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Abstract

In this paper, we study a generalization of the classical probléme des rencontres
(problem of coincidences), consisting in the enumeration of all permutations π ∈ Sn
with k fixed points, and, in particular, in the enumeration of all permutations π ∈ Sn
with no fixed points (derangements). Specifically, we study this problem for the per-
mutations of the n + m symbols 1, 2, . . . , n, v1, v2, . . . , vm, where vi 6∈ {1, 2, . . . , n}
for every i = 1, 2, . . . ,m. In this way, we obtain a generalization of the derangement
numbers, the rencontres numbers and the rencontres polynomials. For these numbers
and polynomials, we obtain the exponential generating series, some recurrences and
representations, and several combinatorial identities. Moreover, we obtain the expec-
tation and the variance of the number of fixed points in a random permutation of
the considered kind. Finally, we obtain some asymptotic formulas for the generalized
rencontres numbers and the generalized derangement numbers.

1This work is partially supported by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca).
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1 Introduction

The probléme des rencontres, or problem of coincidences (also called problème de Mont-
mort, or problème des chapeaux ) [13] [8, p. 9–12, 32] [18, p. 57] [1] is one of the classical
problems in enumerative combinatorics and in probability. From a combinatorial point of
view, it consists in the enumeration of all permutations π ∈ Sn with k fixed points, and,
in particular, in the enumeration of all permutations π ∈ Sn with no fixed points. For the
history of the original problem and its solutions, see [24].

The aim of this paper is to extend the probléme des rencontres to the permutations of the
symbols 1, 2, . . . , n, v1, v2, . . . , vm, where vi 6∈ {1, 2, . . . , n} for every i = 1, 2, . . . ,m. The

set of these generalized permutations will be denoted by S(m)
n . A fixed point of a permutation

π = a1 · · · anan+1 · · · an+m ∈ S(m)
n is, by definition, an index i ∈ {1, 2, . . . , n} such that ai = i.

The permutations in S(m)
n with no fixed points will be called generalized derangements and

their number will be denoted by d
(m)
n . Clearly, for m = 0 we have the ordinary derangements

and the ordinary derangement numbers dn [23, A000166].

The permutations in S(m)
n can be interpreted as particular bijective functions, generalizing

the widened permutations (corresponding to the case m = 1) introduced and studied in [4].
For any m ∈ N, an m-widened permutation is a bijection between two (n+m)-sets having n
elements in common. More precisely, given an n-set X and two m-sets U and V , such that X,
U and V are pairwise disjoint, we have a bijection f : X ∪ U → X ∪ V . If U = {u1, . . . , um}
and V = {v1, . . . , vm}, then f is equivalent to an (m+1)-tuple (λ1, . . . , λm, σ), where each λi is
a linear order and σ is a permutation, defined as follows: λi = [ui, f(ui), f

2(ui), . . . , f
h(ui), vj]

where h+ 1 is the minimum positive integer such that there exists a j ∈ {1, 2, . . . ,m} such
that fh+1(ui) = vj, and σ is the remaining permutation on X \ (Xλ1 ∪ · · · ∪ Xλm), where
Xλi = {f(ui), f

2(ui), . . . , f
h(ui)} ⊆ X. For instance, the 4-widened permutation

f =

(
1 2 3 4 5 6 7 8 9 u1 u2 u3 u4
7 1 v2 4 8 v4 2 6 v3 9 v1 5 3

)
is equivalent to the quintuple (λ1, λ2, λ3, λ4, σ), where λ1 = [u1, 9, v3], λ2 = [u2, v1], λ3 =
[u3, 5, 8, 6, v4], λ4 = [u4, 3, v2], and σ = (172)(4). If we consider only the second line in
the two-line representation of f , we have the corresponding generalized permutation π =
7 1 v2 4 8 v4 2 6 v3 9 v1 5 3 ∈ S(4)

9 . Notice that π, or f , has only one fixed point in position 4. In
particular, π is a generalized derangement when the corresponding m-widened permutation
f , with decomposition (λ1, . . . , λm, σ), is an m-widened derangement, that is when σ is an

ordinary derangement. In the rest of the paper, the generalized permutations in S(m)
n and

the generalized derangements in S(m)
n will be identified with the corresponding m-widened

permutations and the m-widened derangements, respectively.

The paper is organized as follows. In Section 2, we obtain an explicit formula for the
generalized derangement numbers d

(m)
n and their exponential generating series. Moreover,

we establish the connection between these numbers and the r-derangement numbers [26]. In

Section 3, we introduce the generalized rencontres numbers D
(m)
n,k and the associated poly-

nomials D
(m)
n (x). Then, we obtain their exponential generating series, some recurrences and
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some representations (in terms of determinants and integrals). In Sections 4 and 5, we obtain
several identities involving the generalized rencontres polynomials and other combinatorial
polynomials and numbers. In Section 6, we compute the expectation and the variance of
the random variable X

(m)
n giving the number of fixed points of a permutation in S(m)

n . In
particular, we obtain that the expectation and the variance tend to 1 as n→ +∞. Finally,
in Section 7, we obtain some asymptotic formulas for the generalized rencontres numbers
D

(m)
n,k and the generalized derangement numbers d

(m)
n .

2 Generalized derangement numbers

Given n ∈ N, let [n] = {1, 2, . . . , n}. Given m,n ∈ N, let S(m)
n be the set of all permuta-

tions of the symbols 1, 2, . . . , n, v1, v2, . . . , vm. Clearly |S(m)
n | = (m+n)!, and for m = 0 we

have the ordinary permutations. A permutation π = a1a2 · · · am+n ∈ S(m)
n has a fixed point

when there exists an index i ∈ [n] such that ai = i. For instance, in π = 4 v2 3 v3 5 v1 2 1 we
have only two fixed points in position 3 and 5. Notice that, in the general case, a fixed point
can appear only in the first n positions. A generalized derangement is a permutation in S(m)

n

with no fixed points. The generalized derangement number d
(m)
n is the number of generalized

derangements in S(m)
n . For m = 0, we have the ordinary derangement numbers dn [8, p. 182]

[18, p. 65] [23, A000166].

Theorem 1. The generalized derangement numbers can be expressed as

d(m)
n =

n∑
k=0

(
n

k

)
(−1)k(m+ n− k)! (1)

and have exponential generating series

d(m)(t) =
∑
n≥0

d(m)
n

tn

n!
=

m! e−t

(1− t)m+1
. (2)

Proof. Identity (1) can be proved combinatorially using the inclusion-exclusion principle.

