
Rethinking Pointer Reasoning
in Symbolic Execution

Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu
Department of Computer, Control, and Management Engineering

Sapienza University of Rome, Italy
{coppa, delia, demetres}@dis.uniroma1.it

Abstract—Symbolic execution is a popular program analysis
technique that allows seeking for bugs by reasoning over multiple
alternative execution states at once. As the number of states to
explore may grow exponentially, a symbolic executor may quickly
run out of space. For instance, a memory access to a symbolic
address may potentially reference the entire address space,
leading to a combinatorial explosion of the possible resulting
execution states. To cope with this issue, state-of-the-art executors
concretize symbolic addresses that span memory intervals larger
than some threshold. Unfortunately, this could result in missing
interesting execution states, e.g., where a bug arises.

In this paper we introduce MEMSIGHT, a new approach to
symbolic memory that reduces the need for concretization, hence
offering the opportunity for broader state explorations and more
precise pointer reasoning. Rather than mapping address instances
to data as previous tools do, our technique maps symbolic
address expressions to data, maintaining the possible alternative
states resulting from the memory referenced by a symbolic
address in a compact, implicit form. A preliminary experimental
investigation on prominent benchmarks from the DARPA Cyber
Grand Challenge shows that MEMSIGHT enables the exploration
of states unreachable by previous techniques.

Blessed are the forgetful, for they get the better even of
their blunders.

Friedrich Nietzsche

I. INTRODUCTION

Symbolic execution is a technique for program property ver-
ification largely employed in the software testing and security
domains [1]. By taking on symbolic rather than concrete input
values, multiple execution paths can be explored at once, with
each path describing the program’s behavior for a well-defined
class of inputs. Nonetheless, the number of paths to explore
can be prohibitively large, e.g., in the presence of unbounded
loops, or when a pointer to be dereferenced is represented by
a symbolic expression. We base our discussion on the simple
running example reported in Figure 1.

1: void bomb(char* a, char i, char j) {
2: char boom;
3: a[i] = 23;
4: if (a[j] == 23) boom = 0;
5: else boom = 1;
6: assert(!boom);
7: }

Fig. 1. Motivating example: can we defuse the bomb?

The function takes as inputs an array a and two indexes i
and j. We assume that a can point to a large memory area,
possibly the whole memory, and we do not pose any constraint
on i and j. We are interested in characterizing inputs that
defuse the “bomb”, i.e., that do not trigger the assert
statement. Previous research and state-of-the-art tools typically
model memory as a mapping between concrete addresses and
expressions over concrete and symbolic values. In this setting,
different scenarios become possible for handling a symbolic
address when referencing memory.

A symbolic executor can concretize an address by using
one valid model for the symbolic expression under the current
path constraints. This strategy naturally arises for instance
in dynamic test generation, in which values from a concrete
execution are maintained at the same time. Previous research
has however pointed out that concretization can fail to exercise
program branches and paths [2]. On the other hand, treating the
memory as fully symbolic would allow an executor to reason
about all possible addresses either by forking the execution to
account for each concrete address matching an expression, or
by capturing the uncertainty on the address through nested ite
(i.e., if-then-else) expressions over its possible values.

Unfortunately, fully symbolic memory as described above
hardly scales in practice. Hence, state-of-the-art executors
often trade performance for soundness by implementing a
partial memory model in which writes are always concretized,
while reads are modeled as in fully symbolic memory only in
the face of a manageable number (e.g., up to 1024 in [3]) of
possible address values, and concretized otherwise.

To simplify the discussion of our example, let us assume that
the involved memory is initially zero-filled, so to avoid bomb
defusing from pre-existing storage. Full concretization of both
&a[i] and &a[j] would likely result in an assertion failure,
unless the same value is used for i and j. A partial memory
model would concretize the symbolic read too, as the memory
&a[j] spans is large. Even when calling-context information
yields intervals of manageable size, the symbolic read a[j]
would account for each a+j address instance individually,
leading the executor to find only one bomb-defusing input,
i.e., the one in which concrete address a+j equals the value
chosen for a+i by the write concretization strategy. A fully
symbolic approach would instead reveal the property that all
inputs in which i==j holds defuse the bomb.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/153367399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 2. Symbolic execution of the bomb example of Figure 1. Expressions &a, &i, and &j denote the concrete addresses of the corresponding variables. The
bomb does not detonate only if the assert succeeds, i.e., if v′ = 0, that is v = 23, which happens for instance if αi = αj .

