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[...] dà ancora uno sguardo fuori dalla finestra, una brevissima occhiata, per l’ultima sua

porzione di stelle. Poi nel buio, benché nessuno lo veda, sorride.

[Il deserto dei tartari - Buzzati]
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Abstract

The advent of the new Atacama Large Millimeter/submillimeter Array (ALMA) has opened

a new window onto the high redshift Universe, shedding light on the cold interstellar

medium (ISM) of normal star forming galaxies at redshift z > 5 [Capak et al., 2015,

Watson et al., 2015, Knudsen et al., 2017, Barišić et al., 2017, Laporte et al., 2017b]. The

information collected so far through observations that map the rest-frame emission in the

ultraviolet (UV) and infrared (IR) have started to paint a complex picture: while the ALMA

view of the Hubble Ultra Deep Field (HUDF) has detected the most massive star forming

galaxies [Dunlop, 2016], with only one source at z > 3.5, reflecting the rapid drop-off of

high-mass galaxies with increasing redshift, these sources may be simply the tip of the ice-

berg of a larger population of fainter dusty systems. These systems are very interesting as

their star formation rates are comparable to those of UV selected galaxies. The comparison

between faint dusty galaxies and the unobscured population may be key to understand the

factors that determine the dust content in galaxies with comparable properties. Faint dusty

star forming galaxies are difficult to detect, particularly at high redshift, and the only two

sources that have been detected in their rest-frame IR continuum at z > 6 so far are gravi-

tationally lensed: A1689-zD1, a magnified galaxy at redshift ∼ 7.5 with an estimated dust

mass of the order of 107M� [Watson et al., 2015, Knudsen et al., 2017], and the galaxy

A2744 YD4 with z = 8.38 identified in the ALMA Frontier Fields, with an estimated dust

mass of ∼ 6 × 106M� [Laporte et al., 2017a]. These observations have shown that ALMA

has the potential to detect dust emission at z > 6 and that future observations in conjunction

with the upcoming James Webb Space Telescope will be able to trace the onset of chemical

enrichment and the emergence of dust in the Universe.

In this original work, we have attempted to improve our understanding of the dust

content and its effects in z > 5 galaxies. To accomplish this goal, we have combined the
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information provided by multi-wavelength observations of high redshift galaxies with the

results of cosmological hydrodynamical simulations [Maio et al., 2010, Dayal et al., 2014]

coupled with a state-of-the-art chemical evolution model with dust [Valiante et al., 2009,

de Bennassuti et al., 2014]. This semi-numerical model allows us to account for both dust

production from stellar sources (Supernovae and Asymptotic Giant Branch stars) and for

dust reprocessing in the ISM, including dust destruction in interstellar shock waves and

grain growth in dense clouds.

In its first application, the model has been used to investigate the origin of the observed

dust mass in the z ∼ 7.5 galaxy A1689-zD1 [Watson et al., 2015, Mancini et al., 2015]. We

find that while stellar sources dominate the dust mass of small galaxies, the higher level

of metal enrichment experienced by galaxies with stellar mass Mstar > 109M� allows

efficient grain growth, which provides the dominant contribution to the dust mass. Even

assuming maximally efficient supernova dust production, the observed dust mass of the

z = 7.5 galaxy A1689-zD1 requires very efficient grain growth. This, in turn, implies that

in this galaxy the average density of the cold and dense gas, where grain growth occurs,

is comparable to that inferred from observations of QSO host galaxies at similar redshifts

[Valiante et al., 2009, 2012, 2014]. Although plausible, the upper limits on the dust con-

tinuum emission of galaxies at 6.5 < z < 7.5 show that these conditions must not apply

to the bulk of the high-redshift galaxy population. Indeed, more recent and deeper ALMA

observations of A1689-zD1 suggest that the thermal dust emission comes from two spatial

components, and that the morphological structure is similar to what is observed with HST,

pointing to a perturbed dynamical state, perhaps indicative of a major merger or a disc in

early formation [Knudsen et al., 2017].

We then extended the analysis to investigate how dust properties affect the appearance

of galaxies in the redshift range 5 ≤ z ≤ 8. Using a simple extinction model, we can

relate the ISM dust content predicted for each galaxy by the model with direct observables

[Bouwens et al., 2015, 2016], such as the number density of objects with a given UV

magnitude (the UV Luminosity Functions, LF) and the magnitude dependence of their

UV spectral slope β (the Color Magnitude Relation, CMR). In addition, our simple model

allows us to estimate the infrared luminosity due to dust thermal emission. This provides

additional constraints on the mass and properties of dust, given the possibility to compare
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our predictions with the far infrared continuum emission from a sample of normal star

forming galaxies at z ∼ 5 [Capak et al., 2015, Barišić et al., 2017, Faisst et al., 2017].

We find that observations require a steep, Small Magellanic Cloud-like extinction curve

and a clumpy dust distribution, where stellar populations younger than 15 Myr are still

embedded in their dusty natal clouds. Investigating the scatter in the colour distribution

and stellar mass, we find that the observed trends can be explained by the presence of two

populations: younger, less massive galaxies where dust enrichment is mainly due to stellar

sources, and massive, more chemically evolved ones, where efficient grain growth provides

the dominant contribution to the total dust mass. Computing the IR/UV luminosity ratio

(the so-called IRX) as a function of the UV colour β, we find that all but the dustiest model

galaxies follow a relation shallower than the Meurer et al. [1999] one, usually adopted to

correct the observed UV luminosities of high-z galaxies for the effects of dust extinction.

As a result, using the Meurer et al. [1999] relation to infer the dust correction from a given

value of β might lead to overestimate the star formation rate.

Finally, we compare our predicted IRX-β relation with observations of galaxies at 5.1 ≤

z ≤ 5.7 by Capak et al. [2015], which have been argued to be significantly more dust-

poor and less IR-luminous than lower z galaxies with comparable colours. We find that

our simulated galaxies that follow a steep attenutation curve are marginally compatible

with the ALMA detected sources by Capak et al. [2015], but that simulated galaxies with

IRX compatible with the upper limits inferred for the ALMA undetected sources have

significantly bluer colours than observed, consistent with their low dust content. Hence, our

study confirms that it is difficult to explain the low IRX of the Capak et al. [2015] sources,

unless their slopes have been overestimated or the dust temperature (hence the FIR flux) has

been underestimated. Interestingly, both of these hypotheses have been recently confirmed

by new observational works, that find systematically bluer colours [Barišić et al., 2017],

and that normal high-redshift galaxies have a warmer infrared spectral energy distribution

compared to average z < 4 galaxies that were used as prior in previous studies [Faisst

et al., 2017]. These new data relieve some of the tension between theoretical predictions

and observations [Mancini et al., 2016, Narayanan et al., 2017].

The thesis is organized as follows: in Chapter 1 we present some basic properties of the

ΛCDM cosmological model, we review our current understanding of the formation of the
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first stars and galaxies, and the best observational strategies that have been used to detect

galaxies at z > 5 with current observational facilities. In Chapter 2 we present the semi-

numerical model and we predict the dust content of normal star forming galaxies at z > 6.

The results have been published in M. Mancini, R. Schneider, L. Graziani, R. Valiante,

P. Dayal, U. Maio, B. Ciardi, L. K. Hunt, 2015, MNRAS, 451, L70. In Chapter 3 we

compare the predicted evolution of galaxy colours at 5 ≤ z ≤ 8 with existing data and infer

important constraints on their dust properties and its distribution in the interstellar medium.

The results of this study have been published in M. Mancini, R. Schneider, L. Graziani, R.

Valiante, P. Dayal, U. Maio, B. Ciardi, 2015, MNRAS, 462, 3130. Finally, in Chapter 4 we

draw our main conclusions.
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Chapter 1

Introduction

The definition of what is a first galaxy is not trivial. In fact, there are different mechanisms

that shape the properties of the interstellar medium and the conditions that enable star for-

mation. These mechanisms are difficult to disentangle, particularly at very high redshifts.

A necessary condition to allow the gas to cool and condense is the presence of a dark mat-

ter potential well. But the minimum dark matter halo mass required to host a first galaxy

depends on our modelling of the star formation process.

To host long lasting star formation, the dark matter potential well should be deep

enough to retain the gas that can be heated by photons emitted by the stars to tempera-

tures higher than 104 K, that is the typical virial temperature of a Lyman-α cooling halo. It

should be able to retain the gas accelerated by supernova (SN) explosions. And, finally, it

should not be isolated from its environment, in order to be able to attract new gas from its

surroundings.

The first requirement depends on our understanding of the formation and evolution of

the first, Population III (Pop III) stars. In particular, the initial mass function (IMF) of

these stars, that describes their mass distribution at their formation, is still highly debated

([Bromm and Yoshida, 2011]). The Pop III IMF is crucial to understand the impact that

this first stellar population has on its environment and, more generally, on the formation and

evolution of the first cosmic structures through mechanical and radiative feedback effects.

If the Pop III IMF is similar to the IMF that is observed in the Local Universe, we expect

that mini-haloes (haloes with total mass M ∼ 106 M�) may be able to host long lasting star

formation ([Bromm and Yoshida, 2011]). However, many other theoretical studies suggest
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that the Pop III IMF is biased towards higher mass stars, i.e. it is top-heavy. This is a

consequence of the highly inefficient H2 cooling, the only available cooling mechanism

in the metal-free star forming gas (see Section 1.2 for a more detailed description). If the

IMF of Pop III stars is top-heavy, radiative feedback is able to prevent the formation of

additional stars, through the photo-dissociation of H2 molecules and the photo-evaporation

of the gas. Furthermore, mechanical feedback due to energetic SN explosions could deprive

the halo of its gas, halting star formation (Bromm and Loeb 2003, Greif et al. 2007 but see

also Whalen et al. 2008 for somehow different conclusions).

In this first Chapter, we briefly review our current understanding of the formation of the

first cosmic structures, and the observational strategies used to observe the first galaxies.

1.1 The formation of the first haloes

The formation of the first cosmic structures is driven by the gravitational instability of the

inhomogeneous density field emerging from the Inflationary epoch. Although there is still

debate on what are the energy scales involved in this evolutionary epoch, and on how long

has it lasted, it is commonly thought that Inflation only lasted for a brief period of time

(t ∼ 10–33s) [Barkana and Loeb, 2001]. This event produced a semi homogeneous density

field that is reflected in the homogeneity of the Cosmic Microwave Background (CMB)

radiation. In this Section, we will briefly describe how the first cosmic structures have been

formed from the growth of these primordial perturbations. For the sake of simplicity, we

will restrict the formulation to a standard ΛCDM universe with the following cosmological

parameters: ΩM = 0.30, ΩΛ = 0.7, critical baryon density ρb/ρc = Ωb = 0.04, and a

Hubble constant H0 = 70 km/s/Mpc.

We define the density fluctuation δ over the mean field ρ̄ as:

δ(x, t) = ρ(x)/ρ̄ – 1, (1.1)

where x is the comoving position. Under the assumption of small perturbations, the differ-

ential equation that describe the time evolution of the density perturbation can be written

as:

∂2δ

∂t2
+ 2H∂δ

∂t = 4πGρ̄δ, (1.2)
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where we have neglected the pressure term since we restrict our study on the evolution of

dark matter perturbations. We expect to have two solutions and, since H(t) > 0, one of

them will describe the ’growing’ solution and the other will describe the ’dumped’ one.

Expanding Eq. (1.1) in Fourier components,

δk =
∫

δ e(–ik·x) d3x, (1.3)

it is possible to understand the scales of a growing or of a dumped density perturbation.

This kind of formulation of δk is very convenient since Inflation generates Gaussian per-

turbations of the density field, where all the modes are independent.

The mean amplitude of the modes is:

〈δkδ
∗
k′〉 = (2π)3P(k)δ(3)(k – k′), (1.4)

where k and k′ are the modules of the modes k and k′, respectively. The standard Infla-

tionary model predicts a power spectrum:

P(k) ∝ kn (1.5)

with n ∼ 1. Unfortunately, the amplitude of the power spectrum is not predicted by any

model of Inflation. Therefore, it has to be estimated through some observables.

