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Abstract 

Despite the importance of our ability to interact and communicate with others, the 

early development of the social brain network remains poorly understood. We examined brain 

activity in 12- to 14-month-old infants while they were interacting live with an adult in two 

different naturalistic social scenarios (i.e., reading a picture book versus singing nursery rhymes 

with gestures), as compared to baseline (i.e., showing infants a toy without eye contact or 

speech). We used functional near-infrared spectroscopy (fNIRS) recorded over the right 

temporal lobe of infants to assess the role of the superior temporal sulcus - temporoparietal 

junction (STS-TPJ) region during naturalistic social interactions. We observed increased 

cortical activation in the STS-TPJ region to live social stimuli in both socially engaging 

conditions compared to baseline during real life interaction, with greater activation evident for 

the joint attention (reading book) condition relative to the social nursery rhymes. These results 

supported the view that the STS-TPJ region, engaged in the cortical social brain network, is 

already specialized in infants for processing social signals and is sensitive to communicative 

situations. This study also highlighted the potential of fNIRS for studying brain function in 

infants entering toddlerhood during live social interaction. 

 

Keywords: social interactions, social signals, fNIRS, joint attention, superior temporal 

sulcus, temporoparietal junction 
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1. Introduction 

Social and linguistic input from others during infancy and childhood plays an important role in 

typical human development. Early social deprivation (e.g., low-resource orphanage care-giving) 

can result in specific cognitive and behavioral dysfunctions [1-4]. Typically during 

mother-infant interactions, infants receive a rich variety of communicative signals from 

caregivers, such as eye contact, infant-directed speech, touch, and contingent responsiveness 

[5-8], and they seem to be sensitive to those signals soon after birth [9-11]. Moreover, previous 

studies have found that the presence of such social signals during mother-infant interactions can 

enhance early language development [12-16]. Although preverbal infants might not understand 

the uses of social signals in the same way as older infants and toddlers do [17-19], social 

interactions directly impact development from an early age. 

 Brain regions related to processing of a social stimulus have become known as the 

social brain network [20]. In human adults, lesion and functional neuroimaging studies have 

revealed that this network includes parts of the prefrontal cortex (PFC) including the 

orbitofrontal cortex (OFC), amygdala, fusiform face area (FFA), temporoparietal junction (TPJ), 

and superior temporal sulcus (STS) [21, 22]. For example, Carrington and Bailey [23] reviewed 

functional neuroimaging studies examining theory of mind (ToM) skills and found that the PFC, 

STS, TPJ and anterior cingulate cortex (ACC) appeared to be core regions for ToM reasoning. 

With the aid of methodological advancements in infant neuroimaging studies, the ontogeny of 

the social brain network has also been investigated in recent years; we are beginning to 

understand how the social brain network becomes functional in early infancy [24, 25].  

Electroencephalography (EEG) studies have identified early social brain responses to human 
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faces [26-28], emotional expressions [29], mutual gaze [9], biological motion [30-32], and joint 

attention [33, 34], with some evidencing immature responses compared to adults [27, 28]. 

Moreover, functional near infrared spectroscopy (fNIRS) studies, which allow for more precise 

spatial localization, have localized processing of these social signals in preverbal infants to the 

inferior frontal and STS-TPJ (which includes posterior regions of the superior temporal gyrus, 

sulcus, middle temporal gyrus, and the TPJ) regions of the cortex [31, 35-44]. For example, 

Otsuka, Nakato, Kanazawa, Yamaguchi, Watanabe and Kakigi [39] measured 5- to 8-month-old 

infants’ brain responses with fNIRS and revealed that watching upright face stimuli, but not 

inverted face stimuli, resulted in activation in the right STS region. Lloyd-Fox, Blasi, Volein, 

Everdell, Elwell and Johnson [37] found greater cortical activation, at 5 months of age, in the 

bilateral posterior temporal cortex in response to social dynamic stimuli, such as video clips of a 

female actor performing hand games (e.g., ‘‘peek-a-boo’’), compared to non-social dynamic 

stimuli, such as video clips of a moving mechanical toy. Using NIRS - magnetic resonance 

imaging (MRI) co-registration data [45] has recently allowed us to more confidently localize 

these responses within the posterior STS-TPJ region. Furthermore, recent research has found 

that social signals related to auditory stimuli such as mouth movements [31] and vocalizations 

[46-48] enhance activation in the anterior STS-TPJ region. These results suggested that young 

infants already have specialized areas in the temporal cortex for processing social stimuli. 

In an effort to conduct strictly controlled studies, video stimuli are more commonly 

used than live stimuli to test social perception in infants. However, it is known that extracting 

information from video demonstrations can be more difficult for infants and toddlers than from 
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live demonstrations [49, 50]. For example, a behavioral study with 9- to 10-month-olds showed 

that infants learned a non-native phonetic contrast only from live exposure to a foreign language 

and not from televised exposure [51]. Additionally, Shimada and Hiraki [52] tested 6- to 

7-month-old infants with fNIRS to see the difference between their cortical responses to live 

and televised actions. Though they found activation in the sensorimotor area during both live 

and televised action observation, the crucial contrast between activity to action and 

object-motion perception was only found in the live condition. Furthermore, an event-related 

potentials (ERPs) study revealed that infants responded to three-dimensional representations of 

objects more quickly than two-dimensional representations [53].  

