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Abstract
This thesis concerns the investigation of the methods to improve the quality of beams
accelerated via beam-driven plasma wakefield acceleration (PWFA) schemes in therms
of emittance and energy spread.
In the I chapter the motivation that led to the use of plasma wakefields in order to
accelerate beams instead of conventional RF-based accelerating structures is reviewed,
reporting also the state of the art of beam driven PWFA experiments. Investigating
the differences between linear and non linear plasma wake, a proposal for a new
scheme is elaborated. This scheme is based on the combination of a low quality
high charge driver that generates an accelerating wakefield in linear regime and an
high quality low charge witness that is injected in a region close to the crest of the
accelerating wakefield. Since most of the focusing field is guaranteed by the beam
loading effect, this scheme was called Beam Loading ASsisted maTching (BLAST)
scheme. The theoretical tools to develope the study of this kind of working point are
also discussed.
The II chapter introduces the models used to describe the fields inside plasma.
The very well-estabilished plasma linear theory will be developed in electrostatic
approximation in order to derive a complete solution of the fields in the entire space.
This solution will be used to obtain scaling laws that describe the main features of
plasma acceleration i.e. maximum attainable energy, expected energy spread growth
and optimal injection phase of witness for beam loading compensation of energy
spread. The solution for the transverse field will be used in order to find the matching
conditions via the envelope equation. Finally a procedure for the design of BLAST
working points will be presented.
The III chapter will introduce the SPARC_LAB facility, pointing out the features of
the injector and the experimental setup for the plasma acceleration experiments.
In chapter IV the scaling laws derived in chapter II will be verified through the
simulation of a working point for an experiment of high quality plasma acceleration
to be performed at SPARC_LAB. The robustness of this working point will be also
investigated through a tolerance analysis.
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Outline

In this work we will introduce and define a new kind of accelerating scheme for the
plasma wakefield acceleration that takes advantage of an enhanched beam loading
effect to guarantee a matched propagation of the trailing bunch and helps to preserve
the beam quality. We will also implement the scheme to design a working point for
an experiment to be performed at the SPARC_LAB test facility.
The first chapter introduces the state of the art of RF based and plasma based
accelerators, pointing out the limits of both technologies and the reasons that makes
the plasma acceleration so interesting. The linear regime and the blow-out regime
of plasma acceleration will be also summarized, pointing out differences, advantages
and disadvantages. In the end, the beam loading assisted matching working point
will be introduced.
The second chapter is dedicated to plasma beam dynamics. We will apply the cold
fluid model for plasma waves in order to extrapolate the main features of the new
scheme.
The third chapter is dedicated to the experimental setup of SPARC_LAB facility,
pointing out the characteristics of the outcoming beams, final focus device and the
plasma interaction chamber features.
The fourth chapter is dedicated to the SPARC_LAB working point design and
tolerance analysis.
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Chapter 1

From conventional to plasma
accelerators

The first example of the usefulness that particle accelerators have for fundamental
physics is the Rutherford scattering experiment of α particles in 1911. Since then,
particle accelerators imposed their presence in almost any scientific or technical
field. The importance of accelerators like the Large Hadron Collider (LHC) for the
fundamental physics is very well known, less known are for example the applications
for semi-conductors doping, the activation of the materials used for X-ray diagnostics,
the more recent hadron therapy for the cure of cancer, the application of the
synchrotron radiation and Free Electron Laser radiation for biology, chemistry,
paleontology and archeology.
Particle accelerators are today an integral part of everyday life and the improvement
of their technology is of primary importance for the development of science. The
challenge of plasma accelerators is the goal of really compact particle accelerators
that can make avalaible to a larger number of users the results obtained so far and
the potential new applications of these fascinating tools.
The main purpose driving the development of particle accelerators technology has
always been the fundamental phyisics. Today technology allows to accelerate and
collide two charged particle beams up to the energy of 14 TeV in the center of mass
reference frame [1], giving the possibility to recreate the conditions that existed few
istants after the big bang. The study of the processes acting during these collisions
helps to understand the fundamental forces that govern the universe leading to the
unified field theory. The last great success obtained by the use of an accelerator is
the discovery of an Higgs boson-like particle performed by LHC in 2012, the missing
dowel of the Standard Model, that is mainly recognized as the most successful theory
of the particle physics.
The necessity of going beyond these results requires, unfortunately, even greater
collision energies, that require more powerful and more expensive accelerators in
order to be achieved, as shown in Fig. 1.1.
Plasma accelerators can be seen as a promising improvement of electron linac
technology, represented in the chart by the green line. The technological limit right
now for the accelerating RF structures is ≈ 100MV/m [3] of accelerating gradient (in
X-band ) while a plasma based accelerator can reach accelerating gradient� 1GV/m,



Figure 1.1. Progress in collision energy over time from reference [2]

marking an improvement greater than a factor ten in the state of the art of linear
accelerators and becoming very helpful for the design of future linear colliders. Going
beyond the energy of LHC or the future International Linear Collider (ILC [4])
would require very expensive accelerators with length > 30km. Further, as we
can see from Fig. 1.2, LHC differs from the linear growth of the energy of hadron
accelerators, a signal that we are reaching the limit of what can be designed with
current technology and a technological leap is required to overcome the current
limits.
One of the most promising way to obtain compact accelerating devices is the plasma
wakefield acceleration. The fields that can be generated inside plasma are orders of
magnitude higher than the state of the art accelerating cavities possibilities (GV-
TV/m). Very high accelerating gradients have been obtained by several experiments
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Figure 1.2. Progress in collision energy over time for different facilities from reference [2]

[5] with high gradient acceleration, both laser (LWFA) and plasma wakefield beam
driven (PWFA). Nevertheless, there is still a great issue concerning the quality
of outcoming beams. Conventional accelerators are able to produce beams with
very low emittance and energy spread (< 1mm mrad, � 1%). As we will see in
detail in next sections, beams accelerated by PWFA still suffer, at present, of higher
emittance and energy spread compared to RF accelerators.
Higher accelerating gradients allow to create more compact accelerators with the
same energy. The maximum electric field that can be generated by RF cavities is
primarly limited by discharge breakdown.
The main work to be referred for discharge breakdown is the Kilpatrick’s Criterion
[6]. In his work Kilpatrick used some experimental results in order to empirically
define the breakdown threshold as a function of working frequency and accelerating
field. The original Kilpatrick’s formula was

Ee−4.25/E = 24.4 · (f [GHz])
1
2 [MV/m]; (1.1)

that was then reformulated by T.J. Boyd [7] as

11



Figure 1.3. Kilpatrick’s limit [6]

f [MHz] = 1.64 · E[MV/m]2 · e−8.5/(E[MV/m]). (1.2)

In order to increase accelerating gradient and avoid sparks it is necessary to build
cavity designed to work at higher frequency.
The Kilpatrick limit is reported in Fig. 1.3. The white region is expected to work
without sparks. A work of 1986 by T.J. Wang et al. [8] showed that it is possible
to overcome the Kilpatrick’s limit for higher RF frequency. In Fig. 1.4 we can see
the corrected limits.
Despite it has been demonstrated that it’s possible to overcome the Kilpatrick limit
of beyond a factor ∼ 10, the limit of 500MV/m is a very hard challenge for RF
accelerating structures and a stable gradient of 1GV/m is far away from the state of
the art, making a technological upgrade desiderable.
In this work we developed a new beam driven PWFA scheme named Beam Loading
ASsisted maTching (BLAST) aiming to increasing the outcoming beam quality. The
scheme is based on a low brightness driver that generates an accelerating wakefield
in linear regime and a very high brightness witness injected behind the driver on
the crest region of the accelerating field. In the injection region the focusing field
generated by the driver is negligible and the transverse matching of witness is based
on a beam loading effect. The motivations for this kind of structure and the reasons
of the stability of BLAST scheme will be also discussed.
The BLAST scheme is also a possible candidate for positron acceleration that is a
very challenging topic for the PWFA schemes [9].

12



Figure 1.4. Breakdown limit from Wang’s report [8]
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1.1 Beam quality: luminosity, brightness and chromatic-
ity

The most important parameters that define the quality of a collider are center of
mass energy and luminosity.
The luminosity is defined as

L = 1
σ

dN

dt
; (1.3)

where σ is the cross section, andN the number of events. It is possible to demonstrate
[10] that two equal round gaussian beams colliding head on have a luminosity

L = N1N2Nb

4πσ2
r

f ; (1.4)

where Nb is the number of bunch inside a single beam, N1 and N2 are the number
of particles contained in every beam, f is the collision rate and σr is the rms radius
of the beams. As demonstrated in Appendix C, it is possible to write σr =

√
βrεr,

where β is the β-function in the collision point and εr the rms emittance. The
minimum value of β that can be reached by a magnetic transport line is affected by
the gradient of the focusing element and on the length of final focus devices, leading
to the conclusion that lower emittances help to increase the luminosity.
One important applications of particle accelerators consists in the generation of
advanced radiation sources. The intensity of these sources depend on the brightness
of the beams that generate them. The brightness is defined as [11]

Bn = 2I
π2ε2n

; (1.5)

where I is the peak current of the beam and εn is the normalized emittance. Beams
with higher brightness guarantee higher brilliance of radiation sources.
High energy spread of the beam can lead to difficulties in beam focusing and to
emittance growth during transport [12].
High quality beams are characterized by low emittance and low energy spread.
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1.2 Plasma wakefield acceleration overview

Figure 1.5. PWFA beam driven scheme for highly non linear driving bunch

Plasma physics was originally developed in order to analyze processes that occur at
very high temperature, where the electric bounds of the electrons with the nuclei
breaks and the coulomb interactions between the elements of the matter become
non negligible and sometimes dominant. The idea of using plasma wakefield in order
to accelerate particles is due to Tajima and Dawson in 1979 [13]. In their work they
evidenced how the wakefield generated inside plasma by the ponderomotive force of
a laser had an oscillating behaviour and that a bunch of electrons could be trapped
inside the wake and accelerated with very high gradients. The plasma wakefield
acceleration is a very attractive technological development due to the fact that the
electric and magnetic fields generated inside plasma are orders of magnitude higher
with respect to conventional structures (hundreds of GV/m) [14].
LWFA experiments have shown that it is possible to achieve gradients of the order of
TV/m, but the quality of the generated beams was low, with an energy spread of the
order of 100% and very high emittances [15, 16, 17, 18, 19, 20]. An higher degree of
control of laser and plasma parameters allowed to perform some experiments with
a significant accelerated charge (≥ 100pC), high mean energy (≈ 100MeV ) and
relatively high beam quality (few percents of energy spread and divergence of few
milliradians) [21, 22, 23]. After that in 2006 Leemans, Nagler, et al. [24] were able
to produce an electron beam with 1GeV energy of using LWFA, and in 2013 Kim et
al [25] were able to produce a 3GeV beam with the multi-staging LWFA.
An alternative to LWFA is the beam driven plasma wakefield acceleration scheme
proposed by Chen et al. in 1985 [26]. The response of the plasma to an electron
bunch coulombian field is mostly equivalent to the effect of the ponderomotive force
generated by laser.
Many experiments has been performed in order to prove the validity of the beam
driven scheme [27, 28], but, as we will evidence in this chapter, there is still a great
problem concerning the beam quality at the exit of plasma. This work will focus
on the possibility of increasing the accelerated beam quality preserving an high
accelerating gradient inside plasma.
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1.3 Beam driven plasma wakefield acceleration experi-
ments

The most promising results have been obtained in beam driven PWFA schemes are
highlighted in the following paragraphs. The experiments were performed in highly
non linear regime, which means a driver bunch with high density if compared to
the background plasma density. Details will be given in the next sections and in
Appendices.

1.3.1 Energy doubling of 42 GeV electrons in a metre-scale plasma
wakefield accelerator

Figure 1.6. Energy spectrum of the outcoming beam in Blumenfeld experiment. On the x
axis are represented both the dispersion [mm] and the energy spectrum [GeV] while in
the y axis are represented the position [mm] of the electrons on the diagnostic screen
(figure above) and the electron linear density [mm−1] (figure below). As we can see the
experiment showed an effective energy doubling of part of the incoming beam (green
line) but at cost of an absolute energy spread of the order of 1.5GeV.

The experiment performed by Blumenfeld et al. [27] in 2007 showed high energy
gain and accelerating gradient of beam driven PWFA. The experiment consisted in
a single bunch with energy E = 42 GeV, length σz = 15 µm and charge Q ≈ 3 nC
injected in an 85 cm long ion column of lithium vapour with an electron density of
ne = 2.7 · 1017 cm−3. Since the beam length was approximatively of the same size
of the plasma bubble, the head of the beam lost energy and the tail of the beam
gained energy at the expense of a dramatic increase of energy spread.
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The result of the experiment was an outcoming beam with an energy spectrum
as showed in Fig. 1.6. As we can see the experiment showed an effective energy
doubling of part of the incoming beam (green line) but at cost of an absolute energy
spread of the order of 1.5 GeV.

1.3.2 High-efficiency acceleration of an electron beam in a plasma
wakefield accelerator

The experiment performed by Litos et al. [28] in 2014 consisted in 2 bunches,
a driver with a charge Q = 1.02 nC, a length σz = 25 µm and a witness with a
charge Q = 780 pC, a length σz = 47 µm are injected both with an incoming energy
E = 20.35 GeV inside a ionized column of lithium with an effective electron density
of ne = 5 · 1016 cm−3. Since the two bunches are both contained inside the bubble,
the first bunch generates the bubble and the second is accelerated, preserving the
energy spread of the trailing bunch. The spatial beams distributions of density and
current and the accelerating field outcoming from simulations are shown in Fig. 1.7a
both for the single injection of the driver and for the scheme of driver and witness.
The result of the experiment was an outcoming witness with an energy spectrum as
showed in Fig. 1.7b. As pointed out in reference, the effective energy gain during
the acceleration was of 1.6 GeV for the core particles (charge Qc = 74 pC) with an
effective accelerating gradient of 4.4 GV/m. The outcoming energy spread for the
core was of 0.7% in the single shot with a total energy spread of 2% integrated on
all the measurement set of 92 shots. The reduced energy spread was a result of the
optimized shaping of the trailing bunch profile. No measurement of outcoming beam
emittance were performed during that experiment.

17



Figure 1.7. (a) Simulation results for the Litos experiment. The figure above refers to
a case with the driving bunch only, while the figure below refers to a case with both
driving and trailing bunch. Beam electron density is shown in red scale while the plasma
electron density is shown in blue scale. As we can see the introduction of trailing bunch
with a proper longitudinal distribution (dashed blue line) causes a flattening of the
accelerating gradient profile (red continuous line) that effectively reduces the outcoming
beam energy spread.
(b) Energy spectrum of the outcoming beams in Litos experiment (2014). On the x axis
are represented both the dispersion y[mm] and the energy spectrum E[GeV] while in
the y axis are represented the position x[mm] of the electrons on the diagnostic screen
(figure above) and the electron linear density [mm−1] (figure below). The first figure
refers to the case of an incoming couple of beams without plasma interaction. The
second figure refers to the outcoming beams with plasma interaction and a spectrometer
set to image the incoming energy (20.35GeV). The third figure refers to the outcoming
beams with plasma interaction and a spectrometer set to image the witness core average
energy (22.35GeV). The last figure shows the integrated spectrum of the outcoming
beams. The blue continuous line represent the experimental data, the continuous line
represent the simulation data and the red dashed line represents the witness core.
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1.4 Linear vs. Blow-out regime

Plasma wakefield perturbations can be treated in a simple analytical way in two
cases:

• Small perturbations: the non linear terms of the equations describing plasma
can be neglected and it is possible to find an analytical solution. This case is
known as linear regime [29, 30, 31].

• Strong perturbations: in this case inside the plasma there are regions completely
emptied of electrons and the local electron density is 0. This case is known as
blow-out regime [32, 33, 34].

The kind of perturbation is determined by the normalized bunch density α that is
defined as

α = nb
n0

; (1.6)

where nb is the density of the bunch and n0 the background plasma density. Bunches
with low densities generate small perturbations on plasma, so the action of the
bunch over plasma can be described by the equations of the linear regime if α� 1.
On the contrary, bunch with high density, α� 1, can be described properly by the
blow-out model. The linear theory is presented in Appendix A, while the blow-out
model is presented in Appendix B. Below we list the main differences in the two
different regimes.