Contributions. In this work we discuss a different perspec-
tive in the design of symbolic pointer reasoning: we show
how to compactly associate values with symbolic address
expressions rather than concrete addresses, and investigate
efficient implementations of a fully symbolic memory using
a paged interval tree. Our approach, which we call MEM-
SIGHT, natively accounts for state merging [4] – a mainstream
performance enabler in modern executors – and has been
integrated in the ANGR [5] framework. Preliminary results
show that MEMSIGHT allows for broader state exploration
on prominent benchmarks, revealing behaviors that previous
techniques would miss or use too much resources to identify.

II. TECHNIQUE

To illustrate how MEMSIGHT works, we start from a simple
base version and then we refine it to make it more general
and efficient in practice. We target a general setting in which
a symbolic engine maintains for each explored state a set of
path constraints π reflecting path choices taken at each branch
based on the values of symbolic inputs. An SMT solver is
invoked to check for path feasibility at branch instructions
and to retrieve models for symbolic values and expressions,
e.g., to apply concretization. Data is stored in a memory object
accessible through load and store operations over expressions
describing addresses. Unless otherwise stated, we assume that
all addresses and values are expressions over concrete and/or
symbolic terms. Furthermore, an engine may decide to merge
the effects from multiple paths into one to seek for efficiency,
thus requiring a merge of the respective memories as well.

A. Base version

We model symbolic memory M as a set of tuples (e, v, t, δ),
where e is an expression that denotes an address and v is an
expression that denotes the value at address e. Attribute t is
the logical time at which the tuple was created and is used
by load operations to determine the latest value written at a

given address. To support merge of memories, we account for a
predicate δ reflecting specific conditions under which the tuple
is valid: δ is typically computed by the executor in terms of
diverging path constraints between the states to be merged.

The base version of our symbolic memory data structure is
shown in Algorithm 1. To explain how it works, consider again
the example of Figure 1. In order to determine whether there
is any bomb-defusing input, we set up a symbolic executor to
associate pointer a with symbolic value αa and indexes i and
j with symbolic values αi and αj , respectively.

The program’s effects on the symbolic state are illustrated
in Figure 2. To keep track of logical time, the state includes
a timer t that starts at zero. Initially, the memory M includes
the address-value mappings resulting from parameter passing.
For the sake of compactness, we denote tuple (e, v, t, δ) as
e 7→ v|δ=...t=... , omitting t if t = 0, and δ if δ = true.

Algorithm 1 MEMSIGHT – base version

M := symbolic memory (initially empty)
t := timer (initially 0)

1: function STORE(e, v):
2: t← t+ 1
3: M ←M ∪ {(e, v, t, true)}
1: function LOAD(e):
2: v ← 0
3: for x ∈M by ascending timestamp do
4: v ← ite(e = x.e ∧ x.δ, x.v, v)

5: return v

1: function MERGE(δ, Sother, δother, ta):
2: for {x ∈M | x.t > ta} do
3: M ←M |x.δ←x.δ∧δ
4: for {x ∈ Sother.M | x.t > ta} do
5: x.δ ← x.δ ∧ δother
6: M ←M ∪ {x}
7: t← max(t, Sother.t)



1) Memory loading and storing: To perform a[i] = 23,
the program first loads the values of variables a and i. A
load(e) operation (Algorithm 1) builds an ite expression
that attempts to match e against all addresses previously
assigned in M , considering the most recent tuples first.
The “else” case of the innermost ite accounts for unini-
tialized memory locations, which for the sake of simplicity
we consider set to zero by default in this base version. In
our example, load(&a) yields ite(&a = &a, αa, ite(&a =
&i, αi, ite(&a = &j, αj , 0))), which can be simplified to αa.
Similarly, load(&i) yields αi. The assignment is done by a
store(αa+αi, 23) operation that adds (αa+αi, 23, 1, true),
i.e., αa + αi 7→ 23|t=1, to M after updating t.

