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Abstract

Recently, the introduction of nanotechnologies into medical applications has become

more frequent due to the growing of several diseases originating from alteration of bio-

logical processes at molecular and nanoscale level (e.g. mutated genes, cell malfunction

due to viruses or bacteria).

The nanomedicine combines the innovation of the nanotechnology materials (shape and

size of nm scale) to health care, providing new promising techniques for the diagnosis,

the prevention, the tissue regeneration and therapeutic fields.

Disorders like cancer, Alzheimer’s, Parkinson’s disease, cardiovascular problems or in-

flammatory diseases are serious challenges to be dealt with. For this reason researches

are focusing their attention to the nanomaterials unique properties [Murty et al., 2013,

Xia et al., 2009]. The progress in nanomedicine ranges from nanoparticles for molecular

diagnostics, imaging and therapy to integrated medical nanosystems [Nune et al., 2009,

Shi, 2009] to act at the cellular level inside the body. For a recent review on challenges,

opportunities, and clinical applications in nanomedicine an interesting review is the

one of Wicki et al. [Wicki et al., 2015]. Despite the concerns raised by the authors in

their review, the expert opinion on clinical opportunities finds a generalized consensus

on stimuli-responsive systems for targeting the compound (drug, gene, biomolecule) at

the site of interest and on the use of lipid based nanosystems for the biocompatible

platform to be used in clinical trials.

In this scenario is placed the main activity of this Ph.D. thesis whose aim is to provide

a multiscale and multidisciplinary approach to demonstrate the capability to activate

lipid-based nanosystems by means of electromagnetic fields (EMFs). Specifically, the

attention will be focused, on a first part, on the liposome-based systems mediated by

EMF to provide a proof-of-concept of EMF stimuli-response systems for applications of

drug delivery. This aspect will be approached both form a theoretic, technological and

experimental point of view. Moreover, because proteins are considered a fundamen-

tal pattern as bio-sensors for signaling cell processes, a molecular dynamics simulation

approach will be provided to study the interaction mechanisms between EMFs and

proteins structures for potential protein activation.





Chapter 1

Introduction and purpose of the

research

During the last years the global trend to improve the efficacy of medical treatments

to prevent the patient safety by the use of nanotechnologies, became of fundamental

importance for the overall scientific community.

It is since 2005 that the European Technology Platform for Nanomedicine (ETPN)

[KM Weltring et al., 2016] defined, through vision papers, the scope of Nanomedicine

in Europe and by create international networks with the aim to integrate innovation

aspects for the further development of Nanomedicine both in the academia and industry

panorama. The Strategic Research and Innovation Agenda (SRIA) of the ETPN offers

the opportunity to assess the state of the art and to provide the larger nanomedicine

community focused on the clinical needs in selected diseases, highlighting the potential

of the current and future nanomedical products to provide new and efficient solutions for

health care. In particular the road-map highlights future applications in nanomedicine

up to 2030 and as reported in Fig. 1.1 research is mainly focused in developing new

promising approaches and prototypes for nanomedicine applications in the areas of

therapeutics, diagnostics and regenerative medicine. It explores different area from the

nanoparticles for therapeutic and imaging systems to the 3D printing cells for the new

regenerative medicine.

In the following a schematic diagram is proposed with the purpose of the classifi-

cation of the different research areas present in Nanomedicine: the nanodiagnostic, the

nanotherapeutic and the nanotheranostic as reported in Fig. 1.2.
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Figure 1.1: Current applications of Nanotechnologies in Medicine.

The first principal area is related to Nanodiagnostic. In particular, non-invasive imag-Nanodiagnostic

ing can be used to provide feedback on the tissues circulation properties, the target site

accumulation and the off-target localization of therapeutic drugs, also to report on the

efficiency of drug release at the target site, and to monitor therapeutic efficacy. Among

the different applications nanoparticles can be used in patients for the MR monitor-

ing of the perfusion of tumor blood vessels and coronary arteries [Fink et al., 2003,

Wagner et al., 2002, Chiribiri et al., 2008], the imaging of labelled stem cells [Politi

et al., 2007] and the visualization of primary and/or metastatic liver lesions [Reimer

and Balzer, 2003]. For the cancer imaging, is increasing the use of paramagnetic iron

oxide nanopartiles (SPIONs) injected into patient to detect the cancer cells or to de-

tect possible lymph-node metastases [Harisinghani et al., 2003, Perrault et al., 2009].

Moreover, nanoparticles are also used for the in-vitro diagnostic assays as for pro-

tein markers [Posthuma-Trumpie et al., 2009], or for genetic mutations [Lefferts et al.,

2009] thanks to a particular gold coating depending on the genetic sequence. Several
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Figure 1.2: Scheme of the basics principles of Nanomedicine applications, focusing the attention on the
therapeutic area and on liposomal drug delivery system.

additional studies in these and other pathological settings are currently ongoing as

the labeled nanoparticles with contrast agents which is highly useful for better under-

standing the properties and the potential of the formulations developed in order to

treat different diseases [Duncan and Gaspar, 2011]. Moreover, in recent years the use

of nanodiagnostics for visualizing tumors and receptor structures over expressed by

tumor blood vessels, it has growth by giving idea of the tumor distributions [Takahashi

et al., 2015, Azmi et al., 2014, Jackson et al., 2017].

By the combination of drugs and imaging agents, one has the so-called nanotheranos- Nanotheranostic

tic which couples the disease diagnosis and the therapy. Theranostic strategies start

from a selection of a set of preselected patient, based on initial studies using a given

diagnostic radionuclide-labeled antibody, and then followed by a radio-immunotherapy
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with the same antibody coupled to a therapeutic radionuclide [Imhof et al., 2011]. In

this way it is possible to monitor the treatment efficacy providing the diagnosis and the

treatment with the same nanoformulation. It is important to take into account that

theranostic does not means to have a simultaneously imaging and treatment of the dis-

ease, but firstly it is important to find a prediction of potential therapeutic responses,

in this way the drug is personalized and based on the diagnosis study the monitor of

the treatment occurs. Nevertheless, the advantage of theranostic is that can be used

to have a non-invasive monitoring of the target site, visualize bio-distribution, assess

therapeutic efficacy and also a possible tumor-targeted drug delivery as showed from

the use of polymers or liposomes both in patients and animals [Lammers et al., 2008b,

Mura et al., 2013].

As therapeutic agents the aim of nanomaterials is, in order to overcome biologic bar-Nanotherapeutic

riers, to enhance the efficacy of medical treatments. Nanotherapeutics are able to

improve the action of a therapeutic agents, by increasing their accumulation at patho-

logical sites and their therapeutic efficacy, reducing also the incidence and possible side

effects [Lammers et al., 2008a, Davis et al., 2008, Ganju et al., 2017]. The nanother-

apy can assess in different ways as shown in fig. 1.2. One branch is the regenerative

nanomedicine. It is since 1960s and 1970s that the first generation of materials was de-

veloped for the use inside the human body. Biomaterials involve tailoring of resolvable

polymers at the molecular level to elicit specific cellular responses. These materials

show great promise as scaffolds or matrices in tissue regeneration which means the

use of a combination of cells, engineering and materials methods to improve or replace

biological tissues. Tissue engineering involves the use of a scaffold for the formation

of new viable tissue for a medical purpose [Nasseri et al., 2001, Neves et al., 2017].

Also biomarkers can be used as therapeutics agent like esosomes for dermatology ill-

nesses [McBride et al., 2017].

Nanomedicine mainly acts improving the efficiency of drugs to pathological sites with aDrug Delivery

systems local release on the diseased tissues. This process takes the name of targeted drug deliv-

ery (see Fig. 1.2). The incorporation of external or internal stimulus as a remote control

to trigger the release of therapeutic payloads has received much attention in this recent

years [Rahoui et al., 2017]. Drug delivery refers to approaches for drugs transporting in

a specific site to have a localized action of the pharmaceutics, reducing side effects for

the healthy tissues. As showed in Fig. 1.2 the drug delivery can be achieved trough the

use of different nanocarriers or nanoparticles. A large number of nanomaterials have
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been designed and evaluated over the years, relying e.g. on lipid based nanocarriers (li-

posomes, solid lipid nanoparticles), polymer based liposomes (e.g. polymers, micelles),

drug conjugates (polymer-protein conjugate, antibody conjugate), viral nanomarticles

and inorganic nanoparticles (e.g. metal or silica nanoparticles) (see Fig. 1.2). Nanopar-

ticles have the peculiarity that can be engineered in shape and size from 1 to hundred

nanometers depending on the biological need. Basically they can be used as bio-sensors

for the detection of a particular disease or as a drug delivery nanocarrier for treatment

purpose. Nanocarriers have unique properties such as nanoscale size, high surface-to-

volume ratio, and favorable physico-chemical characteristics. They have the potential

to modulate both the pharmacokinetic and pharmacodynamic profiles of drugs, thereby

enhancing their therapeutic index. Loading of drugs into nanocarriers can increase in

vivo stability, extend a compound’s blood circulation time, and allow for controlled

drug release. Thus, nanomedicine compounds can alter the biodistribution of drugs

by allowing them to accumulate preferably at the tumor site. The advantage consists

due to the smaller size (around 10 nm) to be taken more easily from the tumor cells

and ejected from the body after a long time, permitting to be distinguished on MRI

for a longer period [Enochs et al., 1999]. For the nanoparticles use there are two main

aspects that need to be considered, one is the possible toxicity of nanoparticles and

their bio-compatibility and the other one is the invasiveness of the technique used as

external agent for the illness treatment (i.e thermal, magnetic or electric). Moreover,

nanocarriers have also the advantage to protect the drug from degradation and, reduce

the renal clearance, allow the control of the release kinetics of the anticancer drugs and

improve the solubility of those insoluble [Danhier et al., 2010, Xu et al., 2016, Song

et al., 2017].

Among all nanoparticles that can be used, liposomes represent one of the most used

nanocarriers [Vahed et al., 2017] and hold a great promise in the drug delivery panorama

as will be explained in details in chapter 2. Liposomes are self-assembled colloidal

vesicles with a characteristic lipid bi-layered membrane composed of amphilic phos-

pholipids, that not only allow the encapsulation of numerous hydrophilic anticancer

drugs and siRNAs in its aqueous core, but also can host hydrophobic cytotoxic agents

in its hydrophobic membrane. On liposomal drug delivery systems is focused the main

part of this Ph.D. thesis (see Fig. 1.3) by focusing the attention on a remote liposomal

drug delivery system by the activation of external electric or magnetic fields.

As shown in fig. 1.3 and as will be discussed later (see Ch. 2), there are mainly three
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Figure 1.3: Scheme of this Ph.D. thesis, focusing the attention on liposomal drug delivery systems
mediated by electromagnetic fields (EMF) and a possible direct action of the EMF on protein activation.

kind of targeted drug delivery systems (see Fig. 1.3):

• passive targeting drug release which means non functionalized nanoparticles that

release the drugs a prior;

• active targeting release by using functionalized particles depending on the target

tissue treated;

• triggered release which means a physiological or a remote controlled system that

triggers the drug release in a specific site.

Specifically, remote controlled drug delivery systems can be activated from physically

or external stimulus [Rahoui et al., 2017], in detail there are endogenous (pH variation,
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redox responsive liposomes) or exogenous stimulus (thermal stimulus, magneto-thermal

activation, acoustic or ultrasound) as will be discussed in the next chapter (see Ch. 2).

Among the different external stimuli that can be used, an innovative scenario is opening

on the use of ”non-thermal” low intensity magnetic fields and also on ultra short and

intense electric pulses (see Sec 2.2) as external trigger, on which I focused the main

part of my Ph.D. thesis.

Recently with the wide spread of the technological progress the use of magnetic field Magnetic fields

applicationsas external stimulus for inflammatory and neuronal disease therapies and drug delivery

systems for nanomedicine has considerably increased [Ross, 2013, Rodzinski et al.,

2016]. Highly interesting applications of magnetic fields have been developed concern-

ing the non-invasive stimulation of the central nervous system, such as the Transcranial

Magnetic Stimulation (TMS) technique [Di Lazzaro et al., 2013] or the low-intensity

pulsed magnetic field stimulation [Varani et al., 2008, 2017] for inflammatory illness

as will be discussed in the section 2.4. Besides, the use of magnetic nanoparticles as

contrast agent combined with the MRI is more often used [Idiyatullin et al., 2017, Jog

et al., 2016], an innovative upcoming technique is the magnetoliposome drug delivery

system, which combines the action of magnetic nanoparticles loaded into liposomes

(vesicles of nm dimension) core with the application of an external low intensity mag-

netic field [Nappini et al., 2010, Spera et al., 2014, Cheng et al., 2014, Spera et al.,

2015] without generating secondary effects. The advantage of the use of a low intensity

magnetic field is its non-invasive action and no thermal secondary effects are caused

to the treated tissues as will be discussed in the chapter 2. This innovative technique

could give more comfort to the patient during the treatment, since with low intensity

magnetic field no thermal effects could be perceptible and it will be localized on the

diseased tissue.

Moreover, in the scientific community an increasing interest towards the possibility to Electric fields

applicationsuse ultra short pulsed electric fields in different medical applications has been developed

(as the cancer therapy [Miklavčič et al., 2012, Cadossi et al., 2014], gene electrotransfer

[Mir et al., 1999, Calvet et al., 2014] and food processing [Saulis, 2010]). The biological

effects at cellular and sub-cellular levels of ultra short electric pulses (usPEFs), with

duration between few microseconds (µsPEFs) and nanoseconds (nsPEFs) and ampli-

tudes from kV/m up to few MV/m, are at the basis of various promising and powerful

applications of electromagnetic (EM) fields to medical treatments, as underlined in

recent papers and reviews [Vernier et al., 2006, Craviso et al., 2009, Joshi and Schoen-



10 1. Introduction and purpose of the research

bach, 2010, Neal, 2012, Zorec et al., 2013, Breton and Mir, 2012, Weaver et al., 2012,

Silve et al., 2014]. This technique takes the name of electroporation. It is based on the

use of short nanosecond electric pulses (nsPEF), which due to their wider frequency

content (first lobe up to one GHz, see section 2.3), are able to pass the cell membrane

and penetrate into the cell core [Schoenbach et al., 2007, Nuccitelli et al., 2006, Ibey

et al., 2011, Nuccitelli et al., 2013, Tolstykh et al., 2013]. The internal membranes elec-

troporation triggers secondary bio-responses as genes modulation expression, action

potential activation and apoptotic marker expression, Ca2+ release [Joshi and Schoen-

bach, 2010, Schoenbach et al., 2001, Pakhomova et al., 2014] based on the application

of a short electric pulse (10 nanosecond). The mechanism of coupling of nsPEFs and

cells is still under study. The E pulses cause primarily a kind of cell membrane rear-

rangement evidenced by transient (reversible) or permanent (irreversible) permeability

changes, as firstly evidenced by Neumann and coworkers in the early 1972 [Neumann

and Rosenheck, 1972] identifying such membrane defects as aqueous pores [Tieleman,

2004, Tarek, 2005, Casciola et al., 2014]. Since cell membranes can be thought to be

very similar to the membrane of liposome in terms of lipid composition, an upcoming

interest is arising in the development of new drug delivery systems mediated by the

coupling of nsPEFs and liposomes for a controlled drug release.

In this context different network cooperation have been active during the present re-

search project. In particular I had the opportunity during my first year of Ph.D. to

participate to two different calls of two associations that gave me the opportunity to

work for three months at the Oncology Institute Gustave Roussy in Paris. One of

the association, is the COST EMF-MED that provides a cooperative framework to

support the research on beneficial biological effects of non-ionizing EMFs and their

use in biomedical applications. This Action focuses on beneficial effects, aiming for

breakthrough results, new discoveries and innovative biomedical technologies. Another

action more focused on the electroporation phenomena is the COST-European Coop-

eration in Science and Technology which is focused on building connection between the

different scientific communities throughout Europe and worldwide and provide net-

working opportunities for early career researchers.

Finally, one of the main question often discussed in the scientific community (seeDirect EMF

effects Fig. 1.3) but not yet fully elucidated is about the effects generated by a direct elec-

tromagnetic fields application on molecular structures (e.g. proteins) and what is the

basic mechanism of this interaction. Recently experimental techniques have been used
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to investigate the effects of electromagnetic fields on biological structures [Azan et al.,

2017b,a, Carr et al., 2017, Marklund et al., 2017]. Among these, Azan et al. [Azan

et al., 2017a], investigated about different regions of interest around the nucleus of the

cells and the dose-effect relationship related to different electric pulse parameters using

the confocal Raman microspectroscopy.

On this question is focused the last part of my Ph.D. thesis (see Part V) where by

the means of molecular dynamics simulations the effects of the application of an elec-

tric and a magnetic fields have been investigated on the superoxide dismutase and the

adenosine A2A receptor respectively. Indeed the aspect to take into account is that

biological effect can be also achieved by acting on proteins (e.g. receptors, enzymes,

etc.), which can respond to the exposure of an external electric or magnetic stimuli and

they can enhance or reduce the cells activity or biological functions [Varani et al., 2002,

2008, Capelli et al., 2017, Beebe, 2015] as will be detailed explained in the chapter 3.

The purpose of the presented Ph.D. research project wants to be a multidisci- Purpose of the

research: thesis

outline
plinary and multiscale approach for the investigation of both low level magnetic fields

and nanosecond electric pulses interactions with biological structures. This research

has been carried out both from a theoretical, technological and experimental point of

view focusing the attention on liposomal drug delivery systems mediated by electro-

magnetic fields and on the understanding of the interactions between electromagnetic

fields and proteins (see Fig. 1.3).

Following a briefly overview of this Ph.D. thesis is given.

In the part I, an overview will be given concerning the liposomal drug delivery system

research area (see Sec. 2.2). Drug delivery systems will be explored by giving a general

knowledge and then focusing the attention on the actual liposomal drug delivery sys-

tems mediated by the application of electric and magnetic fields (section 2.2).

Not only liposomes but also proteins are often used as biosensors to mediate cellular

functions. Proteins as potential biosensor will be discussed in the chapter 3, both

under the action of magnetic or electric fields, starting from experiments with proteins

in cell culture.

In the part II an entire chapter will be dedicated to the modeling tools used for perform-

ing this project as molecular dynamics simulations (section 4.2) and microdosimetry

models (section 4.3). After that, the thesis will be divided into three part:
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• Liposomal drug delivery systems activated by low intensity magnetic fields

• Nanosecond pulsed electric fields for liposomal drug delivery systems

• Direct EMF effects investigation on proteins structure using MD simulations

In the part III experimental work will be presented about magnetoliposomes (MLs)

exposure to a low magnetic field intensity for testing the feasibility of MLs drug delivery

systems (see chapter 5). The last chapter of this part will be dedicated to the project

and a design of a new exposure magnetic setup able to produce magnetic field with

intensity of mT in a frequency range up to 20 kHz (see chapter 6).

Concerning the nsPEFs applications (Part IV), two different studies have been carried

out for a proof of concept of possible liposomal drug delivery systems mediated by

10 nsPEF by the use of microdosimetry models considering both the theoretical (see

chapter 7) and technological and experimental aspects (chapter 8).

In the Part V we firstly performed a modeling work regarding magnetic molecular

dynamics simulations on the adenosine receptor A2A to explore the interactions between

a low intensity magnetic field and a protein structure (see chapter 9). In the last chapter

we investigated the ability of 100 ns electric pulses to possibly interact with the enzyme

superoxide dismutase by the means of molecular dynamics simulations (see chapter 10).



Part I

Electromagnetic fields on

nanomedicine applications

13
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As mentioned in the introduction, the use of electromagnetic fields for therapeutic

purposes is becoming highly interesting due to the possibility to optimize medical treat-

ments taking attention to the patient safety.

Recently, one of the new nanotechnology used for the treatment of inflammations and

diseases is the new liposomal drug delivery approach. This kind of application, as will

be reported, is a kind of active targeting drug release system, where the delivery of the

drug comes after the application of an endogenous or exogenous stimulus. Due to the

peculiarity of the electric pulses, in this part firstly a general knowledge will be given

concerning liposomal drug delivery systems. The liposomes as nanocarriers will be de-

scribed and the kind of liposomal drug delivery systems will be presented moving form

the more traditional use of endogenous stimuli to the more innovative one related to

exogenous stimuli. The applicability of nanosecond pulsed electric fields as external

trigger to activate a potential liposome drug delivery system will be discussed. Besides,

another promising external trigger for this kind of application, can be the use of low

intensity magnetic field, due to their use in the clinical treatment of inflammations and

due to their good penetration in the human tissues. On this aspect is also focused, this

part, by proposing the use of magnetoliposomes as nanocarriers for a controlled drug

release activated by low intensity magnetic fields.

Moreover, since electromagnetic fields are currently adopted for the treatment of differ-

ent inflammations diseases as neurodegenerative diseases, in this case trans-membrane

and internal cell proteins could play a fundamental role. For this reason the last chap-

ter of this part is dedicated to an overview on the present use of proteins as biosensors

and their potential to be used as sensor in cells, responding to an external electric or

magnetic fields.





Chapter 2

Drug delivery systems: from

endogenous to external stimuli

activation

2.1 Introduction

In recent years, we are witnessing a growing applications of new nanotechnology tech-

niques in traditional medicine, improving the efficiency and precision in the treatment

of a broad category of disease. Among all the possible application of nanomedicine

the one related to the delivery of a certain drug or molecule in situ at the target site

is becoming more and more attractive. In this context stimuli-response release of a

drug from an ad hoc designed nanocarrier, at a specific time and location is one of

the most aimed results of the drug delivery research. The goal is to design, engineer

and introduce into the body molecular nano-scale carriers (1-1000 nm, nano-carriers)

capable to carry the drug and release it in the place where it must act. In this way

to avoid any damage to the surrounding healthy tissue, thus acting locally only on the

site where the disease it has been developed.

Generally, the drug release is obtained by changing environmental conditions as pH,

temperature, an higher redox potential [Koo et al., 2008, Li et al., 2011], ultrasound,

etc. [Ganta et al., 2008, Karanth and Murthy, 2007]. Among the different trigger

methods, recently an integrated control release has been approached combining the

temperature and magnetic fields as triggering agent using magnetoliposomes (MLs),

17
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activation

which are vesicles containing super-paramagnetic iron oxide nanoparticles [Pradhan

et al., 2010, Preiss and Bothun, 2011] that release the content next to the magnetic

field application.

In this chapter an overview both of the electroporation phenomena associated to the

drug delivery mediated by nsPEF and the use of magnetic fields as trigger agent for

drug delivery purpose will be given. The aim is to define the scientific area in which will

take place the part of this Ph.D. thesis concerning the drug delivery systems mediated

by electric or magnetic fields.

2.2 Liposomal Drug delivery systems

Smart drug delivery systems are multi-targeted, stimuli sensitive, delivery carriers thatDrug delivery

systems can release drugs to the infected cells in the body avoiding the need for frequent and

massive drug doses, reducing systemic secondary effects [Mirza and Siddiqui, 2014,

Yatoo et al., 2014, Allen and Cullis, 2013]. The aim of smart drug delivery technologies

is to deliver drugs at the right time and with a controlled dose enhancing the efficiency

of the therapy. Basically, there are three different way to achieve the drug delivery

(Fig. 2.1):

• passive targeting

• active targeting

• triggered targeting

Passive targeting (Fig. 2.1a) is based on the release of the drugs by the recognition ofPassive targeting

the diseased tissue based on the morphological differences between the healthy and the

ailing tissues. In case of tumor cells, pathophysiological characteristics of cancers and

their environment have been exploited for passive targeting. In particular, the perme-

ability and retention (EPR) effect promotes accumulation of nanomedicine drugs in the

tumor based on the presence of leaky intratumoral blood vessels. For example, Kaposi

sarcoma is a tumor type with fenestrated vasculature [Lammers et al., 2012] and by

convection and diffusion processes, passive directing of nanomedicine therapeutics into

tumors can occur without any specific ligand attached to the surface of the nanocarrier.

However, the passive targeting is not sufficient to control the side effects of cytotoxic

drugs and fully exploit the benefits of targeted delivery, because of the heterogeneity of
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Figure 2.1: Illustration of the targeted strategies: passive targeting, active targeting and triggered
targeting.

the diseased tissues [Prabhakar et al., 2013] and the increased interstitial fluid pressure

of tumor cells [Jain and Stylianopoulos, 2010].

Active targeting (Fig. 2.1b) requires the conjugation of specific receptor ligand that can Active targeting

promote the site specific targeting. A wide range of ligands can be used including small

molecules such as folic acid and carbohydrates, or macromolecules such as peptides,

proteins or antibodies. The ligand must allow binding to the target diseased cells while

minimizing binding to healthy cells. Moreover, a prolonged circulation of the drug is

vital to avoid unwanted interactions with serum proteins or the immune system [De-

tampel et al., 2014]. However, actively targeted nanoparticles delivery can enhance

drug retention in the tumor due to increased cellular binding, minimize non-specific

uptake, and also circumvent mechanisms of resistance from biological barriers [van der

Meel et al., 2013].

The last method to achieve a drug release is to use an endogenous or exogenous stimulus Triggered

targetingto trigger the release of the drug in a specific target site. Stimuli-responsive systems,

on which we will focus the attention, act in response to physical, chemical, or biological

triggers that promote release of drugs by modifying the structure or conformation of

the nanocarrier. The advantage of using stimuli-responsive systems is that the drug

is released through a trigger thus minimizing the exposure of the surrounding healthy

tissues to the pharmaceutic. In all of these scenarios, the drug is previously loaded into

a nanocarrier and then released. At this purpose one of the classical carriers used in

medicine for drug encapsulation and delivery [Xiang and Anderson, 2006, Seigneuric

et al., 2010, Stuart et al., 2010] are the liposomes.
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Figure 2.2: Liposomal drug delivery design. Liposomes can be surface functionalized to endow stealth
through PEGylation and to promote receptor-mediated endocytosis by using targeting ligands such as
antibodies, peptides, proteins, carbohydrates, and various other small molecules.

Liposomes are one of the most studied nanocarriers [Lee and Kataoka, 2011]. They

consist of a biocompatible phospholipid bilayer and they can protect amphiphilic, hy-

drophilic, and/or hydrophobic drugs (see Fig. 2.2) against a variety of threats that

lead to immediated vesicles degradation [Kulkarni et al., 2011].

Liposomes nanocarriers

Liposomes consist of an aqueous core surrounded by a lipid bilayer, much like a mem-

brane, separating the inner aqueous core from the bulk outside. Depending on the

preparation methods [Petralito et al., 2012, Hope et al., 1985, Çağdaş et al., 2014], li-

posomes can be distinguished in multilamellar or unilamellar liposomes (see Fig. 2.3).

Unimellar vesicles are of special interest to researchers due to their well-characterized

membrane properties and facile preparation in a laboratory. Multimellar vesicles show

a greater range of physical properties and general behavior when compared to unil-

amellar vesicles, and are more used with industrial applications like drug delivery.
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Figure 2.3: Liposoms classification depending on the size and the lipid unilamellar or multilamellar
bilayer.

The use of liposomes for drug delivery started shortly after their invention by Bang-

ham and coworkers in 1965 [Bangham et al., 1965, Lindner and Hossann, 2010]. The

first liposome-based drugs (Myocet and Doxil) were approved by USA Food and Drug

Administration (FDA) for cancer treatment in 1995 [Pinheiro et al., 2011]. Since then,

a wide range of therapeutics small molecules have been incorporated in liposomes to

improve their efficacy.

The main advantage of using liposomes is their biocompatibility and biodegradability

since they are made with naturally occurring lipids [Oh and Park, 2009, Alhajlan et al.,

2013]. Moreover, some of the first demonstrations of the improved in vivo activity of

liposome-entrapped drugs in animal models, used the anti-cancer drug cytosine arabi-

noside to demonstrate significant increases in the survival times of mice bearing L1210

leukemia [KOBAYASHI et al., 1975]. The stability of liposomes in the circulation with

retention of their contents has long been recognized as a desirable liposome characteris-

tic for successful drug delivery to diseased tissues. Besides, it has been also recognized

that being able to trigger the release of liposomal contents once they reached the target

site, would lead to improvements in therapeutic outcomes. Indeed, new strategies in
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liposomal research have gained interest, and some clinical trials based on the combi-

nation of different chemotherapeutic agents and stimuli-responsive release approaches

have been started [Dicko et al., 2010, Malekigorji et al., 2014].

Due to this, liposomes can be used as triggered nanocarriers through internal (e.g.

pH variation, enzyme action) or external (e.g. temperature,electric or magnetic field)

stimuli. Consequently, the release of loaded drugs can be controlled and concentrated

at the target site [Zhu and Torchilin, 2013]. A briefly knowledge of different kind of

endogenous or exogenous triggers will be given in the following sections.

2.2.1 Endogenous stimuli-responsive liposomes

Endogenous stimuli arise from the different environment between normal and dis-

eased areas, such as higher redox potential [Koo et al., 2008, Li et al., 2011], reduced

intra/inter-cellular pH, ionic strength, and increased levels of certain enzymes as the

lysosomal enzyme cathepsine B, overexpressed in several malignant tumours [Lee et al.,

2011].

Among these, liposomes responding to a potential difference can be utilized for the con-

struction of stimuli-sensitive liposomes [Ganta et al., 2008, Saito et al., 2003]. Their

structure is maintained under normal condition by the disulfide bonds until its enter-

ing in the intracellular area, where the disulfide bonds is perturbed, destabilizing the

liposomes and releasing the encapsulated cargo [Deshpande et al., 2013].

Moreover, a micro-environment that can serve as a trigger for drug release is the hy-

poxic area of tumors exhibiting low oxygen pressure and poor nutrient levels. The low

oxygen level can be used for triggered release from redox-responsive nanocarriers [Fleige

et al., 2012].

Another kind of destabilization is a possible intracellular pH variation (see Fig. 2.4).

The pH of intracellular organelles (e.g., liposomes,endosomes or lysosomes) differs from

that of the cytoplasm or blood. This condition can be used to enhance intracellular

release of drugs. This is the case of pH-responsive liposomes that are used to trig-

ger the release of the drug and therefore increase the therapeutic efficacy (Fig. 2.4).

pH-responsive liposomes are stable in physiological condition (pH = 7.4) but they are

destabilized in acid environment which are common in some pathological tissues such

as tumors [Gao et al., 2012]. In this way the liposomes under a repulsion pressure, due

to the pH variation, can release the cargo in the tumor cells next to the increase of the
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Figure 2.4: Liposomal drug delivery system mediated by a pH variation of the cell with respect to a
physiological level.

membrane fluidity (Fig. 2.4).

2.2.2 Exogenous stimuli-responsive liposomes

Exogenous stimuli relate to stimuli that are applied externally such as heat [Tagami

et al., 2011, Al-Ahmady et al., 2012], the ultrasounds [Schroeder et al., 2009, Kheirolo-

moom et al., 2010], magnetic [Plassat et al., 2011] or also an electric field [Lu et al.,

2014, Liu et al., 2008].

When the exogenous stimuli is applied to the nanocarrier the drug is released in a cer-

tain amount and in a short period of time [Kikuchi and Okano, 2002]. The advantage

of the exogenous stimulation is that stimuli are generated by machines protocols can

be easily standardized to achieve regulated release [Mura et al., 2013].

Thermoresponsive drug delivery is among the most investigated stimuli-responsive Thermoresponsive

drug deliverystrategies widely explored in oncology. The response from the nanocarriers to the tem-

perature variation is expressed in terms of a non linear sharp change of the nanocarrier

material. Thermosensitive liposomes (TSLs) are one of the most advanced thermore-

sponsive nanosystems, as shown by their use in several clinical trials. They respond

to the temperature variation with a phase transition of the constituent lipids and

the associated conformational variations in the lipid bilayers. The response from the

nanocarriers triggers the release of the drug following a variation in the surrounding
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Figure 2.5: Activation of the liposomal drug delivery system mediated by the temperature increase.

temperature (Fig. 2.5). Ideally, thermosensitive liposomes retain their load at body

temperature (∼ 37 ◦C), and rapidly deliver the drug within a locally heated tumor (∼
40−42 ◦C) to counteract rapid blood-passage time and washout from the tumor [Tagami

et al., 2011, Al-Ahmady et al., 2012]. Neverthless, the drug release can also occur on

a brief temperature decrease (also called cold shock or cryotherapy) and in this case, a

thermally reversible swelling or de-swelling of the nanocarrier leads to a free diffusion

of the encapsulated drugs as a consequence of increased porosity [Lee et al., 2008]. The

main concern about the temperature is a possible heating that could cause damages to

the surrounding healthy tissues.

Magnetic field and ultrasound have been the major strategies investigated due toMagnetic and

Ultrasound

stimulus
their ability to penetrate into deeper tissue enhancing their potential in translating

from bench to bedside [Schroeder et al., 2009, Kheirolomoom et al., 2010, Plassat

et al., 2011]. Ultrasound has been used to trigger the release of drugs (mainly contrast

agents) from responsive systems for cancer diagnosis [Rapoport et al., 2011]. Ultra-

sound waves can trigger the release of the drug from a variety of nanocarriers through

the thermal and/or mechanical effects generated by cavitation phenomena or radiation

forces [Schroeder et al., 2009, Kheirolomoom et al., 2010]. In fig. 2.6 an illustration of
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Figure 2.6: Activation of the liposomal drug delivery system mediated by ultrasound triggers.

the ultrasound drug release is presented, where the bubbles are formed through acous-

tic droplet vaporization and are subjected to cavitation leading to the drug release to

the tumor tissue.

Although, another external stimulus that has been investigated is the applica- Electric field

stimulustion of an external electric pulse to activate the drug release previously loaded into

a nanocarrier which can be conducting polypyrrole nanoparticles [Ge et al., 2011] or

liposomes [Denzi et al., 2017].

In the next sections ( 2.3 and 2.4) details will be given about the potential applica-

tion of nanosecond pulsed electric fields or of low intensity magnetic field to induce a

controlled release of the cargo loaded into liposomes.

This aspect has been explored in my Ph.D. both theoretically and experimentally in

the chapter 5 and 7.

2.3 nsPEF for liposomal drug delivery systems

Low electric fields (typically about 1 V) can be used to achieve pulsed or sustained

drug release through a variety of actuation mechanisms [Liu et al., 2008, Im et al.,

2010]. One of these mechanism can be an oxidizing voltage activated by the splitting

of a vesicle membrane into smaller organelles like micelles releasing the cargo and then

reassemble on the application of a reductive voltage [Kim et al., 2011].
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Figure 2.7: Active iontophoresis drug delivery.

Iontophoresis, which uses an electric field to enhance the transdermal delivery of

charged compounds, is a particularly versatile approach [Ita, 2016, Malinovskaja-Gomez

et al., 2017]. In fig. 2.7 an example is reported of active iontophoresis, where basically

the charge applied to the skin changes the flow of ions through the skin, reducing it’s

resistance and enhancing the amount of and type of medication that can travel below

the skin’s surface to produce a therapeutic dosing effect. It has been recently applied

to various types of nanoscaled systems, including liposomes containing insulin [Chen

et al., 2009].

Lately the scientific research on electropulsation techniques, which causes the forma-nsPEF

applications tion of pores in cell membranes increasing its permeability to molecules that otherwise

cannot cross them, has significantly improved the practice of medicine by the use of

electric pulses of shorter duration (nanosecond) and higher intensity (in the order of

MV/m) (nanosecond pulsed electric elds, nsPEF) which allows to directly interact with

internal cell organelles (e.g. nucleus, endoplasmic reticulum, mitochondria, etc.) [Denzi

et al., 2013, Beebe et al., 2003b, Scarlett et al., 2009, Breton and Mir, 2012, Weaver

et al., 2012] and also with the plasma membrane [Napotnik et al., 2012, Chopinet and

Rols, 2015].

Since 2003, nsPEF effects related to the plasma membrane have been reported [Vernier

et al., 2003a]. Among these, the application of a single 30 ns pulse with intensity of
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25 kV/cm has been shown to permit the translocation of phosphatidylserine (PS) from

the inner leaflet of the lipid bilayer to the outer leaflet, involving a membrane effect

and causing cell apoptosis [Vernier et al., 2004]. Recently Napotnik et al. [Napotnik

et al., 2016], reviewed different papers regarding in-vitro applications on eukaryotic

cells exposed to nsPEF, highlighting how the plasma membrane is more affected with

longer pulses than with short pulses, leading to the best uptake of dye molecules after

applying single pulses. Several works have also shown a release of calcium indepen-

dently of intra-cytoplasmic membrane calcium channels, which was directly linked to

the destabilization of organelle envelopes by pulses shorter than 100 ns [Vernier et al.,

2003b].