1.4.1 Focusing field

The main difference between the linear regime and the blow-out regime [35] concerns
the focusing field generated by driver. The focusing field generated by a low density
driver propagating in plasma at the speed of light c in cylindrical symmetry can be
written as

Er(r, ξ) =
√
π

2
c2me

e
(α)(kpσz)e−k

2
pσ

2
z/2 Re

[
eikpξ erfc

(
ξ√
2σz

+ i
kpσz√

2

)]
R′(r);

(1.7)
where ξ = z − ct and R′(r) is a function of the transverse component. It can be
demonstrated that R′(r) is not linear in r (see Appendix A, Eq. A.43). The focusing
field also depends on the longitudinal coordinate ξ and on the normalized bunch
density α. A driver that is evolving through the plasma channel generally has a
density that is not constant. So the focusing field generated by low density drivers
is also a function of time.
An high density driver, instead, generates inside the blow-out region a focusing
field that is linear and uncorrelated in the longitudinal dimension. In the limit that
α� 1, the field is also constant during the propagation in the plasma channel and
does not depend on ξ. This kind of focusing field is highly preferable to the previous
one for beam dynamics reasons, which will be fully explained in the next section.
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1.4.2 Accelerating field

Figure 1.8. Longitudinal dependency of wakefields in linear regime. The green region
guarantees both accelerating and focusing field.

The accelerating wakefield generated by a low density bunch behind the driver can
be written as

Ez(r, ξ) =
√

2πc
2me

e
(α)(k2

pσz)e−k
2
pσ

2
z/2 cos kpξ R(r). (1.8)

showing a sinusoidal behaviour, so the crest region guarantees the lowest energy
spread and the maximum accelerating gradient. Unfortunately, the crest region is
not useful for accelerating bunches because we can write the focusing field

Er(r, ξ) =
√

2πc
2me

e
(α)(kpσz)e−k

2
pσ

2
z/2 sin kpξ R′(r). (1.9)

In fact the crest region corresponds to cos(kpξ) = 1 and sin(kpξ) = 0, so the crest
region guarantees no focusing field for the witness. In Fig. 1.8 we show the useful
region for acceleration in linear regime.
According to Eq.(1.8) also the accelerating field depends on α, that doesn’t remain
constant during acceleration. The accelerating field has also a dependency on the
transverse position that introduced further energy spread that has to be evaluated.
The longitudinal field profile presents a spike in the zone of bubble closure that
corresponds to the maximum accelerating gradient but also to the maximum energy
spread. The accelerating field is not dependant on the transverse position so the
energy spread can be completely evaluated only taking into account the longitudinal
contribution.
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1.5 Beam Loading ASsisted maTching scheme
The Beam Loading ASsisted maTching (BLAST) scheme presented in this thesis
aims to use the advantages of linear and non linear scheme, combining the high
accelerating gradient and a focusing field that does not depend on the driver with the
possibility of use an high amount of the accelerating gradient with a compensation
of energy spread that is also function of the bunch separation.
It consists in a beam driven scheme where:

• The driver generates a linear or quasi-linear field (αD < 1);

• The witness generates an highly non linear field (αw � 1);

• Witness injection is performed close to accelerating field crest.

This scheme is illustrated in Fig. 1.9.

Figure 1.9. Beam loading assisted matching (BLAST) scheme. Background plasma electron
density is represented in blue scale while the bunches are presented in yellow scale. The
low density driver (on the right) generates a linear field, the witness high density witness
(on the left) is injected on the crest of linear field (where assuming negligible beam
loading the local plasma density results to be unperturbed) and generates a bubble.

The idea behind the BLAST scheme is to use the crest of the linear field that is
the most suitable for acceleration, despite that region presents a negligible focusing
effect.
We investigated the possibility of injecting the witness in the crest field region using
an external focusing device (i.e. active plasma lensing [36]) during acceleration.
Optimal acceleration of a witness in the wake of a low density driver requires that
the transverse dimension of the witness is much smaller than the driver’s one. The
β-function required during all the acceleration is of the order of ≈ 1mm, requiring
very high focusing field. As a consequence, the technical realization of external
focusing devices resulted to be too challenging.
On the contrary, the self focusing effect that has been modelized throughout this
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thesis work, showed optimal features and a relatively simple realization. The most
important are:

• the plasma wakefields in the region of the driver and the witness follow a linear
behaviour, so it is possible to modelize them analitically;

• the energy spread depends on the separation of bunches; this feature allows to
identify for a large range of witness parameters an optimal injection distance
that keeps low energy spread; furthermore, there is a low dependency from
the driver parameters, that makes the conditions of the driver at the injection
more relaxed;

• the optimal injection distance is located near the crest region, allowing to use
an high amount of the accelerating field;

• the matched spot size for emittance preservation does not depend on the driver
parameters.

There are also some disadvantages connected mostly to the driver’s dynamics. Due
to the fact that a driver injected inside the neutral plasma creates a self focusing
field [37], if the driver emittance is too low, the driver bunch density will increase
after the injection, creating a blow-out region. Further, the expansion of the driver
inside the plasma channel reduces the normalized bunch density and the accelerating
field. These problems will be analyzed in detail and partially solved in the next
chapters.
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Chapter 2

Beam dynamics inside plasma

The particularity of the BLAST scheme requires peculiar applications of the equations
that are conventionally used for plasma beam dynamics.
As we already pointed out in previous chapter and in appendices, the fields generated
by a low density driver are quite different than the fields generated by an high density
driver. Most of the interesting aspects for the design of a working point (accelerating
gradient, maximum attainable energy, forseen energy spread) will be rigorously
modelized. The discussion will point out the main advantage of the BLAST scheme:
for any bunch parameters, it is possible to find an optimal injection distance for the
energy spread compensation. This is quite different from the acceleration using an
high density driver that doesn’t depend from the bunch separation [38].
The driver transverse dynamics will be also discussed in this chapter. The lack of a
complete blow-out of the electrons in the case of low brightness drivers means that
the ion column model [39] (developed fully in appendix B) can not be used for the
description of the transverse dynamics of driver.
After the definition of the requirements for driving bunch, we will discuss the witness
dynamics for the preservation of high brightness. Emittance growth for non linearity
of the fields and betatron dephasing will be introduced, pointing out the requirements
of the witness for an optimal acceleration. The matching conditions for an high
density witness injected on the crest of a linear wakefield will be analyzed in order
to evidence how an high density witness can be focused in the crest of a linear field
and why the matching conditions in that region depend weakly from the driver
parameters.
All the equations derived will be used to define a procedure for the design of the
working point. This procedure will be used tooptimize the working point that will
be simulated in chapter 4.



2.1 Superposition principle for BLAST scheme

During the analysis of the fields in BLAST scheme we will often assume that the
superposition principle can be applied in this context. We will now justify this
assumption.
The superposition principle can be applied if the effect generated by the driver and
witness together is the sum of the effects of the single bunches. The plasma cold fluid
model is developed in Appendix A. In this model the background ions are considered
motionless. The electromagnetic fields are derived from the Maxwell equations

∇× ~E = −∂B
∂t

;

∇× ~B = µ0 ~J + 1
c2
∂ ~E

∂t
;

∇· ~E = − ρ
ε0

;

∇· ~B = 0;

(2.1)

and generated by the motion of the free electrons that are treated as a fluid. The
motion of the particles is described by the equation of motion of the electrons under
the action of the Lorentz force

me

[
∂~v

∂t
+ ~v(∇·~v)

]
= −e ~E − e~v × ~B; (2.2)

and the continuity equation

∂n

∂t
+∇·(n ~v) = 0. (2.3)

The superposition principle is always verified for electromagnetic phenomena, since
the Maxwell equations are linear. For the fluid equations it is convenient to separate
the contribution of the single bunches. Said n1 and ~v1 the perturbation generated by
the driver only and n2 and ~v2 the perturbation generated by the second bunch only,
we have to prove that the combined action of the bunches lead to a perturbation
n = n0 + n1 + n2 and ~v = ~v1 + ~v2 (the plasma is originally at rest so ~v0 = 0).
We assume that the driver generates a linear field, so the second order perturbations
are negligible. The equation of motion for the combined effect is

me

[
∂ ~v1
∂t

+ ∂ ~v2
∂t

+ (~v1 + ~v2)(∇·(~v1 + ~v2))
]

= −e( ~E1 + ~E2)− e(~v1 + ~v2)× ( ~B1 + ~B2);
(2.4)

while the continuity equation for the combined effect is

∂n1
∂t

+ ∂n2
∂t

+∇·[(n0 + n1 + n2)(~v1 + ~v2)] = 0. (2.5)

If the perturbation generated by the witness is smaller than the perturbation
generated by the driver, the wakefield for the witness can be described by linear
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equations and the superposition principle is verified. If the perturbation of the
witness is much higher than the perturbation generated by driver (as occurs in the
witness region), Eq.(2.4) can be written as

me

[
∂ ~v1
∂t

+ ∂ ~v2
∂t

+ ~v2(∇· ~v2)
]

= −e( ~E1 + ~E2)− e~v2 × ~B2; (2.6)

while Eq.(2.5) can be written as

∂n1
∂t

+ ∂n2
∂t

+∇·[n0(~v1 + ~v2)] +∇·[n2 ~v2)] = 0. (2.7)

The effects of the single bunches are described by the equations

me

(
∂ ~v1
∂t

)
= −e ~E1;

me

[
∂ ~v2
∂t

+ ~v2(∇· ~v2)
]

= −e ~E2 − e~v2 × ~B2;

∂n1
∂t

+∇·(n0 ~v1) = 0;

∂n2
∂t

+∇·[(n0 + n2)~v2)] = 0;

(2.8)

that verify Eq.(2.6) and Eq.(2.7). So the superposition principle can be applied for
the witness region.
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2.2 Accelerating gradient and Transformer Ratio
High accelerating gradients that can be reached using a plasma accelerator are
the main reason that makes this scheme so attractive for the future accelerating
devices. The theoretical limit for the plasma wakefields intensity is the plasma
breakdown limit [32]. Constraints on the beam dynamics both at the injection
or inside plasma itself introduce further limitations on the effective accelerating
gradient. The accelerating gradient on axis (where the accelerating field is maximum)
from Eq.(1.8) far behind the driver can be written as [31]

Ez(0, ξ) = R(0)
√

2πc
2me

e
(α)(k2

pσz)e−k
2
pσ

2
z/2 cos kpξ. (2.9)

So, the plasma accelerating field in BLAST scheme is fully sinusoidal and can be
written as

E(ξ) = E0 cos kpξ. (2.10)

where the maximum accelerating gradient E0 can be evaluated from Eq.(2.9). Since it
depends on driver bunch shape, maximum plasma accelerating field is not preserved
during the acceleration as in RF case, but generally is a function of the position of
the driver inside the plasma channel s. Its analytical evolution is not trivial because
it requires a self-consistent model of the driver evolution inside plasma. For this
reason it is preferred to refer on simulations in order to have a reliable estimation.
From Eq.(2.9) it is possible to extract some interesting features about the ideal
driving bunch in order to maximize the accelerating field.
Notice that in order to keep the validity of Eq.(2.9) we must keep α ≤ 1.
Assuming a bunch with a constant shape (σr,z =const.), we have that the accelerating
field increases linearly with the normalized bunch density. Since we imposed the
constraint α ≤ 1, the maximum field in linear regime corresponds to α = 1.
Fixing α, we obtain that the accelerating field maximizes for kpσz = 1 and Ez ∝ kpσr,
leading to the consequence that Ez ∝ Q.
Fixing α and keeping constant kpσr and kpσz the accelerating field Ez ∝ kp. So,
in order to maximize the accelerating gradient, the plasma and driver parameters
should be arranged so that:

• kpσz = 1;

• α ≈ 1;

• High kp;

• High Q.

The third and fourth conditions are limited by the possibilities of the injector. In
fact, assuming the first condition we have that the bunch peak current required
at the injection is I = ckpQ, so the maximum accelerating gradient is limited by
the peak current that can be obtained with the photo-injector. Limitations on the
bunch charge are related to the plasma transverse beam dynamics that is discussed
deeply in next sections.
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The most significant information we derived from the optimization of the accelerating
field is the formula for the injection length kpσz = 1. Apparently, this is inconsistent
with the evaluation of an optimal injection length for the plasma acceleration
kpσz =

√
2 [40]. This inconsistency is only apparent because the condition kpσz =

√
2

is a consequence of the maximization of the energy extraction from the driver. The
figure of merit that indicates the amount of energy extraction from a driver is the
transformer ratio (RT) [35] [41]. In order to derive the RT for the BLAST scheme,
we will assume a beam driven scheme composed by an electron driver followed
by an electron witness with the same energy. The driver will excite the plasma
and experience a decelerating field that will deplete its energy, while the witness is
accelerated.
After a propagation inside plasma that can be roughly evaluated by

∆s = γmec
2

e|E−z,max|
; (2.11)

where E−z,max is the maximum decelerating field acting on the driver, some particles
of the driver itself will become weakly relativistic, the approximation of considering
β ≈ 1 will be no more valid and the longitudinal distribution of the beam will
change. This phenomenon is known as beam depletion (slightly different from the
phenomenon of head erosion that is related to the transverse dynamics).
The beam depletion makes the beam unusable for plasma acceleration so ∆s can be
considered a limit on the length of the accelerator itself. During the propagation
the witness will gain an energy that is function of the injection distance, as that
can be easily evaluated by simple considerations over the field described in previous
sections. The maximum acceleration that could be theoretically achieved can be
calculated as

∆γ =
e∆s|E+

z,max|
mec2 ; (2.12)

where E+
z,max is the maximum accelerating field. The final energy of the witness can

be evaluated inserting Eq.(2.11) in Eq.(2.12)

γf = γi(1 +RT ); (2.13)

where we defined the transformer ratio RT [42] as

RT =
|E+

z,max|
|E−z,max|

. (2.14)

With the hypotesis of having a symmetric bunch that generates the maximum field
behind the driver, it is possible to demonstrate that RT ≤ 2 [41].
The decelerating field in the center of the bunch is less equal than the maximum
decelerating field

Ez(0) ≤ |E−z,max|. (2.15)

The wakefield generated behind a symmetric bunch with a separable density distri-
bution (where ξ � −σz) can be expressed as
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Ez(ξ) = R(0) e
ε0

∫ +∞

−∞
nb‖(ξ′) cos(kp(ξ − ξ′)) dξ′ =

= R(0) e
ε0

cos(kpξ)
∫ +∞

−∞
nb‖(ξ′) cos(kpξ′) dξ′+

+R(0) e
ε0

sin(kpξ)
∫ +∞

−∞
nb‖(ξ′) sin(kpξ′) dξ′.