Since fNIRS is less susceptible to motion artifacts relative to functional MRI and 

EEG, it is an ideal imaging technique for studying infants in more ecologically valid settings. 

Recent fNIRS research has taken advantage of this attribute to study activity while infants are 

socially interacting with others [41, 42]. Recently, Lloyd-Fox, Széplaki-Köllőd, Yin and Csibra 

[42] studied 6-month-old infant responses to different combinations of ostensive social cues 

during live performances of nursery rhymes with gestures, in an infant-directed or adult-directed 

way. They found an additive effect of infant directed cues such that the combination of direct 

gaze and infant-directed speech enhanced activation in bilateral STS-TPJ regions relative to 

direct gaze with adult directed speech and averted gaze with infant-directed speech. 

In order to explore the role of the STS-TPJ region in infants further, we extended the 

complexity of the interactions, and conducted a fNIRS study with an older cohort of 12- to 

14-month-old infants during naturalistic play scenarios. We investigated infants’ brain 

responses to social signals during two different social interactions with an adult experimenter. 
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In the interaction (I) condition, the infants viewed a female experimenter singing infant directed 

nursery rhymes (with accompanying hand gestures, such as “Peek-a-boo”), with direct gaze and 

a positive emotional face (i.e. smiling, wide eyes). In the joint attention (JA) condition, the 

experimenter used infant directed gaze, speech and gestures to look at a picture book. During 

the baseline period, the experimenter presented a toy to the infants without any social signals 

(with averted gaze and no speech). We measured brain activation across the infants’ right 

inferior frontal – posterior temporal cortex. Firstly, we hypothesized that both socially engaging 

experimental conditions (I and JA) would show enhanced activation relative to baseline in this 

region, in particular the anterior superior temporal gyrus - middle temporal gyrus (aSTG-MTG). 

Furthermore, given that the STS-TPJ region has been indicated to be involved in false belief 

tasks in older toddlers, children and adults, we hypothesized that this region may be more 

heavily recruited during interactions such as joint attention, which are thought to be precursors 

of ToM [54]. Such activity would indicate that by 12- to 14-month-old infants understand that 

there is an object of mutual interest requiring interpersonal interaction in the JA condition 

relative to the dyadic I condition. 

 

2. Methods 

2.1 Participants 

Thirty healthy 12- to 14-month-old infants (M = 395.4 days, S.D. = 23.5, 20 males) participated 

in the study. We excluded 4 additional infants from the analysis due to experimental error (n = 

3) or heavy fussiness (n = 1). Of thirty infants, two infants were excluded from the behavioral 

analysis, but not from the fNIRS analysis, because of experimental error, and nine infants were 
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excluded from the fNIRS analysis, but not from the behavioral analysis, due to signal quality 

problems caused by movements (n= 4), an insufficient number of valid trials because of 

fussiness or inattention (n= 3), experimental error (n =1), and failure of wearing the fNIRS 

headgear (n = 1). Thus, twenty-eight infants (M = 396.7 days, S.D. = 23.8, 19 males) were 

included in the final behavior analysis and twenty-one infants (M = 388.4 days, S.D. = 19.7, 11 

males) were included in the final fNIRS analysis. For these twenty-one infants, the mean head 

circumference, the mean semi-circumference from the left to the right ear via the top of head, 

and the mean semi-circumference between the pre-auricular points via the forehead were 47.3 

cm (S.D. = 1.4), 26.9 cm (S.D. = 1.3), and 22.9 cm (S.D. = 1.0) respectively. All participants 

were from a volunteer database at the Centre for Brain and Cognitive Development and gave 

written informed consent before they participated in the study. The study protocol was approved 

by the Departmental Ethics Committee, Department of Psychological Science, Birkbeck, 

University of London (Reference Number: 131451). 

 

2.2 Stimuli 

Stimuli were presented in a live setting by a female experimenter who sat in front of the infants 

throughout the experiment. There were two experimental conditions: the joint attention (JA) and 

interaction (I) conditions (Figure 1). Within the JA condition, the experimenter interacted with 

the infant using a picture book. She made frequent eye contact with the infant to provoke joint 

attention by eye gaze, she used gestures such as pointing, as well as verbally labeling the 

pictures, and she displayed positive affect, with wide eyes and smiles. Within the I condition, 

the experimenter maintained eye contact and displayed positive affect, with wide eyes and 
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smiles, while either singing children’s songs with hand actions or talking and performing hand 

games, (there were 4 different songs/games which alternated across the session, and included 

‘Incy Wincy Spider,’ and ‘peek-a-boo’). During the baseline condition, the experimenter was 

silent, avoided eye contact and looked towards the toy, which she held between the infant and 

herself, and presented a selection of moving toys, which made quiet sounds. There were four 

different toys to maintain the infant’s attention during the baseline condition, and the 

experimenter picked one of them randomly for each trial. When the experimenter was not using 

the toys or book she placed them on a table next to her, and out of reach, but within view of the 

infant. A tone played every 20 s via speakers to indicate the onset and offset of each trial for 

Experimenter 1 and Experimenter 2, who placed event markers manually into the fNIRS 

recordings online. Four different researchers served as the “partner” in these real life 

interactions during the course of data collection for this study. Of thirty infants, fifteen infants 

interacted with Experimenter A, eight infants interacted with Experimenter B, four participants 

interacted with Experimenter C, and a further three infants interacted with Experimenter D. 

