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CONFIDENTIAL 1

Motivations

Many of the scientific challenges we face today are complex and need computational
power to be solved, but it is a fact that the ramp up of microprocessors frequency is over.
In recent years, fundamental physical limitations have caused the deviation from the path
predicted by Moore [1] and the scaling rules set forth by Dennard and coworkers [2]. An
emerging solution to this problem in the HPC arena is represented by the so-called “het-
erogeneous systems”, where accelerators like GPUs and FPGAs are integrated into systems
with conventional microprocessors.

On November 2017, a total of 91 systems on the latest available TOP500 [3] list are using
accelerator and/or co-processor technology, up from 86 on November 2016.

A general heterogeneous architecture — to be used as a reference in the rest of the dis-
sertation — is the “computing node” (or node for short), composed by one or more micro-
processors connected to one or many “programmable accelerators” (i.e. FPGAs and GPUs),
through a system bus (i.e. PCIe, AXI, etc.) or shared memory. Within such a computing
node, all integrated devices (CPUs, GPUs, FPGAs) share a common virtual address space,
which constitutes the node local memory space.

In HPC systems, one of the most important features is being able to scale to a certain
number of interconnected computing nodes, while retaining the ability for each node to use
remotely attached accelerators on an equal footing compared to the local ones.

From an application programmer perspective, exploiting an accelerator requires deliver-
ing raw data into its local memory and then, after the relevant computation is performed,
pulling back from it the results.

Different solutions like OpenPower CAPI [4][5] and CCIX [6] are being developed to
address accelerators which are physically integrated into the computing node. To the same
effect, researchers have also implemented several extensions and variations within the MPI
(Message Passing Interface) framework, which is the industry-wide standard as well as one
of the most widely used communication libraries for HPC, such as cudaMPI [7], GAMPI [8]
or MPI-GDS [9]. In this work, however, the focus will mainly be on the underlying low-level
software stack. Indeed, when addressing the memory of a device integrated into a remote
node, transit from one of the local memories to remote memory through the network be-
comes critical. Most of the effort must therefore be spent in designing an optimized route
through the communication stack for such transfers. This may require both support in hard-
ware and optimization in software when implementing the communication primitives: a tra-
ditional hardware and software architecture imposes a significant load on a computing node
CPU and its memory because traffic between the network and the node accelerators memory
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CONFIDENTIAL

must be buffered in CPU memory. A solution to this problem is the RDMA communica-
tion paradigm, which empowers the programmer with the semantics to explicitly manage
reading/writing data from/into another node memory together with the necessary synchro-
nization; whereas this is supported by an RDMA-supporting NIC, these transfers can pro-
ceed with minimal demands on the CPU memory bus and processing resources. This allows
high-throughput, low-latency networking, which are mandatory requirements in order to pro-
tect the scalability in massively parallel computers.

More specifically, a feature called GPUDirect [10] allows a device on the PCIe bus to
autonomously read/write data from/to an NVIDIA GPU memory. If this PCIe device is a
NIC, the data can be sent over the network directly to a remote GPU memory and vice-versa,
in the so-called “GPUDirect RDMA” paradigm. This mechanism makes a PCIe-based sys-
tem integrating one or more CPUs, GPUs and FPGAs an implementation of the reference
computing node architecture defined above.

The RDMA communication paradigm, FPGA-based networks and accelerators can be
combined in many ways, in order to specialize the reference architecture of the computing
node for different contexts. In this thesis I will address some of the most challenging issues
of RDMA communication in FPGA-based networks in three different application scenarios:
GPU-accelerated HPC clusters (Chapter 1), Data Acquisition Systems (DAQ) (Chapter 2)
and power efficient Exascale systems (Chapter 3). The focus of the activity has been on
the design, development and experimental validation of low-level software stack solutions
addressing the network performances, i.e. communication latency and bidirectional band-
width between communication endpoints. All my research activity was carried out at APE
Lab of Istituto Nazionale di Fisica Nucleare (INFN), which has been active in the develop-
ment of custom parallel machines dedicated to computational physics simulations (APE [11],
ape100 [12], APEmille [13] and apeNEXT [14]). Leveraging on the acquired know-how in
networking and re-employing the gained insights, the group has focused its activities on the
design of the already mentioned “heterogeneous” systems.

In the first phase of my PhD, my research has focused on the design and the implementa-
tion of a stable PCIe Gen3 GNU/Linux device driver for the APEnet+ V5 [15] FPGA-based
NIC. This allowed me to have a firm ground to build further developments along the way
of optimizing the network performance. I then studied the various issues related to the
design of data acquisition cards, in order to actively contribute to the development of the
NaNet [16] DAQ boards family dedicated to HEP experiments. To this purpose, I devised
a GPU-controlled device driver to be used in combination with existing user-space software
libraries, in order to bypass the kernel-to-user space traversals and further improve the com-
munication latency.
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CONFIDENTIAL 3

The developed software is currently under test in a prototype system deployed at the
NA62 [17] experiment at CERN and the report of its operation will be published in fu-
ture conference papers. I also started collaborating in the “Horizon2020 FET-HPC ExaNeSt
project” [18], which aims at prototyping and developing solutions for some of the crucial
problems on the way towards production of Exascale-level supercomputers. My contribu-
tion to this project was mainly involved with the design of the prototype node, especially for
what regards the network architecture and its software interface.

The projects described above will all be discussed in detail in the rest of this dissertation,
highlighting the red thread of my contributions, i.e. the optimization in the design of the
hardware/software interface and the low-level network software stack techniques adopted.
Finally, I will provide the foreseen directions for my future research.
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The APEnet project: hardware and
software design of an FPGA-based PCIe

Gen3 interface for APEnet+ network
interconnect system
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1
APEnet project

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 APEnet+ V5 hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 PCIe Gen3 Interface . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 APEnet+ V5 Software Design . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 PCIe Gen3 Driver Design . . . . . . . . . . . . . . . . . . . . . 14

1.4 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1 Introduction

The APEnet+ project was born to equip COTS-based clusters with a point-to-point intercon-
nect adapter, derived from custom designed HPC systems optimized for Lattice Quantum
Chromo Dynamics (LQCD) simulations, featuring a 3D toroidal network mesh.

APEnet+ has specific support for GPUs for use in heterogeneous clusters, yielding sig-
nificant performance improvements in the simulation of various HPC applications, such as
Spiking Neural Networks and Heisenberg Spin Glass simulations and breadth-first search on
large graphs [19].

In HPC clusters, low latency and high bandwidth are key factors for overall efficiency
and scalability; to improve them, APEnet+ V5 provides hardware support for the Remote
DMA paradigm (RDMA), removing the bottleneck of the operating system managing the
network transfers by implementing zero-copy transfers.
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CONFIDENTIAL Chapter 1. APEnet project

In this chapter we present the status of the 3rd generation design for the board (called V5)
built around the 28 nm Altera Stratix V FPGA.

Among the upgrades provided by the new platform, we mention that the PCIe Gen3 x8
IP is used in combination with a 3rd party core, controlled by an AXI bus; this gives us the
option for future integration in the design of a full-featured ARM processor, which is slated
to be one of the most significant additions to the next generation of FPGA platforms.

The remainder of this chapter is organized as follows: after an outlook of the state of
the art in Sec. 1.1.1, we describe the hardware design of APEnet+ V5 in Sec. 1.2, with an
overview of the architecture and improvements like PCIe Gen3 compliance and the new
Altera Stratix V FPGA features.

Sec. 1.3 is about the software architecture; our test results are shown in Sec. 1.4.

1.1.1 Related work

Researchers are turning their attention to improving and optimizing the network between the
accelerators like GPUs [20], Xeon PHI co-processor [21] and FPGAs [22] [23].

Beside providing processing acceleration capabilities, FPGA devices are also suitable
to implement interconnect networks for HPC systems [24], becoming an important corner-
stone of computing systems. Examples are the Microsoft Catapult and the AXIOM projects;
the former is a scalable architecture implementing a specialized direct network with 20
Gbps bidirectional links to enable FPGA-to-FPGA communication at submicrosecond la-
tency [25], while the latter is based on a Zynq Ultrascale+ board with four USB-C based con-
nector (15Gbit/s per channel), four A53 ARM cores and up to 32GiB memory per node [26] [27].

Many technologies based on the PCIe protocol have been proposed, such as the Infini-
Band Architecture (IBA) – a fabric which is an industrial standard for high bandwidth/low
latency communication – and other protocols also available for FPGA like Serial RapidIO,
Fibre Channel, PCI Express Fabric [28] and many more. On the other hand, undertaking the
effort of designing a custom interconnection hardware allows the optimization for a specific
workload or task. A natural extension of this idea would be using reconfigurable hardware
like an FPGA – e.g. the TH2 Express interconnect [29], employed in the Tianhe-2 super-
computer currently holding second place in the TOP500 [3] –, simple encapsulation of other
protocols in FPGA-to-FPGA interconnects like in Unified PHY Interface (UPI) system [30],
or completely custom interconnects as in BlueLink [31] or such as those in Data Acquisition
Systems, see for example the NaNet [16] and Felix [32] projects.

The PCI Express Adaptive Communication Hub is a project which in its latest version
PEACH3 [33] also uses an Altera Stratix V FPGA together with a PCIe Gen3 host interface

8



CONFIDENTIAL 9

to provide a PCIe ring-based network; it focuses more on being dedicated to tightly coupled
accelerators (TCA) than to provide a general purpose, modular NIC.

Whatever task they are put to – as a networking system component like in our case or as
a computing accelerator in itself – FPGA-based devices also need high throughput towards
their own hosts, often requiring non-trivial software infrastructure. In [34] an open source
framework is presented which enables easy integration of GPU and FPGA resources and
provides direct data transfer between the two platforms with minimal CPU coordination at
high data rate and low latency. In [35] it is described an efficient and flexible host-FPGA
PCIe communication library whose presented results were obtained on PCIe Gen2 Xilinx
FPGAs.

1.2 APEnet+ V5 hardware

Fig. 1.1 shows the APEnet+ V5 architecture; it is split in three main blocks: Network Inter-

face, Router and Torus Link.

• Network Interface is in charge of managing the data flow between PCIe bus and
APEnet+: on the TX side it gathers data coming from the PCIe port, generates pack-
ets and forwards them to the Router block, while on the RX side it provides hardware
support for the RDMA programming model. The APEnet+ packets have 256 bits-wide
header, footer and data words with variable size payload. Network Interface uses a 3rd

party device, a Gen3-compliant soft core by PLDA (see Sec. 1.2.1).

• Router manages dynamic links between APEnet+ ports: it inspects the packet header
and translates its destination address into a proper path across the switch according to
a dimension-ordered routing algorithm, managing conflicts on shared resources.

• Torus Link allows point-to-point, full-duplex connections of each node with its neigh-
bors, encapsulating the APEnet+ packets into a light, low-level, word-stuffing protocol
able to detect transmission errors via CRC. It implements 2 virtual channels and proper
flow-control logic on each RX link block to guarantee deadlock-free operations.

APEnet+ V5 was developed on the Altera DK-DEV-5SGXEA7N development kit (see
fig. 1.2), a complete design environment that features a 28 nm FPGA (Stratix V).

This device offers a PCIe connector, which supports the connection speed of Gen3 at
8.0 Gbps/lane with the host machine and supplies power to the board, a 40G QSFP connector
and two HSMC ports which allow the interconnection between boards.

9
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Figure 1.1: Outline of the main logic blocks
of APEnet+ architecture.
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Figure 1.2: Altera DK-DEV-5SGXEA7N
Development Board.

Thanks to the modularity of its architecture, a first implementation of APEnet+ V5 with
only three links was developed in a straightforward way.

