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Abstract

Background: To date, few MRI studies have been performed in patients affected by chronic migraine (CM),
especially in those without medication overuse. Here, we performed magnetic resonance imaging (MRI) voxel-
based morphometry (VBM) analyses to investigate the gray matter (GM) volume of the whole brain in patients
affected by CM. Our aim was to investigate whether fluctuations in the GM volumes were related to the clinical
features of CM.

Methods: Twenty untreated patients with CM without a past medical history of medication overuse underwent 3-Tesla
MRI scans and were compared to a group of 20 healthy controls (HCs). We used SPM12 and the CAT12 toolbox to
process the MRI data and to perform VBM analyses of the structural T1-weighted MRI scans. The GM volume of patients
was compared to that of HCs with various corrected and uncorrected thresholds. To check for possible correlations,
patients’ clinical features and GM maps were regressed.

Results: Initially, we did not find significant differences in the GM volume between patients with CM and HCs (p < 0.05
corrected for multiple comparisons). However, using more-liberal uncorrected statistical thresholds, we noted that
compared to HCs, patients with CM exhibited clusters of regions with lower GM volumes including the cerebellum, left
middle temporal gyrus, left temporal pole/amygdala/hippocampus/pallidum/orbitofrontal cortex, and left occipital areas
(Brodmann areas 17/18). The GM volume of the cerebellar hemispheres was negatively correlated with the disease
duration and positively correlated with the number of tablets taken per month.

Conclusion: No gross morphometric changes were observed in patients with CM when compared with HCs. However,
using more-liberal uncorrected statistical thresholds, we observed that CM is associated with subtle GM volume changes
in several brain areas known to be involved in nociception/antinociception, multisensory integration, and analgesic
dependence. We speculate that these slight morphometric impairments could lead, at least in a subgroup of patients, to
the development and continuation of maladaptive acute medication usage.
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Background
Migraine is a brain disorder that is highly prevalent in the
general population and very disabling. The level of disabil-
ity increases progressively with the attack frequency,
reaching its maximum when migraine becomes chronic
(CM). A history of frequent migraine attacks and analgesic
overuse are the most prominent risk factors for develop-
ing CM [1]. However, the neurobiological mechanisms by
which some migraineurs develop CM and enter the
vicious cycle of medication overuse are still under debate.
During the past decade, a few neuroimaging studies

have explored the macrostructural characteristics of the
brain in patients with CM, with inconsistent results.
One consistent finding though is significant abnormal
gray matter (GM) volume in areas ascribable to the pro-
cessing of pain [2–6] and multisensory integration [5] in
patients with CM versus healthy individuals. It should
be noted that many of these studies had major sources
of bias, namely the inclusion of patients with the follow-
ing: previous or actual history of medication overuse
headache (MOH) [6], concomitant use of preventive
medications [3, 6], mixed migraine (with and without
aura) [3, 4], and white matter (WM) abnormalities [4].
Hence, studies that avoid such biases are necessary to
reveal the mechanisms underlying CM.
Among the various magnetic resonance imaging (MRI)

analysis techniques, voxel-based morphometry (VBM)
allows for the semi-quantitative estimation of the GM
volume of the whole brain [7]. Therefore, the aim of this
study was to investigate the brain morphometry in a
group of de novo patients diagnosed with CM, i.e. those
without a previous history of medication overuse, drug
withdrawal, WM abnormalities, and migraine auras, and
compare it with the morphometry in healthy controls
(HCs). This study also aimed to explore whether there is
a relationship between the morphological pattern and
the clinical features of CM. Considering the abovemen-
tioned studies and our prior ictal/interictal observations
in episodic migraine [8], we reasoned that patients with
CM would show morphometric changes in brain areas
devoted to pain processing and multisensory integration.

