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Experimental observation of weak 
non-Markovianity
Nadja K. Bernardes1, Alvaro Cuevas2, Adeline Orieux2,3, C. H. Monken1, Paolo Mataloni2, 
Fabio Sciarrino2 & Marcelo F. Santos1

Non-Markovianity has recently attracted large interest due to significant advances in its 
characterization and its exploitation for quantum information processing. However, up to now, 
only non-Markovian regimes featuring environment to system backflow of information (strong 
non-Markovianity) have been experimentally simulated. In this work, using an all-optical setup we 
simulate and observe the so-called weak non-Markovian dynamics. Through full process tomography, 
we experimentally demonstrate that the dynamics of a qubit can be non-Markovian despite an 
always increasing correlation between the system and its environment which, in our case, denotes 
no information backflow. We also show the transition from the weak to the strong regime by 
changing a single parameter in the environmental state, leading us to a better understanding of the 
fundamental features of non-Markovianity.

The development of quantum technologies for information processing, communication and high res-
olution metrology among other applications has renewed the interest in a better understanding of the 
dynamics of open quantum systems. The most typical description of an open system evolution is that of 
a Markovian dynamics caused by the memoryless interaction of a given quantum system with its envi-
ronment1. On the other hand, strong system-environment interaction, environment correlations or initial 
system-environment correlations may cause memory effects rendering the dynamics non-Markovian. 
Recently, non-Markovian dynamics has become a very trendy topic mainly due to the development of 
new experimental techniques for controlling and manipulating solid state and many body systems2–6 and 
also due to its possible applications in information protection and processing7–12.

Commonly, the evolution of a system is defined as Markovian if the corresponding quantum map is 
divisible in other completely positive maps (from now on CP maps), i.e. Λ = Λ Λ, , ,t t t t0 02 2 1 1

 for all 
≥ ≥t t 02 1

13,14. For all the maps that do not satisfy this equality, the corresponding evolution is 
non-Markovian. The conditions for a strict Markovian dynamics are usually very hard to achieve and 
most experiments will present some degree of non-Markovianity. However, it is not always that the 
non-Markovian characteristics of a dynamics can be easily observed. Some non-Markovian processes can 
be identified in terms of a measurable quantity such as an increase in the distinguishability of different 
quantum states15 or of the entanglement between the evolving system and an ancilla16. These processes 
present a strong degree of non-Markovianity that has also been called essential non-Markovianity17 as 
opposed to a weak non-Markovianity that requires full process tomography and, therefore, is much more 
difficult to detect.

It is important to understand the effects caused by such reservoirs in quantum computational sys-
tems, such as qubits, and to observe these effects in controlled experimental setups in order to pinpoint 
the essential mechanisms behind the different time evolutions generated by them. Hence, very recently, 
non-Markovianity has been investigated in different setups and contexts such as the control of the initial 
states of the environment18,19, of its interaction with the system20,21 or combinations of them22, as well 
as the observation of non-Markovian effects in simulated many-body physics23 or in the recovery of 
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quantum correlations24,25. All these experiments are restricted to detecting and/or exploring the strong 
non-Markovianity.

In this work we carry out an experimental characterization of the transition between weak and 
strong non-Markovianity. More specifically, the term weak non-Markovian will be used for dynam-
ics represented by maps that are divisible in positive maps, but not in completely-positive maps. On 
the other hand, strong non-Markovian will be used to maps that are not even divisible in positive 
maps. In particular we adopted full process tomography to observe the weak non-Markovianity 
dynamics of a qubit subjected to the interaction with a correlated environment. Furthermore, 
through the careful preparation of the environment state, the transition is induced by changing a 
single experimental parameter.

Theoretical Model
We consider a qubit ρs that interacts with an environment from which it is initially decoupled. The inter-
action consists of consecutive collisions each of which can produce three different effects on the system: 
either nothing happens, in which case the identity is applied to ρs or the system is rotated by π/2 around 
the X or Z axis, undergoing a  σ≡s x

s or  σ≡s z
s flip. The map that describes the evolution by one 

collision is X X Z ZΛ (⋅) = (⋅) + (⋅) + (⋅)p p px z10 0  and , ,p p p{ }x z0  are probabilities that add to one. 
This is a special case of a random unitary qubit evolution. It is also a unital map.

