So Þa2 � ðe3So Þa3ða1þa2þa3Þ

q
ð13Þ

obviously eo
1S, eo

2S, eo
3S B 1, therefore Eo B 1 for all

o 2 {1,…, n}.

In Eq. (13), a1, a2 and a3 are the importance factors, i.e.

weights of sub-network 1, 2 and 3, respectively. In this

study, we have got the expert opinion who suggested that

sub-network 3 (named profitability stage) is twice more

important than the other two sub-networks; hence, we

assumed: a3 = 2 is equal to 2 and a1 = a2 = 1. Therefore;

Eo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1So � e2So � ðe3So Þ24

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1So � e2So

q
� e3So

r
ð14Þ

To standardize efficiency score of DMUO calculated by

(14), we use the following equation:

ES
o ¼

Eo

max
j

Ej

ð15Þ

2.4 Algorithm for assessing performance
in network DEA

According to above discussions, the algorithm for deter-

mining efficiencies of sub-networks and networks is sum-

marized as follows:
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Algorithm:
Step 0. Start 
Step 1. Identify network structure, inputs and outputs
Step 2. Collect data
Step 3. Identify sub-networks and divide network to sub-networks
Step 4. Categorize inputs in different groups
Step 5. Determine efficiency of each sub-network using models 6, 8 and 11
Step 6. Standardize the obtained scores in step 5 using Eqs. 7, 9 and 12
Step 7. Rank sub-networks
Step 8. Determine efficiency of each DMU using Eq. 14
Step 9. Standardize efficiency score using Eq. 15
Step 10. Rank DMUs
Step 11. Finish

2.5 Assessing networks using the proposed
model

We propose a new approach to performance evaluation of

DMUs with network structure using DEA. Our proposed

model is based on network structure shown in Fig. 3, but

indeed, the main idea here is dividing a network into some

sub-networks and classifying inputs to several categorizes.

Therefore, the proposed approach can be used as a

framework for performance assessment in other applica-

tions with network structures such as manufacturing, sup-

ply chain management, assessment of educational

institutions. However, depending on the application, it is

important to draw a correct structure of sub-networks and

identify suitable inputs and outputs in each stage. In the

proposed approach, we could consider any type of net-

works including: parallel network, series network or even

mix of parallel and series approaches as shown in Fig. 4.

3 A real case study of Iranian banking

In this section, to show ability of proposed approach,

models have been applied for performance assessment of

35 selected branches of an Iranian private bank where each

branch has a network production system with two different

activities, consumer activity and business activity. Each

activity contains two sub-processes (see Fig. 5).

The under evaluated bank has a professional Research

and Development (R&D) group. Some experts of this

group have overseen in our research. We were in regular

contact with them in each step, and we carefully considered

their advices to make sure that selected input/output vari-

ables are suitable and the results make sense to the policy

makers. The R&D group have some coefficients related to

each parameter (inputs and outputs) based on each city and

branch. For example, they said business population

coefficient is 0.25 (just for example) in Tehran. Therefore,

if population of Tehran is 1,000,000 the business popula-

tion is 250,000. All data which have been gathered from

bank and SCI [30] have been verified by experts. SCI is the

Statistical Centre of Iran located in Tehran, Iran, which

have been established in 1924, to officially collect and

validate different statistics.

The first sub-network is named personal or consumer

banking (personal or consumer activity). While the second

sub-network is named business banking (business activity).

The third sub-network is profitability stage of a branch.

Sub-process 1 is ‘‘The Bureau of Administration and

Organization affairs-consumer unit’’, which is a managerial

unit focusing on consumer banking based on financial and

environmental inputs. The inputs and outputs for this sub-

process are related to the city which the branch is located

as well as size of branches. Sub-process 2 is ‘‘Attract

consumer investment committee’’. In this sub-process, the

branch focuses on attracting investment from consumers

and manages consumer loans and interests. Sub-process 3

is ‘‘The Bureau of Administration and Organization affairs-

business unit’’. Focusing on business consumers and

activities, task of this sub-process is similar to sub-process

1. Finally, sub-process 4 is related to ‘‘Attract business

investment committee’’. In the sub-process 4, the branch

focuses on attracting investment from business related

consumers, and manages loans and interests related to

business activities.

We first identified the most common inputs and outputs

used in the literature and proposed them to bank’s R&D

group. By gathering experts’ opinion via interviewing and

combining this with what has been proposed in the litera-

ture, inputs/outputs in each sub-process have been selected.