Methods
Participants
Among the patients who were consecutively admitted to
our headache clinics, 20 patients (Table 1) provided
informed consent to participate in the present study. Per
the International Classification of Headache Disorders,
3rd edition, beta (ICHD-3 beta) criteria [9], the 20
patients were diagnosed as having de novo CM during
their first visit, i.e. they did not have a previous history
of medication overuse. As a confirmation, we ensured
that patients’ mean monthly tablet intake (2.8 ± 3.1
tablets/month; Table 1) was below the lower limit set by

the International Classification Committee for medica-
tion overuse [9]. All patients had an established history
of episodic migraine without aura (ICHD-3 beta code
1.1), and used nonsteroidal anti-inflammatory drugs as
acute medication. With the exception of four patients
who had mild headaches (mean visual analogue scale
score = 2.5) without migrainous features, all of the
patients with CM underwent the MRI scans during a
headache-free state. Inclusion criteria were as follows:
no history of other neurological diseases, systemic
hypertension, diabetes or other metabolic disorders, con-
nective or autoimmune diseases, medically treated
depression, and/or any other type of primary or second-
ary headache. Patients did not always experience the
headaches on the same side. To avoid the bias of
pharmacologic treatment, no prophylactic treatments
were allowed during the previous 3 months. For com-
parison, we enrolled 20 HCs of comparable age and sex
distribution, who were recruited from among medical
school students and healthcare professionals. The HCs
had no personal or familial history (1st- or 2nd-degree
relatives) of migraine or any detectable medical condi-
tions and were not on any regular medications. The HCs
were randomly scanned between patients. To avoid
variability owing to hormonal changes, female partici-
pants underwent MRI outside of their pre-menstrual or
menstrual periods. All scanning sessions were performed
in the afternoon (16:00–19:00). For both HCs and
patients, additional exclusion criteria were abnormal
structural MR images of the brain and/or abnormal
pathological findings, including WM lesions. All partici-
pants received a complete description of the study and
granted written informed consent. The ethical review
board of the Faculty of Medicine, University of Rome,
Italy, approved the project.

Imaging protocols
A Siemens Magnetom Verio 3-Tesla scanner was used
to acquire all images. Structural scans of the brain were

Table 1 Demographic data from patients with chronic
migraine (CM) and healthy controls (HCs) and the headache
profile of the patients

HCs (n = 20) Patients with
CM (n = 20)

Women (n) 13 14

Age (years) 28.5 ± 4.1 31.3 ± 10.2

Disease duration (years) 15.0 ± 13.1

Days with headache/month (n) 23.0 ± 6.8

Severity of headache attacks (0–10) 7.6 ± 1.6

Duration of the chronic headache (months) 17.1 ± 29.3

Tablet intake/month (n) 2.8 ± 3.1

Data are expressed as the mean ± the standard deviation
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acquired for each participant using a T1-weighted three-
dimensional sagittal magnetisation-prepared rapid gradi-
ent echo sequence with the following parameters: 176
slices, repetition time = 1900 ms, echo time = 2.93 ms,
slice thickness = 1 mm, and an in-plane resolution of
0.508 × 0.508 mm. The raw and preprocessed images
were manually inspected for artefacts and image quality.
Moreover, the ‘check sample homogeneity’ function in
CAT12 (http://www.neuro.uni-jena.de) was used to iden-
tify images with poor quality and incorrect preprocess-
ing. None of the acquired and preprocessed image series
showed abnormalities.

Data processing and analysis
Image data processing was conducted using SPM12
(www.fil.ion.ucl.ac.uk), and the CAT12 toolbox in the
MatLab environment (www.mathworks.com) was used
to perform the VBM analysis [10]. The images acquired
for each participant were reoriented to have the same
point of origin (anterior commissure) and spatial orien-
tation. A non-linear deformation field was estimated that
best overlaid the tissue probability maps on the individ-
ual subjects’ images. Three tissue components, namely
the GM, WM, and cerebral spinal fluid (CSF), were
obtained to calculate the overall tissue volume (GM,
WM, and CSF volume) and total intracranial volume in
the native space. Afterwards, all of the native-space
tissue segments were registered to the standard
Montreal Neurological Institute template (the standard
included in SPM12) using the affine registration algo-
rithm. The diffeomorphic anatomical registration
through the exponentiated lie algebra (DARTEL) toolbox
was applied to all participants’ GM and WM to refine
the inter-subject registration. In the last step of DAR-
TEL, the GM tissues are modulated using a non-linear
deformation approach to compare the relative GM
volume adjusted for individual brain size. Furthermore,
the voxel values in the tissue maps are modulated by the
Jacobian determinant that was calculated during spatial
normalization [11]. Once the preprocessing pipeline was
completed, a quality check was performed using a
CAT12 toolbox to assess the homogeneity of the GM
tissues. Lastly, each participant’s modulated and normal-
ised GM tissue segments were smoothed with an 8-mm
full width at half maximum Gaussian filter.