All the effects we are interested in can be observed with only two collisions described, in our case, by 
the general map Λ (⋅) = ∑ (⋅)p O O O Omn mn n m m n20  where ≤ ≤p0 1mn , ∑ =p 1mn mn  and , 

=Ox s and =Oz s. Note that if the collisions are fully independent (hence non-correlated) this 
model is Markovian by construction and can be easily generalized for any number of collisions. The state 
of the system after n collisions is obtained by the concatenation of single collision CP maps: 
ρ ( ) = Λ ρ ( )=(Λ ) ρ ( )n 0 0s n s

n
s0 10 . In this case, the joint probabilities of two consecutive flips need to 

respect relations such as =p p pij i j
 where , = ,i j x z{ }.

The dynamics becomes more interesting if the collisions are correlated, i.e. when ≠p p pij i j
. In par-

ticular, it is shown in Ref. 26 that for any correlation factor =
+ − −

+ + +
Q

p p p p

p p p p
xx zz xz zx

xx zz xz zx

 larger than zero, the 

two-collision map Λ20 represents a non-Markovian evolution, i.e. Λ ≠ Λ Λ20 21 10 or, equivalently, ρ ( )2s  
cannot be obtained by applying a CP map on ρ ( )1s . Naturally, larger values of Q produce a more intense 
non-Markovian effect. There is, however, a transition in the type of non-Markovianity that depends on 
the probabilities of the flips. If correlated flips are very likely, i.e. pii( = ,i x z{ }) is of the same order of 
p i0 , pi0 and p00, then the non-Markovianity is strong (sometimes referred to as “essential” in the literature17)  
which means it can be witnessed by quantities such as the trace distance between different states of the 
system or the entanglement between the system and an ancilla. This is related to the fact that the recon-
structed map Λ = Λ Λ−21 20 10

1 is not even positive, let alone CP, i.e. it does not map the Bloch ball onto a 
set contained in it. The extreme scenario has = = /p p 1 2xx zz  in which case ρs after the first collision will 
be given by X X Z Zρ ( ) = ρ ( ) + ρ ( )1 0 0s s s

1
2

1
2

 and after the second collision it goes back to ρ ( )0s  (since 
).

As the flip probabilities decrease this effect becomes smaller and at some point the reconstructed map 
Λ12 becomes positive, albeit still non-CP. For random unitary maps, as it is the case here and as it is 
shown in Ref. 27, a map is divisible in positive maps if and only if the von Neumann entropy and the 
trace distance present a monotonic decay in time, establishing a strict relation between backflow of 
information in terms of these quantities and strong non-Markovianity. In the case of our model, this 
backflow of information can also be identified observing the entanglement between system and an 
ancilla. In this case, the previously discussed witnesses fail and only full process tomography of the 
dynamics at each step can detect the non-Markovianity character of the evolution. This situation has 
been defined as “weak” non-Markovianity in Ref. 17. The goal of this work is to observe this weak 
non-Markovianity as well as the transition of non-Markovian regimes as a function of the correlated flips 
probabilities. Finally, note that orthogonal flips (X Zor  ) are chosen to maximize the effect but, in fact, 
any pair of non-commuting flips will also produce a non-Markovian map for Q >  026. To implement a 
Kraus operator for the two collisions we exploit a mixture in time of the different Pauli operators (since 
the time emission of the photon is random). In our scheme we simulate non-Markovian dynamics with 
a classical apparatus; for more details refer to Ref. 25. The conceptual scheme of the experiment we are 
going to show is depicted in Fig.  1a). Here CH1 and CH 2 are the interaction channels acting on the 
system. Fig. 1b) shows the probabilities associated to the sequence of operations performed by CH1 and 
CH 2.