1.2.1 PCIe Gen3 Interface

PCIe Gen3 is based on 8.0 Gbps lanes using a 128b/130b encoding, therefore the protocol
overhead is reduced to less than 1% from∼20% for previous PCIe generations. The upgrade
to Gen3 for the host interface allows, with 8 bonded lanes, a total raw bandwidth around
8GT/s. To keep the Network Interface clock frequency at 250MHz, the back-end datapath
must be widened to 256-bits.

In order to simplify the interface to the PCIe Hard IP, we used a 3rd party device, the
PLDA XpressRICH Gen3 soft IP core. The interface of this core with the backend is an AXI4
bus as depicted in fig. 1.3. Inclusion of AXI4 inside our architecture is a useful preparatory
exercise for future use of embedded ARM hard IP processors, foreseen only on high-end
FPGAs like the future Altera 10 device family.

The XpressRICH core consists of 3 different layers: the PCIe layer, the Bridge layer and
the AXI layer. The PCI Express layer contains a PCIe Controller and the interfaces with the
Bridge layer – i.e. in order to access the PCIe Config Space and manage the low power states
and interrupt signals for the IP. The Bridge layer interconnects and arbitrates between input
and output flows, implementing up to 8 independent DMA Engine modules and translating
between the AXI and PCIe interfaces.

The DMA IF has the task of programming the DMA channels by means of the AXI
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memory-mapped interface.
We allotted four DMA channels arranged in a 2 RX/2 TX split to the task of increasing

the bandwidth between GPU/CPU and APEnet+ across the PCIe interface. This choice was
dictated by the need to mitigate the two latencies that incur first when setting up a DMA
and, after the DMA is setup, waiting for data to start flowing. By means of issuing an
alternating ‘ready’ signal between two channels when setting up the DMA, the achieved
improvements were remarkable, either in transmission and reception, as shown in Sec. 1.4.
Another significant upgrade to our architecture which was made possible by the switch to
a 28 nm FPGA was the upsizing of the Look-Up Tables (LUTs) and the CAMs employed
within the hardware implementation of the TLB; the effects of this upgrade are apparent in
the bandwidth graphs (see Sec. 1.4).

A state machine collects the requests coming from APEnet+ V5 and programs dedicated
registers according to a Round Robin algorithm to perform PCIe transactions.

Bridge 
Layer 

Core Interface 

 AXI 
 Layer 

PLDA 
Internal 
Register 

AXI-MM 
SLAVE IF 

AXI 
STREAM 

0-7 
IF 
 

AXI-MM 
MASTER 

 IF 

AXI to 
FIFO 

Decoder 
 

FIFO to 
AXI 

Decoder 

AXI 
Decoder 

FIFO to 
AXI 

Decoder 

DMA IF 
Multi 

Pkt Inst 

DMA 
Ctrl 

Internal 
Registers 

FIFO COMMAND 

FIFO mC 

FIFO HOST TX 

FIFO GPU TX 

FIFO RX 

FIFO EQ 

DMA 
Channel 
Manager 

FSM 

32 
/ 

256 
/ 

Interrupt 

AXI4 
Cmd req 

Tx req 

Address 
Translate 

PCIe 
Layer 

PCIe 
TX/RX 

PCIe 
Config 

PCIe 
Misc 

 
PCIe 
Ctrl 

 

PLDA Xpressrich soft core 

A
LT

ER
A

 H
A

R
D

 IP
 

DMA 
Engines 

Rx req 

Cpl req 

Figure 1.3: Design of PCIe Gen3 interface,
based on AXI4 protocol.
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Figure 1.4: APEnet+ V5 Torus Link archi-
tecture.

FPGAs of the Stratix V GX family feature full-duplex transceivers with data rates from
600 Mbps to 12.5 Gbps, offering several programmable and adaptive equalization features.
The Torus Link block Physical Layer is made up of an Altera Custom IP Core (with the
corresponding reconfiguration block) and a proprietary channel control logic (Sync_ctrl
block), as shown in fig. 1.4. The Altera Custom IP Core is a generic PHY which can be
customized in order to meet design requirements. The receiving side consists of a Word
Aligner, 8b/10b decoder, Byte Ordering Block and RX phase compensation FIFO. Similarly,
on the transmitter side, each transceiver includes a TX phase compensation FIFO, an 8b/10b
encoder and a Serializer. The Word Aligner restores the word boundary based on an align-
ment pattern that must be received during link synchronization. A status register asserted by
the Altera Avalon interface triggers the Word Aligner to look for the word alignment pattern
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in the received data stream. The Byte Ordering block looks for the byte ordering pattern in
the parallel data: if it finds the byte ordering pattern in the MSB position of the data it inserts
pad bytes to push the byte ordering pattern to the LSByte(s) position. Finally, the RX phase
compensation FIFO compensates for the phase difference between the parallel receiver clock
and the FPGA fabric clock. The write and read enable signals of the Deskew FIFOs are man-
aged by the Sync_ctrl block: the write signals are asserted for each lane after recognition
of 8b/10b keyword /K28.3/, while the read signal, common to all FIFOs, is asserted when
all FIFOs are no longer empty. Altera Transceiver Reconfiguration Controller dynamically
reconfigures analog settings in Stratix V devices: it is able to compensate for variations due
to process, voltage and temperature in 28 nm devices.

Cable BER Data Rate
10 m Mellanox optical cable < 2.36 E-14 11.3 Gbps
1 m Mellanox copper cable < 1.10 E-13 10.0 Gbps

Table 1.1: APEnet+ BER measurements on Altera 28 nm FPGA.

In conclusion, three bi-directional data channels could be implemented on the develop-
ment board. The X channel was implemented using the 4 lanes of the QSFP connector;
the Y and Z channels were implemented onto the HSMC interface. Very preliminary BER
measurements were performed on the X channel of APEnet+ V5 (see table 1.1). The testbed
consists of two Stratix V FPGAs connected by InfiniBand cables with different lengths and
support media (optical and copper). Copper wires results derive from experiments conducted
with 10 Gbps-certified cables; they are expected to improve as soon as they are repeated with
commercially available 14 Gbps-certified ones.

1.3 APEnet+ V5 Software Design

In the context of x86/x86_64 GNU/Linux-based hosts, the memory management system im-
plies memory virtualization. The virtual address space is paged in 4 KiB chunks with the
Linux kernel providing virtual-to-physical address translation services to the APEnet+ device
driver. Using the RDMA communication paradigm, a NIC is required to autonomously han-
dle buffer registration for the application – with all the added complexities of virtual mem-
ory management for x86/x86_64 on a GNU/Linux OS – to achieve the so-called zero-copy,
off-loaded implementation. We developed the virtual address translation mechanism in two
steps: first, a solely µC-based version using a Nios II processor (described below); we
then added a hardware TLB in such a way that we could measure real advantages with higher

12
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level software tests and perform a comparison between the two versions.
The Nios II processor, in Fig. 1.5, is a general-purpose RISC processor core designed

for Altera FPGA devices, featuring full 32-bit instruction set, data path, and address space.

Figure 1.5: Schematic view of Nios II processor.

It is a configurable soft-IP core that can be customized on a system-by-system basis
adding or removing features to meet the assumed performance goals. A detailed description
of the Nios II platform is available here [36]. When the application invokes a buffer regis-
tration, the CPU-hosted APEnet+ device driver driver scans the pages spanned by the buffer,
pins them and registers them individually resolving their virtual and physical addresses and
storing them in the RDMA LUT.

Typical APEnet+ data packet is formed by a 128-bit header and footer plus a payload of
maximum size equal to 4 KiB, i.e. the atomic Linux page size, thus a single packet buffer
can span one or two pages, depending on its size and offset. We remark that the 4 KiB size
limit does not weigh on the application: the APEnet+ device driver transparently resolves its
chunks at registration time.

APEnet+ implements network transfers by means of RDMA PUT semantics (see Fig.1.6);
in this way, the data-receiving side of the application initiates the rendezvous by advertising
the virtual address of its registered buffer to its data-transmitting peer. This means that
the packets emitted by a RDMA PUT operation posted by the transmitting node to its own
APEnet+ are signed with the virtual address of the receiving node buffer that the companion
APEnet+ on this latter, if it is not to interfere with computation, must autonomously resolve
into physical addresses.

On the receiving node, the buffer virtual address is therefore used by APEnet+ as key to
perform a sort of address translation retrieving all needed buffer information from the table,
primarily ID of the owner process and its physical address.

The first task of the receiving logic is thus scanning the buffers pool registered by a
running application to determine whether the destination virtual address actually belongs to
any of them – this is Buffer Search (BSRC).

13
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Figure 1.6: Software architecture of APEnet+ V5 NIC.

The correct Page Table is then accessed and its walkthrough is performed – this is
virtual-to-physical (V2P) translation – to resolve PCIe addresses of the pages where a num-
ber of DMA transactions are finally issued to.

Finally, a completion transaction is performed to fill an event queue that can notify the
code managing the transaction – be it in the host OS or the application – that data has been
delivered, typically after the last received packet of the exchanged message.

1.3.1 PCIe Gen3 Driver Design

PCIe specification expects, for each device, a software driver initialization and configuration
via a separate Configuration Address Space. Almost all PCIe devices are required to provide
configuration registers for this purpose. With respect to the standard PCI configuration space,
APEnet+ configuration as seen by the Linux Device Driver is:
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01631

device id: 0x1100 vendor id: 0x1556 00h
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

revision: 01 class: 0xff0000 08h
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

base address 0: 10h
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

For the sake of simplicity this section is divided into a transmission phase (TX) and a
reception phase (RX) to better explain how the driver works.

Transmission phase

The process of data transmission is composed by a sequence of steps, each of which will be
discussed in detail later in this section. The idea is:

• the user-space process calls a library function to send data from a certain source buffer
(TX buffer) to a certain remote buffer (RX buffer);

• in kernel-space, the device driver processes the request, pinning and locking the source
buffer in memory;

• the device driver fills a ’descriptor’ with references to the source buffer physical ad-
dress and to the destination buffer virtual address;

• the device driver notifies the board that a new ’descriptor’ is ready;

• the hardware DMA-reads the memory and starts processing the new descriptor.

All the relevant information to program APEnet+ for a data transfer (i.e. where the
data is located and where it must be sent) are stored in a descriptor, filled by the device
driver and inserted in a circular list called TX ring. The DMA-capable memory region

15
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where the TX ring will be placed is allocated in the init phase of the driver and the memory
start address is sent to the board by writing it in registers 96 (TX_RB_ADDR_HI) and 97
(TX_RB_ADDR_LOW): as the name suggests, the first is for the lower 32-bit of the address
while the latter is for the upper 32-bit part.

Since TX ring is a circular collection of descriptors, it is important for the driver to not
overwrite memory that was not read by the board, while the hardware must pay attention not
to read inconsistent ’unfilled’ data. The driver uses the high part (16 bit) of the APEnet+
register 98 (TX_RB_NEXT_PTR) to update the counter of the ready descriptors in the TX
ring. The board updates the same register in the lower 16 bit to notify the driver about the
number of read events. In this way the driver is always aware of the ’pointer’ where the
board is reading the events from (pointer to the next read event or nr_ptr) and where it
must write the next ready descriptor (pointer to the next write event or nw_ptr).

Each descriptor consists of four 256-bit words, each of which is padded to zero in the
upper (most significant) part, which is not used at the moment.

0128255

PAD header 00h

PAD footer 20h

PAD command 0 (CMD0) 40h

PAD command 1 (CMD1) 60h

Descriptor - header This is the packet header structure:

012345678910111213141516171819202122232425262728293031

gp
u

id
is

gp
u

packet size (word 256)
dest
pid

dest z coord dest y coord dest x coord
virtual
channel pk

te
rr

0h

data

is
ph

ys
la

st
fr

ag
no

te
th src

pid src z coord src y coord src x coord rdma cmd 4h

destination address low 8h

destination address high Ch

Note that in the header there is a reference to the destination buffer address, which
changes based on the type of address used:

• remote virtual address - streaming buffer
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• remote virtual address - persistent buffer

• local physical address

When a peer initializes the communication, it is not aware of the address of the buffer
allocated by the other peer, so it is not possible to fill the header address field with a ’valid’
address. To solve this problem, is it possible to use a ’streaming buffer’. The header ’des-
tination address’ field for a streaming buffer is always filled with ’0’s. Usually, streaming
buffers are used just to exchange the address of a ’persistent’ buffer where data is going to
be stored. Local physical addresses are used only for debugging purposes.