To select only the scale at which the amplitude of the perturbations is measured, the

field is usually convolved with a filter function. The most used one is a top hat filter, which

is defined as:

W(|x – x′|) =
3

4πR3 if |x – x′| < R

0 elsewhere.
(1.6)

With this choice of the filter function we are measuring the mass fluctuation of spheres with

a given radius R. The variance is therefore expressed as:

σ2(R) =
∫ ∞

0

dk
2πk

2P(k)
[
3j1(kR)

kR

]2
, (1.7)

where j1(x) = (sin(x) + xcos(x))/x2. σ8 = σ(R = 8 Mpc) is used to quantify the

normalization of the power spectrum of the inflationary field and can be measured in in-

dependent ways. For instance, it can be determined by galaxy-galaxy correlation [e.g.

Tegmark et al., 2004, Cole et al., 2005], fluctuations in the CMB [Spergel et al., 2003,
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2007, Komatsu et al., 2009], gravitational lensing statistics[e.g. Hoekstra et al., 2006, Ben-

jamin et al., 2007, Kitching et al., 2007], cluster mass function [e.g. White et al., 1993,

Bahcall and Fan, 1998, Reiprich and Böhringer, 2002, Wen et al., 2010], Ly-α forest[Jena

et al., 2005, McDonald et al., 2005] and galaxy peculiar velocities [Feldman et al., 2003].

The values of n and σ8 published by the Planck Collaboration et al. [2016] are:

n = 0.9645 ± 0.0049,

σ8 = 0.831 ± 0.013.
(1.8)

If we consider a homogeneous sphere with mass M and density equal to the current

average matter density, ρm, its radius R would be:

RM =
(
3M
4πρm

)
. (1.9)

Hence, it is possible to express the fluctuations of the density field as a function of the mass

M of these spheres:

σM = σR(RM). (1.10)

This function plays a crucial role in estimating the number of collapsed haloes.

It is possible to express the final perturbation amplitude as a function of the initial power

spectrum as:

Pfin(k) = T(k) ·Akn, (1.11)

where T(k) is known as transfer function. The numerical solution of the equation provides

a good fit for T(k) for a Cold Dark Matter model [Bardeen et al., 1986]:

T(k) =
ln(1 + 2.34q)

2.34q
[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]–1/4 , (1.12)

where

q = k
Ω0h2

e–Ωb(1+
√
2h/Ω0), (1.13)

and the correction for the effects of the baryonic density has been taken into account

[Sugiyama, 1995].

Since T(k) is an increasing monotonic function of k ∝ 1/l, where l is the corresponding

size scale of the mode k, it is evident that the growth of smaller scale perturbations is

favoured over the larger scale in a ΛCDM universe.
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As the Universe expands and cools, ionized hydrogen atoms start to capture elec-

trons, hence becoming neutral (the process called recombination). During this evolutionary

phase, matter is pulled by the gravitational force and pushed by the photons that interact

with the partially ionized gas. At redshift z ∼ 1200, the photons dump baryonic perturba-

tions, producing the so called baryon acoustic oscillations since they happen on a scale of

the order of the sound horizon (k ∼ 0.01Mpc–1). On larger scales, baryonic perturbations

grow following the power spectrum of dark matter fluctuations.

When the matter density perturbation δ becomes of order unity, the linear treatment is

no longer suitable to describe the successive stages of structure formation.

It is possible to solve the problem in spherical symmetry, with an initial density set by

the linear regime. This is a very brutal approximations, but it allows us to describe the

physical conditions and the processes involved in the formation of the first haloes.

At the first stages of perturbation growth, it is possible to use a Newtonian equation,

with an additional pressure term given by the dark energy:

d2r
dt2

= H2
0 ΩΛ r – GM

r2
, (1.14)

where r is the physical radius, H0 is the Hubble constant, M is the mass enclosed in the

radius r, and the initial velocity field is given by ṙ0 = H(t)r.

If the total energy on the right side is negative, the perturbed region eventually collapses

to a point. However, a slight deviation from exact symmetry is to be expected. Hence the

matter - instead of collapsing into a point - undergoes a violent relaxation process, that

brings the halo into virial equilibrium. Considering the virial theorem U = –2K, where U

and K are the potential and kinetic energies of the gas in the final state, the final overdensity

can be expressed by the fitting formula

∆c = 18π2 + 82d – 39d2, (1.15)

where d = Ωz
m – 1 is evaluated at the redshift of collapse, so that:

Ωz
m =

Ω(1 + z)3

Ωm(1 + z)3 + ΩΛ + (1 – Ωm – ΩΛ)(1 + z)2
. (1.16)

The virial radius of the collapsed halo is:

rvir = 0.784
(

M
108h–1M�

)1/3 [
Ωm
Ωz
m

∆c
18π2

]–1/3 (1 + z
10

)–1
h–1kpc, (1.17)
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at which there is a corresponding circular velocity,

Vc =
(
GM
rvir

)1/2
= 23.4

(
M

108h–1M�

)1/3 [
Ωm
Ωz
m

∆c
18π2

]1/6 (1 + z
10

)1/2
km/s. (1.18)

It is also possible to define the virial temperature:

Tvir =
µmpV2

c
2k = 1.98 × 104

(
µ

0.6

) ( M
108h–1M�

)2/3 [
Ωm
Ωz
m

∆c
18π2

]1/6 (1 + z
10

)1/2
K,

(1.19)

where µ is the mean molecular weight, and mp is the proton mass. µ depends on the degree

of ionization of the primordial gas as well as on its composition. If the primordial gas

is fully ionized µ = 0.59, otherwise µ = 0.61 in case of single ionization of the helium

component. Finally, the binding energy is:

Eb = 1
2
GM2

rvir
= 5.45×1053

(
M

108h–1M�

)5/3 [
Ωm
Ωz
m

∆c
18π2

]1/3 (1 + z
10

)1/2
h–1erg. (1.20)

So far we focused on the integrated properties of dark matter halos and of their baryonic

content. To understand how matter is distributed within a dark matter halo, it is necessary

to carry out numerical simulations. A fitting function to simulation results was provided by

Navarro et al. [1996, 1997], and it express the radial distribution of dark matter density:

ρDM(r) =
3H2

0
8πG(1 + z)3 Ωm

Ωz
m

δc
cNx(1 + cNx)2

, (1.21)

where x = r/rvir, cN is the concentration parameter and the characteristic density δc is

δc =
∆c
3

c3N
ln(1 + cN) – cN/(1 + cN)

. (1.22)

The concentration parameter depends also on the halo mass M and redshift [Barkana and

Loeb, 2010].

Right after recombination, the gas temperature is locked to the CMB temperature by

Compton scattering that arises from the residual ionization of the gas. Eventually, when the

free electron fraction drops, at a redshift ∝ 1000 (Ωbh2)2/5, the gas temperature decouples

from the CMB [Peebles, 1993]. After decoupling, the gas can collapse into DM halos and

virialize. During the virialization, the gas undergoes various compressions and shocks that

reheat it to the dark matter halo virial temperature. Hence, to understand the formation of

the first stars, it is important to understand the gas cooling properties in these first collapsed

structures.
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Figure 1.1. Cooling function accounting for hydrogen, helium, metals, H2 and HD molecules as a

function of temperature, for gas having a hydrogen number den.sity of 1cm–3, the H2 and HD

fractions are fixed to a value of 10–5,10–8 respectively. The different lines represent different

gas metal fractions. Adapted from Maio and Viel [2015].

The first requirement for a bound object to collapse is to have a mass higher than the

Jeans mass:

Mj = 3.08 × 103
(
Ωmh2

0.13

)–1/2 (
Ωbh2

0.022

)–3/5 (1 + z
10

)3/2
M�. (1.23)

In a perturbation with mass greater than Mj the pressure force is not counteracted by gravity

and the structure collapses. Thus Mj sets a threshold for the scales which can collapse. The

second fundamental requirement is that the cooling timescale doesn’t exceed the Hubble

time.

In Figure 1.1, the cooling rate is shown as a function of temperature [taken from Maio

et al., 2010]. The different colors and line styles represent different values of gas metallicity.

For very metal poor gas, cooling is dominated by H2 and HD cooling for temperature



CHAPTER 1. INTRODUCTION 15

T < 104 K while collisionally excited HI and HeII atomic lines dominate the cooling at

higher temperatures. The sharp increase of the cooling efficiency at T ∼ 104K is given by

the hydrogen Lyman α line, while the feature at 105K is given by the HeII.

If we consider the virial temperature of the halos as a proxy for the temperature of

the gas, the shape of the cooling function of the primordial gas allows us to identify two

classes of dark matter halos: minihaloes, with Tvir < 104 K where the gas can cool only

via molecular transitions (H2 and HD) and Lyman-α cooling haloes with Tvir ≥ 104 K.

1.2 Star formation in mini-halos

In the bottom-up structure formation scenario predicted by the ΛCDM cosmological model,

the first haloes that virialize are the small-mass mini-haloes, with Tvir < 104K. Hence, the

molecular content of these haloes is very important to compute the gas cooling timescale,

and to assess whether cooling is efficient enough to allow the formation of the first stars.

At redshift z & 400, H2 is formed via the H+
2 formation channel that leads to a cosmic

mean abundance of fH2/H ∼≈ 10–7. At redshift z < 100, the CMB radiation becomes so

weak to allow the formation of H–. These ions form H2 molecules through this chain of

reactions:
H+ e– → H– + hν

H– +H→ H2 + e–.
(1.24)

Consider both these formation channels, several studies the primordial cosmic abundance

of H2 to be in the range 10–6 ≤ fH2/H ≤ 10–4 [e.g. Lepp and Shull, 1984, Palla et al.,

1995, Haiman et al., 1996, Anninos and Norman, 1996, Tegmark et al., 1997]. Thus, the

fate of the virialized gas in a mini-halo crucially depends on its ability to rapidly increase its

H2 content during the collapse phase, allowing further gas cooling. Tegmark et al. [1997]

estimated the evolution of the H2 abundance in halos with different masses. For each

virialization redshift, they found that there is a critical halo mass, Msf , above which the gas

can cool and form stars. At z ∼ 20, Msf ∼ 106M�, which corresponds to Tvir ∼ 103 K.

The formation of the first stars requires the gas to collapse, increasing its central density,

until the central region is able to form a first hydrostatic core, which then grows in mass

by gas accretion. These processes are very complex and again rely on the balance between

thermal (and eventually turbulent) support and self-gravity. In general, cooling is efficient
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when the cooling time is shorter that than the free fall time [e.g. Schneider et al., 2002],

and the gas temperature decreases with increasing density. Hence, the efficiency of gas

cooling sets the characteristic mass scale of the newly formed stars. Pop III stars form

in metal-free mini-halos, with a very low gas ionization fraction (of the order ∼ 10–4).

Under these conditions, the only efficient coolant is H2. Roto-vibrational lines allow the

gas to cool down to a temperature of T & 200K and a density of 104cm–3, when the level

populations have reached their local thermodynamic equilibrium. This phase is generally

referred to as the loitering phase [Bromm et al., 2002] and terminates when the mass of the

innermost dense region exceeds the mass of the most massive stable hydrostatic gas cloud,

the Bonnor-Ebert mass [Bonnor, 1956, Ebert, 1955, Abel et al., 2002],

MBE ' T3/2n–1/2M�. (1.25)

For n ∼ 104cm–3 and T ∼ 200K this mass has a value of MBE ∼ 1000M�. When

this critical mass is reached, the protostellar cloud decouples for its environment, stopping

further mass accretion, and continues to collapse until a central small hydrostatic core is

formed, with a mass ∼ 0.01 M�. The resulting stellar mass is set by the efficiency of gas

accretion onto the central core (it is formed from the inside-out Smith e.g. 2012, Vorobyov

et al. e.g. 2013, DeSouza and Basu e.g. 2015, Sakurai et al. e.g. 2016).

This picture has been confirmed by numerical simulations that start from cosmological

initial conditions. Figure 1.2 shows the phase diagram of a gas cloud with primordial com-

position [Yoshida et al., 2006]. The labels identify important phases during the evolution.

In (A) the gas density is too low for efficient cooling, while in (B) H2 cooling sets in and it

enables the gas to evolve to lower temperatures. In (C) the gas reaches the loithering phase

and the corresponding mass scale is ∼ 103M�. Thereafter, the prostellar cloud continues

to collapse and - although its properties change along the evolution (through phase D - G)

- no additional fragmentation episodes occurr in the simulations. More recently, however,

higher resolution simulations that can evolve the collapsing cloud beyond the density limit

shown in Fig. 1.2 have shown that instabilities can lead to fragmentation of the high den-

sity accretion disc that forms around the central hydrostatic core, opening the possibility to

form low-mass Pop III stars [Stacy et al., 2010, Clark et al., 2011, Greif et al., 2011, 2012,

Turk et al., 2012, Stacy et al., 2016].