Statistical analysis
We used CAT12 for all of the statistical analyses. First, a
two-sample t-test was performed to compare the GM
volume between patients and HCs. For all analyses, we
included age, sex, and total intracranial volume as covar-
iates (Additional file 1: Figure S1). The patients’ relative
GM volume changes were initially assessed at a thresh-
old of p < 0.05 (corrected for multiple comparisons

[family-wise error]). However, the small sample size and
previous VBM evidence showing the involvement of
specific brain structures in the process of migraine recur-
rence [8, 12] prompted us to also perform an exploratory
analysis using less-conservative uncorrected thresholds of
p < 0.001 and p < 0.005 throughout the whole brain.
Thereafter, to identify whether the regional GM volume
changes were correlated with patients’ clinical features, we
performed multiple univariate regression analyses using
the CAT12 model design tool that included the severity of
the headache attacks (0–10), disease duration (years),
number of days per month with headaches (n), attack
duration (h), number of tablets taken per month (n), and
duration of the chronic headache phase (months) as inde-
pendent variables. These inferences have been performed
at a level of p < 0.001 uncorrected.

Results
All participants completed the study. The demographic
data and clinical profiles of the patients are shown in
Table 1. The patients and HCs were not different in
terms of their age or sex distributions.
Regarding GM differences, the total cerebral GM vol-

ume was significantly lower in patients with CM than it
was in HCs (617 ± 62.6 mL vs. 658.1 ± 62.4 mL: t = 2.055,
p = 0.047). In the analysis corrected for multiple compari-
sons (p < 0.05 family-wise error corrected), we did not
detect any regions with significant GM changes between
HCs and patients with CM. Therefore, to further explore
the GM volume changes in patients with CM in
comparison with HCs, we assessed the results at more-
liberal thresholds of p < 0.001 and p < 0.005 (uncorrected).
At p < 0.001, we found one cluster of regions that showed
significant GM volume reductions in patients with CM in
comparison with HCs, including the left amygdala, left
temporal pole, and left hippocampus (Fig. 1 and Table 2).
At p < 0.005, we noted that patients with CM showed GM
volume reductions in the right cerebellum (lobule VIIIa
and Crus II, as - as defined in the Spatially Unbiased Infra-
orbital Template atlas [13]), left middle temporal gyrus
(MTG), left amygdala, left temporal pole, left pallidum, left
orbitofrontal cortex (OFC), left primary occipital cortex
(Brodmann area [BA] 17), and visual association area
(BA18) compared to HCs (Fig. 2 and Table 3). No signifi-
cant increases in GM volume were found in patients with
CM compared with HCs.
The univariate regression analysis showed that the

lower the volume of the cerebellum (bilaterally), the lon-
ger the disease duration and the lower the monthly tab-
let intake in patients with CM (Table 4).

Discussion
The present VBM study failed to find significant GM
changes in de novo patients diagnosed with CM in
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comparison with HCs. Thus, at first glance, the present
results do not support earlier whole-brain VBM studies
that revealed gross significant abnormal GM volume
changes in areas ascribable to the processing of pain [2–
6] and multisensory integration [5] in patients with CM
versus healthy individuals. However, as mentioned
above, many of these studies had major sources of bias,
which may have affected their results. Here, we have
avoided such biases by excluding patients with a previ-
ous or actual history of MOH, concomitant use of
preventive medications, patients with multiple headache
diagnosis, and with structural WM abnormalities [4].
Our results thus may be more representative of the
actual GM volume in patients with CM.
Considering the small sample size of the present study

and the fact that migraine, even in its chronic form, is a
functional disorder of the brain where morphological
abnormalities, if present, might manifest as subtle
regional dysfunctions, we explored the imaging data
using more-liberal uncorrected thresholds of p < 0.001
and p < 0.005. At a threshold of p < 0.001, patients with
CM displayed less GM volume in the left amygdala, left
temporal pole, and left hippocampus compared to HCs.
Furthermore, by lowering the threshold to p < 0.005
uncorrected, we identified four clusters of regions that
showed GM volume reductions in patients with CM
compared to HCs, including the cerebellum; left occipi-
tal areas (BA17/BA18); left MTG; and left temporal pole,
amygdala, pallidum, and OFC. Brain structures within
these clusters have previously been linked to pain

processing, and the structure and/or function of several
of these regions is known to be abnormal in patients
with episodic and chronic migraine with or without
medication overuse. Below, we discuss the importance of
each of these clusters in turn, as well as our finding that
the clinical features of CM, including the disease dur-
ation and tablet intake per month, were associated with
patients’ morphometric data.