Let Ai be the set of permutations π = a1a2 · · · am+n ∈ S(m)
n such that ai = i, and let A′i be its

complementary with respect to S(m)
n , for every i = 1, . . . , n. Then, by the inclusion-exclusion

principle, we have

d(m)
n = |A′1 ∩ A′2 ∩ · · · ∩ A′n| =

∑
I⊆[n]

(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
The set

⋂
i∈I Ai consists of all permutations π = a1a2 · · · am+n ∈ S(m)

n such that ai = i, for

every i ∈ I. So, it is equivalent to the set S(m)
n−|I| and consequently its size is (m + n− |I|)!.

Hence, we have the identity

d(m)
n =

∑
I⊆[n]

(−1)|I|(m+ n− |I|)!
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which is equivalent to identity (1). Now, by identity (1), we have the generating series

d(m)(t) =
∑
n≥0

(−1)n
tn

n!
·
∑
n≥0

(m+ n)!
tn

n!
= m! e−t ·

∑
n≥0

(
m+ n

m

)
tn

which is equivalent to series (2).

For the first values of n, we have the generalized derangement numbers

d
(m)
0 = m!

d
(m)
1 = m! ·m
d
(m)
2 = m! · (m2 +m+ 1)

d
(m)
3 = m! · (m3 + 3m2 + 5m+ 2)

d
(m)
4 = m! · (m4 + 6m3 + 17m2 + 20m+ 9) .

(3)

Remark 2. The generalized derangement numbers d
(m)
n appear also in [16, 17] and form

sequences A000166, A000255, A055790, A277609, A277563, A280425, A280920, A284204,
A284205, A284206, A284207 in [23] for m = 0, 1, . . . , 10, respectively. Similarly, the numbers

d
(m)
n /m! form sequences A000166, A000255, A000153, A000261, A001909, A001910, A176732,

A176733, A176734, A176735, A176736 in [23] for m = 0, . . . , 10, respectively. Notice that,

the numbers d
(m)
n /m! count the generalized derangements when v1 = · · · = vm = v.

An r-permutation of the set {1, 2, . . . , r, r + 1, . . . , n + r} is a permutation in which the
elements 1, 2, . . . , r belong to different cycles [6]. An r-derangement is an r-permutation

with no fixed points [26]. The generalized derangement numbers d
(m)
n and the r-derangement

numbers Dr(n) [26] are related as follows.

Theorem 3. For every r, n ∈ N, we have

Dr(n) =

(
n

r

)
d
(r)
n−r (n ≥ r) . (4)

Proof. We have the exponential generating series [26]∑
n≥r

Dr(n)
tn

n!
=

tre−t

(1− t)r+1
=
tr

r!
d(r)(t) =

tr

r!

∑
n≥0

d(r)n
tn

n!

=
∑
n≥0

(
n+ r

r

)
d(r)n

tn+r

(n+ r)!
=
∑
n≥r

(
n

r

)
d
(r)
n−r

tn

n!
.

Comparing the coefficients of tn/n!, we have identity (4).
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Remark 4. Let f : X ∪ U → X ∪ V be an m-widened permutation on a set X of size n,
and let (λ1, . . . , λm, σ) be its decomposition. Suppose that in f each linear order λi (starting
with ui) ends with vi, i.e., λi = [ui, b1, . . . , bh, vi]. If we replace each linear order λi with a
cycle γi = (b1 · · · bh n+ i), by setting ui = n+ i and by removing vi, we obtain a permutation
of the set {1, 2, . . . , n+m} where the elements n+ 1, . . . , n+m belong to different cycles.
So, these m-widened permutations are equivalent to the m-permutations. In particular, if
each λi contains at least one element of X, i.e. λi 6= [ui, vi], and σ does not have fixed points,
then we have the m-derangements [26].

Other properties for the generalized derangement numbers will be obtained in next sec-
tions as specialization of the more general properties of the generalized rencontres polyno-
mials.

3 Generalized rencontres numbers and polynomials

Let D
(m)
n,k be the generalized rencontres numbers, i.e., the number of permutations π ∈ S(m)

n

with k fixed points. Removing the k fixed points and normalizing the remaining letters, we
obtain a derangement δ ∈ S(m)

n−k. So, we have at once the identity

D
(m)
n,k =

(
n

k

)
d
(m)
n−k . (5)

For m = 0 we have the ordinary rencontres numbers Dn,k, [18, pp. 57, 58, 65], forming
sequence A008290 in [23]. For m = 1 we have sequence A123513 in [23], while for m ≥ 2

the sequences do not appear in [23]. Let D(m) = [D
(m)
n,k ]n,k≥0 be the infinite lower triangular

matrix generated by the generalized rencontres numbers. For m = 1 and m = 2, we have
the matrices

D(1) =



1
1 1
3 2 1
11 9 3 1
53 44 18 4 1
309 265 110 30 5 1
2119 1854 795 220 45 6 1
. . .


,

1

2
D(2) =



1
2 1
7 4 1
32 21 6 1
181 128 42 8 1
1214 905 320 70 10 1
9403 7284 2715 640 105 12 1
. . .


.

A polynomial sequence {pn(x)}n∈N is an Appell sequence [3] [15] [20, p. 86] [21] [25, p.
314] when its exponential generating series has the form∑

n≥0

pn(x)
tn

n!
= g(t) ext
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where g(t) =
∑

n≥0 gn
tn

n!
is an exponential series with g0 = 1. From this definition it follows

that pn(x) is a polynomial of degree n of the form

pn(x) =
n∑
k=0

(
n

k

)
gn−kx

k

such that p′n(x) = npn−1(x). Several classical polynomial sequences are of this kind [20, p.
86] [21] [7]. This is true also for the generalized rencontres polynomials, defined by

D(m)
n (x) =

n∑
k=0

D
(m)
n,k x

k =
n∑
k=0

(
n

k

)
d
(m)
n−kx

k . (6)

Indeed, using series (2), we have at once

Theorem 5. The polynomials D
(m)
n (x) form an Appell sequence having exponential gener-

ating series

D(m)(x; t) =
∑
n≥0

D(m)
n (x)

tn

n!
= d(m)(t) ext =

m! e(x−1)t

(1− t)m+1
. (7)

In particular, D
(m)
n (x) has degree n and (D

(m)
n (x))′ = nD

(m)
n−1(x).