Additional important processes may affect the mass value of the newborn Pop III star.
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Figure 1.2. Gas distribution of gas temperature as a function of density for a cloud with primordial

composition and a central density of 5×1015cm–3. The letters represent some typical conditions

that a cloud undergo in the collapse. (A) after the gas virialization the cloud has a temperature

higher than > 1000K and H2 molecules start to form. In (B) the H2 molecules start to efficiently

cool the gas to a temperature of 200K until the point (C) is reached. In (C) the gas reaches the

density independent local thermodynamic equilibrium. In (D) the H2 is formed with three body

reaction cooling further down the gas. In (E) the cloud density is high enough to start shielding

the emission decreasing the cooling rate. In (F) the lines are excited by collisional processes

and finally in (G) the temperature are high enough to start dissociate the molecular hydrogen.

Adapted from Yoshida et al. [2006].
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Among these, radiative feedback from the growing central protostar can limit further gas

accretion, leading to masses of the order of a few tens of solar masses, [McKee and Tan,

2008, Hosokawa et al., 2011, Stacy et al., 2012, Susa, 2013, Susa et al., 2014, Hosokawa

et al., 2016].

Our current understanding is that Pop III stars were predominantly massive but may

have formed with a broad range of stellar masses, from ∼ 10s to ∼ 1000M�. This is con-

sistent with a detailed statistical analysis made by Hirano et al. [2014], Hirano and Bromm

[2017] through complex multi-scale simulations starting from cosmological initial condi-

tions and exploring the fate of hundreds of star forming mini-halos at very high redshift.

Figure 1.3 shows the mass spectrum of Pop III stars that emerges from the simulations.

Since massive Pop III stars are short-lived, their environment will be rapidly enriched

and it is foreseen that even the deepest observations with the James Webb Space Telescope

(JWST) will tend to see low-metallicity Pop II systems [Rydberg et al., 2010]. Metal-free

non-rotating stars with progenitor masses in the range [140 – 260] M� are predicted to ex-

plode as powerful pair-instability supernovae [PISN Heger and Woosley, 2002]. Individual

PISNe are bright enough to be detected with JWST, but the challenge will be their low

surface density, such that a wide area needs to be searched multiple times to detect these

transients [Hummel et al., 2012, Pan et al., 2012, Whalen et al., 2013, Wang et al., 2017].

If such a search were able to identify a high redshift PISN, this will constrain the high-

mass end of Pop III stars. Alternatively, we may attempt to constrain the Pop III IMF and

the nature of the first SNe by means of stellar archeology, i.e. interpreting the statistical

distribution and surface enrichment pattern of the metal poor Galactic Halo stars [see e.g.

Graziani et al., 2017, de Bennassuti et al., 2017, and references therein].

1.3 Star formation in Lyman-α cooling halos

In the bottom-up ΛCDM scenario, the number density of Lyman-α cooling halos is low

at redshift z > 15 and it starts to rise in the redshift range z ∈ [10, 15] [Miralda-Escudé,

2003, Gao et al., 2007]. At these redshifts the first generation of stars has already formed,

emitting UV radiation, releasing the first heavy elements through powerful supernova (SN)

explosions, and forming the first black hole remnants. This complex interplay of mechani-
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Figure 1.3. IMF of Pop III according to the 2D radiation hydrodynamics simulations of [Hosokawa

et al., 2011], applied to 110 different mini-halos. The red, blue, and black histograms represent

the different paths of proto-stellar evolution: P1 denotes Kelvin-Helmholtz contracting proto-

star(red), P2 an oscillating proto-star (blue), and P3 super-giant proto-star (black). P1hd refers

to the cases in which the gas clouds are formed by HD cooling and evolve on low-temperature

tracks. P3p (predicted) indicates the same cases as P3, except that the final masses are calculated

from a correlation between the properties of the cloud and the resulting stellar mass. Adapted

from Hirano et al. [2014].
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cal and radiative feedback processes [Ciardi and Ferrara, 2005] most probably delayed the

formation of subsequent stars by ∼ 107yr [e.g. Johnson et al., 2007]. In particular, UV

photons in the Lyman-Werner band photo-dissociate H2 molecules thereby inhibiting pri-

mordial gas cooling. In these conditions, gas cooling and star formation is possible only

if metals produced and released by a previous generation of stars have already enriched

the star forming gas. In addition, Lyman-α cooling halos are likely the ones that have a

large enough binding energy to retain or recollect the gas after the first SNe have exploded.

Hence, we expect that Lyman-α cooling halos predominantly form Pop II stars [Bromm,

2013].

Unfortunately, it is still difficult to probe the physical properties of the interstellar

medium and of the stellar populations hosted by galaxies at z > 6, even with the most

advanced observational facilities. As we will discuss in Section 1.4, for the vast majority

of normal star forming galaxies at z > 6 we must infer the star formation rate, the stellar

mass and age through rest-frame UV data obtained through deep observations of the Hub-

ble Space Telescope (HST). Hence, we have to rely on theoretical models to predict the

properties of these first protogalaxies.

Very likely, the star formation in Lyman-α cooling halos occurs under physical condi-

tions that are very different from the ones described above. Both in-situ (from stars formed

in progenitor systems) and ex-situ (from stars formed in nearby systems) metal pollution

may have enriched their interstellar medium (ISM) with gas phase metals and solid dust

grains formed in the ejecta of the first SNe [Todini and Ferrara, 2001, Nozawa et al., 2003,

Schneider et al., 2004, Bianchi and Schneider, 2007, Schneider et al., 2012a, Marassi et al.,

2014, 2015]. In addition, the gas has been partially ionized by the UV radiation and by SN

shocks. Star formation likely occurs in turbulent, chemically enriched, magnetized molec-

ular clouds with a degree of complexity that is somehow similar to what we expect in the

Local Universe [Bromm and Yoshida, 2011]. It is therefore very important to understand

what chemical enrichment path these galaxies have followed.

Regarding the infall of enriched gas from the intergalactic medium (IGM), the picture

is not yet clear, as recently reviewed by Finlator [2017]. Metals ejected from star form-

ing mini-halos had surely polluted the IGM, as suggested by different simulations[Yoshida

et al., 2004, Tornatore et al., 2007a, Greif et al., 2007, Xu et al., 2016c, Gnedin et al.,
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2017], but observations indicate that the CIV abundance declines at redshift higher then 6,

suggesting that most of the enrichment of this element has been done since z ∼ 6 [Becker

et al., 2009]. In more massive haloes, the heavy elements can still unload in the IGM by ra-

diation pressure winds and SNe explosion [Madau et al., 2001, Mori et al., 2002, Wada and

Venkatesan, 2003, Ritter et al., 2015, Jeon et al., 2015, Jaacks et al., 2017, and references

therein]. In principle, it is possible to understand the chemical enrichment history com-

paring the metallicity evolution with the star formation history. The current data suggest

a delayed enrichment from the IGM [Hultman Kramer et al., 2010]. Cosmological simu-

lations of structure formation suggest that the distributions of metals into the IGM is very

patchy leaving large volume of gas unpolluted [Bertone and Stoehr, 2005, Tornatore et al.,

2007a, Pallottini et al., 2014]. Hence, simulations suggest that Pop III star formation may

occur even at redshift z < 6 [Scannapieco et al., 2005, Johnson, 2010, Xu et al., 2016b].

However, chemical enrichment inside the galaxies occurs very rapidly after the first

episode of star formation [Schneider et al., 2006, Salvadori et al., 2007], as confirmed

by numerical simulations [Greif et al., 2010, Ritter et al., 2016, Jaacks et al., 2017, and

references therein]. The presence of gas-phase metals and dust grains in star forming gas

clouds have a large impact on the cooling efficiency of the gas and on the nature of the stars

that are ultimately formed (the so-called chemical feedback).

Fig. 1.1 shows the temperature and metallicity dependence of the cooling function.

The presence of metals provides a very efficient cooling channel at gas temperature T <

104K, in fact, it overcomes the cooling rate given by the H2 and HD even at metallicities

Z ∼ 10–5Z�. Metal cooling is due to fine structure lines at low temperature (mostly OI,

CII, FeII and SiII) and collisional ionization at higher temperatures.

Studies of the properties of star forming clouds at very low metallicities have pro-

posed that the thermal evolution is dramatically affected by the presence of metals (through

molecular cooling of OH, CO, H2O or through fine structure emission of OI and CII)

and that, when Z ≥ Zcrit ∼ 10–4Z�, low-mass Pop II stars can form [Bromm et al., 2001,

Bromm and Loeb, 2003, Santoro and Shull, 2006].

In addition, it has been suggested that the presence of dust grains in star forming clouds

increases the cooling efficiency by enabling H2 formation on the surface of the grains and,

at much higher densities, by opening a new cooling channel due to collision excitation
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Figure 1.4. Temperature evolution of prestellar cloud cores with metallicities Z/Z� =

0, 10–6, 10–5, 10–4, 10–3, 10–2, 10–1 and 1 as a function of the central number density calcu-

lated by means of one-zone models [Omukai et al., 2010]. The dashed diagonal lines indicate

values of constant Jeans masses. Adapted from Omukai et al. (2005).

of dust grains followed by dust thermal emission [Omukai, 2000, Schneider et al., 2002,

Omukai et al., 2005, Schneider et al., 2006, 2012b].

The relative importance of molecular, metal and dust cooling depends on the density,

the initial metallicity and the dust content of the collapsing core.

In Figure 1.4 we show the prestellar temperature evolution as a function of the core den-

sity computed with a one-zone model [Omukai et al., 2005]. The different lines represent

different initial metallicities and the model also includes the effects of dust. Recalling that

the minimum fragmentation mass scale is set by the Jeans mass (or Bonnor-Ebert mass) at

the inflection point of the equation of state, the comparison between the minima achieved

by clouds at different metallicities with the diagonal lines allows us to estimate the frag-

mentation mass as a function of metallicity.

In particular, the inspection of Figure 1.4 shows that there are different regimes of frag-

mentation: at low densities, in the primordial gas (that we have already discussed above)

and when the metallicity is Z < 10–4 Z�, molecular cooling dominates the evolution and

high-mass fragments are formed, with MBE ∼ 102 – 103M�. When Z ≥ 10–4 Z�, the
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dominant coolants become OI and CII cooling but - being effective at relatively low densi-

ties - the corresponding fragment masses are still relatively large (MBE ∈ 10 – 100M�). At

high densities, when Z ≥ 10–5 Z�, dust cooling becomes efficient and a new set of minima

appears. Since the densities are much larger, the corresponding fragments masses are very

small, between 10–2 and 1M�. Hence, dust cooling enables the formation of low-mass and

long-lived Pop II stars even at very low metallicities, when Z ≥ 10–5Z� [Schneider et al.,

2002, 2004, 2006, 2012b,a].

Metal enrichment is highly inhomogeneous and cosmological simulations that have

attempted to model the process and to estimate the rate of formation of Pop III stars as a

function of redshift have shown that late Pop III star formation is still possible even at z ≤ 6

in pockets of pristine gas [Tornatore et al., 2007b, Wyithe and Cen, 2007, Ricotti et al.,

2008, Maio et al., 2010, 2011, Muratov et al., 2013, Pallottini et al., 2014, Starkenburg

et al., 2016, Xu et al., 2016c,a]. However, we expect that in Lyα cooling haloes whose

progenitors are Pop III star forming mini-halos, metal enrichment has been very efficient.

As a result of chemical feedback, most of these systems host metal-poor Pop II stars, with

an initial mass function similar to the one observed in the Local Universe [de Bennassuti

et al., 2014, Graziani et al., 2017, Marassi et al., 2014].

1.4 Observing the first galaxies

The detection of high redshift galaxies often relies on spectral properties of the hydrogen

gas. In fact, hydrogen provides two important spectral features that are widely used to mea-

sure the redshift of the sources, either spectroscopically or by least expensive photometric

techniques. Depending on the techinque adopted for their identification, high-z galaxies

usually fall in two classes: Lyman-α emitters (hereafter LAE) and Lyman break galaxies

(LBG).