The test if (a[j]==23) performs a load(αa + αj)
operation, which constructs an ite expression v that selects
the appropriate value at address αa+αj . This is done by first
matching αa + αj against the most recent written symbolic
address, i.e., αa + αi, and later considering parameters &a,
&i, and &j. The execution then forks off a new state Sother =
{Mother, tother} for the “then” branch, where Mother is a
clone of M and tother = t. This branch is taken iff v = 23.

2) State merging: As the value of the boom variable de-
pends on the taken branch, a merge operation (Algorithm 1)
reconciles the states by fusing M and Mother into M . The
operation takes four parameters: δ = (v 6= 23) is the path
condition of the “else” branch that kept on working on M ;
Sother is the state resulting from the “then” branch, while
δother = (v = 23) is its path condition; finally, ta = 1
is the timestamp of the least common ancestor of the two
branches. The merge updates all tuples added to M since
the branch point at time ta by guarding them with the “else”
branch condition δ (lines 2–3), and then adds to M all tuples
added to Mother since ta, guarding them with the “then”
branch condition δother (lines 4–6). In our example, this results
in tuples &boom 7→ 1|δ=(v 6=23)

t=2 and &boom 7→ 0|δ=(v=23)
t=2

present in M after merging the states (Figure 2).
Finally, the program loads and returns the value of boom,

building the (simplified) expression v′ = ite(v = 23, 0, 1).
Symbolic execution can therefore conclude that any model of
v′ = 0, e.g., such that αi = αj , will defuse the bomb.

B. Refinements

In its initial naive formulation, the proposed scheme suffers
from a few generality and performance issues. We discuss a
number of refinements that lead to Algorithm 2.

1) Address range selection: One of the main drawbacks
of Algorithm 1 is that load and merge operations need to
scan the entire memory, which can be highly time and space-
consuming. We note that it is common for a symbolic address
to be constrained within a certain interval [3]. Hence, a more
effective approach is to index each tuple (e, v, t, δ) with the
smallest range [a, b] that includes all possible values e can
attain (line 6 of store in Algorithm 2). The range can be
computed by the SMT solver (lines 2–3). A load(e) operation
can therefore scan just the tuples whose ranges intersect with
the minimum and maximum values of e (lines 2–3, 8).

2) Memory cleanup: Algorithm 1 naively adds one tuple
at each store. A useful improvement is getting rid of older
tuples that are no longer needed: one approach is to remove
a tuple if its address is “equivalent” to the one being written
(line 5 of store in Algorithm 2), i.e., they lead to the same
concrete address for any possible valuation of symbols.

3) Symbolic uninitialized memory: Identifying how a pro-
gram may behave when accessing uninitialized memory re-
gions is crucial for testing and vulnerability exploitation. In
our base version, we have assumed that an uninitialized cell
holds zero, which limits the precision of the analysis. The
load(e, v) operation of Algorithm 2 supports symbolic unini-
tialized memory by performing an implicit store that assigns a
new symbol to address e if e is not fully “covered” by address
expressions already in M (lines 4–6). A subtle issue is how
to make sure that accessing an uninitialized memory address
consistently yields the same symbolic value. More precisely,
for any two load(e) = v and load(e′) = v′ operations,
if γ is a valuation of symbols such that γ |= e = e′ = x
and address x is uninitialized, then γ |= v = v′. To achieve
this property, we use a tie-breaking strategy based on negative
timestamps for tuples created by implicit stores. Observe that
our treatment of uninitialized memory shares similarities with

Algorithm 2 MEMSIGHT – improved version

M := symbolic memory (initially empty)
π := current path constraints
t := positive timer (initially 0)
t̄ := negative timer (initially 0)
sat(ψ) , ∃γ : γ |= ψ
equiv(e, e′, π) , sat(e 6= e′ ∧ π)
range(M,a, b) , {x ∈M | [x.a, x.b] ∩ [a, b] 6= ∅}

1: function STORE(e, v):
2: a← min(e, π)
3: b← max(e, π)
4: t← t+ 1
5: M ←M \ {x ∈ range(M,a, b) | equiv(e, x.e, π)}
6: M ←M ∪ {(a, b, e, v, t, true)}
1: function LOAD(e):
2: a← min(e, π)
3: b← max(e, π)
4: if sat(π ∧ (∧x∈range(M,a,b) e 6= x.e)) then
5: t̄← t̄− 1
6: M ←M ∪ {(a, b, e, new symbol, t̄, true)}
7: v ← 0
8: for x ∈ range(M,a, b) by ascending timestamp do
9: v ← ite(e = x.e ∧ x.δ, x.v, v)