(2.16)

For symmetric bunches, the second term of the right side of Eq.(2.16) disappears.
The maximum accelerating field occurs for cos kpξ = −1. The first term is the
integral in the space of an even function. So we can write

|E+
z,max| = 2R(0) e

ε0

∫ +∞

−∞
nb‖(ξ′) cos(kpξ′) dξ′. (2.17)

We can also write the field in the center of the bunch as

Ez(0) = R(0) e
ε0

∫ +∞

−∞
nb‖(ξ′) cos(kpξ′) dξ′. (2.18)

Inserting Eq.(2.18) in Eq.(2.17) we obtain

|E+
z,max| = 2Ez(0) ≤ 2|E−z,max|; (2.19)

that considering the inequality Eq.(2.15) becomes

RT =
|E+

z,max|
|E−z,max|

≤ 2. (2.20)

Inequality Eq.(2.20) doesn’t consider the effect of a partial superposition between
bunches, namely if the condition ξ � −σz is no more valid. In these cases it is
possible to have transformer ratio values that exceed 2. A direct evaluation of the
RT using the fields derivated in appendix A and Eq.(2.14) give the result RT ≈ 1.8
assuming kpσz = 1, a value that differ slightly from the maximum theoretical value.
Due to all the considerations performed in this section we choosed for the BLAST
scheme an injection length σz = 1/kp.
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2.3 Energy spread scaling
In the evaluation of the energy spread growth inside plasma the most important
feature of the BLAST scheme is that the accelerating field depends both on longi-
tudinal and transverse dimension. The coordinate system is chosen so that ξ = 0
corresponds to the center of witness, ξ′ = 0 corresponds to the peak of the sinusoidal
accelerating field and φ0 = kp(ξ′ − ξ) is the injection phase of the witness bunch
respect to the accelerating field. In this notation the head of the bunch is located at
ξ > 0 and the tail is located at ξ < 0. We assume to have a driving bunch with a
bi-gaussian distribution of the form n(r, ξ′′) = n⊥(r)n‖(ξ′′) where

nb‖ = nbe
−ξ′′2/2σ2

z ;

nb⊥ = e−r
2/2σ2

r ;
(2.21)

In the linear regime the accelerating field can be expressed as

Ez(r, ξ′) = E0f(r) cos(kpξ′); (2.22)

where f(r) = R(r)/R(0). R(r) and R(0) can be written as

R(r) = R(0)−
k2
p

4 r
2 +

k2
p

32σ2
r

r4 +O(r6); (2.23)

and

R(0) =
(
k2
pσ

2
r

2

)(
ek

2
pσ

2
r/2
)

Γ
(

0,
k2
pσ

2
r

2

)
. (2.24)

We define the relative energy difference of a particle of the bunch as

δ = γ − γ0
γ0

(2.25)

where γ is the energy of the particle and γ0 is the energy of the reference particle in
the center of the witness bunch (r, ξ) = (0, 0). The relative energy difference of the
ith particle after the acceleration can be evaluated as [43]

δf = δi +
(

1− γ0
γ

)[
f(r)cos(φ0 + kpξi)

cosφ0
− 1

]
; (2.26)

where δi is the relative energy difference before the acceleration. Assuming negligible
energy spread at the injection, we can evaluate

δf =
(

1− γ0
γ

)[
f(ri)

cos(φ0 + kpξi)
cosφ0

− 1
]
. (2.27)

From Eq.(2.26) results that the longitudinal and transverse contributions to energy
spread can be separated. From now on we will refer to the expression f(r) cos(φ0+kpξ)

cosφ0
as the field curvature. Its effect on the energy spread can be decomposed in its
longitudinal and transverse components as follows. The field curvature can be
approximated by the corresponding Taylor series to the second order
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f(r)cos(φ0 + kpξ)
cosφ0

≈ cos(φ0 + kpξ)
cosφ0

f(r)
∣∣∣∣
(0,0)
− sin(φ0 + kpξ)

cosφ0
f(r)

∣∣∣∣
(0,0)

kpξ+

+cos(φ0 + kpξ)
cosφ0

f ′(r)
∣∣∣∣
(0,0)

r − 1
2

cos(φ0 + kpξ)
cosφ0

f(r)
∣∣∣∣
(0,0)

k2
pξ

2+

+1
2

cos(φ0 + kpξ)
cosφ0

f ′′(r)
∣∣∣∣
(0,0)

r2 − sin(φ0 + kpξ)
cosφ0

f ′(r)
∣∣∣∣
(0,0)

rkpξ =

=1− tanφ0kpξ + f ′(0)r − 1
2k

2
pξ

2 + 1
2f
′′(0)r2 − tanφ0f

′(0)rkpξ.
(2.28)

From the definition of R(r) in Eq.(2.23) we can evaluate that f ′(0) = 0 and
f ′′(0) = −k2

p/(2R(0)). The energy difference can be written as

δf ≈
(

1− γ0
γ

)[
− tanφ0kpξ −

1
2k

2
pξ

2 −
k2
p

4R(0)r
2
]
. (2.29)

The expected energy spread can be evaluated as

σE =
√
〈δ2
f 〉; (2.30)

giving

σE =
(

1− γ0
γ

)√
tan2 φ0k2

pσ
2
z,w +

3k4
pσ

4
z,w

4 +
3k4

pσ
4
r,w

16R(0)2 +
k4
pσ

2
r,wσ

2
z,w

4R(0) ; (2.31)

where σr,w and σz,w are the transverse and longitudinal size of the witness. The
energy spread contribution from the transverse dependency of the field scales with
kpσ

2
r,w/R(0), that is plotted in Fig. 2.1 as a function of kpσr,w and σr,D (driver’s

transverse size)

Figure 2.1. k2
pσ

2
r,w/R(0) as a function of kpσr,w and kpσr,D.
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Typical values for k2
pσ

2
z are ≈ 5 · 10−3, so the transverse contribution is usually

negligible for kpσr,w < 0.05 for any value of σr,D. However, the condition σr,w � σr,D
is reccomended for the energy spread preservation. The expected energy spread to
the second order of the field curvature under this assumption results to be

σE =
(

1− γ0
γ

)√
tan2 φ0k2

pσ
2
z,w +

3k4
pσ

4
z,w

4 . (2.32)

Assuming an uncorrelated energy spread at the injection we can write the outcoming
energy spread as

σE,f =

√√√√σ2
E,i +

(
1− γ0

γ

)2
[
tan2 φ0k2

pσ
2
z,w +

3k4
pσ

4
z,w

4

]
. (2.33)

With a negligible beam loading effect, the minimum energy spread is obtained with
an injection on crest (tanφ=0). A plasma booster for energy doubling can achieve
σE < 10−3 assuming a witness length such that kpσz < 0.05. Unfortunately, the
conditions kpσr,z < 0.05 and a charge of few pC produces a very high density and
the beam loading contribution cannot be negligible.
The concept of BLAST scheme takes profit of the beam loading effect:

• in PWFA in linear regime the highest accelerating field region is sinusoidal;

• in order to have negligible energy spread, we must have an accelerated beam
with longitudinal and transverse size higly smaller than the plasma wavelength;

• the beam loading effect generated by this kind of witness is very high for
amount of witness charge > 1pC.

As an example we consider the case of a plasma with density n0 = 2 ·1016. Negligible
energy spreads accumulated by a beam accelerated inside plasma requires σz,r ≈ 2µm.
Even for a charge Q ≈ 300fC, α ≈ 1 and the beam loading effect is not negligible.
For non negligible beam loading effect, the treatment of energy spread changes and
the conditions over the witness length become more relaxed. An analysis for the
beam loading and the strategy for the energy spread compensation will be shown in
next section.
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2.4 Beam loading

Beam loading [30, 44] is the usual way to refer to the wakefields generated by a
witness and is very useful in order to preserve the beam quality. As we already
pointed out, it has been experimentally demonstrated [28] that a properly shaped
witness charge distribution can help to reduce the energy spread gained by the
witness itself, due to the beam loading effect.
In the first part of the section we will investigate what is the optimized injection
distance in order to have the minimum energy spread considering beam loading
effect in BLAST scheme.
In the second part we will evaluate what is the effect of the beam loading in terms
of reduction of transformer ratio.

2.4.1 Energy spread compensation

The behaviour of beam loading in plasma linear theory 1-D has been deeply investi-
gated in the work of Katsouleas et al. [30]. The work of Katsouleas emphasizes
the influence of different kind of shapes of the witness for the energy spread. The
work shows that the total compensation of energy spread can be obtained for a
triangular or trapezoidal shape of the beam. For a gaussian shape of the beam, a
proper injection can help to reduce the energy spread (see Fig. 2.3), but the total
compensantion is not possible.
For the BLAST scheme we will assume the approximation that the fields in corre-
spondence of the witness follow a total linear-like behaviour (basing on the results
of Barov et al. [37]) and the superposition principle demonstrated in section 2.1.
Assuming the presence of a beam loading effect, the energy deviation Eq.(2.25)
becomes

δf =
(

1− γ0
γ

)[
f(ri)

cos(φ0 + kpξi) +R(ri)Z ′(ξ)/E0
cosφ0 +R(0)Z ′(0)/E0

− 1
]

; (2.34)

where E0 is the maximum field generated by driver and the components of the beam
loading field R(ri) and Z(ξi) are evaluated using witness parameters. So, in order
to perform an optimization of beam loading, we must know the shape of the witness
bunch. We will now analyze the case of a trapezoidal witness (the longitudinal shape
nb‖(ξ) = aξ+ b for 0 < ξ < L and 0 otherwise) and a bi-gaussian witness of the form
Eq.(2.21).
Assuming trapezoidal witness shape, the field produced can be written as

R(r)Z ′(ξ) = R(r)
[
a

k2
p

− a

k2
p

cos kpξ + b

kp
sin kpξ

]
=

= f(r)R(0)
(
a

k2
p

− a

k2
p

cos kpξ + b

kp
sin kpξ

)
;

(2.35)

where f(r) = R(r)/R(0). We can write Eq.(2.35) as
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Figure 2.2. Beam loading compensation of energy spread for a triangular (a), half-
gaussian (b), trapezoidal (c) and bi-gaussian (d) shaped beam. As we can see the total
compensation is obtained just for triangular and trapezoidal beams from reference [30].

δf =
(

1− γ0
γ

)[
f(ri)

cosφ0 cos kpξi − sinφ0 sin kpξi − cosφ0
cosφ0

+

+
fw(ri)R(0)/E0

(
a

k2
p

− a

k2
p

cos kpξi + b

kp
sin kpξi

)
cosφ0

]
.

(2.36)

We used the different notations f(r) and fw(r) to distinguish the functions evaluated
using driver or witness parameters. In order to have the total compensation of
energy spread the conditions
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f(r) cosφ0 = fw(r)R(0)
E0

a

k2
p

;

f(r) sinφ0 = fw(r)R(0)
E0

b

kp
;

(2.37)

that can be verified only if the transverse shape of the beam is equal and σr,D = σr,w.
Despite this solution guarantees the total energy spread compensation, it is very
difficult to obtain such a configuration in a real accelerator [45]. The solution
adopted is to have a very small transverse witness spot size. As we already have seen,
this solution guarantees a negligible effect on energy spread of the fields generated by
driver. From Eq.(2.23) we can see that the deviation from R(0) is proportional to kpr,
so the effect is small for kpσr � 1. Assuming a negligible transverse contribution,
the condition Eq.(2.37) becomes

cosφ0 = R(0)
E0

a

k2
p

;

sinφ0 = R(0)
E0

b

kp
.

(2.38)

Namely assuming the condition

R(0)2

E2
0k

2
p

(
a2

k2
p

+ b2
)

= 1; (2.39)

it is always possible to find a proper injection distance for the total energy spread
compensation. Nevertheless, this condition requires a fine trapezoidal shaping of the
witness and a great stability of the driver that is very difficult to obtain in a real
accelerator. For the scheme we prefer to adopt a different approach. The relative
energy difference assuming negligible transverse contribution (f(r) = 1) is

cos(φ0 + kpξ) +R(0)Z ′(ξ)/E0

cosφ0 +R(0)Z ′(0)/E0
− 1 ≈ − sin(φ0 + kpξ)− kpR(0)Z(ξ)/E0

cosφ0 +R(0)Z ′(0)/E0

∣∣∣∣
ξ=0

kpξ+

+1
2

cos(φ0 + kpξ) +R(0)Z ′(ξ)/E0

cosφ0 +R(0)Z ′(0)/E0

∣∣∣∣
ξ=0

k2
pξ

2.

(2.40)

In their work Chiou and Katsouleas [46] identified the condition for beam loading
compensation in 1-D that the field generated by beam loading in the region of the
witness has an opposite slope respect to the field generated in that region by driver.
In our treatment, that condition corresponds to impose that

∂Ez
∂ξ

= 0; (2.41)

namely that the first term of the right side of Eq.(2.40) is null. This corresponds to
the following condition on the injection phase
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sinφ0 = −kp
Z(0)R(0)

E0
. (2.42)

We notice that for any driver and witness parameter exists an optimal injection
condition for the minimization of energy spread if

kpZ(0)R(0) < −E0; (2.43)

that corresponds to a large range of parameters both for driver and for witness if
QD � Qw. Applying the condition Eq.(2.42) we obtain that the energy deviation is

δf ≈ δi +
(

1− γ0
γ

)
k2
pξ

2
i

2 ; (2.44)

that corresponds to an energy spread

σE,f =

√
σ2
E,i +

(
1− γ0

γ

)2 3
4k

4
pσ

4
z . (2.45)

In the limit of negligible transverse contribution described in previous section,
Eq.(2.45) should represent a good evaluation of the minimum of energy spread that
we can get using the BLAST scheme.

2.4.2 Effective energy gain

The presence of the beam loading and its use to lower the energy spread has also
the consequence of reducing the effective transformer ratio. The accelerating field
experienced by a witness that follows the injection restrictions described in previous
section is

E+
z,BL = E+

z,max cosφ0 + Z ′(0)R(0). (2.46)

Since the beam loading field is decelerating for witness and the injection is performed
near crest, we are allowed to write

|E+
z,BL| = |E

+
z,max| cosφ0 − |Z ′(0)|R(0). (2.47)

Dividing Eq.(2.47) for the maximum decelerating gradient of driver and we obtain

|E+
z,BL|

|E−z,max|
= RT cosφ0 −

|Z ′(0)|R(0)
|E−z,max|

; (2.48)

namely

R′T = RT

(√
1− k2

p

Z(0)2R(0)2

E2
0

− 1
2
Z ′(0)R(0)

E0

)
. (2.49)

In the limit of matched driver and witness propagation (constant spot size) Eq.(2.49)
can be considered a valid approximation for effective energy transfer. The conditions
for stable propagation will be discussed in next sections.
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2.5 Driver matching

The matching conditions for driver are necessary to prevent overfocusing at the
injection (that could lead to strong increase of driver density and transition to
blow-out regime) and to prevent strong emittance growth that could lead to head
erosion. The head erosion effect is generated by the dependance of the focusing
field from the longitudinal coordinate ξ. Different focusing fields acting on different
sections of the bunch lead to different envelope evolution and to the expansion of
the head where the focusing field is lower. Since the model developed is valid only
for separable bunch distributions, the head erosion effect cannot be described. A
self-consistent model of the driver evolution would require a reformulation of the
fields for bunch distribution that are not separable. The problem will be overcome
assuming the approximation that all the driver’s charge is contained in the region
ξ ≈ 0. We start from the evaluation of 〈xFx〉ext for a low density driver. Assuming
a gaussian transverse distribution of the driver, we can expand it in Taylor series as

e−r
2/2σ2

r =
+∞∑
k=0

(−1)kr2k

2kk!σ2k
r

. (2.50)

In electrostatic approximation we can apply the following equation

R′(r) =
k2
p

r

∫ r

0
nb,⊥(r′)r′dr′. (2.51)

(demonstrated in Appendix A) in order to obtain for the transverse wake

Er − cBθ =
k2
p

r
Z(ξ)

+∞∑
k=0

∫ r

0

(−1)kr′2k+1

2kk!σ2k
r

dr′ = k2
pZ(ξ)

+∞∑
k=0

(−1)kr2k+1

2k+1(k + 1)!σ2k
r

. (2.52)

The focusing term can be evaluated as

e〈x(Er − cBθ) cos θ〉 = 1
2πσ2

r

∫ 2π

0
dθ cos2 θ

∫ +∞

0
dre−r

2/2σ2
rr2(Er − cBθ); (2.53)

and since ∫ +∞

0
e−r

2/2σ2
rr3+2kdr = 2k+1σ2k+4

r (k + 1)!; (2.54)

we evaluate

e〈x(Ex − cBy)〉 =
k2
pσ

2
r

2 Z(ξ)
+∞∑
k=0

(−1)k. (2.55)

The series is not convergent and it’s a Grandi’s series. The Cesáro summation of
the Grandi’s series gives the result 1

2 leading to the evaluation of

〈xFx〉ext =
ek2
p

4 Z(ξ)σ2
x. (2.56)
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Inserting Eq.(2.56) in the envelope equation

σ′′x + p′z
pz
σ′x −

1
σx

〈xFx〉
cβzpz

=
ε2n,x
γ2σ3

x

; (2.57)

and assuming negligible space charge we obtain

σ′′x + p′

p
σ′x + αZ(ξ)

4γ k2
pσx =

ε2n,rms
γ2σ3

x

; (2.58)

where we defined

Z(ξ) = eZ(ξ)
αmec2 ; (2.59)

as the longitudinal normalized plasma response function.
We notice that this expression depends on α, that for a bunch propagating inside
plasma is not constant. Multiplying and dividing the third term of Eq.(2.58) for σx
and taking into account the definition Λ = αk2

pσ
2
x we obtain

σ′′x + p′

p
σ′x + ΛZ(ξ)

4γσx
=
ε2n,rms
γ2σ3

x

; (2.60)

where Λ is the normalized bunch length that is constant in paraxial approximation
for ultra-relativistic bunches and does not depend on the transverse spot size. Now
we adopt a trial function for the stationary solution of the form

σx = σ0γ
−1/2; (2.61)

with γ = γ0 + γ′z. The envelope equation becomes

1
4γ
′2 + ΛZ(ξ)

4 σ−0 2γ2 = ε2nσ
−4
0 γ2. (2.62)

A set of beam parameters that are compatible with our case study is γ ≈ 200,
εn ≈ 10 mm mrad and σr ≈ 10µ m. In this case, the first term of Eq.(2.51) results
negligible respect to the emittance term for an accelerating gradient < 10TV/m. So
we get a matching condition of the form

σx =
√

4
γΛZ εn; (2.63)

where Z = Z(0) since we assumed that all driver charge is located in the bunch
center.