LAE are galaxies that show a very prominent Lyman-α emission produced by hydrogen

atoms in their ISM which have been excited by the UV radiation emitted by young stars.

Lyman-α emission is a very narrow feature that can be easily detected with narrow band

filters, giving a very precise identification of the redshift of the source. LBG are identified

through the so called Lyman-break technique, via the distinctive “step” introduced into their
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UV continuum emission by the effect of neutral hydrogen absorption, both in the ISM of

the galaxy and in the IGM along the line-of-sight to the source. The great advantage of the

Lyman-break selection method is that it can be applied using imaging with broad-band fil-

ters, such as Wide Field Camera 3 (WFC3) on board of the Hubble Space Telescope (HST).

This allows the selection of large samples of potentially high-redshift galaxies, that are then

spectroscopically followed-up to confirm their redshift. Very deep near infrared surveys,

such as the Hubble Ultra Deep Survey (HUDF [Beckwith et al., 2006]) and Extremely Deep

Survey (XDF Illingworth et al. [2013]) have been conducted using this technique.

It is important to stress that these two methods can efficiently select galaxies with young

stellar populations that produce UV radiation, and with a small dust content in the ISM,

to allow a fraction of this emitted radiation to escape. Indeed, observations done in the

[3–8]µm range using the IRAC camera on board of the Spitzer space telescope have allowed

to measure the Balmer spectral break in UV selected high-z galaxies (at z > 5 the rest-

frame 3646Å break is observed at > 2.2µm). The strength of this break allows us to infer

the age of the stellar population, with important implications for estimating the galaxy

stellar mass.

In Fig 1.5 [taken from Dunlop et al., 2013] we show the redshifted spectral energy

distribution (SED) of a young z ∼ 7 galaxy (the adopted age and metallicity of this galaxy

are 0.5 Gyr and 0.2 Z�). The coloured shaded areas illustrate how the SED is sampled by

the optical (i775, z850) and near infrared filters (Y105, J125, H160) in the HST ACS and

WFC3 cameras, respectively, and by Spitzer IRAC at 3.6µm and 4.5µm. It is clear that

the observations are able to probe both the Lyman and the Balmer breaks. The figure does

not show nebular emission lines, that are expected to become particularly important for

low-metallicity galaxies, and which can complicate the measurement of the strength of the

Balmer break [Schaerer and de Barros, 2009]. With the advent of the James Webb Space

Telescope it will be possible to observe the wavelength range between WFC3 and IRAC

filters, that is currently observable only with ground-based K-imaging for the brightest

objects. This will allow to have a better census of high-z galaxies, including systems with

older ages and less prominent UV emission.

Finally, the advent of the Atacama Large Millimetre Array (ALMA) has opened the

possibility to select galaxies via sub-mm/mm observations of their redshifted thermal dust
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Figure 1.5. Typical spectrum of a LBG at redshift 7, where the Lyman and Balmer breaks have

been identified by the arrows. The coloured shaded regions show HST and Spitzer filters. This

figure illustrate the spectral coverage of current instruments on the restframe UV of high-z

LBG. Adapted from Dunlop et al. 2013.

emission. Although the very first primeval galaxies will not be detectable by this approach,

early chemical enrichment appears to be efficient and both dust and molecular emission

have been detected in objects at z > 6 [see the review of Carilli and Walter, 2013]. The

first sources to be observed have been the host galaxies of bright quasars [e.g. Mortlock

et al., 2011, Wu et al., 2015, Willott et al., 2010, Venemans et al., 2015, Bañados et al.,

2016]. The rest-frame IR emission in these galaxies is powered by a strong starburst, with

star formation rates of hundreds of solar masses per year, illuminating ISM dust masses

that have been estimated to be as big as ∼ 108M� [e.g. Valiante et al., 2014]. As we will

thoroughly discuss in the rest of the thesis, although we might expect dust to become less

prevalent at extreme redshifts, dust enrichment can become very rapid and it is important

to consider its effect on the UV properties of high-z galaxies.

Recently, using a mosaic of 45 ALMA pointings, Dunlop and collaborators have ob-

tained a homogeneous image of the HUDF at 1.3 mm, the so-called ALMA Deep Field

[Dunlop, 2016]. A picture showing some of the ALMA detections on top of the HUDF

is presented in Figure 1.6. The analysis has led to the discovery of 16 sources, all with
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Figure 1.6. Colour (i 775 + Y105 + H160) HST postagestamp images of the 16 ALMA detected

galaxies in the HUDF, with the contours from the ALMA 1.3-mm imaging overlaid. Each

stamp is 6 × 6 arcseconds in size, with north to the top and east to the left. Adapted from

Dunlop [2016].

a secure galaxy counterpart and redshift. Their physical processes are well constrained

and all of these sources appear to be massive star forming galaxies, with a medium red-

shift of < z >= 2.15 [Dunlop, 2016]. Very likely, this is only the bright-end of dusty

star forming galaxies, and uncertainties remain for fainter objects, which are responsible

for the bulk of star formation at high redshift. One way to overcome their faintness is to

exploit the sensitivity of ALMA and the power of gravitational lenses. For this reason, an

observational campaign has been carried out to point ALMA on the Frontier Fields im-

aged by Hubble and Spitzer [Gonzalez-Lopez et al., 2016, González-López et al., 2017b,a,

Laporte et al., 2017b,a]. These have been designed to exploit the lensing power (magnifi-

cation > 5 – 10) of six massive clusters, and have enabled to detect high-z galaxies that are

10–50 times intrinsically fainter than any seen before. Indeed, the only two sources that

have been detected in their thermal dust continuum at z > 6 are gravitationally lensed: the

first one is the galaxy A1689-zD1 at z = 7.5 found by Watson et al. [2015] and recently

re-observed with deeper ALMA data by Knudsen et al. [2017]. A1689-zD1 is strongly

lensed by a factor of 9.3, it has an estimated stellar mass of ∼ 1.7 × 109M�, a total star

formation rate (SFR) of ∼ 12M�/yr, and a dust mass comparable to that of the Milky Way,
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Mdust ∼ (3 – 6) × 107M� [Watson et al., 2015, Knudsen et al., 2017]. Given the relatively

small Hubble time at z ∼ 7.5, explaining the origin of the dust mass in this galaxy is a chal-

lenge for theoretical models [Michałowski, 2015, Mancini et al., 2015]. In Chapter 2 we

will discuss this issue in great details. The second source that has been recently identified

in the ALMA Frontier Fields is the galaxy A2744 YD4 with z = 8.38, despite the modest

(∼ 2) gravitational amplification [Laporte et al., 2017b]. Analysis of the available photo-

metric data indicate that A2744 YD4 has a stellar mass of 2× 109M�, a star formation rate

of ∼ 20M�/yr and a dust mass of 6 × 106M�. Although limited to only two sources, the

above results show that ALMA has the potential to detect dust emission within the heart

of the reionization era and thus further measures of this kind, in conjunction with JWST,

offers the exciting prospect of tracing early star formation and onset of dust enrichment in

the Universe.

1.4.1 The UV luminosity function at z > 5

One of the most important quantities that characterize the high-z Universe is the UV lu-

minosity function (hereafter LF) and its evolution with redshift. The LF is the number

density of objects with a given observed magnitude or luminosity. LF are very important

to estimate the total flux of ionizing photons at a given redshift, and they are also useful

to understand from what class of objects the majority of the ionizing flux comes. Further-

more, LFs are also very important to estimate the cosmic star formation density, since the

UV emission traces the ongoing star formation, and they also give insight on the hierarchi-

cal formation of the galaxies. A good description of the shape of the LF is given by the

Schechter function:

n(M)dM = 0.92φ∗
(
100.4(M

∗–M))α+1
exp

[
–100.4(M

∗–M)] dM, (1.26)

where n(M) is the number density of objects at a given MUV, φ∗ is the normalization,

M∗ is the magnitude in which the number density of objects drops and α describes the LF

dependence for MUV < M∗. These parameters are derived from data fitting [e.g. McLure

et al., 2009, Oesch et al., 2010, Bouwens et al., 2015, Finkelstein et al., 2015a, Castellano

et al., 2010, McLure et al., 2010, 2013, Atek et al., 2015, Laporte et al., 2015, Bowler et al.,

2014, 2015] and φ∗, n are usually expressed in units of cMpc–3.
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Figure 1.7. [left panel] Evolution of the luminosity function as a function of redshift. The points

represent the observations while the curves represent the Schechter fit. [right panel] Comparison

of the redshift evolution of the normalization of the Schechter function. The blue and red shaded

areas represent the .68 percentile for the galaxies in the magnitude bin of MUV = –19 and

MUV = –21 respectively. Although the Schechter fit captures the magnitude dependence of

the LF, it is necessary to probe the faint end to better constrain its parameters. In particular,

over/underestimating the values of the normalization φ might lead to over/underestimating the

ionizing flux or the universal star formation rate density. Hence, it is crucial to have deep

surveys in the UV and a careful modelling of the high redshift galaxies emitted flux. Both

panels are taken from Finkelstein et al. [2015a].
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Figure 1.8. Redshift evolution of the CMR as in Bouwens et al. [2014]. The various colors represent

data obtained at different redshifts. Note that to underline that a common trend is preserved with

redshift, the β values have been rescaled by the factors reported in the legenda.

In Figure 1.7, we show the evolution with redshift of the LFs as reported by Finkel-

stein et al. [2015a]. The comparison of the different coloured lines shown in the right

panel illustrates the redshift evolution of the bright-end of the LF, with fainter objects be-

coming progressively more common with respect to brighter ones with increasing z. The

implication is that the most common sources of UV light at these redshifts have likely

been small, UV faint galaxies. Hence, it is mandatory to correctly estimate the faint-end

of the Schechter function in order to constrain the ionizing emissivity and to measure the

star formation rate density at those redshift [Bromm and Yoshida, 2011]. In addition, the

values of the Schechter parameter φ∗, which strongly impact the estimated number of faint

galaxies, is very uncertain at redshift higher than 7, although a common trend is established

among different authors (see the right panel of the Figure). Unfortunately, probing the faint

end of the luminosity function is somehow limited by the sensibility of the HST, and new

important constraints will be obtained by JWST.

1.4.2 The colour-magnitude relation of z > 5 galaxies

Another important observable that provides important information on the nature of the stel-

lar populations of high-z galaxies and on the properties of their ISM is the Color Magnitude

Relation (CMR). It correlates the spectral index β, used to describe the UV spectrum of a



CHAPTER 1. INTRODUCTION 30

star forming galaxy, with the UV magnitude MUV. Spectral synthesis models suggest that

for a Pop II/I star forming galaxy the expected value of β is in the range [–2.3, –2.5] [e.g.

Meurer et al., 1999, Bouwens et al., 2014]. Hence, if lower values are observed, the cor-

responding stellar population is expected to be very metal poor [e.g. Bromm and Yoshida,

2011, Dunlop et al., 2012]. On the other hand, higher values of β imply that the ISM of the

galaxy is likely to be already chemically enriched [e.g. Meurer et al., 1999, Bouwens et al.,

2014, Mancini et al., 2015, Cullen et al., 2017] since the observed β values are influenced

by dust extinction. In fact, Meurer et al. [1999] suggested to compare the observed value of

β with that expected for the stellar population (the intrinisc one) as a technique to estimate

the amount of extinction suffered by the stellar light. Although this method is very conve-

nient to estimate the extinction using only UV data, its applicability is still debated both at

low [Talia et al., 2015, Forrest et al., 2016] and high redshifts [Mancini et al., 2016, Cullen

et al., 2017, Narayanan et al., 2017]. We will thoroughly discuss this point in Chapter 3 of

this thesis.

Figure 1.8 illustrates the evolution of the CMR with redshift inferred by Bouwens et al.

[2014]. The functional dependence of β from MUV
(

∂β
∂MUV

)
appears to be independent of

redshift, although with we expect overall bluer colors with increasing redshift (the normal-

ization is a function of the redshift z) [Bouwens et al., 2016]. The functional dependence

of β with MUV is mostly linear, and - although some authors have suggested a broken

power-law [Bouwens et al., 2014] - the data is still not sufficient to rule out a simple linear

dependence [Rogers et al., 2014].

Many attempts have been made to explain this trends using numerical simulations

[e.g. Dayal et al., 2014, Khakhaleva-Li and Gnedin, 2016b], semi-analytical models [e.g.