The inputs to the first sub-process are operational cost

(millions monetary unit, x111j ) and fixed assets (millions

monetary unit, x112j ) as financial inputs, income level (mil-

lions monetary unit, x121j ), population (ten thousand, x122j )

and density (thousand, x123j ) as environmental inputs.
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Income level is the amount of monetary or other returns,

either earned or unearned, accruing over a given period of

time. Per capita income or average income measures the

average income earned per person in a given area (city,

region, country, etc.) in a specified year. It is calculated by

dividing the area’s total income by its total population.

Fig. 4 Different structure of networks

Fig. 5 Schema of the bank branches structure
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Average income level of population of a region is an input

for DMUs [31] since it is supposed that high-income level

leads to high bank activities. Population density is a mea-

surement of population per unit area or unit volume. It

should be noted that when density of a region is high, the

number of customers is expected to be more for per capita

income-related DMU [31]. There are similar inputs for

business sub-network. Business operational cost (millions

monetary unit, x211j ) and business fixed assets (millions

monetary unit, x212j ) as financial inputs, income level (mil-

lions monetary unit, x221j ), population (ten thousand, x222j )

and density (thousand, x223j ) as environmental inputs, are

considered for sub-process 3. Operational cost is an input

parameter since it is an expenses type parameter. It should

be noted that the operational costs for consumer banking

and business banking are different. The intermediate

measures are consumer saving deposit (millions monetary

unit, p121j ), consumer checking deposit (millions monetary

unit, p122j ), personal cost (millions monetary unit, p111j ) and

other operational cost (millions monetary unit, p112j ) in

consumer banking, consumer interest cost (millions mon-

etary unit, z11j), consumer loans (millions monetary unit,

z12j), business saving deposit (millions monetary unit, p221j ),

business checking deposit (millions monetary unit, p222j ),

personal cost (millions monetary unit, p211j ) and other

operational cost (millions monetary unit, p212j ) in business

banking, business interest cost (millions monetary unit, z21j)

and business loans (millions monetary unit, z22j). It is

important to have two different deposits (checking &

saving) since each type of ‘‘Deposit’’ depends on different

activity of bank branches, and it is important for the bank

owners to have information about ‘‘Deposit level’’ of each

branch and for each type of deposit [32]. Outputs from the

network are interest income (millions monetary unit, y1j),

fee income (millions monetary unit, y2j), fund transfer

income (millions monetary unit, y3j) and returns on assets

(in percent, y4j). Similar to the ‘‘Deposit’’ it is also

important to have separate ‘‘Income’’ in the last stage. Data

from bank branches are given in Appendix.

It should be noted that the income level, population and

density of consumer activities are extracted from Iran’s

national statistics center [30] and correspondingly these

inputs for business activities are proportional to consumer

ones. The sample has been selected based on the feedbacks

from bank’s R&D group and due to the industrialization

level and geographical properties of the DMU under study.

Table 1 reveals the statistical descriptions of the data

set. It is clear that the variance of the selected variables is

large because of considering various sizes of sample bank

branches. Similarly, large variable ranges and high stan-

dard deviations show a high degree of diversity in inputs,

intermediate inputs and outputs structures.

4 Results and analysis

In this section, results of the proposed network approach

for bank branches’ efficiency and analysis of the results are

presented. The proposed models for sub-networks were

Table 1 Statistical description of variables

Variable Mean Median SD Min Max Coef.

Var.

Variable Mean Median SD Min Max Coef.

Var.

x111j 160.60 152.83 62.342 92.74 413.2 0.38 p112j 97.37 97.31 10.40 81 127 0.107

x112j 2851.2 2559 1635.3 614 7088 0.6 p221j 43.04 38.52 30.28 3.85 104.16 0.704

x121j 7.54 6.29 4.08 2.97 20.59 0.56 p222j 99.65 83.9 76.25 4.62 294.6 0.77

x122j 92.52 45.92 149.06 14.05 824.5 1.68 p211j 3.31 2.8 0.99 2.8 7 0.30

x123j 4.27 3.58 2.61 0.369 10.555 0.61 p212j 18.73 18.65 3.78 11.67 28.89 0.20

x211j 32.12 30.57 12.47 18.548 82.64 0.39 z11j 25.7 22.5 13.08 11 60 0.51

x212j 3421.4 3070.8 1962.3 736.8 8505.6 0.57 z12j 2177.83 705.42 3440.3 113.75 16397.5 1.58