37



2.6 Witness transverse dynamics

A treatment of the transverse witness dynamics will be now performed in order to
evaluate and prevent the causes of emittance growth. This treatment makes use of
the generalized Courant-Snyder theory for the beam dynamics, which is summarized
in Appendix C. The main causes for emittance growth are:

• high energy spread [12];

• phase space filamentation due to non linear focusing forces [47];

• beam mismatching [48].

The first cause will be neglected because we assume to design our working points
in order to mantain a low energy spread during all the acceleration. We will now
furnish a brief evaluation of the second and third cause for emittance growth in the
case of a plasma accelerating channel.

2.6.1 Phase space filamentation

The nonlinearities of the applied forces generate rms emittance growth due to
filamentation of the trace space as showed in Fig. 4.5.

Figure 2.3. Progressive distortion of trace-space ellipse during beam propagation through a
periodic channel of thin lenses with spherical aberrations [47]. The numbers associated
with each figure indicate the lens periods that have been traversed.
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This particular case is referred to the propagation of a beam through a periodic
channel consisting of axisymmetric thin lenses with spherical aberration. The change
of the slope for each particle crossing of the lens is given by

∆r′ = − r
f
− Csr3; (2.64)

where f is the focal length of the lens and Cs is called spherical aberration coefficient.
The field generated by a driver corresponds to a continuous focusing channel, but
for our consideration it will be treated in thin lens approximation. The spherical
aberration term Cs will be now evaluated for a linear driver showing how it can be
minimized, avoiding emittance growth.
The action of the driver on witness can be compared to the action of a quadrupole
with a force that is focusing in both planes acting on the witness. This force has
both linear and non linear components, since R′(r) of Eq.(1.7) can be written as

R′(r) =
k2
p

2 r −
k2
p

8σ2
r

r3 +O(r5). (2.65)

Using Eq.(2.65) we can evaluate the spherical aberration coefficient.
We assume that the longitudinal dimension of the witness is negligible, that it is
injected at a distance ξ from the driver center and that the bunchs’ shape doesn’t
vary during the propagation. The radial equation of motion for an electron inside
an electromagnetic field [47] is

d

dt
(γmeṙ)− γmerθ̇

2 = −e(Er + rθ̇Bz − żBθ). (2.66)

Assuming cylindrical symmetry and negligible Bθ Eq.(2.66) becomes

d

dt
(γmeṙ) = −eEr; (2.67)

that can be written as

d

dz
(γr′) = − eEr

mec2 . (2.68)

A direct integration of Eq.(2.69) in thin lens approximation gives the result

∆r′ = − eEr
γmec2L. (2.69)

Inserting now the field generated by a bi gaussian driver over the witness Er =
Z(ξ)R′(r) in Eq.(2.69) we obtain

∆r′ = −
ek2
pZ(ξ)L

2γmec2 r +
ek2
pZ(ξ)L

8σ2
r,Dγmec2 r

3; (2.70)

which gives as a result a spherical aberration coefficient

Cs = −
ek2
pZ(ξ)L

8σ2
r,Dγmec2 . (2.71)
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The ratio between the second and the first term of Eq.(2.70) describes the importance
of the spherical aberration term respect to the linear focusing. This term can be
evaluated as r2/4σ2

r,D. As a consequence the spherical aberration term becomes
negligible respect the focusing term when r � σr,D. So the witness phase space
filamentation is negligible if σr,w � σr,D, the same result previously obtained in
order to have a negligible transverse contribution to witness energy spread. The
peculiarity of BLAST scheme derives from injection phase. Indeed, the witness
is injected on the crest of the accelerating field, where Z(ξ) = 0. The effects of
the focusing field generated by the driver in that region is negligible and as well is
negligible the aberration coefficient. The effect of the self field will be evaluated in
the next section.

2.6.2 Beam mismatching

Emittance growth due to beam mismatching respect to the focusing is a consequence
of the correlated slice envelope oscillations [48] as shown in Fig. 2.6. Different
slices of a beam injected in a focusing channel experience different phase space
rotations. The emittance evaluated in the entire beam (projected emittance), that
is a result of the overlapping of the phase spaces of the single beam slices, can grow
as a consequence of this correlated beam envelope evolution.

Figure 2.4. Emittance growth by betatron decoherence. The dependence of betatron phase
by longitudinal dimension can lead to emittance growth as demonstrated in reference
[48].

From the generalized CS theory, a beam is matched if at the injection of a focusing
channel its β-function is a stationary solution of the envelope equation for the
transport lattice [47]

1
2ββ

′′ − 1
4β
′2 + β2K(s) = 1. (2.72)

In particular, assuming βm the stationary solution of Eq.(2.72) and α and β are the
Courant-Snyder functions at the injection of the plasma channel, we have that the
potential maximum outcoming normalized emittance can be written as
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εn,fin = εn,init
2

(
1 + α2

β∗
+ β∗

)
; (2.73)

where εn,init is the beam normalized emittance at the injection and β∗ = β/βm. The
necessity of a matching condition for the witness arises from this feature.
Another feature that can introduce emittance growth is a focusing force correlated
in the longitudinal dimension [49]. Assume a focusing force that is linear in r and
correlated in longitudinal dimension acting on a bunch through a channel of length
L in thin lens approximation. From Eq.(2.69) we can write the transverse kick as

∆r′ = −f(ξ) k2

γmec2 rL; (2.74)

where k2 is the focusing strength of the plasma and f(ξ) is a function that describes
the longitudinal dependance of the focusing force. We assume that f(ξ) is normalized
to the average value of the focusing force. In cartesian coordinates we can write

∆x′ = −f(ξ) k2

γmec2xL. (2.75)

The slope x′ can be written as

x′ = x′0 + ∆x′. (2.76)

Assuming x′0 = 0 (beam with no emittance at the injection) we can write the
normalized emittance at the exit of the focusing channel as

εn,x =

√
〈x2〉〈f2(ξ)k4x2L

2

c2 〉 − 〈x
2f(ξ)k2L

c
〉2; (2.77)

namely

εn,x = k2σ2
x

L

c

√
〈f2(ξ)〉 − 〈f(ξ)〉2; (2.78)

that, since f(ξ) is normalized to the average focusing force acting on the bunch
(〈f(ξ)〉 = 0) becomes

εn,x = k2σ2
x

L

c

√
〈f2(ξ)〉; (2.79)

The meaning of Eq.(2.79) is that a dependency on the longitudinal position of the
focusing force introduces emittance growth. In order to preserve emittance it is
necessary to have the condition

∂(Er − cBθ)
∂ξ

= 0. (2.80)

In the next section we will see that this condition is verified for the BLAST scheme.
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2.7 Witness matching

In this section we will invetigate the matching conditions of a witness injected in the
wake of a low density driver. We start from the assumption that the beam loading is
negligible, showing that, in this case, a witness injected on crest can not be matched
because in the crest of a linear plasma wakefield there is no focusing field.
Further we will introduce the condition of high beam loading and we will point out
that the matching near crest region doesn’t depend on driver. For all considerations
we will perform in this section, we will assume to have an ultra-short and narrow
witness (kpσr,z � 1) the keep energy spread low. We will also assume that the
transverse spot size of the witness is very smaller than the driver.
For the evaluation of the fields in the case of negligible beam loading, we will start
from the equation for local plasma density generated by a driver in linear regime

n1(ξ, r) = −
ε0k

2
p

e
Z(ξ)nb⊥. (2.81)

If kpσz � 1 we can assume that the beam will experience the same focusing field
(Z(ξ) is constant for the entire witness length). Writing nb⊥ as its Taylor expansion,
Eq.(2.81) becomes

n1(ξ, r) = −
ε0k

2
p

e
Z(ξ)

(
1− 1

2σ2
r,D

r2 +O(r4);
)
. (2.82)

If σr,w � σr,D we can consider only the linear term of Eq.(2.82), namely the local
deviation of the plasma density becomes a function of the longitudinal position only

n1(ξ) = −
ε0k

2
p

e
Z(ξ). (2.83)

If the effect of the beam loading is negligible, we can treat this region as a uniformly
charged cylinder with a positive charge np = −n1. From this considerations it is
possible to evaluate Er as

Er =
k2
pZ(ξ)

2 r; (2.84)

and inserting inside the envelope equation we get

σ′′x + γ′

γ
σ′x + αDZ(ξ)

k2
p

2γ σx = ε2n
γ2σ3

x

. (2.85)

Assuming a trial function of the form σx = σ0γ
−1/4 end a constant accelerating

gradient γ = γ0 + γ′z, we get

1
16γ

′2σ0 + αDZ(ξ)
k2
p

2 σ0γ = ε2n
σ3

0
γ. (2.86)

The first term can be neglected for accelerating gradients lower than several TV/m,
so we get stationary solution
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σx = 4

√
2

αDZ(ξ)γ

√
εn
kp
. (2.87)

Eq.(2.87) admits a real finite solution for Z(ξ) > 0 (focusing region). The region of
crest corresponds to Z(ξ) ≈ 0 and to very high values of matched spot sizes that is
useless fo acceleration.
The field generated by narrow and ultra-short bunches in high density regimes has
been object of several studies [50, 37, 51]. In BLAST scheme the witness is injected
near crest of accelerating wakefield of a low density driver at the optimized bunch
separation that guarantees the beam loading compensation of energy spread. So
in order to describe the transverse field acting on witness we can introduce the
constraint that ∂Ez

∂ξ = 0 from Eq.(2.41). The consequence of this constraint that we
will now demonstrate that assuming a very high witness density α� 1, the witness
can match in its own wake. We will also demonstrate that in order to evaluate
the matching we can also apply the ion column model assuming a plasma density
n = n0/2. The corresponding matching condition results to be

σx = 4

√
1
γ

√
2εn
kp
. (2.88)

The ion column model can be applied if in the witness region the plasma current
density ~J = 0 and that the local plasma density ρ is constant. The condition Jz = 0
has been proved rigorously by Ref. [34] for low density and low charge beams. In
order to prove Jr = 0, we start from the r component of the Ampere’s law

∂Bθ
∂ξ

= −µ0Jr + 1
c

∂Er
∂ξ

; (2.89)

and from the θ component of Faraday law

∂Er
∂ξ
− ∂Ez

∂r
= c

∂Bθ
∂ξ

. (2.90)

Combining Eq.(2.89) with Eq.(2.90) we obtain for the accelerating field

∂Ez
∂r

= µ0cJr. (2.91)

The first derivative respect to ξ of Eq.(2.91) is

∂

∂r

∂Ez
∂ξ

= µ0c
∂Jr
∂ξ

= 0; (2.92)

since we assumed the beam loading compensation Eq.(2.41). After the passage of the
witness there is total blow out since we assumed ultra-high witness density. Inside
the blow-out region Jr = 0 because the ions are motionless. For Eq.(2.92) we have
that Jr doesn’t vary from the blow-out region to the witness region, so in witness
region Jr = 0 and therefore ~J = 0.
In order to prove that ρ is constant in witness region, we have to prove that ∂ρ

∂r = 0
and ∂ρ

∂ξ = 0. Maxwell equations can be combined in order to obtain
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1
r

∂

∂r
[r (Er − cBθ)] = ρ

ε0
− µ0cJz. (2.93)

Assuming both Jz = 0 and linear behaviour in r of the focusing fields [37] for small
values of r, ∂ρ∂r = 0 is verified since the left side of Eq.(2.93) results to be constant
respect to r.
In order to prove that ∂ρ

∂ξ = 0, we apply the Panofsky-Wenzel theorem to Eq.(2.91)
in order to obtain

∂(Er − cBθ)
∂ξ

= µ0cJr. (2.94)

Now deriving Eq.(2.93) respect to ξ we obtain

µ0c
1
r

∂

∂r
(rJr) = 1

ε0

∂ρ

∂ξ
= 0; (2.95)

since we have already proven that Jr = 0.
We have now to evaluate the local plasma density in the witness region in order
to apply the ion column model. It can be easily evaluated from the assumption of
ultra-short beam (kpσz � 1) and considerations of Ref. [51]. According to Stupakov
et al., the density on axis generated by a bunch can be treated as an Heaviside step
function

n = n|ξ→0+Θ(ξ). (2.96)

In the crest region of the accelerating field generated by a low density driver the local
electron density is equal to the background density, so n|ξ→0+ = n0. The plasma
density inside the bunch so can be written as

n = n0Θ(0) = n0/2. (2.97)

Inserting Eq.(2.97) in Eq.(2.93) it is possible to evaluate the focusing field as

Er − cBθ = n0e

2ε0
r. (2.98)

Inserting the focusing field Eq.(2.93) in the envelope equation, the resulting matching
condition is given by Eq.(2.87).
It is also interesting to notice that since

∂(Er − cBθ)
∂ξ

= µ0cJr; (2.99)

The condition of beam loading compensation corresponds to the condition that we
found for minimum emittance growth Eq.(2.80).
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2.8 BLAST working point design

Figure 2.5. Design procedure for BLAST scheme working points. Extensively explained in
section (2.8).

The working point optimization results from the following considerations:

• Plasma density: plasma density n0 is decided arbitrarily, according to the
possibilities of injector in order to have kpσz � 1; the choice should be
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consistent with the requirements about witness energy spread at the exit of
the plasma accelerator that can be evaluated through Eq.(2.33);

• Bunch density: all the following beam parameters have to be arranged such
that αD < 1 and αw � 1;

• Bunch length: driver’s length σz,D is chosen according to the kind of scheme;
for high transformer ratio scheme kpσz =

√
2, while for high accelerating

gradient scheme kpσz = 1; for the witness kpσz � 1 is necessary to reduce
forseen energy spread;

• Bunch charge: driver and witness charges QD,w are decided according to
the possibility to obtain the desired bunch densities;

• Spot constraint: σr,D � σr,w is necessary to avoid transverse energy spread
and phase space filamentation; assuming the β-functions at the injection
βr,D ≈ βr,w this condition reduces to εn,D � εn,w;

• Matching conditions: the spot sizes at the injection are defined by the
matching conditions Eq.(2.63) and Eq.(2.88);

• Injection distance: the optimal injection phase is defined by Eq.(2.42).

After the working point definition it is possible to evaluate the maximum accelerating
gradient and the transformer ratio.
Now we will use the procedure to design an high gradient working point.
Assume to have an injector that can produce driver bunches with an outcoming
energy γ = 200, a charge Q = 200pC and a length σz = 40µm.
The condition kpσz = 1 brings to the choice of a plasma density n0 = 2 · 1016cm−3

that corresponds to a driver length σz = 37.2µm.
In order to have high gradient we choose a normalized bunch density α = 1.
From the bunch density nb = 2 · 1016 = Q/e

π3/2σzσ2
r

we can evaluate the transverse

spot size value and gives the result σr = 10.3µm.
The ideal emittance of the driver is evaluated from the matching condition Eq.(2.94)
and results to be εn = 17mm mrad.
We choose for the witness a charge Q = 10pC, a length σz = 3µm the emittance
εn = 0.3mm mrad according to the injector possibilites.
Witness injection spot size is evaluated through the matching condition Eq.(2.101)
σr = 1.26µm.
Witness normalized bunch density results α ≈ 40.
Neglecting beam loading we expect an accelerating gradient ≈ 2GV/m and an
accelerating length for the energy doubling L ≈ 5cm.
The evaluated transformer ratio RT ≈ 1.5.
Assuming an energy spread at injection σE,i = 0.001 the forseen energy spread at
the extraction for energy doubling is σE,f = 0.003 with an increase of 0.002. The
asymptotic value is 0.006.
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Chapter 3

The SPARC_LAB test facility

In this chapter we will present the SPARC_LAB test facility [52], where the working
points for high quality PWFA experiments studied in this thesis will be tested and
verified.