Descriptor - footer The footer is filled in the TX phase whith just 2 control words used by
the hardware for check purposes. The format is as follows:

127 96 64 32 0

0xd10bacc0 0xc10cacc0 unused

Descriptor - command 0 (cmd0)

The command 0 is used mainly by the hardware to program a DMA read with the source
buffer memory address and its length.

127 96 64 32 0

CTRL (used by the

hw)
length (byte) TX address high TX address low

Descriptor - command 1 (cmd1) The ’cmd1’ word is also called ’completion’ because
the hardware sends it directly to the event queue controller to generate the ’sent event’ com-
pletion (see Sec. 1.3.1).

012345678910111213141516171819202122232425262728293031

pid completion type (always filled with 0x0) tag 0h

4h

magic 8h

Ch

17
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tag

Name Length (bit) Value Description

tag 2 0x0 pass CMD1 to the event queue controller (APEDEV_COMP_EQ)
0x2 discard CMD1 (APEDEV_COMP_NONE)

magic The most important field is the word ’magic’, which is actually a reference for the
transmitting buffer. In fact, it is filled with the virtual address of the structure that represents
a user buffer in the kernel. This structure contains all the relevant information:

• virtual and physical addresses of the user buffer

• length

• a pointer to the list of pages associated to the buffer

• the ’context’ of the buffer, a word used by the user to check the data consistency

So, when the board finishes transmitting the data and the completion is written to mem-
ory, it is possible to know what buffer this is referring to by simply dereferencing the virtual
address contained in the ’magic’ field.

For efficiency reasons, the driver can fill multiple descriptors before updating next write
pointer accordingly. In this way, the board will program a single DMA for all the descriptors.

Since virtual memory can map a non-contiguous memory region in a contiguous virtual
address space, the buffer could be fragmented all over physical memory. Every transfer
bigger than one page is managed by a scatter-gather (SG) list, where every element of the
list is a page of the buffer. In this case, each page will be mapped in one TX ring descriptor,
i.e. every descriptor owns the associated physical address of one page of the buffer.

The function that fills the descriptors is called fragment_and_send because it divides the
source buffer in chunks of maximum ’PAGE_SIZE’ bytes. The pseudo code is as follows
(error detection and details are left out):

i n t f r a g m e n t _ a n d _ s e n d ( header , t x _ b u f f e r , d e s t _ a d d r e s s , CMD1)
f o r _ e a c h page i n t x _ b u f f e r

tx_dma_addr = v i r t u a l _ t o _ p h y s i c a l _ a d d r e s s ( page )

i f ( i s _ l a s t _ c h u n k )
h e a d e r . f l a g s | = APEDEV_HDR_FLAG_LAST_FRAG
CMD1. t a g = APEDEV_COMP_EQ

18



CONFIDENTIAL 19

e l s e
h e a d e r . f l a g s | = APEDEV_HDR_FLAG_NOT_LAST_FRAG
CMD1. t a g = APEDEV_COMP_NONE

h e a d e r . a d d r e s s = d e s t i n a t i o n _ a d d r e s s
h e a d e r . s i z e = c h u n k _ s i z e _ c o n v e r t _ t o _ 1 2 8 b _ w o r d s

CMD0 = f i l l _ c m d 0 ( chunk_s i z e , tx_dma_addr )
f o o t e r = 0

t x r i n g _ w a i t _ f o r _ s l o t s ( )
t x r i n g _ f i l l _ d e s c r i p t o r ( header , f o o t e r , CMD0, CMD1)

r i n g . nw = (1+ r i n g . nw ) % r i n g . s i z e
d e s t i n a t i o n _ a d d r e s s += c h u n k _ s i z e

Listing 1.1: Initial pseudo-code implementation of fragment_and_send

Note that the completion is usually generated only on the last frag, so for the other de-
scriptors the IS_LAST_FRAG header bit is cleared.

It is also important to check for available slots in the TX ring before writing the descrip-
tor, otherwise the driver could overwrite a descriptor that was not yet read by the board. The
function fill_descriptor simply fills the header, footer, cmd0 and cmd1 fields in the TX ring
element data structure.

The above function computes the address by adding ’chunk size’ (which is at maximum
PAGE_SIZE) to the virtual address. In this way, the NIOS on the receiving side can compute
the correct physical address to program the DMA engine.

If the transmission uses a streaming buffer, the destination address is always set to ’0’ in
its header field. Because of this, it is not advisable to try sending more than one page: the
second page would be at address 0x1000 (i.e. address 0x0 + PAGE_SIZE) which could be a
’valid’ virtual address.

Local physical addressing is used mostly for debugging purposes, but if the transmission
uses this kind of addressing, the send function has to translate the virtual address, so the
pseudo code changes as follows (the important differences with respect to the previous code
are highlighted):

i n t f r a g m e n t _ a n d _ s e n d ( header , t x _ b u f f , d e s t _ a d d r , CMD1)
f o r _ e a c h page i n t r a n s m i s s i o n _ b u f f e r
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t x _ s g = t x _ b u f f e r [ page ]
rx_sg = r x _ b u f f e r [ page ]
rx_dma_addr = sg_dma_address ( rx_sg )
tx_dma_addr = sg_dma_address ( t x _ s g )

i f ( i s _ l a s t _ c h u n k )
h e a d e r . f l a g s | = APEDEV_HDR_FLAG_LAST_FRAG
CMD1. t a g = APEDEV_COMP_EQ

e l s e
h e a d e r . f l a g s | = APEDEV_HDR_FLAG_NOT_LAST_FRAG
CMD1. t a g = APEDEV_COMP_NONE

header . f l a g s | = APEDEV_HDR_FLAG_PHYS_ADDR

header . d e s t i n a t i o n _ a d d r e s s _ l o w = u64_lo ( rx_dma_addr )
header . d e s t i n a t i o n _ a d d r e s s _ h i g h = u64_hi ( rx_dma_addr )
header . s i z e = chunk_s ize_convert_to_128b_words

CMD0 = f i l l _ c m d 0 ( chunk_s i z e , tx_dma_addr )

t x r i n g _ w a i t _ f o r _ s l o t s ( )
t x r i n g _ f i l l _ d e s c r i p t o r ( header , f o o t e r , CMD0, CMD1)

r i n g . nw = (1+ r i n g . nw ) % r i n g . s i z e

Listing 1.2: Initial c-code implementation of fragment_and_and_send phys

At this point, the board processes the transfer as programmed in the TX ring descriptor
and sends a completion back to the host, which signals the driver that the transfer has ended
or an error occurred.

The completion is maintained in a cyclic queue called event queue that is the same for
the ’sent event’ and for the ’receive event’. Therefore, after the start of a transfer, the driver
starts polling the event queue and when a new completion is found, it is put into a queue,
ready to be caught by the process that invokes the ‘wait_event’ library function.

The format of a ’sent event’ completion is:
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0824 163240485663

cmd 1 00h

tx phys address high tx phys address low 08h

control code (0x1320) length (byte) 10h

control code (0xdad0dad0) 18h
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

control code (0xdad0dad0) 30h

Receiving phase

To send data, a process must ’register’ a buffer, i.e. it must signal the driver that an allocated
memory area must be pinned to permit to the APEnet+ board to DMA-access the data in
memory.

Since pinning and unpinning memory are expensive operations, the driver should be as
lazy as possible in performing such operations. For this reason, the driver implements a
simple cache for registered buffers: before pinning new pages of memory, it checks if they
were already registered, skipping altogether a new registration if the memory is the same.
The idea is to use the previously registered buffer instead of re-registering a new set of
pages.

In the RX part of the transmissions, a key role is played by the Nios II microproces-
sor. When a new packet arrives, the Nios II translates the virtual address into a phys-
ical address that the hardware uses to DMA-write the data at the correct location. If the
newly arrived data must be placed into a persistent buffer, the virtual address is relative to a
pre-registered buffer and so the Nios II simply has to find the associated physical address.
If the buffer is a streaming one, the virtual address is null and the microprocessor has to find
the first buffer that can contain the new data.

To allow the Nios II to translate the addresses, the user must register the association
between virtual and physical addresses. To do so, the hardware exposes a set of registers
called CMD FIFO where the driver writes ’commands’ to register pages and buffers.

Registering a page means telling the Nios II that a certain page of memory is mapped
at a certain physical memory location. The format of the command to register a page is as
follows:
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31 0

NIOS command header 0h

virtual address 4h

8h

physical address Ch

10h

flags 14h

pad 18h

This is also needed to ’register’ the buffer on the Nios II memory, because the mi-
crocontroller needs information about the buffer (i.e. the length, the context, etc.). The
command format to register buffers on Nios II is as follows:

31 0

NIOS command header 0h

virtual address 4h

8h

length Ch

flags 10h

magic 14h

18h

To summarize, when the user calls the ’register_buffer’ function, the driver must:

• retrieve the pages that make up the user buffer and put them into a scatter-gather list;

• lock and pin the pages in memory;

• register the pages and the buffer on the Nios II.

When new data arrives:

• the board raises an interrupt;
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• meanwhile the Nios II microprocessor translates the virtual address contained in
the packet into the corresponding physical address;

• the board DMA-writes the received data and a completion to memory;

• meanwhile the driver starts polling for the RX completion and checks for errors;

• when the user polls for new events, the driver will return the completions found in
memory (DMA-written by the board);

• the user buffer is filled with the incoming data by the board in DMA mode.

The format of the ’receive event’ completion changes based on the type of addressing
mode used (see below); the format is the following:

0128255

header 00h

footer 20h

physical address: the header contains the physical address of the destination memory re-
gion. Note that the header is the same as written by the transmitter.

The footer contains 2 control words (d10bacc0:c10cacc0).

064128255

header
contr. code

0xd10bacc0
contr. code

0xc10cacc0

}
footer

persistent buffer: the header contains the same virtual address as written by the transmit-
ter. The footer contains the context of the destination buffer.

064128255

header

buffer context
}

footer
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streaming buffer: The header contains the real virtual address. Since the sender filled
it with 0s, the hardware on the receiver side finds a buffer that can contain data and uses
the virtual address to fill the header field. The footer contains the context of the destination
buffer.

064128255

virt addr

hi

virt addr

low
. . .

}
header

buffer context
}

footer

1.4 Test results

All development was performed on the Test and Development (T&D) platform which is
composed by two X10DRG-Q SuperMicro servers, connected by the cables as in table 1.1,
populated with Haswell E5-2620@2.40 GHz CPUs, hosting the DK-DEV-5SGXEA7N De-
velopment Board as APEnet+ V5 and NVIDIA Tesla K40m GPUs; debugging was aided by
a Tektronix TLA-7012 Gen3 Logic Analyzer. Both systems use the NVIDIA driver version
367.57 and CUDA version 7.5.

We performed two sets of tests to measure latency and bandwidth.
In both tests the receiver starts by sending the receiving buffer virtual address to the sender
using two alternatively different methods. The first is an out-of-band Ethernet connection
(the simpler way) while the second uses a list of "streaming" buffers. With the latter option,
the sender uses the fictitious 0X00000000 virtual address as destination, then the receiving
side puts the new data into the first unused preregistered buffer.