Experimental Setup
In the experiment, the system s is the polarization state of an initial maximally entangled photon pair, 
ψ = ( + )/αHV e VH 2as

i  generated by a PPKTP ultrabright source of polarization entangled pho-
tons28, where H  ( V ) represents the horizontal (vertical) polarization (see Fig. 2 for details)28. Note that 
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| 〉 ⊗ | 〉i ja s will be simply represented as ij . The environment is simulated by a sequence of four voltage 
controlled liquid crystal cells (LC) lying on the path of photon s. By a suitable control of the applied 
voltage on each of them, the four LCs were set to operate either as the identity or as half-wave plates. In 
particular the first and third LCs were oriented with the slow axis along the vertical direction, thus acting 
either as  or , while the slow axis of the second and fourth LCs were oriented along the diagonal 
direction (45°), thus acting either as  or . According to the collision model, the first environment 
(giving ρ ( )1as  as output result) derives from the actuation of the first two LCs (1 and 2) only, leaving the 
other LCs (3 and 4) in the identity regime. Finally, the second collision environment (giving ρ ( )2as  as 
output result) corresponds to the actuation of the four LCs in the designed way. The parameter ε gives 
the probability that either X Zor  occurred in the first collision ( = εpx  and = εpz ) and it is propor-
tional to the time of application of the voltage to the liquid crystal. In the experimental setup it is defined 
by the ratio of the width of an applied voltage pulse to the width of a measurement cycle. Since the 

Figure 1. (a) Conceptual scheme of the experiment. A maximally entangled state between the qubit of 
interest (s) and an ancillary state (a) is initially prepared at time t0. The interaction between qubit s and the 
environment is simulated by a sequence of two channels, performing each a mixture of ,  and  
operations. The state after the interaction channel CH1 (CH2) is measured at t1 (t2). In the actual experiment 
the two channels are simulated each one by two liquid crystal modulators. Qubit a will not suffer any 
change, since it is isolated from the environment. (b) Sequence of probabilities corresponding to the action 
of the two channels, = ( − ε)p 1 200

2, = = = = ( − ε)εp p p p 1 2x z z x0 0 0 0 , and = = εp p 2xx zz
2. i (i) is 

the  () operation occurring in the ith-collision. Here we adopted the specific value of ε = .0 2.

Figure 2. Detailed scheme of the experiment. Twin photons are created by a polarization entanglement 
source. One photon (system s) is sent through a correlated liquid crystal environment, while the other 
(ancilla a) is let to go free. Then, the bipartite state is measured by complete state tomography at times t0, t1 
and t2. Liquid crystals (LCs) (two for CH1 and two for CH2) act as phase retarders, with the relative phase 
between the ordinary and extraordinary radiation components depending on the applied voltage.
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photons in our source are generated at random, the action of the liquid crystal cells driven by the voltage 
pulses will in fact simulate random collisions. By controlling the time duration of the applied voltage on 
each LC intercepting photon s, it was possible to choose the probability corresponding respectively to 
the , X Zand  operations. This is given by the parameter ε  in the following way: =( − ε)p 1 200

2, 
= = = = ( − ε)εp p p p 1 2x z z x0 0 0 0 , and = = εp p 2xx zz

2, as shown in Fig. 2b). Note also that 
= =p p 0xz zx  reflecting the fact that only perfectly correlated rotations (Q =  1) are implemented. In this 

case, the theory predicts an always non-Markovian dynamics for any value of ε > 0. In order to verify 
the dynamical behavior, the measurements were performed after the first collision (t1) (in that case LCs 
3 and 4 were acting as the identity and only LCs 1 and 2 were varied) and the second collision (t2) (with 
all four LCs varied). As described below, in the case of strong non-Markovianity, we need just to measure 
an entanglement witness. However, for weak non-Markovianity, quantum state tomography should be 
realized.

In the experiment the open system dynamics is obtained by temporally mixing the three possible 
settings of CH1 ( , X Z, or  ), giving ρ ( )1as , and by temporally mixing the seven possible settings of the 
action of CH1 and CH 2 (namely , ), giving ρ ( )2as . Note that only corre-
lated rotations are implemented; this is done in order to maximize the non-Markovian effect as it is better 
explained in Ref. 26. The map Λ10 (Λ20) is obtained from the full tomographic reconstruction of ρ ( )1as  
(ρ ( )2as ) and the intermediate map Λ21 that tells us about the character of the dynamics is calculated from 
Λ = Λ Λ−21 20 10

1.