Prior to the study the Experimenter learnt a scripted set of instructions about how to interact 

during each of the conditions, and reviewed training videos generated during piloting of the live 

study to mimic this “standard”. Instructions included the following: 1) natural transitions 

between trials so that when the end of the trial was signaled by the audio signal any action or 

sentence was completed before finishing and moving to the next trial; 2) toys and books were 

kept on a table next to the experimenter and returned to position on completion of each trial; 3) 

during the I condition they learnt 4 different songs or games (with speaking and hand actions) 

and alternated these across trials; 4) use infant-directed speech, eye contact, positive affect and 
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gestures during the experimental trials; 5) during the baseline condition watch the object and 

help make it move/play sounds but avoid eye contact. Videos of the experimenter interactions 

were reviewed to ensure that these guidelines were followed. Data from two infants (outlined as 

experimental error above) were excluded from the analyses as it could be seen from the videos 

that they interacted with the infants and used direct eye contact during the baseline trials. 

 

 
Figure  1.  An  infant  participating  in  the  study  during  the  baseline  and  two  experimental  

conditions   (upper   panel).   The   experimental   protocol   showing   the   order   and   timing   of  

stimulus  presentation  for  the  two  experimental  conditions  (lower  panel).  

  

2.3 Procedure 

Within the same session each infant went through three different fNIRS experiments: two video 

presented experiments [48] and one live experiment. After the two video studies investigating 

infants’ social perception and memory, we moved on to the live study, which is the focus of this 

study. At the beginning of the session infants sat on their parent’s lap facing a female 

experimenter in a naturally lit room while the fNIRS headgear was quickly placed on their 
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heads by Experimenter 2. The parent was instructed not to interact with their infant during the 

stimulus presentation except when the infant became fussy or inattentive. The two types of 

experimental condition trials, joint attention (JA) and interaction (I), were presented in between 

baseline trials (Figure 1). Each trial lasted 20 s. The order of experimental condition 

presentation was always JA, I, I, JA, I, JA, JA, I, JA, I in a repeating loop. A camera on a tripod 

placed on the left side of the infant recorded both the infant and the experimenter. When the 

infant became bored or fussy, as judged by the experimenter, or completed 6 trials for each 

experimental condition, we stopped presenting stimuli and ended the experiment. 

  

2.4 Procedural Integrity 

To ensure that the live demonstration was conducted consistently by the experimenters across 

infants, the first author and an independent observer scored procedural integrity from videotape 

on approximately 25% of the samples (2 videos from each experimenter) using 20-seconds 

interval scoring. Note that experimenters contributed to a differing number of sessions 

(Experimenter A: N = 10, Experimenter B: N = 6, Experimenter C: N = 2, Experimenter D: N = 

3). Cohen’s kappa [55] was 0.62, which was considered to be substantial agreement [56]. The 

percent of trials in which the following behaviors were conducted correctly were: 

infant-directed speech (Experimenter A: 100%, Experimenter B: 100%, Experimenter C: 100%, 

and Experimenter D: 100%), use of simple and short sentences (Experimenter A: 100%, 

Experimenter B: 100%, Experimenter C: 100%, and Experimenter D: 100%), positive 

expression (Experimenter A: 100%, Experimenter B: 100%, Experimenter C: 94%, and 

Experimenter D: 75%), and fluid action (Experimenter A: 100%, Experimenter B: 100%, 
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Experimenter C: 94%, and Experimenter D: 75%). In addition, the experimenters’ mean 

proportions of fixation duration toward the infant’s face were counted for approximately 25% of 

the samples (the same 2 videos from each experimenter), and were 40.7% (S.D. = 18.2) for the 

JA condition (Experimenter A: M = 48.7%, S.D. = 9.9; Experimenter B: M = 57.5%, S.D. = 9.3; 

Experimenter C: M = 35.9%, S.D. = 15.7; Experimenter D: M = 20.9%, S.D. = 12.7) and 96.2% 

(S.D. = 4.5) for the I condition (Experimenter A: M = 95.7%, S.D. = 4.6; Experimenter B: M = 

96.8%, S.D. = 6.9; Experimenter C: M = 96.5%, S.D. = 3.2; Experimenter D: M = 95.6%, S.D. = 

3.3). Given that Experimenters C and D were seen to be looking at infants for a lower 

percentage of time during the JA condition relative to A and B, we re-ran the fNIRS analyses 

excluding the 5 infants who observed these experimenters and found no overall change in the 

pattern of fNIRS activation across the condition-contrasts. 

  

2.5 Data recording and processing 

A University College London (UCL)-NIRS mini topography system was used [57]. The 

multichannel continuous-wave mini fNIRS system uses two wavelengths at 780 and 850 nm. 

Six light sources (per wavelength) and four detectors were arranged within custom-built 

fNIRS-CBCD headgear consisting of an array over the right temporal lobe with a total of 12 

2-cm source-detector channels (Figure 2). The midpoint of the lower row of channels was 

aligned with the pre-auricular point on the right hemisphere (scalp location T4, according to the 

10–20 system) for each infant. Due to the limited number of sources and detectors of our fNIRS 

system, we chose to maximize coverage across one hemisphere overlaying inferior frontal to 

posterior temporal regions. 
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Figure  2.  The  fNIRS  headgear  and  channel  layout.  An  infant  wearing  the  headgear  with  

the   location   of   the   10-20   coordinates   F8,   T4,   and   T6   overlaying   the   photo.   T4   was  

located   at   the   midpoint   of   the   lower   row   of   channels   (the   source   optode   between  

channel  4  and  7)  (upper  panel).  The  array  design  showing  the  location  of  the  channels  

(dashed  circle),  sources  (star),  and  detectors  (full  circle)  (lower  panel).     