x221j 9.26 7.71 5.16 2.97 24.21 0.56 z21j 20.37 18.5 8.19 11 46 0.40

x222j 28.76 6.67 67.33 0.752 371 2.34 z22j 3711.2 1310.08 5141.76 211.25 20452.5 1.39

x223j 0.98 0.67 1.01 0.059 4.75 1.03 y1j 247.99 216.75 131.12 99 770.1 0.53

p121j 79.91 46.16 79.44 1.98 294.6 0.99 y2j 148.9 132 73.79 55 453 0.45

p122j 375.94 262.4 339.56 11.55 1278.56 0.90 y3j 268.83 254 115.56 110 683 0.43

p111j 21.09 20.3 6.66 11.2 46.2 0.32 y4j 60.84 58.9 10.24 44.49 86.83 0.17
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coded using GAMS 24.1.2 software. COUENNE solver, as

a solver for the non-convex NLP problems, was used for

solving the models. The codes of proposed mathematical

models were executed on an ASUS laptop with Core i5 due

CPU, 2.4 GHz, and Windows Seven using 4 GB of RAM.

All proposed models to calculate the efficiency of sub-

networks for all of DMUs were feasible. Also mean of

running time is 0.802367 s. It should be noted that the

efficiency scores of sub-networks and network will be

highly dependent on underlying variability of software

algorithm. Also, the breakdown points values are very

effective factor on obtained efficiency scores. We used the

approach proposed by Du et al. [26] to obtain the break-

down points. However, one may use other methods, for

example, the breakdown points can be determined by

experts or policy makers. But one should be careful about

estimation of breakdown points and its variability. Stehlı́k

et al. [33] developed a very efficient method within Basel II

initiative to estimate banking thresholds.

First, we have calculated the breakdown points using the

proposed method. Results for breakdown points are

h1FT ¼ 0:209, h1ST ¼ 0:139, h2Sp ¼ 0:150, h2FT ¼ 0:097,

h2ST ¼ 0:123, h4Sp ¼ 0:178, h52Sp ¼ 0:070 and h54Sp ¼ 0:165.

By setting breakdown points and running in the network

DEA, efficiency scores of sub-networks and network are

obtained for 35 bank branches. Initial results show that 5

DMUs are outliers. The efficiency scores for sub-network 2

in these DMUs were\ 0.05. These DMUs were in small

cities and did not do significant business activities; there-

fore, we just evaluated these DMUs as a test to examine the

validity of proposed models, since we knew that if the

model has been developed correctly it should assign very

small efficiency values for these DMUs. Since these five

Table 2 Results of efficiency

scores for bank branches
DMU Sub-network 1 Sub-network 2 Sub-network 3 Network Classic DEA

1 1.0000000 (1) 0.4978350 (9) 0.5894470 (7) 1.0000000 (1) 1 (1)

2 0.537162 (11) 0.766234 (2) 0.5096530 (8) 0.8866660 (3) 1 (1)

3 0.277027 (26) 0.244589 (22) 1.0000000 (1) 0.7911270 (6) 1 (1)

4 0.221284 (29) 0.415584 (14) 0.122265 (18) 0.298579 (20) 1 (1)

5 0.461149 (16) 0.393939 (15) 0.377091 (10) 0.621652 (11) 1 (1)

6 0.275338 (27) 0.183983 (28) 0.234234 (14) 0.356035 (17) 1 (1)

7 0.491554 (12) 0.056277 (30) 0.086229 (20) 0.185699 (27) 1 (1)

8 0.395270 (21) 0.199134 (26) 0.306306 (11) 0.454563 (13) 1 (1)

9 0.395270 (21) 0.484848 (10) 0.4401540 (9) 0.6806660 (9) 1 (1)

10 0.209459 (30) 0.231602 (24) 0.253539 (13) 0.366429 (16) 1 (1)

11 0.366554 (23) 0.5194810 (8) 0.065637 (23) 0.262427 (22) 1 (1)

12 0.6199320 (8) 0.6839830 (4) 0.019305 (30) 0.173856 (28) 1 (1)

13 0.7618240 (4) 0.7337660 (3) 0.256113 (12) 0.678540 (10) 1 (1)

14 0.454392 (17) 0.465368 (11) 0.175032 (15) 0.439918 (14) 1 (1)