Wilkins et al., 2011] and semi-numerical techniques [Mancini et al., 2016, Cullen et al.,

2017, Narayanan et al., 2017]. Chapter 4 will be devoted to a full discussion on the red-

shift evolution of high-z galaxy colours and the implication for the nature of dust in these

galaxies, and its spatial distribution.
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Chapter 2

The dust mass in z > 6 normal

star-forming galaxies

Observations at millimeter (mm) and sub-millimeter (sub-mm) wavelengths have provided

convincing evidence of rapid dust enrichment at high redshift (for a recent review see [Car-

illi and Walter, 2013] and references therein). Dust masses as large as ∼ 108M� have been

inferred for 5 ≤ z ≤ 7 QSO host galaxies, requiring a very efficient dust formation channel

that must operate in less than 1 Gyr of cosmic evolution. Theoretical studies have shown

that although stellar sources of dust, including both Supernovae (SN) and Asymptotic Giant

Branch (AGB) stars, can be fast enough to significantly contribute to high redshift dust en-

richment [Valiante et al., 2009], the observed dust masses require efficient grain growth in

the dense phase of the interstellar medium [ISM, Michałowski et al., 2010, Valiante et al.,

2011, 2014]. Until very recently, sub-mm/mm continuum observations at z ∼ 6 – 7 have

been limited to “extreme” galaxies, QSO hosts or strong starbursts, which are characterized

by star formation rates ranging from several hundreds to thousands of solar masses per year.

However, at these high redshifts we expect the bulk of the galaxy population to be charac-

terized by “normal” galaxies, which form stars at rates from a few to a few tens of solar

masses per year. Deep ALMA and Plateau de Bure Interferometer (PdBI) follow up obser-

vations have mostly provided upper limits on the dust mass of such galaxies[Kanekar et al.,

2013, Ouchi et al., 2013, Ota et al., 2014, Schaerer et al., 2015, Maiolino et al., 2015], with

the exception of the gravitationally lensed z = 7.5 Lyman Break Galaxy (LBG) A1689-

zD1, whose dust continuum emission has been recently detected with ALMA (Watson et
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al. 2015). The estimated dust mass is 4+4
–2 × 107M� , showing that dusty galaxies have

already formed at z > 7.

In this paper, we investigate early dust enrichment in “normal” star forming galaxies at

z ≥ 6. We use the output of a cosmological hydro-dynamical simulation which allows the

prediction of the gas, stellar and metal content of galaxies along their hierarchical assembly

[Maio et al., 2010]. We then post-process the simulation output with a semi-analytical

chemical evolution model with dust [Valiante et al., 2009, 2011, 2014, de Bennassuti et al.,

2014] to estimate their dust masses. A similar semi-numerical approach has been followed

by [Dayal et al., 2010b], who considered the contribution to dust enrichment of SN and

estimate the Far InfraRed (FIR) detectability of high-redshift galaxies classified as Lyman-

α emitters (LAE). More recently, [Hirashita et al., 2014a] have been able to put constraints

on the dust production rate by SN using the upper limit on the dust continuum emission

of Himiko, one of the best-studied LAE at z ∼ 6.6 [Ouchi et al., 2013]. Here we attempt

to improve on these previous studies by considering dust enrichment from SN, AGB stars

and grain growth in the ISM with the aim of assessing their relative contribution to the

total mass of dust in the ISM of z ≥ 6 galaxies. We compare the model predictions with

currently available upper limits on the dust mass at 6 ≤ z ≤ 7.5 and discuss the implications

posed on the models by the newly discovered dusty galaxy at z = 7.5 [Watson et al., 2015].

The paper is organized as follows: in section 2.1 we give a brief presentation of the

semi-numerical model; in section 2.2 we introduce the sample of observed galaxies that

we have collected from literature papers, and in section 2.3 we discuss the main results.

Finally, in section 2.3 we draw our main conclusions.

2.1 The model

In this Section is described the semi-numerical approach developed to compute the dust

mass amount in high-z (z ∈ [6, 7]) galaxies’ ISM. The approach is meant to combine reli-

able structure formation histories of galaxies, derived from the hydrodynamical simulation

with cosmological scales already used in Maio et al. [2010], Campisi et al. [2011], Sal-

vaterra et al. [2013], Dayal et al. [2013], with the theoretical prediction of the chemical

enrichment of high-z galaxies, through the semi analytical code (hereafter SAM) used in
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the works of Valiante et al. [2009, 2012, 2014], de Bennassuti et al. [2014]. This kind

of approach is both flexible and reliable because it shrinks the number of free parameters

used to model the structure formation, thanks to the numerical simulation, but still allows

to explore the physical conditions of the ISM by varying the free parameters of the semi-

numerical code. Therefore allowing the understanding of the various conditions that lead

to the enrichment of dust in the ISM.

In particular selecting the galaxies in the redshift range z ∈ [6, 7], we derived the star

formation histories and the values of global quantities such as the total gas mass and the

total metal mass for each galaxy along its merger tree. The description of the numerical

simulation and the technique used to derive the above quantities is described in Section

2.1.1.

For each of the galaxies in the simulation sample we used the SFR, the metallicity and

the total gas mass in its ISM to compute the input of the SAM an therefore compute for each

galaxy’s ISM the dust content. This second part of the procedure is described in Section

2.1.2.

2.1.1 The numerical simulation

We used a ΛCDM cosmological simulation already presented in Maio et al. [2010], here

will be described only the relevant features and the simulation set-up, please consider re-

ferring to the Maio et al. [2010] paper for further details.

The simulation that has been used is performed with a custom version of GADGET2

code [Springel, 2005]. GADGET2 code uses a TreePM algorithm to compute the dynami-

cal evolution of the dark matter while to solve the hydrodinamical equations related to the

barionic component of the universe uses an SPH approach.

In the overdense regions on the domain, the code computes the star formation ac-

counting for the stellar lifetimes using the lifetime function from Padovani and Matteucci

[1993]. This allows to relax the instantaneous recycling approximation when the metal

enrichment has to be computed. The metal yields assigned to each SNe are taken from

Woosley and Weaver [1995] for core-collapse SNe, from Thielemann et al. [2003] for

type-Ia SNe and from Heger and Woosley [2002] for pair instability SNe. Instead the

AGBs’ metal yields for each species of metal are taken from van den Hoek and Groenewe-
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gen [1997]. At each given time the initial mass function (IMF) used to compute both the

metals produced and the lifetime account for the metallicity (Z) of the starforming gas as

described in Tornatore et al. [2007a]. In particular the stars that form in metal critical en-

vironment (Z∗ < Zcr = 10–4Z�) are chosen to have a Salpeter IMF with masses in range

M∗ ∈ [100, 500]M� and are labeled as population III stars (POPIII). For stars that form in

an higher metallicity environment the IMF considered is a Sapeter with masses in range

[0.01, 100]M�, these kind of stars are labeled POPII/I. Furthermore the SN explosions’

feedback is taken into account by modelling the multi-phase interstellar medium (ISM)

as in Springel and Hernquist [2003] with some additional development accounting for the

diffusion of metals in the ISM to take into account of gas mixing presented in Maio et al.

[2011].

To account for dust cooling the code takes into account of Hydrogen, Helium and Deu-

terium as shown in Yoshida et al. [2003], Maio et al. [2009] and is able to compute the

cooling from resonant and fine structure lines of metals as in Maio et al. [2007].

The prescriptions above are very useful to track the POPIII POPII/I transition that oc-

curs at very high redshifts. Indeed Tornatore et al. [2007b] using the same simulation

suggest that the POPIII star formation peak at z ∼ 6 but continues up to redshift ∼ 2.5

although with a very low efficiency (sSFR = 10–5 M�yr–1Mpc–3).

Finally a uniform, redshift-dependent UV background produced by quasars and galax-

ies is also assumed [Haardt and Madau, 1996].

The cosmological parameters adopted for the simulations are:

ΩM ΩΛ Ωb h n σ8

0.3 0.7 0.04 0.7 1 0.9

where ΩM,ΩΛ are the energy densities of the matter and the dark energy respectively,

Ωb is the barionic fraction, h is the Hubble constant in unit of 100 km/s/Mpc, n and σ8

are the index of the power law and the standard deviation1 of the primordial linear density

fluctuation power spectrum. The chosen box size is 30 h–1cMpc containing 3203 dark

matter particles and the same amount of barionic (SPH) particles and the simulations started

1considering a top hat filter with a radius of 8h–1 Mpc
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at z = 100. This means that the mass of a dark matter particle is 6 × 107 h–1M� while for

a SPH particle is 9 × 106 h–1M�.

To derive the gravitational bound objects we used the friend of friend (FOF) algorithm

embedded in the GADGET2 code together the SUBFIND algorithm. Galaxies are recog-

nized to be bound objects that contain at least 32 total particles considering both barionic

(SPH + stars) and dark matter ones.

Furthermore to avoid contamination of spurious sources we used for this study only

galaxies that have at least 10 stellar particles. In our galaxy sample the above choice means

that the galaxies have at least 145 total particles.

In this study we restrict the analysis to two redshift point: 6.14, 7.33. The number of

galaxies at the redshift 6.14 is 1863 and drops to 1000 at redshift 7.33.

To better compare the simulated galaxies with the observed one we compute the in-

trinsic ultraviolet emission of each galaxy to neglect the galaxies that falls below the de-

tectability. Under the hypothesis that dust extinction is not important for galaxies near the

UV detection limit of Hubble space telescope (HST) (that is MAB
UV < –18) we only consid-

ered intrinsic emission to perform the sample cut (we will relax this hypothesis in chapter

3).

To compute the intrinsic spectral energy distribution (SED) of each galaxy in the sample

we sum up the spectrum of each stellar particle embedded. In doing so we assigned to each

stellar particle a synthetic spectrum computed with StarBurst99 [Leitherer et al., 1999,

Vázquez and Leitherer, 2005] choosing the population spectrum with the closest metallicity

and age.

Finally we computed the MUV using the formula:

MUV = –2.5 log10

[
L(λUV)
4πD2

λ2

c

]
– 48.6 (2.1)

where L is the luminosity for a given wavelength in units of erg/s–1/Å, D is the source

distance and is chosen to be 10 kpc since we are considering absolute magnitudes and

finally λUV = 1500Å. We chose this wavelength because it is closer to the filters used

from high redshift surveys and it is far from both the ionizing and Layman Werner (LW)

radiation.

Considering now only the galaxies that have an intrinsic UV magnitude lower than



CHAPTER 2. DUST IN HIGH-Z NORMAL STAR FORMING GALAXIES 36

MUV < –18 (brighter that the detection limit of HST) we obtain a sample of 102 galaxies

at redshift ∼ 7 and 225 at redshift ∼ 6.

The average ISM metallicities of these galaxies at both redshift are 5 × 10–3Z� ≤ Z ≤

0.1Z�, the mass averaged age of their stellar populations is 40Myr ≤ tage ≤ 200Myr and

finally their stellar mass is 7.5 ≤ log10[Mstar] ≤ 9.5. Moreover their star formation rates

are lower than 30M� yr–1, hence is legitimate to refer to them as "normal" galaxies

The dust content in a galaxy strongly depends on its star formation and metal enrich-

ment and merging histories. Dust is also reprocessed in the ISM as, for instance, dust grains

shuttering in the ISM thanks to SNe explosion[see for example Hirashita et al., 2016, and

reference therein]. Unfortunately the approach used in this work doesn’t allow to take into

account of these processes, hence we will consider only star formation, metal enrichment

and merging histories to compute the dust content of each galaxy taking into account of

destruction processes re-scaling their efficiency with the star formation (see 2.1.2 for the

description of the dust formation/evolution model). Please consider referring to Graziani

[2017, in prep], Aoyama et al. [2017] for a better description of the dust formation/evolution

in high redshift galaxies.

As I mentioned before to derive the input for the SAM code we need to track for each

galaxy in the simulation its ancestors to reconstruct the merger tree. Hence I developed a

code which is able to track all the galaxies’ particles present at the considered end snapshot

up the previous redshift tracking the id of the parents. This allows us to obtain a merger

tree for each galaxy in the final snapshot. With the newly computed merger tree we were

able to describe all the SAM required quantities for each galaxy in the simulated sample:

the star formation histories SFR(z), the gas mass Mgas(z), and the metal mass MZ(z).