 

Prior to analyzing the behavioral data, trials were rejected from further analysis by 

looking time measures. Videos were coded offline by an experimenter: if an infant looked for 

less than <20% within a trial, the trial was considered invalid and not included in the final 

dataset. A minimum of two valid trials per condition was set as a threshold for inclusion within 

infants for the behavioral data. We couldn’t obtain detailed looking time measures from two 

participants because we failed to video-record the session. Therefore, we excluded these two 
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participants from the behavioral analysis. However, we included them in the fNIRS analyses as 

our secondary measure of looking time (online live coding to record whether infants attended 

for at least 50% of each trial to guide the second experimenter’s presentation of a sufficient 

number of trials during the session) indicated that the infants’ exceeded the threshold for 

inclusion in analyses. Note that reanalysis of the fNIRS data excluding these infants produced 

the same overall pattern of results.  

Following this, for the behavioral data, two kinds of behaviors were selected as 

dependent variables: (i) the average fixation duration toward the experimenter’s face, hands (I 

condition) or object (JA and baseline condition), proportional to the length of the trial, and (ii) 

frequencies of 4 different social behaviors (gaze re-orienting, vocalizing, smiling, and pointing) 

per trial. For the gaze behavior, we counted the numbers of times the infant shifted their eye 

gaze between the experimenter’s face and the hand/object, and for the other 3 behaviors we 

counted the number of times we observed these distinct actions for each trial. Vocalizations 

were counted as periods of vocalizations except negative voiced sounds such as crying and 

whimpering. If the separation interval of voiced sounds was more than 1 s, the vocalizations 

were considered to be discrete. We then averaged this number across trials for each behavior. 

Each dependent variable was coded by a primary coder at 100 ms intervals using behavioral 

coding software (GenobsX, Tokyo, Japan). 

For the fNIRS data, changes in HbO2 and HHb chromophore concentration (µMol) 

were calculated and used as hemodynamic indicators of neural activity [58]. Prior to analyzing 

the fNIRS data, trials, channels or participant data were rejected from further analysis by (1) 

looking time measures (videos were coded offline by an experimenter: <50% of looking away 
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within a trial for the experimental conditions and <20% of looking away for the baseline 

condition considered invalid) and (2) the quality of the intensity signals, using artifact detection 

algorithms [37, 59]. In line with previous work, channels were excluded if the coefficient of 

variation of the attenuation exceeded 10% or if the normalized power was larger than 50% with 

respect to the total power [37]. Once the attenuation data was converted into changes in 

concentration (see below) trials were then assessed individually for artefact. Trials were 

removed if concentration changes during the stimulus trials exceeded +/- 5 µMol. This threshold 

was lenient, and designed to ensure data was excluded due to abrupt changes in signal caused by 

motion rather than changes due to activation. For each infant, the trials and channels that 

survived these rejection criteria were entered into further analyses. Inclusion criteria required 

each channel to contain valid data in both experimental conditions. A minimum of three valid 

trials per experimental condition was set as a threshold for inclusion within infants, and the 

maximum number of rejected channels could not exceed one third of the total number of 

channels.  

For each infant, the near-infrared intensity signal was low-pass filtered, using a 

cutoff frequency of 1.7 Hz. The data were then divided into blocks consisting of 4 s of the 

baseline trial prior to the onset of the 20 s experimental trial (the JA or I condition), plus the 

following 20 s baseline trial. This 44 s blocks of data were detrended with a linear fit between 

the first and last 4 s of the 44 s block, and converted into changes in concentration in HbO2 and 

HHb using the modified Beer–Lambert law with an assumption of an age-appropriate 

differential pathlength factor of 5.13 [60]. For each channel, valid experimental condition trials 

were then averaged together for each infant, and a time course of the mean change across all 
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valid trials in HbO2 and HHb concentration was compiled for each experimental condition. 

Either a significant increase in HbO2 concentration, or a significant decrease in HHb, is 

commonly accepted as an indicator of cortical activation in infant research [59]. In an initial 

analysis, the grand averaged hemodynamic responses (µMol) of all infants were assessed for 

each of the two conditions (JA and I conditions). For each channel, the maximum change (or 

amplitude) in HbO2 (increase/decrease in chromophore concentration) and HHb 

(increase/decrease in chromophore concentration) in response to each experimental stimulus 

was compared with baseline. We followed the procedure of epoch analysis of previous research 

[42, 48] to assess the maximum hemodynamic change for every 5 s period from 15 s after the 

experimental stimulus onset to 15 s after the onset of the baseline condition (i.e. 15 – 30 s). We 

assessed the response from 15 s to 30 s to (a) account for the 5s delay that we observed during 

video coding between the bleep (and parallel event marking of the data by Experimenter 2) and 

the time taken for Experimenter 1 to discard the toy and begin the next trial sequence by 

initiating joint eye contact, and to (b) investigate the latency of the peak responses seen across 

participants and channels during these live naturalistic interactions. Following analysis of the 

experimental condition vs. baseline, channels that showed significant activation in at least one 

condition were entered into paired t-tests to compare the hemodynamic response during the 

specified time windows between the two conditions (JA vs. I). During statistical analyses of the 

group data, only significant increases in HbO2 and decreases in HHb were reported, if the 

signals increased or decreased significantly in unison, the signal was considered inconsistent 

with a hemodynamic response to functional activation and not included (during analysis of the 

group data significant increases in HbO2 and HHb were only evident in one channel (10) at one 
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time epoch). Channels that survived a multiple comparison correction (false discovery rate: 

FDR) are highlighted in Table 1 [61]. To our knowledge this was the first study to explore 

fNIRS responses during live naturalistic interactions with infants entering toddlerhood, 

therefore we included full analyses of all significant channels (pre-thresholding) in our results. 