Latency tests are carried out by sending a packet in a ping-pong fashion: when a “ping”
packet from the sender is received on the receiver side, a “pong” answer of fixed size is
sent back. Time elapsed since the “sent” event until the “receive” one of the “pong” packet
is measured by using the Intel x86 internal cycles counters accessed by the Time Stamp

Counter (TSC) register. As expected, results (see Fig. 1.8 and Fig. 1.7) are barely influenced
by data size for small packets.

In the bandwidth tests, multiple packets are sent at once but only the last one is ’ACK’ed
by the receiving side. Again, time since the “sent” until the “receive” event is measured.
We made some preliminary tests on a single machine with one APEnet+ V5 in loop-back
configuration to measure the improvement in performance gained by the use of two DMA
engines. Results are shown in Fig. 1.9 and Fig. 1.10.
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Furthermore, we used two different servers to take the same measurement; results for ev-
ery combination of host/GPU memory and TX/RX modes are shown in Fig. 1.11. As it can
be seen, the GPU TX path is slower than the host one, due to the asymmetric performance
of the upstream and downstream PCIe, as also addressed in [37], GPU memory read per-
formance is poor on most PCIe switches/root complexes besides very few ones (e.g. PLX);
better performance is achieved by using the host memory as source.
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The comparison of the results to Fig. 1.12 shows an improvement in performance by
using a second DMA engine, even if it only changes the point in which the application starts
hitting the performance degradation. As regards the TLB improvements, see Fig. 1.11 and
Fig. 1.12 for a comparison between the old and the new version bandwidths. We are working
on the improvement of the receiving side since, as can be seen in Fig. 1.13, it currently
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represents the limiting factor of the overall communication performance.
In fig. 1.14 and in fig. 1.15 we report the bandwidth/latency comparison for the APEnet+

V5 board with respect to the old APEnet+ Gen2.
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2.1 Introduction

The NaNet project goal is the design and implementation of a family of FPGA-based PCIe
Network Interface Cards for High Energy Physics to bridge the front-end electronics and the
software trigger computing nodes.

The design includes a network stack protocol offload engine yielding a very stable com-
munication latency, a feature making NaNet suitable for use in real-time contexts; NaNet
GPUDirect RDMA capability, inherited from the APEnet+ 3D torus NIC dedicated to HPC
systems [38], extends its realtime-ness into the world of GPGPU heterogeneous computing.
NaNet features multiple link technologies to increase the scalability of the entire system
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allowing for lowering the numerosity of PC farm clusters. The key characteristic is the man-
agement of custom and standard network protocols in hardware, in order to avoid OS jitter
effects and guarantee a deterministic behaviour of communication latency while achieving
maximum capability of the adopted channel. Furthermore, it integrates a processing stage
which is able to reorganize data coming from detectors on the fly, in order to improve the ef-
ficiency of applications running on computing nodes. Ad hoc solutions can be implemented
according to the needs of the experiment (data decompression, reformatting, merge of event
fragments).

Finally, data transfers to or from application memory are directly managed avoiding
bounce buffers. NaNet accomplishes this zero-copy networking by means of an hardware
implemented memory copy engine that follows the RDMA paradigm for both CPU and GPU
— this latter supporting the GPUDirect V2/RDMA by NVIDIA to minimize the I/O latency
in communicating with GPU accelerators. The quirks in the interactions of this engine with
the bulky virtual memory management of the GNU/Linux host are smoothed out by adopting
a proprietary Translation Look-aside Buffer based on Content Addressable Memory [39].

My contribution on this project was mainly on the software side (Sec. 2.4), where I
worked on the send phase needed to implement a real ”smart trigger” (see Sec. 2.2) and on
a persistent CUDA kernel to handle the NIC (see Sec.2.4.1).

2.1.1 Related Works

Data acquisition and high-throughput network mechanisms interfacing the detectors read-
out are currently under development in several CERN experiments in order to face the in-
crease of luminosity planned for the next years. In [40] the FELIX (Front End LInk eX-
change) is presented, a PC-based device to route data from and to multiple GBT links via a
high-performance general purpose network capable of a total throughput up to O(20 Tbps).
The new data acquisition system under development for the next upgrade of the LHCb exper-
iment at CERN is presented in [41] focusing on the PCIe board PCIe40 aiming to achieve a
data throughput of 100 Gbps. The firmware design and implementation of Common Readout
Unit (CRU) for data concentration, multiplexing and trigger distribution at ALICE experi-
ment is described in [42].

The integration of GPUs in high-level trigger systems to achieve the computing power to
cope with the LHC luminosity upgrade has been extensively investigated in several CERN
experiments in recent years [43, 44].

The NaNet project is, to the best of our knowledge, the first effort towards the integration
of GPU devices in a low-level (i.e. real-time) trigger system of a High Energy Physics
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experiment.

2.2 NA62 CERN experiment

The NA62 particle physics experiment at CERN SPS aims at measuring the ultra rare kaon
decay K+ → π+νν as a highly sensitive test of the Standard Model and in search for hints
of New Physics.

To make beams rich in kaons, the NA62 team fires high-energy protons from the Super
Proton Synchrotron (SPS) into a stationary beryllium target. The collision creates a beam
which transmits almost one billion particles per second, about 6% of which are kaons. Be-
fore entering a large vacuum tank, each particle in the beam is measured by a silicon-pixel
detector. A detector called CEDAR determines the types of particle from their Čerenkov
radiation. Further detectors inside the tank look for decay particles: a magnetic spectrometer
measures charged tracks from kaon decays and a ring imaging Cherenkov (RICH) detec-
tor tells the nature of each decay particle. In this particular detector, the particles generate
a radiation beam that impinges with a circular footprint onto the light-sensitive tubes of a
photo-multipliers array (see Fig. 2.1). Using the information of this “rings” (radius, number
of rings, etc.) we can infer what kind of particles have passed through the detector.

Figure 2.1: NA62 CERN experiment overview.

A multi-level trigger is designed to manage the high rate of data required by the ex-
periment. The first level (L0) is implemented in hardware (FPGAs) on the readout boards
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and performs rather crude and simple cuts on the fastest detectors, reducing the high-rate
data stream by a factor 10 to cope with the maximum design rate for event readout of
1 MHz. Events passing L0 are transferred to the upper trigger levels (L1 and L2) which
are software-implemented on a commodity PC farm. In the standard implementation, the
readout boards FPGAs compute simple trigger primitives on the fly, then time-stamp and
send them to a central processor for matching and trigger decision. Thus, the maximum
latency allowed for the synchronous L0 trigger is related to the maximum data storage time
available on the DAQ boards. For NA62 this value is up to 1 ms, in principle allowing use of
more compute demanding implementations at this level, i.e. the GPUs.

As a first example of GPU application in the NA62 trigger system we studied the possi-
bility to reconstruct rings in the RICH. The center and the radius of the Čerenkov rings in the
detector are related to particle angle/velocity. This information can be employed at trigger
level to increase the purity and the rejection power for many triggers of interest. The ring re-
construction could be useful both at L0 and L1. In both cases, because of the high rate of 10
and 1 MHz respectively, the computing power required is significant. The GPUs can offers
a simple solution of the problem. The use of video cards in the L1 is straightforward: the
GPU can act as “coprocessor” to speed up the processing. On the other hand, the L0 is a low
latency synchronous level and feasibility of GPU usage must be verified. Data communica-
tion between the TEL62 readout boards and the L0 trigger processor (L0TP) happens over
multiple GbE links using UDP streams. The main requisite for the communication system
comes from the request for <1 ms and deterministic response latency of the L0TP: commu-
nication latency and its fluctuations are to be kept under control. The requisite on bandwidth
is 400÷700 MB/s, depending on the final choice of the primitives data protocol which in
turn depends on the amount of preprocessing actually be implemented in the TEL62 FPGA.
So in the final system, 4÷6 GbE links will be used to extract primitives data from the read-
out board towards the L0TP. To tackle the real-time requirement of the GPU-based L0TP,
we considered reusing the GPUDirect RDMA technology that we already implemented in
the APEnet+ project for 3D-torus network card. This led to the design and implementation
of the NaNet-1 FPGA-based NIC featuring, besides GPUDirect RDMA capability, a UDP
offloading engine.

2.3 NaNet design overview

NaNet design is partitioned into 4 main modules: I/O Interface, Router, Network Interface

and PCIe Core (see Fig. 2.2).
I/O Interface module performs a 4-stages processing on the data stream: following the
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OSI Model, the Physical Link Coding stage implements, as the name suggests, the channel
physical layer (e.g. 1000BASE-T) while the Protocol Manager stage handles, depending on
the kind of channel, data/network/transport layers (e.g. Time Division Multiplexing or UDP);
the Data Processing stage implements application dependent transformations on data streams
(e.g. performing compression/decompression) while the APEnet Protocol Encoder performs
protocol adaptation, encapsulating inbound payload data in APElink packet protocol, used in
the inner NaNet logic, and decapsulating outbound APElink packets before re-encapsulating
their payload in output channel transport protocol (e.g. UDP).

The Router module supports a configurable number of ports implementing a full cross-
bar switch responsible for data routing and dispatch. Number and bit-width of the switch
ports and the routing algorithm can each be defined by the user to automatically achieve a
desired configuration. The Router block dynamically interconnects the ports and comprises
a fully connected switch, plus routing and arbitration blocks managing multiple data flows
@2.8 GB/s

The Network Interface block acts on the transmitting side by gathering data coming in
from the PCIe port and forwarding them to the Router destination ports while on the re-
ceiving side it provides support for RDMA in communications involving both the host and
the GPU (via the dedicated GPU I/O Accelerator module). A Nios II µcontroller in in-
cluded to support configuration and runtime operations. Network Interface block consists
of 4 elements: Physical Link Coding, Protocol Manager, Data Processing, APEnet Protocol
Encoder. The Physical Link Coding covers the Physical and DataLink Layers of the OSI
model, managing transmission of data frames over a common local media and performing
error detection. The Protocol Manager covers the Network and Transport Layers, managing
the reliability of communication data flow control. A processing stage, Data Processing, that
applies some function to the data stream in order to ease the work for the applications run-
ning on the computing node, can be enabled on the fly. Finally, the APEnet Protocol Encoder
performs a protocol translation to a format more suited for PCIe DMA memory transaction.

Allocation of time-consuming RDMA related tasks has been moved from the Nios II

µcontroller to dedicated logic blocks. The Virtual Address Generator (VAG) included in
the NaNet Controller module is in charge of generating memory addresses of the receiving
buffers for incoming data while a Translation Lookaside Buffer (TLB) module, implemented
as an associative cache, performs fast virtual-to-physical address translations: a single map-
ping operation takes only ∼ 200 ns [45].

Finally, the PCIe Core module is built upon a powerful commercial core from PLDA that
sports a simplified but efficient backend interface and multiple DMA engines.
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Figure 2.2: NaNet architecture block diagram.

2.3.1 NaNet-1 design

NaNet-1 is a PCIe Gen 2 x8 NIC featuring GPUDirect RDMA over 1 GbE and optionally 3
APElink channels. The NaNet-1 board employs the Altera Stratix IV EP4SGX230KF40C2

FPGA (see Fig. 2.3); a custom mezzanine was designed to be optionally mounted on top
of the Altera board. The mezzanine mounts 3 QSFP+ connectors, thus making NaNet able
to manage 3 bi-directional APElink channels with switching capabilities up to 34 Gbps.
APElink adopts a proprietary data transmission word stuffing protocol; this is pulled for free
into NaNet-1.

For what concerns the implementation of the GbE transmission system we follow the
general I/O interface architecture description of Fig. 2.2.

Figure 2.3: NaNet-1 on Altera Stratix IV dev. board EP4SGX230KF40C2 with custom
mezzanine card + 3 APElink channels.

We exploit the Altera Triple Speed Ethernet Megacore (TSE MAC) as Physical Link
Coding, providing complete 10/100/1000 Mbps Ethernet IP modules. The design employs
SGMII standard interface to connect the MAC to the PHY including Management Data I/O
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(MDIO); the MAC is a single module in FIFO mode for both the receive and the transmit
sides (2048x32 bits).