Non-Markovian Analysis
The density matrix of a qubit state can be represented by ρ  =  ( σ+ ⋅ )/

� ��r 2, where 
r  is the Bloch vector 

( σ= (ρ )r Tri i ). The action of a map Λ on ρ can be described, in general, by Λ ′ = +
� �

�� � �
r r M r t: , 

where M is a matrix responsible for changing the norm and rotating the Bloch vector while 
= ( , , )



t t t tx y z  shifts its origin. For unital maps ( =


t 0), which is the case studied here, one can define 
a 4 ×  4 Hermitian matrix  so that the map Λ is completely positive 
iff  ≥ 029–31.

In Fig. 3a) we plot the minimum eigenvalue λ of  for the map Λ21 obtained from the experimental 
tomographic reconstruction of the system state after one and two collisions (ρ ( )1s  and ρ ( )2s  respectively). 
The fact that λ is always negative for ε > 0 necessarily implies that Λ21 is non-CP. As a consequence, the 
dynamics of the system is non-Markovian for any value in this range. The question remains whether the 
measured non-Markovianity is weak or strong. A linear map is positive iff the corresponding dynamical 
matrix  is block-positive30. For the type of map implemented in our experiment, a simple calculation 
(see Methods) shows that the condition that guarantees the strong non-Markovian regime, which means 
that  is not block-positive, necessarily implies the recovery of entanglement between the system affected 

Figure 3. (a) The negative eigenvalue of  as a function of ε. The inset is the same curve for small values of 
ε, ε < .0 1. For qualitative reasons, the weak non-Markovian regime, where the intermediate map is positive, 
but not completely positive, is represented by the blue region and the strong non-Markovian regime, where 
the intermediate map is not even positive, by the red region. The experimental error bars are estimated from 
propagation of the Poissonian statistics of photon coincidence countings in the tomographic reconstruction 
of the process matrix. (b) The difference between the concurrences of system and ancilla after two collisions 
C(2) and one collision C(1) versus ε. The inset shows C(2) and C(1) versus ε plotted separately. For qualitative 
reasons, the weak non-Markovian regime is represented by the blue region and the strong non-Markovian 
regime by the red region. The transition from one region to the other is represented by the dashed line, 
which can vary its position depending on the imperfections in the experiment. The experimental error bars 
are estimated as explained before. The uncertainties, about 1%–3% of the concurrence values, are within the 
size of the symbols.
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by the environment and an ancilla used to monitor the dynamics. Therefore, in order to search for an 
eventual transition from weak to strong non-Markovian regime in our case, we have also measured the 
variation of the entanglement between the system s and an ancilla qubit a after the first and the second 
collision. This entanglement decreases when the system becomes more correlated with the reservoir and 
vice-versa, therefore, it identifies properly any backflow of information from the latter to the former. We 
quantify entanglement by measuring the concurrence C32 between system and ancilla and in Fig. 3b) we 
plot its difference after one and two collisions, ( ) − ( )C C2 1 , as a function of ε. The values of ( )C 1  and 
( )C 2  are obtained from the tomographic reconstruction of the two-qubit density matrices and are ploted 

in the inset of Fig. 3b). Figure 3b shows a transition from a negative to a positive difference at around 
ε = .0 3. Note that positive difference ( ( ) > ( )C C2 1 ) means that system and ancilla are more entangled 
after two collisions than after one which, in our model, identifies strong non-Markovianity. As ε decreases, 
the evolution of the system will mimic a system that gets more correlated to the reservoir after the second 
collision (and therefore less entangled with the ancilla) which defines the regime of weak non-Markovianity 
where Λ21’s non-CP character can only be evidenced by full tomography of the map itself. Also note that 
the theoretical curve predicts a discontinuity in the derivative of ( ) − ( )C C2 1  and a plateau for a range 
of values of ε . Both behaviors are easily explained if we look at the individual behaviors of ( , )C 1 2  plotted 
in the inset of Fig. 3b). Both entanglements suddenly die33, ( )C 2  faster than ( )C 1 , but ( )C 1  remains zero 
for any larger value of ε while ( )C 2  eventually recovers due to the environmental correlations. The regions 
of weak and strong non-Markovianity (blue and red regions, respectively) are also presented in Fig. 3a); 
however, here there is no clear sign of the transition between one region to the other, so, if just the 
divisibility of the maps is calculated, there is no essential difference between these two types  
of non-Markovianity. The theoretical curves are computed assuming imperfections in the preparation  
of the initial state ( ( ) ∼ .C 0 0 975) and imperfect operations of the LC devices. We modelled  
the imperfections in the operations as X X X Y Y Z Z(ρ) = ρ + ( − )/ ρ + ( − )/ ρF F F1 2 1 2exp  and 
Z Z Z Y Y X X(ρ) = ρ + ( − )/ ρ + ( − )/ ρF F F1 2 1 2exp , and we considered F =  0.97.