Clearly, we have D
(m)
n (0) = D

(m)
n,0 = d

(m)
n and D

(m)
n (1) = (m + n)!. Moreover, for m =

0, we have the ordinary rencontres polynomials Dn(x) = D
(0)
n (x), [18], whose exponential

generating series will be denoted simply by D(x; t). For the first values of n, we have the
polynomials

D
(m)
0 (x) = m!

D
(m)
1 (x) = m!(x+m)

D
(m)
2 (x) = m!(x2 + 2mx+m2 +m+ 1)

D
(m)
3 (x) = m!(x3 + 3mx2 + 3(m2 +m+ 1)x+m3 + 3m2 + 5m+ 2)

D
(m)
4 (x) = m!(x4 + 4mx3 + 6(m2 +m+ 1)x2+

+ 4(m3 + 3m2 + 5m+ 2)x+m4 + 6m3 + 17m2 + 20m+ 9) .

(8)

Theorem 6. The polynomials D
(m)
n (x) admit the explicit expression

D(m)
n (x) =

n∑
k=0

(
n

k

)
(m+ k)!(x− 1)n−k (9)

and satisfy the recurrences

D
(m)
n+2(x) = (x+m+ n+ 1)D

(m)
n+1(x)− (n+ 1)(x− 1)D(m)

n (x) (10)
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and
D

(m+1)
n+1 (x) = (n+ 1)D(m+1)

n (x) + (m+ 1)D
(m)
n+1(x) . (11)

In particular, for x = 0, we have that the numbers d
(m)
n satisfy the recurrences

d
(m)
n+2 = (m+ n+ 1)d

(m)
n+1 + (n+ 1)d(m)

n (12)

and
d
(m+1)
n+1 = (n+ 1)d(m+1)

n + (m+ 1)d
(m)
n+1 . (13)

Proof. Writing series (7) as

D(m)(x; t) =
m!

(1− t)m+1
· e(x−1)t ,

we obtain at once identity (9). Moreover, again by series (7), we have

∂

∂t
D(m)(x; t) =

x+m− (x− 1)t

1− t
D(m)(x; t) .

Hence, we have the identity

(1− t) ∂
∂t
D(m)(x; t) = (x+m− (x− 1)t)D(m)(x; t)

which is equivalent to recurrence (10).
Replacing m by m+ 1 in (7), we obtain the identity

(1− t)D(m+1)(x; t) = (m+ 1)
m! e(x−1)t

(1− t)m+1
= (m+ 1)D(m)(x; t)

which is equivalent to recurrence (11).

Remark 7. By Favard’s theorem [2, p. 294], a polynomial sequence {pn(x)}n∈N form an
orthogonal polynomial system if the polynomials pn(x) have degree n with leading coefficient
1 and satisfy a recurrence pn+2(x) = (an+1 + x)pn+1− bn+1pn(x) with p0(x) = 1 and p1(x) =
x + a0. So, by recurrence (10) and the initial conditions listed in (8), we have that the

polynomials D
(m)
n (x)/m! are orthogonal, with an = m+ n and bn = n(x− 1).

Remark 8. Identity (12) can be proved with a combinatorial argument, which generalizes
Euler’s proof of the corresponding recurrence for the ordinary derangement numbers [18, p.

60] [24]. Let π = a1a2 · · · am+n+2 ∈ S(m)
n+2 be a derangement. Since a1 6= 1, we have the

following three cases. (i) If a1 = vi, then a1 can be chosen in m different ways and the
permutation of the remaining elements is equivalent to a derangement π′ of the symbols 1,
. . . , n+ 1, v1, . . . , vi−1, wi, vi+1, . . . , vm. Indeed, π′ can be obtained by deleting vi from π,
by replacing 1 by a new symbol wi and by normalizing the remaining numerical letters. In
all, we have md

(m)
n+1 such permutations. (ii) If a1 = k with k ∈ {2, 3, . . . , n+ 2} and ak 6= 1,
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then, since 1 is not in position k, we have that the permutation π′ obtained by deleting
a1 = k from π, by replacing 1 by k and by normalizing the other numerical letters, is a
derangement in S(m)

n+1. In all, we have (n+ 1) d
(m)
n+1 such permutations. (iii) Finally, if a1 = k

with k ∈ {2, 3, . . . , n+ 2} and ak = 1, then the permutation π′ obtained by deleting 1 and k

from π and by normalizing the other numerical letters, is a derangement in S(m)
n . In all, we

have (n+ 1) d
(m)
n such permutations. This proves identity (12).

Theorem 9. The numbers D
(m)
n,k satisfy the recurrences

(k + 1)D
(m)
n+1,k+1 = (n+ 1)D

(m)
n,k (14)

D
(m)
n+2,k+1 = (m+ n+ 1)D

(m)
n+1,k+1 +D

(m)
n+1,k + (n+ 1)D

(m)
n,k+1 − (n+ 1)D

(m)
n,k (15)

D
(m+1)
n+1,k = (n+ 1)D

(m+1)
n,k + (m+ 1)D

(m)
n+1,k (16)

and
D

(m)
n+1,k+1 = D

(m)
n,k + (m+ n− k − 1)D

(m)
n,k+1 + (k + 2)D

(m)
n,k+2 . (17)

Proof. Recurrence (14) is an immediate consequence of definition (5). Recurrences (15) and
(16) are consequences of recurrences (10) and (11), respectively. Recurrence (17) is equivalent
to the identity

RDn+1(x) = Dn(x) + (m+ n)RDn(x)−D′n(x) +RD′n(x) ,

where we write simply Dn(x) for D
(m)
n (x) and whereR is the incremental ratio, i.e. the linear

operator defined, on every polynomial p(x), by Rp(x) = p(x)−p(0)
x

. So, if p(x) =
∑n

k=0 pkx
k,

then Rp(x) =
∑n−1

k=0 pk+1x
k. The previous identity is equivalent to

Dn+1(x)−Dn+1(0)

x
= Dn(x) + (m+ n)