The data protocol manager tasks are carried out by the UDP Offloader dealing with UDP
packets payload extraction and providing a 32-bit wide channel achieving 6.4 Gbps (6 times
greater than the standard GbE requirements). The UDP Offloader component collects data
coming from the Avalon Streaming Interface of the Altera Triple Speed Ethernet Megacore
and redirects UDP packets into a hardware processing data path. In this way, the FPGA
on-board µcontroller (Nios II) is totally discharged from UDP packet traffic management.

The I/O interface data flow control logic is managed by the NaNet Controller, a hardware
component able to encapsulate data packets in the APEnet+ protocol formed by a header,
a footer (128-bit word) and a payload of maximum size equal to 4096 bytes. NaNet Con-
troller implements an Avalon-ST Sink Interface collecting the GbE data flow from the UDP
offloader, parallelizing incoming 32-bit data words into 128-bit APEnet+ data ones.

Data coming from the I/O interface are managed by the Router component; it supports a
configurable number of channels, acting as a multiplexer for a customizable number of ports.

Finally, the Network Interface comprises the PCIe X8 Gen2 link to the host system for
a maximum data rate of 4+4 GB/s, the packet injection processing logic, the RX block and
GPU I/O accelerator providing hardware support for the RDMA protocol for CPU and GPU,
managed by the Nios II µcontroller operating at 200 MHz.

2.3.2 NaNet-1 performances

NaNet-1 performances were assessed on a Supermicro SuperServer 6016GT-TF. The setup
comprised a X8DTG-DF (Tylersburg chipset — Intel 5520) dual socket motherboard, 2 Intel
82576 GbE ports and NVIDIA M2070 GPU; sockets were populated with Intel Xeon X5570
@2.93 GHz.

The host simulates the RO board by sending UDP packets containing primitives data
from the host system GbE port to the GbE port hosted by NaNet-1, which in turn streams
data directly towards CLOPS in GPU memory that are sequentially consumed by the CUDA
kernel implementing the ring reconstruction algorithm. This measurement setup is called
“system loopback”.

Exploiting the x86 Time Stamp Counter (TSC) register as a common time reference,
it was possible in a single process test application to measure latency as time difference
between when a received buffer is signaled to the application and the moment before the
first UDP packet of a bunch (needed to fill the receive buffer) is sent through the host GbE
port. Communication and kernel processing tasks were serialized in order to perform the
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measure; This represents a worst-case situation: given NaNet-1 RDMA capabilities, during
normal operation this serialization does not occur and kernel processing seamlessly overlaps
with data transfer. Similarly, we closed in a loopback configuration two of the three available
APElink ports and performed the same measurement.

Benchmark results for GbE link bandwidth, varying the size of GPU memory receiving
buffers, is shown in Fig. 2.4; it remains practically constant in the region of interest for the
reference application and at maximum value for the link.

In Fig. 2.5 latencies for varying size buffer transfers in GPU memory using the GbE link
are represented. Besides the smooth behaviour increasing receive buffer sizes, fluctuations
are minimal, matching both constraints for real-time and, compatibly with link bandwidth,
low-latency on data transfers; for a more detailed performance analysis, see [46].

It is clear that the system remains within the 1 ms time budget with GPU receive buffer
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sizes in the 128 ÷ 1024 events range. Although real system physical link and data protocol
were used to show the real-time behaviour on NaNet-1, we measured on a reduced bandwidth
single GbE port system that could not match the 10 MEvents/s experiment requirement for
the GRL0TP.

To demonstrate the suitability of NaNet-1 design for the full-fledged RICH L0TP, we
decided to perform equivalent benchmarks using one of its APElink ports instead of the GbE
one. Bandwidth and latency performances for NaNet-1 APElink channel are in Fig. 2.6 and
Fig. 2.7.

Current implementation of APElink is able to sustain a data flow up to ∼ 20 Gbps.
Results for latency of the APElink-fed RICH L0TP are shown in Fig. 2.7: a single NaNet-
1 APElink data channel between RICH RO and GRL0TP systems roughly matches trigger
throughput and latency requirements for receiving buffer size in the 4÷ 5 Kevents range.

2.3.3 NaNet-10 design

NaNet-10 is the evolution of NaNet-1, based on a PCIe Gen2 x8 network adapter imple-
mented on Terasic DE5-net board equipped with an Altera Stratix V FPGA featuring 10GbE
SFP+.

The Physical Link Coding is implemented by the Altera 10GBASE-KR PHY and the
10Gbps MAC: the former delivers serialized data to a module driving optical fiber at a
line rate of 10.3125 Gbps, the latter supports operating modes starting from 10 Mbps up to
10 Gbps with an Avalon-Streaming interface of 64-bit wide interface running at 156.25 MHz
and MII/GMII/SDR XGMII on the network side. A 10 Gbps UDP/IP Core providing full
UDP, IPv4 and ARP protocols is in charge of Protocol Manager task. The module offers
an AXI-based 64-bit data interface. UDP header settings — e.g. source/destination port
and destination IP address — are exposed in both transmit and receive sides. Zero-latency
between the Protocol Manager and the Physical Link Coding is guaranteed avoiding inter-
nal buffer but packet segmentation and reassembly could not be supported. A multi-stream
hardware module inspects the received stream and separates the packets according to the
destination port to redirect data to different GPU memory buffers to satisfy the application
requirements. The decompressor and NaNet TCL units are mostly shared with those in
NaNet-1.

2.3.4 NaNet-10 results

To assess the real-time capability of the GPU-RICH, that is, the fundamental requirement
for its integration in the NA62 L0 trigger, we started by characterizing separately the compo-
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nents involved in the data transport tasks, i.e. NaNet-10 board hardware and software stack,
and those involved in processing, i.e. the GPU software application performing the ring re-
construction algorithm. Using a dedicated testbench we measured with a 250 MHz counter
the NaNet-10 traversal time of a 1 kB UDP datagram, i.e. the time interval between the first
word of the incoming datagram exiting from the 10GbE MAC and the completion of the
PCIe DMA of datagram payload towards GPU memory, Fig. 2.8. We identified the reason
for the bimodal distribution in the search operation performed in the FPGA to map virtual
memory addresses of the receive buffers to physical ones before performing the DMA. We
are developing an alternative implementation that will allow this latency to be kept within
1 µs.

Figure 2.8: NaNet-10 1kB datagram hard-
ware traversal time.

Figure 2.9: Delay of the NaNet-10 hw/sw
stack in signaling to the userspace application
the filling of a receive buffer in GPU memory.

Figure 2.10: Latency of the Event Finder
CUDA Kernel performing the indexing of
events in the GPU receive buffer.

Figure 2.11: Latency of the Histogram
CUDA Kernel performing ring reconstruc-
tion.

With the same testbench, we measured the delay of the NaNet-10 hw/sw stack when
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signaling to the userspace application the filling of a receive buffer in GPU memory, enabling
the launch of the CUDA kernel consuming the received data, Fig. 2.8.

The 99th-percentile for this mostly software-related latency is below 3 µs, accounting
for a total NaNet-10 hw/sw latency smaller than 5 µs to process a 1 kB UDP datagram.
These results validate the real-time features of NaNet-10 as data transport system for the
GPU-RICH.

Moving to the processing task, we measured the latencies of the two GPU processing
stages, Event Finder and Histogram Ring Reconstruction, in a NA62 setup at ∼ 1/3 of
the nominal event rate with data coming from the RICH detector readout. The experiment
Timing, Trigger and Control (TTC) 40 MHz clock has been used to measure the latency in
order to have the same time reference with respect to the data source. Results are reported in
Fig. 2.10 for the Event Finder CUDA kernel (performing event indexing) and, in Fig. 2.11,
for the Histogram CUDA kernel (performing ring reconstruction). Both CUDA kernels are
time constrained, with execution time 99th-percentile values well within the available time
budget.

Putting all together, Fig. 2.12 and Fig. 2.13 show the overall latency of operations during
a single burst, from the receiving of the first UDP packet containing the RICH PMs hit
primitives for a given receive buffer (CLOP) to the end of the ring reconstruction on the
GPU.

Figure 2.12: Total latency including data
transport from RICH readout to GPU mem-
ory and GPU processing for ring reconstru-
tion. Data for a whole burst.
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Figure 2.13: Latency Cumulative Distribu-
tion Function (CDF).

The plot mimics the particle beam spill shape, with a pedestal at the beginning and at
the end of the burst corresponding to RICH PMs hit primitives generated by detector noise
and discarded by the reconstruction kernel because of their low number of hits. The ∼
250 µs 99th-percentile value for the total latency confirms the validity of choosing the NaNet
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framework to design the GPU-RICH system.

2.4 Software Stack

The NaNet software stack (see Fig.2.14) runs partly on the x86 host and partly on the
Nios II FPGA-embedded µcontroller (see Sec.1.3). On the host side a GNU/Linux kernel
driver controls the device and an application level library provides an API to: open/close the
NaNet device; inject commands to register and de-register circular lists of persistent receiv-
ing buffers (CLOPs) in GPU and/or host memory, necessary to allocate, pin and return the
virtual address of these buffers to the application; manage events generated by the device
when receiving packets on the registered buffers in order to promptly invoke the GPU kernel
that processes the data just received. On the µcontroller, a single process C program is in
charge of device configuration and TLB management.

A CUDA kernel implementation of a fast rings finding algorithm on GPU is another key
component of the software stack to keep processing time small and stable enough to cope
with input data rate and real-time requirement for the GPU-RICH system.

Figure 2.14: NaNet software overview.

2.4.1 GPU-controlling the NIC

One of the bottlenecks in “hybrid” HPC systems is the need of the host CPU to initiate the
communication by triggering the NIC, commonly using a kernel-space device driver, even
when the data to be transferred resides on the GPU memory. Different solutions have tried to
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overcome this problem by using directly the GPU to control the NIC. Such kind of approach
is used in GPUnet [37] project, where the networking APIs are invoked from the CUDA
kernel itself, but all the calls to the NIC are still performed by the CPU. Other works like
GPUrdma [47] and GGAS [20], required partially modification of the NVidia driver to ac-
cess I/O memory, where “memory-mapped” control registers of the NIC are located. Starting
from version 8.0 of CUDA APIs [48], however, it became possible to access the I/O memory
without any patch to the driver code, using the GPU itself to drive the NIC, relieving the host
CPUs from this task and speeding up the process of receiving, processing and sending data.
Disappointingly, this approach has initially demonstrated to yield no advantage using Infini-
Band VERBs [49], while in recent work (see [47]) RDMA-based communication bandwidth
and latency on a setup equipped with an InfiniBand NIC has shown encouraging results.

In the following, we perform similar investigation on the advantages of a GPU-driven
NIC within the peculiar latency-bound NaNet environment.

As already said, in NA62 experiment, a stream of physics events at a 10 MHz rate has
to be decimated to 1 MHz before it is passed to subsequent stages. In order to do this, a
cascade of detectors is used; we have focused our work on the Ring-Imaging Cherenkov
(RICH) detector.

The problem translates to identifying ring patterns in a cloud of points, that is well suited
for a GPU.

In the setup of the NA62 experiment, incoming data are DMA-copied into the GPU mem-
ory through the PCIe bus by the NaNet NIC which is directly connected to the readout boards
of the detector (see Fig.2.15). When data lands in GPU memory, the NIC DMA-write a “Re-
ceiving done” completion event in a memory region called "event queue", where is trapped
by a kernel-space device driver that is in charge of notifying it to the user application, which
in turn launches a CUDA kernel to process the data using the GPU (rings-reconstruction).

Results of this processing, i.e. number and kind (electron, pion, kaon) of rings, is eventu-
ally sent via NaNet board to a FPGA performing the first stage trigger, collecting data from
all detectors.