15 0.233108 (28) 0.205628 (25) 0.034749 (28) 0.135250 (30) 1 (1)

16 0.366554 (23) 0.196970 (27) 0.8339770 (3) 0.7340370 (8) 1 (1)

17 0.618243 (17) 0.240260 (23) 0.5920210 (6) 0.7406870 (7) 1 (1)

18 0.601351 (10) 0.6385280 (6) 0.111969 (19) 0.408444 (15) 1 (1)

19 0.396959 (20) 0.461039 (12) 0.6769630 (4) 0.8344680 (4) 1 (1)

20 0.430743 (18) 0.292208 (18) 1.0000000 (1) 0.9236000 (2) 1 (1)

21 0.364865 (25) 0.264069 (20) 0.028314 (29) 0.145368 (29) 1 (1)

22 0.413851 (19) 0.268398 (19) 0.070785 (22) 0.238168 (25) 1 (1)

23 0.8885140 (3) 1.0000000 (1) 0.155727 (16) 0.594093 (12) 1 (1)

24 0.483108 (13) 0.140693 (29) 0.149292 (17) 0.305917 (19) 1 (1)

25 0.472973 (14) 0.5952380 (7) 0.052767 (25) 0.259459 (23) 1 (1)

26 0.6993240 (6) 0.6709960 (5) 0.037323 (27) 0.247939 (24) 1 (1)

27 0.6435810 (7) 0.337662 (17) 0.064350 (24) 0.268567 (21) 1 (1)

28 0.7043920 (5) 0.448052 (13) 0.084942 (21) 0.338730 (18) 1 (1)

29 0.9121620 (2) 0.246753 (21) 0.041184 (26) 0.216748 (26) 1 (1)

30 0.472973 (14) 0.341991 (16) 0.6705280 (4) 0.8052440 (5) 1 (1)

Numbers shown in parenthesis represent rank of corresponding DMU in a specified index
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DMUs did not do significant business activities, they have

been removed from the analysis. After removing the out-

liers, the model was run for 30 remaining DMUs. It should

also be noted that since these DMUs were inefficient,

removing them would not have impact on efficiency of

other DMUs. We have also calculated the results from a

single DEA model without considering network for com-

parison purpose (see Table 2). All obtained solutions are

the global feasible solutions. Fifth and sixth Columns of

Table 2 show the efficiency scores of bank branches by

using the proposed approach and classic DEA, respec-

tively. As it is expected, classic DEA scores are equal to 1

for all DMUs. It means that standard DEA is not capable to

distinguish efficient DMUs, while the results show pro-

posed model discriminates between DMUs perfectly.

Table 2 shows the number of DMUs and conflict between

DMUs affecting efficiency scores. This information is

useful for identifying the weak sub-networks and DMUs,

and can be helpful for improving overall performance of

branches. Figure 6 shows efficiency scores of sub-networks

and networks for all DMUs. Obviously according to Fig. 6,

where efficiency scores of all DMUs from classic DEA are

1, most of the obtained scores from proposed model are

\ 1, varying in big range that shows the discrimination

ability of proposed model between the DMUs. Only DMU

1 has been scored to be full efficient. Analyzing the results

for the first five DMUs in the ranking (the DMUs 1, 20, 2,

19 and 30) shows that all of these DMUs have a good

performance in the sub-network 3. It indicates the impor-

tance of sub-network 3, the profitability stage. For exam-

ple, even though the DMU 23 has the first rank in the sub-

network 2 and third rank in the sub-network 1, it ranked

16th in sub-network 3, as results its overall rank is 12th.

Also, the importance of sub-network 3 is observable in the

results of five last DMUs (The DMUs 29, 7, 12, 21 and 15).