2.1.2 The semi-analytical code

The SAM used in this work is the one developed in the work of Valiante et al. [2009] then

applied to semi analytic merger tree models of high redshift QSOs by Valiante et al. [2011,

2012, 2014] and recently improved by de Bennassuti et al. [2014] to explain dust and metal

content in the Milky Way and its progenitors. Please consider referring to this paper if

you need a detailed explanation of the code, we will here refer only to the equation and

processes regarding the dust formation since we used the metallicity and the hierarchical
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scenario as computed from GADGET2 (see 2.1.1).

The equation describing the dust mass evolution is,

Ṁd(t) = –Zd(t)SFR(t) + Ẏd(t) – (1 – Xc)
Md(t)
τd

+Xc
Md(t)
τacc

(2.2)

where Md is the dust mass, Zd is the dust to gas ratio in the ISM (i.e. Md/Mgas), Xc is the

cold gas mass fraction chosen to be 1/22 in this work and then further improved in chapter

3, τd and τacc are the dust destruction timescale and the dust accretion timescale and they

will be discussed below.

The time dependent term Ẏd(t) refers to the the dust production rate and it depends on

the stellar IMF and on the adopted model of yields . We compute it as follows:

Ẏd(t) =
∫ mup

m(t)
md(m, Z)Φ(m)SFR(t – τm)dm, (2.3)

where md is the dust mass yield (which is the dust mass per unit of star formation rate

produced by a star with initial mass m and metallicity Z), Φ(m) is the stellar IMF, and

m(t) is the mass of a star with a lifetime t.

To be consistent with the simulation used we chose a Salpeter IMF in the mass range

[0.01, 100]M� for POPII/I. We neglect the contribution of POPIII stars since their presence

at the analysed redshifts is sub dominant as pointed out also in Dayal et al. [2010b].

The yields adopted are the following:

• van den Hoek and Groenewegen [1997], Zhukovska et al. [2008] for stars with

masses m < 8M�

• Woosley and Weaver [1995], Bianchi and Schneider [2007] for stars with masses

m ∈ [12, 40]M�, these yields take also into account of dust destruction in SNe reverse

shock.

• we interpolate between the previous yields to compute the dust yields for stars with

masses m ∈ [8, 12]M�.

• we considered the stars with masses m > 40M� to end its life collapsing as black

holes without polluting their environment.

2This is motivated by the fact that averaging over simulated galaxies with different masses this value range

from 0.38 to 0.56 Vallini et al. [2012]
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Finally the last two terms in the equation (τd, τacc) represent the dust destruction by

interstellar shock waves and the dust accretion from gas metals in the cold and dense part

of the ISM. We described these terms as in de Bennassuti et al. [2014] but we slightly

modify the accretion term. In fact, given the gas phase metallicity Z, the temperature of

the molecular phase of the ISM (note that we refer as molecular phase the dense and cold

phase of the ISM despite its molecular content) Tmol and the density nmol, the accretion

term is written as,

τacc = 20Myr ×
( nmol
100cm–3

)–1 (
Tmol
50K

)–1/2 (
Z
Z�

)–1
= τacc,0

(
Z
Z�

)–1
(2.4)

where we have assumed that grains which experience grain growth have a typical size of

∼ 0.1µm [Hirashita et al., 2014a]. It is important to stress that the gas phase metallicity

Z is defined as the difference between the ISM metallicity Zism and the dust to gas ratio

D. Hence, the accretion saturates when Zism ∼ D and the gas-phase metal abundance is

exhausted. For a gas at solar metallicity, with nmol = 103cm–3 and Tmol = 50K, the

accretion timescale is τacc,0 = 2Myr [Asano et al., 2013]. Smaller grain sizes increase

the grain surface area per unit of dust mass, thus shortening the accretion timescale [Kuo

and Hirashita, 2012]. Since the simulation has not the resolution to trace the temperature

nor the density of molecular of the ISM we chose to factor out a common average value of

accretion timescale τacc,0 and explore the dependence of the results to its different values.

2.2 The observed sample

To compare our theoretical prediction with observations we collected a sample, which is

summarized in Table 2.1, of the galaxies from the literature. For 8 out of the 9 galaxies,

upper limits on the dust continuum emission have been obtained by means of deep ALMA

and PdBI observations [Kanekar et al., 2013, Ouchi et al., 2013, Ota et al., 2014, Schaerer

et al., 2015, Maiolino et al., 2015]. The z = 7.5 LBG A1689-zD1 was the most distant

UV-selected galaxy for which a dust continuum detection has been obtained with ALMA

[Watson et al., 2015, Knudsen et al., 2017] before the recent discovery of Laporte et al.

[2017b]. Unfortunately, galaxies with stellar masses comparable with A2744-YD4 [La-

porte et al., 2017b] are not present in our relatively small simulated volume at z ∼ 7.5.

Nevertheless, comparing the inferred dust mass and redshift of A2744-YD4 (Table 2.1)
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Name z MUV Log Mstar Log Mdust

mag [M�] [M�]

A1703-zD1a 6.800 -20.3 9.2 ± 0.3 < 7.36

z8-GND-5296a 7.508 -21.4 9.7 ± 0.3 < 8.28

HCM6Ab 6.560 -20.8 9.5 ± 0.3 < 7.61

IOK-1c 6.960 -21.3 9.7 ± 0.3 < 7.43

Himikod 6.595 -21.7 9.9 ± 0.3 < 7.30

BDF-3299e 7.109 -20.44 9.3 ± 0.3 < 7.02

BDF-512e 7.008 -20.49 9.3 ± 0.3 < 7.36

SDF-46975e 6.844 -21.49 9.8 ± 0.3 < 7.38

A1689-zD1f 7.500 -19.7 9.0 ± 0.3 7.51 ± 0.2

A2744-YD4g 8.38 – 9.3+0.20
–0.19 6.7+0.66

–0.16

Table 2.1. Physical properties of the galaxy sample collected from the literature. Lensed objects

have been corrected using the appropriate magnification factor (µ = 4.5, 9 and 9.3 for HCM6A,

A1703-zD1 and A1689-zD1, respectively). All the quantities are computed assuming conver-

sion factors, scaling relations and dust properties presented in the text. References: a: Schaerer

et al. [2015]; b: Kanekar et al. [2013]; c: Ota et al. [2014]; d: Ouchi et al. [2013]; e: Maiolino

et al. [2015]; f: Watson et al. [2015]; g Laporte et al. [2017b].
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with Figure 2.2, it is clear that this observation requires efficient dust accretion.

For all these galaxies, the star formation rates estimated from the UV luminosity3

range between 4.1 and 22.4 M�/yr. Following Schaerer et al. [2015], we derived the stellar

masses using the mean relation between the UV magnitude and the stellar mass obtained

by the same authors from detailed fits of the spectral energy distribution of a sample of

z ∼ 6.7 LBGs, including nebular emission and dust attenuation:

Log(Mstar/M�) = –0.45 × (MUV + 20) + 9.11. (2.5)

Dayal et al. (2014) obtain a similar Mstar–MUV relation on the basis of a theoretical model,

which also accounts for the rapid decline of the UV luminosity with stellar ages.

Assuming that the dust is optically thin in the rest-frame FIR, the upper limits on the

dust mass have been obtained taking into account the effect of the Cosmic Microwave

Background (CMB) on the intrinsic dust emission [da Cunha et al., 2013]. In Table 2.1

we report dust masses adopting a dust temperature4 Tdust,0 = 35 K and a dust emissivity

kνres = k0(λ0/λres)β with k0 = 0.77 cm2/gr, λ0 = 850 µm and β = 1.5 [Ota et al., 2014].

The dust mass can increase/decrease by ∼ 0.4 dex for variations in the dust temperature in

the range 25K ≤ Tdust,0 ≤ 45K. In addition, the poorly constrained dust properties make

the value of the emissivity coefficient to be adopted very uncertain [see Table 1 in Hirashita

et al., 2014a]. At fixed dust temperature, we find that variations in kν among values adopted

in the literature [Weingartner and Draine, 2001] or applied to submm observations of high-

z galaxies [Michałowski et al., 2010, Valiante et al., 2014, Watson et al., 2015] introduce

an additional ∼ 0.3 dex uncertainty in the estimated dust mass.

2.3 Results

Figure 2.1 shows a comparison between the predicted dust masses of the simulated galaxies

and the observations. We show the dust mass as a function of the stellar mass for all the

simulated galaxies with intrinsic MUV ≤ –18 at z = 6.33 and z = 7.14. For each galaxy,

3 We have adopted a conversion factor of KUV = 1.15 × 10–28 M� yr–1/erg s–1Hz–1, as appropriate for a

stellar population with metallicity 0.3 Z� < Z < Z� formed at a constant SFR with a Salpeter IMF in the

range [0.1 – 100]M� at age ∼ 300 Myr [Madau and Dickinson, 2014].
4Tdust,0 is the dust temperature heated by a stellar radiation field at z = 0 [da Cunha et al., 2013].
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Figure 2.1. Predicted dust masses of the simulated galaxies as a function of the stellar mass. For

each galaxy, the dust mass without (with) grain growth is shown by a square grey (circle blue)

point (see text). The adopted grain growth timescale is τacc,0 = 2 Myr. In the lower panels, the

reverse shock destruction of SN dust is neglected. For the sake of comparison, we have reported

the same data points shown in Table 1 in the two panels: Schaerer et al. [2015] (squares),

Maiolino et al. [2015](triangles) and Watson et al. [2015] (circle point).



CHAPTER 2. DUST IN HIGH-Z NORMAL STAR FORMING GALAXIES 42

3.0

4.5

6.0

7.5

L
og

M
d
u
st
/M

⊙

SN + AGB

AGB

τacc,0 = 2 Myr

8 10 12 14
z

3.0

4.5

6.0

7.5

L
og

M
d
u
st
/M

⊙

SN + AGB

AGB

τacc,0 = 0.2 Myr

Figure 2.2. Redshift evolution of the dust mass for the simulated galaxies with stellar masses in the

range Log Mstar/M� ≥ 9. Each line represents the average contribution of all the galaxies with

the shaded area indicating the dispersion among different evolutionary histories. The lower,

intermediate and upper lines show the contribution to the total mass of dust of AGB stars,

stellar sources and grain growth with an accretion timescale of τacc,0 = 2 Myr (upper panel)

and 0.2 Myr (lower panel). The galaxy A1689-zD1 and A2744-YD4 are shown respectively as

a red dot and green star [Watson et al., 2015, Laporte et al., 2017b].
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the light grey point represents the mass of dust that is produced by stellar sources (AGB

stars and SNe) after grain destruction and astration (eq. 2.2 without grain growth), and the

blue point is the total dust mass, including the effect of grain growth in the ISM. Here we

have assumed a grain growth timescale τacc,0 = 2 Myr. Due to the lower metallicities,

grain growth is not efficient at stellar masses Mstar < 108M�. In these small galaxies, we

predict that all the existing dust mass is entirely contributed by stellar sources. Galaxies

with larger stellar masses have experienced a larger degree of chemical enrichment and the

gas metallicities are high enough to activate efficient grain growth, although with a large

scatter. Yet, due to the time required to enrich the ISM with metals, the bulk of the dust

mass in the most massive galaxies is grown between z ∼ 7 and z ∼ 6. In fact, while at z ∼ 7

all the simulated galaxies have Mdust < 2 × 106 M�, at z ∼ 6 there are several galaxies

with dust masses 107M� ≤ Mdust ≤ 108 M�. Note that the observational data points, that

we have reported in both panels for the sake of comparison, refer to galaxies which span a

redshift range 6.5 ≤ z ≤ 7.5 (see Table 1).

These results depend on the adopted stellar dust yield and grain growth timescale. In the

lower panel of Figure 2.1 we show the effect of reducing the efficiency of grain destruction

by the SN reverse shock: if all the grains survive the passage of the reverse shock, the

effective SN dust yields is ∼ 20 times larger and the resulting dust masses contributed by

stellar sources increase by a comparable factor. These SN yields bracket the observations

of dust masses in SN and SN remnants obtained with the Herschel satellite (see Fig. 6

in Schneider et al. [2014]). The figure shows that although the total dust mass is larger,

even with maximally efficient SN dust enrichment the predicted dust masses at z ∼ 7 are

Mdust < 107M�, too small to account for the observed dust mass in A1689-zD1. We

conclude that in order to account for the existing dust mass in this galaxy, a shorter grain

growth timescale is required.