The whole process, from data receive in NaNet to results delivered to the FPGA trigger
system, has to be completed strictly within 1 ms to avoid data loss.

In the transmission phase, data is to be pulled directly from GPU memory, with the kernel
device driver (invoked by the user application) instructing the NIC by filling a “descriptor”
with all the relevant information for the transfer (destination IP address, source data memory
address, etc.), then dropping it into a dedicated, DMA-accessible memory region called “TX
ring”. The presence of new descriptors is notified to NaNet by writing on a doorbell register

over PCIe bus. After the sending phase, where data to be transferred is actually DMA-read
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by the NaNet NIC, this latter issues a “tx done” completion event, which is pushed into the
“event queue”, where the kernel-space driver acknowledges it. As can be seen, the software
stack is continuously switching between user-space and kernel-space in either the receive
and the sending phase. Our idea is to have a “persistent” CUDA kernel to handle ingress of
data, their processing and then egressing the results away without intervention of the host
CPU.

To this end, we need to remap in GPU memory both the “TX ring” (for the sending
phase) and the “event queue” (for both the receiving and sending phase, in order to catch the
completions) to access them directly from the GPU process.

Notice that standard behaviour for a PCIe device driver should be allocating I/O memory
via the pci_alloc_coherent() function which returns physically contiguous memory; mem-
ory of this kind should be remapped by the cudaHostRegister() CUDA API with the cud-

aHostRegisterIoMemory flag, but the disadvantage of this approach is that it increases the
total latency due to the need of accessing the host memory through the PCIe bus.

So we proceed the other way round, by allocating sufficient GPU memory via cudaMal-

loc() and then translating its virtual memory address into the corresponding physical one via
p2p_get_pages() GPUDirect kernel API; this physical address can be used directly by the
NaNet DMA engines. With this approach, we are able to map both the “TX ring” and the
“event queue” in GPU memory to access them directly from a CUDA kernel.

Although a consistency problem may arise when a GPU memory peer-to-peer DMA is
performed while a GPU kernel is running, as discussed in [47], we did not experience any
in our particular setup. Specifically, a third party PCI device (like NaNet) cannot guarantee
consistent in-order updates of GPU memory via peer-to-peer DMA: e.g. two sequential
RDMA writes can be observed in reverse order by a GPU kernel, so that we cannot rely
only on the arrival of the “Receiving done” completion event to start the data processing.
For this reason, after detecting a completion event, a three-stages processing is performed
on the received buffer. In the first stage, the CUDA kernel indexes the starting address
of the variable-sized “physics events” contained in the buffer by searching for a 32 bits
signature. The indexed events are then used to perform the ring reconstruction. Finally, a
third stage poisons the consumed buffer with its index number in the circular list of receive
buffers. While not specifically trying to patch the consistency issue, this approach — in
conjunction with the limited GPU memory write load generated by the 10 GbE channel —
at least vouched that our results were unaffected. Nevertheless, considering the planned
development path for the NaNet board featuring more capable I/O channels, this aspect will
be carefully analyzed in our future work. The GPUDirect Async [50] is a promising solution
that will be investigated to address this potential issue.
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Another important aspect is represented by the time spent in the PCIe transactions: as
a PCIe device, NaNet is mainly driven through accessing memory-mapped registers. Even
taking advantage of the aforementioned cudaHostRegister CUDA API to handle I/O memory
from inside a CUDA Kernel, the PCIe memory read/write operations are still time consum-
ing. Therefore, we strove to keep the PCIe transactions to as few as possible. We decided
to use a kernel-space device driver for the first initialization and remapping phase, we then
mainly need to write just the doorbell register in the sending phase to inform the NIC about
the presence of fresh data to move.

Figure 2.15: NaNet software overview using persistent CUDA kernel.

Preliminary results

The test-bed is composed by a SuperMicro server equipped with Intel Xeon E5-2630 CPUs,
a NaNet NIC and an NVidia K20x GPU. We simulate the arrival of new events by sending
packets from the Ethernet interface directly to the NaNet NIC, which writes the data into the
memory of the GPU, then a dummy kernel is launched to simulate the rings search (∼200µs)
and, finally, data are sent from NaNet to another Ethernet board to mimic progressing further
towards the NA62 FPGA trigger.

Using the idea presented in this chapter, i.e. a persistent CUDA kernel to directly drive
the NIC (at the moment no further improvements are made, just a single thread is used), we
reap benefits on two different sides:
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• we eliminate the latency due to the user⇔ kernel space switch by accessing the board
directly from the persistent CUDA kernel;

• we save the overhead of launching the CUDA kernel every time a new bunch of events
arrives since the kernel is already running on the GPU.

The preliminary result in terms of total latency (adding up receive, compute and sending
phases) are shown in the Fig. 2.16. The classical approach to control NaNet NIC, based
on a kernel device driver, is compared with a persistent CUDA kernel in a synthetic test
that reproduce the NA62 CERN experiment flow (gather data, process it and then send over
an ethernet connection). Notice that the plot starts at 200µs to highlight the baseline of
computation time. This has yielded encouraging results in terms of a latency reduction of
about 10%. Besides these results, the most important achievement is having demonstrated
the feasibility of using a CUDA kernel, usually confined to number crunching, to drive the
NIC. This is of particular relevance in GPU-based real-time applications.
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Figure 2.16: Latency test results for the persistent CUDA kernel approach.
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3.1 Introduction and related work

The ExaNeSt project [51], started on December 2015 and funded in EU H2020 research
framework (call H2020-FETHPC-2014, n. 671553), is a European initiative aiming at devel-
oping the system-level interconnect, a fully-distributed Non-Volatile Memory (NVM) stor-
age and the cooling infrastructure for an ARM-based Exascale-class supercomputer. The
ExaNeSt Consortium combines industrial and academic research expertise in the areas of
system cooling and packaging, storage, interconnects and the HPC applications that drive all
of the above.

ExaNeSt will develop an in-node storage architecture, leveraging on low-power NVM de-
vices. The distributed storage system will be accessed by a unified low-latency interconnect,
enabling scalability of either storage and I/O bandwidth together with the compute capacity.
The unified RDMA-enhanced network will be designed and validated using a testbed based

49



CONFIDENTIAL Chapter 3. ExaNeSt project

on FPGAs and passive copper and/or active optical channels, allowing the exploration of
interconnection topologies, congestion-minimizing routing functions and support to system
resiliency.

ExaNeSt also addresses packaging and liquid cooling – which are of strategic importance
for the design of real systems – and aims at an optimal integration which will be dense,
scalable and power efficient.

ARM-based servers are currently under evaluation as an alternative to the x86 and
POWER-based servers which are prevalent in data-centers and supercomputers for both re-
search and business [52, 53, 54]. This technological approach for a scalable and low-energy
solution to computing is shared with other projects with the common goal to deliver a Euro-
pean HPC platform: (i) ExaNoDe [55] focuses on delivering low-power compute elements
for HPC and (ii) ECOSCALE [56] focuses on integrating FPGAs and providing them as
accelerators in HPC systems.

A set of relevant ambitious applications, including HPC codes for astrophysics [57, 58,
59, 60], spiking neural networks simulation [61], engineering [62, 63], climate science [64],
materials science [65] and big data [66], will support the co-design of the ExaNeSt system
to provide specifications during design phase and application benchmarks for the prototype
platform.

A final prototype of the systems will be made available in 2018, which is the last year
of the ExaNeSt project. In this chapter, after a general overview of project motivations,
the interconnect technologies and the multi-tiered topologies are introduced to better un-
derstand the software stack we are working on. My contribution to the ExaNeSt project is
mainly involved with the network architecture software interface of the so-called “KARMA”
Test Framework, explained in Sec.3.3, where I worked on the NIC device driver to design
and verify the hardware funcionalities. I am also collaborating in the hardware/software
co-design of the final system prototype.

3.2 Multi-tiered, scalable interconnects for unified data and
storage traffic

The development of an interconnect technology suitable for Exascale-class supercomput-
ers is one of the main goals of the project; we envision it as a hierarchical infrastructure
of separate network layers interacting through a suitable set of communication protocols.
Topologies in the lowest tiers are hardwired due to choices made in the prototype design
phase.
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The Unit of the system is the Xilinx Zynq UltraScale+ FPGA, integrating four 64-bit
ARMv8 Cortex-A53 hard-cores running at 1.5 GHz. This device provides many features,
the following being the most interesting:

• a very low latency AXI interface between the ARM subsystem and the programmable
logic,

• cache-coherent accesses from the programmable logic and from the remote unit,

• a memory management unit (MMU) with two-stages translation and 40-bit physical
addresses, allowing external devices to use virtual addresses, thus enabling user-level
initiation of UNIMEM [67] communication.

The FPGA block diagram is shown in Fig. 3.1.

Figure 3.1: The Unit of the
ExaNeSt system: the Zynq
FPGA.

Figure 3.2: The Node is the
Quad-FPGA Daughter-Board
(QFDB).

Figure 3.3: the mezzanine.
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The Node (Fig. 3.2) is the Quad-FPGA Daughter-Board (QFDB), which contains four
Zynq Ultrascale+ FPGAs, 64 GB of DRAM and SSD storage connected through the ExaN-
eSt Tier 0 network. The inter-FPGA communication bandwidth and latency affect the overall
performance of the system. As a consequence, at QFDB level, ExaNeSt provides two differ-
ent networks, one for low-latency exchanges based on LVDS channels via AXI protocol, the
other for high-throughput transmissions through High Speed Serial links (HSS).

For inter-node communication, the QFDB provides a connector with ten bidirectional
HSS links for a peak aggregated bandwidth of 20 GB/s. Four out of ten links connect neigh-
bouring QFDBs hosted on the Mezzanine/Blade (Tier 1). The first Mezzanine prototype
(Track-1), shown in Fig. 3.3, enables the mechanical housing of 4 QFDBs hardwired in a
2D cube topology with two HSS links (2 × 16 Gb/s) per edge and per direction. The re-
maining six HSS links, routed through SFP+ connectors, are mainly used to interconnect
mezzanines within the same Chassis (Tier 2). Furthermore, they can also be exploited to
modify the Intra-Mezzanine topology.

The Mezzanine sports additional slots to host thermal mockups to evaluate the liquid-cooled
mechanics and optional off-the-shelf ARM-based computing modules, the Kaleao KMAX [68].
Nine such as mezzanines will fit within an 11U (approximate height) “half depth” chassis.

3.2.1 Topologies

ExaNeSt explores both direct blade-to-blade and indirect blade-switch-blade networks. The
former type, with direct links (Inter-Mezzanine) between blades, is frequently called “switch-
less” and has been employed in many HPC installations. These interconnects distribute the
switching and routing functions to units that are integrated close to computing elements. The
latter will be tested connecting the blades to commercially available components, based on
ASICs or FPGAs.

Each mezzanine provides 24 SFP+ connectors to communicate with other mezzanines
within the same Chassis. So many independent channels allow for a high level of flexibility
to experiment with several direct network topologies.

A first scenario is shown in Fig. 3.4, where 2D torus topology is chosen to interconnect
the QFDBs of the 9 blades of a chassis. The solid and dotted lines are the intra-Mezzanine
and inter-Mezzanine I/O interfaces respectively. Since local (within the mezzanine) and
remote (neighbouring mezzanine) QFDBs are in the same network hierarchy, 2 HSS per
direction for remote channels are used to balance the network capability. A 6 × 6 Torus
topology is the resulting configuration where the longest path consists of 6 hops implement-
ing a Dimension-Order Routing (DOR) algorithm (see Sec. 3.2.3).
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Figure 3.4: QFDBs within the chassis
shape a 2D Torus topology (Tier 1/2).

Figure 3.5: Performance boost due to the
intra-Mezzanine (Tier 1) all-to-all topol-
ogy.