 

3. Results 

3.1 Behavioral Data 

The average number of valid trials, including baseline trials, was 20.9 (S.D. = 4.8) with the 

mean duration of the recording session totaling 7.0 minutes (S.D. = 1.6). The average number of 

valid trials was 5.1 (S.D. = 1.3) for the JA condition and 4.9 (S.D. = 1.2) for the I condition. 

Within these valid trials, two kinds of dependent variables were analyzed, (i) proportion of 

fixation durations toward the experimenter’s face versus to the hand/object, and (ii) frequencies 

of four different social behaviors (gaze shifting, vocalizing, smiling, and pointing). 

 Firstly, the mean proportion of looking duration to the stimuli in general (time on 

stimulus for both the face and the object combined) was 0.86 (S.D. = 0.09) for the baseline 

condition, 0.89 (S.D. = 0.08) for the JA condition, and 0.78 (S.D. = 0.12) for the I condition. 

Therefore, overall average looking time to the trials across infants was 17.2 seconds for the 

baseline condition, 17.8 seconds for the JA condition and 15.6 seconds for the I condition. The 

infants’ proportion of looking time was submitted into a two-way ANOVA with the stimulus 

condition (Baseline / Joint attention / Interaction) and the time on stimulus (Face / Object-Hand) 

as within-participants factors (Figure 3). Mauchley’s test of sphericity revealed a violation of 

sphericity for the interaction effect between the stimulus condition and the time on stimulus. 
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The Greenhouse–Geisser correction was therefore applied to adjust the degrees of freedom for 

the effect. Results revealed a significant main effect of the stimulus condition (F(2, 54) = 

13.001, p < 0.001, partial η2 = 0.325) and the time on stimulus (F(1, 27) = 145.136, p < 0.001, 

partial η2 = 0.843). Additionally, a significant interaction between the stimulus condition and 

the time on stimulus (F(1.61, 43.57) = 643.090, p < 0.001, partial η2 = 0.960, Greenhouse–

Geisser corrected) was also found. The post hoc t-tests with Bonferroni’s correction for the 

simple main effect showed that looking duration to the stimuli in general was shorter in the I 

condition than in the baseline (p = 0.003) or JA conditions (p = 0.001) while no significant 

difference in total looking duration was found between the baseline and JA conditions (p = 

0.640). Additionally, there were significant differences between the proportions of fixation 

durations to the face and the object in the baseline condition (p < 0.001), in the JA condition (p 

< 0.001), and in the I condition (p < 0.001). The infants looked at the object significantly longer 

than the face during the baseline and JA conditions while they looked at the face longer than the 

hands in the I condition (Figure 3). 
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Figure   3.   Mean   proportions   of   looking   times   to   the   experimenter’s   face,   hands   (I  

condition)  or  object  (JA  and  baseline  condition)   for  each  condition,  proportional   to  the  

length  of   the   trial.  Error  bars   indicate  1   standard  error  of   the  mean   (N   =  28).   ***  p   <  

0.001.  

 

 

Figure  4.  Mean  frequencies  of  four  different  social  behaviors  (gaze  shifting,  vocalizing,  

smiling,  and  pointing)  per  trial  for  each  condition.  Error  bars  indicate  1  standard  error  of  

the  mean  (N  =  28).  **  p  <  0.01,  *  p  <  0.05.  
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49.13) = 66.619, p < 0.001, partial η2 = 0.712, Greenhouse–Geisser corrected), and a significant 

interaction between the stimulus condition and the behaviors (F(2.55, 68.90) = 5.398, p = 0.004, 
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partial η2 = 0.167, Greenhouse–Geisser corrected). The post hoc t-tests with Bonferroni’s 

correction for the simple main effect demonstrated that the frequency of gaze re-orienting in the 

JA condition was higher than in the baseline condition (p = 0.008) but not higher than in the I 

condition (p = 0.134). In addition, the infants vocalized significantly longer during the baseline 

condition compared to the JA (p = 0.031) or I conditions (p = 0.003), and pointed longer during 

the baseline condition relative to the I condition (p = 0.021). 

 

3.2 fNIRS Data 

The average number of valid trials including baseline trials was 22.9 (S.D. = 2.7) with the mean 

duration of the recording session totaling 7.7 minutes (S.D. = 0.9). The average number of valid 

trials were 5.7 (S.D. = 0.8) for the JA condition and 5.4 (S.D. = 0.8) for the I condition. The 

proportion of invalid channels across the 21 infants was 0.012. 