One aspect to take into account is the cell viability next the application of nsPEF. Be-

cause of their very short duration, nsPEF do not transfer a large energy to the sample

and thus the observed effects are probably non-thermal. Anyhow, the destabilization

of the cell membrane could cause, depending on the duration and pulse intensity, the

cell death. The first work [Beebe et al., 2003a] focusing on cell survival has shown that

for very high intensities of 300 kV/cm and duration of 300 ns, apoptotic phenomena

were observed on up to 90 % of cell population in less than 10 min following the appli-

cation of the pulses. Despite of this, it has been demonstrated that reducing the pulse

duration to 10 ns or less with intensity in the order of kV/cm could help to destabilize

cell membranes (internal and external) without causing cell death [Chopinet and Rols,

2015]. At this regard, Napotnik et al. [Napotnik et al., 2012] investigated about the

effects of 4 ns electric pulses duration with intensity of 10 MV/m at 1 kHz of repetition

rate and a loss of the mitochondrial membrane potential and a plasma membrane per-

meabilization has been highlighted, possibly due to the permeabilization of the inner

mitochondrial membrane by the nsPEF application.

Due to the present research activity on the use of electroporation on cells for different nsPEF for

liposome drug

delivery systems
medical applications and due to the similarity of the cell and liposome membrane com-

position, recently the attention is going on the use of liposomes. In detail the ability of

nsPEF to interact with small internal structures has been the starting point for inves-

tigations of nsPEF applicability for drug delivery using liposomes of small dimensions

with respect to the cells [Tekle et al., 2005, Allen and Cullis, 2013]. The use of nsPEF

for potential drug delivery applications can be a promising technique (Fig. 2.8) because

it might allow the controlled release of drugs encapsulated in a nanocarrier (e.g. lipo-

somes) by the application of an appropriate electrical stimulus that allows a controlled
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Figure 2.8: Drug delivery inside a single cell (a) mediated by permeabilization of the cell membrane
next to the application of an electric field in a very small region of the cell membrane area (b).

release and uptake of drugs from liposome to the cell, thanks to the accumulation of

charges on both sides of the plasma membrane and consequently the formation of an

induced transmembrane voltage (TMP) which causes the pore formation and the drug

uptake.

Indeed, electroporation it has been applied to nucleic acid delivery against cancer, ei-

ther by using PEG-coated silica nanoparticles with opposite polarities to enhance gene

transfection [Kim and Lee, 2011] or by using liposomes loaded with exogenous oligonu-

cleotides [Wang et al., 2010] in order to obtain the drug release.

As will be detailed explained in the chapter 7, the main concern about the use of the

nsPEF for drug delivery applications is the difference between the liposome dimension

(nanometer range) and the cell (micrometer range). Firstly, vesicles larger than 500

nm of diameter could be recognized as a pathogen agents by the immune system, while

at the same time liposomes of smaller size would require an higher electric field inten-

sity to the one needed to porate the cell membrane while compromising cell viability.

Moreover, it is also important to underline how not only the dimension but also the li-

posomes composition is important when an immunologic response is generated [Perrie

et al., 2001, Watson et al., 2012]. The classical electroporation serves of rectangular

pulses of micro or millisecond duration with amplitudes in the range of kV/cm. These

pulses have a frequency content in the range of kHz which will be able to destabilize

the cell membrane but not the one of nanometer liposomes. Taking a look to the Fig.

2.9 it can be noticed how by the application of a 10nsPEF the TMP accross the cell

and liposome membrane becomes comparable leading to a possible simultaneously elec-

troporation of both membranes. This aspect will be fully explained in the chapter 7

where a proof of concept of the liposomal drug delivery system mediated by nsPEF is
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Figure 2.9: Proof of concept of liposomal drug delivery systems mediated by nsPEF.

given thanks to dosimetric models.

Moreover the engineering of a 10 nsPEF exposure setup (chapter 8) will be pre-

sented and preliminary experiments of electroporation on liposomes population will be

discussed.

2.4 Low intensity magnetic fields for a controlled drug

release

The applications previously discussed on the use of nsPEF for medical treatments, have

the disadvantage of being limited to the penetration of the electric field thinking about

the treatment of a deep tumor or inflammations, due to the difficulty to reach deep

tissues. This would result in using invasive instrumentation like needles. In this case

the magnetic field has the major advantage of to easily penetrate in the human tissue

without loosing any transmission power.

Due to this, recently with the technological progress the use of magnetic field to

treat inflammatory and neuronal diseases, therapies and drug delivery systems for

nanomedicine has considerably increased [Ross, 2013, Rodzinski et al., 2016]. The pro-

gresses in nanomedicine ranges from nanoparticles for molecular diagnostics, imaging

and therapy to integrated medical nanosystems [Nune et al., 2009, Shi, 2009] to act at

the cellular level inside the body.
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The advantage of using a magnetic field relies on the different nature that the magnetic

response can take, which can be a magnetic guidance under a permanent magnetic field,

a temperature increase when an alternating magnetic field is applied, or both of them.

Furthermore, in medicine there is the possibility of performing magnetic resonance

imaging, and hence to associate diagnostics and therapy within a single system, the

so-called theranostic approach [Yang et al., 2011].

In recent years, a great number of investigations have been reported on exploiting pos-

sible role of magnetic nanoparticles (MNPs) in enhancing magnetoliposomes delivery

of the drug. In most cases hybrid liposomes composed of thermo sensitive phospho-

lipids and magneto-heating mediators, such as iron oxide MNPs, were shown to have

enhanced release of a model drug when exposed to an external alternating current mag-

netic field (AMF) and negligible release without exposure to an AMF [Pradhan et al.,

2010, Preiss and Bothun, 2011]. The enhanced release was essentially attributed to the

to the magnetocaloric effect resulting in the liposome phase transition [Plassat et al.,

2011].

The heat generation efficiency of MNPs heavily depends on the particle size and fre-

quency of external AMF, in particular, when exposed to appropriate magnetic fields

of proper strength (1-10 kA/m) and frequency (10-100 kHz), MNPs embedded into

liposomes are able to convert magnetic field into heat, either from hysteresis losses or

from Neel or Brownian relaxation processes [Guardia et al., 2012]. The magnetically

induced heat is transferred to the entire magneto-carrier causing temperature increases

from 25 ◦C to tolerable hyperthermia (41-46 ◦C) with structural changes in the lipid

bilayer (that is designed to shift from a gel to liquid phase at a characteristic transition

temperature, Tm) which may act as a smart trigger for the drug release [Yatvin et al.,

1978, Pradhan et al., 2010, Preiss and Bothun, 2011].

Despite the heat generation is the main pattern of AMF energy consumption, a mag-

netic field can also induce vibration or rotation of iron oxide particles, hence the oscillat-

ing MNPs can mechanically damage membrane of nanoscale actuators (e.g. liposomes).

In particular, researchers [Nappini et al., 2010, Spera et al., 2014] proposed an alter-

native mechanical explanation based on MNPs oscillation induced by external AMF:

MNPs motions in AMF could improve the bilayer permeability and it could contribute

to the magnetocaloric effect, allowing for cargo release. This hypothesis arises from

the finding that AMF-induced oscillation of MNPs was proved to be able to mechani-

cally damage cancer cells in vitro [Cheng et al., 2014]. The magneto-mechanical effect
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Figure 2.10: Magnetoliposomes drug delivery process

produced by the oscillation of the MNPs was extensively addressed to find efficacy for

trigger a mechanical disturbance to the cells and therefore inducing cell death in a

non-chemotoxic way, but it could find application also for the control of drug release.

In order to support this purpose, researchers have deliberately selected field frequen-

cies and strength that are several orders of magnitude lower than those needed for the

magnetic thermal approach [Nappini et al., 2010, Spera et al., 2014]. It will allow to

reduce the heating contribution of the MNPs in the AMF to negligible levels with the

objective to evaluate the peculiarities and advantages of a non- non-heating action of

MNPs in AMF in the drug delivery control. Magnetic guidance is typically obtained by

focusing an extracorporeal magnetic field on the biological target during the injection of

a magnetically responsive nanocarrier. This concept has demonstrated great potential

in experimental cancer therapy because of improved drug accumulation inside solid-

tumor models. Nanosystems for such a therapeutic approach can be magnetoliposomes

(Fe3O4 or maghemite (Fe2O3) nanocrystals encapsulated in liposomes) [Plassat et al.,

2011].

An example of this technique can be, as reported in [Hoare et al., 2011], a compos-

ite membranes containing thermoresponsive nanogels and magnetic nanoparticles that
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enable on-off drug delivery on de-swelling or swelling of the polymer.

Not only for the drug delivery, an AMF can also remotely regulate protein production,

as insulin, by using a modified temperature-sensitive channel (TRPV1) decorated with

iron oxide nanoparticles [Stanley et al., 2012]. Moreover, some studies suggested that

magnetic fields of low intensities (A/m) are a good trigger to control the releasing of

the drugs [Nappini et al., 2010, Spera et al., 2014] but without heat generation. Via

the application of an external magnetic field, the idea is to induce a mechanical stress

on the liposome membrane, due to MNPs oscillations, in order to obtain the drug re-

lease (Fig. 2.10). In Spera et al. [Spera et al., 2014] an experimental study is reported

concerning the exposure of HSPC liposomes loaded with magnetic nanoparticles to an

AMF of 60 A/m of intensity. A 20 % of the fluorescent dye release is detected up to 9

hours of exposure due to the magnetic field application.

In the chapter 5 of this Ph.D. thesis, experiments on magnetoliposomes will be pre-

sented both applying an AMF or pulsed electromagnetic fields (PEMFs) considering

different intensities (up to 100 µT).

Besides, starting from an existing exposure system consisting of two coaxial magnetic

coils of square shape that can release magnetic fields of low intensity ( ≤ 100 µT), and

based on the experimental results, we numerically performed a new magnetic exposure

setup consisting of two squared Helmholtz coils, by analyzing all parameters involved

to reach a magnetic field with intensity in the order of mT in a frequency range between

1-20 kHz (see chapter 6).



Chapter 3

Electromagnetic fields and

protein interaction

3.1 Introduction

One of the major challenges in medicine, is the accurate measurement of cells signals in

order to possibly prevent the upcoming of inflammations or serious illnesses as cancers

or cardiac disorders. For this reasons, researchers started to perform methods to mea-

sure protein biomarkers, cells, and pathogen agents in biological samples. A number

of new diagnostic platforms have recently been developed to measure biomolecules and

cells with high sensitivity that could enable early disease detection or provide valuable

insights into biology at the molecular level [Cheng et al., 2006, Wulfkuhle et al., 2003].

Fluorescent-protein biosensors have become an important tool as reagents to extract

data from living cells which express parameters concerning some upcoming molecular

processes related to illnesses or stresses (Fig. 2.10). Recent applications of fluorescent-

protein biosensors to biological problems have provided a foundation for their use in

biotechnology [Senutovitch et al., 2015]. This kind of biosensors evolved by combining

sensitive fluorescent dyes with proteins in order to monitor specific physiological events

such as production of metabolites, changes in various ion concentrations, and the dy-

namic interaction of proteins. Fluorescence-based reagents have been used extensively

to elucidate and quantify fundamental biological processes within and between cells

both in vitro [Giuliano et al., 1995, Zhang et al., 2002] and in vivo [Provenzano et al.,

2009, Niesner and Hauser, 2011].

33



34 3. Electromagnetic fields and protein interaction

Figure 3.1: Fluorescent-protein biosensors and high-content screens in drug discovery. A multiple-
well drug screening platform containing living cells is treated with a combination of drug types and
concentrations. In figure referring to a the single-cell level different examples of the processes that can
be measured with fluorescent-protein biosensors are reported.

In order to detect protein signaling a fluorescent marked is linked to the protein

sending fluorescent signals in correspondence of the occurring of a biological effect.

Some recently described fluorescent protein biosensors designed to report chemical

events occurring at or near the plasma membrane [Gonzalez and Tsien, 1995]. Be-

sides fluorescent-protein biosensors have become powerful tools when applied to the

processes involved in cytoplasmic signal transduction as for example the identification

of the cAMP involved in converting transient signals into long term gene expression

within the nervous systems [Hempel et al., 1996].

Proteins have the role to mediate the chemical reactions within cells. When converted

to sensors proteins have the potential to report not only the dynamic distribution of

specific reactions but also data concerning reaction kinetics and protein interactions.

One way to define the activity of proteins is through the environmental changes that

occur either internally or on their surface, including binding to other proteins [Giuliano

et al., 1995].

Not only as detector but also as mediator of chemical reactions, proteins respond to
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external stimuli by enhancing or decrease their activity and their interaction with living

cells [Wetzel et al., 2001, Capelli et al., 2017]. In the next paragraph a briefly overview

will be given about the exposure of proteins to electromagnetic fields and their role in

biological effects.

3.2 Protein activation from Electric or Magnetic fields

The enhancing of enzymes activity under specific physiological conditions or under ex-

ternal stimuli, represent the proteins response and their eligibility to be used as drug

target or as illnesses sensors.

Recently, researchers investigate the effects of EM fields on intra-cellular and transmem-

brane proteins exposed to nanosecond pulsed electric fields (nsPEFs) [Beebe, 2015] or

low frequency low energy pulsed electromagnetic fields (PEMFs) [Varani et al., 2002,

2008, Capelli et al., 2017].

Recently, it has been highlighted that different physiologic systems seem to be in- PEMFs action

for medical

treatments
fluenced by PEMFs exposure. Many studies have aimed to identify the biophysical

stimulation induced by PEMFs as potential alternative to the pharmacological treat-

ments in several inflammatory related diseases [Cadossi, 2011, Di Lazzaro et al., 2013].

It has been reported that PEMF exposure could act on modulating cartilage and

bone metabolism, stimulating chondrocyte and/or osteoblast cells proliferation [Cha-

lidis et al., 2011] reporting a positive effect in the treatment of fracture healing [Lin

and Lin, 2011]. The action of PEMFs has been also investigated in various pathological

conditions such as in cancer cells where the electromagnetic fields with intensity around

3 mT were able to reduce tumor growth and proliferation for breast cancer cells up to

60 minutes of stimulation at low frequency of 20 Hz, growing its effects after three days

of daily treatment [Crocetti et al., 2013]. Nevertheless PEMF therapy significantly

reduced postoperative pain and narcotic use in the immediate postoperative period by

a mechanism that involves endogenous IL-1β in the wound bed [Rohde et al., 2010].

Not only on cancer cells or in bone healing but also in neurological diseases the use

of PEMFs is widely spread to map the brain human activity and could affect al-

most all cerebral functions such as motor control, sensory perception, cognitive ac-

tivities [Di Lazzaro et al., 2013]. The molecular pathways underlying the previous

medical treatments are all related to the involvement of a transmembrane protein of

the adenosine receptors (ARs) family.
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Figure 3.2: Representation of the adenosine A2A proliferation under PEMFs action by enhancing the
anti-inflammatory effect.

Increasing evidence suggests that the beneficial effects of PEMFs on neurologicalProteins under

the PEMFs

action
system are mediated by the modulation of adenosine receptors (ARs), specifically in-

creasing the expression of A2A subtypes [Varani et al., 2017]. The adenosine receptor

A2A is an important G-coupled protein regulator of neurotransmission signals released

from cells next to a metabolic stress. From a study of Varani et al. [Varani et al., 2002,

2008] it has been experimentally proven how the application of low intensity magnetic

field in the range of 0.5 - 3.5 mT is able not only to enhance the ant-inflammatory

effects of the adenosine receptor A2A on neutrophilis cells but also to increase its enzy-

matic activity and a reduction of the superoxide anion has been reveled probably due

to the density increase of the adenosine receptor on cells surface when exposed to the

magnetic field action (Fig. 3.2).

Not only magnetic field but also electric field pulses (PEF) may affect protein re-nsPEFs applied

on proteins sponse and its activity. It has been experimentally proven how pulsed electric fields

of 3.6 MV/m with duration higher than 150 µs are able to induce secondary struc-
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tures changes and inactivation of protein structures as lysozyme [Zhao et al., 2007] and

pepsin [Yang et al., 2004]. However, studies of the effect of PEF on protein structure

are limited in number [Van Loey et al., 2001], although PEF treatments of soybean pro-

tein isolates [Li et al., 2007] purified horseradish peroxidase and pectin esterase [Zhang

et al., 2006] have shown interesting effects on protein denaturation, aggregation and

structure depending on the protein examined.

As mentioned in the previous chapter, effects related to conventional electroporation

with long pulse duration (µs - ms range) and and low electric fields (up to 1 MV/m)

are mostly focused on the lipid bilayer of the plasma membranes. Nevertheless, elec-

troporation pulses with short duration (ns) and high intensity (MV/m) may have some

effects on intracellular membranes and could be able to directly interact with inter-

nal cell organelles (as nucleus, endoplasmic reticulum, mitochondria,etc.) [Esser et al.,

2010]. This was initially hypothesized and demonstrated by breaching vesicular mem-

branes in human eosinophils [Schoenbach et al., 2001]. Distinct effects of nsPEFs have

also been observed to rapidly and transiently release Ca2+ from the intracellular cav-

ity [Vernier et al., 2003b, Semenov et al., 2013].

The correlation of nsPEFs and intracellular structures is related to their frequency

content. Indeed a 1 ns pulse has a spectral frequency content of 1 GHz and thus it

appears that high frequency components, residing in the rapid rise and fall times of

ns pulses, maximize electric field interactions with intracellular structures [Schoenbach

et al., 2001, Beebe et al., 2012]. In the study of Beebe [Beebe, 2015], it has been

evaluated how nsPEF can act not only on the membrane permeabilization but also on

proteins. They analysed the dissipation of the mitochondria membrane under nsPEF

actions directly related to the Ca2+ presence. Since, the Ca2+ dependent events require

proteins, to determine if nsPEFs could have direct effects on proteins, they showed the

inactivation of the C-subunit of PKA, a prototype for all protein kinases, which have

highly conserved catalytic mechanisms. This inhibition was correlated to the inhibition

of the mitochondria membrane and thus indication of the nsPEFs effects on protein.

Moreover, by Pakhomov et al. [Pakhomov et al., 2014] the effects on CHO cells that

express actine protein have been presented, highlighting cells swelling and actin disrup-

tion when an electric field of 600 ns pulses and 1.92 MV/m of intensity and a frequency

of 2 Hz are applied as shown in Fig. 3.3. Also an experimental study has been con-

ducted on different type of superoxide dismutase enzymes, the SOD1 [Shi et al., 2015],

to evaluate the behavior under electric field of physiological strength (104 V/m), a
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Figure 3.3: CHO cells exposed to 4 pulses at 19.2 kV/cm (600 ns,2 Hz).The side views (left column)
are intended to demonstrate cell reshaping by nsPEF. Two different 3D views (center columns) and
one X-Y slice (right) were selected to provide the best observation of the structured actin.

monomerization and partial unfolding was reached only for the A4V-SOD1 protein.

Not only through experimental setup but also using molecular dynamics simulations,

the protein interaction with electric fields have been explored. Through the simulation

of a ”virtual” experiment, MD simulations give the possibility to observe the electric

field action on microscopic structures in an accurate and rigorous way. In different

simulation studies with MD, high intensity pulses were shown to disrupt secondary

structures of proteins as myoglobin, the soybean hydrophobic protein and the insulin

β-chain [Marracino et al., 2013b,a, Singh et al., 2013, Budi et al., 2005]. The loss of

secondary structures suggest changes in the protein activity and it means that the pro-

tein differs from its physiological condition. The changes predictable using molecular

dynamics simulations could give information in order to explain the protein response

and the interaction mechanism when a protein, or in general a biological sample, un-

dergoes to an external forces. Indeed, Wang et al. [Wang et al., 2014] investigated the

effects of strong electric field applied on the insulin enzyme by the means of MD simu-

lations. They explored electric field with strength from 1.5 to 6x108 V/m, highlighting

a disruption of secondary structure and a loss of hydrogen bond for electric field higher

than 2.5x108 V/m.

Molecular dynamics (MD) simulations have been used during my research project both

concerning the application of nsPEFs on the superoxide enzyme and studying the ac-

tion of a magnetic field on the adenosine A2A receptor as will be discussed in the 10 and

the 9 chapter respectively. In the next chapter a brief overview will be given regarding

MD simulations in order to understand one of the adopted modeling approach.



Part II

Modeling approach: from

molecular dynamics simulations

to microdosimetric models
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In this part, the methodology used in the present Ph.D. research project will be re-

ported.

Usually to perform a modeling analysis, different methods can be adopted depending

on the levels of the biological complexity going from the microscopic one of atoms

and molecules, up to the macroscopic one of the whole organism, going through sub-

cellular structures, cells, tissues, organs and systems. The interaction of the EMFs with

nanosystems can occur at any of these biological levels, and to model all the possible

interactions different and specific tools are needed.

In the following chapter, a multiscale approach will be presented from the molecular

dynamics simulations level (nm scale) to the microdosimetric models for the cellular

level analysis (up to mm scale).

Theoretical methods and computational approaches applied to predict the behavior of

biological compound at the atomic level are all part of the molecular modeling cate-

gory. In this case, Molecular Dynamics(MD) simulations provide atomic details of the

structures and motions of a classical biological structures allowing the computing of its

structural, dynamic and thermodynamic properties. By applying the Newton’s equa-

tion of motion, from given initial conditions the evolution of the system in time can be

predicted. In this context, in the following chapter the integration algorithms and the

different force fields usually used in MD simulations will be reported to understand the

modeling used for the study of the electromagnetic fields action on protein structures,

presented in the Part V.

Furthermore, when dealing, with nanosystems as liposomes interacting with biological

cells the mesoscale and finite element method have to be adopted. Thanks to these

methods is possible to perform a dosimetric analysis to assess the amount of the EMF

induced in a target structure in different exposure conditions. On these aspects is fo-

cused the section 4.3 in the following chapter, to explain the method used in the Part

III and Part IV for the modeling study of the electromagnetic fields effects on cell and

liposomes under the EMFs action.





Chapter 4

Modeling Methods

4.1 Introduction

In order to understand and possibly predict the interaction mechanisms between elec-

tromagnetic fields and nanosystems interacting with the human body, modeling tools

can be adopted. By Apollonio et al. [Apollonio et al., 2013], a schematic representation

of possible multiscale methodologies, for modeling the interactions between electromag-

netic fields and a biological system, has been proposed (see Fig. 4.1). On the scheme

reported in Fig. 4.1, based on the biological effects (right side) different methods (left

side) can be used to predict possible effects and functions evidenced by experimental

investigations (e.g., in-vitro, in-vivo, and on humans) when cells are exposed to ex-

ogenous EM fields. Different levels of biological structures can be modeled, such as

molecules, cells, tissues, organs, and organisms as represented in details at the right

branch of the Fig. 4.1 with the inclusion of the dimension. Regarding the modeling

methods (left side) the inputs for the smallest models depends on the quantities in-

duced in the upper level, while for the biophysical one the functionality of a level is

related to those of all the lower levels.

Now, depending on the nanosystem that we want to study and depending on its

interactions with cells dimension, in this chapter two different methodologies will be

presented: molecular dynamics simulations and microdosimetry models.

To analyze at molecular level (dimension up 10-8 m) possible interactions, molecular

dynamics (MD) simulations provide atomic details of the molecular structures and

hence allow for computing dynamic and thermodynamic properties. The first section
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Figure 4.1: Scheme of a multiscale methodology for modeling the interaction between an exogenous
EM field and a biological system.

of this chapter will be dedicated to a general overview of the molecular dynamics algo-

rithm to understand its functions and potentiality to predict the behavior of biological

molecules.

Moreover, when cells complex want to be explored MD simulations because of the

limit in the computational costs depending on the structure size (ns time and up to

nm) cannot be used, but microdosimetry models (range dimensions from 100 nm to

µm) can be adopted to achieve information of dose dependent effects generated by the

application of an exogenous electric or a magnetic field. The microdosimetry models

permit the quantification and the assessment of fundamental parameters involved in

biological processes in order to understand the basic mechanism of the phenomenon

(as electroporation or magnetic field action) and becomes a predictive tool that could

be use to set the experimental parameters.
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Figure 4.2: Molecular structure investigation techniques from the femtosecond to the continuous range.

4.2 Molecular dynamics simulations

The molecular structures can be investigated with different techniques, measured es-

sentially according to the degree of accuracy and size of microscopic systems treated.

The choice of the appropriate technique depends on the particular application, and

then by the ability to produce reliable results. There are several methods based on the

analysis time and the size of the molecule (Fig. 4.2). The use of quantum mechanical

(QM) methods allows the explicit treatment of electronic distribution of microscopic

systems, essential in the rigorous description of processes such as enzymatic reactions

and mechanisms of binding / unbinding. The quantum methods represent a fundamen-

tal tool for a rigorous study of the electronic transitions of the underlying biochemical

phenomena, such as the process of binding / unbinding or enzymatic reactions. The

main disadvantage is that it does not allow the study of complex systems such as the

investigation of biochemical reactions; analysis QM is only applied to the reaction cen-

ter isolated, without considering the whole protein and the environment in which it is

immersed, which is crucial in the re-activity of chemical processes [D’Alessandro et al.,

2004, Amadei et al., 2007].
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Instead, the molecular dynamics is used to model and study the physical phenomena

from a realistic point of view and provide a dynamic framework at the microscopic

level, laying the foundation for the theoretical treatment or for the interpretation of

experiments. It models the motion of the group of particles (e.g. atoms) present in the

simulation box by solving the classical Newton’s equations of motion. Firstly, as input

conditions the energy potential is expressed in function of the velocities and positions

of all atoms present in the system. Then the force on any atoms is computed (Eq. 4.1)

by calculating the force between non-bonded atom pairs (Eq. 4.2).

F = −∇V (r) (4.1)

Fi =
∑
i 6=j

Fij (4.2)

Subsequently, the update of the configuration is done by solving the Newton’s equation

of motion (Eq. 4.3 ) with a finite difference algorithm:

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
1

2
~ai(t)∆t

2 (4.3)

Finally, the output are written as velocities, positions, pressure and temperature of

the system. It’s the most widely used method to do simulation in condensed matter

physic. The MD performs a calculation and the deterministic trajectory is uniquely

determined by the form of the potential energy function that describes the interactions

between the atoms in the system. The simulations always require the definition of a

model (force field) for the interactions between the various components of the system.

Each simulation requires a set of initial coordinates and optionally the initial velocity

of the particles involved. Before the start of a simulation, the system must be defined

and must be loaded with an empirical force field. Empirical force fields, indeed, are col-

lective of several energy terms to describe the interactions between atoms (bonded like

energy of bonds, valence and dihedral angles, etc.; non bonded as electrostatic and van

der Waals terms), implemented to reproduce the structural properties of biomolecules

and parameterized accordingly. All information associated with the force field are static

in the sense that remain unchanged during the generation of the MD trajectories and

include: type of atom, mass and charge, potential function, the parameters of binding
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and non-binding, constraints.

The Protein Data Bank (PDB) provides the initial coordinates and the 3D structure of

the molecular system that needs to be simulated; it is an archive of three-dimensional

structures of biomolecules obtained from experimental techniques. The pdb files for a

given molecule provides the atomic coordinates, information on the structure of pri-

mary and secondary data on the experimental techniques applied and references. In

many cases, the 3D structure is not available or not suitable for the problem being

treated. In this case, molecular modeling techniques are applied to provide the topol-

ogy (e.g. connectivity chemistry) as input to run an MD simulation to explore the

conformational changes of a complex molecule and map the biochemical phenomena at

the molecular and atomistic level. The initial speeds are generally randomly assigned

by the Maxwellian distribution, relative to the desired temperature (∼ 300 K). The

main actions are common to all protocols, such as the preparation of data, for an MD

run, by assigning the initial coordinates and the initial speeds. Then the heating of the

system goes up to the desired temperature, associated with a short dynamic equilib-

rium achieving balance for the simulation is stable and free from unwanted fluctuations.

This step takes from tens to hundreds of ps. Finally production of the trajectory and

its analysis is done.

This method suffers from some limitations, such as only allows classical description of

the motion of the particles thereby not allowing the study of phenomena such as quan-

tum processes of electron transfer or training / breaking of bonds. Another limitation

is related to the electrons that are in the ground state, preventing an analysis of the

electronic motions to finally allow a maximum observable time scale of the order of hun-

dreds of ns. Molecules in MD simulation by default also lack polarizability. Although

the effects of polarizability can be introduced by various methods such as adding virtual

sites (Drudeparticles) or effective pair potential,the treatment of polarizability is often

ignored in order to reduce computing cost. Nevertheless several physical phenomena

can be described with a good approximation neglecting the electron wave functions.

Despite its limitations, MD opens the way to a better understanding of the relationship

between molecular structure and biological function of the essential components in the

vital processes such as proteins and peptides.

In the next section an overview of the force field, boundary conditions and tempera-

ture/pressure ensemble will be given to understand parameters we used to perform our

simulations.
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4.2.1 Integration Algorithms

One of the most used integrator in molecular dynamics simulations is the Velocity

Verlet algorithm [Verlet, 1967].

r(t+ ∆t) = r(t) + ∆tv +
∆t2

2m
F(t) (4.4)

v(t+ ∆t) = v(t) +
∆

2m
[F(t) + F(t+ ∆t)] (4.5)

The equation 9.2 and 9.3 represent the update of positions and velocities choosing a

∆t small enough, leading to an overall better approximation of the whole integration

process. As lower limit one can consider highest frequency proper of the system, namely

the vibrations of bonds involving hydrogen atoms in solvated biological macromolecules.

The bond stretching frequency of an O-H bond is typically about 1014 Hz, so the average

period would be of the order of 10 fs [Schlick et al., 1997]. This limits the time-step

tobe taken in MD simulations to about 0.5 fs. For our simulations concerning the

magnetic field applications on the adenosine A2A receptor we employed the velocity

verlet algorithm as will be explained in the chapter 9.

Moreover, to increase the time step to a typical value of 2 fs usually algorithms (SHAKE

[Ryckaert et al., 1977], RATTLE [Andersen, 1983], LINCS [Hess et al., 1997], SETTLE

[Miyamoto and Kollman, 1992]) are employed to constrain all covalent bonds,i.e. the

distance between mass points is maintained constant. In general, the algorithm is

constructed by following procedures:

• choosing novel unconstrained coordinates (internal coordinates)

• introducing explicit constraint forces

• minimizing constraint forces implicitly by the technique of Lagrange multipliers

or projection methods.

These approximations are acceptable as these bond vibrations can be considered un-

coupled from all other vibrations in the system so that the dynamics of the system is

not altered.

For the simulations concerning the enzyme superoxide dismutase (SOD1) exposed at

nsPEF (see Ch. 10), we used the leapfrog integration algorithm with an integration

time-step of 2 fs. With the leapfrog algorithm positions and velocities leap over each
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other. The velocities are updated at half time steps and leap ahead the positions. The

positions (Eq. 4.6) and velocities (Eq. 4.7) can be obtained from:

r(t+ ∆t) = r(t) + ∆tvi

(
t+

∆t

2

)
(4.6)

v

(
t+

∆t

2

)
= vi

(
t− ∆t

2

)
+

∆t

mi
Fi(t) (4.7)

4.2.2 Force fields and boundary conditions

As mentioned in 4.2 in order to compute forces MD simulations require a potential

energy function, which describes the interactions among all the atoms in the system.

Once the potential energy of the system is known, given the coordinates of a starting

structure and a set of velocities, the force acting on each atom can be calculated.

A force field is characterized by a specific functional, implemented to reproduce the Force fields

structural properties of biomolecules and parameterized accordingly. The force field it

is composed by a set of equations, the so-called potential functions, which are used to

generate the potential energies and their derivatives (e.g. the forces) correlated with

a set of parameters empirically tuned to reproduce the properties of biomolecules. A

general potential energy function,commonly used in the most know force fields,is:

U total = Ubond + Uangles + Udihedrals + Unb (4.8)

These four contributions account for bonded and non-bonded interactions. The first

three terms of Eq. 4.8 define the bonded interactions corresponding to two (stretching),

three (bending), and four (torsion) body interactions, respectively.

Ubond = kb
1

2
(l − l0)2 (4.9)

Uangles = kθ
1

2
(θ-θ0)

2 (4.10)

Udihedral =
∑
n

vn
1

2
(1 + (−1)n+1 cos(nφ− ψn)) (4.11)
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These interactions are represented by harmonic potentials for the bond lengths b

(Eq. 4.9), for the bond angle θ (Eq. 4.10) with kb and kθ their harmonic force constants,

for the dihedral angle ψ (Eq. 4.11) with n, ψn and vn the torsion, multiplicity, phase

angle and barrier height respectively. The final term of the Eq. 4.11 is meaningful of

the interaction between non-bonded atom pairs. This term is split into 1-body, 2-body,

3-body, ...subterms. Interactions between particles separated by more than three co-

valent bonds are usually represented by two components: by Coulomb’s law for the

electrostatic interactions (Eq. 4.12) and by a Lennard-Jones potential for the Vander

Waals interactions(Eq. 4.13). The Coulomb potential is described by:

Uqq =
∑
i<j

∑
j

qiqj
4πεijrij

(4.12)

where the qi is ith atomic charge, rij is the distance between the ith an jth point charges,

and ε is the permittivity of the medium between this two. The Lennard-Jones poten-

tial(Eq. 4.13) can be written as:

UvdW =
∑
i<j

∑
j

4πεij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(4.13)

where σij and εij are the collision diameter(the finite distance at which the inter-particle

potential is zero) and the well depth respectively. The Lennard-Jones potentials de-

scribe the van der Waals (vdW) interactions, that differ from covalent and ionic bonding

because they are caused by correlations in the fluctuating polarization of nearby par-

ticles.

In addition to the force fields, other parameters are included as values for atomic

mass,Van der Waals radius, partial charge for individual atoms, equilibrium values

of bond lengths, bond angles, dihedral angles for pairs. Popular force fields for MD

simulations of biomolecular systems are AMBER [Cornell et al., 1996], CHARMM

[MacKerell Jr et al., 1998],GROMOS [Oostenbrink et al., 2004] and OPLS-AA [Jor-

gensen et al., 1996]. In this work, we considered GROMOS45 force field [Oostenbrink

et al., 2004] to model the SOD enzyme and the adenosine A2A receptor (see Ch. 10 and

9, respectively).

In order to compute MD simulations we used the software GROMACS [Hess et al.,Gromacs

2008] v. 4.6 and 5.1.
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GROMACS is a versatile package designed for biochemical molecules like proteins,

lipids and nucleic acids including a lot of complicated bonded interactions. It is the

aim of GROMACS to provide a versatile and efficient MD program with source code,

it is designed especially for the simulation of biological molecules in aqueous and mem-

brane environments, and able to run on single processors as well as on parallel computer

systems using MPI or threads. It is very fast due to algorithmic and processor specific

optimization, typically running 3-10 times faster than many simulation programs. It is

operated via the command line using file for input and output and provides calculation

progress, a trajectory viewer, and an extensive library for trajectory analysis.

Anyway, due to computational limits, a typical simulated system contains hundreds Boundary

conditionsof thousand of atoms, and hence is quite small compared to macroscopic matter. This

means that, if the molecules are arranged in a cubic box, are latively great part of

them will lie on the surface and will experience quite different forces from molecules

in the bulk. Usually, periodic boundary conditions (PBCs) 4.3 are adopted to reduce

the surface effects. PBCs are a set of boundary conditions which are often chosen for

approximating a large (infinite) system by using a small part called a unit cell. In

Fig. 4.3 the shaded box represents the system we are simulating, while the surrounding

boxes are the exact copies of each particle in the simulation box. Even the velocities

(indicated by the arrows) are the same. This arrangement is imagined to fill the whole

of space. A result of this is that whenever an atom leaves the simulation cell, it is re-

placed by another with exactly the same velocity, entering from the opposite cell face.

So the number of atoms in the cell is conserved.