Subtle GM volume changes in the left temporal pole,
amygdala, hippocampus, pallidum, and OFC
The so-called mesocorticolimbic reward circuit consists
of a complex network of cortical and subcortical regions
that are responsible for the effects of positive and nega-
tive reinforcement (reward and aversion) [14]. Together,
the regions in this network, including the OFC,
pallidum, amygdala, hippocampus, and temporal pole,
integrate information related to reward processing, emo-
tion, and memory to modulate striatal activity [15]. In
brief, dense OFC fibres converge in the central and
lateral parts of the ventral striatum (activated by reward-
related behavioural paradigms). The amygdala and
temporal pole play key roles in the emotional coding
and recalling of salient stimuli [16]. The amygdala also
projects to the ventral striatum, which in turn sends
efferent projections to the pallidum [17]. The reward
circuit is a critical component of the brain disease model
of addiction [18], of which CM due to medication over-
use is thought to belong [19]. In particular, volume
reductions in the amygdala and hippocampus have been

Fig. 1 SPM regions superimposed on a high-resolution T1-weighted scan show decreased GM volume in patients with CM compared to HCs (p< 0.001
uncorrected). Areas with significantly reduced GM volume are observed in the left amygdala (AM), left temporal pole (TP), and left hippocampus (HI).
L = left, R = right

Table 2 Clusters of significant gray matter reduction in patients with chronic migraine vs. healthy controls using uncorrected maps
at p < 0.001

Anatomical regions Brodmann area Cluster extent (mm3) Montreal Neurological Institute
coordinates (x, y, z)

Peak Z Score T value P value (cluster
level p uncorrected)

Cluster 1 390 0.0224

L Amygdala −20, 3, −15 4.34 5.04

L Temporal pole −26, 9, −26 3.23 3.52

L Hippocampus −31, −5, −15 3.20 3.47

R right, L left
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previously reported in adults affected by substance abuse
disorders and in their apparently healthy offspring,
indicating a possible neurodevelopmental component
[14, 18]. Other studies have demonstrated that the tem-
poral pole [20], amygdala [3, 6], and pallidum [21] are
involved, with a variable level of statistical significance,
in the process of migraine chronification. In interictal
CM, the amygdala was previously found to be atypically

connected with regions in the superior frontal cortex
and occipital cortex [22]. However, to the best of our
knowledge, no other study has specifically reported a
true reduction of GM volume in the OFC of patients
with CM without a history of medication overuse.
Neuroimaging studies of patients with CM with a history
of medication overuse identified abnormal blood-
oxygen-level dependent activity [23], GM volume [5, 12,

Fig. 2 SPM regions superimposed on a high-resolution T1-weighted scan show decreased GM volume in patients with CM compared to HCs (p< 0.005
uncorrected). Areas with significantly reduced GM volume are observed in the cerebellum (CE), left primary occipital cortex (OC), visual association area
(VA), left middle temporal gyrus (MTG), left amygdala (AM), left temporal pole (TP), left pallidum (PAL), and left orbitofrontal cortex (OFC). Labels of the
cerebellum stem from the Spatially Unbiased Infraorbital Template atlas. L = left, R = right

Table 3 Clusters of significant gray matter reduction in patients with chronic migraine vs. healthy controls using uncorrected
maps at p < 0.005

Anatomical regions Brodmann area Cluster extent (mm3) Montreal Neurological
Institute coordinates (x, y, z)

Peak Z Score T value P value (cluster
level p uncorrected)