 Due to the exploratory nature of this study we included full analyses of all significant 

channels in our results section but highlight those with the strongest response (that survive FDR 

correction) in Table 1. A significant increase of HbO2 compared to baseline for the JA condition 

was found over 5 channels (channels 5, 6, 7, 8, & 9), while 4 channels revealed a significant 

increase of HbO2 for the I condition (channels 5, 6, 8, & 9) (see Figure 5 & 6). The onset and 

duration of the responses (see Table 1) were earliest and over a longer period in channel 5 and 8 

for the JA condition (lasting from 15 – 30 s) and channel 5 for the I condition (lasting from 15 – 

30 s). Interestingly, only channels in the JA condition survived the correction for multiple 

comparisons for this contrast to the low social baseline condition. With reference to a 

standardized scalp surface map of fNIRS channel coordinates and underlying anatomy for 
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7-month-old infants [45], and head measurements for our participants we approximated the 

location of the brain regions underlying these channels in this older age group. The channels 

with significant activation were clustered largely over the STS-TPJ regions of the cortex 

(channels 6, 8 & 9). A further 2 channels (5 and 7) with significant responses in the JA 

condition were located on the edge of this cluster, overlapping into middle temporal regions. 

Paired-sample channel-by-channel t-tests were performed (within those channels showing 

significant change from baseline) to directly compare the hemodynamic change observed in 

response to the two experimental conditions (JA versus I). This analysis found a significantly 

greater hemodynamic increase in HbO2 to the JA condition relative to the I condition in channel 

8 (Channel 8 at 20 – 25 s window: t(20) = 2.443, p = 0.024), indicating greater activation for the 

JA condition in this STS-TPJ region. No channels showed a significantly greater increase in 

HbO2 to the I condition compared to the JA condition.  

 

Table  1.  Channels  with  significant  activation   from  baseline   in   the  JA  and  I  conditions;;  

statistical  tests  were  performed  within  different  time  windows.  *  p  <  0.05. 
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Analyses of the HHb signal found a further 4 channels (1, 2, 3 & 4), located over 

inferior frontal regions, which showed significant decreases in HHb in response to the I 

condition. However these latter responses should be treated with caution as the decreases in 

HHb were accompanied by non-significant but similar decreased time courses in HbO2 (see 

Appendix A), demonstrating a profile suggestive of contamination by motion artifact, but not to 

the level that our automatic algorithms would reject. For the HHb changes, there was no 

significant difference between the JA and I conditions within the epochs. 
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Figure  5.  An  overview  of   the   significant   group  effect   for  HbO2   (maximum   increase   in  

HbO2  concentration)  highlighted  with  red  circles  (FDR-corrected  p  <  0.05)  and  orange  

circles  (uncorrected  p  <  0.05)  for  the  two  contrasts:  joint  attention  condition  vs.  baseline  

(A),  interaction  condition  vs.  baseline  (B). 

 

 
Figure  6.  The  grand  averaged  group   time  courses  of   the  hemodynamic   responses   in  

HbO2  and  HHb  to  the  JA  and  I  conditions.  Light  greyed  area  indicates  the  time  window  

where  we  found  a  significant  increase  of  HbO2  compared  to  baseline  for  both  the  JA  and  

I  conditions.  The  dark  greyed  area   indicates   the   time  window  where   the  difference   in  

HbO2  change  was  significant  between  the  JA  and  I  conditions.  
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3.3 Relation Between Behavioral and fNIRS Data 

To further explore the relationship between the fNIRS condition specific responses and the 

behavioral findings we investigated associations between the activation to the I and JA 

conditions in channel 8 (at 20 – 30 s window) and looking time measures. We chose to assess 

correlations in channel 8 as it is where we found significant differences in activation between 

the JA and I conditions and positioned approximately over the posterior part of the STS-TPJ 

region. Firstly, we did not find that the average fixation duration during JA to the face (Pearson 

correlation; r(19) = 0.180, p = 0.462) or to the object (r(19) = 0.139, p = 0.571) significantly 

correlated with the degree of activation during JA. Therefore it is unlikely that the JA > I results 

can be explained by infants who attended more to the face or book during the JA condition 

driving an increased response during the JA condition. Interestingly, we found a significant 

positive correlation between the average fixation duration toward the experimenter’s face (r(19) 

= 0.518, p = 0.023) during the I condition and changes in HbO2 in channel 8 during the JA 

condition (no effects were found for looks towards the object (r(19) = 0.071, p = 0.772)). This 

would suggest that the infants who attended to the experimenter’s face for longer in the I 

condition showed greater brain activation in the STS-TPJ region during the JA condition 

(Figure 7). Also, no statistically significant correlation was found between the proportion of 

fixation durations toward the face during the I condition and changes in HbO2 in the STS-TPJ 

region during the I condition (r(19) = 0.236, p = 0.330). 
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Figure  7.  Individual  infant  responses  (N  =  19)  of  the  association  between  looking  time  to  

the  face  in  the  I  condition  and  HbO2  responses  in  channel  8  (the  STS-TPJ  region)  in  the  

JA  condition  (left  panel)  and  I  condition  (right  panel).     

 

4. Discussion 

In the current study, we assessed 12- to 14-month-olds’ cortical responses during two different 

types of live communicative interactions with an adult (I condition: singing a nursery rhymes 

with gestures; JA condition: reading a picture book) to assess the role of the STS-TPJ region in 

the processing of social signals such as mutual gaze, infant-directed speech, and contingent 

responsiveness in infants.  