Moreover, when a simulations is settled one of the most important parameter is the Thermodynamics

ensemblestype of thermodynamic ensemble that can be chosen, with particular statistical charac-

teristics and in statistical mechanics. Three important thermodynamic ensembles can

be considered:

• NVE ensemble, a statistical ensemble where the total energy E of the system, its

volume V and the number N of particles in the system are each fixed to particular

values. The system must remain totally isolated (unable to exchange energy or

particles with its environment) in order to stay in statistical equilibrium.

• NVT ensemble, a statistical ensemble where the energy is not known exactly but

the number of particles N, its volume V , and the temperature T are maintained

constant. The canonical ensemble is appropriate for describing a closed system
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Figure 4.3: Schematic of PBCs. The simulation cell (central) is replicated throughout the space,
forming an infinite lattice with images of atoms. In such scheme each atom interacts with all the other
atoms of its cell and also with their images, thus this interaction is limited to the closest image of other
atoms as shown by the blue dashed box.

which is in, or has been in, weak thermal contact with a heat bath.

• µVT ensemble, a statistical ensemble where neither the energy nor particle num-

ber are fixed. In this case the chemical potential mu, the volume V and the

temperature T are specified.

• NPT ensemble, were the number of atoms N, pressure P and temperature T are

constrained.

In this Ph.D. project an NVT ensemble has been used both for the electric ( chapter

10) and magnetic fields (chapter 9) simulations.

4.3 Microdosimetry numerical models

As mentioned in the introduction to this chapter, when the final target that needs

to be simulated has dimensions major than 100 nm, the MD simulations require high

computational costs that are not affordable if you are not working on parallel computer
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Figure 4.4: Molecular structure investigation techniques from the femtosecond to the continuous range.

clusters.

In this case to simulate the behavior of a biological system or for the design of electrical

or magnetic exposure systems, mesoscale model and finite element models, including

microdosimetry, can be adopted (see Fig. 4.4).

In recent times, the study of the amount of EMF that is absorbed by humans and the

related effects has acquired more importance. In particular, the term dosimetry sum-

marized all the techniques aimed to the assessment of the amount of the EMF induced

in a biological structure in different exposure conditions; this assessment can be used

both for prevention as well as for the study of the possible effects of electromagnetic

fields and for the design of new applicators. Microdosimetry employs geometric and

electric models of single cells and small cell or liposomes clusters under the action of an

external force which can be electric, thermal or magnetic using circuital, analytically,

or numerical approaches. Microdosimetry models permit to compute a dose dependent

analysis to predict cells behavior before proceeding to the experiments setup.

Concerning the electroporation phenomena, as mentioned in the section 2.3 the actual

mechanisms underlying the membrane electroporation caused by ultra-short electric

pulses (nsPEF) is not yet fully understood and it has been shown that membrane rear-
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rangement or even ruptures, fundamentally depend on the level of the electric potential

induced across the cell membranes [Krassowska and Filev, 2007], referred to as trans-

membrane potential (TMP). Microdosimetric models are of fundamental importance

when the interaction between an exogenous E field and biological matter is to be in-

vestigated [Apollonio et al., 2013, Gowrishankar et al., 2013]. Furthermore, the local E

field applied to cells can be used to relate the observed effects of in vitro experiments

to the macroscopic E ”dose” delivered to the biological sample. In vitro research can

be used as an initial test of the therapeutic efficacy of novel medical treatments. Mi-

crodosimetry is of major importance to hypothesize and quantitatively study plausible

interaction mechanisms at the molecular level that take place in the cell membrane and

the intracellular environment [Tarek, 2005, Hu et al., 2005, Marracino et al., 2013b].

Moreover, microdosimetry can predict the microscopic E-field threshold for an effect

to occur and so can be useful as technological support in the design of pulse appli-

cators and the choice of appropriate pulse generators for experiments. Moreover not

only electric but also a magnetic field can be simulated using appropriate software to

perform both the dose dependent analysis and to validate the project of an exposure

setup as will be explained in the chapter 6.

The electromagnetic solution (EM) usually, when dealing with microdosimetric mod-

els, can be obtained either in time or in the frequency domain, turning back into time

through the inverse Fourier transform, depending on the specific formulations for the

boundary EM conditions at the cell interfaces. Indeed, as highlighted in [Kotnik et al.,

2010], for a spherical cell, using the steady-state Schwan equation [Pauly and Schwan,

1959] as an approximation, is valid only for pulses longer than hundreds of µs, whereas

a first order approximation [Pauly and Schwan, 1959] is possible for pulses longer than

1 µs. Moreover, when dealing with shorter E fields, or when the extracellular medium

has a conductivity well below the range of physiologic values [Kotnik et al., 2010], a

complete formulation of the boundary conditions, accounting for both conductivity and

permittivity of cell compartments, needs to be considered [Kotnik et al., 2010].

Usually a microdosimetric model can be approached with an analytic, circuital or

a numerical model. The analytic solutions are often used for single cell model or forAnalytic models

simplest geometry. Analytic approaches were first developed in microdosimetric studies

for electroporation and are still largely used since they provide simple solutions and

allow the complete spatio-temporal characterization of the E field within different cell
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compartments [Merla et al., 2011, Hu and Joshi, 2009, Hu et al., 2005, Schoenbach

et al., 2004]. The main drawback is that only simple cell geometries can be considered

without or with concentric organelles. The analytic solution is often used to validate

numerical approaches for simplified geometries.

On the other hand, cell circuit models are very useful for rapid microdosimetric anal- Circuit models

yses since they are able to deal easily with different kinds of external E pulses. Circuit

analyses on a wide frequency band (from a few Hz up to GHz) have also been performed

allowing the definition of transfer functions of the cell response [Yao et al., 2009, Merla

et al., 2012, Denzi et al., 2013, Ellappan and Sundararajan, 2005]. Moreover, such

circuits provide the possibility of developing a relationship with more sophisticated

physical and biophysical cell descriptions. The main assumption made by the different

authors [Yao et al., 2009, Merla et al., 2012, Schoenbach et al., 2007, Croce et al., 2010,

Ellappan and Sundararajan, 2005] is that the cell model, encompassing an extracellular

medium, a membrane and an internal cytoplasm, shows a passive resistive-capacitance

(RC) behavior for each compartment. The values of the RC elements of each cell com-

partment were calculated on the basis of their static dielectric properties and conduc-

tivities, as well as from their geometric characteristics (e.g. cell radius and membrane

thickness). A five-layered cell configuration, including the nucleoplasm and the nuclear

membrane, has been considered [Joshi and Schoenbach, 2000, Denzi et al., 2013, Yao

et al., 2009].

Numerical solutions imply the discretization of the simulation domain into meshed Numerical models

grids of different shapes. The great advantage of such an approach is the possibility to

calculate the electric or magnetic field distribution in cells of any geometry, as well as

for small cell aggregates [Kotnik et al., 2010, Joshi et al., 2008, Pucihar et al., 2006,

2009]. In particular numerical approaches can be used to study non-concentric and

complex shaped intracellular organelles. Besides, numerical approaches are necessary

when dealing with realistically shaped cells, including cell organelles, and clusters of

cells. Thus they are suitable for answering recent research trends of moving towards

the tissue level and the sub-cellular level.
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4.3.1 Microdosimetry numerical models

As described above, the need to solve complex problems, has suggested the development

of a series of numerical methods for the evaluation of the induced Electromagnetic fields.

The numerical methods can be divided in methods based on differential type techniques

and methods based on integral ones. For the first case, it involves solving Maxwell’s

equations in the differential form, and the algorithms make a spatial discretization of

the equations in the space region that has to be analyzed (and possibly also a time

discretization if one operates in the time domain); the integral approach, instead, is

useful when the starting point are the integral equations for the description of the

electromagnetic quantities. For low-frequency situations, where the dimension of the

biological body are small compared to the wavelength (i.e. < 30 to 40 MHz for the

human body), a quasi-static approximation can be introduced and this fact implies

that some methods are based on simplified Maxwell’s equations. Following, the main

numerical methods used by the principal simulative software, are described:

• the method of moments (MoM) [Harrington and Harrington, 1996] has become

more popular since the 1980s. The MoM it can be defined as ”source method”

since requires to discretize only the structure in question, not the free space sur-

rounding the geometry. Boundary conditions do not have to be set and in terms

of memory requirements, these are proportional to the size of the geometry in

question and the required solution frequency. However, MOM methods are signif-

icantly computationally less efficient than volume-discretization methods (finite

element method, finite difference method, finite volume method). Boundary el-

ement discretization typically give rise to matrices that require a storage and

computational that will tend to grow according to the square of the problem size.

Moreover, this method usually involve fields in linear homogeneous media. How-

ever, the MoM cannot handle electromagnetically penetrable materials, especially

if the material is in-homogeneous, and requires the surfaces to be closed;

• the finite difference time domain (FDTD) method [Yee, 1966] is a time-domain

method; the solutions can cover a wide frequency range with a single simulation

run, it is partial differential equations based, that solves Maxwell’s curl equations

by directly modeling propagation of waves into a volume (cubical or parallelepiped

with different dimensions) containing the biological body. The components of
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electric E and magnetic H field are calculated in a specific manner on the surfaces

of the single cell alternately with half-time steps. It is a very easy method to be

implemented and the computation time limited, but it could be expensive in

terms of memory occupation because of all the space discretized;

• the finite element method (FEM) [Jin, 2015] solve the Maxwell’s differential equa-

tions in the frequency domain. By solving partial differential equations, a first

challenge is to create an equation which approximates the equation to be studied

and it needs to be numerically stable, in a way to not destroy the meaning of the

resulting output. The finite element method is a good choice for solving partial

differential equations over complex domains or when the desired precision varies

over the entire domain. It divides the simulation space into mesh grids of small

volumes of tetrahedral elements, making this method very suitable in modeling

inhomogeneities and complex geometries. For each tetrahedral volume the field is

approximated using linear extrapolation, starting from a sparse system equations

matrix; the solution is given by the inversion of this matrix. The FEM can couple

the EM solution with other physics, like, for example, mechanical and thermal

problems;

• the boundary element method (BEM) [Banerjee and Butterfield, 1981] requires

calculating only boundary values, rather than the total simulation space and it

works by constructing a ”mesh” over the modeled surface. For this reason it is

significantly more efficient in terms of computational costs. Moreover, the meshes

can easily be generated and design changes do not require a complete remeshing.

The BEM is especially advantageous in the case of problems with infinite or

semi-infinite domains, e.g. so-called exterior domain problems, because only the

finite surface of the infinite domain has to be discretized and the solution at

any arbitrary point of the domain can be found after determining the unknown

boundary data;

• the impedance method (IM) [Armitage et al., 1983] is based on the quasi-static

approximation [Armitage et al., 1983], where the region of interest is described by

a 3D network of impedances, representing each space grids in which the domain

is divided. So, the whole space is represented by a linear circuit applied to

compute the currents in the impedances; this representation bring to a system
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of Kirchhoff’s law equations, that can be solved using iterative process starting

from an initial guess.

In order to perform numerical models different software can be adopted. In this

Ph.D. thesis the software COMSOL Multiphysics v.5.0 has been used for the numerical

part concerning drug delivery systems mediated by nanosecond pulsed electric fields

(see Part IV). COMSOL Multiphysics is a commercial software that permits to solve

complex electromagnetic models, based on the finite element method (FEM) described

above. COMSOL Multiphysics, like all FEM software, makes a spatial discretization of

the system that has to be analyzed in many elements with geometry and shape known.

The fundamental steps to setup a generic microdosimetry simulations are:

1. construct the geometry defying as first the dimension of the simulation box and

then the dimension of cells or of the electrical component that is to be simulated;

2. define the materials associated to each geometries;

3. define the mesh grid for the discretization with which we want to visualize the

results;

4. define the source which means the current source or the potential and the ground;

5. impose continuity condition at the internal boundaries;

6. define the integration step to save the results;

7. visualization of results in 2D or 3D graphs.

The software consists of several modules, capable of solving different physical prob-

lems: chemical transport, heat transfer, etc.; for the present thesis the module of the

electromagnetism was chosen.

As will be discussed in the chapters 7 and 8, the Comsol Multiphysics Software has

been used to simulate a cell and a liposomes populations exposed to 12 nsPEFs.

To conclude as whole in this chapter, the multiscale approach adopted in this Ph.D.Overall

Conclusions thesis have been presented. We are faraway to build a kind of bridging domain between

the molecular dynamics simulations and the mesoscale level analysis. Anyhow Kohler at
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al. [Kohler et al., 2015] tried to link the two different methods; indeed they presented an

atomistic-to-continuum methodology, which computes and subsequently displays 3-D

spatio temporal profiles of the electric potential, field, and field gradients immediately

preceding and following the electroporation phenomena. The authors obtained a more

detailed model for the pore formation process through interactions between external

electric field gradients and the cellular membrane. With this paper the authors pro-

posed a methodology that provides a new analyses to these studies by decomposing

continuum parameters such as the electric field into discretized quantities.





Part III

Drug delivery systems activated

by low intensity magnetic fields
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The use of low-intensity magnetic fields in therapeutic applications has increased

widely during these last years. Many researchers focused their attention on the use of

magnetic field for therapeutic purposes, as cancer treatment, inflammation, and neu-

ronal diseases, even including the most recent approaches based on nanotechnology and

nanomedicine. Among the new nanotechnologies, the liposomal drug delivery system is

a novel technique that allows having a controlled release of a drugs encapsulated in a

nanocarrier (i.e. liposomes) by the application of an external (electric, magnetic, ther-

mal) stimulus. Moreover, the ability of pulsed electromagnetic fields (PEMFs) for the

treatment of inflammations status is well know and more often researchers are focusing

their attention on the capability of such pulses to generate a cell response despite the

low magnetic field intensity. In this part, firstly experiments and then the design of a

magnetic exposure setup will be presented for magneto-liposomes drug delivery applica-

tions.

In detail in Chapter 5 an experimental activity will be presented concerning liposomes

vesicles preparation loaded with superparamagnetic nanoparticles and exposed to a low

intensity pulsed magnetic fields (PEMFs), to prove the feasibility of a magnetoliposomal

(MLs) drug delivery system mediated by PEMFs. The starting point of this work has

been to firstly reproduce experimental data presented in [Spera et al., 2015] testing the

feasibility of MLs poration exposed to an alternate magnetic field (AMF). Here exper-

iments using an AMFs exposure are presented to verify the triggered MLs release with

our sample preparation, before proceeding with the PEMFs stimulation.

Pulsed magnetic fields are not only employed as trigger agent on magnetoliposomes

systems, but for other interesting biomedical applications involving stimulation of the

nervous system as the Transcranial Magnetic Stimulation (TMS) used to map possible

neuronal damages due to strokes or to treat neuronal disorders. Usually, both for drug

delivery systems or the TMS stimulation laboratory experiments are needed to prop-

erly define in-vitro and in-vivo outcomes, therefore the need of a multipurpose exposure

system for low intensity magnetic fields is demanding. In Chapter 6 of this part a

closed-form analysis and a numeric modeling approach are reported for the design of a

versatile magnetic exposure system suitable for different in-vitro applications (i.e. mag-

netoliposomes drug delivery and studies for the understanding of magnetic stimulation

action at single cell level) that could able to generate intensities of the order of mT in

a frequency range up to 20 kHz.





Chapter 5

Drug delivery systems mediated

by low intensity magnetic fields

5.1 Introduction

In recent years, a great number of investigations have been reported on exploiting pos-

sible role of magnetic nanoparticles (MNPs) in enhancing magnetoliposomes delivery

of the drug as explained in the Section 2.4. In fact as previously mentioned (see

Sec. 2.4) hybrid liposomes composed of thermo sensitive phospholipids and magnetic

nanoparticles (MNPs), such as iron oxide MNPs, were shown to have enhanced release

of a model drug when exposed to an external alternating current magnetic field (AMF)

due to the magnetocaloric effect and a negligible release without exposure to an AMF

( [Pradhan et al., 2010, Preiss and Bothun, 2011]). The release due to the thermal in-

crease depend on the magnetic field intensity (1-10 kA/m) and frequency (10-100 kHz),

at which MNPs embedded into liposomes, are able to convert magnetic field into heat,

either from hysteresis losses or from Neel or Brownian relaxation processes [Guardia

et al., 2012]. As explained in the section 2.4, researchers [Nappini et al., 2010, Spera

et al., 2014], by selecting field frequencies and strength that are several orders of magni-

tude lower than those needed for the magnetic thermal approach [Nappini et al., 2010,

Spera et al., 2014], have investigated the possibility to induce a possible release coming

from the MNPs oscillation without a thermal increase. This hypothesis arises from the

finding that AMF-induced oscillation of MNPs was proved to be able to mechanically

damage cancer cells in vitro [Cheng et al., 2014].

65
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Indeed, aimed to investigate only the mechanical actuation of MNPs by non-heating

alternating magnetic field , Spera et al. [Spera et al., 2015] used a low amplitude (v

70 µ, 20 kHz) alternating magnetic field (AMF) as a remote trigger for magnetolipo-

somes release. Under such conditions, no heating effect occurred and therefore, the

employed field was called ”non-heating”, and hence only non-thermal effects was taken

into account. The authors combined hydrophilic Fe3O4 nanoparticles (MNPs) with the

hydrogenated soybean phosphatidylcholine (HSPC) and cholesterol to design a suitable

carrier model. The obtained vesicles are referred as non-temperature sensitive magne-

tovesicles (Tm > 50 ◦C) since their membrane can exist only in the ordered state within

the experimental temperature interval and neither spontaneous leakage nor thermal re-

sponsiveness can occur up to 50 ◦C. It was demonstrated that these high-Tm MLs,

including in their aqueous core 5-(6)carboxyfluorescein (CF) used as hydrophilic model

drug, were able to release almost 20 % of dye fluorescent after three hours of AMF

exposure with intensity of 60 A/m. Such low amplitude non thermal AMF gives some

more supplementary advantages to the classic magneto-thermal approach (see Sec. 2.4).

Mechanical actuation of magnetic nanoparticles, by non-heating alternating magnetic

field, provides an opportunity to overcome the drawback of heating-AMF actuation an

to create conditions to consider MNPs and low amplitude AMF prospective as powerful

therapeutic tools.

By the way, non-thermal magnetic fields are already employed in therapy because of

their ability to down-regulate specific cytokines in an inflamed environment [Varani

et al., 2017, Setti et al., 2017]. In particular, biophysical stimulation with pulsed elec-

tromagnetic fields (PEMFs) has been demonstrated to exert an anti-inflammatory effect

resulted in early pain control and enhanced functional recovery in the knee diseases as

mentioned in the section 9.1. Recently, the I-ONE medical device from IGEA (Carpi,

Italy), able to generate a peak magnetic field of 1.5 mT at a frequency of 75 Hz, was

tested in order to reduce knee osteoarthritis lesion progression with long term positive

benefits for patients [Veronesi et al., 2014, Gobbi et al., 2014]. It is well known that

when loaded with a suitable therapeutic agent, an anti-inflammatory in this case, a

single-dose intra-articular administration within a synovial joint of liposomes, can be

used to treat the inflammatory process [Ramos et al., 2007, Soriano-Romańı et al.,

2017, Stokes et al., 2016].

In this context, the combination of magneto-carriers and PEMFs is an exciting direc-

tion of research, where synergistic properties of both modalities could be effectively
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utilized for inflammatory reduction and remotely-activated drug delivery. A novel con-

cept of combined action in multiple localized treatments could be proposed joining

the functionalities of the magneto-mechanical actuation and the healing properties of

a non-thermal magnetic field: both could work in close synergy together with drug-

loaded nanocarriers that are able to control drug release by application of a remote

magnetic field in order to maximize the efficiency of an anti-inflammatory therapy in

future medical applications.

For this purpose, in this chapter, the aim is to point out evidence of the mechanical

actuation of high-Tm MLs by a pulsed electromagnetic fields (PEMFs).

Firstly experiments of MLs exposed to an non thermal alternate (AMF) magnetic field

generated by two Helmholtz coils, have been performed to replicate the data from Spera

et al. [Spera et al., 2015] and to asses the already verified triggered release from the

MLs. Magnetoliposomes were prepared by means of incorporating commercially avail-

able carboxymethyl-dextran coated magnetite nanoparticles within the aqueous core

of the HSPC vesicles. 5(6)-carboxyfluorescein (CF), was co-incorporated in the core of

magneto-vesicles and used as hydrophilic model drug to test the release of the inves-

tigated nanosystems. Samples were exposed firstly to the AMF with B field intensity

of 70 µT in continuum modality for different time intervals and the drug release was

compared to the one obtained without the magnetic field application (sham exposure).

Subsequently, the drug release profile from high-Tm MLs and the I-One device has been

tested for its potentiality to mechanically modify the structure of the HSPC/cholesterol

high-Tm liposomes, thereby providing spatial and temporal control over drug release.

In this case the intensity increased to 100 µT and the release trends related to sequen-

tial PEMFs switching ON and OFF, were also evaluated.

The experiments have been carried out in collaboration with the research group of

Prof. Petralito, expert in liposomes preparation, from the faculty of Chemistry and

Technology of Drugs of ”Sapienza”, University of Rome. Regarding the experiments

carried out with PEMFs, the I-ONE medical device from Igea group (Carpi, Italy) has

been used, in collaboration with Dr. Ruggero Cadossi.
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5.2 Materials and Methods

5.2.1 Materials for liposomes preparation

Hydrogenated soybean phosphatidylcholine (HSPC) Phospholipon 90H from Lipoid

GmbH (Germany)was kindly gifted by AVG Srl (Italy). Cholesterol, 4-(2-hydroxyethyl)

piperazine-1-ethanesulfonic acid (HEPES), 5(6)-carboxyfluorescein (CF), Triton X-100

(TX-100), Sephadex G-50 and hydrochloric acid (HCl) were purchased from Sigma

Aldrich (Italy). Chloroform was obtained fromMerck (Italy).

Bidistilled water, thiocyanatoiron, 1,2-dichloroethane and ethanol were supplied by

CarloErba Reagents (Italy). Aqueous dispersion ofcarboxymethyl-dextran coated mag-

netite (Fe3O4) 50 nm nanoparticles fluidMAG-CMX were obtained from Chemicell

GmbH (Germany).

Calorimetric investigations with Differential scanning calorimetry (DSC131 (Setaram,

France)) was performed on HSPC/Chol/MNPs and HSPC/Chol without MNPs mix-

tures in the same molar ratio used for vesicles preparation. Samples (5 mg) were

weighted in sealable aluminum pans, 20 µl of distilled water was added, and then the

pans were hermetically sealed. At least three heating/cooling cycles in a temperature

range from 20 to 70 ◦C under nitrogen flow (20 ml/min) were performed on all the sam-

ples before thermograms were recorded at a rate of 5 ◦C/min. An empty aluminum

pan was used as reference.

Liposome preparation

Magnetoliposomes, MNPs-embedded liposomes, were prepared by the thin lipid film

hydration method (Fig. 5.1), followed by sequential extrusion. HSPC and cholesterol

(5:1 molar ratio) were dissolved in the minimum volume of chloroform and the organic

solution was poured into a round bottom flask. The organic solvent was evaporated

under reduced pressure at 60 ◦C until a thin lipid film was formed on the bottom

of the flask. The dry lipid film was then hydrated at 60 ◦C in a 10ml of 10 mM

HEPES buffer solution (pH = 7.4) containing Fe3O4 nanoparticles and 20 mM 5(6)-

carboxyfluorescein sodium salt. Final lipid concentration was 10 mM and magnetite

to phospholipid ratio was 200 g Fe3O4/mol HSPC. Control liposomes, without MNPs,

have been prepared by adding CF to the buffer used during the hydration step. The
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Figure 5.1: Thin lipid film hydration method for the magnetoliposomes (MLs) preparation.

suspensions were vigorous stirred until complete dispersion of the film. Multilamellar

polydisperse vesicles were downsized by repeated extrusion (Lipex extruder, Canada)

at 60 ◦C through Cyclopore polycarbonate membrane filters (Whatman). Two steps of

ten extrusions through membranes of 0.8 µm; 0.4 µm and 0.2 µm pore sizes allowed the

preparation of unilamellar vesicles with a narrow size distribution (peak around 200

nm) as is possible to appreciate from fig. 5.2. The unencapsulated fluorescent tracer CF

and the non-entrapped ferrofluid nanoparticles were removed by size exclusion chro-

matography (SEC, see Fig 5.1) with a Sephadex G-50 column. The eluent was 10 mM

HEPES buffer solution (pH = 7.4). All liposome formulations were stored in dark at 4
◦C and used within 1 week.

Physicochemical characterization of liposomes

The Size, size distribution and ζ-potential of both control liposomes (CLs) and MLs

were measured with a Zetasizer Nano ZS90 (Malvern Instruments Ltd., UK). Hydrody-

namic diameter and polydispersity index (PdI) were evaluated by dynamic light scat-

tering (DLS) experiments, whereas ζ-potential was measured by electrophoretic light

scattering (ELS) experiments. The DLS and ELS techniques used a photon correlator

spectrometer equipped with a 4 mW He/Ne laser source operating at 633 nm. The
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Figure 5.2: Dynamic light scattering (DLS) of the magnetoliposomes solution. It is possible to appre-
ciate a well uniform 200 nm liposomes population. The measure was repeated three times.

particle size diameter was determined by Stokes-Einstein relationship. All experiments

were performed at a scattering angle of 90 ◦C after diluting 10 times the samples with

HEPES buffer solution pH=7.4 and were thermostatically controlled at 25 ◦C. In figure

5.2a the DLS for the MLs sample is reported. Moreover in figure 5.2b the DLS for the

MLs sample when the Triton-X-100 is added to disrupt the vesicles and have the 100

% of CF released as will be explained in the next section; it is possible to notice how

only one peak is present at 10 nm, meaning the no entire liposomes are present in the

solution.

Measurements of the CF released from liposomes

The fluorescence intensity of CF (excitation 492 nm, emission 512 nm) was monitored

by means of the spectrofluorometer LS 50B (Perkin Elmer, USA). The purified liposome

suspension was diluted with HEPES buffer pH 7.4 (10 ml) and the fluorescence was

measured before and after treatment with 50 µl of Triton X-100 to induce vesicles lysis.

For all the fluorescence measurements the overture of the slit was settled 2.5/4 for the

excitation and emission wavelength respectively. The CF calibration curve was obtained

working with and without Triton X-100 at lithic concentration in order to evaluate the

influence of the non-ionic surfactant on the fluorescence-based measurement. In the

figure 5.3 the calibration curve of the CF is shown. With the calibration curve of

the CF, the aim is to find the highest concentration of CF that can be incorporated
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Figure 5.3: Fluorescence measurements for the CF solution from low to high CF concentration.

into liposomes in order to avoid quenching or de-quenching phenomena to be able to

read a fluorescent measure at the spectrofluorometer, which has a limit of 900 A.U.

Here, in order to have a margin for the fluorescence evaluation, the limit for the highest

CF concentration has been considered 700 A.U. In this way the concentration value

of 5x10-7 moli/L is the maximum CF concentration that can be incorporated into

liposomes. In order to reduce the influence of excitation light irradiation, all data were

obtained at the same timing as soon as the excitation and emission conditions were set

up. The released CF percentage was calculated as:

CF releasae (%) =
(Ft − F0)

(Fmax − F0)
× 100 (5.1)

where Ft is the fluorescence of individual liposomal samples, F0 is the background

fluorescence of the purified liposomal solution and Fmax is the final intensity when

vesicles are completely destroyed by adding TX−100 solution at 30 %. In figure 5.4 an

example is reported for the fluorescence measurements at different lipid concentrations.

At chosen Mls sample concentration (based on the CF calibration curve) the fluorescent

is read and the percentage of the CF release is calculated by considering the fluorescence
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Figure 5.4: fluorescent release of the purified liposomal solution (blue line), exposed MLs sample to
three hours of AMF exposure (green line), the final CF intensity when vesicles are completely destroyed
by adding TX−100 solution (orange line).

value before the AMF exposure and when the Triton-X-100 is added to have the 100

% of CF loaded into vesicles.

Moreover in order to ensure that no CF release occurred next to a thermal increase,

the HSPC liposomes have been heated in a thermal bath at a temperature up to 60
◦C. In Fig. 2.5 it can be appreciated how the liposomes start to release at the lipid

transition temperature of 48◦C, ensuring no CF release in the thermal bath of 37◦C,

at which the magnetoliposomes are immersed during the magnetic exposure.

Negative staining transmission electron microscopy

The morphology of the vesicles was examined using transmission electron microscopy

(TEM). A drop of a water-diluted suspension of the Mls (0.05 mg/ml) was placed on

a copper grid, which allowed the adsorption of the vesicles. The excess of water was

removed letting the grid drying on a filter paper. Then, a drop of an aqueous solution

of uranyl acetate (1% w/v) was added and left in contact with the sample for 5 min.

After this time, the excess of the uranyl acetate solution was removed with a filter
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Figure 5.5: Thin lipid film hydration method for the magnetoliposomes (MLs) preparation.

paper and the samples were dried at room temperature before the vesicles were imaged

with a TEM (Zeiss EM 10, Germany) operating at an acceleration voltage of 60 kV.

Assay of phospholipids

Phospholipid concentration was determined using the phosphorus colorimetric assay.

Briefly, aliquots (0.4 ml) of phospholipids in 50 % v/v ethanol were added to a mixture

of 1 ml of thiocyanatoiron reagent and 0.6 ml of 0.17 N HCl. The solution was incubated

for 5 min at 37 ◦C and then the thiocyanatoironphospholipid complex formed was

extracted with 3 ml of 1,2- dichloroethane by vigorous shaking for 2 min in a vortex-

type mixer. The mixture was centrifuged for 2 min and the absorbance of the lower

layer was measured at 470 nm against a blank without substrate, using a double beam

Lambda 25 (Perkin Elmer, USA) UV-Vis spectrophotometer. The measurements were

repeated both before and after SEC purification of extruded samples.

Assay of magnetite

Magnetite content in magnetoliposomes was determined through the method described

by Belikov et al. An opportune amount of magnetite solution was added with 0.08 ml

of Triton X-100 20 % to disrupt the phospholipid vesicles. The volume was adjusted



74 5. Drug delivery systems mediated by low intensity magnetic fields

Figure 5.6: AMF exposure setup (a) consisting of a pulse generator, an amplifier and two squared
Helmholtz coils, generating a magnetic field of 70 µT; (b) exposure of the magnetoliposomes solutions
immersed in a thermal bath at 37 ◦C and exposed to AMF.

to 5 ml with 8.5 % HCl and the absorbance was read at 320 nm in a Lambda 25

spectrophotometer (Perkin Elmer, USA). The calibration curve was performed with

standards solutions of magnetite. The measurements were repeated both before and

after SEC purification of extruded MLs. All the data collected were used to calculate

magnetite/phospholipid ratio as µmol of magnetite by mmol of lipid.

5.2.2 AMF exposure setup

For the AMF exposure setup, we used a Hewlett Packard HP−3314A pulse generator

applying a voltage of 1.67 V at frequency of 20 kHz. Next the generator, a Krohn−Hite

7500 amplifier was connected to feed two Helmholtz magnetic coils (see Fig. 5.6a),

generating a magnetic field intensity of 70 µT. The dimension of the Coil is a length of

20 cm, thickness of 5 cm and placed at distance of 10 cm.

The magnetoliposomes samples were placed at the center, between the two coils

(see Fig. 5.6b) in a thermal bath at 37 ◦C to ensure a stable temperature during the

experiments, well below the transition temperature of the HSPC vesicles (v 50 ◦C).

Both Mls and liposomes with no nanoparticles (sham) were exposed to the AMF, in

order to possibly quantify the spontaneous leakage of the vesicles. The exposure time

was of three hours in continuum and then period of ON (3 hr) and OFF (21 hr) for the

same sample was done for a total of 12 hours of exposure. The fluorescent release was

measured for both samples next the AMF exposure as explained in the section 5.2.1.
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Figure 5.7: Magnetic fields maps of four different planes. Lower plane, center plane and upper plane.
Then a trasversal center plane in the z direction.

Characterization of the AMF exposure setup

Because the Helmholtz coils, were not characterized in terms of homogeneity of the B

field, before proceeding with the experiments we measured the magnetic field inside the

coils as follow. We performed measurements with a triaxial magnetic probe (Metrolab

THM1176-MF three axis hall magnetometer, 1.65 x 0.5 x 0.23 cm3), at the ENEA

Center ”Casaccia”. Four different planes were mapped and the results are reported in

Fig. 5.7. It is possible to appreciate an homogeneity of 60 % in the center volume of

15 x 15 x 6 cm3.

5.2.3 PEMF exposure setup

For the PEMF exposure, the medical device IGEA called I-ONE, a product that is

already CE certified, has been used. The coil generated a pulse of magnetic field with

intensity of 1.5 mT with a repetition frequency of 75 Hz.

In fig. 5.8 it is visible the system I-ONE and the following elements are shown:
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Figure 5.8: I-One coil exposure setup with the generator, the power supply and the solenoid.

1. generator;

2. power supply;

3. solenoid.

I-ONE is constituted by a generator of low frequency pulsed electromagnetic field which

generates a current pulse signal and delivers this signal to an external coil (the solenoid),

generating a pulsed electromagnetic field with specific characteristics. The pulsed signal

has the following temporal characteristics:

• duration of the active phase of the signal: 1.3 ± 0.1 ms;

• repetition frequency: 75 Hz (which is equivalent to a repetition time period be-

tween two successive pulses of 13.3 ms);

• amplitude of the peak value: 1.05 A.

In table 5.1 the geometric and electric characteristics of the I-ONE coil are reported.

The magnetoliposomes samples were placed at a distance of 13 cm obtaining a

magnetic field of 100 µT (Fig. 5.9a) on the exposed samples. The samples were placed

also in this case in a thermal bath (Fig. 5.9a) and during the exposure an aluminum

foil was used to cover the bath, in order to avoid any release due to the light. The

choice of the distance at which place the samples, has been done following a dosimetry

analysis of the I−One Coil and a sample of exposed solution as will be explained in
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Figure 5.9: (a) Exposure setup of the MLv sample and the I-One coil; the MLs samples are placed
in a thermal bath at 37 ◦C, at a distance of 13 cm from the I-ONE medical device (b) current signal
feeding the coil; (c) coil geometry used to perform dosimetric simulations in the frontal exposure view;
(d) magnetic field streamline of the coils and the magnetic field surface inside the exposed sample.

the following section. One sample was used for the experiment, repeated four times to

perform statistical analysis.

Numerical Modeling of the I−One for the choice of the B field intensity

To evaluate the intensity to which expose the sample, numerical simulations have been

performed with the Software Sim4Life 2.1 in the frequency domain for Magneto Quasi-

static simulations. In particular having fixed an intensity comparable to the one of the

experiments in CW (100 µT), the distance between the exposure samples and the coil

has been derived. The Sim4Life v2.2 (ZMT, Zurich MedTech AG) platform combine
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computable human phantoms with the most powerful physics solvers and tissue models,

for directly analyzing biological real-world phenomena and complex technical devices in

a validated biological and anatomical environment. The Sim4Life platform also offers

many physics solvers and advanced tissue models, for analyzing biological phenomena

and complex technical devices. The Sim4Life is an interactive environment for model-

ing and simulating scientific and engineering problems. Here the Magneto Quasi-static

solver has been used. The simulations were performed at frequency of 250 Hz (the

first lobe of the spectral of the signal). The model geometry is reported in Fig. 5.9c.

The cuvette has been simulated as a cylinder with 7.5 cm of height and a radius of

0.6 cm, filled for a half with a conductivity solution (0.049 S/m), which represents the

magnetoliposome solution conductivity (see Fig. 5.9c) experimentally measured. Such

solution has been measured thanks to the dynamic light scattering (DLS) instrument.

The conductivity value has been obtained as mean value on 28 measurements with a

standard deviation of 0.005.

A fine grid mesh (0.6 nm of resolution) has been adopted for the mesh of the coils and

a more accurate resolution has been chosen for the cuvette discretization (0.4 mm of

resolution). The feeding current was of 240 A, considering one simulated current wire

(Nwires = 240). The distance between the sample and the coil is, starting from the

single simulated wire, of 15.5 cm, chosen based on a linear fitting (13 cm) considering

a magnetic field of the coil of 1.5 mT plus taking into account the thickness of the

I-One device (white color in Fig. 5.9a) and the thickness of the cuvette and thermal

bath recipient.