10: return v

1: function MERGE(δ, Sother, δother, ta, t̄a):
2: for {x ∈M | x.t > ta ∨ x.t < t̄a} do
3: x.δ ← x.δ ∧ δ
4: for {x ∈ Sother.M | x.t > ta ∨ x.t < t̄a} do
5: x.δ ← x.δ ∧ δother
6: M ←M ∪ {x}
7: t← max(t, Sother.t)
8: t̄← min(t̄, Sother.t̄)



how constraint solvers deal with uninterpreted functions.
4) Multi-byte load and store: The solutions presented in

this section work with 1-byte memory objects. Multi-byte
operations can be supported by issuing separate store
and load operations for individual bytes and combining
the results. For instance, a load(e,sizeof(int)) can be
obtained by concatenating the values produced by load(e),
load(e + 1), load(e + 2), and load(e + 3). This strategy
is adopted in several symbolic executors (e.g., KLEE1[6]).

C. Discussion

Previous work [2] hinted that certain bugs can only be
revealed when writes are modeled symbolically. However,
classic approaches may not scale. For instance, [7] remarks
that “a repeated read and write using the same symbolic index
would result in a quadratic increase in symbolic constraints or
[...] the complexity of the stored symbolic expressions”.

Our solution offers a more compact encoding that does
not require an explicit enumeration – a possibly expensive
task for a solver [3] – of valid addresses to either fork the
state or build ite expressions (Section I). As we discuss next,
range intersection operations can be offloaded to efficient data
structures. Our example also suggests that reasoning over
expressions allows for an easier input class characterization.

III. IMPLEMENTATION

In this section we describe a prototype implementation of
MEMSIGHT as a plugin of ANGR. We start by presenting
ANGR, and then describe the techniques implemented in our
prototype while seeking for efficiency.

A. ANGR

ANGR [5] is an open-source framework for binary analysis.
It provides a powerful platform-agnostic symbolic execution
engine that reasons on VEX bytecode and relies on Z3 as
SMT solver. ANGR recently participated in the DARPA Cyber
Grand Challenge and has received considerable attention from
many reverse engineering and security practitioners.

ANGR adopts a partial memory model in which ite expres-
sions are constructed for a symbolic read if the spanned range
is not too large. Z3 is queried for the maximum and minimum
values that the address can assume, and if they differ at most
by 1024, ANGR will ask Z3 to enumerate all the solutions
and construct an ite accordingly, otherwise the address will
be concretized. Optionally, write addresses can be treated as
symbolic too, with a default threshold of 128 for range size.

In order to relieve the solver from the burden of repeated
queries and improve efficiency, a number of optimizations are
implemented in the CLARIPY constraint-solving wrapper. To
improve scalability, ANGR implements an extended veritesting
merging strategy [4] that analyzes the control flow graph to
determine at which places is profitable to condense the effects
of separate chunks of code using ite constraints.

1https://github.com/klee/klee/blob/master/docs/overview.

B. MEMSIGHT prototype

We devise MEMSIGHT as a plugin2 implementing the mem-
ory abstraction required by the SIMUVEX symbolic engine of
ANGR, so it can easily be interchanged with the default plugin
for partial memory modeling. As the abstraction explicitly
accounts for a merging primitive, strategies such as veritesting
can run on top of MEMSIGHT with no extra effort required.

The first practical challenge we have to overcome is sup-
porting range operations from Algorithm 2 efficiently. One
possibility is to maintain an interval tree to allow for efficient
retrieval of all stored intervals that overlap with a given one.
However, we should keep in mind that when a branch is
encountered, an executor typically clones the state along with
the associated memory. To allow better space usage, we thus
propose a memory-wise paged interval tree. We partition the
address space in pages: a primary interval tree built on top
of page indexes holds pointers to secondary interval trees that
contain the tuples in M . Each tuple is contained in exactly
one secondary tree. The page size is empirically determined
to minimize the maximum tree size in the data structure. Both
the primary and the secondary trees are maintained using a
copy-on-write strategy that minimizes the need for cloning
and promotes memory sharing among different states.