Cluster 1 1624 0.0085

R Cerebellum (lobule VIIIa) 27, −48, −48 4.01 4.53

R Cerebellum (Crus II) 45, −64, −48 3.01 3.22

Cluster 2 1707 0.0073

L Middle temporal gyrus BA21 −58, −32, 0 3.75 4.17

Cluster 3 1620 0.009

L Amygdala −20, 2, −19 3.67 4.06

L Temporal pole BA38 −27, 7, −25 3.62 4.0

L Pallidum −18, 0, 3 3.48 3.81

L Orbitofrontal cortex BA11 −10, 30, −18 2.73 2.94

Cluster 4 582 0.037

L Primary occipital cortex BA17 −9, −74, 10 3.83 3.25

L visual association area BA18 −14, −90, 16 3.64 3.5

R right, L left
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24], and metabolism [25] in the OFC region. In a VBM
study, Riederer et al. [24] observed that patients with
MOH had significantly less GM in the OFC and that the
reduced GM volume in this area was associated with the
treatment response. In the 18F-fluorodeoxyglucose posi-
tron emission tomography study by Fumal et al. [25],
patients with MOH who underwent successful with-
drawal from acute medications had greater metabolism
reductions in the OFC after withdrawal than they did
before withdrawal, leading the authors to conclude that
the latter could predispose a subgroup of migraineurs to
overuse analgesics. Interestingly, in episodic migraineurs,
new-onset medication overuse was associated with base-
line poor performance in tasks related to orbitofrontal
function [26]. Considering these findings, we propose
that patients with slightly reduced GM volume in
regions that are part of the mesocorticolimbic reward
circuit may be at risk of decreasing the threshold for the
tendency to consume analgesics.

Subtle GM volume changes in the cerebellum
In animals and humans, the deep cerebellar nuclei
process noxious stimuli [27–29] and participate in pain
perception and inhibition through their connections
with the brainstem nuclei and thalamus [30, 31]. In
HCs, when the cerebellar activity is forcibly enhanced,
e.g. through neuromodulatory techniques, then the pain
threshold is increased, i.e. the antinociceptive effects of
the cerebellum are heightened [32]. Here, we found that
the GM volume within cerebellar lobule VIIIa and Crus
II was slightly reduced in patients with CM compared to
HCs. Cerebellar lobule VIIIa, which represents part of
the face within the cerebellum [33], has been shown to
play a role in trigeminal nociception [31], while Crus II
seems to be more active during non-noxious emotional
processing [29, 34] and cognitive associative learning
[35]. Our exploratory volumetric MRI data partially
agree with those of Bilgiç and co-workers [4] who found
reduced right, as well as left, cerebellum volume in

patients with CM with a high rate of medication overuse
and under migraine prophylaxis in comparison with
HCs. Interestingly, previous neuroimaging studies of
patients with CM with excessive acute medication intake
identified elevations in the cerebellar metabolism [25]
and volume [12]. We think that these observations are
still in line with our exploratory results, as our correl-
ation analysis revealed that higher acute medication
intake was linked to higher cerebellar GM volume. Over-
all, we reason that abnormal macrostructural patterns in
the cerebellum may be a predisposing factor that may
lead to MOH development. Moreover, we found that the
longer the history of migraine, the lower was the neur-
onal volume of the cerebellum, an observation that
could be interpreted as indicating that time-dependent
plastic changes in the cerebral microstructure are corre-
lated with the chronic perpetuation of migraine attacks,
or that the cerebellum is anatomically susceptible to the
emotional/cognitive consequences of a chronic disorder.
Our findings in patients with CM coincide with those
showing that morpho-functional abnormalities in the
periaqueductal gray area, which is interconnected with
the cerebellum [36], are positively correlated with the
disease duration in patients with CM [37], i.e. the longer
the disease duration the higher the dysfunctional
cerebellar antinociceptive effects.