SPARC_LAB is based on the unique combination of high brightness electron beams,
from the SPARC photoinjector [53] with high intensity ultrashort laser pulses, from
the FLAME laser system [54]. The joint presence of these two systems allows
the investigation of plasma acceleration with different configurations, i.e. self and

Figure 3.1. SPARC_LAB layout. From left: the electron-gun (1) driven by the photo-
cathode laser (1b), followed by the two TW S-Band accelerating sections (2) and the
TW C-Band accelerating section (3). The beam driven experiment chamber (4; Fig.
4.2). RFD (5). After the RFD a couple of dipoles can send the beam to four different
beam lines: FEL physics beam line (6), that can work both in SASE and in seeded using
the (6b) schemes, diagnostic beam line (7), external injection experiment beam line (8),
where the wake is generated by a laser pulse coming from FLAME laser (8b) and the
witness is injected externally, and Thompson backscattering line (9).



external injection [55], laser and particle beam driven [56].
In addition, these two cutting-edge systems allows the generation of advanced ra-
diation sources, such as FEL in different exotic schemes [57, 58, 59], broad [60]
and narrow [61] band high peak power THz radiation, and x-rays from Thomson
backscattering [62]. Fig. 3.1 shows the photo-injector and the four beamlines. The
first beam line (Fig. 3.1/6) hosts the undulators. The second line (Fig. 3.1/7) is
dedicated to the test of advanced beam diagnostic. The third line (Fig. 3.1/8) is
dedicated to external injection experiment. The fourth line (Fig. 3.1/9) is dedicated
to the Thompson backscattering experiment.

3.1 Photo-injector
The SPARC_LAB photo-injector is composed of a 1.6 cell BNL/UCLA/SLAC
type gun, operating at S-band (2.856GHz) with a peak field of 120MV/m on the
copper metallic photocathode that generates a 5.6MeV electron beam. The gun
is then followed by two S-band and one C-band travelling wave (TW) sections
whose accelerating gradient can boost the beam energy up to 180MeV. The first
S-band cavity is also used as RF compressor in velocity bunching regime [63],
setting the beam injection phase near to zero crossing. The first two S-band sections
are surrounded by solenoid coils that can provide a magnetic focusing to better
control the beam envelope and the emittance oscillations under RF compression. A
diagnostics transfer line, located downstream a dipole, allows to fully characterize
the accelerated beam.
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3.2 Plasma beam driven chamber

Figure 3.2. The plasma beam driven chamber. Eos (1), injection (2) and extraction (4)
permanent magnet quadrupole triplets, plasma capillary (3) and THz diagnostic.

The plasma beam driven chamber has been designed to host the plasma channel
system, transverse and longitudinal diagnostics, and permanent quadrupole magnets,
both to match the beam at the vacuum-plasma interface and at the extraction from
plasma.
A structure composed by a capillary filled with hydrogen and ionized by an high
voltage discharge circuit [64] was chosen in order to create a pre-ionized plasma
channel. The apparatus was supposed to work with a repetition rate 1− 10Hz very
close to the C-band accelerating cavity, so the chamber was also designed taking
into account the necessity of high quality of the vacuum. The control over the beam
dynamics is necessary because bunch parameters at the injection have a strong
impact on the plasma beam dynamics that, in turn, is of primary importance for
the quality of the outcoming beam. As a consequence, also a proper diagnostics
before the plasma channel is of important to verify if the requirements on the beam
transport line are fulfilled. The same kind of diagnostic applied after the plasma
channel is essential to verify the effects of plasma acceleration over the beam.
The beam transverse diagnostics is performed using an optical transition radiation
(OTR) system.
The longitudinal beam profile can be evaluated using different diagnostic systems,
described in the next section. In order to grant these requirements, the plasma beam
driven chamber (shown in Fig. 3.2) was designed as follows.
The first section holds the EO-based diagnostics [65] (Fig. 3.3/1), the second and
fourth section hold permanent magnet quadrupoles for injection and extraction (Fig.
3.2/2, 3.2/4) the third section holds the plasma capillary section (Fig. 3.2/3) and
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the fifth section holds a THz diagnostic system (Fig. 3.2/5). The whole chamber is
mounted on a powered handling in order to allow a fine alignment of the plasma
channel with the irises and the beams’ orbit.

3.3 Longitudinal diagnostic

In order to perform beam longitudinal profile measurements the SPARC_LAB
facility is equipped with an electro-optical sampling (EOS) diagnostic, a terahertz
(THz) diagnostic and an RF-deflector (RFD).
The EOS diagnostic is located inside the plasma chamber, before the plasma cap-
illary and allows to evaluate the longitudinal beam profile using a single shot not
intercepting measurement with a resolution of ≈ 50fs. This collocation was chosen
in order to provide a single shot online measurement of longitudinal distribution
before the acceleration, in particular to monitor the distance between driver(s) and
witness.
The THz diagnostic is located inside the plasma chamber, downstream the plasma. It
is a multi-shot measure device (both intercepting and non intercepting depending on
configuration) that allows to evaluate the longitudinal beam profile with a resolution
of about 10fs. The THz measurement device can be used also as a THz source and
it was placed downstream the plasma acceleration channel in order to make feasable
a plasma driven THz source.
The RFD system [66] is located after the plasma interaction chamber. It is an
intercepting measurement device that allows to evaluate the longitudinal profile of a
beam with a resolution of 30fs. The combination of the RFD with a bending magnet,
located downstream on the transport line, allows to perform direct measurements of
the longitudinal phase space.
All the diagnostics are described in detail in the corresponding sub-sections.

3.3.1 Electro-optical sampling longitudinal diagnostics

The technique of electro-optical sampling (EOS) is used to reconstruct the longitudi-
nal charge distribution of a propagating bunch using non linear crystals placed near
the moving electron beams [65]. The temporal resolutions reached are determined
by the width of the optical laser puls and the EO crystal length and is usually very
high. The working principle is based on the birefringence in a non linear crystal
(like ZnTe and GaP), induced by the high electric fields of the relativistic electron
bunch, which propagate in the crystal like a THz-field (see Fig. 3.3) and that
are a function of time (Eb(t)). Due to the action of this electric field, the crystal
becomes anisotropic (biaxial). The electric field of a polarized laser passing through
the crystal is decomposed along the two optical axes, with characteristic refractive
indices ni = n1, n2 respectively. Therefore, the two components travel at different
velocities vi = c/ni. At the end of the crystal their relative phase delay Γ is

Γ(t) = ωd

c
(n1 − n2) ∝ Eb(t); (3.1)

where ω is the laser pulse frequency and d is the crystal thickness. Therefore the
time information contained in Γ(t) is a replica of Eb(t).
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Figure 3.3. Spatial decoding for the Electro-optic Sampling. The laser crosses the EO
crystal with angle θ = 30◦. By inserting a polarizer whose axis is 90◦ with respect to the
laser linear polarization, the longitudinal bunch profile is directly retrieved on the CCD.

At the SPARC-LAB facility a Ti:Sa IR laser (λ = 800 nm, 130 fs pulse length, rms)
is used to sample the birefringence which is induced in the non linear optical crystal
by the co-moving electric field of the electron bunch. The laser is derived from a
splitting of the photocathode’s laser pulse. This configuration allows to obtain a
natural synchronization with the electron beam, having a repetition rate of 10 Hz.
The initial linear polarization of the laser pulse is converted into a slightly elliptical
polarization. The polarization is then converted into an intensity modulation by
placing a polarizer after the crystal. The polarization axis of the polarizer is rotated
by 90◦ with respect to the initial laser polarization. To encode the bunch longitudinal
profile into the laser, we used the spatially encoding EOS technique, in which the
laser crosses the non linear crystal with an angle of θ = 30◦ (see Fig. 3.3). In such a
way, being x the spatial coordinate along the laser transverse profile and t the time
coordinate for the longitudinal bunch profile, we have

t = x

c
tan(θ); (3.2)

where c is the vacuum speed of the light. From Eq. 3.2, the total time window ∆t is
directly proportional to the laser spot diameter d, i.e. ∆t = (d/c) tan(θ).

3.3.2 THz diagnostics

Radiation extending up to the THz range can be generated as coherent radiation
from ultra-short (sub-picosecond) electron bunches. In the approximation that a
radiation process has a characteristic temporal emission very lower than a particle
bunch duration, it can be used to retrieve the longitudinal electron beam charge
distribution by studying its coherent spectrum. The transition radiation (TR) is
used for this purpose because it is a surface phenomenon that for our purposes can
be considered instantaneous. TR is produced when a relativistic charged particle
crosses the interface between two media with different dielectric properties. The
full theory of TR is fully described in ref. [67]. A single particle with a normal
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incidence on a surface has a spectral angular distribution that can be described by
the formula

d2Isp
dωdΩ = e2

4π3ε0c

β2 sin2 θ

(1− β2 cos2 θ)2 ; (3.3)

with c the speed of light, e the electron charge, β = v/c where v is the electron
velocity and θ, in case of normal incidence, is the angle between the particle trajectory
and the observer. Because of the backward-emitted radiation is proportional to
the reflection coefficient of the media, metallic screens with high reflectivity (e.g.
aluminum) are tipical choices for the THz devices. For instance, the plasma frequency
of aluminum is 3.55× 103 THz, which corresponds to a wavelength of about 85 nm.
Ideally, frequencies that are below the plasma frequency are completely reflected by
the metal. In real cases, the reflection can be considered almost complete just for
frequencies far below that value, therefore in infrared and far infrared spectrum, the
absorption and transmission is negligible and the waves can be considered totally
reflected. The formula from Eq.(3.3) is known as Ginzburg-Frank formula. In most
practical cases the Ginzburg-Frank equation is not applicable because two basic
pre-assumptions of the analytic derivation are not fulfilled: the radiation screens
used in an accelerator are of limited size, and the radiation is usually observed in
the near-field and not in the far-field regime [68]. However, in the limits of validity
of the formula in Eq.(3.3), the spectral angular distribution of single-particle TR
radiation does not present any dependence on the radiation frequency. The particles
of a bunch with finite longitudinal and transverse dimension emit a radiation field
with the same amplitude. The relative phase depends only on the position occupied
by the single particle inside the bunch and on the direction of the observation. The
spectral angular distribution produced by a relativistic electron beam can be written
as

d2I

dωdΩ = d2Isp
dωdΩ(N +N(N − 1)F (ω)); (3.4)

with ω = 2πc/λ the angular frequency of the emitted light and N the number
of electrons in the bunch. F (ω) is the so-called bunch longitudinal form factor
defined as the square of the Fourier transform of the normalized longitudinal particle
distribution within the bunch, S(z),

F (ω) = |
∫
S(z)e+iω

c
n̂·ẑdz|2; (3.5)

where ẑ is the unit vector towards the observation point, and the integral is performed
along the longitudinal direction z. We can evaluate from Eq.(3.5) that at λ < σz,
F (ω) ≈ 0 while at λ > σz, F (ω) ≈ 1, where λ = 2πc/ω is the wavelength of the
emitted radiation and σz is the bunch length. Two terms contribute to the total
intensity of Eq.(3.4): the first one, proportional to the number of particles N , is the
total intensity if the particles radiate all incoherently, each behaving independently
one from the other. The second one dominates at wavelengths λ larger than the
bunch length, for which the N particles can be treated as a single macro-particle
in which all particles emit radiation coherently at the same phase and so the field
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Figure 3.4. Michelson Interferometer.

amplitudes add with constructive interference and the intensity scales quadratically
with the number of electrons per bunch, i.e. N2. Since the bunch longitudinal form
factor in Eq.(3.5) is typically zero for λ < σz, the coherent TR (CTR) spectrum
is enhanced (with respect to incoherent spectrum) by N2 when λ > σz. In the
SPARC_LAB layout, the CTR spectrum is measured using interferometer techniques
(in Fig. 3.4 a Michelson interferometer setup is shown).

3.3.3 RF Deflector

One of the most estabilished diagnostics techniques for the full longitudinal charac-
terization of beam parameters for LINACs is the use of RF deflectors (RFD). This
device allows to perform measurents the bunch longitudinal profile and adding a dis-
persive system (i.e. a magnetic dipole) also direct measurements of the longitudinal
phase space (LPS) [53].
The RFDs make use of a transverse voltage that is a function of time (Vdefl(t)) in
order to force a correlation between the longitudinal position of the particle inside
the bunch (tB) and the transverse one (usually vertical) at the screen position (yS)
[69]. At SPARC_LAB the screen consists in a Ce:YAG radiator, whose produced
light is collected by a CCD camera. The phase of the deflecting voltage is chosen
to have a zero crossing of the transverse voltage in the center of the bunch, giving
a linear transverse deflection from the head and the tail of the bunch itself. The
displacement introduced to the single slice by the transverse deflector results to be
proportional to the longitudinal distance of the slice respect to the center of the
bunch.The mechanism is illustrated in Fig. 3.5.
Since the single slices of the beam have a finite transverse emittance, the distributin of
the deflected bunch at the screen position is the superposition between the deflected
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Figure 3.5. Longitudinal to transverse correlation induced by the RFD transverse voltage.

beam profile and the transverse size of each bunch slice. Under the assumption that
all longitudinal slices have the same transverse dimension on the screen (σyB) and
that there is a drift (L) between the RFD and the screen, the total vertical rms
distribution (σyS) at the screen is given by

σ2
y,S ≈ Kcalσ

2
tB + σ2

yB; (3.6)

where Kcal = (Vdefl/E)ωRFL, ωRF is the angular frequency of the deflecting voltage
and E is the beam energy in eV units. From this formula one can define the resolution
length σrestB as the bunch length that gives, on the screen, a distribution with rms
vertical size equal to

√
2σyB. It is equal to

σrestB = E
σyB

VdeflωRFL
=
√
E

E0

√
εβS

1
VdeflωRFL

; (3.7)

where ε is the transverse normalized emittance of the beam, βS is the vertical
β-function at the screen position and E0 is the electron rest energy. With the
parameters of SPARC_LAB, i.e. Vdefl ≈ 1MV, fRF = 2.856GHz (ωRF = 2πfRF ),
ε = 1mm mrad, βS = 30m, E = 180MeV and L = 4m, resolutions of about 10fs are
in principle reachable. By considering that the magnification of our CCD imaging
system is 33µm/pixel (being 1 pixel 10µm), with a typical RFD calibration value of
400fs/mm the real resolution of the RFD device is about 13fs.

3.4 Injection/extraction system

The transverse matching of bunches, in particular the witness, is of primary im-
portance for the preservation of transverse emittance and then for high quality
acceleration.
The analysis of matching conditions that has been performed and that is fully
exploited in the next chapter gave the result of β-function at the injection ≈ 1mm
for the SPARC_LAB layout parameters with a plasma density n0 = 1016 − 5 · 1016.
This requirement is very challenging for the characteristics of the transport line and
requires a dedicated study.
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The necessity of preserving the cylindrical symmetry of the bunch after the final
focus led to the choice of a triplet of permanent quadrupoles where the first and the
third quadrupole are focusing on the same plane.
A preliminary study for the design of the quadrupoles has been performed using
the MAD-X code [70]. The β-function evolution in both planes can be seen in Fig.
3.6 togheter with the simulation lattice, which starts from the end of the second
S-band TW section. It consists in a triplet of electromagnetic quadrupoles, a C-band
accelerating structure, a triplet of permanent quadrupoles, a device focusing in both
planes that represents the focusing effect of the plasma channel, another triplet of
permanent quadrupoles and another triplet of electromagnetic quadrupoles. The
boundary conditions at the position s = 0 were set in agreement with previous
simulations and experiments.
The preliminary results where then refined using a tracking code (General Parti-
cle Tracer, GPT) [71] from the photo-cathode to the capillary entrance. All the
permanent magnet quadrupoles were designed in order to have the same gradient,
g = 520T/m. Within a triplet the first and the third quadrupole are focusing on
the same plane, while the second quadrupole is defocusing and with a length that is
exactly twice the length of the focusing quadrupoles. Permanent magnet quadrupoles
were chosen due to the extremely high focusing gradient required. The preliminary
design and the field map for the focusing magnet are reported in Fig. 3.71.
Further considerations led to the use of the same triplet even for the extraction
system and the matching with the transport line to the undulators.

1The final realization of the permanent magnets was performed by KYMA S.r.l.
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Figure 3.6. Evolution of the Twiss β-function evaluated using the MAD-X code.

Figure 3.7. Permanent magnet focusing quadrupole design (a) and field map (b). The
defocusing magnet has exactly twice the length.
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3.5 Plasma channel setup
The plasma channel setup was studied in order to optimize the control over the
plasma density profile intercepted by the bunches. The capillary is necessary in
order to have a pre-ionized plasma. Hydrogen was chosen in order to have full
ionization at relatively low plasma temperature during discharge. The plasma
density measurements are performed using the Stark broadening.