Another crucial aspect to take into account is that the ma-
jority of memory accesses in a symbolic exploration typically
happen on concrete addresses. Capturing concrete stores in
an interval tree would result in maintaining information about
many ranges of size 1. We thus extend our representation with
a concrete memory object that associates concrete addresses
with expressions representing values. Each expression is an-
notated with a timestamp, so it can possibly be combined with
values mapped to symbolic addresses during a load operation.
For the sake of efficiency, concrete memory is implemented
as a paged hashmap with copy-on-write cloning for pages,
similarly as in ANGR’s default memory implementation.

IV. EVALUATION

In this section we report on a preliminary investigation
of the practical impact of MEMSIGHT compared to previous
memory representations for symbolic execution.

A. Experimental setup and methodology

Our experiments are based on benchmarks from the Cromu-
lence (CROMU) DARPA performer group of the Cyber Grand
Challenge (CGC). Tests were conducted on a server equipped
with an Intel R© Xeon R© CPU E5-2630 v3 @ 2.40GHz with
16 cores and 64 GB RAM, running Linux CentOS 6.7. We
compare MEMSIGHT against three different ANGR memory
concretization strategies: 1) ANGR-CONC, which concretizes
all accessed symbolic addresses, 2) ANGR-PART (the default of
ANGR), which concretizes all read addresses that span ranges
larger than 1024 and all written addresses, and 3) ANGR-FULL,

2Our prototype was tested in ANGR v5.6 and is available at: https://github.
com/season-lab/memsight. Creating it has required a substantial implemen-
tation effort due to its complex interplay with the different layers of ANGR.
Along the way, we have discovered and fixed a few subtle bugs in ANGR.

https://github.com/season-lab/memsight
https://github.com/season-lab/memsight


symbolic
store

Fig. 3. Example of symbolic store excerpted from the CROMU 00006 Cyber Grand Challenge benchmark.

which performs no address concretizations by raising the read
and write thresholds to an infinite value.

We symbolically execute MEMSIGHT, ANGR-CONC,
ANGR-PART, and ANGR-FULL on the CROMU benchmarks
with a budget of 2 hours and 32 GB of RAM. To characterize
the breadth of the exploration enabled by the memory model
in use, we measure the number of explored paths. To make
a meaningful comparison across different memory models, in
our experiments symbolic execution explores states in rounds
using a first-in-first-out strategy: a new round starts only when
all states in the previous round have been explored. Hence, at
any round the set of explored paths with some concretization
strategy is always a subset of the paths that would be explored
by performing fewer concretizations.

B. Case study

We now discuss a real-world code example that shows how
MEMSIGHT can maintain fully symbolic addresses in a con-
text where previous techniques are instead forced to concretize
them. CROMU 00006 is a service included in the DARPA
CGC suite that produces random numbers and generates charts
for numeric data, including bar charts and sparklines. The
benchmark dereferences pointers that span very large portions
of the address space. This arises for instance in function
read_data shown in Figure 3, which fills a buffer data
of symbolic size datum_cnt with values read from the
input. An inspection of the x86 binary code reveals that
the dynamic stack allocation uint32 data[datum_cnt]
(line 2) makes the stack pointer register esp symbolic. Later
in the code (line 6), parameter passing on stack to function
read causes a store to the symbolic esp. The range of
possible addresses esp can assume at that point is as large
as 262,128 due to previous constraints on the maximum stack
size imposed by the program. This triggers concretization in
ANGR-PART, forcing the symbolic execution to reason on a
buffer of fixed size3. Since the symbolic range for esp is very
large, ANGR-FULL fails to produce a result due to excessive
resource consumption. In contrast, MEMSIGHT keeps esp
symbolic, considering in the analysis all possible sizes of the
data buffer. As confirmed by our experiments, the ability to

3We observed that, since the stack grows downward and ANGR concretizes
symbolic writes by default using the maximum possible address, then the
analysis ends up reasoning on the smallest, rather than the largest buffer size.
A segment-dependent concretization strategy would yield better results here.

consider a buffer of variable size impacts the breadth of the
exploration, allowing MEMSIGHT to push symbolic execution
through states that remain hidden to ANGR-PART.