Subtle GM volume changes in the MTG
Located on the lateral surface of the temporal pole, the
MTG is involved in several cognitive functions. Reduced
GM volume and changes in the functional connectivity
of the left MTG have been linked to the severity of the
clinical symptoms associated with social anxiety or
phobia, of which a core feature is anticipatory anxiety,
i.e. a state of continuous alertness for an imminent or
likely threatening event [38], such as a headache. It was
postulated that subjects affected by anticipatory anxiety
are more prone to engage in avoidant behaviours from
potential threatening events [39]. Social phobia is a

Table 4 VBM results of correlation analysis on GM morphometry with CM patients’ clinical features at significance level of p < 0.001
(uncorrected) and adjusted for age, gender and total intracranial volume

Anatomical regions Cluster extent (mm3) Montreal Neurological
Institute coordinates (x, y, z)

T value P value (cluster level
p uncorrected)

Clinical feature

711 0.0014 Tablet intake/month (n)

R Cerebellum (lobule VIIIa) 39, −41, −48 5.71

R Cerebellum (Crus II) 50, −48, −47 5.05

685 0.0017

L Cerebellum (lobule VI) −17, −68, −17 6.03

L Cerebellum (Crus I) −15, −78, −21 4.33

625 0.028 Disease duration (years)

R Cerebellum (Crus II) 24, −68, −39 4.95

R right, L left
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disorder that is frequently diagnosed in individuals with
juvenile [40] and adult [39, 41] CM, and, very likely,
even in animal models of CM [42]. Some researchers
have suggested that being affected by both CM and
social phobia configures a state of phobic avoidance that
is associated with the fear of a migraine attack, which
may explain why some patients take analgesics at the
smallest indication of a headache and why such patients
may be at risk of developing medication overuse or of
decreasing the threshold for analgesic consumption [39,
43]. However, since we did not assess patients’ psychi-
atric profiles, and considering the exploratory nature of
our uncorrected findings, we cannot draw a definitive
conclusion about the link between reduced GM volume
in the MTG and social phobia in terms of its ability to
promote migraine chronification and medication intake.
To clarify this, future studies investigating the cerebral
microstructure and connectivity in patients with CM
with/without medication overuse should include assess-
ments of patients’ psychiatric profiles.

Subtle GM volume changes in the occipital areas
In the present study, we discovered that patients with
CM had slightly reduced GM volume in visual area 17
and visual association area 18 compared to HCs. It is
worth noting that pain can be related to vision. Studies
of cortical function show that tonic pain induces marked
spontaneous [44] or evoked [45] electroencephalo-
graphic and functional imaging [46] changes in the
occipital regions. Recently, in a group of patients with
episodic migraines, we found reductions in the func-
tional connectivity between the visuo-spatial system and
the so-called default mode network between attacks
[47], while during attacks, the connectivity was reduced
between the executive and dorso-ventral visual attention
networks [48], stressing that occipital areas could be
involved in the attentional processes to pain and in some
aspects of pain representation [49]. Notably, the visual
presentation of affective pictures modulates occipital
functional activation and, at the same time, pain percep-
tion differently in patients with CM than it does in HCs
[50], perhaps through direct occipital-to-brainstem
trigeminal nuclei connections [51]. Therefore, our
results in patients with CM tend to show the morpho-
logical correlates of aberrant attentional processes to
head pain and of anomalous representations of pain.

Limitations
Certain limitations of the present study should be
acknowledged. First, the sample size was small, thus GM
volume changes in patients versus HCs were apparent
only when data was assessed with very liberal uncor-
rected thresholds. Additionally, we did not analyse the
psychiatric profiles of the patients, although we think

that patients’ social anxiety symptomology may contrib-
ute to their clinico-morphological status.

Conclusions
In summary, our study did not find significant differ-
ences in GM volume between CM patients and HCs.
However, using more-liberal thresholds, we noted that
patients with CM showed reduced GM volume in the
MTG and OFC, which are known to be involved in
avoidant and addictive behaviours, respectively. Based
on these findings and the results of our correlation
analysis, we speculate that these abnormalities could
lead, at least in a subgroup of patients, to the develop-
ment and continuation of maladaptive acute medication
usage. Although these exploratory findings should be
interpreted with caution, they provide a basis for
performing future investigations in CM using more-
sophisticated MRI techniques.

Additional file

Additional file 1: Figure S1. Results of the SPM analysis comparing
chronic migraine patients and healthy controls. The design matrix (right)
and statistically significant clusters are shown on a glass brain in the
three orthogonal planes (left),) with the results shown at a threshold of
p < 0.05 (corrected for multiple comparisons) [A], p < 0.001 uncorrected
[B], and p < 0.005 uncorrected [C]. (TIFF 1575 kb)
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