Magnetic, electric and current density distributions

Number of Coils 240

Copper section 0.355 mm

Mean coil 49.3 cm

Resistance (nominal) 21.2 ohm

Inductance (nominal) 18.5 mH

Length 16 cm

Width 12 cm

Table 5.1: Solenoid characteristics
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Figure 5.10: (a) current density and the electric field (b) distribution inside the exposure sample is
reported.

In figure 5.9d and 5.10 the magnetic, electric field and current density are reported

for the exposure sample when a 1.5 mT of magnetic field is applied.

In figure 5.9d the magnetic field streamline and the B field distribution inside the

exposure sample is reported, showing a B field of 100 µT when 1.5 mT is applied. The

magnetic field appear to be homogeneous in the exposed sample. As expected, also the

electric field and current density are reported 5.10a and b, showing low intensities, the

range of mV/m and less than mA/m2, that determine no significant heating during the

exposure to the PEMFs.

Moreover, the dosimetry of the I-One medical device has been done experimentally

from a previous Ph.D. student, Dr. Francesca Camera (Ph.D. in Electronic Engineering

Cycle XXVIII at Sapienza University of Rome).

5.3 Results

With the regard to the liposomes characterization, no differences was observed in vesi- Physicochemical

characterization

of liposomes
cles size among control liposomes (CLs) and MLs as shown in table 5.2.

Both nanocarriers arranged in a monomodal distribution with a PdI values < 0.200.

The ζ-potential value of CLs in the buffer medium is negative, moreover the more

electronegative character of the MLs system suggests the presence of some negatively

charged MNPs absorbed onto the external leaflet of the phospholipid bilayer. Hydra-

tion step of the dry lipid film during liposome preparation was not influenced by the
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Figure 5.11: TEM images of soybean HSPC liposomes conventional (a) or iron oxide nanoparticle-
liposome hybrids MLs (b)(scale bar: 200 nm).

presence of MNPs in the hydrating medium. Finally, the drug-loading efficiency is not

limited by the co-loaded MNPs inside vesicles (Table 5.2). This finding is of paramount

importance for the possibility to use of the investigated MLs as smart drug carrier. Af-

ter SEC purification, the lipid and the magnetite content were determined. In Figure

5.11a and b the TEM images of conventional (CLs) and MLs structures are showed,

respectively. CLs and MLs exhibited similar size and structure, which indicates that

MNPs interaction did not affect MLs formation at the lipid/MNPs ratio employed. The

average diameter of all the structures observed was 200 nm, consistent with membrane

extrusion (Fig. 5.11c). TEM images (Fig. 5.11) suggest that interaction between MNps

and HSPC lipids leads to hybrid colloidal structures magnetoliposomes, the iron oxide

nanoparticle can either decorate the liposomal surface or be internalized inside the vesi-

cles as either individual nanoparticles or MNP aggregates. Sometimes, nanoparticles

are concentrated on one side of the vesicles. Unencapsulated nanoparticles were not

observed outside the liposome vesicles throughout the TEM grid, as consistent with

the efficacy in the SEC purification step.

Next to the characterization of the MLs, with the aim to replicate and assess the CFAMF exposure

release from HSPC MLs exposed to AMFs [Spera et al., 2015], firstly we performed

experiments of MLs under an AMF of 70 µT of intensity at a frequency of 20 kHz. The

experiments were carried out considering one sample of MLs and one of conventional

Sample z-average (nm) Pdl ζ-potential (mV) 5 (6)CF E.E. (µl/mg)

CL 220.9 ± 22.4 0.046 ± 0.028 -10.28 ± 1.43 2.29 ± 0.26

MLs 240.9 ± 26.6 0.131 ± 0.031 -15.42 ± 1.51 1.84 ± 0.13

Table 5.2: Physicochemical characterization of conventional liposomes (Cl) and magnetoliposomes
(MLs).
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Figure 5.12: Results of the CF release from MLs (magnetoliposomes) in time domain with a total of
12 hours of AMF exposure with OFF time of 21 hours for each 3 hours of exposure.

liposomes (CLs), with no nanoparticles, placed at the center between two Helmholtz

coils, in a thermal bath at 37 ◦C. The results in terms of percentage of fluorescent re-

lease are reported in fig. 5.12. After three hours of exposure a fluorescent release of 17

% of CF was appreciated, by confirming the data from [Spera et al., 2015]. After that,

the samples were stored at 4 ◦C for 21 hours and then exposed again for additional 3

hours with a 6 % of release. Next the AMF was turned off for more 21 hours and then

turned it on for more 3 hours and an additional release of 26 % was reached. At the

end after 3h + 3h + 3h + 3h the last 9 % of Cf was released form the MLs samples.

A total of 58 % has been obtained, by confirming the triggered release from the alter-

nate magnetic field, as proven by [Spera et al., 2015]. For the conventional liposomes

(CLs) in figure 5.13 the total percentage of CF release was about 11 % after 12 hours,

meaning that the spontaneous CLs release is negligible with the respect to the 58 %

obtained with the AMF application. Probably the 11 % of CF release is due to the

thermal shock between the liposomes storage temperature (4◦C) and the thermal bath

(at 37◦C) during the magnetic field exposure.

Moreover, with the respect to the data published in [Spera et al., 2015], here a

triggered release is achieved with the AMF application, but not in the same amount

for each ON period of 3 hours. These behavior could be addressed to the possible

aggregation of nanoparticles after the first 3 hours of AMF exposure or for the losing of
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Figure 5.13: Results of the CF release of CLs (conventional liposomes) after 12 hours of switching ON
(3h) and OFF (21h) the AMF exposure.

the magnetic nanoparticles from some liposomes structures. This last hypothesis has

been supported by the TEM (transmission electron microscopy) images taken after the

12 hours of AMF exposures (see Fig. 5.14). As explained 5.2.1 the TEM is a technique

that allow visualize molecular structures of nm dimensions and to possible predict the

presence, in our specific case, of nanoparticle on the vesicles surface. From the figure

5.14 the TEM images of MLs after 12 hours of AMF exposure is reported and a par-

ticular shape of the liposomes is highlighted (see Fig. 5.14b). The membrane of some

liposomes changed its shape by losing the nanoparticles (see Fig. 5.14b). Moreover,

few nanoparticles can be appreciate. This could explain how after 12 hours no release

occurred. Unfortunately no images were taken before the AMF exposure.

Once confirmed the results of the release after 12 hours of ON - OFF exposure toPEMFs exposure

AMF, the MLs samples have been exposed to a pulsed electromagnetic fields (PEMFs)

of 100 µT of intensity, by using the I-One medical device as described in 5.2.3. We

placed one samples of MLs for four different exposures in order to perform a statisti-

cal analysis (see Fig. 5.9). We did a set of exposures from 15 minutes up to 3 hours
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Figure 5.14: (a)-(b)TEM images of the MLs after 12 hours of ON-OFF AMF exposure (3h + 3h +
3h + 3h).

in continuum modality. As is possible to appreciate in fig 5.15, after 15 minutes of

magnetic field application more than 5 % of the CF is released (see Fig. 5.15). After

the three hours of exposure the CF released reached the value of 17 % (see Fig. 5.15)

with a standard deviation not higher than 0.8. These data suggest the possibility with

the PEMFs signal to obtain a liposomal drug delivery systems without disrupting the

vesicles membranes. Besides, the temperature (with a Luxtron 3100 fiber optic temper-

ature probe) was monitored inside the MLs sample during the exposure and no thermal

increase was denoted.

Moreover, MLs samples were monitored in a thermal bath of 37 ◦ (shame samples) for

a time up 9 hours in order to detect the release coming from the MLS leakage when no

B field is applied. No significant CF release was denoted, a release of 3 % after three

hours and of 4.7% after 9 hours was obtained.

In order to evaluate the capability of PEMFs to trigger the CF release with ON and

OFF periods as done in [Spera et al., 2015]), we exposed the same MLs samples to

additional 3 hours of B field application (after 21 hours of OFF state, storage at 4 ◦C)

and an extra release of 7 % was obtained (Fig. 5.16). After additional 3 hours (3h + 3h

+3h, for a total of 9 hours) no release was appreciated. The CF release saturated after

3h + 3h + 3h hours of exposure, showing almost 2 % of CF release. With the respect



84 5. Drug delivery systems mediated by low intensity magnetic fields

Figure 5.15: Results of the CF release from MLs (magnetoliposomes) next to the PEMFs exposure of
100 µT.

to the MLs exposed to the AMF, here with PEMFs it seems that the release was not

repeatable after the same time of exposure (3h + 3h + 3h) suggesting a possible loss

of magnetic nanoparticles due to the different signal applications.

In order to valued this hypothesis, after each PEMFs exposures, TEM (Transmission

Electron Microscopy) images were taken as explained in section 5.2.1. It is good

to keep in mind that with the TEM technique it is not possible to determine if the

magnetic nanoparticles are inside or outside the vesicles, because it is a 2D surface

representation. The TEM images were taken right after each exposure (Fig. 5.17). In

figure 5.17 the images of the different exposures time are showed, at the 0 time (before

PEMFs exposure, Fig. 5.17a), after 3h ( Fig. 5.17b), at 3h + 3h (Fig. 5.17c) and 3h

+ 3h + 3h hours(Fig. 5.17d). Before the exposures to PEMFs, the MLs structures is

perfectly integer with the magnetic nanoparticles on the surface or/and presumably

internalized into vesicles (see Fig. 5.17a); after three hours the MNPs are widespread

distributed into solution but still present also on the liposomes surface and also into the

membrane (Fig. 5.17b). When an additional three hour of exposure is done ( 5.17c),

the most part of the MNPs seem to be escaped from the liposomes vesicles, indeed
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Figure 5.16: Results of the CF release from MLs (magnetoliposomes) next to the PEMFs exposure of
3h +3h and 3h + 3h + 3h (with OFF periods of 21 hours).

is possible to highlight how the MNPs visible are out of the vesicles on the liposomes

membrane (see Fig. 5.17c, green circle). This ”MLs escape”could explained the 7 % of

release obtained with the respect to the 17 % of the first 3 hours. Furthermore, after

3h + 3h +3h of exposure (see Fig. 5.17d) no MNPs are present, justifying the 2 % of

CF release.

By the analysis from the TEM images, is possible to conclude that by the PEMFs stim-

ulation, the MLs loss their nanoparticles almost after six hours of exposure, differently

from the AMF system were the release was repeatable for a time up 12 hours [Spera

et al., 2015]. This behaviors could be addressed to the different kind of signal; in the

case of AMF is a sinusoidal signal with a 50 µs duration of one period of the signal,

that could stimulate the MLs at one side and then in the opposite side giving the same

release after the same time of stimulation. While, a single pulse of the PEMF has a

duration of 13.3 ms and could stimulate for a longer time and in the same direction
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Figure 5.17: TEM (Transmission Electron Microscopy) images of Mls before the PEMFs exposure (a),
after 3h, 3h + 3h and 3h + 3h + 3h of B field application (b, c and d).

the MLs, by leading to the loss of the magnetic nanoparticles from the liposomes core.

5.4 Conclusions

In summary, in this chapter a proof-of-concept of the magnetoliposomes release under a

PEMFs exposure has been given. High-Tm magnetoliposomes (MLs) using the HSPC

lipid were prepared and iron oxide nanoparticle MNPs, were encapsulated into the

liposomes aqueous core. To probe the membrane permeation and release behavior of

high-Tm MLs, CF as a model of hydrophilic drug, was loaded into the MLs core, with

satisfactory values of CF-loading efficiency (see Tab. 5.2).
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The Mls and the conventional liposomes (Cls) were exposed to an alternate magnetic

field (AMF) of 70 µT. From our experiments a triggered release was reached with a

58% of CF release after 12 hours by switching ON and OFF the alternate magnetic

field (ON period of 3h and OFF of 21h) until almost complete depleting of the carrier

as already demonstrated in Spera et al. [Spera et al., 2015].

Once, assessed the MLs release next to the AMF application, the goal has been to test

a liposomal drug delivery mediated by PEMFs using the I-One medical device, able to

generate a magnetic field of 1.5 mT of absolute value. Thanks to numerical simulation

the distance at which place the sample, was chosen in order to have a magnetic field

of 100 µT of root-mean square value. The samples were immersed in a thermal bath

at 37 ◦C. The CF release was around the 5 % after 5 minutes of exposure and the

17 % was reached after the first 3 hours of B field application, as happened with the

AMF application. Conversely, switching ON (3h) and OFF (21h) the magnetic field,

only the 7 % of CF was released (3h + 3h) and an additional 2 % was reached by

adding 3 more exposure hours (3h + 3h + 3h). By the TEM images analysis, it has

been possible to asses how after the 3h + 3h of exposure (switching ON and OFF the

B field), the magnetic nanoparticles escaped from the liposomes core, possibly due to

the different signal duration and shape with the respect to the alternate magnetic field

as explained in the result section (see Sec. 5.3). Anyhow, it is important to highlight

how also with PEMFs usually used for the treatment of inflammation status, it seems

possible to have a controlled release from MLs structures, that could be used as future

anti-inflammatory cargo release system from magnetoliposomes to diseased tissues.

Generally, both with the AMF and with PEMFs we have demonstrated the possibility

in two different way to have a controlled CF release from liposomes vesicles due to the

mechanical stimulation and not to the thermal exposure. In fact, these experiments

demonstrated that the cargo release from the high-Tm MLs was due to reversible

and controllable permeability change of the bilayer, rather than the destructure of the

high-Tm MLs, that maintain their structures over the whole experiment duration as

demonstrated by the TEM images and from the dynamic light scattering measurements.

The hypothesis done is a release mechanism due to a mechanical stress on the liposome

membrane due to nanoparticles oscillations in its proximity.





Chapter 6

Versatile exposure system for

laboratory experiments finalized

to therapeutic applications in the

IF range

6.1 Introduction

As already mentioned in the previous chapter (see 5.1), more often researchers are fo-

cusing the attention on the ability of low intensity magnetic fields for the treatment of

different inflammation status, cancer or neuronal disorders. With the wide spread of the

technological progress the use of magnetic field as external stimulus for inflammatory

and neuronal disease therapies and drug delivery systems for nanomedicine has consid-

erably increased [Rodzinski et al., 2016, Ross, 2013]. The progresses in nanomedicine,

as described in the part I ranges from nanoparticles for molecular diagnostics, imaging

and therapy to integrated medical nanosystems [Nune et al., 2009, Shi, 2009] to act at

the cellular level inside the body.

At this purpose, stimuli-response release of a drug from an ad hoc designed nanocarrier

(e.g. liposomes), at a specific time and location is one of the most aimed results of the

drug delivery research (see Ch. 5). Besides the typical triggers used for the liposomes

drug delivery systems (pH, temperature, ultrasound, etc.) some studies and the exper-

iments presented in the previous chapter (Ch. 5) suggested that even magnetic fields

89
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of low intensities are a good trigger to control the release of the drugs has reported in

the previous chapter (Ch. 5) and in [Nappini et al., 2010, Spera et al., 2015]. The aim,

with this kind of applications, is to achieve the therapeutic efficacy without a thermal

effect, which could affect the patient for prolonged time of the treatment, and to this

regard in-vitro and in-vivo laboratory experiments are required to tune the intensity

and the frequency of the applied field.

On the other side, highly interesting applications of magnetic fields concern non-invasive

stimulation of the central nervous system, such as the Transcranial Magnetic Stimu-

lation (TMS) technique [Corthout et al., 2001] or the low-intensity pulsed magnetic

field stimulation (PEMFs) [Di Lazzaro et al., 2013]. Although TMS efficacy has been

clinically proved [Corthout et al., 2001] to map possible neuronal damages from strokes,

neuronal diseases or amyotrophic lateral sclerosis [Pashut et al., 2014], the action of

magnetic fields on neuronal structures is still poorly known, so that in-vitro and ex-

vivo studies are necessary to explore such effects at molecular and cell level [Di Lazzaro

et al., 2013, Pashut et al., 2014].

In this context, to obtain a precise dose-response relationship, specific exposure systems

are necessary, mainly based on single or multiple coils [Di Lazzaro et al., 2013, Pashut

et al., 2014], that guarantee a uniform and well-known magnetic field within the ex-

posed sample, in terms of peak value, waveform and polarization. The aim of the work

presented in this chapter is to design a versatile magnetic exposure system, suitable for

different in vitro experiments, at the basis of the therapeutic applications of MLs drug

delivery and magnetic stimulation techniques. For the drug delivery application, the

aim is a system able to porate MLs by a mechanical stress without a thermal increase

at the typical experimental frequency of 20 kHz [Spera et al., 2015]. Concerning the

in vitro application the aim is the exposure of brain slices, adherent to the surface of

an exposure chamber, to a low-intensity magnetic field at the frequency of 3 kHz [Paffi

et al., 2015], to stimulate and map the cells avoiding any thermal increase.

The exposure system able to fulfill the requirements of both applications, consists of

two new squared Helmholtz coils, designed to produce a magnetic field with intensity

in the order of mT in a frequency range between 1 and 20 kHz, by analyzing all ge-

ometrical and electrical parameters involved. After the analytic identification of the

geometrical parameters, numerical simulations have been performed for both applica-

tions to calculate the dose on the exposed sample in terms of magnetic induction (B),

electric field (E), and current density (J). Moreover, also a circuital analysis is reported
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to adapt the present magnetic exposure system (see Sec. 5.2.2) to the new coils both for

a sinusoidal or a pulse signal application. This procedure will ensure a multi-purpose

system suitable to validate laboratory experiments at the basis of the most adopted

therapeutic applications using magnetic fields in the IF frequency range.

6.2 Material and Methods: design of the exposure system

Analytical model

The design of the new magnetic field exposure system started from the specific require-

ments of the versatile exposure system as:

• intensity of the B field in the order of up to some mT;

• frequency range [1-20 kHz];

• exposure region able to host either a disposable plexiglas cuvette or a suitable

chamber for brain slices;

• overall impedance adequate to be fed by a commercial low cost chain of generator

and amplifier.

We performed a first analytic study through the standard set of equations of Helmholtz

coils [Wang et al., 2002], dimensioning the geometry and composition of the setup

(Fig. 6.1), in order to reach magnetic field intensities in the order of mT and in a wide

frequency range (from 1 to 20 kHz).

Numerical model

To validate the chosen geometrical and electric parameters, we performed numeri-

cal simulations using the Software Sim4Life 2.1 in the frequency domain for Magneto

Quasi-static simulations. Sim4Life is a simulation platform, combining computable

human phantoms with the most powerful physics solvers and advanced tissue models,

for analyzing biological phenomena and complex technical devices. The Sim4Life is an

interactive environment for modeling and simulating scientific and engineering prob-

lems. Taking into account fabrication requirements indicating a practical easiness in

realizing square coils vs circular ones, we simulated the two coils as squared current
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Figure 6.1: (a) Geometry of the Helmholtz coil, R is the radius and distance between the two coil, I
the current; (b) zoom of the coil section with the wires number N, the coil thickness t and the wire
diameter d.

wire of 15 cm, placed at 7.5 of distance (see Fig. 6.2a) powered with a current of 120

A (the project required current of 0.6 A multiplied per the number of 200 wires). For

both applications, the magnetic field has been applied in the perpendicular direction

with the respect to the current flow.

Concerning the simulations for the MLs exposure system, we performed two simu-MLs exposure

system lations considering a cuvette placed at the center between the two squared coils and

considering the upper and lower bounds of the frequency interval of interest: 1 and

20 kHz (Fig. 6.2b), also according to previous experiments carried out with a different

magnetic exposure system (see Sec. 5.2.2, [Spera et al., 2015]). The cuvette has been

simulated as a cylinder with 7.5 cm of height and a radius of 0.7 cm, filled for a half

with a conductivity solution (0.049 S/m), which represents the magnetoliposome solu-

tion conductivity, experimentally measured. Such solution has been measured thanks

to the dynamic light scattering (DLS) instrument. The conductivity value has been

obtained as mean value on 28 measurements with a standard deviation of 0.005. A fine

grid mesh (0.6 nm of resolution) has been adopted for the coils and a more accurate

resolution has been chosen for the cuvette discretization (0.2 mm of resolution).
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Figure 6.2: (a) Coils geometrical model with coil side of 15 cm placed at 7.5 of distance. In red the
current flow; (b) drug delivery exposure system consisting of a cuvette placed at the center between
the two coils with dimension of 7.5 of height, 0.6 of radius and per 3.5 cm filled with the solution;(c)
in-vitro exposure system with the chamber placed between the Helmholtz coils, to the left of the image
the section for the chamber is reported with a diameter of 2.5 cm, filled with the artificial cerebrospinal
fluid solution.

Regarding the numerical simulations of the magnetic exposure system for the neu- in-vitro neuronal

cells B exposuresronal cells in-vitro experiments, we simulated a chamber placed at the center between

the two coils (Fig. 6.2c) containing a circular section (2.5 cm of diameter) in which

are supposed to be placed the cell slices. We carried out the simulations at frequency

of 3 kHz, typically used for this kind of applications [Di Lazzaro et al., 2013]. The

dimensions of the chamber are 8.9 x 6 x 2.5 cm3. The chamber is made of plexiglass

with the solution simulated as artificial cerebrospinal fluid, typically used in these kind

of experiments, with 1.7 S/m of conductivity and a permittivity value of 66830.8. The

artificial cerebrospinal fluid is present both in the cone representing the slice holder

and in the rest of the plexiglass chamber. A fine grid mesh has been used for the

coils and the chamber while a resolution of 0.5 nm has been adopted for the artificial

cerebrospinal fluid solution.

Circuital Model

In order to match the load impedance of the projected coils to the existing exposure

system (see Sec. 5.2.2), specifically to the Krohn−Hite 7500 amplifier, a circuital study

has been performed by using the LTSpice software. LTSpice is a high performance

spice simulator, which provides a variety of custom design simulation tools and de-

vice models to allow a quickly and easily circuits evaluation using high performance
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Figure 6.3: Datasheet of the Krohn−Hite 7500 amplifier.

switching regulators, amplifiers, data converters, filters. By the data-sheet of the am-

plifier, the working voltage and current of the amplifier are 100 V and 0.6 A and a load

impedance of ZL = 100 Ω (see Fig. 6.3) is required in order to achieve the maximum

current transmission between the amplifier and the coils system at frequencies up to

100 kHz.

6.3 Results

By the analytic model using the formula reported in [Wang et al., 2002], the geometri-Analytical design

cal and electric parameters as coil geometry and shape, coil thickness, number of wires

have been calculated as reported in Table 6.1. The dimension of the Helmholtz coil

system satisfies the requisite of suitable volume available for the sample holder leaving

an overall volume accessible of 12 x 12 x 7.4 cm3.

Once identified the geometrical and electric parameters, a numerical study has beenNumerical model

performed. As a first step, the magnetic field distribution between the two Helmholtz

coils has been evaluated, when an electric current of 120 A is applied at a frequency

of 20 kHz. The data are shown in Fig. 6.4 in terms of a 2D map of the magnetic field

intensity in the xz and yz plane (see Fig. 6.4a and b). The field reaches an intensity of
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Figure 6.4: Magnetic field distribution. (a) 2D map of the magnetic field intensity in the xz and yz
plane (b), a magnetic field up to 2 mT is achieved with a good uniformity. (c) Streamline of the
magnetic field is presented with flow lines going in the field direction.

2 mT near the coils and of 1.4 mT in the volume where the samples are supposed to be

exposed. The magnetic field streamlines are reported in Fig. 6.4c showing the direction

of the magnetic field between the two Helmholtz coils. The magnetic field intensity of

1.4 mT validates the project guidelines identified with the analytic study.

This result is also confirmed from the study of the magnetic field uniformity in the

volume between the coils (see Table 6.2). In Table 6.2 it is possible to notice a homo-

geneity of the magnetic field of 95 % in the exposure volume of 9.12 x 9.12 x 7.5 cm3.

Successively the aim has been to evaluate the electric and current distribution when

the exposure sample was exposed to the magnetic field for a dose-dependent analysis.

Our sample holders are the cuvette (Fig. 6.2b) and the chamber (Fig. 6.2c) respectively

for MLs drug delivery and the TMS in−vitro applications. As for the magnetic field

distribution, the result is the same reported for the coils system without the presence of The exposure

system for Drug

Delivery

applications

the sample (data not shown). To evaluate the electric field inside the cuvette sample,

Diameter 2R 15 cm

Thickness t 0.89 cm

Current I 0.6 A

Number of wires N 200

Distance R 7.5 cm

Resistance R 1.76 ohm

Inductance I 23.5 mH

Table 6.1: Geometrical and electric parameters of the Helmholtz coil.
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Figure 6.5: Magnetic field distribution. (a) Electric field streamlines are reported in the xy plane,
suggesting a high electric field at the cuvette side and lower electric field inside the cuvette as showed
in the 2D map of E (b) at the frequency of 20 kHz. (c) 2D map of the electric field at the frequency
of 1 kHz resulting in a good homogeneity of the electric field inside the solution.

the streamline and a 2D map of the electric field distribution is reported (Fig. 6.5a

and b respectively) for the experimental frequency of 20 kHz compared with the one

of 1 kHz (Fig. 6.5a). It is possible to notice how inside the cuvette the electric field

distribution is not highly homogeneous, highest to the side of the cuvette and lower to

the center (Fig. 6.5a and b), in particular for the frequency of 20 kHz. Nevertheless,

the electric field never reaches the value of 1 V/m, which means that no appreciable

thermal increase can be generated from these electric field distributions, despite their

in-homogeneity. As expected, decreasing the frequency to 1 kHz a higher homogeneity

Magnetic field homogeneity

95 % 90 % 80 %

∆x cm 9.12 10.36 11.86

∆y cm 9.12 10.36 11.86

∆z cm 7.49 8.98 11.60

Useful Volume cm3 622.97 963.52 1631.65

Table 6.2: Magnetic field homogeneity
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Figure 6.6: Magnetic field distribution. (a) Current density streamline inside the cuvette and the 2D
current density map (b) for the frequency of 20 kHz in the xy plane. (c) 2D map of the current density
inside the cuvette at the frequency of 1 kHz.

is reached for the electric field (Fig. 6.5c), with even lower intensities in the order of

some mV/m.

A similar result is observable looking at the 2D maps of the current distribution inside

the cuvette at 20 and 1 kHz (Fig. 6.6a, b and c). In fact, also current density distribu-

tions are more homogeneous at the lower frequency of 1 kHz, with values always below

0.03 A/m2, ensuring a negligible thermal increase to the sample for the magnetic field

exposure.

Moreover, in order to study the electric field variation inside the cuvette sample de-

pending on the samples number and their position between the coils, we performed

simulations at 20 kHz with 8 cuvette (Fig. 6.7a), by using always a conductivity of

0.049 S/m.

No variations were detected for the E field distribution with the respect to the one

cuvette case, and a mean electric field of 0.413 V/m was reached inside of all the cuvette

(Fig. 6.7) with a standard deviation of 0.075 V/m.

The second part of this work is related to an exposure system for in-vitro experiments In-vitro magnetic

stimulation

exposure system
on real cells and in particular on neuronal cell slices stimulation. To reach this objec-



98
6. Versatile exposure system for laboratory experiments finalized to

therapeutic applications in the IF range

Figure 6.7: (a)Geometric distributions of the 8 cuvette between the coils, d = 1.7 cm and D = 1.35
cm; (b) E field distribution inside 4 cuvette, the result is the same also for the 4 on the other side.

tive we simulated a plexiglass chamber, i.e. the slice holder, placed between the two

Helmholtz coils (Fig. 6.2c), at the frequency of 3 kHz [Di Lazzaro et al., 2013]. The aim

has been to evaluate the electric and density current distribution inside the chamber to

possibly detect secondary effects due to the magnetic field application. The magnetic

field distribution for this setup is the same (data not shown) presented for the MLs

system, ensuring a good exposure of the slices in a wide frequency range (up to 20

kHz). The results for the electric field distribution are reported in terms of streamlines

(Fig. 6.8a) and 2D maps in three different planes, xz, yz and xy respectively (Fig. 6.8b,

c, d). The electric field results to be higher to the plastic region of the chamber and

lower in the liquid solution (blue color) as expected due to the higher permittivity value

of the artificial cerebrospinal fluid solution. Moreover, looking at the 2D map in the xy

plane (Fig. 6.8d) it is possible to appreciate a homogeneous electric field in the volume

in which are expected to be exposed the slices (blue circle) with an intensity in the

order of mV/m. This result guarantees a negligible effect of the induced electric field

and a good isolation of the solution to the thermal effect.

Regarding the current density inside the exposure system, the results are shown in

Fig. 6.9. The streamlines of the current density are reported confirming the current

flowing in the region where the solution is present (red lines). This behavior is con-

firmed also from the 2D maps presented in Fig. 6.9b, c, d in three different planes

(xz, xy and yz respectively). A good homogeneity of the current is achieved in the

region where the slices are supposed to be exposed (red circle). Anyhow, the current

increment (up to 2 mA/m2) can be considered slight to do not provoke a significant
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Figure 6.8: (a) The electric field streamlines are reported in the xz plane. The electric field results to
be lower where the liquid is present and higher to the plastic region of the chamber (red and yellow
lines); (b,c,d) 2D map electric field distribution in the xz, yz and xy plane, showing an homogeneous
distribution of the field where the slices are supposed to be placed (d, blue circle).

thermal increase.

Figure 6.9: (a) The streamlines of the current density J are reported, in blue the current density in
the plastic region of the chamber and in red the one inside the solution;(b,c,d) 2D maps of the current
distributions in three different planes along the chamber, xz, xy and yz respectively.
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Figure 6.10: (a) Circuital model of the Helmholtz coils represented as two RL branches in series; (b)
impedance values of the coils electric circuit at frequencies between 100 Hz and 100 kHz.

Once numerically evaluated the magnetic and electric distributions inside the twofold

target (cuvette for MLs exposure and cell slices for in-vitro exposure) the matching

problem is faced. As already mentioned in the material and methods section 6.2, inCircuital study

order to adapt the projected exposure system to the existing amplifier, we needed to

match the load impedance for the coils at a value of 100 Ω as required by the amplifier

data-sheet (see Sec. 6.2 Circuital Model). To reach this objective, a circuital analysis

has been performed by using the LTSpice software. The two coils have been simulated

as two RL (resistance and inductance) in series (Fig. 6.10a). The circuit was feed with

an alternate signal (sinusoidal wave) with intensity of 100 V and an internal resistance

of 5 Ω. The inductance and resistance values, simulating the two coils, are the one

shown in Table 6.1 from the analytic study. In Fig. 6.10b the load impedance value

are reported depending on the frequency. The impedance has been calculated using

the formula:

|ZL| =

√
4R2 +

(
2ΩL− 1

ΩC

)2

(6.1)

where R, L and C represent the resistance, inductance and the capacity respectively

and ω the cutoff frequency. As can be noticed in Fig. 6.10b in our frequency of interest

(1−20 kHz) the value of the load impedance ZL is higher than 100 Ω, not satisfying
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Figure 6.11: Electric circuit showing the two coils (R1L1 and R2L2) with the insertion of the capacity
to obtain a load impedance ZL of 100 Ω.

the impedance required from the amplifier. Due to the need of a load impedance ZL of

100 Ω, we inserted a capacity in series to the RL circuit as showed in Fig. 6.11.

In table 6.3 we reported all the capacity values, that provide the requested impedance

of 100 Ω at frequency of 1, 5, 10 and 20 kHz. The capacity values range from 1.32 to

400 nF.

To conclude the circuital study, in order to match the exposure system, not only when

a sinusoidal signal is applied, the circuit has been adapted when a single pulse of 100 V

and an active phase of 1.3 ms is applied (see Fig. 6.12a). Firstly, we verified if also with

a pulsed signal as input, the circuit resulted already adapted with the insertion of the

capacity as done for the alternate signal. The study has been performed considering the

capacity value of 400 nF, founded for the 1 kHz frequency to match the 100 Ω of load

impedance to the previous alternate signal. As is possible to notice in Fig. 6.12, when

a 100 V pulse is applied (Fig. 6.12a) to the RLC circuit, the current does not give the

expected signal amplitude (v 1.5 A) and shape (see the input voltage shape), in fact

a correlation coefficient of 0.17 is founded between the real and the expected output

signal. With the aim to adapt the circuit, a resistance of 50 Ω has been placed in series

f (kHz) C1 (nF)

1 400

ZL = 100 Ω 5 20.2

10 5.21

20 1.32

Table 6.3: Capacity values at frequencies of interest, that match the 100 Ω of load impedance.
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to the RLC circuit, instead of the capacity, as showed in Fig. 6.13. In Fig. 6.13a the

electric circuit is presented with the insertion of the 50 Ω of resistance that is able to

produce an output signal with a correlation coefficient of 94 (Fig. 6.13b), which means

that the circuit is adapted to the input signal.

From this circuital study, it is possible to conclude that in order to adapt the designed

exposure system both to an alternate (sinusoidal) and a pulsed signal, a capacity or a

resistor, respectively, needs to be placed in series to the coils.

Figure 6.12: (a) 100 V input pulse of 1.3 ms of active phase; (b) Electric circuit showing the two coils
(R1L1 and R2L2) with the insertion of the capacity of 400 nF (frequency of 1 kHz) to obtain a load
impedance ZL of 100 Ω; (c) current output signal that arrives to the coils

Figure 6.13: (a) Electric circuit showing the two coils (R1L1 and R2L2) with the insertion of the
resistance of 50 Ω (b) output signal.
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6.4 Conclusions

In the last years, there has been an increasing attention in new medical treatments

which involve the application of magnetic field in a broad category of diseases (i.e.

neuronal disorders, inflammations, gene and cancer therapies, etc.) [Di Lazzaro et al.,

2013]. In this chapter, the design of a versatile magnetic exposure system has been

presented. The designed system is a multipurpose exposure setup able to be used

for experimental applications as MLs poration for drug delivery and in-vitro magnetic

neuronal cells stimulation. The aim has been a dose-dependent analysis for both appli-

cations to verify the generation of a magnetic field intensity in the order of mT with no

secondary effect on the exposed sample, as a thermal increase due to high endogenous

electric field or current density.

The system is based on a couple of squared Helmholtz coils able to provide an intensity

of 1-2 mT at frequencies up to 20 kHz. Firstly an analytic study has been done to

identify the geometric and electrical parameters to fulfill the project requirements. A

dimension of 15 cm and a current of 0.6 A with 200 wires have been identified.

Next to this analytic study, numerical simulations were performed using the software

Sim4Life to validate the geometric and electrical parameters and to analyze the mag-

netic field intensity. A magnetic field intensity of 1.4 mT has been obtained in the

volume between the coils where is supposed to be placed an exposure sample. A homo-

geneity of 95 % has been calculate in a volume of 9.1 x 9.1 x 7.5 cm3 of exposure. Next

to this evaluation, two different simulations have been carried out, one considering a

cuvette filled with a conductivity solution of 0.049 S/m (experimentally measured) for

MLs drug delivery purpose and another one with a chamber placed at the center of the

coils filled with artificial cerebrospinal fluid solution for in-vitro applications.

Regarding the simulations of the MLs drug delivery system, at the frequency of 20 kHz,

we reported the 2D map of the E and J inside the solution obtaining an electric field

below 1 V/m and a current density in the order of mA/m2. With this results it can be

excluded any possible thermal effect acting on the solution during the magnetic field

exposure. This outcome has been confirmed also at the frequency of 1 kHz where a

more uniform and low E and J values have been reached inside the cuvette.

Concerning the exposure system for in-vitro experiments, we simulated a plexiglass

chamber containing an artificial cerebrospinal fluid solution, the typical buffer used for

brain slices in-vitro exposure, placed at the center between the two coils. The simula-
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tion has been made at the typical TMS frequency [Di Lazzaro et al., 2013] of 3 kHz.

Both for the induced E and J the results have been a good homogeneity in the volume

of the slice exposure with low values for both observable in the mV/m and mA/m2

range respectively.

Next to the numerical study, a circuital study has been carried out to match the 100

Ω of load impedance of the amplifier already present in the laboratory experimental

setup. In order to have the maximum current feeding the coils system, a capacity is

needed to be placed in series to our coils when an sinusoidal signal is applied. The

capacity values have been calculated ranging from 1 to 400 nF for frequencies from 1

up to 20 kHz. Moreover, in order to match our system when a pulsed signal is applied

of 1.3 ms of active phase, a resistance of 50 Ω is needed in series to the coils instead of

the capacitor to have the maximum transferred current.