The capability of better discrimination of proposed model

can be seen in Fig. 7. Dispersion of consumer banking and

business banking performance scores of branches obtained

from the sub-network 1 and sub-network 2 models is

illustrated in Fig. 7. As seen in this Figure, there are only

two DMUs in which their performance scores are more

than 0.5 in sub-network 2 and less than 0.5 in sub-network

1. Efficiency score in sub-network 1 is more than sub-

network 2 efficiency score for 19 DMUs, which represents

poor performance of business banking versus consumer

banking for branches. Further, Fig. 8 presents dispersion of

sub-networks efficiency versus network efficiency for all

DMUs. Only DMU 1 and DMU 2 have been scored more

than 0.5 in all sub-networks and network. From Fig. 8,

there is not any DMU which its efficiency is more than 0.5

in sub-network 3 and less than 0.5 in the network, which

shows the importance of the sub-network 3. Histogram of

proposed model scores is presented in Fig. 9. As seen, most

branches fall into 0.2–0.299 range and only five branches

are scored more than 0.80. From 30 bank branches, only

five branches have been scored in all three sub-networks

below 0.40. If performance measure below 0.3 is consid-

ered as the weakest performance, most DMUs are weak in

sub-network 3 (19 DMUs), where only five DMUs have

weak efficiency in sub-network 1. Also, the efficiency

score in sub-network 2 for 13 DMUs is less than 0.3, which

shows that the performance of branches in the business

banking is not satisfying. Based on the results, since the

importance weight for profitability stage is 2 and the per-

formance of the most branches in this stage is weak, it

seems that some affective policies should be considered to

improve the performance of DMUs in this stage. For this

purpose, first idea is ‘‘decreasing the level of inputs’’ in the
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sub-network 3. However, when a branch tries to decrease

the inputs’ level in the sub-network 3, indeed it decreases

the outputs’ values of sub-network 2, which leads to a

decrease in the efficiency scores of DMUs in the sub-net-

work 2. Therefore, if the bank managers decide to apply

this strategy, they should simultaneously apply some

strategies to decrease the inputs in the sub-network 2.

Accordingly, in the first strategy managers should try to

decrease cost factors including business interest costs,

personal costs, and operational costs. The second strategy

is ‘‘increasing the level of outputs’ in sub-network 3. For

this purpose, the bank should adopt some policies to

improve the income levels including interest income, fee

income, fund transfer income and return on assets. Finally,

the third strategy is ‘‘increasing the outputs and decreasing

the inputs, simultaneously’’ in the sub-network 3. Based on

this strategy, the income levels should be increased and

cost level should be decreased.

In a very low interest environment (with the zero lower

bound having been hit in international monetary markets)

and an ever-increasing money supply in almost all econo-

mies in the world, it is difficult for banks to gain from interest

margins [34–36]. Efficiency should not only be measured

taking into account profitability but the tasks of banks should

be considered. As essential part of a countries’ economy,

banks work as mediator between those who want to save up

money and those who need money for investments. A bank

fulfills this task even though it might yield a high ROI from

their owner’s point of view, but does not grant so much loans

and therefore does not effectively fulfill its job to make

money flow in the economy. That is to say, banks that scarify

interest margins granting loans to a low interest will most

probably yield less rentability, but they do their tasks to

efficiently mediate between savers and investors. More

interesting would be the construction of a model that defines

efficiency by whether or not banks (efficiently) fulfill their

role in the economy. In such amodel, the lower interest rates,

the better for economy and, especially, society since an

important part of income inequality, financial crisis and the

obligation to grow economically has to do with the money

rate if interest [34, 37, 38].

In the proposed network assessment of bank branches, in

addition to the profitability, by considering consumer/

business deposits and consumer/business loans as inputs/

outputs, we have included the money flow also in the

performance evaluation of branches. In this research, the

under evaluation bank is a private commercial bank which

the interest rate for business loans is 18–85%. For man-

agers, the profitability is more important than other tasks

such as money flow; hence, sub-network 3 is twice more

important than the other two sub-networks.

It should be noted that the proposed approach to obtain

breakdown points calculates minimum value of breakdown

points. Hence, based on the form of objective functions the

efficiency scores have negative relation with breakdown

points. Therefore, the obtained efficiency scores, in used

breakdown points, are maximum efficiency scores for each

DMU in each sub-network and network. According to this,

since the maximum efficiency scores of DMUs in the

profitability stage are significantly low, bank managements

and policy makers should pay more attention on

improvement of this stage. It is important to note that for

other breakdown points the efficiency scores will be lower

and worse than our results.

Hence, it can be concluded that the proposed method not

only has managed to deal with complex networks, the

corresponding conflicts of stages and insufficient number

of DMUs, but also represented a good performance due to

improving the discrimination of efficient DMUs as well as

precise classification of other DMUs. Although there is
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only one efficient DMU, it is not unusual. The proposed

model is similar to super efficiency model in which the

number of efficient DMUs is very low. It should be noted

that one of the main goals and advantages of proposed

model is increasing the discrimination power. The results

show that we have achieved this goal.