3.5.1 Gas filled capillary

The plasma accelerating section consists of an inlet where it is possible to connect
capillaries with different lengths and diameters filled with hydrogen. The discharge
is performed using an high voltage generator (≈ 20kV). The anode and the cathode
are located at the extremes of the capillary. The gas injection system is composed by
an hydrogen generator, connected to an high speed solenoid electrovalve contained
inside the vacuum chamber that controls the final injection to the capillary.
The plasma is generated inside a capillary that is first filled with hydrogen, then
ionized by an electric discharge. The gas density inside the capillary depends on
the aperture time of the electrovalve (≈ 3ms) in order to have the optimal plasma
density for the experiment. For the first stage experiment it is forseen a capillary
with a length of 3cm and a diameter of 1mm, shown during discharge in Fig. 3.8.
The inlets are localized at 1/4 and 3/4 of the length, optimized in order to have a
reasonably flat plasma density profile.
In order to evaluate the capillary filling time, simulations have been performed using
the hydrodynamic code OpenFoamTM [72].

Figure 3.8. SPARC_LAB plasma capillary during discharge
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Figure 3.9. Capillary meshing and detail of whiff region meshing

Capillary mesh was modelized following capillary design as showed in Fig. 3.9. It
includes all the injection system from the electrovalve to the electrodes. In order to
evaluate the shape of gas whiff, the box included also a region outside the capillary
with a cubic shape and 1cm edges.
The gas injection was simulated assuming a linear pressure ramp at the inlet from a
value of 0mbar to 100mbar in the time of 1µs. The capillary has a fixed temperature
T = 300K. As shown in Fig. 3.10, after 1ms the density growth saturates in the
center of the capillary. The gas profile on axis shows a flat top between the inlets,
an almost linear ramp to the capillary exit and an exponential decay outside the
capillary. After ≈ 800µs the gas profile stabilizes. For valve aperture times > 1ms
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the gas profile can be considered constant in time. It has been evaluated during
experiment that aperture times of the valve < 3ms led to unwanted discharge flow
inside inlet region. So the value of valve aperture were set to a constant value of
3ms.

Figure 3.10. Hydrogen density on capillary axis at different times and density evolution in
capillary center as a function of time.

3.5.2 Discharge system

The discharge system [73] is composed by an RLC circuit: a thyratron to charge a
capacitor, a resistance to limit the current inside the plasma, an inductance which
represents the parasitic inductance of the circuit and eventually there is the plasma
resistance that was evaluated to be negligible respect to the total resistance of
the circuit. Before the discharge the capacitor is charged by a tension ≈ 20kV,
afterwards the capacitor is connected to the electrodes by an high voltage switch,
generating the discharge through the capillary, causing the ionization of the hydrogen.
The maximum current traversing the capillary depends on the capillary and on
the intrinsic resistance of the discharge circuit. The injection of the beams is
performed after the discharge when the electron density reaches the forseen value.
The measurement of electron density is performed with the method described in the
next section. In Fig. 3.11 is reported the current profile during discharge inside the
capillary of Fig. 3.8.
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Figure 3.11. Current profile during discharge inside capillary from Ref. [73].

Figure 3.12. Hydrogen emission spectrum.

3.5.3 Plasma density measurement

The measurement system for the plasma density is based on the Stark effect. Hydro-
gen atoms, when excited, emit light at a different wavelength in the visible range,
usually referred to as Balmer spectral lines (see Fig. 3.12). These lines are subjected
to broadening caused by many effects. The Stark effect is the shifting and splitting
of spectral lines of atoms and molecules due to presence of an external electric
field. Stark broadening happens when the splitting of the spectral lines is caused
by the presence of an external electric field produced by nearby free electrons. The
measurement of the Stark broadening allows us to reconstruct the electron density
of the plasma near the emitter. This effect has been modeled and experimentally
measured. For hydrogen plasma, the full width at half maximum (FWHM) of the
Balmer alpha line ∆λ is related to the plasma density by the following formula [74]:
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∆λ(nm) = α(ne, T )ne(1018cm−3)2/3; (3.8)

The α(ne, T ) parameter, function of the electron density ne and the plasma temper-
ature T , can be derived by either fitting experimental data or computer simulations.
The analysis of the Stark effect on the Balmer spectral lines can lead to plasma
density information around the emitting atoms. By triggering the intensified camera
with different delays it is possible to scan the temporal evolution of the plasma
density along the entire longitudinal dimension of the capillary.
Measurements at SPARC_LAB [75] have been performed using both alpha and
beta Balmer lines. In Fig. 3.13 we report an example of measurement result for the
capillary described in section 3.5.1. The x-axis represents the longitudinal dimension
of the capillary and the y-axis the time evolution.

Figure 3.13. Plasma density evolution along the longitudinal capillary dimension from ref.
[75].
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Chapter 4

BLAST working point design

According to the consideration performed in Chapter 2 we will now design a working
point for the PWFA in BLAST scheme for a beam driven experiment to be performed
at the SPARC_LAB facility.
Basing on our previous work we were able to find a working point in blast scheme
using a plasma with a density n0 = 2 · 1016 cm−3. The bunch parameters at the
injection are listed in Table 4.1. The spatial and momentum distributions are
initialized inside the code and gaussian shaped. The plasma density profile is flat
top with sharp edge and the bunches are inizialized such that the center of the driver
overlaps the beginning of plasma edge.

Table 4.1. Beam parameters at the injection

Driver Witness
Q[pC] 200 10
γ 200

εn[mm mrad] 17 0.3
σr[µm] 10.3 1.26
σz[µm] 37.2 3
σE [%] 0.1 0.1

According to the equations from Chapter 2, the expected accelerating gradient is
≈ 2GV/m and the expected energy spread at energy doubling is 0.3%.
The simulation scans will be performed in order to find the optimal bunch separation,
that is not forseen from the model. Fort the optimal bunch separation, the energy
spread growth will be compared to the scaling law Eq.(2.44). Further, the transverse
bunch evolution will be compared to the matching condition for witness Eq.(2.93).
Then we will check the robustness of the proposed working point through a stability
analysis over the expected jitter of the parameters at the injection.
All the simulations presented in this chapter, will be performed with the Architect
code, described in Appendix E. The following parameters will be used: an integration
time step ∆t ≈ 0.44fs and the mesh are squared with a dimension 0.75µm×0.75µm.
The corresponding CFL parameter is 0.5. The box is composed by a 732ûr × 932ûz



cell grid. The dimension of the box is 275µm×700µm, in the range 0− 275 for the
transverse dimension and in the range −200− 500 for the longitudinal dimension.
Mesh structure is reported in Fig. 4.1. The driver is located at z = 0 and it is
discretized with 4 · 105 particles while the witness is discretized with 5 · 104 particles.

Figure 4.1. Mesh structure of the simulations.

4.1 Bunch separation scan
Two series of simulations have been performed in order to evaluate the optimal
injection distance. The range of the first simulation scan is 0.45− 0.55λp with steps
of 0.025λp. The range of the second simulation scan is 0.5− 0.525λp with steps 0f
0.005λp. In Fig. 4.2 and Fig. 4.3 are reported the results of the scan in terms of
energy spread. In order to avoid the effect of the tails on the statistics, the energy
spread is evaluated through a gaussian fit of the bunch energy distribution. In Fig.
4.2 is reported the energy spread evolution along the plasma channel and in Fig. 4.3
is reported the final energy spread as a function of the bunch separation. In Fig. 4.4
and Fig. 4.5 are reported the same results for the second scan. The injection length
that minimizes the energy spread and guarantees the best result is ∆z = 0.505λp.
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Figure 4.2. Energy spread vs. propagation length in plasma channel. Bunch separation
scan at low resolution.

Figure 4.3. Final energy spread vs. bunch separation. Bunch separation scan at low
resolution.
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Figure 4.4. Energy spread vs. propagation length in plasma channel. Bunch separation
scan at high resolution.

Figure 4.5. Final energy spread vs. bunch separation. Bunch separation scan at high
resolution.
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4.2 Witness transverse envelope
As we pointed out in chapter 2, witness energy spread growth in BLAST scheme can
be generated only by mismatching. Following the matching conditions Eq.(2.93),
the mismatching can be generated only by an error on the waist position. Since the
formation of the witness blow-out region occurs reasonably after a plasma wavelength
of propagation, we can define a natural error in the waist position ∆s = λp. The
matching condition Eq.(2.93) can be turned into a matching condition for the
β-function that is

βx = 2
√
γ

kp
. (4.1)

Assume to inject a beam that at waist has a β-function that follows Eq.(4.1).
Adopting the approximation that near the waist with no focusing force the α-
function grows linearly

α(s) = − s

βw
; (4.2)

where βw is the β-function at waist, we have that

β(s) = βw + s2

βw
. (4.3)

Since βw = βm, we have that assuming an error in the injection ∆s in the waist
position, Eq.(2.65) becomes

εn,fin = εn,init

(
1 + ∆s2

β2
w

)
. (4.4)

Assuming that the natural error ∆s = λp, the emittance increase can be written as

εn,fin = εn,init

(
1 + π2

2γ

)
. (4.5)

According to Eq.(4.5), the emittance increase is below the 5%. As pointed out in
Ref. [48], in mismatched cases the β-function will oscillate around the matched case.
In Fig. 4.6 we can see that the envelope oscillation is of the order of 20% of the
spot size. The emittance increase is around 2%, lower than the evaluated acceptable
limit. In Fig.4.7 we can see a comparison between the witness β-function and the
matching condition evaluated through Eq.(4.1). After a propagation of ≈ 1cm, the
result is consistent with the theoretical previsions performed for the BLAST scheme.
A possible explanation for the initial discrepancy is furnished in the next section.
In order to have a comparison with the blow-out model, we tried to perform the same
simulation assuming at the injection a β-function following the ion column model for
blow-out. In this case the spot size at the injection is σx = 1.05 µm and βx = 0.75
mm. As we can see from Fig.4.8 the beam in this case acts as a mismatched beam,
assesting on the matching β value expected from our model. The conclusion is that
the blow-out model doesn’t apply in this case.
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Figure 4.6. Witness envelope and emittance evolution during the propagation in the
plasma channel.

Figure 4.7. β-function evolution of the witness compared with the theoretical previsions
of the BLAST scheme model.
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Figure 4.8. β-function evolution of a witness injected following the transverse matching
conditions of the ion column model compared with the theoretical previsions of the
BLAST scheme model and the blow-out ion column model.
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4.3 Accelerating gradient and energy spread

The forseen accelerating gradient for the working point is Ez ≈ 2GV/m. In Fig. 4.8
we report the witness energy and the effective accelerating gradient as a function of
propagation distance in plasma.

Figure 4.9. Witness energy (black) and effective accelerating gradient (blue).

As we can see, the maximum accelerating gradient reached inside the plasma is
consistent with our prevision. The reduction of the accelerating gradient is due to
expected effects of head erosion. We notice in this case that after the initial driver
arrangement (1cm of propagation inside plasma) the accelerating gradient stabilizes
at a value Ez ≈ 1Gv/m.
Combining this result with the betatron oscillation result, we conclude that during
the first centimeter of propagation, the driver evolves to a stable configuration inside
plasma that guarantees a constant accelerating field and a full accomplishment of
the BLAST scheme prerequisites. The driver evolution is not forseen by the model
developed in this work as we already pointed out in section 2.5. A model for the
treatment of driver evolution will be discussed in last chapter.
In Fig. 4.9 is reported the witness LPS before and after the acceleration. As expected,
the result of the LPS is consistent with the assumption of Chiou et Katsouleas [46]
that the minimum energy spread can be reached in the case of null longitudinal
derivative of the accelerating field.
Since we reach the condition ∂Ez

∂ξ = 0 we can use Eq.(2.44) in order to forsee the
energy spread evolution.
In Fig. 4.9 we report a comparison of the bunch energy spread evolution as a function
of the energy with the results from Eq.(2.44).
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Figure 4.10. Witness LPS before and after acceleration.

We can notice the very nice agreement of the simulation with the theoretical prevision,
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validating the consideration performed over energy spread.

Figure 4.11. Energy spread evolution inside plasma.
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Table 4.2. Witness parameters at injection and extraction

Witness
Entrance Exit

γ 200 305
εn[mm mrad] 0.3 0.305

σr[µm] 1.26 1.1
σz[µm] 3 3
σE [%] 0.1 0.21

4.4 Working point result
The outcoming witness parameter after the acceleration are reported in table 4.2
The average accelerating gradient is 1.07GV/m. Using Eq.(2.44) the forseen energy
spread for energy doubling is 0.3%. The asymptotic energy spread (limit of Eq.(2.44)
for γ →∞) is 0.57%. The length of the plasma channel for the energy doubling is
10cm.

4.5 Tolerance analysis
In order to perform the tolerance analysis over the proposed working point we used
the results of the measurements performed at the SPARC photoinjector in order
to evaluate the jitters of the bunch parameters at the plasma channel entrance.
Simulation scans where used to evaluate which of these jitters observably affect the
outcoming witness parameters. The influential jitters are the following

• driver and witness transverse spot size ±15%;

• driver and witness length ±12%;

• driver and witness charge ±10%;

• bunch separation ±8%.

For every simulation performed in the tolerance analysis, variations over spot size,
length and charge were considered always at the same in percentage for both driver
and witness. These assumptions derive from the following considerations.
Assuming that the jitter on the spot size depends on energy jitter, an that the
variation on energy depends on the phase jitter between the photo-chatode laser and
the RF pulse, the jitter ar reasonably the same both for driver and for witness.
The phase jitter can causes also a variation on the bunch length [45]. The variations
can be different in percentage over bunch depending on the compression phase in
velocity bunching scheme. The compression phase also affects the separation length
between bunches. We decided to neglect all these aspects because they get over the
accuracy of this phase of preparation of the experiment.
The fluctuations on charge are due to jitters on laser energy that with the SPARC_LAB
configuration are of the same amount both for driver and for witness.
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Assuming these jitters we performed a simulation scan over 30 reasonable configura-
tions of the real photo-injector using the sampling approach of the latin hypercube
(LHS) [76]. The results are reported in Fig. 4.12, Fig. 4.13 and Fig. 4.14.
The outcoming beams result very stable in term of quality. The average energy
spread on the sample is ≈ 0.4% with a standard deviation < 0.2%. The emittance
growth is < 7% in all the simulations considered. The most evident effect of jitter is
related to the outcoming witness energy. The average value of γ is ≈ 305 with a
standard deviation of ≈ 5%.

Figure 4.12. Energy spread jitter in LHS.

74



Figure 4.13. Emittance jitter in LHS.

Figure 4.14. Energy jitter in LHS.
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Chapter 5

Conclusions and future
perspectives

The BLAST scheme working points were defined in the context of this thesis work.
The main aspects useful for a working point design were derived from a theoretical
point of view and cross checked with the simulation results with an evident agreement.
The tolerance study evidenced a great stability of the proposed working point in
terms of beam quality but a relatively high energy jitter (5%).
Expected result for this kind of experiment are of the same order of magnitude of
the state of the art.
The BLAST working points result to be suitable for high quality beam driven PWFA
experiments. Future perspectives of this work concern mainly the following aspects:

• experimental demonstration of the results;

• applications: plasma driven FEL;

• higher energy performances;

• extension of the model in order to include also the head erosion.

As we pointed out, a working point in blast scheme requires a witness with a very
high brightness and a driver with a very low brightness. One of the possibilities to
design a start-to-end working point with this features is represented by the hollow
beam velocity bunching scheme [45]. In conventional multi-bunch velocity bunching
schemes, the emittance growth of the witness is due to space-charge effects that,
when considering two crossing beams with the same particles, act as a nonlinear
diverging lens. The hollow beam is a scheme that consists on a train of bunches
where the driver has an hollow profile. An hollow beam profile can be obtained by
implementing an hollow laser pulse on the cathode. As showed in Fig.(5.1), the
witness passes through the driver hollow, minimizing the space charge effects. The
transverse electric field (due to space-charge) for a hollow beam centered in r0 and
having width σr is given by

Er(r) = nb
ε0

σ2
r

r

(
e−r

2
0/2σ2

r − e−(r−r0)2/2σ2
r

)
.