Discussion
We have realized experimentally the collisional model proposed in Ref. 26 to investigate the 
non-Markovian dynamics of an open quantum system. We showed how the evolution of the same 
photonic system can transit from strong to weak non-Markovian evolution by varying only one 
parameter. This effect is caused by simply modulating the probability of the photon to undergo 
a rotation on its polarization state. As a result, a particular kind of non-Markovianity which is 
normally not spotted in other experiments is observed here. All non-Markovianity is caused solely 
by simulating a correlated reservoir. Finally, the fact that both regimes are produced by the same 
underlying physical mechanism explicitly shows that there is nothing necessarily fundamental about 
strong non-Markovian evolutions.

Besides its intrinsic relevance on the fundamental side, the weak non Markovianity experimentally 
demonstrated in this work allows to envisage future important applications regarding for instance quan-
tum control techniques and resolution enhancement in quantum metrology9,10.

Methods
The positivity and completely positive character of our map can be identified by the dynamical matrix 
. For the intermediate map Λ21 and error models previously explained, the reconstruction of  gives

 =













,

( )

h h
h h
h h

h h

0 0
0 0
0 0

0 0 1

1 4

2 3

3 2

4 1

where

(ε, ) =
( ( − ) + )ε + ( − )ε +

( − )ε +
,h F

F F F
F

2 5 6 5 3 3 2
2 3 21

2

(ε, ) = −
ε( ( ( − ) + )ε + − )

( − )ε +
,h F

F F F
F

2 5 6 5 3
2 3 22

(ε, ) =
( − )ε( ( − )ε + )

( − )ε +
,h F

F F
F

3 1 4 1 1
2 3 23
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(ε, ) =
ε( (( − ) + )ε + − ) +

( − )ε +
.h F

F F F
F

8 1 2 11 2
2 3 24

Its eigenvalues are

λ λ= = ( + )ε, ( )F 1 20 1

λ = −
ε( ε − ε + + ε − )

ε − ε +
,

F F F
F

11 14 2 7 2
3 12

2

λ =
ε − ε + ε + ε − ε +

ε − ε +
.

F F F
F

9 10 2 13 10 2
3 13

2 2 2 2

First, notice that, considering that our operations are almost perfect ( = .F 0 97), λ < 02  and, as 
already explained, the map Λ21 is not completely positive. However, we would like to identify for which 
values of ε the map becomes positive. A map is positive if the dynamical matrix is block positive, i.e. 
λ λ+ ≥ 0i j , where λi are the eigenvalues of 30. It is possible to show that the only inequality that does 
not satisfy this condition is λ λ+0 2. For the case of perfect operations (F =  1), the map will be positive 
only when ( − ε) ≥1 4 0.

The witness that we used to track the backflow of information was the concurrence. For our maps, 
it is given by

( ) = , − ε , ( )C 1 Max[0 1 4 ] 3

( ) = , + ε(( ( − ) + )ε − ) . ( )C F F2 Max[0 1 4 3 2 3 2 ] 4

For perfect operations (F =  1), we can see that the condition established for positivity of the map 
(( − ε) ≥1 4 0) will definitely imply ( ) − ( ) <C C2 1 0. A monotonic decay of the concurrence will iden-
tify then when the map is positive, and on the other hand, non-positivity (( − ε) ≤1 4 0) implies an 
increase in the concurrence. However, when the operations are not perfect, there is a range of values of 
ε for which ( ) = ( )C C2 1 , and this witness will fail to identify the exact point of transition from weak to 
strong non-Markovianity. Nevertheless, it will still be true that if ( ) < ( )C C2 1  the map is positive (weak 
non-Markovian) and if ( ) > ( )C C2 1  the map is not positive (strong non-Markovian).
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