5 Summary and conclusion

In this paper, we proposed a novel bargaining game-DEA

model for assessing relative efficiency score of network

structure processes. We addressed the issue of conflicts

between stages, insufficient number of DMUs and

additional inputs in the classic DEA models when aping it

to network structure. To solve these problems, we divided a

network into three different sub-networks. Also, the inputs

of sub-networks are classified in two different categories.

For each sub-network, a bargaining game structure was

constructed. Each category and stage is assumed to be a

player in Nash bargaining game. Hence, the proposed

model can determine which DMU in which sub-network

has better performance. To show abilities of the proposed

approach, the model is applied in a real application to

measure efficiency of an Iranian private bank branches. It

is shown that when the number of network structure DMUs

is insufficient for using DEA for performance assessment

and there are conflicts between stages, in comparison with
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classic DEA, our newly developed Nash bargaining game

approach yields a better discrimination between efficient

and non-efficient DMUs.

In future research, proposed game-DEA approach can be

used for performance assessment of network structure of

DMUs in several areas of management and engineering.

Although the results of DEA depend on under evaluating

case study and DMUs, and the obtained results and policies

can be different from a set of DMUs to other ones, the

proposed approach in this study is a framework which can

be used in many other applications of measuring efficiency

as long as the application has a network and sub-network

structure. Indeed, the main idea of the proposed approach is

dividing a network into some sub-networks and classifying

inputs to several categories. Sensitivity and stability anal-

ysis of efficiencies of the proposed model can be another

interesting research stream. Although this real-world case

study some assumptions has been assumed based on

experts’ opinions in, such as the inputs/outputs, average

calculation method, importance weight of each sub-net-

work, the proposed approach can be customized for other

networks. From theoretical view, future studies could focus

on linearization of the proposed models. From applications

view, future research can focus on assessing DMUs by

whether or not they efficiently fulfill their role in different

aspects, for example, in banking efficiency from different

perspectives, such as consumers, governments, bank

managers.
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Appendix

See Table 3.

Table 3 Bank branches data
DMU x111j x112j x121j x122j x123j x211j x212j x221j x222j x223j

1 161.15 614 4.48 15.98 1.22 32.23 736.80 5.81 4.75 0.36

2 178.23 913 5.56 149.50 7.78 35.65 1095.60 7.79 59.80 3.11

3 413.20 3651 11.79 824.45 10.56 82.64 4381.20 17.10 371.00 4.75

4 229.01 5343 5.70 146.07 6.89 45.80 6411.60 6.84 29.21 1.38

5 92.74 2033 12.04 17.22 1.50 18.55 2439.60 13.97 2.76 0.24

6 152.21 3256 6.83 85.70 8.35 30.44 3907.20 7.84 12.68 1.24

7 149.92 3088 18.45 111.20 2.11 29.98 3705.60 24.21 34.70 0.66

8 170.92 2611 6.61 64.00 4.34 34.18 3133.20 7.62 9.79 0.66

9 200.29 7088 5.53 276.63 3.25 40.06 8505.60 7.18 82.99 0.98

10 186.65 3263 5.17 107.40 7.26 37.33 3915.60 5.37 4.19 0.28

11 94.91 3679 13.58 37.40 2.27 18.98 4414.80 14.62 2.88 0.18

12 103.56 2662 6.05 34.82 1.82 20.71 3194.40 6.62 3.31 0.17

13 125.60 2678 3.42 32.95 5.16 25.12 3213.60 3.91 4.75 0.74

14 199.51 3627 4.99 52.62 10.00 39.90 4352.40 6.48 15.79 3.00

15 203.35 2144 4.00 52.58 3.45 40.67 2572.80 5.20 15.77 1.04

16 245.29 3752 8.54 190.90 3.47 49.06 4502.40 11.96 76.36 1.39

17 127.89 5839 10.10 48.62 2.15 25.58 7006.80 14.17 19.59 0.86

18 99.93 2317 4.37 17.80 3.70 19.99 2780.40 5.24 3.52 0.73

19 166.49 6181 6.54 161.46 4.68 33.30 7417.20 8.83 56.51 1.64

20 120.52 2140 4.64 48.26 3.44 24.10 2568.00 5.45 8.45 0.60

21 175.34 2507 8.04 43.58 3.87 35.07 3008.40 8.61 3.09 0.27

22 153.45 4761 5.20 41.69 5.15 30.69 5713.20 6.68 11.84 1.46

23 109.90 2338 2.97 56.07 2.06 21.98 2805.60 2.97 0.75 0.13

24 146.70 2093 7.35 27.53 2.67 29.34 2511.60 9.18 6.88 0.67

25 135.12 1234 4.03 19.98 4.90 27.02 1480.80 4.31 1.38 0.34
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Table 3 continued
DMU x111j x112j x121j x122j x123j x211j x212j x221j x222j x223j