For pure Gaussian beams (r0 = 0) it is Er > 0, so particle are pushed outwards.
Instead, in hollow beams (r0 > 0) it is Er < 0 for r < r0. If the hole is completely
charge-free, then Er = 0.
The SPARC_LAB configuration allows the possibility of testing the outcoming beam
configuration as driving bunch for an FEL. In order to verify if it is possible to have
an FEL radiation with the current SPARC_LAB test facility we will use the scaling
laws from the work of Xie [77] assuming the SPARC_LAB undulator parameters
and the beam obtained by simulations in chapter 4.
The radiation in this case results to be single slice. The scaling laws from [77] were
evaluated assuming multiple slices, affecting the reliability of the previsions.
The expected radiation is ≈ 4 · 1012 photons, with a saturation length L ≈ 7.5m and
a saturation power of ≈ 130MW. So the BLAST scheme is at present a possible
candidate for this experiment.
The evaluation of the performances at higher energy will be performed in the context
of EuPRAXIA project. The EuPRAXIA (European Plasma Research Accelerator
with eXcellence In Application) project [78] is a proposed EU design study on a
plasma based accelerator with an high degree of control on accelerated beam quality
that allows to perform practical applications.
The final project should consist in a compact accelerator at 5GeV with a a beam
quality that is high enough to pilot an FEL and other experiments in the fields of
high energy physics.
The design study for EuPRAXIA is still at a preliminary phase. One of the
possibilities that is invesigated for the design consist in an external injection beam
driven scheme. The project is also divided in several steps. The aim of the first step
consists in an high quality plasma based accelerator at 1GeV such that at least one
half of the final energy of the bunch is obtained from a plasma booster.
The design of future working points can take a great advantage from the evaluation of
head erosion effect, that is of primary importance in order to evaluate more precisely
the expected accelerating gradient of a beam driven plasma wakefield accelerator in
linear regime.
Since the field of a the head of an high density bunch can be also treated using linear
equations [34], such a model could be easily extended also for high density bunches.
As we remarked during the work, the structure of the linear equations developed
doens’t allow to use them to describe the head erosion because the bunch distribution
during the propagation evolves to a correlated bunch distribution that is not described
by the system of equations.
For this reason, the analysis of the head erosion requires a partial reformulation of
the equations, basing on a distribution that in general can be also correlated.
Due to the extreme interest concerning this argument, an head erosion modelization
in linear approximation is considered the main task for the extension of the BLAST
scheme.
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Appendix A

Linear theory

In this section, we find the electromagnetic field response of a cold plasma to a
bunch of arbitrary charge moving approximately at the speed of light in the so called
’linear approximation’.
The electromagnetic field response can be found from the Green’s function response
to a test charge. One of the possible approaches is using potentials (φ,A) [29].
Katsouleas [30] developed an easier derivation by solving directly for the fields, as
in the following.
Consider a charge q injected inside cold plasma at rest with a speed vb. We choose
the reference frame such that the speed of the particle is in the same direction of
the z-axis and assuming cylindrical system of coordinates. The charge density can
be written as

ρb = qδ(~r)δ̃(z − ct) (A.1)

where δ̃(r) = 1/(2πr)δ(r).
We now write all the equations governing the motion of plasma particles. Maxwell’s
equations:

∇· ~E = ρ

ε0
;

∇× ~E = −∂
~B

∂t
;

∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
;

∇· ~B = 0;

(A.2)

where ~E, ~B and ~J are the electric field, the magnetic field and the current density,
µ0 and ε0 are the magnetic permeability and the electric permettivity and ρ is the
electric charge density.
The continuity equation for the electrons:

∂ne
∂t

+∇·(ne ~ve) = 0; (A.3)



where ne is the local electron density and ~ve is the local plasma electron speed.
The definiton of momentum, charge density and current density inside plasma
perturbed by an electron beam:

~pe = γme ~ve = 1√
1− v2

e

c2

me ~ve;

ρ = −enb + eni − ene;
~J = −enb ~vb − ene ~ve;

(A.4)

where me is the electron mass, nb is the bunch density, ni the ion density and ne
the electron density.
We now consider all the quantities describing plasma as deviations from the equilib-
rium values:

~E = ~E0 + ~E1;
~B = ~B0 + ~B1;
~ve = ~v0 + ~v1;
ne = n0 + n1;

~J = ~Jb + ~J0 + ~J1 = −enb~vb − e(n0 + n1)~v0 − en0 ~v1 − en1 ~v1.

(A.5)

From the hypotesis of cold plasma at rest we can state that ~E0 = 0, ~B0 = 0 and
~v0 = 0. From the hypotesis of neutral plasma and negligible motion of ions (that
derive from the consideration that the ion mass mi � me) we can state that n0 = ni.
We conclude that

~J = −enb ~vb − en0 ~v1 − en1 ~v1;
ρ = −enb − en1.

(A.6)

In the non relativistic limit we rewrite all our set of equations as

∇× ~E1 = −∂B1
∂t

;

∇× ~B1 = µ0 ~J + 1
c2
∂ ~E1
∂t

;

∇· ~E1 = −enb + en1
ε0

;

∇· ~B1 = 0;

me

(
∂ ~v1
∂t

+ ~v1(∇· ~v1)
)

= −e ~E1 − e~v1 × ~B1;

∂n1
∂t

+∇·((n0 + n1)~v1) = 0.

(A.7)
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Now we linearize all the equation assuming that the system experiences only small
deviations from the equilibrium condition (F1 ≈ 0 for any field inside plasma) and
ignoring all the perturbation terms of second order. The equations become:

∇× ~E1 = −∂B1
∂t

;

∇× ~B1 = −eµ0(nb ~vb + n0 ~v1) + 1
c2
∂ ~E1
∂t

;

∇· ~E1 = −enb + en1
ε0

;

∇· ~B1 = 0;
∂ ~v1
∂t

= − e

me

~E1;

∂n1
∂t

+ n0∇· ~v1 = 0.

(A.8)

The last of Eq.(A.8) was obtained for a costant background density n0. This
condition is not always true, so the theory should be reformulated for plasma ramps.
In the limit that ∇n0 · ~v1 � n0∇· ~v1 the formulas computed are still valid. Now we
derive the last equation with respect to t and we get

∂2n1
∂t2

+ n0∇·
∂ ~v1
∂t

= 0; (A.9)

then substituting the fifth and third of Eq.(A.8) inside Eq.(A.9) we get

∂2n1
∂t2

+ ω2
pn1 = −ω2

pnb; (A.10)

where

ωp =

√
e2n0
ε0me

; (A.11)

has the dimension of a frequency. ωp is known as plasma pulsation and describes
the harmonic behaviour of the plasma for small oscillations.
Now we write the particle density in the case of a single ultrarelativistic electron
inside plasma, with a direction of motion parallel to the z-axis

nb = δ̃(r)δ(z − ct). (A.12)

We perform a change of variables as follows:

ξ = z − ct;
∂

∂t
= −c ∂

∂ξ
;

kp = ωp/c

(A.13)
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where kp is known as plasma skin depth. The equation for the plasma density
becomes

∂2n1
∂ξ2 + k2

pn1 = −k2
pnb. (A.14)

Substituting Eq.(A.12) inside Eq.(A.14) we find the Green’s equation for a plasma

∂2n1
∂ξ2 + k2

pn1 = −k2
p δ̃(r)δ(ξ); (A.15)

that can be solved by the use of Laplace transform as follows:

s2L{n1} − sn1(0)− sn′1(0) + k2
pL{n1} = −k2

pδ(~(r))⇒
⇒ n1(r, ξ) = −kpδ̃(r) sin(kpξ)Θ(ξ);

(A.16)

where Θ is the Heaviside function. The wake generated by a single particle is
harmonic and has a wavelength depending on the plasma density

λp = 2π

√
ε0mec

2

e2n0
. (A.17)

The response to an impulse with a non point-like shape is obtained as the space
integral of the Green function Eq.(A.16). Assuming that we have a charge density
distribution in cylindrical symmetry that is separable over the longitudinal and
transverse component such as that nb(r, ξ) = nb‖(ξ)nb⊥(r), we can write the resulting
density as

n1(r, ξ) =− kp
∫ +∞

−∞
dξ′
∫ 2π

0
dθ′
∫ +∞

0
r′dr′nb⊥(r′)×

× nb‖(ξ′)δ̃(|~r − ~r′|) sin(kp(ξ − ξ′))Θ(ξ − ξ′) =

=− kp
∫ +∞

−∞
nb‖(ξ′) sin(kp(ξ − ξ′))Θ(ξ − ξ′)dξ′×

×
∫ 2π

0
dθ′
∫ +∞

0
nb⊥(r′)δ̃(|~r − ~r′|)dr′;

(A.18)

that leads to

n1(r, ξ) =− kpnb⊥(r)
∫ ξ

−∞
nb‖(ξ′) sin(kp(ξ − ξ′))dξ′ =

=
ε0k

2
p

e
Z(ξ)nb⊥(r);

(A.19)

where Z(ξ) is defined as

Z(ξ) = − e

ε0kp

∫ ξ

−∞
nb‖(ξ′) sin(kp(ξ − ξ′))dξ′. (A.20)
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Notice that in our notation from now on we will assume that all bunches are gaussian
with the following bunch distribution

nb‖ = nbe
−ξ2/2σ2

z ;

nb⊥ = e−r
2/2σ2

r ;
(A.21)

with nb = Q/e

(2π)3/2σ2
rσz

.
Now in order to find the electric field we take the curl of the Faraday’s law:

∇×(∇× ~E1) = − ∂

∂t(∇× ~B1)⇒ ∇2 ~E1 −∇(∇ · ~E1) = ∂

∂t(∇× ~B1). (A.22)

We replace the curl of the magnetic field from the Ampére-Maxwell equation and
the divergence of the electric field from Gauss’s law

∇2 ~E1 −∇
(
− e

ε0
nb −

e

ε0
n1

)
= ∂

∂t

(
µ0 ~J1 + µ0 ~Jb + 1

c2
∂ ~E1
∂t

)
⇒

⇒ ∇2 ~E1 −
1
c2
∂2 ~E1
∂t2

= −en0µ0
∂ ~v1
∂t
− ecµ0ẑ

∂nb
∂t
− e

ε0
∇nb −

e

ε0
∇n1.

(A.23)

As before we perform the substitution ξ = z − ct. We obtain

∇2 ~E1 −
∂2 ~E1
∂ξ2 = ecn0µ0

∂ ~v1
∂ξ

+ ec2µ0ẑ
∂nb
∂ξ
− e

ε0
∇nb −

e

ε0
∇n1. (A.24)

We replace the derivative of the velocity with the linear motion equation ∂ ~v1
∂ξ

=

− e

cme

~E1

(
∇2− ∂2

∂ξ2 − k
2
p

)
~E1 = ec2µ0ẑ

∂nb
∂ξ
− e

ε0
∇nb −

e

ε0
∇n1. (A.25)

Now we split the divergence and Laplace operator longitudinal and transverse
component. The new operators can be written

∇2 = ∇2
r + ∂2

∂ξ2 = 1
r

∂

∂r

(
r
∂

∂r

)
+ ∂2

∂ξ2

∇ = r̂
∂

∂r
+ ẑ

∂

∂ξ
.

(A.26)

We can write the density functions in the right side of Eq.(A.21) as
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∂nb
∂ξ

= ∂

∂ξ
[δ̃(r)δ(ξ)] = δ̃(r)δ′(ξ)

∇nb = r̂
∂nb
∂r

+ ẑ
∂nb
∂ξ

= r̂δ̃′(r)δ(ξ) + ẑδ̃(r)δ′(ξ)

∇n1 = −r̂kp
∂

∂r
[δ(~r sin(kpξ)Θ(ξ)]− ẑkp

∂

∂ξ
[δ(~r sin(kpξ)Θ(ξ)] =

= −r̂kpδ̃′(r) sin(kpξ)Θ(ξ)− ẑk2
p δ̃(r) cos(kpξ)Θ(ξ).

(A.27)

Now substituting back the expression for the density into the equation for the field
and separating the longitudinal and radial components we get the equations

(∇2
r − k2

p)E1r = − e

ε0
δ̃′(r) [δ(ξ)− kp sin(kpξ)Θ(ξ)]

(∇2
r − k2

p)E1z = − e

ε0
δ̃(r) cos(kpξ)Θ(ξ);

(A.28)

The last equation for the logitudinal electric field can be easily solved for the
longitudinal direction, but it also requires to be solved in the transverse direction or
rather finding the transverse dependence for the longitudinal field. The last equation
of Eq.(A.28) is a Green’s equation in the transverse coordinate

(∇2
r − k2

p)G(~r; ~r′) = δ(~r − ~r′); (A.29)

that is the Green’s function response to the Kelvin-Helmholtz and admits the solution
[30]

G(~r; ~r′) = − 1
2πK0(kp|~r − ~r′|); (A.30)

where K0 is the modified Bessel function of the second kind at 0th order. So the
longitudinal field generated by an electron inside plasma in linear approximation
can be written

E1z(r, ξ) = e

2πε0
k2
pK0(kpr) cos(kpξ)Θ(ξ). (A.31)

In a linear system we can apply the superposition principle. So we can write the field
as the convolution of the field generated by a particle and the distribution of the
particles. As for the density perturbation, if we suppose to have a separable charge
density distribution over the longitudinal and transverse component such as that
nb(r, ξ) = nb‖(ξ)nb⊥(r) we can write the field for an entire bunch as the convolution
product between
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Ez(r, θ, ξ) = Z ′(ξ)R(r)

Z ′(ξ) = − e

ε0

∫ ξ

−∞
nb‖(ξ′) cos(kp(ξ − ξ′))dξ′

R(r) =
k2
p

2π

∫ 2π

0
dθ′
∫ +∞

0
r′dr′n⊥(r′)K0(kp|~r − ~r′|);

(A.32)

where Z ′(ξ) is the first derivative of the function introduced in Eq.(A.20).
The transverse wake can be found easily using the Panofsky-Wenzel theorem [79]

∂W‖
∂r

= ∂W⊥
∂ξ

. (A.33)

where

W‖,⊥ = e
(
E + ~vb × ~B1

)
z,r

(A.34)

are the parallel and longitudinal wake functions. Since the direction of the bunch is
parallel to the z-axis, (vb ×B1)z = 0, so unless a constant the longitudinal electric
field is equal to the longitudinal wake function. Applying the Panofsky-Wenzel
theorem we obtain

∂E1z
∂r

= ∂(E1r − cB1θ)
∂ξ

. (A.35)

Therefore from Eq.(A.32)

E1r − cB1θ = Z(ξ)R′(r). (A.36)

Combining the Gauss’ law in its differential form

∂Ez
∂ξ

+ ∂

r∂r
(rEr) = ρ

ε0
; (A.37)

and the z component of Ampere’s law

1
r

∂

∂r
(rBθ) = µ0Jz −

1
c

∂Ez
∂ξ

; (A.38)

we obtain a differential expression for the transverse wakefield

∂

∂r
r (Er − cBθ) = r

ε0

(
ρ− Jz

c

)
. (A.39)

The transverse wakefield can be easily evaluated using the electrostatic approximation,
namely the assumption that the effect of the current density is negligible respect
to the effect of the electrostatic field ( ~J ≈ 0), an assumption that is rigorously
verified for low bunch charges [34]. Assuming Jz = 0, the focusing field from
Eq.(A.38) result to be only dependant from the charge density that we can evaluate
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as ρ(r, ξ) = −en1(r, ξ). Then, inserting Eq.(A.19) Eq.(A.36) inside Eq.(A.39) we
obtain

∂

∂r
[rR′(r)] = −rk2

pnb⊥(r); (A.40)

that can be integrated as

R′(r) = −
k2
p

r

∫ r

0
nb,⊥(r′)r′dr′. (A.41)

For gaussian bunch it is convenient to expand Eq.(A.21) in Taylor series in order to
separate the linear component of the field from the non linear components (that, as
we will show, introduce emittance growth)

nb⊥(r) = 1− r2

2σ2
r

+O(r4). (A.42)

Inserting Eq.(A.42) inside Eq.(A.41) we get

R′(r) = −
k2
p

2 r +
k2
p

8σ2
r

r3 +O(r5). (A.43)

The analytical solution of R(0) for a bunch with a transversely bi-gaussian particle
distribution has been already computed in literature [31] and is

R(0) =
(
k2
pσ

2
r

2

)(
ek

2
pσ

2
r/2
)

Γ
(

0,
k2
pσ

2
r

2

)
; (A.44)

where Γ(α, β) =
∫∞
β tα−1e−tdt is the Euler Gamma Function.