The results obtained suggest that the designed exposure setup could give the possibility

to have negligible thermal increase in two of the principal therapeutic applications of

low intensity magnetic fields in the IF frequency range, with the possibility to reach

intensity in the order of mT without compromising the sample due to secondary effects.



Part IV

Nanosecond pulsed electric fields

for liposomal drug delivery

systems
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As already mentioned in the section Sec.2 smart drug delivery systems represent an

interesting tool to significantly improve the efficiency and the precision in the treatment

of a broad category of diseases.

Because with this Ph.D. thesis the aim is to investigate the application of EM fields

for medical purposes, in this context, a drug delivery mediated by nanosecond pulsed

electric fields is reported since it seems a promising technique, allowing for a controlled

release and uptake of drugs by the synergy between the electropulsation and nanocar-

riers (e.g. liposomes) with encapsulated drugs. The main concern about the use of

electroporation for drug delivery applications is the difference in dimension between the

liposome (nm range) and the cell (µm range). The choice of liposome dimension is

not trivial. Liposomes larger than 500 nm of diameter could be recognized as pathogen

agents by the immune system, while liposomes of smaller size would require external

electric field of high amplitudes for the membrane electroporation that could compromise

the cell viability.

The aim in the Chapter 7 has been to theoretically study the possibility of a simul-

taneous cell and liposomes electroporation. The analytic study of a 12 nsPEF will be

performed by the analysis of its spectral frequency content. Then, the liposomes mem-

brane poration will be explored for liposomes of 100, 200 and 400 nm of diameter. As

latter, numerical simulations of a cell plus 200 nm liposomes are reported to study the

possibility to electroporate the cell and a significant percentage of liposomes with com-

parable values of external electric field, when a 12 nsPEF is used.

Next in the Chapter 8 the design and characterization of a 10 nsPEF exposure system

is presented for liposomes exposure and preliminary experimental data are reported.

The design and the characterization of the applicator have been carried out choosing an

electroporation cuvette with 1 mm gap between the electrodes. The structure efficiency

has been evaluated at different experimental conditions by changing the solution conduc-

tivity. Moreover, with the aim to analyze the influence of device performances on the

liposomes electroporation, microdosimetric simulations have been performed considering

liposomes of 200 and 400 nm of dimension with different inner and outer conductivity

in order to identify the voltage needed for their poration. Then, to perform a more real-

istic microdosimetric model, a non uniformly liposomes population has been simulated

by using the chosen conductivity values. Finally, preliminary experiments have been

carried out on a 250 nm liposomes population applying an electric field of 9 MV/m.





Chapter 7

Exploring the Applicability of

Nano-Poration for Remote

Control Liposomal Smart Drug

Delivery Systems

7.1 Introduction

The application of pulsed electric fields on a cell structure causes the permeability of

its membrane due to the rise of the transmembrane potential with respect to a resting

condition [Kotnik et al., 2010, Joshi and Schoenbach, 2010].

This phenomenon, known as electropulsation, has allowed the development of several

interesting applications, as mentioned in the Section 2.3 such as the anticancer elec-

trochemotherapy [Miklavčič et al., 2012, Cadossi et al., 2014], electrofusion [Teissie

and Rols, 1986, Rems et al., 2013], gene electrotransfer [Mir et al., 1999, Calvet et al.,

2014], beverages sterilization and food processing [Saulis, 2010].

As already anticipated in the Section 2.3, with the advancement of technology, the use

of electric pulses of shorter duration (nanosecond) and higher intensity (in the order of

MV/m) (nanosecond pulsed electric fields, nsPEF) allows to directly interact with in-

ternal cell organelles (e.g. nucleus, endoplasmic reticulum, mitochondria, etc.) [Beebe

et al., 2003b, Scarlett et al., 2009, Breton and Mir, 2012, Denzi et al., 2013]. This

aspect expanded the horizon of the scientic experiments [Breton and Mir, 2012] and

109
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the development of microdosimetric models [Kotnik and Miklavčič, 2006, Merla et al.,

2011] helping clarify the not yet completely understood effects of the nsPEF on in-

ternal organelles. The use of nsPEF for potential drug delivery applications can be a

promising technique because it might allow the controlled release of drugs encapsulated

in a nanocarrier (i.e. liposomes) by the application of an appropriate electrical stim-

ulus. The goal is to design, engineer and introduce into the body molecular carriers

of nanoscale dimension (hundreds of nm) that would release drugs close to the target

cells directly at the place where the drugs must act using controlled application of an

external electric field and avoiding any damage to healthy cells and to the surrounding

tissues. Thus, the drugs would act locally, and additionally their release could be sus-

tained over a period of time in a controlled manner.

Liposomes are one of the classical carriers (see Section 2.2) used in medicine for drugs

encapsulation and delivery [Xiang and Anderson, 2006, Seigneuric et al., 2010, Stuart

et al., 2010]. They are widely used in medicine applications thanks to their non− toxic,

biocompatible and biodegradable characteristics [Mitsopoulos and Suntres, 2011], and

they act as physical barriers to protect the internal drug from degenerative enzymes.

As mentioned in the Section 2.2, liposomes can be activated both from endogenous

and exogenous stimuli as pH variation, thermal increase, magnetic or electric stimuli.

Recently, some studies began to evaluate the effects of pulsed electric fields on lipo-

somes of giant dimension (micrometer scale) because they are representative of a good

cell model [Breton and Mir, 2012, Portet et al., 2012, Breton et al., 2015]. However,

their large size does not allow this kind of liposomes to be used for drug delivery appli-

cations because they could be recognized as a pathogen agent by the immune system

[Miyata et al., 2011] and also the liposomes composition is important whenever or not

an immunologic response is generated [Perrie et al., 2001, Watson et al., 2012].

Recently, Retelj et al. [Retelj et al., 2013] studied, by means of a numerical model, a

biological cell containing a nucleus and small internalized artificial lipid vesicles (lipo-

somes) of different nanometer sizes (from 50 to 500 nm) located in different sites in

the cytoplasm. The authors of the paper predicted the selective electroporation of the

liposome and cell membrane as a function of the inner liposome conductivity and/or

the cytoplasm conductivity through the application of electric pulses of different du-

ration (4, 10, 20 and 50 ns). In addition, it was also shown that the position of the

liposomes inside the cell does not play a significant role in the electroporation process.

For the study, the liposomes were placed inside the cell with the aim of an intracellular
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drug release. Conversely with the work presented in this chapter, the idea of using

liposomes placed outside the cell is carried out as it seems a situation easier to achieve.

The novelty in the usage of nsPEFs relies in the possibility to cause both the cells

and the liposomes membranes electroporation; in such a way, the liposome poration

could permit the drugs release in the extracellular medium, close to the cells, and an

easy uptake of the drugs by the electroporated cells can be achieved (concept similar

to the electrochemotherapy one, with the benefit of the increased drug concentration

in the tumor due to its vectorization in liposomes, used as nanocarriers). The size of

the liposomes is a critical parameter that needs a compromise between the amplitude

of the field and the immune system response. The first one has to be intense enough to

allow for the electroporation process, while it is important to avoid the immune system

reaction to liposomes of large dimensions (i.e. with diameter 500 nm) [Miyata et al.,

2011]. Until now, the main concern in the use of liposomes combined with electropo-

ration is that the biological cells are of much larger dimensions than the liposomes,

and, according to the usual Schwan′s equation at steady-state [Postow and Polk, 1996,

Kotnik and Miklavcic, 2000], they are permeabilized by field values much smaller than

the ones needed to permeabilize a liposome [since, under these conditions, there is a

direct proportionality between the transmembrane potential (TMP) and the radius],

as usually is required in electrofusion applications [Ramos et al., 2002, Demange et al.,

2011]. As a consequence of this, the intensity of the electric pulse able to reversibly

permeabilize the liposome would cause, at the same time, too drastic effects on the

biological cell (e.g. irreversible electroporation, cell death, etc.). Here, the idea is to

combine cell and liposomes for drug delivery mediated by electroporation relies on the

high frequency content of the nsPEF signals that cause the steady-state Schwan′s equa-

tion to lose its validity [Pakhomov et al., 2010]. In such case, it is necessary to consider

a second-order model as in [Postow and Polk, 1996, Kotnik and Miklavcic, 2000, Merla

et al., 2012] in which the dimension effect is not as critical and the permittivity and

conductivity values become more important [Silve et al., 2015].

The aim of this chapter is to present the proof-of-concept of the nsPEF inducing a TMP

variation (e.g. 1 V) able to achieve electropermeabilization in the liposome membrane

with electric field amplitudes similar to the ones needed to simultaneously permeabilize

a biological cell membrane. This demonstration would open the way to a feasible use

of nanopulses for smart drug delivery applications where the electric pulse acts as a

remote controller of the drug release by the carrier and as facilitator of the drug loading
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by the cell. To explore this possibility, this work is focused on a theoretical analysis

through a microdosimetric study of liposome vesicles with dimensions up to 400 nm

both alone and in more complex systems such as a 200 nm liposomes distribution sur-

rounding a cell, in order to study the influence of liposomes between each other and

with respect to the cell electroporation.

7.2 Materials and Methods

Microdosimetric Models: Liposome Alone and a Complex System of a

Cell plus liposomes

To demonstrate the possibility to use nsPEF on liposomes with dimension in the range

of hundreds of nanometers, 2D numerical simulations were carried out using the soft-

ware Comsol Multiphysics v. 5.0. The 2D models consist of a rectangular box with

dimensions of 70 x 100 µm representing the extracellular medium in which first a li-

posome alone and then a complex of a cell plus liposomes in different positions were

placed (Fig. 7.1). The field amplitude was set to 1 MV/m and the pulse duration,

considered as width at half height, is of 12 ns (rise and fall time of 2 ns and tON =

10 ns). The simulation was settled considering the right and the left sides of the box

as electrodes, while the upper and the lower sides as electrically insulated. The right

electrode was set to the ground, and the 12 nsPEF excited the left one.

Liposome Model

Considering that in the experiments the dimensions of the liposomes, the ionic con-

centration of the buffer solution and of the vesicle core can be controlled and varied,

the numerical simulations were carried out with a different set of liposome dimensions

and of external and inner conductivity values. Firstly, a single liposome with diameters

(dlip) of 100, 200, and 400 nm (Fig. 7.1a) was placed in the centre of the box, between

the two electrodes. The membrane thickness (dm) was set to 5 nm, and the external

and the inner liposome conductivities (σext and σint) were set from 0.05 to 1.5 S/m.

All the other parameter values are displayed in Table 7.1.
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Figure 7.1: (a) The model of the liposome alone considering different liposome diameters: dlip = 100,
200 and 400 nm. (b) The cell plus the 200 nm liposomes distribution model; the liposomes are placed
at a distance D of 200 nm between each other and up to 1.2 µm from the cell surface; cell dimensions
are a = 3.5 µm and b = 11 µm.

System of the Cell Plus a 200 nm Liposomes Distribution

After the evaluation of the nsPEF effects on liposomes of different dimensions, as will

be discussed in the next section, a system of an ellipsoidal cell (i.e. myocyte), plus a 28

liposome distribution of 200 nm size (Fig. 7.1b) surrounding the cell, was implemented,

in order to analyze the effects of the simultaneous presence of them. Since the ellipsoidal

shape could well represent a number of human cells (i.e. myotubes, retina photoreceptor

cells, etc.) [Hu and Joshi, 2009, Radu et al., 2005], we decided to model the cell with

an ellipsoid with minor and major semiaxes of 3.5 and 11 µm (a and b, respectively,

Fig. 7.1b). The membrane thickness (µm) of the cell was set to 5 nm. At the pole

side, four 200 nm spherical liposomes were placed from tangent position up to 1.2 µm

of distance with respect to the cell. The same set was replicated considering different
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angles starting from the pole to the equator. The simulations were carried out with

the external conductivity fixed at σext = 1.5 S/m (the same for the inner conductivity

of the liposomes σint). The high conductivity medium can induce a more efficient cell

reversible permeabilization [Silve et al., 2015] and hence could permit the auspicated

simultaneous cell and liposome membrane poration with the same E field intensity. The

cytoplasm conductivity was set to 0.3 S/m as in [Denzi et al., 2015]. The permittivity

values for the cell are also reported in Table 7.1.

7.3 Results and Discussion

The Concept

The combination of a liposome of small dimensions and a cell of large ones (ratioCell and liposome

dimension Rcell/Rlip ≈ 100) leads to the analysis of how the dimensions of the liposome and the

cell can influence the electroporation effects on this type of structures. The results for

the TMP in the frequency domain, due to the applied nsPEF (Fig. 7.2a), are reported

in Fig. 7.2b for the ellipsoid cell and a liposome with 200 nm size, described in the

Section 7.2. The figure 7.2 shows how the geometrical and electrical parameters could

influence the TMP response in terms of physical mechanisms that occur in the cell or

liposome. In static conditions and at low frequency values, the well−known Schwan′s

equation, for spherical structures, reports a linear relationship between the TMP and

the dimension of the structures [Postow and Polk, 1996]:

TMP = f sERcos(φ) (7.1)

Dielectric properties εr σ (S/m)

External medium 67a 1.5c

Cell and Liposome Membrane 11.7a 1.1x10-7a

Cytoplasm 67a 0.3a

Inner Liposome 67a 1.5c

Table 7.1: Electric parameters for cell and liposomes; a [Merla et al., 2012];a [Denzi et al., 2015]; c

[Silve et al., 2015]
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Figure 7.2: (a) Applied electric field and its spectrum, (b) TMP in frequency for cell and liposome
structure.

where f s is a function that depends on cell and external medium characteristics [Kotnik

et al., 1997], its value for a spherical shape in physiological conditions is about 3/2,

E is the applied external electric field, R is the radius of the considered structure and

φ is the angle with respect to the electric field direction. The direct proportionality

of the TMP and the radius in Schwan’s equation at low frequency determines that

the ratio between the fields necessary to electroporate the cell and the liposome is

equal to Rcell/Rlip, and this is confirmed from Fig. 7.2b. Moreover, the differences

in terms of liposome and cell radii determine a different validity limit of the static

approximation in the frequency range; in particular, for the cell its validity is for a

frequency value up to hundreds of kHz and for the liposomes it is up to tens of MHz.

This means that a different physical phenomenon occurs in the liposome and cell in the

frequency range [100 kHz v 10 MHz] in which the static approximation is not valid for

the cell but still valid for the liposome. For frequencies above the limits of the static

approximation, the previous formula 7.3 is not valid, and the TMP starts to decrease
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Figure 7.3: Concept of liposomal drug delivery system mediated by nano-electroporation.

with the frequency [Postow and Polk, 1996, Kotnik and Miklavcic, 2000, Kotnik et al.,

1998]:

TMP (ω) = f s(ω)ERcos(φ) (7.2)

where

f s(ω) =
3σ*ext

[
3dmR2σ*int + (3d2

mR− d3
m)(σ*m - σ*int)

]
2R3(σ*m + 2σ*ext)(σ

*
m + 1

2σ
*
int)− 2(R− dm)3(σ*ext - σ*m)(σ*int - σ*m)

(7.3)

and σ*i = σ*i + j ω εi , with ext referring to the extracellular medium, int for the

internal of the structure and m for the membrane. In this case, the TMP(ω) is a second-

order system with two poles and two zeros as it can be seen by the decay followed by

the plateau in Fig. 7.2b.



7.3. Results and Discussion 117

Figure 7.4: Eth is the electric field intensity necessary for the membrane liposome poration of different
dimension.
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The dependence of these poles and zeros by the cell or liposome parameters is re-

ported in Fig. 7.2b and is analysed in detail in [Merla et al., 2012]. The first pole

that determines the beginning of the β relaxation range depends mainly on the di-

mension of the structures, the membrane characteristics and the internal and external

conductivities. The second pole and the two zeros depend mainly on all the electrical

characteristics (conductivity and permittivity) of the internal and external media. As

widely explained in [Merla et al., 2012] and [Denzi et al., 2013], in the highest fre-

quency range (grey background in Fig. 7.2b), mostly in the GHz region, the main effect

is due to the dispersion of the compartments. In this work, this effect is disregarded

since the pulse duration is of 12 ns [Merla et al., 2012]. Considering the frequency

content of a 12 ns pulsed electric field (first lobe at around 100 MHz, Fig. 7.2a), it is

possible to notice that both the cell and the liposome are above the β relaxation. In

this region, the two curves are very close together and the ratio between the two TMP

values is very close to 1. This means that for a pulse with high frequency content, as

a 12 nsPEF, the electric field necessary to permeabilize a liposome (nanometer size)

and a cell (micrometer size) could be very similar leading to a possible simultaneous

permeabilization without compromising the cell vitality, so that reversible electroper-

meabilization could occur on both membranes facilitating the drugs release from the

liposomes to cell (Fig. 7.3).
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Figure 7.5: Liposome transmembrane potential variation (calculated at the pole of the liposome)
increases with liposome diameter (dlip= 100, 200, 400 nm); Eth lip is the electric eld intensity necessary
for the membrane poration.

Analysis of the Liposome Parameters

Choice of the Liposome Dimension

In order to analyze the influence of the liposome dimension, three numerical simula-

tions considering liposomes with diameters of 100, 200, and 400 nm have been carried

out considering different conductivity values as explained in the material and methods

section. In Fig. 7.4 the results in terms of electric field needed for the liposome pora-

tion are reported, considering that a TMP of ∼ 1 V is needed for the poration [Smith

et al., 2006]. A high inner conductivity value is chosen, for the simulation with the

cell, which facilitates (see Eth values in Fig. 7.4, yellow highlight) the electroporation

of liposome as already reported also in [Tekle et al., 2005]. As expected, by comparing

with equal high internal and external liposome conductivity (σext = σint = 1.55 S/m),

the TMP (calculated for an external electric field of 1 MV/m) increases with the li-

posome dimension (Fig. 7.5). The higher is the liposome dimension and the lower
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are the E field intensities necessary for the membrane electroporation. The 200 nm

liposome seems to be the best compromise between the E field intensity necessary for

the membrane poration and the response of the immune system that could recognize

too large liposomes as a pathogen agents [Miyata et al., 2011].

Figure 7.6: 2D map of electric field (a) and of the current density (b) around the cell and liposomes
excited with an external pulsed electric field of 1 MV/m at time t = 12 ns

Analysis of Results of the Complex of the Cell and the 200 nm Lipo-

somes Distribution

Based on the previous chosen parameters for the liposome (200 nm of diameter), aElectric field 2D

map
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complex system of a cell plus a 28 liposomes distribution was modeled as described in

Fig. 7.1b. In Fig. 7.6 , a 2D map of the electric field and current density distribution

around the cell and liposomes is presented at t = 12 ns (time of the maximum TMP

variation across the membrane). It is possible to notice how the external E field (see

Fig. 7.6a) and also the current density (see Fig. 7.6b) intensity is lower to the equator

and higher to the pole of the cell as well as of the liposomes. The electric field intensity

distribution is symmetric on the other sides of the cell. This behavior could suggest a

more facilitated poration for the liposomes at the cell pole.

In Fig. 7.7, the result in terms of TMP in the time domain is reported for the cell and TMP on

liposomes and

cell
liposomes placed in different angles with respect to the cell (from pole to equator). The

TMP trend shows that the voltage value across liposomes membrane is similar to the

one of the cell when they are placed closer to the cell pole (Fig. 7.7a, b). Moreover, at

the equator, the difference between the cell and liposomes is more significant but still

remaining with a ratio less than 3 (Fig. 7.7c). Besides, the closer is the liposome to

the cell (i.e. tangent), the higher is the TMP across its membrane, showing a strong

interaction between the liposome and the cell. This result confirms the concept that,

due to the high frequency content of the 12 ns pulse (up to 108 Hz with the highest

frequency contribution occurring during the transients and lowest frequency during

the plateau of the pulse), the dimension is not playing a fundamental role: giving

a ratio, between the external E field intensities necessary for the cell and liposome

permeabilization, in the range of 1/2.5, very far from the ratio of ∼100 predicted in

the low frequency range.

In order to study the percentage of porated liposomes with respect to the cell, the Percentage of

porated liposomeselectric field necessary for the membrane poration (Eth poration) has been analyzed

(see Fig. 7.8).

The result, reported in Fig. 7.8, shows almost the 50 % of porated liposomes when

the cell membrane starts to be permeabilized (green arrow). When the cell membrane

reaches the 10 % of electroporated area, the 80 % of liposomes have been porated

(red arrow). This result suggests that in particular electrical conditions (12 nsPEF),

it will be possible to electroporate almost all liposomes when the cell is at the 10 % of

electroporation, considering this cell exposure level to nsPEFS acceptable in order to

prevent the cell viability, possibly avoiding cell permanent damages [Ibey et al., 2011].
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Figure 7.7: TMP variation of the complex of the cell plus the 200 nm liposomes distribution (placed
tangent and at distance up to at 1.2 µm from the cell) in a medium highly conductive (σext = σint =
1.5 S/m) and at different angles, from pole (a) to the equator (c) of the cell.
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Figure 7.8: Eth poration is the E field necessary for the permeabilization of the liposomes (Eth lip) and
cell (Eth cell). The blue line represents the E field necessary to porate liposomes, and the green and
red lines represent the cell poration at beginning and at the 10 % of membrane poration, respectively.

7.4 Conclusions

In this chapter, the feasibility of the use of nsPEFs for drug delivery applications based

on liposomes as nanocarriers is investigated numerically, analyzing the influence of both

the geometrical and the electric parameters on the cell and liposomes electroporation.

The concept is based on the broad spectra content of a 12 ns electric pulse for which

the Schwan′s equation of the TMP becomes a second−order model [Postow and Polk,

1996, Kotnik and Miklavcic, 2000, Merla et al., 2012] in which the dimension effect is

not as crucial as at the low frequency range. This has been elaborated with the anal-

ysis of the influence on the TMP in time domain due to the geometrical and electric

parameters, which can be controlled in an experimental setup. As for the influence of

liposome dimension on its membrane electroporation, the best choice is a liposome with

a diameter of 200 nm as it results in a good compromise between the E field intensity

required for the membrane poration and the absence of recognition by the immune

system. Based on these results, with the same geometric (dlip = 200 nm) and electrical

parameters (σext = σint = 1.5 S/m), we carried out an analysis of a complex system
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with one cell and a 28 liposomes distribution. The aim has been to study the influ-

ence of liposomes between each other and with respect to the cell in electroporation.

Giving an excitation with a 12 nsPEF, it has been demonstrated that it is possible to

permeabilize the liposomes and the cell with comparable E field intensity in particular

when the liposomes are placed near to the cell pole. This result is confirming that the

difference of the dimensions is not so crucial when using nsPEF.

Moreover, studying the percentage of permeabilized liposomes compared to the cell

membrane, it has been proved that when the 80 % of liposomes is porated, the cell

membrane is porated for the 10 % of its area; in this way, the cell viability is not

compromised, and the liposomes and cell poration can occur with the same E field

intensity. With this numerical study, the possibility to use nsPEF for drug delivery

mediated by liposomes, has been proven. The models permit to identify the electric

pulse characteristics, the external solution and the liposome parameters (dlip = 200

nm and σext = σint = 1.5 S/m) to obtain the electroporation of the cell and liposomes

population applying a comparable electric field intensity, with the possibility to simul-

taneously porate both of them without compromising the cell viability, opening the

way for a possible drug delivery system controlled by the electropulsation.

In the next chapter the design of a liposomes exposure systems to nsPEFs and pre-

liminary experiments will be reported concerning a liposomes solution exposed to 10

nsPEF.



Chapter 8

Technological and experimental

aspects for testing

electroporation on liposomes

8.1 Introduction

In the previous chapter (see Chapter 7) a technique has been proposed combining the

application of nanosecond pulsed electric fields(nsPEFs) with liposomes as nanocarriers

in drug delivery applications. The possibility of simultaneously porating cell membrane

and liposomes with nanometer dimension has been numerically demonstrated in the

case of the delivery of a single electric pulse of 10 ns duration and few MV/m of am-

plitude. This could open the way to a liposomal drug delivery system mediated by

nanoelectroporation, facilitating drugs release from the liposomes to the cell.

The application to cells of one or several nsPEF of 10 ns duration is very common

in nanoporation [De Menorval et al., 2016, Pakhomov et al., 2004]. Different types of

applicators and devices can be used without compromising the shape of the applied

pulse [Denzi et al., 2015, Merla et al., 2010]. Moreover, with the advances in micro and

nano fabrication techniques, some micro-devices are proposed for nanosecond exposure,

integrated also with a microfluidic system [Denzi et al., 2015, Dalmay et al., 2011a,b,

Arnaud-Cormos et al., 2011].

A typical applicator is a standard electroporation cuvette consisting of two plate par-

allel electrodes with a gap of 4, 2, or 1 mm [Silve et al., 2016, 2012, Kohler et al., 2012,

125
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Merla et al., 2010]. In particular, the 1 mm gap cuvette permits generating higher

values of the electric field in the solution,but in such cases the matching with the 50Ω

of the pulse generator can be critical [Silve et al., 2012, Kenaan et al., 2011]. However,

the choice of a 10 ns pulse, due to its frequency content (first lobe at around 80 - 100

MHz depending on the rise and fall times), allows comfortably selecting the cuvette

as applicator, even if the matching conditions of the structure need to be evaluated.

Conversely, for shorter pulse duration (i.e., 3 ns and 1 ns), the complication of a broad-

band matching, up to GHz region, becomes necessary otherwise the cuvette will cause

a significant distortion of the trapezoidal signal. The use of a standard cuvette is also

advantageous in the case of nanometer liposomes exposure late to the necessity to de-

tect a fluorescent release. Indeed, due to their small dimensions, liposomes visibility

under a microscope cannot be possible. In this case the fluorescent measurement is

done with a spectrofluorimeter reader able to detect fluorescent molecule concentra-

tions. This technique requires a minimum volume of solution,easily collected from the

electroporation cuvette [Chen et al., 2006, McNamara and Rosenzweig, 1998].

In this chapter, a methodology for the exposure of liposomes with dimension in the

nanometer scale (in particular 200 and 400 nm liposomes) is proposed in terms of de-

sign of the exposure system combined with theoretical evaluation of the electric field

threshold needed to porate the liposomes with preliminary experimental data on a 250

nm liposome distribution. As a first step, an integrated approach is proposed to deal

with experimental and modeling aspects, with the fundamental role of understanding

and interpreting biological results. Once the specifications needed by the presented

application were clarified, with particular care to the connection with the generator,

the cuvette holder and the transition to the coaxial connector have been designed. A

complete frequency characterization of the final structure, both with numerical mod-

eling and measurements, has been done in order to understand the cuvette response

under different experimental conditions. After the characterization of the exposure

system, a microdosimetry model of the liposomes was also developed to approach the

electric field needed for the poration considering the limitations imposed by the real

experimental setup. As last step preliminary experiments have been settled on a 250

nm liposomes population by applying an electric field of 9 MV/m.
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Figure 8.1: Schematic of the integrated approach necessary to understand the biological results: the
cycle points out the importance of a continuous exchange between the experimental and modeling
aspects.

8.2 Materials and Methods

Integrated approach for biological understanding

The researchers agree that, in biological issues resolution, the cooperation between ex-

periments and modeling must be considered as a fundamental step [Merla et al., 2010,

Apollonio et al., 2013, Denzi et al., 2015, Silve et al., 2016]. In particular, this aspect

is critical and significant when one wants to investigate the interactions between the

electromagnetic fields and the biological objects. In Figure 8.1 a readapted version of

the Kitano cycle proposed for system biology [Kitano, 2002a,b] has been reported and

applied to our issue. The basic concept is the possibility of beginning the cycle at differ-
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ent points of the experimental and model parts. Wherever there is an output from the

cycle,an improvement in our biological knowledge is attained. Two different strategies

exist: ”Model Driven” and ”Experiment Driven”. In the first one, corresponding to the

green part of the cycle, the model part drives the experiments generating a prediction.

In the latter,associated with the red part of the cycle, the process begins from the ex-

perimentation with useful information to build a model able to explain what observed.

When the access to the cycle begins from a particular biological hypothesis or issue(red

arrow in the Figure 8.1 with reported initial hypothesis) or comes from the previous

step of experimental data analysis, starting points and data for the model are provided.

It is possible to build a simulation (that is called the ”dry” experiment) to take into

account the biological aspects, and this can be done at different levels of complexity

(atomistic level and from the cell (micro level) to the tissue and organs levels(macro

level)) [Apollonio et al., 2013, Marracino et al., 2016, Denzi et al., 2015, Casciola and

Tarek, 2016]. The simulation results can be used to formulate hypothesis about the

biological issues or to simulate the behavior of a particular device that then can be used

for the experiments. At this point it is possible to get out from the cycle and compare

the modeling results with the experimental data analysis or alternatively keep cycling

to use the prediction to set up a ”wet” experiment. To setup a ”wet” experiment,a

technological step is needed starting from modeling results. Next, the analysis of the

”wet” experimental results is provided, and a direct comparison is possible with mod-

eling outcomes getting out from the cycle. Alternatively, this analysis can be reused as

a starting point for a new or upgraded model in a continuous exchange of information

and knowledge.

Towards ”Wet” experiments for electroporation on liposomes

The starting points for electroporation applications regard the feature of the pulse andStarting point

the target of the stimulation.

The study of liposomes poration can be the first step for the use of this kind of nano-

carriers in drug delivery applications driven by nano-electroporation. In the previous

chapter (see Chapter 7), it has been numerically demonstrated the possibility to porate

liposomes of dimension up to 400 nm with a 10 ns electric pulse [Denzi et al., 2017].

Starting from these results, here an ideal 10 ns pulse (Fig. 8.2a) has been considered in

the simulations as a good model of the one that our high voltage 50 Ω pulse generator
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Figure 8.2: Electrical stimulus(ideal and measured pulses)and target for nanoelectroporation of lipo-
somes.

(High Voltage Pulse Generator FPG 10-1NM10) is able to produce (i.e., Fig. 8.2b,

example of a measured pulse). The target is represented by liposomes of 200 and 400

nm of diameter (see Fig. 8.2(c)). The selected stimulus and target drove the choice for

the design of the experiments and of the experimental device (following the cycle in

Fig. 8.1). In case of the 10 ns pulse, the spectral content (Fig. 8.2) is mainly contained

in the first lobe (from 80 to 100 MHz) and hence a standard cuvette for electroporation

can be selected as applicator without causing significant distortion on the pulse shape

[Silve et al., 2012, Kohler et al., 2012, Kenaan et al., 2011]. The necessity to reach high

electric field values for the poration of such small liposomes has led to the choice of a

cuvette with 1 mm gap distance between the electrodes (1002561E, BioGenerica, ITA)

and a particular attention has been taken regarding the connection of this cuvette to

our 50 Ω pulse generator (High Voltage Pulse Generator FPG 10-1NM10).
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Figure 8.3: Modeling of the cuvette connection to the 50 Ω generator.

Design of the Applicator

Now, the design of the structure for the connection with the 50 Ω generator has been

reported. In particular, the final proposed structure is shown in Fig. 8.3.

The idea is not to connect directly the coaxial cable to the cuvette [Kenaan et al.,

2011] but to use the coaxial cable as a lateral feed of the cuvette holder.

The device consists of two brass electrodes with an area of 33 x 10 mm2 and a thickness

of 2 mm (Fig. 8.3). The gap between the electrodes is 11 mm and permits the perfect

insertion of the electroporation cuvette between them. The central pin of the coaxial

cable is connected with one of the two parallel electrodes (Fig. 8.3a) and the other

is connected to the external sock (Fig. 8.3b). To mechanically stabilize the structure

but also to avoid a central pin without any protection, a box of Teflon is placed at

the bottom of the structure (Fig. 8.3b). In Fig. 8.3c the complete structure with the

cuvette placed between the electrodes has been reported. The cuvette is a standard

one (1002561E, BioGenerica, ITA), with dimension of active electrodes of 10 x 8 mm2

and gap between them of 1 mm. In the first simulations the cuvette is filled with a

solution with a conductivity of 0.25 S/m calculated, in order to obtain an impedance

of 50 Ω, following the formulation in [Kenaan et al., 2011] for lower frequency in which

the resistive behavior is predominant, Zcuvette = d/(Aσext).

Furthermore, the characterization of the applicator response, for different conduc-

tivity values of the solution filling the cuvette, has been carried out in order to under-
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stand the effect of this parameter on the structure performances. In particular different

conductivity values have been considered: 0.25, 0.55 and 1.6 S/m. It is worth to notice

that the impedance of the cuvette depends on external conductivity values (σext) and

hence the matching with the 50 Ω generator. The change of conductivity determines,

at lower frequencies, a variation of the impedance from 50 Ω to around 23 and 8 Ω for

0.25, 0.55 and 1.6 S/m respectively. As a first step the cuvette is considered fully filled

to guarantee the maximum exposure volume and to avoid sparks in air with higher

input voltage.

To evaluate the performance both in frequency and time domains, the complete struc-

ture has been numerically simulated with finite element software ANSYS HFSS 2015.

A wave port, applied to feed the coaxial cable, is used as input in the frequency domain,

conversely a lumped port with the pulse as excitation is applied in the time domain.

Realization and characterization of the applicator

After the design and characterization of the structure by numerical simulations, the

fabrication process has been performed following the specifications obtained from the

model results.

The electrodes are made in brass; the one connected with the pin of the coaxial cable

has been perforated to allow the insertion of the pin and an easy weld. The second one

has a hole of larger dimension for the insertion of the dielectric. The connection with

the external sock is made wrapping a cylinder of brass previously weld to the second

electrode in proximity of the hole (Fig. 8.4a). The central pin has been passed through

a box of Teflon to be covered. This step has been made also to obtain a stronger

mechanical stability during the application of the pulse. In Fig. 8.4b the complete

structure with the cuvette is reported. The cuvette can be perfectly inserted between

the two electrodes and can lean on the Teflon box. In order to guarantee even more

mechanical stability and a good contact between the holder and the cuvette electrodes,

a further Teflon cover has been designed (Fig. 8.4c). The cover allows to insert the

cuvette and the coaxial cable.

Because the cuvette is disposable, the use of a structure as the one here proposed can

be very useful instead of a direct connection of the coaxial cable with the electrodes

of the cuvette to be renewed at any cuvette usage [Kenaan et al., 2011]. In order to
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Figure 8.4: Realized Structure

characterize the structure, measurements in the frequency domain have been carried

out with an Agilent Techonologies PNA Network Analyzer E8363C (10 MHz - 40 GHz)

with the cuvette filled with solutions at different conductivity values (0.25, 0.55, 1.6

S/m) hence it is possible to obtain the efficiency of the structure under different ex-

perimental conditions. The conductivity values of the solutions were confirmed with

measurement with a Precision LCR Meter E4980A from Agilent.

Microdosimetry model of nanoelectroporation of liposomes

Due to the possible different experimental conditions selectable in the use of liposomes

(e.g. dimensions, inner conductivity and external conductivity), the microdosymetry

analysis carried out on a single liposome (see Ch. 7) have been riconsidered here in order

to understand the voltage needed at the generator for liposomes nano-poration. The 2D

numerical simulations have been carried out using the software Comsol Multiphysics v.

5.0. as explained in the subsection 7.2. All the electrical and geometrical parameters

of the model presented in the Chapter 7 are reported in Table 8.1.

Moreover, since the designed applicator is for liposomes exposure and in order to have a

more realistic model of the solution that experimentally can be exposed to nsPEFs, after

the efficiency evaluation and the chosen inner and outer liposome conductivity values,

two simulations have been carried out considering a randomly distributed liposome

population of 200 and 400 nm of diameter (see Fig. 8.5). As for the simulations on

the single liposome (see Sec. 7.2), the 2D models consist of a rectangular box with

dimensions of 70 µm x 100 µm representing the extracellular medium, in which 30



8.2. Materials and Methods 133

liposomes of 200 and 400 nm of diameter and membrane thickness of 5 nm, have been

randomly placed in an area of 5 x 5 µm2 (see Fig. 8.5). The electric field has been

applied with two electrodes on the box boundaries; in particular on the upper and the

lower edges the excitation of 12 ns pulse and the ground are respectively modeled. The

other boundaries are electrically insulated.