Dn(x)−Dn(0)

x
−D′n(x) +

D′n(x)−D′n(0)

x

that is

Dn+1(x)−Dn+1,0 = xDn(x) + (m+ n)(Dn(x)−Dn,0)− xD′n(x) +D′n(x)−Dn,1

that is

Dn+1(x)− dn+1 = xDn(x) + (m+ n)(Dn(x)− dn)− nxDn−1(x) + nDn−1(x)− ndn−1

that is

Dn+1(x)− dn+1 = (x+m+ n)Dn(x)− n(x− 1)Dn−1(x)− (m+ n)dn − ndn−1

and this identity is true by (10) and (12).
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Theorem 10. We have the identity

D
(m)
n+1(x) = D(m+1)

n (x) + (x− 1)D(m)
n (x) . (18)

In particular, for x = 0, we have the identity

d
(m)
n+1 = d(m+1)

n − d(m)
n . (19)

More in general, we have the identities

D
(m)
n+r(x) =

r∑
k=0

(
r

k

)
(x− 1)r−kD(m+k)

n (x) (20)

and

D(m+r)
n (x) =

r∑
k=0

(
r

k

)
(−1)r−k(x− 1)r−kD

(m)
n+k(x) . (21)

In particular, for x = 0, we have the identities

d
(m)
n+r =

r∑
k=0

(
r

k

)
(−1)r−kd(m+k)

n (22)

and

d(m+r)
n =

r∑
k=0

(
r

k

)
d
(m)
n+k . (23)

Finally, we also have the identity

d(m)
n =

m∑
k=0

(
m

k

)
dn+k . (24)

Proof. Identity (18) is an immediate consequence of the identity

∂

∂t
D(m)(x; t) =

x+m− (x− 1)t

1− t
D(m)(x; t) = D(m+1)(x; t) + (x− 1)D(m)(x; t) .

From the above identity, we can prove, by induction, that

∂r

∂tr
D(m)(x; t) =

r∑
k=0

(
r

k

)
(x− 1)r−kD(m+k)(x; t) .

This identity is equivalent to identity (20). Then, by applying the binomial inversion formula
[20, p. 147] to identity (20), we obtain identity (21). Finally, identity (24) can be obtained
from identity (23) by setting m = 0 and r = m.
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Remark 11. Identity (19) can be proved with the following combinatorial argument.
Let f be an m-widened derangement on a set X of size n, and let (λ1, . . . , λm, σ) be its
decomposition. We have two cases. (i) The last linear order λm does not contain elements
of X, i.e. λm = [um, vj] for a suitable j ∈ [m]. By deleting λm, and by replacing vm by vj
whenever j 6= m, we obtain an (m−1)-widened derangement on X. (ii) The last linear order
λm contains at least one element of X, i.e. λm = [um, i1, . . . , ih, vj] for a suitable j ∈ [m]. In
this case, f is equivalent to an (m − 1)-widened derangement on X ∪ {n + 1} obtained by
replacing the linear order λm with the cycle γ = (i1 · · · ih n+ 1), and by replacing vm with vj
whenever j 6= m. Since γ has at least two elements, the new (m− 1)-widened permutation

is without fixed points. So, in conclusion, we have the identity d
(m)
n = d

(m−1)
n + d

(m−1)
n+1 .

Theorem 12. We have the identity

D
(m+1)
n (x)

n!
= (m+ 1)

n∑
k=0

D
(m)
k (x)

k!
. (25)

In particular, for x = 0, we have the identity

d
(m+1)
n

n!
= (m+ 1)

n∑
k=0

d
(m)
k

k!
. (26)

Proof. By series (7), we have

D(m+1)(x; t) =
m+ 1

1− t
D(m)(x; t)

and consequently we have the identity

D(m+1)
n (x) = (m+ 1)

n∑
k=0

(
n

k

)
(n− k)!D

(m)
k (x)

which simplifies in identity (25).

Theorem 13. Let Um,n be the m× n matrix all of whose entries are equal to 1, Un = Un,n,
Un(x) = Un + (x− 1)In (where In is the identity matrix of order n), and let

A(m)
n (x) =

[
Un(x) Un,m
Um,n Um

]
.

Then, we have
D(m)
n (x) = perA(m)

n (x) . (27)

Proof. Let A
(m)
n (x) = [ai,j], where ai,i = x for i = 1, 2, . . . , n, and ai,j = 1 in all other cases.

Let Fix(π) be the set of fixed points of a permutation π ∈ S(m)
n . By the definition of the

permanent of a matrix, we have

perA(m)
n (x) =

∑
σ∈Sm+n

a1,σ(1) · · · am+n,σ(m+n) =
∑
S⊆[n]

∑
π∈S(m)

n
Fix(π)=S

x|S| =
n∑
k=0

(
n

k

)
d
(m)
n−kx

k .

By definition (6), we have identity (27).

10



Remark 14. Expanding the permanent of A
(m)
n (x) along the last column, we obtain

recurrence (11).

Theorem 15. The polynomials D
(m)
n (x) can be expressed as the double sum

D(m)
n (x) =

n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
(−1)m+n−i−j(x+ i+ j − 1)i(i+ j)m+n−i . (28)

Proof. By identity (27) and by using Ryser’s formula [22, p. 26] [12] to evaluate the perma-

nent of A = A
(m)
n (x) = [ai,j], we have

D(m)
n (x) =

∑
S⊆[m+n]

(−1)m+n−|S|w(AS) =
∑
I⊆[n]
J⊆[m]

(−1)m+n−|I|−|J |w(AI∪J)

where AS = [ai,j]i∈[m+n], j∈S and w(AS) =
∏m+n

k=1 rk(AS), where rk(AS) is the sum of all
elements of the kth row of AS. Since

w(AI∪J) = (x+ |I|+ |J | − 1)i(|I|+ |J |)m+n−i

we obtain at once identity (28).

Identity (28) generalizes the formula obtained by Ryser [22, p. 28] [1] for the ordinary
derangement numbers (for m = 0 and x = 0).

Theorem 16. The polynomials D
(m)
n (x) admit the integral representation

D(m)
n (x) =

∫ +∞

0

tm(t+ x− 1)n e−t dt . (29)

In particular, for x = 0, we have

d(m)
n =

∫ +∞

0

tm(t− 1)n e−t dt . (30)

Proof. By identity (9) and the well-known identity∫ +∞

0

tke−t dt = k! k ∈ N ,

we have

D(m)
n (x) =

n∑
k=0

(
n

k

)
(m+ k)!(x− 1)n−k =

n∑
k=0

(
n

k

)
(x− 1)n−k

∫ +∞

0

tm+ke−t dt

=

∫ +∞

0

tm

[
n∑
k=0

(
n

k

)
tk(x− 1)n−k

]
e−t dt =

∫ +∞

0

tm(t+ x− 1)ne−t dt .