C. Experiments

The first question we address is: how broad are the symbolic
address dereferences performed by the CROMU benchmarks?
To this aim, we measure the range of symbolic loads and
stores throughout the analysis. This is a structural property of
the considered benchmarks independent of the chosen memory
model. The left half of Table I reports the total number of
memory accesses to a symbolic address with a range size
larger than 1 (# CONCR) and the maximum size of the ranges
of symbolic addresses accessed by load and store operations
throughout the execution. Notice that for some benchmarks
the ranges are much larger than the thresholds one can afford
to use in practice in partial memory models.

Our second question is: to what extent does concretization
restrict state explorations? The right part of Table I compares
the number of distinct control flow paths explored by the
memory models we considered. To allow direct comparison,
the snapshot of the number of paths is taken at the same
exploration depth K for the same benchmark in all memory
versions. We first observe that full concretization (ANGR-
CONC) may restrict the number of explorable paths, confirming
the findings reported in [2], [3]. We also note that for some
benchmarks that exhibit large ranges for symbolic addresses, a
partial memory model (ANGR-PART) does not capture all ex-
plorable paths. Explicit fully symbolic memory (ANGR-FULL)
fails to complete due to excessive resource requirements. Full
exploration is instead supported by MEMSIGHT, which can
visit a larger portion of the execution state space.

V. RELATED WORK

A number of projects have addressed the problem of model-
ing symbolic pointers. The memory model of EXE [8] allows
symbolic reads by emulating pointers as offset references
to array objects; concretization is used for multiple pointer
dereferences, while symbolic writes are not discussed in detail.
KLEE [6] implements a similar strategy, but clones the
execution state when a pointer can refer to multiple objects,
constraining the pointer to be within a single object in a clone.

SAGE [2] takes advantage of concrete values from dynamic
test generation to support symbolic pointers, confining them



TABLE I
PRELIMINARY EXPERIMENTS ON THE CROMU CYBER GRAND CHALLENGE BENCHMARKS.

BENCHMARK # CONCR
MAX RANGE SIZE # PATHS AT ROUND K
LOAD STORE K ANGR-CONC ANGR-PART ANGR-FULL MEMSIGHT

CROMU_00001 230 0 9 481 1845 1845 2466 2466
CROMU_00006 6 24 262128 316 9 31 failed 34
CROMU_00009 638 8 9 1534 1131 1131 1715 1715
CROMU_00014 1800 0 9 1512 2251 2251 2315 2315
CROMU_00018 1696 400 770048 924 80 98 failed 433
CROMU_00024 1902 32 32 327 1563 1563 1980 1980
CROMU_00027 771 92 3888 3522 2142 2142 2192 2192
CROMU_00031 126 2295 56 899 299 1413 1413 1413
CROMU_00032 193 576 8192 642 3 3 51 51
CROMU_00033 1010 1020 1020 364 508 508 539 539

within the memory regions in which the corresponding con-
crete values fall. The work also discusses the relevance of
multiple pointer dereferences and symbolic writes in testing.

MAYHEM [3] introduces partial memory modeling, and
proposes a number of clever optimizations such as value-
set analysis [9] and fine-grained query caching to reduce the
burden on the SMT solver when assessing range sizes.

Our work shares several analogies with the segment-offset-
plane model proposed in [10], which stores data in separate
planes based on their type. Each plane holds a list of write
records, and a solver is invoked for each read operation to
check whether a stored expression collides with the given
(typed) symbolic address. We believe our approach is more
general as it is not affected by the type safety of a language,
it provides support for state merging that is compelling for
scalability, and it explicitly accounts for uninitialized memory.

The framework presented in [11] to describe concretization
policies for symbolic values and addresses sheds light on an
interesting research problem, paving the way to a systematic
study of concretization strategies and policy tuning. We also
believe that pointer concretization strategies might benefit
from the delayed concretization technique with uninterpreted
functions proposed in [12] to handle non-linear constraints.

VI. CONCLUSION

We believe that the key concept of generalizing a symbolic
memory so that it maps symbolic address expressions – rather
than just concrete addresses – to value expressions, can lead
to further interesting developments.