The electric and geometrical parameters remain the same reported in Table 8.1

except from the external and inner liposomes conductivity values ranging from 0.25 to

1.6 S/m.

”Wet” experimental setup

By following the proposed cycle in Figure 8.1 preliminary ”wet” experimental data have

been carried out in collaboration with the the laboratory of Prof. Stefania Petralito,

from the Pharmaceutical Chemistry and Technology (PCT) Department of ”Sapienza”,

University of Rome.

The exposure cuvette is reported in Figure 8.6. The liposomes solution has been pre-

pared with the thin-lipid hydration method as explained in the Section 5.2.1 exception

for the magneto-nanoparticles step. The lipid used for the liposomes film is the EGG

PC. Initially the aim was to create a 400 nm liposomes in order to have more chance

to reach the poration with our 10 kb V pulse generator, but not a uniform popula-

tion was obtained, so with the extrusion step a uniform liposome population of 250

nm of diameter has been obtained as confirmed by the DLS (dynamic light scattering,

see Section 5.2.1) measurements (see Fig. 8.7). The inner and the outer liposomes

conductivity values of 0.33 and 1.6 S/m respectively, have been obtained by using a

PBS (phosphate buffer solution) buffer adjusted with the NaCl to reach the desired

conductivity values. The osmotic pressure have been adjusted in order to avoid any

Electrical and Geometrical parameters

εr σ (S/m) d(µm)

External medium 67a,b 0.05 − 1.6 100 − 70

Liposome membrane 11.7a,b 1.1x10-7 (a,b) 0.005a,b

Inner liposome 67a,b 0.05 − 1.6 0.2/0.4a

Table 8.1: Electric and geometrical parameters. (a) [Denzi et al., 2017], (b) [Merla et al., 2012]
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Figure 8.5: Non uniformly distributed liposome population model. The electric stimulus has been
applied to the upper electrode and the ground to the lower electrode. Both sides are electrically
insulated.

disruption of the vesicles due to the different inner and outer conductivity values.

An electric field of 9 MV/m have been applied to the liposomes solution using an FPG

10-1SM10 generator (FID Technology, Burbach, Germany) with 56 pulses at the fre-

quency of 1 Hz. The signal has been monitored with a Rohde & Schwarz RTO2014

oscilloscope. In order to monitor a possible thermal increase during the 10 nsPEF ex-

posure a Luxtron 3100 fiber optic probe have been used but no thermal increases have

been detected. Moreover, the CF (5-(6)carboxyfluorescein) dye has been used as probe

of the porated liposome membrane and the fluorescence before and after the nsPEF

exposure have been measured as explained in the section 5.2.1.
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Figure 8.6: 1 mm gap exposure cuvette used for the experiments.

Figure 8.7: DLS (dynamics light scattering measurements) of the 250 nm of the EGG PC liposomes
solution. Three different measurements with a peak at 250 nm.
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8.3 Results and Discussions

Applicator frequency performances

As a first step in the analysis of the impedance behavior of the applicator, the real

and the imaginary part have been numerically evaluated. The results are reported in

Fig. 8.8 for the holder with the cuvette placed and filled with a solution 0.25 S/m of

conductivity. As expected, at the lower frequency the resistive behavior is predominant,

leaving for a capacitive one at the highest frequencies. It is worth to notice how this kind

of coaxial connection reduces inductive parasitic effects; avoiding resonances within the

range of the frequencies of interest (see resonance at around 350 MHz in [Kenaan et al.,

2011]).

In the same frequency range the S11 has also been evaluated; the results are shown

in Fig. 8.8 (black solid line). From both the impedance and the S11 parameter, it is

possible to see an acceptable frequency behavior up to 100 MHz (hence up to the first

lobe of 10 ns pulsed electric field). The S11 value is ≤ - 5 dB up to this frequency value.

At frequencies higher than 100 MHz the mismatching of the impedance cuvette is more

evident and this limits the use of this kind of applicator only for pulses with duration

≥ 10 ns. The results achieved are comparable with the ones reported in [Kohler et al.,

2012, Kenaan et al., 2011] for a cuvette with 4 mm gap distance.

Frequency characterization for different solution conductivities

Starting from the results obtained in the Chapter 7, in which the importance of the

external conductivity on the efficiency in liposomes nano-electroporation has been re-

ported, a characterization of the applicator behavior varying the conductivity of the

solution placed inside the cuvette has been carried out. Simulations were run with dif-

ferent solution conductivities and compared with measurements in frequency domain

of the holder with the cuvette placed and filled with solutions at the same conduc-

tivity as the one simulated (Fig. 8.9). The measurements and the simulations are in

perfect agreement for all the considered solutions. As expected, the performances of

the applicator strongly depend on the solution parameters, with best behavior for the

less conductivity value (the best value according to the formula reported in [Kenaan

et al., 2011]). Increasing the conductivity, the mismatch of the applicator increases,

in particular for 0.55 S/m, with an S11 value always higher than -10 dB and for 1.6
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Figure 8.8: Impedance in terms of real and imaginary part of the holder with the cuvette placed and
filled with a solution 0.25 S/m of conductivity.

S/m with values even higher than -5 dB. In this last case, the behavior of the structure

is very close to a short connection and hence with a high negative reflection when a

connection with a 50 Ω generator is made.

In order to better understand how this parameter affects the pulse transmission inside

the cuvette, in the next paragraph the analysis of the cuvette response in time domain

has been numerically performed.

Time domain characterization for different solution conductivities

The 10 ns pulse has been applied to the coaxial cable of the structure (Fig. 8.3c). The

cuvette has been filled with solutions at different conductivities and the transmitted

signal has been evaluated in the center of the cuvette gap. In Fig. 8.10 the results of

transmitted electric field pulse for the different conductivity values are reported. As

expected from the frequency results, for the conductivity of 0.25 S/m the amplitude of

the transmitted pulse is 1000 V/m for 1 V input pulse. This is the maximum achievable

value of electric field for 1 V applied to the 1 mm gap. The efficacy in transmission (η)
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Figure 8.9: Measured (dashed lines) and simulated (solid lines) S11 parameters of the holder with the
cuvette placed and filled with solution σ = 0.25 S/m (black line), 0.55 S/m (blue line) and 1.6 S/m
(red line).

is defined as the ratio between the electric field obtained in the gap, in kV/m, and the

applied voltage at the generator, in V. In case of 0.25 S/m of conductivity, η is equal

to 1. The rise and fall times of the transmitted pulse, as predictable by the S11 trend,

appear distorted with a value around double (≈ 3 ns) respect to the one imposed on

the generator (1.5 ns). Increasing the conductivity value, the efficacy of the structure

decreases assuming values of 0.62 and 0.27 for 0.55 and 1.6 S/m respectively.

Once completely characterized the behavior of our applicator, a microdosimetry model

of the liposomes is needed to derive all the necessary parameters to drive a final ex-

periment of liposome solution exposed to a 10 ns pulse. In particular microdosimetry

should provide values of liposome poration for different experimental conditions, as

vesicles dimensions or inner and outer conductivity, and with regards to the efficacy of

the real structure that will be used for the experiments. Hence, the results of the model

have to be combined with the information about the efficiency of the real applicator

here developed.
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Figure 8.10: Electric field amplitude in the center of the cuvette gap. The efficiency value of the
structure, η, defined as the ratio between the electric field obtained in the gap, in kV/m, and the
applied voltage at the generator, in V, at different conductivity values is also reported.

Combining generator experimental results with microdosimetry on li-

posome

The microdosimetry model of the single liposome presented in the Chapter 7 has been

used to evaluate the electric field threshold value necessary to obtain the membrane

liposome poration combined with the efficacy of the generator. In particular, 1 V has

been considered as the threshold value for the electroporating transmembrane poten-

tial [Joshi and Schoenbach, 2010, Breton and Mir, 2012] as already done in the previous

chapter (see Ch. 7) and the field threshold has been evaluated for different conductivi-

ties of the inner liposomes medium (σINT) and of the external medium (σEXT) ranging

from 0.05 S/m to 1.6 S/m. In Fig. 8.11 a 2D map of the electric field value necessary for

liposomes electroporation with a diameter of 200 nm and 400 nm is shown. The maps

appear perfectly symmetric at the changes of external or internal conductivities. The

lower inner and outer conductivity values causes the highest intensities of the electric
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Figure 8.11: Electric field threshold for 200 nm and 400 nm liposomes poration changing the internal
and external liposome conductivity.

field necessary for the liposomes poration, and the larger is the liposome dimension the

lower is this value. If one considers only microdosimetry evaluation, the best conditions

to obtain the liposome electroporation are those achieved with the highest inner and

outer conductivity values.

Considering the designed applicator, this information has been combined with its ef-

ficacy at each external conductivity. Indeed the efficacy of the structure is higher for

the 0.25 S/m conductivity and lower for the 1.6 S/m one. The value of the efficacy is

also reported on the Fig. 8.11 in order to point out that the maximum efficacy is in the

range in which the microdosimetry model predicts the most inconvenient conditions.

To weight the results of the microdosimetry model with the real experimental setupInput voltage vs

generator efficacy characteristics, we have taken into account not only the efficacy of the designed struc-

ture but also the capability of our generator in terms of the maximum output voltage

able to generate. For the High Voltage Pulse Generator FPG 10-1NM10 we are able to

provide a pulse with amplitude in the range of 2-10 kV, fixing our maximum capability

to obtain 10 MV/m in 1 mm gap distance applying the highest intensity available.
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Figure 8.12: Input Voltage needed at the generator weighted with the effective efficacy of the structure.

Figure 8.13: Electric field map distribution of 200 nm liposomes randomly distributed.

In Fig. 8.12 the results in terms of voltage necessary at the generator in order to

obtain the poration of liposomes are reported. The results are reported for liposomes
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Figure 8.14: Electric field needed to porate the 200 (red) and the 400 (blue) nm liposomes population.

with dimension of 200 nm (solid line) or 400 nm (dashed line) and for all the external

conductivity values tested in the structure. The voltage results are weighted with the

efficacy of the structure (η = 1, 0.62 and 0.27((kV/m)/V)) at the different conductivity

values in order to understand the real amplitude needed during the experiments (Fig.

8.12).

Since the designed applicator is for liposomes exposure and in order to have a morenon-uniformly

distributed

liposomes

population

realistic model of the solution that experimentally can be exposed to nsPEF, after the

efficiency evaluation and the chosen inner and outer liposome conductivity values (σINT

= 1.6 S/m and σEXT = 0.25 S/m), two simulations have been carried out considering

a randomly distributed liposome population of 200 and 400 nm of diameter with inner

and external conductivities ranging from 0.25 to 1.6 S/m. In the Fig. 8.13 the 2D

map of the electric field distribution outside the liposomes population is reported for

the 200 nm liposomes. It is possible to notice how with a lower external conductivity

(0.25 S/m) and an higher internal conductivity (1.6 S/m), the highest electric field is

experienced outside liposomes membrane.

In Fig. 8.14 the electric field needed to porate liposomes in function of their dimension
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is reported. The electric field needed to porate the liposomes has been calculated

considering a threshold of 1 V of the transmembrane potential as mentioned in the

Section 7.3 [Smith et al., 2006]. From Figure 8.14 it can be noticed how the liposomes

poration starts with a E field intensity of 5.4 and 7 MV/m respectively for the 400

and 200 nm liposomes. An intensity higher than 7.5 MV/m is required for the 100

% of 200 nm porated liposomes. Furthermore, the gap between the threshold for

starting liposomes poration and the 100 % of porated liposomes, for both population,

is minimum (v 0.3 MV/m) when the medium conductivity is lower than the inner

liposomes one [Della Valle et al., 2017].

Preliminary experimental data on a 250 nm liposomes population

Keep following the cycle reported in Figure 8.1, after the model and the technological

part, a preliminary ”wet” experiment has been settled.

In Figure 8.15 the results of the CF fluorescent release are shown for the first day (Day

0, 1 sample) and for the second day (Day 1, 2 samples). On the first day (Day 0) as

it can be noticed from the Figure 8.15, the exposed and the shame sample released

the 44 and the 22 % of CF respectively. Since, the first day the nsPEF exposure and

the CF release measurements have been done in two different places, both samples

have experienced an high temperature of almost 35 ◦C due to the hand transportation

between the two different departments. This could explain the high release from the

shame sample. After that, the second exposure day (Day 1) it was possible to transport

all the experimental equipment to the PCT department in order to perform the nsPEF

exposure and the CF release measurements in the same place. Indeed, a release of 15

% for the exposed sample and of the 2 % for the shame has been reached.

These preliminary experimental data suggest the possibility to porate liposomes of 250

nm of diameter with an E field of 9 MV/m, which is higher than the predicted one (∼ 7

MV/m) but it is important to keep in mind that the electric field calculation to porate

the liposome membrane is an optimistic prediction, because the evaluation is done on

one point of the liposome membrane, where the highest transmembrane potential is

experienced.
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Figure 8.15: Preliminary ”Wet” Experimental results on the 250 nm liposomes at the Day 0 (1 sample)
and Day 1 (2 samples).

8.4 Conclusions

In this chapter, the design and characterization of an exposure system for liposomes

drug delivery experiments, using a 10 nsPEF, has been carried out and preliminary

experimental data have been reported. This project has been carried out with the

integrated approach proposed in Fig. 8.1, with a readjustment of the cycle proposed

by Kitano [Kitano, 2002a,b] for systems biology taking into account both theoretical,

technological and experimental issues.

In the design of the structure the first step was to consider the features of the excitationDesign of the

exposure system and of the target. Since the excitation is a 10 ns pulsed electric field and the target are

liposomes with 200 or 400 nm diameter the use of a standard electroporation cuvette

with 1 mm gap has been considered advantageous [Denzi et al., 2017]. The design

of an appropriate cuvette holder structure proceeded, taking particular attention to

the connection of the 1 mm gap electroporation cuvette to a 50 Ω high voltage pulse

generator. Further analysis demonstrated the capability of the proposed structure to
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deliver a 10 ns pulse without a significant signal distortion in particular for media with

a 0.25 S/m of conductivity value. This structure is suitable for numerous experimental

exposures, due to the indirect connection with the cuvette. Furthermore, the device

guarantees a very strong mechanical stability and a good contact with the electrodes

of the cuvette thanks to the Teflon box presence under it and as cover.

The structure has been completely characterized in time and frequency domain to Characterization

of the exposure

system
understand its capability and performances in different experimental conditions. In

particular, the analysis has been performed for different conductivity values of the so-

lution inside the cuvette both with numerical models and measurements. A perfect

agreement has been found between them. The higher is the solution conductivity, the

lower is the efficacy of the structure and hence the lower is the amplitude of the trans-

mitted pulse to the cuvette.

In order to analyze the impact of the real performances of the device on the liposomes Microdosimetric

modelselectroporation, a microdosimetry model of liposomes with 200 or 400 nm dimension

has been reported. The simulations have been carried out considering different inner

and outer liposome conductivities and the results have been combined with technolog-

ical outcomes. Combining microdosimetry and technological information permits to

predict that the optimal condition for a 400 nm liposome is with 0.25 S/m and 1.6

S/m for external and internal liposome conductivities respectively, differently from the

indications that one would follow on the basis of the microdosimetry alone (highest

internal and external conductivity values). This discrepancy is due to the higher effi-

ciency of the structure for the conductivity of 0.25 S/m. Moreover, since the exposure

system has been designed for the exposure of a liposomes population, microdosimetric

simulations have been carried out considering a non uniformly distributed liposomes

population of 200 and also of 400 nm, with conductivity values ranging from 0.25 S/m

to 1.6 S/m for external and internal liposome conductivities. By these simulations, a

gap of 0.3 MV/m has been appreciated (with 0.25 S/m and 1.6 S/m for external and

internal liposome conductivities respectively) between the starting of liposomes pora-

tion and when then 100 % of liposomes is porated for both simulations. An electric

field of 7 MV/m is needed to porate the 200 nm liposomes, while 5 MV/m are sufficient

to porate the 400 nm liposomes.

Finally, the ” wet ” experiment has been carried out with preliminary data of the expo-

sure of 250 nm liposomes by applying an electric field of 9 MV/m with 56 E pulses at 1

Hz of frequency. A conductivity of 0.33 and 1.6 S/m has been used for the external and
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inner liposomes. A release of 15 % of CF has been detected for the exposed samples,

while the 2 % has been reached from the sham sample.

These results suggest a good agreement between the predicted possible liposomes po-

ration from the microdosimetric models using an E field ∼ 7 MV/m and the one used

experimentally of 9 MV/m. It is good to keep in mind that the numerical prediction

in terms of electric field needed for the poration is optimistic since is done on one

point on the transmembrane membrane. Moreover when prepared there is not only the

lipid but also the presence of chloroform and of the dye fluorescent that could slightly

change poration conditions. In fact if during the experiments, a change of some param-

eters becomes necessary, e.g. different volumes of solution (keeping particular attention

to avoid sparks in air) or a different value of inner or outer conductivities, a charac-

terization with new simulations and measurements has to be performed in order to

understand the real transmitted signal to maximize the chance to reach the liposomes

poration.
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As mentioned in the introduction (see part I), the technological progress has in-

creased the use of magnetic fields as external stimulus for many therapies as the treat-

ment of inflammatory diseases [Varani et al., 2002, 2017], neurologic disorders [Di Laz-

zaro et al., 2013] and for drug delivery research [Spera et al., 2015]. For some of these

diseases it has been demonstrated how the application of pulsed magnetic fields (PEMFs)

can induce anti-inflammatory effects on cells trough the interaction with protein re-

ceptors as the adenosine A2A [Varani et al., 2002, 2017], an important regulator of

neurotransmissions signals released from a variety of cells in response to the metabolic

stress.

Starting from the experiments of Varani et al. [Varani et al., 2002, 2008], in the first

chapter of this part (see Ch. 9) a study about the interaction mechanism of the magnetic

B field action on the adenosine A2A receptor will be presented, through the molecular

dynamics simulations (MD) approach. The project has born in collaboration with the

Igea institution of the Dr. Ruggero Cadossi with the aim to possibly identify the inter-

action mechanism between a magnetic field and the adenosine A2A receptor.

We performed our simulations with the Gromacs package, usually used to simulate the

action of an external electric field acting on a molecular target. Here, the integration

of the Newton’s motion equation is presented by introducing the Lorentz force for the

magnetic field action. Firstly, the implementation and validation of the B field into

the Gromacs package [Van Der Spoel et al., 2005] are reported. Latter, preliminary

results are presented for MD simulations of a buffer solution (DMEM concentration)

and the adenosine A2A immersed in the buffer solution exposed to 1 T of magnetic field.

Because of the capability of nsPEFs to interact with intracellular organelles (see Sec. 2.3)

in the second chapter of this part the possible effects of cytosolic enzyme exposed to high

intense electric fields of ultra short duration have been investigated. A theoretical study

based on molecular dynamics simulations, using Gromacs, is proposed choosing an im-

portant enzyme involved in the cellular antioxidant defense mechanism: the superoxide

dismutase (SOD,Cu-Zn or SOD1). In the Chapter 10, the effects of the 100 nanosec-

ond pulsed electric fields, with intensities ranging from 108 to 7x108 V/m, on a single

SOD1 enzyme are presented to study both the effects on the structure or the electrostatic

effects on the active site, thanks to the dipolar response analysis and the (2D) electric

field distribution around the active site. This project has born in collaboration with

the laboratory of Prof. Olga Pakhomova from the Old dominion University, Norfolk,

Virginia.





Chapter 9

Magnetic molecular dynamics

simulations with Velocity Verlet

algorithm on the Adenosine A2A

receptor

9.1 Introduction

Several studies have shown how the use of low frequency magnetic pulses (PEMFs) may

have biological effects on different cells functions. It has been reported that PEMF

application on bone structures can stimulate osteoblast growth and modulate bone

metabolism [Chalidis et al., 2011]. Indeed, several studies have shown that the use of

PEMFs increases the anti-inflammatory effect of different types of cells such as neu-

trophils granulocytes, chondrocytes and osteoblasts, with significant reduction in some

of the most significant inflammatory cytokines [Varani et al., 2002, Vincenzi et al.,

2013]. Vincenzi at al. [Vincenzi et al., 2013] reported an increased anti-inflammatory

effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and in

hFOB 1.19 osteoblasts next the application of a PEMF exposure ranging from 1.5 up

to 2.5 mT of magnetic field intensity. In addition, Fini et al. [Fini et al., 2005] pre-

sented a complete review of ant inflammatory PEMFs effects on articular cartilage and

Kaszuba-Zwoinska et al. [Kaszuba-Zwoińska et al., 2008] showed how PEMFs of 5 mT

of intensity were able to decrease IFN-gamma proinflammatory and increased IL-10

151
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anti-inflammatory cytokine production on human peripheral blood mononuclear cells

(PBMC) from Crohn’s disease patients (CD).

One aspect that researchers are focusing on is the interaction between PEMFs and

membrane receptors, such as adenosine (Ars), belonging to the G protein-coupled pro-

tein receptor family (GPCR).

GPCRs are proteins that perceive molecules outside the cell and transmit the sig-GPCRs protein

nal inside by activating the cell response. The GPCR arranges itself into a tertiary

structure with 7 TM (transmembrane) α-helices forming a cavity within the plasma

membrane with a N terminal that serves as ligand-binding domain. When an agonist

or antagonist tries to bind to the receptor then the internal cavity begins to reorganize.

The agonist produces an activation of the receptor by generating the maximum cellular

response, while the antagonist makes no cell physiological response. It is estimated that

GPCRs are the target for about 50 % of the drugs present on the market, mainly due

to their involvement in reporting pathways for many diseases such as mental, metabolic

or cardiovascular disorders [Trzaskowski et al., 2012].

The adenosine is a GPCR protein, regulator of neurotransmission signals and it isA2A receptor

used for drug targeting in many inflammation statuses as cancer, ischemia or neuronal

disorders [Fuxe et al., 2007, Jorg et al., 2014]. It is released by a variety of cells in

response to metabolic stress [Varani et al., 2002] and interacts with four GPCRs (A1,

A2A, A2B and A3). A2A stimulates the activity of adenylated cyclase enzyme and cAMP

accumulation (cyclic adenosine monophosphate) [Varani et al., 2002]. The importance

of the A2A adenosine study lies in its response when different types of cells are exposed

to PEMFs action. It has been experimentally proven [Varani et al., 2002, 2008] that

the A2A receptor, under exposure to a magnetic field of about 3 mT for a duration of

2 hours, increases its response by providing a more effective anti-inflammatory effect

on neutrophilis cells. Moreover, an increased enzyme activity of adenylate cyclase and

a reduction of radical superoxide anion has been reported.

The aim of the project presented in this chapter, has been to perform molecular dy-

namics simulations (MD) to understand if it would be possible to directly interact with

proteins or enzymes using pulsed magnetic field stimulation.

From several decades, by the time of the first studies of Pilla and Chiabrera [PillaB field

interaction

mechanisms
et al., 1997] the mechanism that undergoes the B field action on living objects is not

fully elucidated. Several models have been advanced to explain the possible mech-

anisms; almost all have been essentially based on classical or quantistic description
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of an ion in a binding site, and have studied the problem through the precession of

ion thermal motion in magnetic fields [Muehsam and Pilla, 2009]. The basic premise

of such models is that the effect of the magnetic field can energetically overcome the

perturbing influences of thermal noise, moreover in almost all, a rigorous interaction

between the ion and its binding site is lacking due to the inability to describe the target

at molecular level.

Lately, Binhi and Prato [Binhi and Prato, 2017] presented a review about the possible

action of ”hypomagnetic fields” (HMF, µT range) on biological effects by proposing

different mechanisms. They compared experiments and theories related to the exposure

to an hypomagnetic field, in order to possibly find a relation between the magnetic field

characteristics and a biological effect. No measured correlations of the HMF effects with

its magnitude and inhomogeneity and type or duration has been found. Moreover, they

also suggest that magnetoreception is not only associated with the magnetoreceptors

in migrating animals and magnetotactic bacteria but others mechanisms could explain

a magnetic field action. Among the different action proposed mechanisms [Binhi and

Prato, 2017], a molecular gyroscope mechanism is presented by hypothesizing the ro-

tation of residues with distributed electric charges that generates a magnetic moment

that interacts with an external B field applied. Another proposed mechanism from

Babaei et al. [Babaei et al., 2017] is a diamagnetic anisotropy in membrane proteins

with higher percentage of amino acids and aromatics residues which could explain their

rotation and response to an external magnetic field application.

Anyhow, the issue related to the inability to describe the target (e.g. ions, proteins, Molecular

dynamics

simulations
water molecules, etc.) at molecular level, seems an unavoidable requirement to pro-

duce affordable results, therefore simulations based on Molecular Dynamics (MD) to

study molecules behavior, under different physical conditions of magnetic or electric

fields, seem to become a strategic challenge. Molecular dynamics simulations are a use-

ful tool for understanding the interaction between atomic molecular structures. MD

simulations are usually used to analyze protein structures, membrane patches or ionic

solutions subjected to the action of external agents such as thermal or electric incre-

ments [Marracino et al., 2013b, 2016].

The introduction of an external electromagnetic field into a MD simulation requires a

time-dependent forcing function in Newton’s second law equation, to describe the forces

exerted on the charge sites by the field. For the constituent electrical and magnetic

fields E and B, the forces acting on each charge site are incorporated, through Lorentz
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force, as follows:

mir̈i = f i + qiE(t) + qivi ×B(t) (9.1)

where qi is the charge and fi is the force on the site i. The electric and magnetic fields

are taken to be uniform and plane-polarized. Actually, several works have considered

only the electric field component in the Lorentz force [Casciola et al., 2014, Marracino

et al., 2013b, Apollonio et al., 2008, English and Waldron, 2015]. The motivation was

that the magnetic field, being normal to the velocity of the particle, ”does not work”,

hence it cannot heat the charged particles, giving them energy. It follows that the

magnitude of the velocity of a charged particle is not affected by the presence of a

magnetic field. However, the magnitudes of the velocity components perpendicular to

B can vary, as can be shown for the cyclotron motion.

Before our implementation, few works have been carried out with a magnetic fields

implemented into molecular dynamics simulations (not gromacs package) [Chang and

Weng, 2006, 2008, Murad, 2006, Moosavi and Gholizadeh, 2014]. In Chang et al. [Chang

and Weng, 2008], MD simulations have been done considering high magnetic fields from

1 to 10 T by analyzing diffusivity values of water and ions (Na+ and Cl-), with a time

of simulations of 150 ps. No statistics significant results have been highlighted (be-

low 10 %). Moreover also in a work of Mura [Murad, 2006] a magnetic fields with

intensity of 3x106 T has been applied across of a membrane, no significant differences

were appreciated with the respect to the resting condition by the analysis of ions radial

distribution functions. However data reported seem not to be highly reproduced nor

extremely solid from a statistical point of view.

In this project, for the first time, we implemented into the Gromacs package [Van

Der Spoel et al., 2005], one of the most used tools for MD simulations, a static homo-

geneous magnetic field. The core of the numerical solution solved by Gromacs has been

modified to take into account the magnetic force acting on a charged particle and the

results have been compared with the analytic expected behavior for the very simple

case of an ion in vacuum and then also with water molecules. Next, simulations of a

NaCl buffer solution (DMEM concentration [Varani et al., 2002]) without and with the

adenosine A2A receptor have been performed applying a magnetic field of 1 T.
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9.2 Materials and Methods

Update of velocities and positions with the Velocity Verlet algorithm

into Gromacs package

The difficulty in implementing the B field lies in changing the velocities and positions

to introduce the term of the Larmor frequency and thus generate a magnetic field.

Spreiter and Wlaker [Spreiter and Walter, 1999], identified three different ways to

introduce the B field in MD simulations by adding the term of the Larmor frequency

Ω = (q x B)/m in the update of velocities and position through the Verlet Algorithm.

They basically proposed three different ways:

• Inverse algorithm for weak B field with a limit about Ω ∆T � 2π, which means

to find a good comprise between the intensity of the B field and the duration of

the simulations

• Velocity transformation for strong B field

• Taylor expansion for strong B field

Since for the simulations a time step sufficiently small has been used (0.1 and 1 fs), the

inversion algorithm has been adopted to solve the equations of positions and velocities,

in which the strength of the magnetic field is dependent on the value of the time step.

Moreover, since Gromacs is not a software designed for the application of a magnetic

field, the first part of the work has been to fully control atom velocities and positions

update by the Verlet integration and understand how to introduce the magnetic field

component. Velocity Verlet [Swope et al., 1982] integration is a numerical method used

to integrate Newton’s equations of motion. In particular the Gromacs code it has been

implemented through the update at each time step of particle positions r and velocities

v (eq. 9.2 and eq. 9.3):

r(t+ ∆t) = r(t) + ∆tv +
∆t2

2m
F(t) (9.2)

v(t+ ∆t) = v(t) +
∆

2m
[F(t) + F(t+ ∆t)] (9.3)

where F = mxa is the force applied, m the mass of the particles and ∆t the time

step used to perform the simulations. We applied the magnetic field in the z direction
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Figure 9.1: Molecular dynamics model of the Na+ ion in vacuum (a) and with water molecules (b) in
a box of 30 x 30 x 30 nm3 and 10 x 10 x 10 nm3 respectively.

introducing the Lorentz force along the x and y axis for both positions and velocities

equations (eq. 9.4 and eq. 9.5):

r(t+ ∆t) = r(t) + ∆tv +
∆t2

2m
[F(t)− Ωez × v(t)] (9.4)

v(t+ ∆t) = v(t) +
∆

2m
[F(t)− Ωez × v(t) + F(t+ ∆t)− Ωez × v(t+ ∆t)] (9.5)

where ez = (0, 0, 1) is the unit vector in the z direction and the Larmor frequency Ω

= (q x B)/m , where B is the magnetic field intensity.

To validate our implementation, MD simulations have been performed considering anValidation of the

Magnetic field

implementation
Na+ ion in vacuum and in presence of water molecules in order to verify the ion cy-

clotron motion.

MD simulations have been carried out considering a charged particle Na+ in vacuum,

to verify the cyclotron motion of the ion when an external magnetic field is applied.

We used an NVT (number of particles, volume and temperature constants) ensembleNa+ Ion in

vacuum at a temperature of 300 K using the Nose-Hoover thermostat in a box of 30 x 30 x 30

nm3 of dimension (see Fig. 9.1a). Due to the limit of the algorithm related to the time

step (Ω ∆T � 2π) and the magnetic field intensity, a magnetic field B = 105 T has

been applied, for the ion in vacuum, in order to be able to see the particle motion in

the picosecond time scale with a time step ∆t = 0.1 fs, for a 35 ps of simulation. The
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Figure 9.2: (a) Period (T), radius of curvature (R) and the pitch (h) of the Na+ displacement in the
x and y direction; a table is also reported for the matching between numerical and analytical results;
(b) x displacement of the Na+ ion obtained with MD simulation and the analytical result from the
Muehsam and Pilla thermal model.

initial velocity of the particle has been settled to v = 0.37 nm/ps with an angle Θ =

1◦ with the respect to the magnetic field application.

The displacement (T), the radius of curvature (R) and the pitch (h) of the Na+ ion

are reported (see Fig. 9.2) due to the magnetic field application of 105 T. In order to

verify these numerical results, an analytical model has been settled implementing the

equations 9.4 and 9.5 to reproduce the Na+ particle motion under a B field of 105 T

of intensity. It is possible to notice in Fig. 9.2a how the analytical and numerical model

match perfectly. The charged particle exhibits a sinusoidal motion in the x and y di-

rection during the MD simulation as predicted by the analytical formula T = 2πm/qB,

where q and m are the charge and mass for the Na+ ion respectively.

As next step the ion cyclotron motion of the Na+ ion in presence of water molecules Na+ ion in water

has also been verified, with a density of 100 kg/m3 (Fig. 9.1b) in a box of 10 x 10 x 10
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nm3, the box dimension is smaller because of computational cost. The initial velocity

of the particle, also in this case, has been settled to v = 0.37 nm/ps. The low water

density has been required in order to see the motion in ps time, due to thermal noise

generated by the water molecules collisions. Moreover, because of the presence of H2O

molecules the magnitude of the B field has been increased to 3x107 T for a time of 3.5

ps, also to overcome the thermal collisions and possibly appreciate the ion cyclotron

motion. In Fig. 9.2b the Na+ displacement, in the x direction, is reported. A field of

3x107 T has been applied with an integration step of 0.02 fs for a time of 3.5 ps. It is

possible to appreciate how there is a perfect matching between the numerical and the

analytic results based on the Muehsam and Pilla thermal model [Muehsam and Pilla,

2009].

MD simulations parameters

Concerning the simulations of the NaCl buffer solutions (DMEM concentration [VaraniBuffer solution

et al., 2002]) we worked with an NVT (number of particles, volume and temperature

constants) ensemble at a temperature of 300 K using the Nose-Hoover thermostat in a

box of 12 x 12 x 12 nm3 of dimension and with an integration step of 1 fs (Fig. 9.3a).

The gromos45 force field has been used simulating 114 Na+ and Cl- ions (DMEM

concentration, 110mM [Varani et al., 2002]) and 57577 H20 molecules.

For the adenosine A2A molecular model, the 3PWH PDB structure has been chosenA2A receptor

but in the unbound configuration in order to firstly analyze the protein behavior with

no ligand binded (see Fig. 9.3). The adenosine A2A molecule was immersed in the

NaCl buffer solution and because of its positive charge (+6e) 6 more Cl- ions were

added to the simulations box to neutralize the system.

Numerical Observables

Self diffusion coefficient

Studying the transport properties of liquid water or free molecules (e.g.ions) is an im-

portant topic, both in fundamental science and in its applications. The mobility of

water molecules is indicated by the value of the self-diffusion coefficient, which depends

on the environment parameters as temperature, pressure or the structure [Levitt et al.,

1997]. The value of the self-diffusion coefficients have been obtained through the com-
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Figure 9.3: (a) Molecular dynamics model of the Buffer solutions with 114 Na+ and Cl- ions and
57577 H20 molecules. (b) the adenosine A2A receptor (7 transmembrane protein) immersed in the
buffer solution. The dimension of the box is 12 x 12 x 12 nm3.

mand line of the Gromacs software, gmx msd command, following the Einstein relation

based on the mean-square displacement function.

RMSD

In order to asses the atoms positions during the MD simulation, the rmsd has been

computed. The RMSD (root-mean-square deviation) of atomic positions provides a

quantitative measure of the protein structural variations, comparing the magnetic field

exposure and the equilibrium state. The goal has been the understanding of possible

changes in shape and size of the protein under the influence of the B field.

Secondary Structures

To evaluate possible structural changes induced by the external signals considered, the

number of α-helix secondary structures has been calculated through the command line

of the GROMACS package using the do dssp command. The Adenosine is mainly an

α-helix secondary structure with 7 transmembrane α-helix which arrange themselves

depending on the lingand bonded to the N terminus. It is a regulator of neurotrans-

mission next to a metabolic stress [Varani et al., 2002]. The calculation has been made

in terms of PDF (probability density function) with 0 and 1 T of B field application.
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Figure 9.4: Side and top view of the adenosine receptor, highlighting the residues involved in the
ligand binding process (black for histidine264, red for alanine265, purple for the proline266, green for
the leucine267, orange for the glutammate169 and yellow for the serine67).

Dipole Moment

Proteins, due to their secondary structure conformation (α-helices, β-sheets, turns,

coils, etc.) possess an electric dipole moment. For this reason the dipole moment of

chosen residues, has also been analysed, involved in the hydrogen bond during the

ligand binding (see Fig. 9.4 ), that could orient themselves when an external force is

applied as a magnetic field.