An additional design option would use the “diagonal” links to interconnect the QFDBs
in a mezzanine resulting in a all-to-all topology. With this simple modification – which also
requires the implementation of a more complex routing algorithm – two hops are saved on
average, as sketched in Fig. 3.5; our estimation for single hop latency is about 200 ns.

Figure 3.6: Dragonfly topology intercon-
necting Mezzanine Supernodes (Tier 2).

Figure 3.7: Each QFDB exploits only one
SFP+ cable for inter-Mezzanine network.

A second scenario foresees a Dragonfly [69] network implementation as in Fig. 3.6. Each
blade corresponds to a supernode (Fig. 3.7) connected to the neighbouring nodes with just
one inter-Mezzanine channel.

A further latency reduction (3 hops for the longest path as depicted in Fig. 3.8) is gained
by connecting each QFDB of a Mezzanine with their counterparts on neighbouring Mez-
zanines, shaping four 3 × 3 2D torus networks (Fig. 3.9). Moreover, counterparts QFDBs
residing on Mezzanine in neighbouring chassis (Tier 3) can be arranged in a 3D torus; in this
way we exploit two additional external inter-Mezzanine channels eliminating the diagonal
links on the QFDB. Each set of QFDBs is a 3D torus interconnect 3× 3×C where C is the
number of chassis.
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Figure 3.8: An alternative topology to the
simple torus network.

Figure 3.9: Four 2D torus networks inter-
connecting the mezzanines.

3.2.2 High-Throughput intra- and inter-Mezzanine communication

APElink [70] is the communication protocol for the management of data flow over the HSS
links. It is based on a word-stuffing protocol, meaning that data transmission needs submis-
sion of a magic word every time a control frame is dispatched to distinguish it from data
frames.

The word-stuffing APElink protocol includes two words – Magic and Start – into the
data flow over the HSS links to establish the logical link between nodes. The transmission of
the packet header is announced with this sequence. Since misrouted packets are disruptive
for the network, the highly critical header integrity could be protected by an Error Detection
Code (EDC) or Error Correction Code (ECC), depending on the Bit Error Rate (BER) that
we experience in the network. To prevent the reception buffer from overflowing, the IP
manages the flow between two neighbouring nodes by keeping track of the APElink words
sent. Buffer availability is measured by credit; occupancy of the receiving buffer is contained
in the credit. Outbound words consume it, causing transmission suspension as soon as a
programmable credit threshold is reached – i.e. credit is exhausted – and resuming as soon
as info about newly available space bounces back to the transmitter – i.e. credit is eventually
restored. Furthermore, this information is mandatory for the Virtual Cut-Through (VCT)
switching mechanism described in Sec. 3.2.3.

Information regarding the health of the node can be embedded in the credits, allowing
a fault communication mechanism to avoid a single point of failure and guaranteeing a fast
broadcast of critical status [71]. Embedding the diagnostic messages in the communication
protocol limits the amount of additional overhead and avoids that this flow affects overall
performance.
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3.2.3 Routing

The APEnet IP [72] is the data flow handler over the HSS network (Tier 0/1/2), implement-
ing low-latency and high-speed communications between the Mezzanines. The Router is
the component in charge of determining the path the messages will follow to reach their
destinations.

Current APEnet implementation adopts a deterministic Dimension-Order Routing (DOR
or e-cube) policy: it consists in reducing to zero the offset between current and destination
node coordinate along one dimension before considering the offset in the next dimension.
The APEnet DOR router is able to handle more than one packet transaction at a time and
specialized priority registers – writable at run-time – allow for limited but effective routing
function customization.

The employed switching technique – i.e. when and how messages are transferred along
the paths established by the routing algorithm – is Virtual Cut-Through (VCT): the router
starts forwarding the packet as soon as the algorithm has picked a direction and the buffer
used to store the packet has enough space.

A more sophisticated routing logic will of course be able to consume the coordinates in
a more exotic way or recognize critical directions and then change appropriately the packet
header to follow an alternative path to their the destination.

Finally, we will implement a set of effective collective communication functions, in order
to relieve what typically acts as a bottleneck for the HPC systems. To enhance application
performance at very large system scale, an enhanced design with hardware offloading of
these functions is under development.

3.3 KARMA Test Framework

King ARM Architecture (KARMA) is a software-oriented test framework to validate the
EXAnet Network IP (APEnet Crossbar Switch and APElink data transmission systems). The
main idea behind its design is the use of the multicore ARM Cortex-A53 Processing System
(PS) to emulate in software the functionalities of the Network Interface (NI), exploiting the
AXI low latency communication capabilities between the PS and the Programming Logic
(PL) that implements the systems under test. This approach turned out to be very effective,
allowing for the test and validation of the EXAnet Network system since the earliest stages
of its development, well before the actual integration with the NI. It also enabled the rapid
prototyping of various architectural solutions for the interface between the NI and the Switch
systems. Finally, using this framework we were able to characterize the performance of the
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two systems in terms of latency.
On the hardware side, the intra-tile Switch FIFOs are directly connected to the ARM

HPM AXI port through an in-house developed adapter IP, whose only purpose is the conver-
sion between streaming and memory-mapped AXI protocols. This means ARM has to write
every single word into header/data FIFOs, which is obviously suboptimal for bandwidth, but
gives good latency results for small-sized packets, as shown later. Moreover, a set of config-
uration/status registers is accessible on the same AXI bus through the “Target Controller” IP,
which allows configuration of the router (e.g. setting coordinates and lattice size) and prob-
ing FIFOs and link status. This no-DMA approach, summarized in Fig.3.10, was pursued
to quickly provide a validation framework for the underlying network subsystem, without
replicating efforts developing a Network Interface.

Figure 3.10: King ARM Architecture (KARMA) overview.

3.3.1 KARMA Software User Interface

On the software side, we first created a Linux user-space test program capable of stimulating
the devices under test by writing commands and data to the corresponding hardware FIFOs
(see Fig.3.10). This was achieved by exploiting the /dev/memdevice to map the AXI bus
in virtual memory and allowing an application to directly access TX/RX FIFOs and their oc-
cupancy counters. In this setup there was no support for interrupts, system-wide locking and
virtual-to-physical address translation when handling the receive part of a RDMA operation.
We then developed a Linux kernel-space device driver supporting a procfile-system entry
for outputting device status and debug information, together with the output of the internal
configuration/status registers.

The module also parses the device tree to find the IRQ number associated to the APEnet
Crossbar Switch and then assigns a callback function (irq_handler) to handle the inter-
rupt request generated by the arrival of new data.

Interrupts are handled both in the “top half” by a kernel module callback function, and in
the “bottom half” by using a work-queue: to this end, _karma_wq_schedulewraps the
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call to the standard queue_delayed_workkernel space function to wait the arrival of the
new data, i.e. when the interrupt rises, the driver starts polling for the new data:

void _ k a r m a _ w a i t _ d a t a ( s t r u c t de layed_work ∗work )
karma_dev_t ∗xdev= c o n t a i n e r _ o f ( work , karma_dev_t , de layed_work ) ;

i n t r e g ;
v o l a t i l e i n t t i m e o u t _ j = j i f f i e s + m s e c s _ t o _ j i f f i e s (TOUT_ms ) ;

/ / l oop w h i l e t h e new da ta a r r i v e s or t i m e o u t

whi le ( ( r e g = k a r m a _ r e g _ r e a d (PAYLOAD_COUNT_REGISTER) ) = = 0 ) {
i f ( ! t i m e _ i s _ b e f o r e _ e q _ j i f f i e s ( t i m e o u t _ j ) ) {

ERROR( "TIMEOUT! " ) ;
goto e x i t _ t i m e o u t ;
}

}

/ / new da ta a r r i v e d , ha nd l e i t

karma_recv ( xdev ) ;

e x i t _ t i m e o u t :
k a r m a _ e n a b l e _ i r q ( xdev ) ; / / e n a b l e t h e i n t e r r u p t s

Listing 3.1: Pseudo-code implementation of _karma_wait_data

karma_recvis in charge of asynchronously copying the data just landed into the pre-
registered user buffer (see below); if the buffer is not registered, it will use a bounce buffer
instead:

s t a t i c i n t karma_recv ( karma_dev_t ∗xdev ) {
h e a d e r _ t h e a d e r ;
f o o t e r _ t f o o t e r ;
i n t num_payloads , i =0 ;
k a r m a _ b u f f e r _ t ∗ buf =NULL;
p a y l o a d _ t ∗ p a y l o a d ;

k a r m a _ h e a d e r _ r e a d ( h e a d e r ) ; / / consumes header

/ / t h i s i s t h e s i z e o f t h e a r r i v i n g p a c k e t

num_payloads = h e a d e r . s . p a c k e t _ s i z e ;
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/ / n a i v e i m p l e m e n t a t i o n o f pay load words read

f o r ( i =0 ; i <num_payloads ; i ++){
k a r m a _ p a y l o a d _ r e a d ( p a y l o a d [ i ] ) ;

}
k a r m a _ f o o t e r _ r e a d ( f o o t e r ) ; / / consume t h e f o o t e r

k a r m a _ s e t _ b u f f e r _ r e a d y ( buf ) ; / / r eady f o r t h e u s e r

}

Listing 3.2: Pseudo-code implementation of karma_recv

Functions karma_footer_read,karma_header_readand
karma_payload_readreads the data from the memory mapped FIFOs.

The userspace application then needs to register/unregister data buffers and the kernel
space module needs to keep track of the registered buffers to copy the new data on arrival.
This is done by using the linked lists data structures built it in the kernel. When a new packet
arrives (or when the user needs to delete a buffer) we need to search in the list of the buffers.
Once the buffer is found in the list of preregistered buffers, it can be used to store the new
data. The userspace application asynchronously polls for the arrival of new data. This is
translated into a kernel “request for new data” call. The device driver searches the buffers
list and checks the “ready” bit for that particular buffer requested by the user (set by the
kernel driver). If it is set, the new buffer is ready to be consumed by the user application.

Fig. 3.11 shows the normal execution of a generic send/receive test execution using
the kernel space module. The kernel-space test is as follows: in the sending phase, the
kernel-space module copies data from the source buffer to a kernel bounce buffer, then pre-
pares header and footer and writes them onto the corresponding FIFOs. The receiving phase
is just the opposite: arriving data are copied into a kernel bounce buffer (waiting for the
user-space process to request them) while header and footer are “consumed”.

In the kernel-space test, the performance is heavily affected by the user-/kernel-space
traversal, influencing the total time required for the send/receive. This also affects the fluctu-
ations, as shown in Fig. 3.13, where latency decreases moving from 16 to 32 payload Bytes.

Since clock_gettimecalls are not accurate enough at this time scale, a large number
of packets is sent (∼100000), averaging the time to get an estimate of the latency for a single
send call.

Because of the aforementioned suboptimal bounce-buffer mechanism and the notoriously
slow interrupt handling by GNU/Linux, a user space ping-pong test is provided (see Fig.3.12)
exploiting /dev/memto directly access the memory-mapped hardware to assess the system
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Figure 3.11: Generic send/receive test execution using the KARMA kernel driver.

Figure 3.12: Generic send/receive test execution using the KARMA user space software.
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Figure 3.13: Round-trip latencies between two boards using KARMA kernel driver: the
performance is heavily affected by the user-/kernel-space traversal.

latency. In Fig. 3.14, the results are shown for both direct connection between sender and
receiver, and through an intermediate hop. Times spent by ARM for intra-tile port reading
(∼ 0.4µs, about 20 clock cycles per word) and writing (< 0.1µs, 4 clock cycles per word) are
independent from the number of hops. Differences in time measurements in the two cases
provide an estimate of the contribution of single hop traversal to total latency (0.46 µs).

Figure 3.14: KARMA test framework la-
tency.

Figure 3.15: Zoom of KARMA test
framework latency.