Our analyses of infant behavior evidenced significant differences between the JA and 

I conditions, thus showing that our stimulus conditions were interpreted differently by the 

infants. Firstly, we found (1) that the proportion of looking time toward the experimenter’s face 

was greater than to the hands during the singing interaction (I) condition whilst the looking time 

to the face was lower than to the book during the book reading (JA) condition. Secondly during 

analyses of the frequencies of gaze shifting, smiling, vocalizing and pointing, we found that (2) 

that the frequency of infant gaze re-orienting (or shifts) between the face and hands/object was 

significantly higher in the JA condition relative to the baseline; (3) that the frequency of 
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vocalizations was higher in the baseline condition relative to the JA and I conditions; and (4) 

that the frequency of pointing gestures was higher in the baseline compared with the I condition.  

Our analyses of the fNIRS data evidenced increased HbO2 responses to both 

experimental conditions (I and JA) in a STS-TPJ region of the cortex compared to the 

low-social baseline condition. Furthermore, the response was significantly stronger in the JA 

compared with the I condition in a channel positioned over the pSTS-TPJ region. Whilst we had 

anticipated that looking time to the face would be lower during the JA condition relative to the I 

condition, given the second object of interest (book), we had not anticipated that infant’s would 

switch attention to such a high degree (on average looking to the face for less than 10% of the 

trial despite the experimenter being positioned directly opposite the infant). Therefore the 

increased activation during the JA condition is not simply a reflection of observing more visual 

cues from the experimenter’s face. Rather, it suggests that the STS-TPJ region is highly 

responsive to the communicative context of joint attention whilst the infants were listening to 

the experimenter describing the book and pointing at the pictures. Furthermore, we found a 

relationship between the amount of time spent attending to the experimenter’s face during the 

singing (I) condition and the degree of activation during the JA condition. Whilst further work 

is needed to replicate these findings in additional cohorts and disentangle the relative 

contribution of the different cues and contexts at this age, one interpretation could be that those 

infants more interested in attending to adult communication (during periods of directed attention 

during singing) may evidence more brain activation during other forms of more complex 

communication such as the joint attention elicited during the sharing of a book. Our results are 

consistent with developmental models of social cognition where joint attention precedes the 
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onset of ToM and is a more advanced stage of social cognition involved with interpreting the 

cues before you, rather than simply observing them passively, such as during the singing 

condition [62-64].   

We found one area of activation, over the aSTG-MTG, to show highly similar 

hemodynamic time courses (in channels 5 & 6) across both experimental social conditions. This 

likely represents voice-selective activation in the temporal cortex as the adult spoke in both 

experimental conditions relative to non-vocal sounds from the toys in the baseline condition. 

We know from previous research that adults and infants display increased responses in the 

anterior-middle STS region to human voice relative to non-vocal sounds [46, 48, 65-69]. Indeed, 

on the same day, the infants in this study were also involved in a study of social visual and 

auditory (vocal) cues prior to taking part in this live session, and group data from the first study 

showed a similar localized pattern of activation to vocal > non-vocal sounds accompanied by 

visual social cues [48]. However, we believe that the observed responses cannot be wholly 

explained by voice-selective activation. Firstly, the region of activation to the social 

experimental conditions in the current study extends into the posterior STS-TPJ areas, which 

have not previously been associated with vocal selectivity. Secondly, these findings are 

analogous to 6-month-old infant’s cortical responses in a previous live interaction study which 

assessed cortical responses while watching a woman singing with gestures [42]. They found 

increased activation in very similar regions of the brain to infant-directed singing compared to 

adult-directed singing, suggesting that these brain areas selectively activated to the type and 

context of the social cues. 
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 In comparison to the majority of previous infant fNIRS studies, we found that the 

response of the hemodynamic response function was more sustained (particularly in channels 5 

& 8 with significant activation found between 15 to 30 s after stimulus onset). Whilst this 

response appears to be fairly late, note that this is due to the 5 s delay between the event marked 

beginning of the trial (marked in the acquisition software by Experimenter 2) and the onset of 

Experimenter 1’s change in interaction as we purposefully avoided unnatural transitions by 

asking Experimenter 1 to finish the sentence, or action, that they were performing before 

changing conditions. Therefore the window is in effect covering the last 10s of the experimental 

trial and the first 5s of the subsequent baseline trial. Interestingly, a previous fNIRS study with 

similar sustained and/or late occurring activation was the previous live naturalistic interaction 

study with 6 month olds [42], suggesting that the complexity of the stimuli or attention required 

may be enhanced in live contexts. Whilst the current design attempted to mimic natural play 

(for example; the trials were semi-structured in length, the objects and book were set down in 

view, but out of reach, of the infant on a table next to the adult before beginning the next trial), 

whilst controlling other variables across trials (gestures were used in the I condition during 

singing and the JA condition to point to pictures in the book) there were certain differences that 

could contribute to the current findings (such as reading versus singing) which could not be 

addressed here. Further research with longer more naturalistic communicative interaction 

sequences could help clarify the relative contribution of these different factors, and how the 

current responses relate to different social cues during naturalistic play, singing and 

conversation. Furthermore, while overall measures of attention (looking time) were not 

predictive of the level of activation across the three conditions, we may in future work want to 
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more fully address other factors such as arousal by measuring skin conductance or heart rate 

across these longer sessions.  