The refinements introduced in Algorithm 2 and the opti-
mizations applied to our prototype implementation can sig-
nificantly affect the performance of the basic version of the
approach. Nonetheless, the design space to explore in opti-
mization is large, leaving significant room for improvement.

As a first observation, static analysis techniques such as
value-set analysis can be used to refine ranges as in [3]
and ease constraint solving. Also, the expressions returned
by load operations could be amenable to simplification,
as expressions from recent symbolic writes may together
supersede other expressions stored earlier in the execution.
Similarly, the paged interval tree may periodically be rebuilt
– or modified in a lazy fashion – to prune “outdated” values.

An executor might also decide to trade performance for

soundness at a later stage by concretizing certain symbolic
address expressions, or limiting the ranges they span using
speculative heuristics. Investigating the benefits of delayed
pointer concretization in symbolic execution and possible
strategies for it remains an interesting open question.

ACKNOWLEDGMENTS

This work is partially supported by a grant of the Italian
Presidency of Ministry Council and by CINI Cybersecurity
National Laboratory within the project FilieraSicura funded
by CISCO Systems Inc. and Leonardo SpA.

REFERENCES

[1] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” CoRR, vol. abs/1610.00502.
[Online]. Available: http://arxiv.org/abs/1610.00502

[2] B. Elkarablieh, P. Godefroid, and M. Y. Levin, “Precise pointer
reasoning for dynamic test generation,” in Proc. of ISSTA 2009. ACM,
2009. [Online]. Available: https://doi.org/10.1145/1572272.1572288

[3] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on binary code,” in Proc. of SP 2012. IEEE Computer
Society, 2012. [Online]. Available: https://doi.org/10.1109/SP.2012.31

[4] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proc. of ICSE 2014. ACM,
2014. [Online]. Available: https://doi.org/10.1145/2568225.2568293

[5] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Krügel, and G. Vigna,
“SOK: (state of) the art of war: Offensive techniques in binary
analysis,” in Proc. of SP 2016. IEEE Computer Society, 2016.
[Online]. Available: https://doi.org/10.1109/SP.2016.17

[6] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proc. of OSDI 2008. USENIX Association, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[7] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in NDSS 2016, 2016.

[8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically generating inputs of death,” in CCS 2006. ACM,
2006. [Online]. Available: https://doi.org/10.1145/1180405.1180445

[9] E. Duesterwald, Ed., Analyzing Memory Accesses in x86 Executables,
ser. CC 2004. Springer Berlin Heidelberg, 2004. [Online]. Available:
https://doi.org/10.1007/978-3-540-24723-4 2

[10] M. Trtı́k and J. Strejček, Symbolic Memory with Pointers, ser. ATVA
2014. Cham: Springer International Publishing, 2014, pp. 380–395.
[Online]. Available: https://doi.org/10.1007/978-3-319-11936-6 27

[11] R. David, S. Bardin, J. Feist, L. Mounier, M.-L. Potet, T. D. Ta,
and J.-Y. Marion, “Specification of concretization and symbolization
policies in symbolic execution,” in Proc. of ISSTA 2016. ACM, 2016.
[Online]. Available: https://doi.org/10.1145/2931037.2931048

[12] C. S. Păsăreanu, N. Rungta, and W. Visser, “Symbolic execution with
mixed concrete-symbolic solving,” in Proc. of ISSTA 2011. ACM,
2011. [Online]. Available: https://doi.org/10.1145/2001420.2001425

http://arxiv.org/abs/1610.00502
https://doi.org/10.1145/1572272.1572288
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1109/SP.2016.17
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1007/978-3-540-24723-4_2
https://doi.org/10.1007/978-3-319-11936-6_27
https://doi.org/10.1145/2931037.2931048
https://doi.org/10.1145/2001420.2001425

	Introduction
	Technique
	Base version
	Memory loading and storing
	State merging

	Refinements
	Address range selection
	Memory cleanup
	Symbolic uninitialized memory
	Multi-byte load and store

	Discussion

	Implementation
	angr
	MemSight prototype

	Evaluation
	Experimental setup and methodology
	Case study
	Experiments

	Related Work
	Conclusion
	References