Current KARMA does not implement any DMA-access to the intra-tile ports, so that
ARM must issue a write for every single word into header/data FIFOs, which is obviously
suboptimal for bandwidth but appropriate for gauging the latency of small-sized packets.

3.4 ExaNeSt project status

The ExaNeSt project started at 1Q16 and foresees two consecutive, 18 months-long time
slots. The first phase, ended in July 2017, focused on the design of general system architec-
ture and the realisation of the main hardware building blocks. During the second phase, the
project consortium will integrate, test and evaluate the delivered system prototype through
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application benchmarks. The current status of ExaNeSt hardware blocks is:

• The QFDB has been designed and it is under production; first release is expected for
4Q17.

• The Mezzanine board, hosting up to 4 QFDBs and/or thermal mockups for power
dissipation analysis will be released few weeks after the QFDB.

• The design of QFDB FPGA firmware has been started on a Xilinx FPGA development
kit. We procured a number of Trenz(R) Zynq UltraScale+ systems (TE0808-03ES2-S)
to implement an emulator of final ExaNeSt hardware.

• Small-size clusters based on Trenz FPGAs, interconnected via 10 Gbps custom links,
have been installed: (i) to test and evaluate performance of the ARM V8 multi-core
programmable systems and HSS transceivers and (ii) to deliver a first release of the
ExaNeSt network, based on INFN APEnet router and Forth Unimen-based network
interface.

On the basis of the project budget and expected cost of the components at 4Q18, the final
prototype will be made of an assembly of a dual liquid cooled chassis hosting ∼ 50 QFDBs
(i.e. 200 FPGAs) distributed on 9 Mezzanines per chassis and interconnected via the brand
new custom ExaNeSt network architecture based on multiple 10 Gbps channels.

We are clearly in a crucial phase of the project and the results are just preliminary. Such
an ambitious project could not be concluded in three years and its natural follow-up has been
foreseen in some projects that have already started or are about to.
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Concluding remarks

The employ of GPUs and FPGAs in the field of HPC is a relatively new topic of great interest
in the scientific community.

Systems based on reprogrammable components as FPGAs allow a reduction in costs
and in development time by providing solutions that can be easily repurposed for different
applications, not only the one for which they were originally designed.

In this dissertation I addressed some of the most challenging issues of using accelerators
in FPGA-based networks for different application scenarios.

In the first part of this thesis, an analysis of the critical issues of HPC-dedicated inter-
connects is presented; APEnet+, a 3D Torus direct interconnect based on an FPGA NIC, is
therein described in detail.

My contribution to APEnet+ initially concerned the design of a stable Linux Device
Driver for the PCI Express Gen3 FPGA-based NIC (APEnet+ V5), whose results showed
encouraging improvements with respect to the previous Gen2 card version (APEnet+ V4).
I then focused on the optimization of the device driver in order to improve the network
performance experienced by the user application. This activity has deepened my knowl-
edge of the system stack software architecture and of the relationship between user space
and kernel space programming, allowing me to devise and implement specific solutions to
enhance the overall network performance. The developed software, leveraging on ad-hoc
features introduced in the FPGA NIC design, was able to efficiently exploit the PCI Express
Gen3 capabilities with a ∼70% gain in bandwidth, passing from 2.8 Gb/s of APEnet+ V4
to 4.2 Gb/s of the V5 version. Nevertheless, I experienced an increase in latency for small
packets (with sizes ranging from 32 B to 2 kB):∼5 us of APEnet+ V5 compared to the∼4 us
of the previous version. I believe this could be due to the 3rd-party IP core used or to the
PCIe Gen3 protocol itself.

The project is still under development and can be optimized with new functions and
technologies. For example, NVIDIA announced the release, in future CUDA versions, of
the “GPUDirect Async” feature; this should allow the optimization of inter-node GPUDirect
communications by providing a safe mechanism to issue commands from the GPU directly
to the NIC, meaning RDMA communications directly triggered by the GPU itself. We are
eager to see the documentation of these new APIs in order to put them to use in improving
the network efficiency.

In the second part of this dissertation, the NaNet project was introduced.
The NaNet-10 board and the related software stack are currently under test in a prototype

system deployed at the NA62 [17] experiment at CERN, where they receive raw data from
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one of the detectors through a 10GbE channel and DMA-copy them into the GPU memory
via the PCIe bus. This data transport mechanism allows for a low and predictable commu-
nication latency and enables real-time processing of physics data in the GPU, boosting the
efficiency of the experiment data selection system (the so-called trigger). Besides the data
transport, NaNet-10 implements a processing stage on the data stream (i.e. data decompres-
sion and re-alignment) in order to ease the data processing on the GPU. The resulting system
can be viewed a heterogeneous stream processing pipeline, where NaNet-10 is also in charge
of sending the processed data to its consumers. The measured total latency of this heteroge-
neous processing pipeline and its stability endorse the NaNet framework as a real-time data
stream processing platform.

In this context, my work has focused on the best way to implement the sending phase
of this “GPU-processed” data in order to attain the lowest latency, which, in this peculiar
latency-bound environment, is by far the single, most important performance index.

A novel approach based on a “persistent” CUDA kernel was presented in the Sec.2.4.1,
where handling of the NIC is demanded to the GPU without the intervention of the host
CPU. I tested this new approach in a synthetic environment to reproduce the NA62 CERN
experiment flow — gather data, process it and then send it over an Ethernet connection. This
has yielded encouraging results in terms of a latency reduction of about 10%. Besides these
results, the most important achievement is having demonstrated the feasibility of using a
CUDA kernel, usually confined to number crunching, to drive the NIC. This is of particular
relevance in real-time applications.

In the last part of the thesis I described the ExaNeSt project, a European initiative aim-
ing at developing the system-level interconnect, a fully-distributed NVM storage and the
cooling infrastructure for an ARM-based Exascale-class supercomputer. This is a relatively
different scenario with respect to the projects presented in the first two sections since the
computing node architecture relies on the AXI system bus rather than PCIe. My contribu-
tion in the ExaNeSt project was mainly on the architectural design of the prototype node,
especially for what regards the network subsystem and its software stack. To this end, I
am collaborating on the hardware/software co-design and on the NIC device driver to test
and verify the functionalities of the hardware under development. I started by developing
a kernel-based device driver and a set of user-space test functions to stimulate the network
hardware. This setup highlighted the heavy effect that user-/kernel-space traversals bear on
the communication latency, leading to the development of a user-space only test framework,
the so-called “KARMA” Test Framework (introduced in Sec. 3.3), that roughly halved the
measured ping-pong latencies for a 16 Bytes packet in zero-load conditions. In the future I
will continue working at INFN (Istituto Nazionale di Fisica Nucleare) APE Lab, where all
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my research activity was carried out during my PhD. There I had the invaluable opportunity
to directly interact with the hardware designers, in this way being involved in the hardware/-
software co-design while working actively on the design and optimization of the device
driver and software interface of the different projects I am participating in. This allowed
me to study and implement architectural specifications that can provide innovative features,
ensuring maximum efficiency (high bandwidth and low latency) for intra- and inter-node
communications.

As a concluding remark, this work has made its contribution in FPGA-based networks
together with experimental results that show a great potential for further research activities.
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[52] R. V. Aroca and L. M. G. GonÃğalves, “Towards green data centers: A comparison
of x86 and {ARM} architectures power efficiency,” Journal of Parallel and

Distributed Computing, vol. 72, no. 12, pp. 1770 – 1780, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731512002122

[53] R. P. Luijten and A. Doering, “The dome embedded 64 bit microserver demonstrator,”
in Proceedings of 2013 International Conference on IC Design Technology (ICICDT),
May 2013, pp. 203–206.

[54] N. Rajovic et al., “Supercomputing with commodity cpus: Are mobile socs ready for
hpc?” in 2013 SC - International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC), Nov 2013, pp. 1–12.

[55] “ExaNoDe,” accessed: 2017-02-02. [Online]. Available: http://exanode.eu/

[56] I. Mavroidis et al., “Ecoscale: Reconfigurable computing and runtime system for future
exascale systems,” in 2016 Design, Automation Test in Europe Conference Exhibition

(DATE), March 2016, pp. 696–701.

[57] R. Capuzzo-Dolcetta, M. Spera, and D. Punzo, “A fully parallel, high precision,
n-body code running on hybrid computing platforms,” Journal of Computational

Physics, vol. 236, pp. 580 – 593, 2013. [Online]. Available: //www.sciencedirect.com/
science/article/pii/S0021999112006900

[58] V. Springel, “The cosmological simulation code gadget-2,” Monthly Notices of the

Royal Astronomical Society, vol. 364, no. 4, p. 1105, 2005. [Online]. Available:
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x

[59] P. Monaco, T. Theuns, and G. Taffoni, “The pinocchio algorithm: pinpointing
orbit-crossing collapsed hierarchical objects in a linear density field,” Monthly Notices

of the Royal Astronomical Society, vol. 331, no. 3, p. 587, 2002. [Online]. Available:
http://dx.doi.org/10.1046/j.1365-8711.2002.05162.x

73



CONFIDENTIAL

[60] T. Theuns et al., “Swift: Task-based hydrodynamics and gravity for cosmological sim-
ulations,” in Proceedings of the 3rd International Conference on Exascale Applications

and Software, ser. EASC ’15, 2015, pp. 98–102.

[61] P. S. Paolucci et al., “Dynamic many-process applications on many-tile embedded
systems and HPC clusters: The EURETILE programming environment and execution
platforms,” Journal of Systems Architecture, vol. 69, pp. 29–53, 2016. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1383762115001423

[62] M. Januszewski and M. Kostur, “Sailfish: A flexible multi-gpu implementation of the
lattice boltzmann method,” Computer Physics Communications, vol. 185, no. 9, pp.
2350 – 2368, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0010465514001520

[63] “OpenFOAM,” accessed: 2017-02-02. [Online]. Available: http://openfoam.org/

[64] “RegCM,” accessed: 2017-02-02. [Online]. Available: http://www.ictp.it/research/esp/
models/regcm4.aspx

[65] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal

of Computational Physics, vol. 117, no. 1, pp. 1 – 19, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002199918571039X

[66] “MonetDB,” accessed: 2017-10-24. [Online]. Available: https://www.monetdb.org/

[67] M. Marazakis et al., “Euroserver: Share-anything scale-out micro-server design,” in
2016 Design, Automation Test in Europe Conference Exhibition (DATE), March 2016,
pp. 678–683.

[68] “KALEAO,” accessed: 2017-10-24. [Online]. Available: https://www.kaleao.com/
Products/kmax

[69] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable dragon-
fly topology,” in 2008 International Symposium on Computer Architecture, June 2008,
pp. 77–88.

[70] R. Ammendola et al., “APEnet+ 34 Gbps Data Transmission System and Custom
Transmission Logic,” Journal of Instrumentation, vol. 8, no. 12, p. C12022, 2013.
[Online]. Available: http://stacks.iop.org/1748-0221/8/i=12/a=C12022

74



CONFIDENTIAL

[71] R. Ammendola, A. Biagioni, O. Frezza, F. Lo Cicero, A. Lonardo, P. S.
Paolucci, D. Rossetti, F. Simula, L. Tosoratto, and P. Vicini, “A Hierarchical
Watchdog Mechanism for Systemic Fault Awareness on Distributed Systems,” Future

Generation Computer Systems, vol. 53, pp. 90 – 99, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X14002751

[72] R. Ammendola, A. Biagioni, O. Frezza, F. Lo Cicero, A. Lonardo, P. S. Paolucci,
D. Rossetti, A. Salamon, G. Salina, F. Simula, L. Tosoratto, and P. Vicini, “APEnet+:
high bandwidth 3D torus direct network for petaflops scale commodity clusters,” Jour-

nal of Physics: Conference Series, vol. 331, no. 5, p. 052029, 2011.

75