11



Theorem 17. We have the identities

D(m)
n (x) =

m∑
k=0

(
m

k

)
(1− x)kDm+n−k(x) (31)

Dn(x) =
n∑
k=0

(
n

k

)
(−1)k

(m− k)!
D

(m)
n−k(x) . (32)

Proof. By identity (29), we have

D(m)
n (x) =

∫ +∞

0

tm(t+ x− 1)n e−t dt

=

∫ +∞

0

(1− x+ t+ x− 1)m(t+ x− 1)n e−t dt

=

∫ +∞

0

m∑
k=0

(
m

k

)
(1− x)k(t+ x− 1)m−k(t+ x− 1)n e−t dt

=
m∑
k=0

(
m

k

)
(1− x)k

∫ +∞

0

(t+ x− 1)m+n−k e−t dt

=
m∑
k=0

(
m

k

)
(1− x)kD

(0)
m+n−k(x) .

This is identity (31). Then, by identity (7), we obtain the identity

(1− t)mD(m)(x; t) = m!
e(x−1)t

1− t
= m! D(x; t)

which is equivalent to identity (32).

Theorem 18. The polynomials D
(m)
n (x)/m! admit the determinantal representation

D
(m)
n (x)

m!
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1
b1 a2 1

b2 a3 1
. . . . . . . . .

bn−2 an−1 1
bn−1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

(33)

where ak = x+m+ k − 1 and bk = k(x− 1), for k ≥ 1.

Proof. The tridiagonal determinants (also called continuants [14, pp. 516–525] [25]) defined
on the right-hand side of formula (33) satisfy the recurrence yn+2 − an+2yn+1 + bn+1yn = 0
with the initial conditions y0 = 1 and y1 = a1. So, the claim follows from recurrence (10)

and D
(m)
0 (x) = m! and D

(m)
1 (x) = m!(x+m).

12



Theorem 19. The polynomials D
(m)
n (x)/m! admit the determinantal representation

D
(m)
n (x)

m!
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 −1
a1 a0 −1
a2 2a1 a0 −1
a3 3a2 3a1 a0 −1
...

...
...

...
. . . . . .(

n−2
0

)
an−2

(
n−2
1

)
an−3

(
n−2
2

)
an−4

(
n−2
3

)
an−5 · · ·

(
n−2
n−2

)
a0 −1(

n−1
0

)
an−1

(
n−1
1

)
an−2

(
n−1
2

)
an−3

(
n−1
3

)
an−4 · · ·

(
n−1
n−2

)
a1

(
n−1
n−1

)
a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(34)

where a0 = x+m and ak = (m+ 1)k! for k ≥ 1. In particular, for x = 0, we have a similar

representation for the generalized derangement numbers d
(m)
n , with a0 = m and ak = (m+1)k!

for k ≥ 1. For x = 1, we have a similar representation for the factorial numbers (m + n)!,
with a0 = m+ 1 and ak = (m+ 1)k! for k ≥ 1.

Proof. Let bn be the n × n determinant appearing on the right-hand side of (34). Then,
expanding the determinant along the last column, we have the recurrence

bn+1 =
n∑
k=0

(
n

k

)
akbn−k

with the initial value b0 = 1. If a(t) =
∑

n≥0 an
tn

n!
and b(t) =

∑
n≥0 bn

tn

n!
, then we have the

differential equation b′(t) = a(t)b(t). So, if we set

b(t) =
1

m!
D(m)(x; t) =

e(x−1)t

(1− t)m+1
,

then we have b0 = 1, as requested, and

a(t) =
b′(t)

b(t)
=

(x− 1)(1− t) +m+ 1

1− t
= x− 1 +

m+ 1

1− t
.

Hence a0 = x+m and ak = (m+ 1)k! for k ≥ 1. This proves identity (34).

4 Combinatorial identities

For the polynomials D
(m)
n (x) we have a lot of combinatorial identities. In this section,

we will obtain some of them.

Theorem 20. We have the identities

n∑
k=0

(
n

k

)
αn−kD

(m)
k (x) = D(m)

n (x+ α) (35)

13



and
n∑
k=0

(
n

k

)
D

(r)
k (x)D

(s)
n−k(y) =

1(
r+s
r

) 1

r + s+ 1
D(r+s+1)
n (x+ y − 1) . (36)

In particular, for x = 0 and y = 0, we have the identity

n∑
k=0

(
n

k

)
d
(r)
k d

(s)
n−k =

1(
r+s
r

) 1

r + s+ 1

n∑
k=0

(
n

k

)
(−1)n−kd

(r+s+1)
k . (37)

Proof. Identity (35) is equivalent to the identity

eαtD(m)(x; t) =
m! e(x+α−1)t

(1− t)m+1
= D(m)(x+ α; t) .

Similarly, identity (36) is equivalent to the identity

D(r)(x; t)D(s)(y; t) =
r!s! e(x+y−2)t

(1− t)r+s+2
=

r!s!

(r + s+ 1)!
D(r+s+1)(x+ y − 1; t) .

Finally, identity (37) derives from the fact that

D(r+s+1)(−1; t) = d(r+s+1)(t) · e−t .

A Sheffer matrix [20, 21] [2, p. 309] is an infinite lower triangular matrix S = [sn,k]n,k≥0 =
(g(t), f(t)) whose columns have exponential generating series

sk(t) =
∑
n≥k

sn,k
tn

n!
= g(t)

f(t)k

k!
,

where g(t) and f(t) are exponential formal series with g0 = 1, f0 = 0, f1 6= 0, and

sn,k =
n!

k!
[tn] g(t)f(t)k .

The Sheffer transform associated to the Sheffer matrix S = [sn,k]n,k≥0 = (g(t), f(t)) is
defined, for every exponential series h(t) =

∑
n≥0 hn

tn

n!
, by

(g(t), f(t))h(t) = g(t)h(f(t)) =
∑
n≥0

[
n∑
k=0

sn,khk

]
tn

n!
.