It is interesting to analyse the relative contribution of AGB stars, SN and grain growth as

a function of redshift. Figure 2.2 shows the redshift evolution of the dust mass for galaxies

with Mstar > 109 M� at redshift 6.14. We separate the contribution from AGB stars, stellar

sources, and the total mass of dust, including grain growth with an accretion timescale

τacc,0 = 2 Myr (upper panel) and 0.2 Myr (lower panel). As expected from Figure 2.1,

grain growth provides the dominant contribution, exceeding the dust produced by stellar
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sources already at z < 10 – 12. Among the stellar sources, SN appear always dominant,

but the average contribution of AGB stars can be as large as ∼ 40%. This confirms that the

contribution of AGB stars to high redshift dust formation can not be neglected, especially

for the galaxies currently targeted by observational searches [Valiante et al., 2009]. Finally,

in the lower panel we show that the dust mass detected in A1689-zD1 requires very efficient

grain growth, with a timescale τacc,0 = 0.2 Myr, one order of magnitude shorter than

required to reproduce the observed dust-to-gas ratio in the Milky Way and in most local

dwarf galaxies [de Bennassuti et al., 2014]. This, in turn, implies that the cold atomic and

molecular phases of the ISM, where grain growth is more efficient, must have an average

density of ∼ 104cm–3 (see eq. 2.4). Such a value is comparable to the molecular gas density

inferred from CO excitation analyses of starburst galaxies at comparable (although slightly

smaller) redshifts [see Carilli and Walter, 2013]. Moreover, the molecular phase in these

high-redshift star-forming galaxies may also be warmer, leading to somewhat lower τacc,0.

Although plausible, our study suggests that these conditions must be exceptional, as if they

were to apply to all galaxies a z > 6.5, current upper limits on the dust continuum emission

for normal star forming galaxies at 6.5 < z < 7.5 would be exceeded.
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Chapter 3

Interpreting the evolution of galaxy

colours from z = 8 to 5

3.1 Introduction

In the last decade, data from the Hubble Space Telescope1 (HST), especially after the ad-

vent of the Wide Field Camera (WFC3), allowed us to collect large samples of galaxies at

z ∼ 7 – 8, with smaller samples extending up to z ∼ 9 – 11 [McLure et al., 2013, Bouwens

et al., 2014, Oesch et al., 2014, Bouwens et al., 2015, McLeod et al., 2015, Finkelstein

et al., 2015a], among which the two most distant spectroscopically confirmed galaxies at

z = 8.68 [Zitrin et al., 2015] and z = 11.1 [Oesch et al., 2016]. Since spectroscopic obser-

vations of galaxies at z > 6 with ground-based telescopes are very challenging, observers

have developed alternative, photometry-based techniques to both select high-z candidates

and estimate their physical properties. For example, the total stellar mass, the stellar age

and the ongoing star formation rate (SFR) can be estimated from spectral energy distribu-

tion (SED) fitting and colour index analyses.

Two key quantities are generally used to characterize the properties of the first galaxies

and of their dominant stellar populations: the UV luminosity function (LF) and the ob-

served UV spectral slope, β (fλ ∝ λβ, Meurer et al. 1999). The LF, defined as the number

density of galaxies per unit magnitude, provides important constraints on star formation

efficiencies at different redshifts and on their evolutionary status, especially at early times

1http://www.stsci.edu
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[Bouwens et al., 2011]. As the first structures collapse and assemble their stellar content,

the inter-stellar medium (ISM) is progressively enriched with metals and dust. Dust ex-

tinction affects the UV luminosity and should leave a signature in the galaxy LF. While for

low-redshift galaxies dust extinction can be corrected by measuring the far infrared emis-

sion (FIR), observations of high-z galaxies with millimeter (mm) telescopes, such as the

Atacama Large Millimeter Array (ALMA) and the Plateau de Bure Interferometer (PdBI),

have mostly provided upper limits on the rest-frame FIR emission of z > 6 UV-selected

galaxies [Kanekar et al., 2013, Ouchi et al., 2013, Ota et al., 2014, Schaerer et al., 2015,

Maiolino et al., 2015, Zavala et al., 2015], with two notable exception [Watson et al., 2015,

Knudsen et al., 2017, Laporte et al., 2017b]. For this reason, it has become a common

practice to estimate the effects of dust extinction using the observed β slope, or UV colour.

Despite a vigorous debate in the past ten years, recent observational results appear to

converge on a common trend for the shape and the evolution of the UV LF in the redshift

range 4 < z < 8 [Bouwens et al., 2015], down to an AB magnitude of –16 at z = 4, 5

and of ∼ –17 at z = 6, 7 and 8. At even higher redshifts, even the deepest observations

in blank fields can only probe the bright-end of the LF, providing important constraints

on the volume density of the most luminous galaxies with MUV < –20 at z = 9 and 10

[Bouwens et al., 2015]. An efficient way to push the observations to fainter luminosities is

to exploit the gravitational lensing magnification of massive galaxy clusters. Results from

the HST programs CLASH and Hubble Frontier Fields (HFF) have increased the statistics

of candidate galaxies at the highest redshifts, providing better constraints on the evolution

of the faint-end slope of the LF and placing the first limits on the LF at z ∼ 10 [Atek et al.,

2015, McLeod et al., 2015, 2016, Livermore et al., 2016] .

It is custumary to fit the LF with a Schechter function, which has a power-law behaviour

with slope α at the faint-end, an exponential cut-off brighter than a characteristic luminosity

(magnitude) L∗ (M∗) and a volume density of φ∗ at this characteristic luminosity,

dn
dL = φ(L) =

(
φ∗
L∗

) (
L
L∗

)α
e–L/L∗ . (3.1)

In general, the evolution of the LF with redshift is characterized by means of variations of

these Schechter parameters and is consistent with a steady growth in the volume density

and luminosity of galaxies with time. In particular, there is a significant evidence for a

steepening of the faint-end slope with z, in agreement with the predicted steepening of the



CHAPTER 3. UV COLOURS OF HIGH-Z GALAXIES 47

halo mass function, a modest evolution of M∗ and a decrease of φ∗ from z ∼ 4 to z ∼ 7

[Bouwens et al., 2015]. Some observations at z = 9 and 10 suggest a faster evolution, and

that the luminosity densities inferred from current samples are ∼ 2 times lower than the

values extrapolated from the trends at 4 < z < 8 [Bouwens et al., 2015]. Other studies

support a smoother evolution from z = 8 to 9 [McLeod et al., 2015, 2016, Finkelstein et al.,

2015a]. Indeed, the recent discovery of GN-z11, a luminous galaxy with MUV = –22.1 at

z = 11 [Oesch et al., 2016] may indicate that the LF at the very bright end does not follow

a Schechter functional form, possibly due to less efficient feedback at very high redshifts

[Bowler et al., 2014, Dayal et al., 2014, Finkelstein et al., 2015b, Waters et al., 2016].

To convert the observed UV luminosity to a SFR and compare the above findings to

theoretical predictions, dust extinction is usually estimated using the observed β slopes

and the so-called IRX-β relationship by Meurer et al. [1999], who proved that, at z <

3, the amount of SED reddening directly correlates with the β value, as also confirmed

by independent theoretical predictions (e.g. Wilkins et al. 2012). Although this relation

has been calibrated on starburst galaxies at low redshifts, and assumes a constant mean

intrinsic slope of β = –2.23, this procedure has been widely adopted in high-z galaxy

surveys [see Bouwens et al., 2012]. However, the value of β is also a function of important

properties of the stellar populations, such as their ages, metallicity and initial mass function

(IMF). Although with large uncertainties, observational trends have been reported which

quantify the dependence of β on the UV luminosity and redshift [Stanway et al., 2005,

Wilkins et al., 2011, Finkelstein et al., 2012, Bouwens et al., 2012, Castellano et al., 2012,

Dunlop et al., 2013]. In general, the observations are consistent with a decreasing reddening

towards lower luminosities and higher redshift. A coherent analysis of the observed β

for galaxies in a wide redshift range, from z ∼ 4 to z ∼ 7, has been recently made by

Bouwens et al. [2014], who confirm a strong evidence for a dependence of the average β on

the UV luminosity, the so-called Colour-Magnitude-Relation (CMR, Rogers et al. 2014),

with brighter galaxies being redder and fainter galaxies being bluer, and a flattening of

the relation at luminosities faintward of MUV ∼ –19. They also report a small but clear

evolution with time, with galaxies at fixed luminosity becoming bluer with z. For the faint

galaxies with –19 < MUV < –17, the mean β at z ∼ 4, 5 and 6 is –2.03, –2.14 and –2.24

respectively. Extrapolation of this trend to z ∼ 7 and 8 suggests mean values of –2.35 and
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–2.45, consistent - within the errors - with the observed ones.

Theoretical studies have attempted to interpret the data by means of numerical sim-

ulations or semi-analytical models. Wilkins et al. [2012] explored the sensitivity of the

intrinsic β slopes to the IMF and to the recent star formation and metal enrichment his-

tories of low-z galaxies. They find a distribution of β values with a scatter of 0.3, which

introduces an uncertainty in the inferred dust attenuation when a constant intrinsic slope is

assumed. This scatter is significantly reduced for galaxies at z ∼ 6, but the mean intrinsic

β decreases with z. If this is not properly taken into account and the locally calibrated re-

lation is applied, dust attenuation is systematically underestimated [Wilkins et al., 2013].

Gonzalez-Perez et al. [2013] have demonstrated the dependence of the galaxy UV colours

on the adopted dust properties and, in particular, on the dust extinction curve. With the

aim of intepreting high-z Lyman-α emitters (LAEs) and Lyman Break Galaxies (LBGs)

observations, Dayal et al. [2010a] and Dayal and Ferrara [2012] used a numerical sim-

ulation to derive intrinsic galaxy properties and a semi-analytical model to estimate dust

attenuation. They explored the resulting UV LF and the dependence of β on the galaxy

UV luminosity with and without dust attenuation. They found that dust attenuation im-

proves the agreement with the observations, but the observed CMR was not reproduced

by the model results. More recently, Khakhaleva-Li and Gnedin [2016b] post-processed

the results of cosmological simulations with a simple dust model that assumes a constant

dust-to-metal mass ratio in the neutral gas and that dust is instantaneously sublimated in

hot ionized regions. They used a Monte Carlo radiative transfer code to predict UV attenu-

ation and IR re-emission of their model galaxies. By means of a detailed comparison with

observations at 5 ≤ z ≤ 10, they concluded that, in order to assess the effects of dust in the

ISM of high-z galaxies, the complex interplay of dust creation and destruction processes

should be fully incorporated into numerical simulations.

With this aim, in Chapter 2 we have presented a semi-numerical model which includes

a physically motivated description of dust evolution, accounting for dust enrichment by Su-

pernovae (SNe) and Asymptotic Giant Branch (AGB) stars, the effects of dust destruction

by SN shocks and grain growth in the dense cold phase of the ISM (see also Valiante et al.

2009, 2011, de Bennassuti et al. 2014). We then compared the model predictions with the

limits on the dust mass inferred from mm-observations of z > 6 galaxies, deriving interest-
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ing constraints on the properties of their ISM and on the nature of dust at high-z. Here we

extend this previous investigation with the goal of intepreting the observed UV luminosities

and colours of galaxies at 5 < z < 8.

This Chapter is organized as follows. In Section 3.2 we describe our method and the

assumptions made to compute the dust content and luminous properties of the simulated

galaxies. In Section 3.3 we first discuss the predicted physical properties of the galaxies

at 5 ≤ z ≤ 8. Then we derive the UV LFs and β slopes assuming no dust extinction,

and discussing the dependence of the results on the extinction model. In Section 3.4 we

introduce the model that better reproduce the observed UV LFs and CMR. We analyze

the origin of the scatter around the mean values at different z, both in the CMR and in

the stellar mass - UV luminosity relation. We compute the IR excess and dust attenuation

factors, comparing with observationally inferred correlations. Finally, in Section ?? we

summarize the results and draw the main conclusions.