According to Cristia, Dupoux, Hakuno, Lloyd-Fox, Schuetze, Kivits, Bergvelt, van 

Gelder, Filippin, Charron and Minagawa-Kawai [70], most fNIRS studies are carried out on 

young infants, from neonates to 8-month-olds, and studies on infants older than 8 months are 

rarely performed. The authors discussed that this may reflect a limitation in the present 

neuroimaging techniques of testing older infants and toddlers since even fNIRS requires 

participants to maintain a certain degree of immobility and compliance. They also reported that 

the attrition rate tends to be higher in older infants (9 months or older) rather than younger 

infants. In the present study, we succeeded in collecting valid fNIRS data from 21 out of the 34 

infants aged 12 to 14 months, resulting in an attrition rate of 38% (falling to 30% if we remove 

those excluded due to experimenter error). This attrition rate fell below the normal range for 

fNIRS studies with older infants and was even lower than the average attrition rate of 49% 

reported for infant ERP studies [71]. This low attrition rate supports the use of fNIRS for 

measuring brain activity in older infants and toddlers using study designs involving interaction 

with live stimuli to enhance infant attention.  

There are several caveats to the strength of our current conclusions, which should be 

addressed in future work. Firstly, the limited number of sources and detectors of the mini-NIRS 

system we used in the study was only sufficient to design a single array and make 

measurements over inferior frontal to posterior temporal regions on one hemisphere, therefore it 

would be highly beneficial to continue this research with a wider coverage of the cortex. 

However we should note that there may be benefits to using a smaller array in live interactions 
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as the contact of the headgear will be stronger and less affected by artifact from participant 

movement. Secondly, the current findings do not allow us to fully distinguish between the 

contribution of the different auditory and visual social cues, and which so future research should 

use a more complex multifactor design to build on the current findings. Thirdly, whilst we 

believe from previous research [42] that this semi-structured design was suitable and that it was 

constructed to be similar to natural interactions with caregivers (who often rapidly switch 

attention between their infant and other objects in their environment during play), it would be 

beneficial to extend the current work into longer sessions of naturalistic play and 

communication to disentangle how these responses interplay across different types of play and 

communicative contexts. Fourthly, we need to explore the latency and shape of the 

hemodynamic responses within live contexts with more sensitive analyses to fully interrogate 

the contribution of different stimulus cues on the pattern of the responses seen.  

Our study supports the view that the STS-TPJ region is already engaged in 

processing of communicative cues related to joint attention by the age of 12 – 14 months. 

Furthermore, the successful use of fNIRS in this semi-structured design opens the possibility for 

future research conducted during more natural conversational and play sessions with caregivers, 

where components of child and adult led interaction and communication could be extracted and 

analyzed over longer periods of time while individuals are at the lab or at home. This is one of 

the first fNIRS studies to investigate cortical activation during naturalistic live interactions in 

infants entering toddlerhood [41, 42] and highlights the potential of this technology in future 

basic and clinical science. 
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Appendix A 

As supplementary data, time courses of hemoglobin responses to the JA and I conditions for all 

channels were shown in Figure 8. 
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Figure  8.  The  grand  averaged  group   time  courses  of   the  hemodynamic   responses   in  

HbO2  and  HHb  to  the  JA  and  I  conditions  for  channels  1  to  12.  

 

Figure Captions 

Figure 1. An infant participating in the study during the baseline and two experimental 

conditions (upper panel). The experimental protocol showing the order and timing of stimulus 

presentation for the two experimental conditions (lower panel). 

 

Figure 2. The fNIRS headgear and channel layout. An infant wearing the headgear with the 

location of the 10-20 coordinates F8, T4, and T6 overlaying the photo. T4 was located at the 

midpoint of the lower row of channels (the source optode between channel 4 and 7) (upper 

panel). The array design showing the location of the channels (dashed circle), sources (star), and 

detectors (full circle) (lower panel).  

 

Figure 3. Mean proportions of looking times to the experimenter’s face, hands (I condition) or 

object (JA and baseline condition) for each condition, proportional to the length of the trial. 

Error bars indicate 1 standard error of the mean (N = 28). *** p < 0.001. 

 

Figure 4. Mean frequencies of four different social behaviors (gaze shifting, vocalizing, smiling, 

and pointing) per trial for each condition. Error bars indicate 1 standard error of the mean (N = 

28). ** p < 0.01, * p < 0.05. 

 

Figure 5. An overview of the significant group effect for HbO2 (maximum increase in HbO2 

concentration) highlighted with red circles (FDR-corrected p < 0.05) and orange circles 

(uncorrected p < 0.05) for the two contrasts: joint attention condition vs. baseline (A), 

interaction condition vs. baseline (B). 

 

Figure 6. The grand averaged group time courses of the hemodynamic responses in HbO2 and 

HHb to the JA and I conditions. Light greyed area indicates the time window where we found a 

significant increase of HbO2 compared to baseline for both the JA and I conditions. The dark 
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greyed area indicates the time window where the difference in HbO2 change was significant 

between the JA and I conditions. 

 

Figure 7. Individual infant responses (N = 19) of the association between looking time to the 

face in the I condition and HbO2 responses in channel 8 (the STS-TPJ region) in the JA 

condition (left panel) and I condition (right panel).  

 

Figure 8. The grand averaged group time courses of the hemodynamic responses in HbO2 and 

HHb to the JA and I conditions for channels 1 to 12. 
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