The r-Stirling numbers of the first kind [6] are defined as the entries of the Sheffer matrix(
1

(1−t)r , log 1
1−t

)
, so that

1

(1− t)r
1

k!

(
log

1

1− t

)k
=
∑
n≥k

[
n

k

]
r

tn

n!
.
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In particular, for r = 0 and r = 1, we have the Stirling numbers of the first kind [8, p. 310]
[18, p. 48] [23, A132393, A008275]:

[
n
k

]
0

=
[
n
k

]
and

[
n
k

]
1

=
[
n+1
k+1

]
. For r = 1, 2, . . . , 10, we have

sequences A130534, A143491, A143492, A143493, A049460, A051338, A051339, A051379,
A051380, A051523 in [23].

The r-Stirling numbers of the second kind [6] are defined as the entries of the Sheffer
matrix S(r) = (ert, et − 1), so that

ert
(et − 1)k

k!
=
∑
n≥k

{
n

k

}
r

tn

n!
.

In particular, for r = 0 and r = 1, we have the Stirling numbers of the second kind [8, p.
310] [18, p. 48] [23, A008277]:

{
n
k

}
0

=
{
n
k

}
and

{
n
k

}
1

=
{
n+1
k+1

}
. For r = 2, 3, 4, 5 we have

sequences A143494, A143495, A143496, A193685 in [23]. The row polynomials of S(r) are
the r-exponential polynomials

S(r)
n (x) =

n∑
k=0

{
n

k

}
r

xk

with exponential generating series

S(r)(x; t) =
∑
n≥0

S(r)
n (x)

tn

n!
= ertex(e

t−1) .

For r = 0, we have the ordinary exponential polynomials Sn(x), whose exponential generating
series will be denoted by S(x; t). Moreover, the row sums of S(r) are the r-Bell numbers

b
(r)
n = S

(r)
n (1) =

∑n
k=0

{
n
k

}
r
, [11], with exponential generating series

b(r)(t) =
∑
n≥0

b(r)n
tn

n!
= ertee

t−1 .

For r = 0, we have the ordinary Bell numbers bn [8, p. 210] [23, A000110].
The Lah numbers [8, p. 156] [18, p. 44] [23, A008297] are defined as the entries of the

Sheffer matrix L = (1, t
1−t), so that

1

k!

(
t

1− t

)k
=
∑
n≥k

∣∣∣∣nk
∣∣∣∣ tnn!

.

The row polynomials of L are the Lah polynomials

Ln(x) =
n∑
k=0

∣∣∣∣nk
∣∣∣∣xk ,

with exponential generating series

L(x; t) =
∑
n≥0

Ln(x)
tn

n!
= e

xt
1−t .
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The row sums of L are the cumulative Lah numbers `n =
∑n

k=0

∣∣n
k

∣∣, [19, p. 194] [23, A000262],
with exponential generating series

`(t) =
∑
n≥0

`n
tn

n!
= e

t
1−t .

Theorem 21. We have the identity

n∑
k=0

{
n

k

}
r

(−1)kD
(m)
k (x) = m!

n∑
k=0

(
n

k

)
(r −m− 1)n−kSk(1− x) . (38)

In particular, for r = 0 and x = 0, we have the identity

n∑
k=0

{
n

k

}
(−1)kd

(m)
k = m!

n∑
k=0

(
n

k

)
(−1)n−k(m+ 1)n−kbk (39)

and, for r = 1 and x = 0, we have the identity

n∑
k=0

{
n+ 1

k + 1

}
(−1)kd

(m)
k = m!

n∑
k=0

(
n

k

)
(−1)n−kmn−kbk . (40)

Proof. We have

(ert,−et + 1)D(m)(x; t) = ert
m! e(x−1)(−e

t+1)

e(m+1)t
= m! e(r−m−1)tS(1− x; t)

from which we obtain identity (38).

Theorem 22. The polynomials D
(m)
n (x) can be expressed as

D(m)
n (x) =

m!(
m+n
m

) n∑
k=0

(
m+ n

m+ k

)∣∣∣∣m+ k

m

∣∣∣∣Dn−k(x) . (41)

In particular, for x = 0, we have

d(m)
n =

m!(
m+n
m

) n∑
k=0

(
m+ n

m+ k

)∣∣∣∣m+ k

m

∣∣∣∣dn−k ,
and for x = 1, we have

(m+ n)! =
m!(
m+n
m

) n∑
k=0

(
m+ n

m+ k

)∣∣∣∣m+ k

m

∣∣∣∣(n− k)! .

16



Proof. By series (7), we have

D(m)(x; t) =
m!2

tm
1

m!

(
t

1− t

)m
· e(x−1)t

1− t

=
m!2

tm

∑
n≥m

∣∣∣∣nm
∣∣∣∣tnn ·∑

n≥0

Dn(x)
tn

n!

=
m!2

tm

∑
n≥m

[
n∑

k=m

(
n

k

)∣∣∣∣ km
∣∣∣∣Dn−k(x)

]
tn

n!

= m!2
∑
n≥m

[
n∑

k=m

(
n

k

)∣∣∣∣ km
∣∣∣∣Dn−k(x)

]
tn−m

n!

= m!2
∑
n≥0

[
m+n∑
k=m

(
m+ n

k

)∣∣∣∣ km
∣∣∣∣Dm+n−k(x)

]
tn

(m+ n)!

=
∑
n≥0

m!2n!

(m+ n)!

[
n∑
k=0

(
m+ n

m+ k

)∣∣∣∣m+ k

m

∣∣∣∣Dn−k(x)

]
tn

n!

from which we obtain identity (41).

Theorem 23. We have the identity

n∑
k=0

(
m+ n

m+ k

)
n!

k!
(−1)kD

(m)
k (x) = m!Ln(1− x) . (42)

In particular, for x = 0, we have

n∑
k=0

(
m+ n

m+ k

)
n!

k!
(−1)kd

(m)
k = m!`n . (43)

Proof. Consider the Sheffer matrix[
L
(m)
n,k

]
n,k≥0

=

(
1

(1 + t)m+1
,

t

1 + t

)
whose entries are

L
(m)
n,k =

n!

k!
[tn]

1

(1 + t)m+1

(
t

1 + t

)k
=
n!

k!
[tn]

tk

(1 + t)m+k+1
=

(
m+ n

m+ k

)
n!

k!
(−1)n−k .