Ramachandran plot

An extremely useful method for studying protein conformation is the Ramachandran

plot [Ramachandran et al., 1963]. Ramachandran plot is a way to visualize energetically

allowed regions for backbone dihedral angles ψ against φ of amino acid residues in

protein structure (Fig. 9.5a) [Richardson, 1981]. The ω angle at the peptide bond is

normally 180◦, since the partial-double-bond character keeps the peptide planar (see

Fig. 9.5b). Basically depending on the stability and on the value of the torsion angles is

possible to distinguish different regions. As is possible to see in Fig. 9.5c, three different
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Figure 9.5: (a) Topology of the adenosine A2A receptor with 7 TM α-helix with the 6 chosen residues;
(b) the peptide binding concept for each peptide of the chain with the two torsion angles ψ and φ; (c)
concept of the possible conformations for each residues by distinguishing three different energetic region
depending on the stability of the rotation (from stable with the deep blue to the unstable rotation on
light blue) and four different allowed conformations depending on the value of the torsion: β-Sheet,
α-helix right handed and left handed and the a disfavored region.

stability regions can exist. The deep blue zone means that the rotation is really stable,

the blue indicates a limit stability on the rotation that could led the peptide to be in

different conformations and the light blue zone which means there is an high flexibility

of the peptide structures. Based on that, it is possible to assign, depending on the value

of the rotation, four different conformations: β-Sheet, α-helix right-handed and left-

handed and a disfavored region, which indicates some angle distortions preferred under

compulsions imposed by local constraints suggesting that unfavorable local interactions

may be offset by other compensating factors [Jia et al., 1993, Stites et al., 1994]. As for

the dipole moment, the ramachandran plot, have been computed for the six residues

involved in the hydrogen bond during the ligand binding process, both with zero and

1 T of magnetic field.

9.3 Results

Once, validated the implementation of the magnetic field B in the Gromacs software Buffer solution:

DMEM

concentration
(see Sec. 9.2), the complexity of the target has been increased addressing first a box con-

taining a NaCl buffer solution with DMEM concentration [Varani et al., 2002], which

means 114 Na+ and Cl− ions hydrated with 57577 water molecules. To analyses the
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Figure 9.6: Self diffusion coefficient D, for water (blue), Na+ (yellow) and Cl- (green) particles.

mobility of water and ions molecules the self diffusion coefficient D in zero and with 1

T of B field, has been computed. From Fig. 9.6 can be observed the results at the last

nanosecond of the simulations (t = 20 ns). For water molecules no changes occurred

(see Fig. 9.6, blue label). Regarding the charge particles, in the no field conditions the

diffusivity values of the Cl− and the Na+ ions are perfectly according to the theoretical

values predicted by in a theoretic work of Salih et al. [Salih and Matthai, 2017] using

NAMD, were a value of 2.2 and 1.6 is identified for the Cl− and Na+ diffusivity values.

Here with no B field applied a value of 2.5 and 1.5 is reached for the Cl− and Na+

ions respectively. When the B field acts on charged particles, a decrease of 10 % is

appreciated for the Na+ ions and an increase of 18 % is reported for the Cl- particles

diffusivity (Fig. 9.6). This result suggest an interaction between the applied B field

and the free charged molecules.

Afterwards the adenosine A2A receptor has been included in the buffer solution, addingAdenosine A2A in

the buffer

solution
six more Cl- ions to neutralize the environment, and MD simulations have been done

with 0 and 1 T of B field.

The first result is shown in Fig. 9.7 where the diffusivity D value is reported for the

water, the ions and the protein target. For the water also in this case no changes

occurred. Then we focused the attention on the protein diffusivity due to the impor-

tance of understanding the characteristics of protein self diffusion in solution, where no

change of intramolecular structure as well as aggregation occurs is of great importance.

With the no field application the diffusivity value is ∼ 2x10−9 m2/s which is in ac-

cordance to the diffusivity values measured experimentally for other protein structures
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Figure 9.7: Self diffusion coefficient D, for water (blue), protein (pink), Na+ (yellow) and Cl- (green)
particles.

Figure 9.8: Root mean square deviation (RMSD) and α-helix secondary structures in zero field and 1
T of B field application

(myoglobin, lysozime) in a work of Nesmelova et al. [Nesmelova et al., 2002]. When the

B field is applied the protein was subjected to a decrease of 80 % in its mobility. This

is possible due to the action of the B field not only on charged protein residues but also

on charged free particles as the ions present in the solution. Indeed, an increase of 28

% and decrease of 12 % has been detected for the Na+ and Cl- ions respectively. The

opposite trend of the D values for the ions with the respect to the previous results (see

Fig. 9.2), it may be coming from the presence of the positive charged protein and the

interaction with the B field application.

In order to ensure that no structural changes where obtained due to the B field ex-

posure the Root mean square deviation (RMSD) and the α-helix secondary structures

(Fig. 9.8) have been studied. No significant differences were appreciated for both ob-

servable, meaning no protein disruption occurred next to the B field application.

Now the attention will be focused, not on the whole protein structure, but on the
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Figure 9.9: Dipole moment for the HIS264 and GLU169 residues (a and b), in time (upper panel)
domain and with a PDF (lower panel) distribution calculated in the time range 8 - 20 ns.

charged residues involved in the hydrogend bond during the ligand binding process

(Fig. 9.4) [Lebon et al., 2015].

To possibly detect interaction mechanisms of the B field with chosen residues of the

A2A, firstly the dipole moment has been computed (Fig. 9.9) of residues. In Fig. 9.9 the

main results are reported for the residues histidine264 (Fig. 9.9a) and glutamate169

(Fig. 9.9b) both in time domain and with a PDF distribution. Almost, from the half of

the simulation the residues seem to reorient due to the B field application, specially for

the glutamate residue. This effect is confirmed looking to the PDF of dipole moment

calculated between the 8th and 20th ns of the simulation. The significant effect of the

glutamate residue could be due to its high charge of +1e that could respond to the

B field application. No effects were appreciated for the other residues of the ligand

binding site.

As last observable, taking a look to the A2A topology, the ramachandran plot have

been analysed. Ramachandran plot, as previous mentioned, (see sec. 9.2) represents

the energetic regions and possible conformations permitted to peptides. In Fig. 9.10,

it can be noticed how in zero field condition the residue, during the simulation (spots

represent the rotation values from 0 to 20 ns) are mostly in the stability region assuming

a configuration between the β-Sheet and the α-helix right-handed conformation. An

exception is highlighted for the leucine residue (green spots in Fig. 9.10) founded in
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the disfavored region, that as mentioned in sec. 9.2, could be due to particular state as

folding state or it can indicates a different secondary structures (e.g. coil or turn).

When a B field of 1 T is applied, all the residues are subjected to rotations towards

different conformation with the respect to the no field application (Fig. 9.10 right side).

Almost all the residues go to the α-helix right-handed conformation exception for the

serine going towards a β-Sheet structures. No changes were detected for the glutamate

residue. These results in terms of residues rotations suggest a B field effects in terms

of charge re-distribution on the receptor surface.
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Figure 9.10: Ramachandran plot for the HIS264, ALA265, PRO266, LEU267, GLU169, SER67 in zero
field (left side) and under the exposure of 1 T (right panel).
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9.4 Conclusions

More often researchers are focusing their attention on the B field interactions on living

objects [Varani et al., 2002, Di Lazzaro et al., 2013, Varani et al., 2017]. Recently,

from Varani et al. [Varani et al., 2002, 2008, 2017] experimental studies have presented

regarding the enhancing of the anti-inflammatory effects of the adenosine A2A on cells

next the application of a magnetic field with intensity between 0.5 and 3 mT [Varani

et al., 2002].

In this chapter, the analysis of the interaction mechanism between the adenosine A2A

receptor and a magnetic field application has been presented.

The implementation in the Gromacs software of a static external magnetic field, for

the first time, has been carried out by introducing the Lorentz force with the Larmor

frequency component into the Velocity Verlet algorithm. In the update of velocities

and positions the term of the Larmor frequency has been introduced to insert a mag-

netic field applied in the z direction. To validate the code, preliminary simulations of

a charged particle, Na+ ion, in vacuum and with water molecules have been done. A

perfect matching has been obtained between the Na+ displacement from the numerical

MD simulations and the analytic models as reported in the results section 9.3. These

results confirmed the expected behavior of the magnetic field acting on the single par-

ticle, giving a first validation of the method implemented.

After testing the implemented code, we performed MD simulations considering a NaCl

buffer solution (DMEM concentration [Varani et al., 2002]) exposed to 1 T of magnetic

field. From the diffusivity (D) analysis, no changes for water molecules occurred and

a variation of 10 % and 18 % for the Na+ (decrease) and the Cl- ions (increase) was

observed. This effects can be explained as result of the interaction of the B field with

free charged particles.

Simulations of the Adenosine A2A receptor in the buffer NaCl solution, highlighted a

decrease of the protein diffusivity D, by the 80 %; no changes occurred for the water

diffusivity and an increase of 28 % and a decrease of the 12 % was reveled for the

Na+ and the Cl- ions. The opposite behavior for the ions diffusivity in presence of the

protein can be due both to the presence of the charged adenosine A2A (+6e) and to the

interaction with the magnetic field which could explain the immobility of the protein

with the respect the zero field application (see Fig. 9.7).

From the RMSD and the α-helix secondary structures study no changes were detected,
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ensuring no protein disruption due to the B field application.

In order to analyse the ligand binding site of the adenosine A2A, the Dipole moment

and the ramachandran plot have been computed for six residues involved in the hy-

drogen bond during the ligand binding process (HIS264, ALA265, PRO266, LEU267,

GLU169 and SER67, Fig. 9.4). By the dipole moment analysis a reorientation of some

binding residues (GLU169 and HIS264) has occurred next the application of 1 T of B

field.

To study the energetic regions allowed to single residues we calculated the Ramachan-

dran plot, by detecting changing in bond residues torsion angles ψ and φ when a B field

of 1 T is applied for the ligand-binding residues (HIS264, ALA265, PRO266, SER67,

LEU267). A trend towards the α-helix right-handed conformation has been detected

when the B field is applied (see Fig. 9.10) for almost all the residues, exception for

the serine67 going towards β-Sheet structures. No changes were observed for the glu-

tamate residue. These residues rotations suggest that our data seem to be in line with

the molecular gyroscope mechanism and diamagnetic anisotropy mechanism proposed

by Binhi and Prato [Binhi and Prato, 2017] and by Babaei [Babaei et al., 2017] re-

spectively.

As whole these data advise a direct interaction between the B field applied and the

charged residues of the protein surface.



Chapter 10

Molecular modeling of the

metallo-enzyme superoxide

dismutase exposed to nanosecond

pulsed electric signals

10.1 Introduction

In the previous chapter (see Ch. 9), a molecular dynamics simulation study has been

presented to explore the interaction between a magnetic field and a protein structure.

Anyhow, recently many researchers have also focused the interest on intracellular en-

zyme modifications induced by the application of nanosecond pulsed electric fields,

observing enzymatic activity loss in proteins, supported also with theoretical predic-

tions from molecular dynamics simulations, focusing on significant variations in protein

secondary structures. Here a protein has been chosen, the SOD1 enzyme, due to its

important biochemical activity as an antioxydant molecule and also due to the pecu-

liar characteristics of its active site, having an electrostatic environment particularly

responsive.

The superoxide is generated by many life processes, which include aerobic metabolism,

oxidative phosphorylation and photosynthesis, in addition to the respiratory burst in

the immune response of stimulated macrophages and neutrophils [Fridovich, 1986].

Superoxide − dependent formation of hydroxide radicals are important in oxygen tox-

169



170
10. Molecular modeling of the metallo-enzyme superoxide dismutase

exposed to nanosecond pulsed electric signals

icity [Halliwell, 1982, Carlioz and Touati, 1986], if unchecked, reactive oxygen species

(ROS) including the superoxide radical can result in inflammation and inflict cell injury

that includes DNA damage [Imlay et al., 1988, Imlay and Linn, 1988] being implicated

in many human pathologies, including ischemic reperfusion injury, cardiovascular dis-

ease, cancer, aging and neurodegenerative disease [Perry et al., 2007, Halliwell, 1992].

The enzyme superoxide dismutase (SOD) takes part to the cellular antioxidant defence

mechanism, repairing cells from damages caused by the toxic reactive oxygen species

(ROS) including the superoxide radical O2
- [McCord and Fridovich, 1969, Fridovich,

1998]. SODs are enzymes that disproportionate superoxide anion radicals at some of

the fastest enzyme rates known. They essentially act as a master key, controlling cel-

lular ROS levels, with a potential use as therapeutic agents in oxidative stress-related

diseases [Kawakami et al., 2009, Peixoto et al., 2009, Abdallah et al., 2009]. Specifically,

the Cu-Zn,SOD (or SOD1) [Getzoff et al., 1983] is a homodimeric metalloenzyme con-

taining a couple of copper (Cu) and zinc (Zn) metal ions that dismutate the superoxide

radical O2
-. To prevent the accumulation of the O2

- radical, in the first step of the

dismutation reaction, the O2
- is oxidized by Cu2+ to molecular oxygen(O2) and sub-

sequently a second superoxide anion is reduced by Cu+ to produce hydrogen peroxide

(H2O2).

Recent studies experimentally investigated the role of the SOD1 in ALS, finding an

alteration of the glutamate release from the enzyme in the mice spinal cord [Bonifacino

et al., 2016], while other ones found expression of the SOD1 in patients affected by

neuronal disorders [Beqollari et al., 2016, Ayers et al., 2016]. Moreover, it has been

found [Cleveland and Rothstein, 2001, Wood et al., 2003] that the accumulation of the

O2
- radical, resulting in oxidative stress, is implicated in neurodegenerative diseases

as is the ALS (Amyotrophic lateral sclerosis) [Kaur et al., 2016] or in the Parkinson

disorder causing neuronal apoptosis [In et al., 2016].

Because the mechanism of the SOD1 enzymatic reaction has not been fully elucidated,

molecular dynamics simulations (MD), providing protein conformational changes at

the atomistic level, have been used as tool for the understanding of the protein sta-

bility both in physiological conditions and under external stimuli [Falconi et al., 2001,

Schmidlin et al., 2013, Ding et al., 2012]. Falconi et al. [Falconi et al., 2001] analysed

the differences between the wild-type and mutant a single site mutant Val29Gly-SOD1

both experimentally with spectroscopy and with MD simulations, highlighting a more

accessible active site and dynamic copper accessibility for the mutant SOD1. In another
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study [Schmidlin et al., 2013] MD simulations have been used to analyse the thermal

SOD1 denaturation at a temperature of 498 K in 200 ps by confirming the experi-

mental evidences. To this regard, different researchers have explored the possibility to

destabilize the SOD1 protein by the application of an external stimulus as thermal or a

pH variation [Schmidlin et al., 2013, Dolashka et al., 2011, Auclair et al., 2010], indeed

Auclair et al [Auclair et al., 2010] founded that at melting temperature in a range

between 25 ◦C and 45 ◦C, a more stable protein structure is obtained, by cross-link

the two SOD1 monomers with cysteine and in this way preventing the aggregation also

responsible of neuronal diseases.

However not only a pH variation or a thermal stimulus have been applied in the past

to destabilize molecular enzymes as SOD1 but also external electric fields. The de-

velopment of tools to map intracellular electric fields is beginning to suggest that a

significant fraction of cytosolic proteins are, like the majority of membrane proteins,

exposed to strong electric fields [Koo Lee et al., 2009]. In addition, there is evidence

for an increasingly use of electric fields to manipulate proteins in bio-nanotechnology

applications. For example, nanosecond pulsed electric fields (nsPEF) with intensities

up to 2x107 V/m able to permeabilize the plasma membrane due to a large population

of small pores (i.e. nanopores), have been shown to directly interact with internal

cell organelles [Breton and Mir, 2012, Denzi et al., 2013], or internal proteins [Beebe,

2015, Azan et al., 2017b, Carr et al., 2017]. Given the master key role in controlling

cellular ROS levels of SOD1 enzymes and given their sensitivity to destabilization due

to external physical agents, it is particularly interesting to elucidate the mechanism of

action of intense electric fields acting on SOD1.

Therefore, the goal here is also to observe SOD1 response to electric fields, studying

whether this enzyme results sensitive to the application of a 100 nsPEF with different

intensities (in line with literature from 108 to 7x108 V/m) and different shapes with a

first aim to verify a possible transition to an unfolding state. In addition, we studied

the pattern of the electrostatic distribution at the reaction site of the enzyme, as a

marker of a facilitated or impeded reaction.

The hypothesis is the possibility to create a sort of electric environment which could

enhance the interaction between the superoxide anion O2
- and the Cu2+ of the SOD1

active site. In fact, the structural biology of the SOD1 enzyme reveal important fea-

tures as hydrogen-bonding and metal-binding motifs making possible a mechanism

known as ’electrostatic guidance’ [Perry et al., 2010], that promotes the catalysis with
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time scales faster than O2
- diffusion rate. Such mechanism, firstly proposed by Getzoff

and colleagues in 1983 [Getzoff et al., 1983], hypothesizes that the arrangement of

electrostatic charges in the active site of SOD1 promotes productive enzyme-substrate

interaction through the substrate guidance and charge complementary. More recently

such electrostatic interaction has been experimentally measured for another human en-

zyme, showing that the organization of charged and polar groups in the folded state

of proteins produces large electric fields, and that the magnitude and direction of such

fields may have a substantial effect on the rate of reaction [Suydam et al., 2006]. In line

with this, electric fields are being considered able to modulate enzyme catalysis: recent

experiments utilizing the vibrational Stark effect made possible to measure the electric

field experienced by a substrate molecule when bound inside its enzyme’s active site.

These experiments have provided compelling evidence supporting a major electrostatic

contribution to the enzymatic catalysis [Fried and Boxer, 2017].

Moreover, very recently it has been proven that an electric field stimulation combined

with X-ray crystallography of protein crystal can reveal protein mechanics using elec-

tric field strength in the order of 108 V/m.

For these reasons, we numerically evaluated maps of the electrostatic field distribution

at the active site of the SOD1 when a 100 nsPEF of 108 V/m of intensity is applied

looking for a modulation of the electrostatic environment of the enzyme active site.

Such interaction can be considered as a first step of a cascade of events culminating in

an overall cell response.

10.2 Materials and Methods

Protein Structure

To perform MD simulations we used the structure of a crystallized mutant SOD,Cu-Zn

(PDB code: 1SPD23) with the biochemical activity considered equivalent to the wild-

type one [Amadei et al., 2007, 2006]. The structure is a dimer with the active site

present in both monomers. Moreover, in the absence of the O2
--SOD,Cu-Zn complex,

we considered the structure as reported in [D’Alessandro et al., 2004], where for the

purpose of modeling of the enzyme core, an available structure of bovine SOD,Cu-Zn

complexed with an azido group (PDB code: 1SXZ) has been equilibrated and minimized

replacing the azido group with O2
- [Amadei et al., 2007, 2006].
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The enzyme superoxide dismutase (SOD) has the main role to defend the enzyme

in the body’s response to the toxicity of metabolic by-products of oxygen. To do

this it eliminates the superoxide anion radical O2
- by transforming it in hydrogen

peroxide H2O2 after a bond with two H+ ions. The SOD,Cu-Zn enzyme accomplished

this role through its active site (Fig. 10.9b) formed by the Zn2+ ion, the Cu2+ and

the superoxide anion O2
- with which takes place in the enzymatic reaction plus three

histidines coordinated by the copper ion. The environment in which the SOD1 enzyme

was immersed consists of a rectangular box (10 x 11 x 9 nm3) containing inside 32292

single point charge (SPC) water molecules with 9 Na+ counterions, for a total of 99659

atoms (Fig. 10.1a). Resulting system density was 1000 kg/m3.

Molecular dynamics simulations

Molecular dynamics simulations were performed with Gromacs 4.6.5 package [Hess

et al., 2008], employing the GROMOS96 (ff43a1) force field [van Gunsteren et al.,

1996]. All complexes were energy relaxed with 1000 step of steepest descent energy

minimization. MD simulations were performed using the LINCS algorithm [Hess et al.,

1997] to constrain bond lengths and periodic boundary conditions were applied in all

directions. Long range electrostatic forces were treated using the Fast Particle-Mesh

Ewald method (PME) [Essmann et al., 1995]. Van der Waals forces and Coulomb

potential were treated using a cut-off of 0.9 nm and the simulation time step was set

to 2 fs. An initial velocity obtained according to a Maxwell distribution at 300 K

was given to all the atoms. All simulations were run in NVT environment employing

V-rescale as temperature coupling algorithm, with reference temperature set at 300 K.

The trajectories were propagated up to 150 and 200 ns in a NVT (number of particles,

volume and temperature are constants) ensemble using an integration step of 2 fs

for exposure and no exposure condition respectively, fixing the SOD1 center of mass,

preventing translations but with no constraints on its related rotation. For the no field

exposure, also four different simulations were carried out (50 ns of duration) in order

to have significant statistic data.

Possible effects due to the intensity and the specificity of an applied nsPEF have been

evaluated by the application of monopolar and bipolar electric pulses with rise and fall

time of 2 ns. We performed the implementation of the analytic form of the trapezoidal

monopolar and bipolar signals inside MD simulations by modifying the source code
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sim util.c in the GROMACS package [Van Der Spoel et al., 2005]. The E field intensity

for both signals was settled from 108 to 7x108 V/m, acting in the simulation box as

explained in [Marracino et al., 2013b].

Besides, the application of the electric field takes place in continuity at the last frame

of the unexposed simulation, thus allowing a direct evaluation of the protein response

due to the switch on of the external electric field application.

Molecular dynamics observables

Secondary Structure analysis

To evaluate possible structural changes induced by the external signals considered,

we calculated the number of secondary structures through the command line of the

GROMACS package using the do dssp command. The SOD1 is mainly a β-Sheet

structure, which constitute a fundamental form of bio-molecular recognition (like DNA

base pairing) and are involved protein-protein interactions, and peptide and protein

aggregation [Nowick, 2008].

The calculation has been made in terms of mean value of β-Sheet and Coil number

during the on phase of both monopolar and bipolar pulses, with the respect to the

equilibrium condition (no E field applied). P-value statistics calculations have been

carried out using the student t test.

RMSD, Radius of Gyration and Solvent Accessible area

To quantify the protein atoms positions during the MD simulation we computed the

rmsd. The RMSD (root-mean-square deviation) of atomic positions provides a quanti-

tative measure of the protein structural variations, comparing the electric field exposure

and the equilibrium state. Moreover, in order to quantify the distribution of the atoms

in the space relative to their center of mass, we computed the radius of gyration, which

provides an understanding of the changes in shape and size of the protein under the

influence of an external stress. To analyse the interaction of the SOD1 protein with the

environment in which is immersed, we calculated the solvent accessible area (SASA),

that estimates the solvent accessible surface to the protein structure, to interact with

solvents or with other molecules of similar size. It provides the hydrophobic and hy-

drophilic area available for the protein. All these observable have been calculated with
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the GROMACS command line.

Dipole Moment Spectrogram

Usually proteins, due to their secondary structure conformation (α-helices, β-sheets,

turns, coils, etc.) possess an electric dipole moment and when an external electric field

is applied, the protein orients itself in the direction of the field application. Firstly, we

analyzed the dipole moment of the protein in time domain both under the monopolar

and bipolar pulse.

Moreover, the analysis has also been conducted in the frequency domain. The spec-

trogram is a time-frequency representation, able to describe the spectral content of a

signal, obtained as the square modulus of the short time Fourier transform algorithm.

This algorithm implying the windowing of the temporal signal under analysis and the

fast Fourier transform of each time sequence. Here, temporal sequences 4.0 x 10-11 s

long filtered through a Hamming pass-band filter [Hamming, 1989], with 50 % overlap

between adjacent segments has been chosen. We obtained a frequency resolution of

0.25 GHz and a time resolution of 6 ns. The electric field was applied in the y-axis

(Fig. 10.1a). The analysis of the frequency spectral content of the dipole moment of

protein and water molecules have been performed. This outcome has been evaluated

both considering the application of an electric field of 108 V/m and a temperature in-

crease of 35 degrees (335 K, SOD1 melting temperature [Ding et al., 2012]) to compare

the different molecules response.

Electrostatic distribution at the active site

With the aim to study the charge distribution of protein molecules around the active

site, the electric field maps have been performed, along two main directions of the

active site Cu-O2, comparing the equilibrium condition and the one perturbed with

an electrical external stimulus. As electrical stimulus, the effects of a monopolar and

bipolar 100 nsPEF with intensity of Ey = 108 V/m, have been investigated.

The local electric field (Eq. 10.1) has been computed, due to the contribution of all

charges related to all molecules (protein, water and Na ions) in two different planes of

4.7 x 4.7 nm2 of dimension (centered in the Cu position), in the Cu-O2 (x’) direction

and the one (y’) perpendicular to x’ (see π’ plane in Fig. 10.9c) and the other plane

(see π” plane in Fig. 10.9c) is in the Cu-O2 (x’) direction and the other one, y”, is the
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Figure 10.1: (a) SOD,Cu-Zn molecular model showing the simulation box (10 x 11 x 9 nm3) containing
32292 water molecules, the SOD1 model and 9 Na+ counterions. The SOD,Cu-Zn model is formed by
two monomers, each one containing a reaction centre. The electric field is applied in the y direction.
(b) The RMSD of the SOD1 enzyme during the equilibration (t = 200 ns).

one perpendicular to y’. The discretization step of the map has been ∆ = 0.05 nm (see

Fig. 10.9c).

Eri =
∑
n

qn
4πε0| (rn − ri) | 3

(rn − ri) (10.1)

The effects of the presence of charged residues (i.e. glutamic acids, Fig. 10.9c purple

color) surroundings the SOD1 active site (Fig. 10.9c) have been evaluated to study a

possible electrostatic guidance of the O2
- ion to interact with the copper Cu2+ mediated

by the external electric field application. Finally, to validate our electric field maps and

to quantify the difference between the equilibrium and exposed condition we calculated

the SMAPE (Eq. 10.2) (Symmetric mean absolute percentage error) as follows:

SMAPE =
200%

n

n∑
t=1

|Ft −At|
|Ft| − |At|

(10.2)

where Ft and At are the mean value of the Electric field for the zero field condition and

the exposed one, respectively; n is the number of points used for the maps construction.
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Figure 10.2: (a) SOD1 molecular structure in equilibrium condition (no field applied). Each of the
two dimers hosts the reaction center defined by Cu and Zn atoms. In yellow β-Sheet structures are
shown, coil in white, turn in chain and α-helix in pink. The active site is reported (Cu2+ in red, Zn2+

in blue and O2
- in green). (b) The 7x108 V/m 100 Bipolar pulse induces a remarkable loss of β-Sheets

at the end of the pulse excitation suggesting an SOD starting unfolding state. The others secondary
structures show a similar behavior.

10.3 Results and discussion

Equilibration of the system

The present work includes a total of 1500 ns all-atom, explicit-solvent MD simulations

for the complete SOD1 enzyme. During equilibration in the water box (Fig. 10.1a),

the root-mean-square deviations (RMSDs) of the structure is leveled off at a value <
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0.5 nm (Fig. 10.1b), indicating that equilibrium had been reached. The equilibrated

system representing the ”No Field” condition, considered as a control of the protein

at the equilibrium state, had a time length of 200 ns. Moreover, in order to give a

statistical analysis, 4 further equilibrated systems have been simulated in ”No field”

condition with a duration of 50 ns each.

Conformational effects

A comparative analysis is carried out between the physiological condition of the SOD1

enzyme and the ones exposed to the external electric field to define a threshold for the

intensity of the field able to interact and manipulate the SOD1 enzyme.

A first indisputable result is related to the effect of a pulse with intensity of 7x108 V/m,

the highest one considered for this work. The structural changes, that the protein un-

dergoes, are visibly marked and can be appreciated in Fig. 10.2 showing the SOD1

secondary structures at the end of the ”No field” simulation (t=200 ns) and at the

end of the ”Bipolar 7x108 V/m” simulation (t = 106 ns). A visible loss of the β-Sheet

(yellow) is detectable with a loss of α-helix (pink), accompanied by a simultaneous

increase of the coil complex (white). This result suggests a protein unfolding state and

hence a induced indirect effect on SOD1 enzyme activity.

To have a more detailed picture of enzyme unfolding, β-Sheet secondary structures are

evaluated over time (see Fig. 10.3). Looking at the dynamic behavior it is possible to

observe that for both the Monopolar and the Bipolar pulses there is a marked decrease

in the β-Sheet structure during the time course of the signal applied. The final unfold-

ing state seems to be related to the kind of signal applied. In particular, the Bipolar

pulse during the reverse polarity of the signal (from 100 to 150 ns) is able to induce

even a higher effect on secondary structures of the SOD1 if compared to the Monopolar

one (Fig. 10.3a and 10.3b).

Such rearrangements are shown to be irreversible in 50 ns after the application of the

pulse, hence predicting an unfolded state. In fact, a recovery of the physiological struc-

ture of the enzyme is not achieved as can be seen from 50 ns OFF of the Bipolar pulse

(Fig. 10.3b, pink curve) where no recovery occurs for the β-Sheet, suggesting a protein

change that is not reversible after the removal of the external E field. Similar trend is

shown for the Monopolar pulse even if less marked (Fig. 10.3a, red curve).
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The probability density function (PDF) of the β-Sheet structures during the OFF

state computed for the two signals (Monopolar and Bipolar), evidences a difference of

60% for the Bipolar with respect to the No field state (Fig. 10.3c, purple line) while a

30% is reached when a Monopolar pulse is applied (Fig. 10.3c, red line).

Looking for a threshold in the electric field amplitude able to structurally modify the

SOD1 enzyme, the average values of Coil and β-Sheet secondary structures have been

evaluated for decreasing intensities of the field applied (7x108, 5x108, 2x108, and 108

V/m) comparing the ”No field” condition with the Monopolar and the Bipolar pulses

(Fig. 10.4).
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Figure 10.3: (a,b) SOD1 secondary structures recovery. (a) β-Sheet trend in time domain in no
exposure condition (black line) and under a monopolar (red line, a) and bipolar (violet line, b) electric
pulse with intensity of 7x108 V/m. (c) The β-Sheet probability density function is reported during the
off state of 50 ns after the monopolar and bipolar pulse application. The distribution highlights the
not reversible condition for the β-Sheet structures specially under the bipolar pulse exposure.
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Figure 10.4: SOD1 secondary structures analysis. Coil and β-Sheet secondary structures mean values.
The results are presented in no exposure condition and under monopolar and bipolar 100 nsPEF with
intensity from 108 to 7x108 V/m. The asterisk (∗) indicates p value smaller than 0.05 (p<0.05) which
means a variation statistically significant, and the circle (◦) indicates no statistical significance. The
statistical analysis has been performed with the Student t test. Bars on graph indicate the standard
error.

We obtain at maximum (for the intensity of 7x108 V/m) a loss of β-Sheet up to

37% and an increase of the coil secondary complexes up to 28% while decreasing the

intensity we have been able to identify three different structural states:

1. SOD1 unfolded state under the application a pulse of 7x108 V/m and not re-
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versible in 50 ns following the switch off of the field;

2. initial SOD1 unfolding (variation of about 23 % in secondary structures) with

intensity of 5x108 V/m of intensity, partially reversible in 50 ns after the electric

pulse removal;

3. slightly reversible changes (< 5%) related to the application of field intensities

equal to 108 and 2x108 V/m.

Figure 10.5: RMSD, radius of gyration and SASA analysis for the SOD1 protein. In the panel above
four different main protein observables are presented: the probability density function (PDF) of RMSD
(a); the PDF of the Radius of gyration (b); the PDF of the Hydrophobic (c) and Hydrophilic area
(d) available for the protein structure in equilibrium condition (black line) and under an external
monopolar pulse of 108 (yellow line) and 7x108 V/m (red line).

By applying the p-value statistics calculations, almost all the variations, compared

with the equilibrium state, result to be statistically significant suggesting that the

starting threshold for SOD1 conformational marked changes is about the electric field

intensities of 5x108, while the intensity of 7x108 V/m is causing definitive protein

structural rearrangements. Only in the case of 108 and 2x108 V/m the variation either
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for the coil structures or for β-Sheet ones resulted to be not statistical significant.

For this reason, Monopolar and Bipolar pulses of 108 V/m in amplitude, not able to

determine any conformational change on the enzyme, have been chosen to check if they

could be able to interact somehow with the protein.

Therefore, a first comparison in terms the RMSD (root-mean-square deviation), the

radius of gyration and the solvent accessible surface area (SASA hydrophobic area and

hydrophilic area) have been reported in Fig. 10.5 comparing the lowest (108 V/m) and

the highest (7x108 V/m) values of the Monopolar pulse. In Fig. 10.5a the probability

density function (PDF) of the RMSD is presented, showing for the ”No-field” situation,

a bimodal distribution with peaks of 0.2 and 0.3 nm, indicating that the system is

fully equilibrated as also reported in Fig. 10.1a. The PDF profile for the case of 108

V/m is quite similar, indicating that the structure remains in the same condition of the

equilibrium state, while for the highest intensity of 7x108 V/m the PDF is broader with

range of variability between 0.2 nm and values higher than 0.9 nm. This increment

is due to the partial loss of the secondary structures and denotes a protein elongation

and an unfolding of the structure.

The previous results have been also confirmed by the radius of gyration (Fig. 10.5b),

which quantifies the distribution of the atoms in the space relative to their center of

mass, providing an insight of the protein changes in terms of shape and size under the

influence of external stresses. Under the influence of a Monopolar pulse of 108 V/m of

intensity, the SOD1 does not show significant variations with respect to the reference

condition, while the loss of secondary structures already detected in Fig. 10.2 for an

intensity of 7x108 V/m is the one responsible of the higher and wide distributed value

of the radius of gyration. Finally, the total solvent accessible area has been calculated:

results have been reported in Figs. 10.5c and 10.5d, split as the PDF of hydrophobic

and hydrophilic area accessible for the protein, respectively. No noticeable changes

have been observed for the intensity of 108 V/m in both cases, confirming that the

lowest intensity considered in this work is not able to induce relevant changes in any of

the parameter usually observed in MD of proteins. For the higher E field intensity of

7x108 V/m it has been observed an increase of surface hydrophobicity (Fig. 10.5c) of

about 10% suggesting a decrease in protein - solvent molecules interaction, which could

suggest a protein denaturation as reported in [Xiang et al., 2011]. Conversely, for the

accessible hydrophilic area no changes were observed when an external electric field is

applied, indicating that, differently from the hydrophobic regions which become more
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exposed to water when the electric filed is applied, conversely the overall surface already

exposed to water is not affected by the field (see Fig. 10.5d). Similar results have been

obtained for the Bipolar pulse (see Fig. 10.6) for all the classical MD observable.

Figure 10.6: RMSD, radius of gyration and SASA analysis for the SOD1 protein. In the panel above
four different main protein observables are presented: the probability density function (PDF) of RMSD
(a); the PDF of the Radius of gyration (b); the PDF of the Hydrophobic (c) and Hydrophilic area (d)
available for the protein structure in equilibrium condition (black line) and under an external bipolar
pulse of 108 (light blue line) and 7x108 V/m (blue line).

Electrostatic coupling

Despite that the lowest intensity of 108 V/m is not able to induce changes in the struc-

ture of the protein, there is still a not negligible coupling with the protein electrostatics,

due to the dipolar mechanism, either mediated by the solvating water or directly with

the enzyme. In fact, under the influence of an external electric field the protein residues

as well as water molecules are subject to a reorientation quantified by the dipole mo-

ment.

We compared the physiological behavior of the enzyme (No-field case) with Monopolar

and Bipolar pulses application of 108 V/m intensities, calculating both the protein and
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the solvation-water ’dipole moment’ alignment.

Figure 10.7: Time domain trend of the protein dipole moment in no field (black line) and when a
monopolar (yellow line) and a bipolar (light blue line) pulse of 108 V/m is applied.

In Fig. 10.7 such coupling is reported as first in terms of time domain trend of the

y component of the protein dipole moment. It is possible to notice how the protein,

despite its dimension is able to follow the external field application, by suggesting a
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reorientation of the protein (containing charged residues) depending to the external

field applied.

Figure 10.8: Frequency spectral content of all molecules (first column), the SOD1 and water dipole
moment (second and third column respectively). Frequency spectral content of the dipole moment
y-component of Cu,ZnSOD1 and water reported in no field condition (black label, first raw), with an
increment of 35 K (second raw) and exposed to a 100 ns, 108 V/m of intensity for the Monopolar pulse
(yellow label, third raw) and Bipolar one (green label, forth raw).

Successively, in Fig. 10.8 the dipolar coupling is also evaluated by means of the

spectrogram of the total absolute value (MTOT) and the y-component of the dipole

moment.

Since a spectrogram is a visual representation of the spectrum of frequencies of a signal

as it varies with time, it is built from a sequence of spectra stacking them together in

time and by compressing the amplitude axis into a ’color map’. The final graph, as

represented in Fig 10.8, has time along the horizontal axis, frequency along the verti-

cal one, and the amplitude of the y-component dipole moment at any given time and

frequency shown as color level. In the following spectrograms, the frequency dynamics
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up to 1 GHz is compatible with the time scales of the dipole moment reorientation due

to the external field applied, while the time axis is related to the signal used.