Integrating Eq.(A.43) we get

R(r) = R(0)−
k2
p

4 r
2 +

k2
p

32σ2
r

r4 +O(r6). (A.45)

The solution for the longitudinal plasma response functions Z(ξ) and Z ′(ξ) can be
evaluated by direct integration of the second equation of Eq.(A.32) and Eq.(A.20)
considering a gaussian form for the longitudinal bunch density as Eq.(A.21). The
solution is

Z(ξ) = −
√
π

2
c2me

e
(α)(kpσz)e−k

2
pσ

2
z/2 Im

[
eikpξ erfc

(
ξ√
2σz

+ i
kpσz√

2

)]
; (A.46)

for the longitudinal plasma response function and

Z ′(ξ) =
√
π

2
c2me

e
(α)(k2

pσz)e−k
2
pσ

2
z/2 Re

[
eikpξ erfc

(
ξ√
2σz

+ i
kpσz√

2

)]
; (A.47)

for its first derivative. It is useful to notice that assuming to evaluate the field far
behind the bunch, where ξ � −σz in our notation, hold the equalities
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Z(ξ) = −
√

2πc
2me

e
(α)(kpσz)e−k

2
pσ

2
z/2 sin kpξ; (A.48)

and

Z ′(ξ) =
√

2πc
2me

e
(α)(k2

pσz)e−k
2
pσ

2
z/2 cos kpξ. (A.49)

Another very useful equation to perform the calculations in this thesis is the following

Z ′′(ξ) = −k2
pZ(ξ). (A.50)
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Appendix B

Blow-out regime

When the perturbation introduced by the driving bunch on plasma is high (nb/n0 =
α � 1) the plasma wakefield is no more described by the linear theory, since the
second order term of Eq.(A.7) are not negligible. A complete analytical solution for
the beam-plasma interaction in blow-out regime doesn’t exist, still it is possible to
extract the main features of the accelerating and focusing field inside the blow-out
region, that is the region of interest for the acceleration of witness bunch.
The shape of the blow-out region has been discussed and modelized by several
authors [33] [50] [34]. For our purposes the main features of the blow-out region
can be summarized as follows. The shape of the blow-out region generated by a
gaussian bunch is mainly ellipsoidal. Its transverse dimension is approximately

rm ≈ 2
√

Λ/kp; (B.1)

where kp is the plasma skin depth already defined for the linear regime and Lambda
is the normalized bunch length defined as

Λ = αk2
pσ

2
r = re

2
Nb√
2πσz

; (B.2)

where re is the classical electron radius and Nb the number of electrons in the bunch.
The length of the bubble depends from another parameter, the normalized bunch
charge, that is the ratio of the beam charge to the plasma electron charge located
within a volume of a cubic plasma skin depth

Q̃ =
Nbk

3
p

n0
. (B.3)

For Q̃ < 1 the plasma preserves a quasi-harmonic behaviour, namely the blow-out
region length is ≈ λp. For Q̃ > 1 the blow-out region length is ≥ λp. The blow-out
region or bubble is surrounded by an electron sheat and in the region of the bubble
closure there is a recombination region with very high electron density. In this region
is present a sharp zero-crossing of accelerating field.
In order to describe the behaviour of the fields inside the blow-out region it is
convenient, as for linear theory, to adopt a cylindrical system of coordinates in
cylindrical symmetry. We will also apply the change of variables described by
Eq.(A.13). The r component of the Ampere’s law under these adoptions can be



written as

∂Bθ
∂ξ

= −µ0Jr + 1
c

∂Er
∂ξ

; (B.4)

while the θ component of Faraday law can be written as

∂Er
∂ξ
− ∂Ez

∂r
= c

∂Bθ
∂ξ

. (B.5)

Combining Eq.(B.4) with Eq.(B.5) we obtain for the accelerating field

∂Ez
∂r

= µ0cJr. (B.6)

From the assumption of immobile ion background follows that the current density is
generated only from the plasma and bunch electrons. In this case we are allowed
to apply the superposition principle because Eq.(B.5) is linear in Jr, so the effect
on the field of the bunch and the plasma can be considered separately. Inside the
blow-out region ~J = 0 due to the absence of electrons. From this follows that

∂Ez
∂r

= 0; (B.7)

so, the accelerating field is independent from the radial position. In the bunch head
region the blow-out is not complete so Jr 6= 0 and the field can be written as

Ez(r, ξ) = −µ0

∫ +∞

r
dr′Jr(r′, ξ). (B.8)

In order to evaluate the focusing field, as for linear theory, we write the Gauss’ law
in its differential form

∂Ez
∂ξ

+ 1
r

∂

∂r
(rEr) = ρ

ε0
; (B.9)

and the z component of Ampere’s law

1
r

∂

∂r
(rBθ) = µ0Jz −

1
c

∂Ez
∂ξ

. (B.10)

Combining Eq.(B.9) and Eq.(B.10) we obtain the following

1
r

∂

∂r
[r (Er − cBθ)] = ρ

ε0
− µ0cJz. (B.11)

Assuming total blow-out, the drive bunch electrons are effectively the only free
electrons inside the bubble. However, they do not produce a net contribution to
the source term for focusing in Eq.(B.11). Therefore, the source term in the bubble
results entirely from the static ions (ρ = n0e). By symmetry Er and Bθ = 0 at
r = 0, so the integral over r of Eq.(B.11) yields Er − cBθ inside the plasma bubble

Er − cBθ = n0e

2ε0
. (B.12)

A focusing field as in Eq.(B.12) guarantees a matching condition for the bunch that
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is [39]

σx = 4

√
2
γ

√
εn
kp
. (B.13)

The model described is commonly known as ion channel model. This is because
the focusing field in this model results to be equivalent to the field evaluated for
an uniformly charged cylinder with density ρ = n0e. The accelerating field in this
model is also evaluated as independent from the radial position (∂Ez/∂r = 0) and
its longitudinal slope is constant (∂Ez/∂ξ =const). For the demonstration of the
last feature, not mandatory for the aim of this work, we refer to the work of Lu et
al. [34].
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Appendix C

Transverse dynamics

In this appendix is given a brief introduction to the transverse beam dynamics. A
most extensive treatment of this argument is given in references [47] [80] [81].
Within a Frenel-Ferret reference frame, the transverse trajectory of a particle within
a particle accelerator can be described in its transverse motion by the followinq
differential equation

x′′(s) + k(s)x(s) = 0; (C.1)

and its equivalent in the y direction, where k(s) describes a focusing property that
is function of the longitudinal position. If the focusing property is periodic, Eq.(C.1)
is known as Hill’s equation. The general solution to Eq.(C.1) is the following

x(s) =
√
ε
√
β(s) cos(ψ(s) + φ); (C.2)

where
√
ε is a constant, β(s) is a function of the transverse position that depends

on the initial conditions of the particle, φ is an integration constant and ψ a phase
factor depending on position. From (C.2) we can derive

x′(s) = −
√
ε√

β(s)
{cos[ψ(s) + φ] + sin[ψ(s) + φ]}; (C.3)

where we defined

α = −β
′(s)
2 . (C.4)

Solving Eq.(C.2) and Eq.(C.3) for ε we get the following Eq.

ε = γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s); (C.5)

where we defined

γ(s) = 1 + α2(s)
β(s) . (C.6)

Eq.(C.5) is known as Courant-Snyder equation, ε is the Courant-Snyder invariant
and α(s), β(s) and γ(s) are known as Twiss parameters or Courant-Snyder functions.
As shown in figure C.1, Eq.(C.5) describes an ellipse in the trace space xx′ and we



have that the area of the ellipse A = πεx. The same considerations can be performed
also for the y plane. If the focusing term is decoupled in the transverse space (namely
kx is not a function of the position y and ky is not a function of the position x),
in order to describe the transverse motion of a particle, we need 6 Courant-Snyder
functions and two Courant-Snyder parameters: αx(s), αy(s), βx(s), βy(s), γx(s),
γy(s), εx and εy.

Figure C.1. Trace space ellipse described by the single particle motion.

For a group of particles, we have to relate to the particle distribution in order to
evaluate the beam motion. The motion of a charged beam is described by the
Vlasov-Maxwell equation

∂fe
∂t

+ ~ve · ∇fe − e
(
~E + ~ve

c
× ~B

)
· ∂fe
∂~p

= 0. (C.7)

The principle of equivalent beams [47] states that two beams composed of the same
particle species and having the same current and kinetic energy are equivalent in an
approximate sense if the second moments of distributions are the same. The second
moment of a quantity is defined as

σ2
a = 〈a2〉 =

∫
V
a2fedV ; (C.8)

where V is the volume in the trace space. Multiplying both sides of Eq.(C.5) for the
distribution function and integrating over the trace space, we obtain

εx,rms = γxσ
2
x + 2αxσxx′ + βxσ

2
x′ . (C.9)

The ellipse described by Eq.(C.9) is an ellipse that encloses most of the beam trace
space. From the ellipse relations expressed in figure C.1 we obtain the equation
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σx =
√
εx,rmsβx; (C.10)

and

σx′ = √εx,rmsγx. (C.11)

From Eq.(C.4)

αx = −β
′
x

2 = − 1
2εx,rms

d

dz
〈x2〉 = − 〈xx

′〉
εx,rms

= − σxx′

εx,rms
. (C.12)

Inserting Eq.(C.10), Eq.(C.11) and Eq.(C.12) inside Eq.(C.6) we obtain

εx,rms =
√
σ2
xσ

2
x′ − σ2

xx′ . (C.13)

The particle slope x′ can be written as px/pz. Assuming negligible energy spread
(constant pz), Eq.(C.13) becomes

εx,rms = 1
pz

√
σ2
xσ

2
px
− σ2

xpx
= 1
βγmec

√
σ2
xσ

2
px
− σ2

xpx
. (C.14)

So εx,rms is not constant for an accelerating beam. We define the normalized rms
emittance as

εn,x =
√
σ2
xσ

2
px
− σ2

xpx
; (C.15)

that is equivalent to the rms emittance in phase space.
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Appendix D

Envelope equation derivation

In order to derive the envelope equation we start from the definition of first and
second longitudinal derivative of rms beam radius

dσx
dz

= d

dz

√
〈x2〉 = 1

2σx
d

dz
〈x2〉 = 〈xx

′〉
σx

= σxx′

σx
; (D.1)

and

d2σx
dz2 = d

dz

σxx′

σx
= 1
σx

dσxx′

dz
= σ2

x′

σx
− σ2

xx′

σ3
x

+ 1
βzc
〈x d
dt

(x′)〉. (D.2)

For accelerating beams is convenient to express x′ as px/pz. We can write

d

dt
x′ = d

dt

px
pz

= ṗx
pz
− ṗz
pz

px
pz

= Fx
pz
− ṗz
pz
x′. (D.3)

Inserting Eq.(D.3) in Eq.(D.2) we obtain

d2σx
dz2 = σ2

x′ − σ2
xx′

σ3
x

+ 1
σx

〈xFx〉
cβzpz

− p′z
pz

σxx′

σx
; (D.4)

and considering Eq.(D.1) and rms and normalized emittance definitions we finally
get

σ′′x + p′z
pz
σ′x −

1
σx

〈xFx〉
cβzpz

=
ε2x,rms
σ3
x

=
ε2n,x
γ2σ3

x

. (D.5)

Inserting Eq.(C.10) in Eq.(D.5) we can obtain the envelope equation for the β-
function

1
2ββ

′′ − 1
4β
′2 + β2K(s) = 1; (D.6)

where K(s) is the beam perveance. As demonstrated in reference [82], it’s also
possible to derive the envelope equation as a consequence of Vlasov-Maxwell equation.
The term 〈xFx〉 corresponds to the average value of the action of all the transverse
forces acting on the beam. Usually, within the envelope equation, it is convenient
to separate the external forces acting on the beam from the internal coulombian
repulsion.



The net effect of the Coulomb interaction in a multi-particle system can be classified
into two regimes [47]:

• Collisional regime, dominated by binary collisions caused by close particle
encounters;

• Collective regime or space charge regime, dominated by the self-field produced
by the particle’s distribution that varies appreciably only over large distances
compare to the average separation of the particles.

A measure for the relative importance of collisional versus collective effects in a
beam with particle density n is the relativistic Debye length:

λD =

√
ε0γ

2kBTb
e2n

; (D.7)

where the transverse beam temperature Tb is defined as Tb = γme〈v2
⊥〉, γ is the

energy of the beam, me electron mass, e electron charge, ε0 vacuum dielectric
constant and kB the Boltzmann constant. As long as the Debye length remains
small compared to the particle bunch transverse size the beam is in the space charge
dominated regime and is not sensitive to binary collisions. Smooth functions for the
charge and field distributions can be used in this case and the space charge force can
be treated like an external applied force. The space charge field can be separated
into linear and nonlinear terms as a function of displacement from the beam axis.
The linear space charge term defocuses the beam and leads to an increase in beam
size. The nonlinear space charge terms increase also the rms emittance by distorting
the phase-space distribution. Under the paraxial approximation of particle motion
we can consider the linear component only.
For a bunched beam of uniform charge distribution in a cylinder of radius R and
length L, carrying a current I and moving with longitudinal velocity vz = βc, the
linear component of the transverse space charge field is approximately given by [83]

Er(r, ζ) = Ir

2πε0R2βc
g(ζ); (D.8)

where g(ζ) is a form factor and can be expressed as

g(ζ) = 1− ζ
2
√
A2 + (1− ζ)2 + ζ

2
√
A2 + ζ2 ; (D.9)

where ζ = z/L is the normalized longitudinal coordinate along the bunch and
A = rγ/L is the beam aspect ratio. As γ increases g(ζ)→ 1.
To evaluate the force acting on the beam one must account also for the azimuthal
magnetic field Bθ = β

c
Er. Thus the Lorentz force acting on the beam

Fr = e(Er − βcBθ) = e(1− β2)Er = eEr
γ2 . (D.10)

The attractive magnetic force, wich becomes significant at high energy, compensate
for the repulsive electric force. Therefore space charge defocusing is primarly a
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non-relativistic effect and decreases as γ−2.
In order to include space charge forces in the envelope equation, let’s start writing
the space charge forces produced by the previous fields in Cartesian coordinates

Fx = eIx

2πγ2ε0σ2
xβc

g(ζ). (D.11)

We can now evaluate the envelope equation term as

〈xFx〉
βcp

= kSC
γ3 ; (D.12)

where we have introduced the generalized beam perveance

kSC(ζ) = 2I
IA
g(ζ); (D.13)

normalized to the Alfven current IA = 4πε0mec
3

e
= 17kA.

The complete envelope equation can be written as

σ′′x + p′

p
σ′x −

1
σx

〈xFx,ext〉
cβp

=
ε2n,x
γ2σ3

x

+ kSC
γ3σx

. (D.14)

From the envelope equation we can identify two regimes of beam propagation:
emittance dominated and space charge dominated. We can define a laminarity
parameter as the ratio of the space charge term as

ρ = I

2IAγ
σ2
x

ε2n
. (D.15)

ρ� 1 corresponds to a beam dominated by space charge, while ρ� 1 corresponds
to a beam dominated by emittance.
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Appendix E

Architect code

The simulations presented in this work have been performed with a time-explicit
hybrid kinetic fluid code called Architect [84] [85].
The evolution of the beam driven scheme is solved by a particle in cell (PIC)
approach with fluid equations. The PIC approach is used to treat the evolution of
the bunch in the 6-dimensional phase space. The kinetical treatment of the bunch
allows to analyze the phase space evolution and the emittance growth of the system.
Nevertheless, allows a quite simple interface of Architect code with particle tracking
codes.
The background plasma electrons are modelled as a cold relativistic fluid. The
electromagnetic fields that move the particles both of the fluid and beams are
generated by the sum of the currents of the beams and the background plasma.
Electromagnetic fields and fluid equations are solved in cylindrical symmetry on a
moving window following the bunch.
The code loop is synthesized in Fig. 4.1.
The single time step can be divided into five subsequent steps.
The first step consists in deriving the bunch current projecting bunch particles in
the r − z grid. The second step consists in computing the background current from
the fluid number density and momentum. The third step corresponds to a finite
difference time domain integration of Maxwell’s equations with a Yee scheme, the
source terms represented by the current are known from the previous steps. We
notice that Architect computes the total electromagnetic fields, the sum of bunch
and background induced fields. The fourth step integrates continuity and fluid
momentum equations by using the just computed electromagnetic fields, in order to
update number density and momentum. The fifth and final step consists in particle
time advancement.
The Architect code has been already cross validated with the PIC code ALaDyn [86].



Figure E.1. Architect code loop from reference [86].
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