Since(
1

(1 + t)m+1
,

t

1 + t

)
D(m)(x; t) =

1

(1 + t)m+1
D(m)

(
x;

t

1 + t

)
= m! e

(x−1)t
1+t = m!L(1− x;−t) ,

we obtain at once identity (42).
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5 Connection identities

Let {pn(x)}n∈N and {qn(x)}n∈N be two polynomial sequences. If deg pn(x) = n for all
n ∈ N, then the sequence {pn(x)}n∈N forms a basis for the vector space R[x] of polynomials
and consequently there exist some coefficients Cn,k for which

qn(x) =
n∑
k=0

Cn,k pk(x) .

The coefficients Cn,k are unique and are called connection constants [20, p. 131] [21] [9, 10].

In this section, we will consider some connection identities for the polynomials D
(m)
n (x).

Identities (6), (9), (35), (41) are examples of this kind. We will use an umbral approach due
to G.-C. Rota. Suppose to have a connection identity

qn(x) =
n∑
k=0

Cn,kD
(m)
k (x) .

To obtain the connection constants, we define the linear map ϕm : R[x] → R[x] by setting

ϕm(D
(m)
n (x)) = xn, for every n ∈ N, and then by extending it by linearity. Then, the

preceding identity becomes

ϕm(qn(x)) =
n∑
k=0

Cn,k x
k .

Now, we extend ϕm to exponential formal series, as follows. First, we have

ϕm(D(m)(x; t)) = ϕm

(∑
n≥0

D(m)
n (x)

tn

n!

)
=
∑
n≥0

ϕm(D(m)
n (x))

tn

n!
=
∑
n≥0

xn
tn

n!
= ext ,

that is

ϕm

(
m! e(x−1)t

(1− t)m+1

)
= ext

from which we have

ϕm(e(x−1)t) =
1

m!
(1− t)m+1 ext . (44)

Now, let q(x; t) =
∑

n≥0 qn(x) tn

n!
be the exponential generating series for the polynomials

qn(x). Then, the connection constants Cn,k are determined by the series

∑
n≥0

[
n∑
k=0

Cn,k x
k

]
tn

n!
=
∑
n≥0

ϕm(qn(x))
tn

n!
= ϕm(q(x; t)) .

In next theorems, we will use this method.
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Theorem 24. We have the connection identity

(x− 1)n =
1

m!

n∑
k=0

(
n

k

)(
m+ 1

n− k

)
(−1)n−k(n− k)!D

(m)
k (x) . (45)

Proof. In this case, we have qn(x) = (x− 1)n and q(x; t) = e(x−1)t. So, by applying (44), we
have the series

ϕm(e(x−1)t) =
1

m!
(1− t)m+1 ext =

1

m!

∑
n≥0

[
n∑
k=0

(
n

k

)(
m+ 1

n− k

)
(−1)n−k(n− k)!xk

]
tn

n!

from which we obtain the coefficients

C
(m)
n,k =

1

m!

(
n

k

)(
m+ 1

n− k

)
(−1)n−k(n− k)! .

This proves identity (45).

Theorem 25. We have the connection identity

D(r)
n (x) =

n∑
k=0

(
n

k

)(
s− r
n− k

)
r!

s!
(−1)n−k(n− k)!D

(s)
k (x) . (46)

Proof. In this case, we have qn(x) = D
(r)
n (x) and q(x; t) = D(r)(x; t). So, by applying (44),

we have the series

ϕs(D
(r)(x; t)) =

r!

(1− t)r+1
ϕs(e

(x−1)t) =
r!

s!
(1− t)s−r ext

=
r!

s!

∑
n≥0

[
n∑
k=0

(
n

k

)(
s− r
n− k

)
(−1)n−k(n− k)!xk

]
tn

n!

from which we have

C
(r,s)
n,k =

(
n

k

)(
s− r
n− k

)
r!

s!
(−1)n−k(n− k)! .

This proves identity (46).

Theorem 26. We have the connection identities

S(r)
n (1− x) =

1

m!

n∑
k=0

{
n

k

}
r+m+1

(−1)kD
(m)
k (x) (47)

and

D(m)
n (x) = m!

n∑
k=0

[
n

k

]
r+m+1

(−1)k S
(r)
k (1− x) . (48)
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In particular, for x = 1, we have the identities

n∑
k=0

{
n

k

}
r+m+1

(−1)k (m+ k)! = m! rn (49)

n∑
k=0

[
n

k

]
r+m+1

(−1)k rk =
(m+ n)!

m!
. (50)

Proof. In this case, we have qn(x) = S
(r)
n (1− x) and q(x; t) = erte(1−x)(e

t−1). So, by applying
(44), we have the series

ϕm(erte(1−x)(e
t−1)) = ertϕm(e(x−1)(−e

t+1)) =
1

m!
e(r+m+1)t e−x(e

t−1)

=
1

m!
S(r+m+1)(−x; t) =

1

m!

∑
n≥0

[
n∑
k=0

{
n

k

}
r+m+1

(−1)kxk

]
tn

n!

from which we have

C
(m)
n,k =

(−1)k

m!

{
n

k

}
r+m+1

.

This proves identity (47). Then, using the inversion formula for the r-Stirling numbers, we
obtain identity (48).

6 Expectation and variance

Let X
(m)
n be the random variable counting the number of fixed points of a permutation

in S(m)
n . Then D

(m)
n,k is the number of permutations π ∈ S(m)

n such that X
(m)
n (π) = k. So,

the expectation of X
(m)
n , i.e. the expected number of fixed points in a random permutation

π ∈ S(m)
n , can be expressed [5, p. 284] as

E(m)
n = E[X(m)

n ] =
1

|S(m)
n |

n∑
k=0

kD
(m)
n,k =

1

(m+ n)!

n∑
k=0

kD
(m)
n,k .

Similarly, since

E[(X(m)
n )2] =

1

|S(m)
n |

n∑
k=0

k2D
(m)
n,k =

1

(m+ n)!

n∑
k=0

k2D
(m)
n,k ,

the variance of X
(m)
n , defined by Var[X

(m)
n ] = E[(X

(m)
n )2]− E[X

(m)
n ]2, can be expressed as

V (m)
n = Var[X(m)

n ] =
1

(m+ n)!

n∑
k=0

k2D
(m)
n,k −

(
1

(m+ n)!

n∑
k=0

kD
(m)
n,k

)2
.