In No-field condition, as it is possible to appreciate looking at Fig. 10.8 (1st raw, 3rd

column), the frequency content of water dipole alignment reaches 1 GHz for the whole

observation time, while a lower frequency of about 700 MHz or less is observed for

the protein (Fig. 10.8, 1st raw, 2nd column). This reflects the fact that the dynamics

of water dipole moment alignment is more rapid than the one of the protein, as ex-

pected. When Monopolar or Bipolar pulses of 108 V/m are applied, water molecules

are highly reoriented by the external E field with a frequency content always up to 1

GHz but perfectly following signal polarity changes; hence in the case of Monopolar

pulse (Fig. 10.8, 3rd raw), after a first time length of 50 ns where the signal is still OFF,

the rise and fall times of the signal are clearly visible in the increase of the frequency

spectral content of the water dipole moment at the beginning and at the end of the

signal course, while for the Bipolar one (Fig. 10.8, 4th raw) the reverse of the signal

polarity is clearly observable in the increase of the spectral content also at the middle

of the signal course (t=100 ns). When considering the behavior of the protein dipole

moment, a similar trend is observed although with a marked decrease in the intensity of

the dipole alignment, essentially due to the higher dimensions of the target. Therefore,

SOD1 needs more time to reorient, but still is able to follow the external polarization

(Fig. 10.8, 2nd column, 3rd and 4th raw), thanks to the electric coupling between the

electric field and the protein. As last observation, by increasing the temperature of 35

K (experimental melting SOD1 temperature [Ding et al., 2012] ,Fig. 10.8, 2nd raw) no

differences where appreciated with respect to the no field condition.

Such coupling of the protein electrostatic environment with 108 V/m Monopolar and

Bipolar pulses may in principle have an effect on the SOD1 enzymatic activity. In

fact, it is by now assessed that the SOD1 physiological pattern of electrostatic poten-

tial, where a positive potential region emanates from the active site and the repulsive

negative potential barrier surrounds the protein, seems designed to provide a large

cross-sectional area for O2
- productive collisions [Klapper et al., 1986], hence giving

an electrostatically guidance to the superoxide.

For this reason, to fully exploit the potentialities of the external electric field to affect

the electrostatic guidance of the O2
- towards the Cu2+, the local electric field distribu-

tion on the active site of one of the two dimers (Fig. 10.9 a and b) has been investigated,

due to the overall enzyme and water surrounding the enzyme. 2D maps have been com-
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puted selecting a plane centered in the Cu2+ atom and with the first direction along

the Cu-O2 distance (x’, Fig. 10.9c) and with the second one perpendicular to it (y’,

Fig. 10.9c) for the π’ plane. The second plane (π” plane), is centered in the Cu2+

atom and with the first direction along the Cu-O2 distance (x’, Fig. 10.9c) and with

the second one perpendicular to y’ (y”, Fig. 10.9c). Both planes have been densely

meshed and at the nodes of each grid the electric field due to the overall charges from

the protein and from water molecules has been calculated.

Figure 10.9: SOD,Cu-Zn dimer and active site (2D) grid for the local E field distribution calculation.
(a) Molecular model of the SOD1 dimer viaβ-sheet ribbon representation. (b) Active site of one of the
two dimers centered in the copper ion.(c) Two planes of 4.7 x 4.7 nm2 with x’-axis oriented on (Cu2+-
O2

-) direction and y’-axis normal to it for the π’ plane and along the x’-axis oriented on (Cu2+- O2
-)

direction and the y” normal to y’.

Results for the (2D) maps of the local electric field distribution are reported in

Fig. 10.11 for the π’ plane and in Fig. 10.12 for the π” plane, for which the front view

is reported in Fig. 10.10 to better understand the atoms position. In No-field condition

(Fig. 10.11a and Fig. 10.12a) the local electrostatic field distribution appears almost

circular around the center quite elongate to be higher along the y’ and y” direction

respectively for both planes, due to the presence of the surroundings charged residues

(Fig. 10.9c, i.e. the coils (white) and turn (chain) secondary structures along the y’
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Figure 10.10: 2D Representation of the π’ and π” planes in the frontal view to better comprehend the
active site postion.

directions and the glutamate residue (GLU133), purple color, along x’).

Figure 10.12: (2D) maps of the local electrostatic field around the active site on the π” plane. (a)
No-field condition. (b) Monopolar (108(V/m), 100 ns). (c) Bipolar (108(V/m), tON−negative = 50 ns).
The local electrostatic field is given in units of 109(V/m)
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Figure 10.11: (2D) maps of the local electrostatic field around the active site on the π’ plane. (a)
No-field condition. (b) Monopolar (108(V/m), 100 ns). (c) Bipolar (108(V/m), tON−negative = 50 ns).
The local electrostatic field is given in units of 109(V/m)

Figure 10.13: Distribution of SMAPE. (a) Bipolar pulse for the π’ plane (108 V/m, tON-negative = 50
ns). (b) Bipolar pulse (108 V/m, tON-negative = 50 ns) for the π” plane.
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Figure 10.14: Distribution of SMAPE. (a) Monopolar pulse for the π’ plane (108 V/m, 100 ns). (b)
Monopolar pulse(108 V/m, 100 ns) for the π” plane.

By looking at the results for the π’ plane, when the field is applied (Fig. 10.11c

and 10.11d), the environment surrounding the CuO2
- is subject to a general increase

of the amplitudes of the local electrostatic field, particularly in the direction of the

glutamate residue (GLU133, purple color), which has a strong electric negative charge

and in the direction of the two turns along y’. Moreover, also for the π” plane, when

the electric field is applied (see Fig. 10.12b and c) there is a more higher electric field

more concentrated at the active site. Moreover, in the case of the Bipolar pulse, the

whole area surrounding the reaction center becomes site of a higher local electrostatic

field suggesting possible rotation of the protein residues due to the external field action

(see Fig. 10.11 and 10.12) in both planes.

In order to quantify these effects, we computed the SMAPE [Armstrong, 1985](Sym-

metric Mean Absolute Percentage Error), comparing the exposure and the not expo-

sure condition for both planes. Fig 10.13 and Fig. 10.12 report the distribution of the

SMAPE for each of the pixels of the (2D) map of Fig. 10.11 in a region more focused

on the active site (2.5 x 2.5 nm2 of dimension) for the Bipolar and the Monopolar pulse

respectively, in both planes. The maps show that both the application of Bipolar and

Monopolar pulses induces a substantial variation of the local electrostatic field pattern

with an average SMAPE value of 59% and 58 % for the Monopolar pulse in the π’ and

π” planes respectively (Fig. 10.14) and a value of 72% and 148 % for the Bipolar (see
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Fig. 10.13) in the π’ and π” planes, calculated considering the full map.

Therefore, the intensity of 108 V/m is a threshold intensity able to affect the electro-

static environment of the enzyme active site. Such electrostatic variation, modulating

the guidance of the superoxide radical O2
- towards the active site of the SOD1 enzyme,

may as a final step influence the SOD1 enzymatic activity. This, without irreversible

modifications or impact on protein functions, as derived from the dipole moment anal-

ysis, showing a protein that can reorient itself following the external field applied at

the threshold intensity of 108 V/m.

10.4 Conclusions

It is something already known that intense electric fields are needed to act on biomolec-

ular processes inside cells. Voltages corresponding to v 100 mV across a cell membrane

(about 0.125 MV cm-1), consistent with biological relevance, can influence conforma-

tional transitions in proteins such as ion channels [Tao et al., 2010] and G-protein-

coupled receptors [Ben-Chaim et al., 2006]. In mitochondria, where the negative

interior dipole potential is used as the energy source to produce ATP, the electric field

across the inner membrane is as high as 3x107 V/m [Hu and Webb, 2011] which cor-

responds to 120 mV for a membrane that is 4 nm in thickness.

Moreover, it is well known that the majority of membrane proteins are exposed to

strong electric fields that range in strength from 104 to 107 V/m [Tyner et al., 2007]

and that the ability of electric fields to modulate the structure of integral membrane

proteins is a central dogma in voltage gating [Jensen et al., 2012].

However, few studies can be found for external field effects on water-soluble proteins

[Ojeda-May and Garcia, 2010, Solomentsev et al., 2010]; in fact, at the atomistic level,

protein responses and changes due to imposed electric fields can only be observed by

computer simulations. To this regard, apart from few studies that have an experimen-

tal validation, the majority of the investigations are realized on the basis of molecular

simulations. In particular, the effects of external electric field on the stability of protein

conformations [Lugli et al., 2010, Astrakas et al., 2011, Ojeda-May and Garcia, 2010,

Toschi et al., 2008, Yang, 2013, Wang et al., 2014] as well as on the stability of β-sheet

structures, dependence of the field on the polarization of water molecules, mean force

on the charged atom in a water cluster, and interaction forces between two charged

or neutral atoms in a water cluster, have been explored using MD simulations [Yang,



10.4. Conclusions 193

2013, 2014]. Pulsed electric fields of 3.5 x 106 V/m induced structural changes in the

secondary structure of lysozyme that are not equivalent to those caused by thermal

stress [Zhao et al., 2007], illustrating that the electromechanical properties of proteins

have a different physical origin at the atomistic level to their thermodynamic stabil-

ity. Lysozyme and synapse associated protein are the few examples of water-soluble

proteins that have been reported to undergo conformational changes in response to ex-

ternal electric fields [Bekard and Dunstan, 2014, Freedman et al., 2013]. These induced

field effects are poorly understood but are attributed to rotational and translational

movement of dipolar residues (or domains) in response to external electric fields. Al-

most all the papers reporting effects on the coupling of electric fields and proteins refer

to quite intensities much higher than 108 V/m, even in the case of a recent paper giving

a contribution in comprehending the complete unfolding process of a protein [Avena

et al., 2015, Amadei and Marracino, 2015, Zanetti-Polzi et al., 2013, Marracino et al.,

2015, 2017, 2016, Reale et al., 2013].

With the research project presented in this chapter, the effects of Monopolar and

Bipolar nsPEFs acting on the SOD,Cu-Zn enzyme have been explored, by using MD

simulations, in order to define a threshold for the intensity of the field able to interact

and manipulate the SOD1 enzyme.

For the first time, a Monopolar and Bipolar electric pulse have been implemented in the

Gromacs environment. By the analysis of the Coil and β-Sheet secondary structures,

we identified three different electric field thresholds: (i) with E field intensities from 108

and 2x108 V/m slightly reversible changes (5 %) were appreciated; (ii) when a E field

of 5x108 V/m is applied, variations around the 23 % are reported partially reversible in

50 ns after the electric pulse removal; (iii) SOD1 unfolding when the protein is exposed

to an electric pulse of 7x108 V/m of strength with a loss of β-sheet and an increase

of Coil, not reversible in 50 ns after the application of both monopolar and bipolar E

pulses.

The protein structural rearrangements have been also quantified through the computa-

tion of the RMSD, the radius of gyration and the solvent accessible area. These results

confirm that the SOD1 unfolds with an increment of all these parameters (meaning

loss of secondary structures) when the external electric field increases to 7x108 V/m.

To explore the SOD1 molecules polarization under a weak external E field, we studied

the spectrogram of the protein and water molecules dipole moment. We compared the

reference not exposed with a thermal increase of 35 degrees (see Fig. 10.8) and with the
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application of a monopolar and bipolar electric pulse of 108 V/m of strength. Under

the external electric stimulus, the SOD1 protein, despite its size, results to follow the

external signal applied in its shape, showing a high dipole moment with the respect

to the not exposed condition. This result suggests an electric coupling between the

external E field applied and the SOD1 protein. Conversely, the reference ”No field”

and the one with the thermal increase show a very behavior, confirming no water and

protein molecules reorientation under a thermal external stimulus.

Due to the electric coupling between the protein dipole moment and the E field ap-

plied and based on previous studies [Getzoff et al., 1992] regarding the electrostatic

recognition, we investigated a possible electrostatic guidance of the O2
- ion towards

the Cu2+ by analysing the electric forces acting on the SOD,Cu-Zn active site next

the application of monopolar and bipolar electric pulses of 108 V/m. We carried out

this study in terms of 2D maps of the electric field distribution on two planes passing

through the Cu-O2. By the investigation of the electric field maps, a larger electric

field distribution has been obtained when an external field was applied with the respect

with the not exposed reference in both planes (π’ and π”, see Fig. 10.11 and Fig. 10.12

respectively). To quantify the difference between the different exposure states we cal-

culated the SMAPE obtaining a value of 59 and 72 % of the monopolar and bipolar

pulse respectively for the π’ plane and of 58 and 148 % for the π” plane, suggesting a

significant difference with the respect to the No field condition with a possible facili-

tated reaction between the copper and oxygen ion.

With this numerical study it is possible to conclude that with the application of a

weak electric field (108 V/m) is feasible to have protein molecules reorientation and an

electrostatic guidance at the active site, which could enhance the enzymatic activity

of the protein, by responding to the external field applied without causing structural

irreversible changes. While, when intensities starting from 5x108 V/m are applied

structural changes occurred. This numerical study can be considered as starting point

for possible prediction of future experiments on the superoxide dismutase protein.
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Chapter 11

Summary and Conclusions

In this Ph.D. thesis, collocated in the nanomedicine panorama, the feasibility of liposo-

mal drug delivery systems mediated by electromagnetic fields (EMFs) has been studied

both by the theoretic and experimental point of view. In parallel EMFs interaction

with molecular structures (e.g. protein) has been studied and well explored in order to

theoretically prove the possibility to directly interact by means of EMF with proteins

and/or enzymes.

As introduced with the scheme reported in the introduction (see Ch. 1, Fig. 1.2),

the nanomedicine is a science that combines the medicine with the nano-technological

progress. Among its different fields application (Fig. 1.2), in this thesis the attention

has been focused on the therapeutic area. Generally, nanotherapeutics improve and

optimize the action of a drug agents, by increasing their accumulation at pathological

sites and their therapeutic efficacy [Lammers et al., 2008a, Davis et al., 2008, Ganju

et al., 2017]. Particularly, stimuli-response release of a drug loaded into a nanocarrier

(1-1000 nm of dimension), in a precise time and location is one of the most aimed

results of the drug delivery research.

More in detail, in this research the aim has been twofold, from one side the feasibility

of drug delivery systems mediated by liposomes as nanocarriers under the action of an

external magnetic or electric fields has been explored. On the other side the possible

interactions mechanism of electromagnetics fields with protein structures have been

investigated due to their importance in cell processes and to their potential to monitor

specific physiological events [Giuliano et al., 1995, Zhang et al., 2002, Provenzano et al.,

2009, Niesner and Hauser, 2011].
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The first step has been to give an overview of the drug delivery systems medi-

ated by liposomes and the different activation agents, by exploring the possibility to

activate them with an endogenous or external stimulus [Ganta et al., 2008, Karanth

and Murthy, 2007, Pradhan et al., 2010, Preiss and Bothun, 2011] (see Sec. 2.2). The

goal with this technique is to introduce into the body a nano-carriers capable to load,

carry and release the drug in the place where it must act, avoiding any damage to

the surrounding healthy tissue. Since the use of liposomes for drug delivery started

shortly after their invention by Bangham and coworkers in 1965 [Bangham et al., 1965,

Lindner and Hossann, 2010], in the section 2.2 the liposomes properties and their first

use in the medical research has been reported. Moreover, among the external stimulus

that can be used to activate the cargo release from these vesicles, the magnetic and the

electric fields have been considered. In the Section 2.4 a survey of the existing research

on low intensity magnetic fields activating liposomes release has been given. Indeed,

some studies suggested that magnetic fields of low intensities are a good trigger to

control the release of the drugs without causing a thermal increase to the surrounding

healthy tissues [Nappini et al., 2010, Spera et al., 2014]. Nevertheless, recently the

use of PEMFs for the treatment of inflammation status has become of frequent use,

especially in the neurodegenerative diseases and in the bone healing.

Starting from that, in the Chapter 5 experimental data concerning magnetolipo-MLs drug

delivery systems somes (MLs) exposed to a low intensity alternate (AMF) or pulsed magnetic fields

(PEMFs) have been reported. The aim has been to test the potential of a magneto-

liposomal drug delivery system to release a fluorescent dye (5(6)- carboxyfluorescein,

CF in our study), loaded into the liposomes core, by the application of magnetic fields

with intensities lower than 100 µT. To perform this study, firstly after the MLs prepa-

ration, the results obtained from Spera et al. [Spera et al., 2015] were reproduced, to

asses the capability of AMF (alternate magnetic field) of low magnetic field intensity

(70 µT) to trigger the CF fluorescent release from high-Tm MLs prepared with the

HSPC lipid. From our experiments a triggered release was reached with a 58 % of CF

release after 12 hours of exposure by switching ON (3h) and OFF (21h) the magnetic

field.

Once, assessed the MLs release next to the AMF application, experiments were carried

out exposing MLs to PEMFs with a magnetic field intensity of 100 µT by using the

I-One medical device. The CF release was around the 26 % after switching ON and
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OFF the magnetic field for a total of 9 hours of exposures (ON = 3h and OFF =

21h). By the PEMFs application it was not possible to trigger the CF release, indeed

the 17 % was released in the first 3h and a release of 7 and 2 % was reached in the

following PEMFs exposures. To study this effect, by the TEM (transmission electron

microscopy) images analysis, it has been possible to see how after the 6 hours of ON

- OFF exposures (3h + 3h) the magnetic nanoparticles escaped from the liposomes

core explaining the 7 % of release, possible due to the different characteristic of the

magnetic field application with the respect to the AMF experiments as explained in

the result section (see Sec. 5.3).

Anyhow, it is important to highlight how with these experimental data a proof of con-

cept of a magnetoliposomes drug release has been given by the application low intensity

magnetic fields (AMF and PEMFs) due to the mechanical liposomes stimulation and

not to the thermal exposure.

Next to the experimental data, with the aim to have a magnetic exposure system

able to trigger the CF release (as shown for the AMF exposure, see Sec. 5.3) but with

an higher magnetic field intensity (mT range), the design a powerful magnetic expo-

sure system for magnetic field intensities higher than 100 µT has been reported in the

Chapter 6. The designed system is a multipurpose exposure setup able to be used

both for experimental applications as MLs poration for drug delivery and for in-vitro

magnetic neuronal cells stimulation. The aim has been a dose-dependent analysis for

both applications to verify the generation of a magnetic field intensity in the order

of mT at frequencies up to 20 kHz. Firstly an analytic study has been performed to

identify the geometric and electrical parameters of a pair of Helmholtz coils to fulfill

the project requirements. A dimension of 15 cm of the two coils and a current of 0.6 A

with 200 wires have been identified. Next, a numerical simulations using the software

Sim4Life, was done to validate the geometric and electrical parameters and to analyze

the magnetic field intensity, obtaining a B field of 1.4 mT with an homogeneity of 95

% between the coils, where is supposed to be placed an exposure sample. Next to this

evaluation, two different simulations have been performed, one considering a cuvette

filled with a conductivity solution of 0.049 S/m (experimentally measured) for MLs

drug delivery purpose at a frequency of 20 kHz and another one with a chamber placed

at the center of the coils filled with artificial cerebrospinal fluid solution for in vitro

applications, at a frequency of 3 kHz (typical TMS frequency [Di Lazzaro et al., 2013]).



200 11. Summary and Conclusions

In both cases, by the analysis of 2D map of the electric and current density inside the

solution no relevant values were obtained, (E < 1 V/m and a J in the order of mA/m2)

excluding any possible thermal effect acting on the solution during the magnetic field

exposure.

Next to the numerical study, a circuital study has been carried out to match the 100

Ω of load impedance of the amplifier already present in our experimental setup. In

order to have the maximum current feeding the coils system, a capacity is needed to

be placed in series to our coils when an sinusoidal signal is applied with values ranging

from 1 to 400 nF for frequencies from 1 up to 20 kHz. Moreover, in order to match

our system when a pulsed signal is applied of 1.3 ms of duration, a resistor of 50 Ω is

needed in series to the coils instead of the capacity to have the maximum transferred

current.

The results obtained suggest that the designed exposure setup could give the possibility

to have negligible thermal increase in two of the principal therapeutic applications of

low intensity magnetic fields in the IF frequency range, with the possibility to reach

intensity in the order of mT without compromising the sample due to secondary effects.

Since the goal with this Ph.D. is to explore not only a magnetic but also an electricDrug delivery

mediated by

nsPEF
field application as external trigger for drug delivery purpose, the possibility to use

electric pulses of short duration (ns) and high intensities (MV/m) as external trigger

has been evaluated due to the existing applications of nsPEF in different medical ar-

eas, as electrochemotherapy [Miklavčič et al., 2012, Cadossi et al., 2014], electrofusion

[Rems et al., 2013, Teissie and Rols, 1986], gene electrotransfer [Mir et al., 1999, Calvet

et al., 2014] and food processing [Saulis, 2010] (see Sec. 2.3).

In the Chapter 7 a theoretical study has been presented for testing the feasibility of

a simultaneous cell and liposomes electroporation. The concept is based on the broad

spectra content of a 12 ns electric pulse for which the Schwan′s equation of the TMP

becomes a second−order model [Postow and Polk, 1996, Kotnik and Miklavcic, 2000,

Merla et al., 2012] in which the dimension effect, between the liposome (nanometer

range) and the cell (micrometer range), is not as crucial as at the low frequency range

(see Fig. 7.2). This has been elaborated with the analysis of the influence on the TMP

in time domain due to the geometrical and electric parameters, which can be controlled

in an experimental setup. As first step, simulations have been carried out considering

one liposome alone of different dimensions (100, 200 and 400 nm of diameter) exposed
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to a 12 nsPEF and the best choice has been a liposome with a diameter of 200 nm as it

results in a good compromise between the E field intensity required for the membrane

poration and the absence of recognition by the immune system. Based on these results,

with the same geometric (dlip = 200 nm) and electrical parameters (σext = σint = 1.5

S/m), we carried out an analysis of a complex system with one cell and a 28 liposomes

distribution. Giving an excitation with a 12 nsPEF, it has been demonstrated that

it is possible to permeabilize the liposomes and the cell with comparable E field in-

tensity and it has been proved that when the 80 % of liposomes is porated, the cell

membrane is porated for the 10 % of its area; in this way, the cell viability is not com-

promised, and the liposomes and cell poration can occur with the same E field intensity.

To explore experimentally this possibility in the Chapter 8 the design, realization

and characterization of a 10nsPEF exposure setup for liposomes, has been reported

and preliminary experiments on 250 nm liposomes poration have been presented.

Since the excitation is a 10 ns pulsed electric field and the target are liposomes with

200 or 400 nm diameter the use of a standard electroporation cuvette with 1 mm gap

has been considered advantageous [Denzi et al., 2017]. The design of an appropriate

cuvette holder structure proceeded, taking particular attention to the connection of the

1 mm gap electroporation cuvette to a 50 Ω high voltage pulse generator. The structure

has been completely characterized in frequency domain to understand its capability and

performances in different experimental conditions. Indeed, the study demonstrated the

capability of the proposed structure to deliver a 10 ns pulse without a significant signal

distortion in particular for media with a 0.25 S/m of conductivity value. In particular,

the higher is the solution conductivity, the lower is the efficacy of the structure and

hence the lower is the amplitude of the transmitted pulse to the cuvette. Moreover,

by combining microdosimetry (regarding 200 and 400 nm liposomes) and technological

information permits to predict that the optimal condition for a 400 nm liposome is with

0.25 S/m and 1.6 S/m, in order to guarantee the higher efficiency of the structure (0.25

S/m) and the lowest electric field needed to porate the liposomes (at 1.6 S/m). Indeed

from simulations of non uniformly distributed liposomes, an electric field of 7 MV/m

has been identified to porate the 200 nm liposomes, while 5 MV/m are sufficient to

porate the 400 nm liposomes with a gap of 0.3 MV/m between the starting of liposomes

poration and when then 100 % of liposomes is porated for both simulations. Finally,

preliminary experimental data of the exposure of 250 nm liposomes by applying an
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electric field of 9 MV/m with 56 E pulses at 1 Hz of frequency, have been reported. A

conductivity of 0.33 and 1.6 S/m has been used for the external and inner liposomes.

A release of 15 % of CF has been detected for the exposed samples, while the 2 % has

been reached from the sham sample.

From the modeling analysis we can conclude that a proof of concept has been given

of the potentiality of nsPEF to activate a liposome release and to possible porate the

cell with comparable E field intensities to the one of liposomes. Moreover from the

technological and experimental aspects we demonstrate the poration of liposomes of

250 nm of diameter opening the way for a possible drug delivery system controlled by

the electropulsation.

In the Medical research besides new nanotechnologies for the diseases treatment,

another major challenge is the accurate measurement of cells signals in order to pos-

sibly prevent the upcoming of inflammations or serious illnesses as cancers or cardiac

disorders. For this reasons, researchers started to perform methods to measure pro-

tein biomarkers, cells, and pathogen agents in biological samples [Cheng et al., 2006,

Wulfkuhle et al., 2003].

Due to the importance of proteins in the signaling from the cells and due to the medical

applications mediated by electromagnetic fields, in the chapter 9 and 10 molecular

dynamics (MD) simulations are reported regarding the exposure of proteins under the

electromagnetic fields action.

In detail, in the chapter 9, MD simulations have been reported for the action of aMD simulations

on adenosine

A2A receptor
magnetic field of 1 T of intensity on the receptor adenosine A2A. The Adenosine A2A

is an important receptor involved in the transmission of the signals from the neuronal

cells in response to a metabolic stress. From the experiments carried out from Varani et

al. [Varani et al., 2008], an increase of the receptor activity has been highlighted under

the action of a magnetic field of 3 mT for exposures time up two hours. Since, experi-

mental evidences, the aim has been to study the interaction between the magnetic field

and adenosine A2A. The Gromacs package has been used to perform MD simulations

and for the first time a magnetic field has been implemented by the modification of the

update of atom positions and velocities following the Verlet algorithm (see Sec. 9.2).

Firstly, the validation of the B field implementation with simulations of a sodium ion

in vacuum and with water molecules has been done. Latter, MD simulations consid-

ering a NaCl buffer solution (DMEM concentration [Varani et al., 2002]) have been
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performed exposed to 1 T of magnetic field and a variation of 10 % and 18 % for the

Na+ (decrease) and the Cl- ions (increase) was observed. This effects can be explained

as result of the interaction of the B field with free charged particles.

After that, the simulations of the Adenosine A2A receptor in the buffer NaCl solu-

tion, highlighted a decrease of the protein diffusivity D, by the 80 % and no structural

changes occurred by the analysis of the RMSD and the α-helix secondary structures

(the adenosine A2A is an α-helix protein), ensuring no protein disruption due to the B

field application.

In order to analyse the ligand binding site of the adenosine A2A, the dipole moment and

the ramachandran plot have been computed for six residues involved in the hydrogen

bond during the ligand binding process (HIS264, ALA265, PRO266, LEU267, GLU169

and SER67, Fig. 9.4). By the dipole moment analysis a reorientation of some binding

residues (GLU169 and HIS264) has occurred next the application of 1 T of B field. By

the study of the energetic regions allowed to single residues (the Ramachandran plot),

a trend towards the α-helix right-handed conformation has been detected when the B

field is applied (see Fig. 9.10) for almost all the residues, exception for the serine67

going towards β-Sheet structures.

For the first time with this work a magnetic field has been implemented into the gro-

macs package giving the possibility to study the interactions between a magnetic field

and a molecular target. Moreover, the residues rotations suggest that our data seem to

be in line with the molecular gyroscope mechanism and diamagnetic anisotropy mech-

anism proposed by Binhi and Prato [Binhi and Prato, 2017] and by Babaei [Babaei

et al., 2017] respectively, were the rotations of the charged residues seems to be the

response of the proteins residues to the external magnetic field applied.

Since, the aim with this thesis has been to investigate the interaction mechanism be- SOD,Cu-Zn

exposed to 100

nsPEFs
tween molecular structures and electromagnetic fields, in the last chapter (see Ch. 10),

MD simulations have been reported regarding the enzyme SOD,Cu-Zn exposed to

monopolar and bipolar electric pulses of 100 ns of duration and intensities from 108 to

7x108 V/m. The superoxide dismutase is an important enzyme involved in the body

response to the oxidative stress produced by the toxic oxygen products (e.g. free radi-

cals). With this numerical study, for the first time, a Monopolar and Bipolar electric

pulses have been implemented in the Gromacs environment. Thanks to the analysis of

secondary structures and the classical MD observable (RMSD, radius of gyration and
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the hydrophilic and hydrophobic area), three different threshold have been identified in

order to detect structural rearrangements. With an electric field of 108 V/m no struc-

tural changes occurred, while when intensities starting from 5x108 V/m are applied

structural changes were observed and with 7x108 V/m the SOD1 is in an unfolding

state not reversible in 50 ns after the signal application.

On the other side looking to the electrostatic environment, with the application of a

weak electric field (108 V/m) is possible to have protein molecules reorientation and an

electrostatic guidance at the active site as highlighted by the dipole moment and the

electric field maps on the SOD,Cu-Zn active site, which could enhance the enzymatic

activity of the protein, by responding to the external field applied without causing

structural irreversible changes. Indeed by performing two electric field maps, in two

different planes at the SOD1 active site, an overall effects of 59 and 72 % has been ob-

tained for the monopolar and bipolar pulses respectively, in terms of symmetric mean

absolute percentage error (SMAPE) with the respect to the no field application. This

numerical study can be considered as the basis to investigate the interaction of nsPEFs

electric fields with enzyme molecules also in terms of electrostatic effects and not only

in terms of protein conformational changes.

As whole, this Ph.D. thesis wants to be a multidisciplinary and multiscale approach

for the investigation of both low intensity magnetic fields and nanosecond electric pulses

interactions with nanosystems target. The goal has been to explore the use of electro-

magnetic fields as remote activators of lipid-nanosystems used as drug carriers for the

treatment and the prevention of inflammations status and disease thanks to a mod-

eling, technological and experimental standpoint. A proof of concept, has been given

theoretically and experimentally of the feasibility of liposomal drug delivery systems

mediated by electric or magnetic fields. An analysis with experimental data have been

done for both studies. As latter, because the proteins represent the major pathway of

the signals transmission to the cells and they could prevent the upcoming of inflamma-

tions, thanks to molecular dynamics simulations the interaction between the magnetic

field on the adenosine A2A and of the nsPEFs on the SOD,Cu-Zn protein, have been

explored. With both numerical studies the interaction between the electromagnetic

fields and the protein have been explored and demonstrated, highlighting in both cases

the response of the protein to the external stimulus without corrupting the protein

structures and with a dipolar response from charged residues on proteins surface.
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Melis Çağdaş, Ali Demir Sezer, and Seyda Bucak. Liposomes as potential drug carrier systems
for drug delivery. In Application of Nanotechnology in Drug Delivery. InTech, 2014. [Cited
on page 20]

Christophe Y Calvet, Jessie Thalmensi, Christelle Liard, Elodie Pliquet, Thomas Bestetti,
Thierry Huet, Pierre Langlade-Demoyen, Lluis M Mir, et al. Optimization of a gene electro-
transfer procedure for efficient intradermal immunization with an htert-based dna vaccine in
mice. Molecular Therapy-Methods & Clinical Development, 1:14045, 2014. [Cited on pages 9,
109, 200]

Enrica Capelli, Filippo Torrisi, Letizia Venturini, Maria Granato, Lorenzo Fassina, Giuseppe
Francesco Damiano Lupo, and Giovanni Ricevuti. Low-frequency pulsed electromagnetic
field is able to modulate mirnas in an experimental cell model of alzheimers disease. Journal
of Healthcare Engineering, 2017, 2017. [Cited on pages 11, 35]

Antoine Carlioz and Danide Touati. Isolation of superoxide dismutase mutants in escherichia
coli: is superoxide dismutase necessary for aerobic life ? The EMBO journal, 5(3):623, 1986.
[Cited on page 170]

Lynn Carr, Sylvia M Bardet, Ryan C Burke, Delia Arnaud-Cormos, Philippe Lévêque, and
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Rasch, Helmut R Mäcke, Christoph Rochlitz, Jan Müller-Brand, and Martin A Walter.
Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin
analogue [90y-dota]-toc in metastasized neuroendocrine cancers. Journal of clinical oncology,
29(17):2416–2423, 2011. [Cited on page 6]

James A Imlay and Stuart Linn. Dna damage and oxygen radical toxicity. Science(Washington),
240(4857):1302–1309, 1988. [Cited on page 170]

James A Imlay, Sherman M Chin, and Stuart Linn. Toxic dna damage by hydrogen peroxide
through the fenton reaction in vivo and in vitro. Science, 240(4852):640, 1988. [Cited on
page 170]

Sua In, Chang-Won Hong, Boyoung Choi, Bong-Geum Jang, and Min-Ju Kim. Inhibition of mi-
tochondrial clearance and cu/zn-sod activity enhance 6-hydroxydopamine-induced neuronal
apoptosis. Molecular neurobiology, 53(1):777–791, 2016. [Cited on page 170]

Kevin Ita. Transdermal iontophoretic drug delivery: advances and challenges. Journal of drug
targeting, 24(5):386–391, 2016. [Cited on page 26]

Tenderwealth Clement Jackson, Bernard Opatimidi Patani, and Daniel Effiong Ekpa. Nan-
otechnology in diagnosis: A review. Advances in Nanoparticles, 6(03):93, 2017. [Cited on
page 5]

Rakesh K Jain and Triantafyllos Stylianopoulos. Delivering nanomedicine to solid tumors.
Nature reviews Clinical oncology, 7(11):653–664, 2010. [Cited on page 19]

Morten Ø Jensen, Vishwanath Jogini, David W Borhani, Abba E Leffler, Ron O Dror, and
David E Shaw. Mechanism of voltage gating in potassium channels. Science, 336(6078):
229–233, 2012. [Cited on page 192]

Zongchao Jia, Margaret Vandonselaar, J Wilson Quail, and Louis TJ Delbaere. Active-centre
torsion-angle strain revealed in 1.6 å-resolution structure of histidine-containing phosphocar-
rier protein. Nature, 361(6407):94–97, 1993. [Cited on page 161]

Jian-Ming Jin. The finite element method in electromagnetics. John Wiley & Sons, 2015. [Cited
on page 57]



222 BIBLIOGRAPHY

Mayank V Jog, Robert X Smith, Kay Jann, Walter Dunn, Belen Lafon, Dennis Truong, Allan
Wu, Lucas Parra, Marom Bikson, and Danny JJ Wang. In-vivo imaging of magnetic fields
induced by transcranial direct current stimulation (tdcs) in human brain using mri. Scientific
reports, 6, 2016. [Cited on page 9]

M Jorg, PJ Scammells, and B Capuano. The dopamine d2 and adenosine a2a receptors:
past, present and future trends for the treatment of parkinson’s disease. Current medicinal
chemistry, 21(27):3188–3210, 2014. [Cited on page 152]

William L Jorgensen, David S Maxwell, and Julian Tirado-Rives. Development and testing of
the opls all-atom force field on conformational energetics and properties of organic liquids.
J. Am. Chem. Soc, 118(45):11225–11236, 1996. [Cited on page 50]

Ravi P Joshi and KH Schoenbach. Bioelectric effects of intense ultrashort pulses. Critical
Reviews in Biomedical Engineering, 38(3), 2010. [Cited on pages 9, 10, 109, 139]

Ravindra P Joshi, Ashutosh Mishra, and Karl H Schoenbach. Model assessment of cell mem-
brane breakdown in clusters and tissues under high-intensity electric pulsing. IEEE Trans-
actions on Plasma Science, 36(4):1680–1688, 2008. [Cited on page 55]

RP Joshi and KH Schoenbach. Electroporation dynamics in biological cells subjected to ul-
trafast electrical pulses: a numerical simulation study. Physical review E, 62(1):1025, 2000.
[Cited on page 55]

H Karanth and RSR Murthy. ph-sensitive liposomes-principle and application in cancer therapy.
Journal of pharmacy and pharmacology, 59(4):469–483, 2007. [Cited on pages 17, 198]
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von H Pauly and HP Schwan. Über die impedanz einer suspension von kugelförmigen teilchen
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