26 172.74 1242 20.59 19.52 0.37 34.55 1490.40 23.86 3.10 0.06

27 94.52 1063 6.02 24.07 6.56 18.90 1275.60 6.59 2.29 0.62

28 102.58 1565 7.73 14.05 1.48 20.52 1878.00 9.87 3.88 0.41

29 112.68 985 8.83 15.37 1.67 22.54 1182.00 11.27 4.24 0.46

30 193.63 868 7.07 38.16 5.87 38.73 1041.60 8.27 6.45 0.99

DMU p121j p122j p111j p112j p221j p222j p211j p212j

1 294.60 1278.564 14.00 85.60 96.236 294.60 2.8 21.40

2 6.84 55.860 25.20 101.00 23.940 27.36 5.6 28.89

3 1.98 11.550 46.20 127.00 11.550 7.92 7.0 22.73

4 13.14 107.310 25.20 108.00 45.990 52.56 4.2 21.67

5 136.05 615.853 15.40 84.28 19.047 136.05 2.8 18.73

6 29.34 200.816 23.80 98.83 27.384 68.46 2.8 13.18

7 32.52 151.760 25.20 107.00 37.940 48.78 2.8 13.34

8 60.48 376.320 23.80 106.00 94.080 141.12 2.8 14.12

9 2.58 22.575 26.60 105.00 7.525 10.32 4.2 19.74

10 107.85 478.135 25.20 93.34 25.165 107.85 2.8 11.67

11 109.50 459.900 16.80 91.67 51.100 109.50 2.8 18.34

12 223.20 937.440 15.40 90.00 104.160 223.20 2.8 20.00

13 14.40 71.400 18.20 97.31 12.600 21.60 2.8 17.70

14 23.76 147.840 25.20 100.00 36.960 55.44 4.2 20.00

15 141.60 594.720 16.80 91.67 66.080 141.60 2.8 18.34

16 2.22 18.130 29.40 111.00 7.770 8.88 4.2 18.57

17 12.96 65.772 22.40 91.82 9.828 19.44 4.2 21.19

18 167.55 742.805 12.60 81.67 39.095 167.55 2.8 23.34

19 1.98 11.550 28.00 106.00 3.850 4.62 4.2 18.75

20 129.84 704.382 19.60 91.72 53.018 194.76 2.8 15.29

21 29.58 241.570 21.00 113.00 103.530 118.32 2.8 17.34

22 73.20 331.352 19.60 88.29 10.248 73.20 2.8 14.72

23 33.03 205.520 22.40 105.00 51.380 77.07 2.8 15.00

24 57.12 283.220 21.00 99.67 49.980 85.68 2.8 15.33

25 151.05 669.655 14.00 84.00 35.245 151.05 2.8 21.00

26 35.19 218.960 18.20 102.00 54.740 82.11 2.8 18.46

27 267.75 1187.025 15.40 85.91 62.475 267.75 2.8 19.09

28 108.90 467.544 11.20 81.00 40.656 108.90 2.8 27.00

29 108.84 539.665 18.20 97.31 95.235 163.26 2.8 17.70

30 20.40 80.920 16.80 95.84 14.280 20.40 2.8 19.17

DMU z11j z12j z21j z22j y1j y2j y3j y4j

1 60 209.30 26 388.70 354.0 236 267 57.07

2 12 367.85 18 683.15 437.6 132 412 52.85

3 11 214.55 16 398.45 547.2 304 496 86.83

4 15 1016.05 26 1886.95 99.0 55 246 59.07

5 28 394.45 12 732.55 174.0 116 153 70.34

6 16 558.95 16 1038.05 219.3 129 254 58.73

7 20 864.15 21 1604.85 140.8 88 238 52.06

8 28 5711.65 38 10,607.35 770.1 453 683 48.31

9 11 9951.90 13 18,482.10 198.0 110 280 56.15

10 26 583.10 14 1082.90 325.5 217 375 69.64
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