To compute the expectation and the variance of X
(m)
n , we need next
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Theorem 27. We have the identity

n∑
k=0

krD
(m)
n,k = n!

min(n,r)∑
k=0

{
r

k

}
(m+ n− k)!

(n− k)!
. (51)

In particular, for r = 1, 2, we have the identities

n∑
k=0

kD
(m)
n,k = n(m+ n− 1)! (n ≥ 1) (52)

n∑
k=0

k2D
(m)
n,k = n(m+ 2n− 2)(m+ n− 2)! (n ≥ 2) . (53)

Proof. Let Θx = xDx. Then, we have the generating series

∑
n≥0

[
n∑
k=0

krD
(m)
n,k

]
tn

n!
=
∑
n≥0

[
n∑
k=0

krD
(m)
n,k x

k

]
x=1

tn

n!
=

[∑
n≥0

Θr
xD

(m)
n (x)

tn

n!

]
x=1

=
[
Θr
xD

(m)
n (x; t)

]
x=1

=
m! e−t

(1− t)m+1

[
Θr
xe
xt
]
x=1

=
m! e−t

(1− t)m+1

[
Sr(xt) ext

]
x=1

=
m!

(1− t)m+1
Sr(t) =

r∑
k=0

{
r

k

}
m!tk

(1− t)m+1
=
∑
n≥0

min(n,r)∑
k=0

{
r

k

}(
m+ n− k

m

)
m!

 tn
from which we have identity (51). For r = 1 and n ≥ 1, we have

n!
1∑

k=0

{
1

k

}
(m+ n− k)!

(n− k)!
= n!

(m+ n− 1)!

(n− 1)!
= n(m+ n− 1)! .

For r = 2 and n ≥ 2, we have

n!
2∑

k=0

{
2

k

}
(m+ n− k)!

(n− k)!
= n!

(
(m+ n− 1)!

(n− 1)!
+

(m+ n− 2)!

(n− 2)!

)
= n(m+ 2n− 2)(m+ n− 2)! .

In the ordinary case (m = 0), we have the well known remarkable fact that the expectation
and variance of the number of fixed points in a random permutation in Sn are always equal
to 1. In the general case (m ≥ 1), the expectation and variance of the number of fixed points

in a random permutation in S(m)
n are no more always equal to 1, even though this is true

asymptotically. More precisely, we have
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Theorem 28. For n ≥ 2, we have

E(m)
n =

n

m+ n
and V (m)

n =
n(m2 + 2mn+ n2 − 2m− n)

(m+ n)2(m+ n− 1)
. (54)

Moreover, we have
lim

n→+∞
E(m)
n = 1 and lim

n→+∞
V (m)
n = 1 . (55)

Proof. By identity (52), we have that the expectation is given by

E(m)
n =

1

(m+ n)!

n∑
k=0

kD
(m)
n,k =

n(m+ n− 1)!

(m+ n)!
=

n

m+ n
.

Similarly, by identities (52) and (53), we have that the variance is given by

V (m)
n =

1

(m+ n)!

n∑
k=0

k2D
(m)
n,k −

(
1

(m+ n)!

n∑
k=0

kD
(m)
n,k

)2

=
n(m+ 2n− 2)(m+ n− 2)!

(m+ n)!
−
(

n

(m+ n)

)2
=

n(m+ 2n− 2)

(m+ n)(m+ n− 1)
− n2

(m+ n)2

=
n(m2 + 2mn+ n2 − 2m− n)

(m+ n)2(m+ n− 1)
.

Finally, it is easy to see that E
(m)
n ∼ 1 and V

(m)
n ∼ 1 for n→ +∞.

7 Asymptotics

We conclude by obtaining some asymptotic results for the generalized rencontres numbers
D

(m)
n,k and the generalized derangement numbers d

(m)
n .

Theorem 29. We have the asymptotic equivalence

d
(m)
n

n!
∼ nme−1 for n→ +∞ . (56)

Proof. In [26], it has been proved that

Dr(n) ∼ (n+ r)!

r!
e−1 for n→ +∞ .

Then, by relation (4), for n→ +∞, we have

d
(m)
n

n!
=

1

n!

1(
n+m
m

) Dm(n+m) ∼ 1

n!

1(
n+m
m

) (n+ 2m)!

m!
e−1 =

(n+ 2m)!

(n+m)!
e−1 .
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By applying the Stirling formula n! ∼ nne−n
√

2nπ, for n→ +∞, we have

d
(m)
n

n!
∼

(n+ 2m)n+2me−n−2m
√

2(n+ 2m)π

(n+m)n+me−n−m
√

2(n+m)π
e−1

=

(
1 +

m

n+m

)n
(n+ 2m)2m

(n+m)m

√
n+ 2m

n+m
e−m−1 ∼ em

n2m

nm
e−m−1 = nm e−1 .

Remark 30. From the asymptotic relation (56), we have that the series d(m)(t) converges
for |t| < 1. So, for instance, for t = 1/2 and t = −1/2, by series (2), we have

∑
n≥0

d
(m)
n

2nn!
= m! 2m+1 e−1/2 and

∑
n≥0

(−1)n
d
(m)
n

2nn!
= m!

(2

3

)m+1

e1/2 .

Theorem 31. We have the asymptotic equivalences

D
(m)
n,k

n!
∼ (n− k)m

k!
e−1 for n→ +∞ (57)

and
D

(m)
n,k

(m+ n)!
∼ e−1

k!
for n→ +∞ . (58)

Proof. By definition (5) and equivalence (56), for n→ +∞, we have

D
(m)
n,k

n!
=

1

k!

d
(m)
n−k

(n− k)!
∼ 1

k!
(n− k)m e−1 .

Then, by using this equivalence and the Stirling formula n! ∼ nne−n
√

2nπ, we have

D
(m)
n,k

(m+ n)!
∼ n!

(n+m)!

(n− k)m

k!
e−1 ∼ nne−n

√
2nπ

(n+m)n+me−n−m
√

2(n+m)π

(n− k)m

k!
e−1

=
(

1 +
m

n

)−n√ n

n+m

(
n− k
n+m

)m
em−1

k!
∼ e−m

em−1

k!
=

e−1

k!
.

This completes the proof.
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