3.2 Method

In this section we describe the semi-numerical model that we have developed. First, we

infer the intrinsic galaxy properties using the output of a hydro-dynamical simulation of

structure formation described in Section 3.2.1. To compute the intrinsic UV luminosity

of each galaxy, we calculate the spectral energy distribution (SED) as described in Sec-

tion 3.2.2. We then couple the simulated output, in particular the star formation rate (SFR),

metallicity (Z) and mass of gas (Mg) of each simulated galaxy, with a semi-analytical model

to estimate the dust mass (Md) as in Chapter 2 [Mancini et al., 2015]. To accomplish this

goal, we have used a more advanced version of the semianalytical model used in Chapter

2 to trace the dust enrichment of both the dense and diffuse part of the ISM (see below for

additional details). A brief summary of this method is provided in Section 3.2.3. Finally,

in Section 3.2.4, we present the method adopted to compute dust extinction.

3.2.1 Cosmological simulation

The simulation used is the same as in Chapter 2 and [Mancini et al., 2015]. We will briefly

summarize here the main characteristics and the particle resolutions. The simulation box
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has a size of 30 h–1 Mpc (comoving), with periodic boundary conditions. The total number

of dark matter and gas particles is Np = 2 × 3203 and the dark matter (gas) particle mass

is Mp
DM = 6 × 107 h–1M� (Mp

g = 9 × 106h–1M�). In Sec. 3.3.1 we discuss the impact of

the simulation volume and mass resolution on this study. Dark matter halos are identified

by means of an FOF algorithm as a group of at least 32 gravitationally bound particles.

By tracking the star particles along the redshift evolution we also reconstruct the merger

tree of each simulated galaxy. This is needed to compute the evolution in redshift of the

star formation rate, the gas mass and metallicity, which have been used to initialize the dust

evolution model, as detailed in Section 3.2.3.

3.2.2 Intrinsic galaxy spectra

The intrinsic SED of a galaxy depends on the IMF, age and metallicity of each stellar popu-

lation that contributes to the emission. Since the mass fraction of active Pop III stars is neg-

ligible2 at 5 < z < 8 (see also Salvaterra et al. 2011), we consider the UV luminosity con-

tributed by Pop II/I stars using the spectral synthesis model StarBurst99 (hereafter SB99,

Leitherer et al. 1999, Vázquez and Leitherer 2005). We assume that each star particle,

which represents a single stellar population, is formed in an istantaneous burst. The routines

of SB99 responsible for computing dust extinction have been disabled and only the stellar

and nebular emission is accounted for. In this way, we compute a database of intrinsic spec-

tra in the metallicity range 0.02 Z� ≤ Z∗ ≤ 1 Z� for stellar ages 2Myr ≤ t? ≤ 1Gyr. The

database is used to assign an intrinsic luminosity liλ(Z∗, t∗) to each star particle i and the

cumulative intrinsic SED of the j-th galaxy to which the star particle belongs is computed

as,

Lj
λ
=

∑
i
liλ(Z∗, t∗)M∗,i, (3.2)

where M∗,i is the mass of the i-th star particle.

2We find that the mass fraction of Pop III stars decreases with the UV luminosity ranging from ∼ 0.1 at

MUV = –18 to ∼ 10–3 at MUV = –22. However, in all but 2 galaxies at z ∼ 6, Pop III stars have already

disappeared due to their short lifetimes, and their contribution to the UV emission at z < 8 can be safely

neglected.
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3.2.3 Dust evolution model

Dust grains can form by condensation of gas-phase metals in the ejecta of SNe [Todini and

Ferrara, 2001, Nozawa et al., 2003, Schneider et al., 2004, Bianchi and Schneider, 2007,

Cherchneff and Lilly, 2008, Cherchneff and Dwek, 2009, Sarangi and Cherchneff, 2013,

Marassi et al., 2014, 2015] and in the atmosphere of AGB stars [Ferrarotti and Gail, 2006,

Zhukovska et al., 2008, Ventura et al., 2012b,a, Di Criscienzo et al., 2013, Nanni et al.,

2013, Ventura et al., 2014, Schneider et al., 2014]. Once created by stars and dispersed

in the interstellar medium of a galaxy, dust grains evolve depending on the environmental

conditions. In the dense cold phase of the ISM, dust grains can grow by accretion of gas-

phase elements [Asano et al., 2013, Hirashita et al., 2014b] while in the hot diffuse phase

the grains can be efficiently destroyed by interstellar shocks [Bocchio et al., 2014]. All

these processes are reviewed in Draine [2011] and have been implemented in chemical

evolution models with dust [Valiante et al., 2009, 2011, de Bennassuti et al., 2014]. Since

the cosmological simulation does not have the resolution to describe the different phases

of the ISM which are relevant to dust evolution, the values it provides are only indicative

of the average physical conditions of their ISM. To circumvent this limitation, we follow

the same approach adopted in Chapter 2, where dust enrichment in each galaxy can be

described self-consistently within the average properties predicted by the simulation.

Following de Bennassuti et al. [2014], we adopt a 2-phase ISM model with a diffuse

component (warm/hot low-density gas), where dust can be destroyed by SN shocks, and a

dense or molecular cloud component (cold and dense gas), where star formation and grain

growth occur. The time evolution of the ISM mass (gas and dust, MISM), the mass in heavy

elements (gas-phase metals and dust, MZ) and the dust mass (Md) in the diffuse (diff) and

molecular cloud (MC) phase is described by the following system of equations:

Ṁmc
ISM(t) = Ṁcond(t) – SFR(t) (3.3)

Ṁdiff
ISM(t) = –Ṁcond(t) + Ṙ(t) + Ṁinf(t) – Ṁej(t) (3.4)

Ṁmc
Z = ṀZ

cond(t) – SFR(t) Zmc (3.5)

Ṁdiff
Z = –ṀZ

cond(t) + ẎZ(t) (3.6)

Ṁmc
d = ṀDcond(t) – SFR(t)Dmc +

Mmc
d (t)
τacc

(3.7)
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Ṁdiff
d = –ṀDcond(t) + Ẏd(t) –

Mdiff
d (t)
τd

, (3.8)

where the time-dependent star formation rate (SFR) and the infall and outflow rates (Ṁinf

and Ṁej) are computed from the simulation outputs, Z = MZ/MISM and D = Md/MISM

are the ISM mass fractions in heavy elements and dust, τd and τacc are the dust destruction

and accretion timescales and will be defined below. The terms Ṁcond, Ṁ
Z
cond, and ṀDcond

describe the ISM, heavy elements and dust mass exchange between the diffuse phase and

the molecular phase. Since these terms can not be directly inferred from the simulation,

we must resort to indirect constraints. By assuming that the SFR can be represented by the

Kennicutt-Schmidt relation, the mass of molecular gas can be estimated as,

Mmc
ISM = SFR(t)τff

ε∗
, (3.9)

where ε∗ = 0.01 is the star formation efficiency [Krumholz et al., 2012] and

τff =

√
3π

64GmH nmol
(3.10)

is the free-fall timescale at the mean density of molecular clouds ρmol ∼ 2mH nmol [Schnei-

der et al., 2016], and we assume nmol = 103 cm–3 to be consistent with the value adopted

for the grain growth timescale (see below). We use the above condition to compute Ṁcond.

The mass exchange of heavy elements and dust depends on the degree of enrichment of

each phase. Hence, we compute ṀZ
cond by requiring the heavy elements abundance in the

molecular clouds, Zmc, to be equal to the metallicity of newly formed stars predicted by

the simulation, Z∗, and we assume that ṀDcond = D/Z ṀZ
cond. Finally, Ṙ, ẎZ and Ẏd are,

respectively, the return mass fraction, the yields of heavy elements and the dust yields pro-

duced by stellar sources and depend on the SFR, the IMF, and on the adopted metal and

dust stellar yields. Following Valiante et al. [2009] we compute them as:

Ṙ(t) =
∫ mup

m(t)
(m – wm(m, Z))Φ(m) SFR(t – τm) dm, (3.11)

ẎZ(t) =
∫ mup

m(t)
mZ(m, Z)Φ(m) SFR(t – τm) dm, (3.12)

and

Ẏd(t) =
∫ mup

m(t)
md(m, Z)Φ(m) SFR(t – τm) dm, (3.13)
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where τm is the lifetime of a star with mass m, Φ(m) is the IMF, wm, mZ, and md are,

respectively, the mass of the stellar remnant, of heavy elements and dust produced by a star

with mass m and metallicity Z, and the integral is computed from the upper mass limit of

the IMF down to the mass that has a lifetime τm = t. For stars with mass m < 8M� we

adopt dust yields from Zhukovska et al. [2008], while for stars in the mass range 12 M� to

40 M� dust yields are taken from Bianchi and Schneider [2007], including the effect of dust

destruction by the SN reverse shock [Bocchio et al., 2016]. For stars in the intermediate

mass range 8M� < m < 12M� the dust yields are computed interpolating from the values

corresponding to the most massive AGB progenitor and the least massive SN progenitor.

Finally, stars with m > 40M� are assumed to collapse to a black hole, without enriching

the surrounding ISM. The other terms in the right-hand side of equations (3.3)-(3.8) account

for the effects of astration and dust reprocessing in the ISM. The dust destruction timescale

is modelled as in Valiante et al. [2011] and de Bennassuti et al. [2014],

τd =
Mdiff

ISM
R′SNεdMs(vs)

, (3.14)

where Ms(vs) = 6800M�〈E51〉/(vs/100km/s)2 is the mass shocked to a velocity of at

least vs by a SN in the Sedov-Taylor phase, R′SN is the effective SN rate, since not all SNe

are equally efficient at destroying dust [McKee, 1989], εd is the dust destruction efficiency,

and 〈E51〉 is the average SN energy in units of 1051 erg. In what follows, we assume

R′SN = 0.15RSN, where RSN is the core-collapse SN rate, 〈E51〉 = 1.2, vs = 200 km/s,

and εd = 0.48 [Nozawa et al., 2006].

The grain growth timescale is parametrized as in Chapter 2. As stated in Chapter 2, the

numerical simulation resolution is not enough to track the cold ISM (at the scales where

the grain growth is efficient). Hence, we estimate the accretion timescale as:

τacc = τacc,0

(
Z
Z�

)–1
. (3.15)

In particular we take τacc,0 = 2 Myr that corresponds to a molecular number density

nmol = 10–3 and a temperature of the molecular gas of Tmol = 50 K. These conditions

have been shown to reproduce the observed dust-to-gas ration of local galaxies over a wide

range of metallicities [de Bennassuti et al., 2014]. In addition, we have shown in Chapter

2 [Mancini et al., 2015] that, with these parameters, the model predictions are consistent
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Figure 3.1. Extinction coefficient per unit dust mass as a function of 1/λ. The lines represent dif-

ferent grain models: SMC (orange solid), Calzetti (red dashed, normalized at λ = 3000Å to the

Milky Way extinction curve), SN (dark green dot-dashed) and MEC normalized at λ = 3000Å

to the SN extinction curve (magenta long-dashed) and to the SMC curve (cyan dot-dashed).

The vertical solid blue line corresponds to the wavelength λ = 1500Å at which we compute

the galaxy rest-frame luminosity, and the shaded region is the rest-frame UV wavelength range

1500Å ≤ λ ≤ 3000Å used to compute the β slopes (see text).

with the upper limits on the dust mass inferred from deep ALMA and PdB observations

of galaxies at z > 6 (see the observations shown in Fig. 3.4). As pointed out earlier, the

observed dust mass in the galaxies A1689-zD1 at z = 7.5 and A2744-YD4 at z = 8.38 can

only be explained using a value of τacc,0 = 0.2 Myr (see also Section 3.1).

3.2.4 Modeling the extinction

The radiation flux escaping a galaxy can be derived from its intrinsic emission, given by

eq. (3.2), and accounting for the wavelength dependent extinction of the galactic ISM.

In our computational scheme, stellar populations are represented by stellar particles which
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Figure 3.2. Top Panel: comparison between the intrinsic UV LF of the simulated galaxies (black

lines) and the observations at redshift z ∼ 5, 6, 7 and 8 (from left to right). The data are taken

from McLure et al. [2009] (orange), Oesch et al. [2010] (dark blue), Bouwens et al. [2015]

(dark green), Finkelstein et al. [2015a] (light green), Castellano et al. [2010] (dark violet),

McLure et al. [2010] (light orange), McLure et al. [2013] (dark orange), Atek et al. [2015]

(cyan), Laporte et al. [2015] (light violet), and Bowler et al. [2014, 2015] (red). The shaded

regions indicate Poissonian errors. Bottom Panel: mean spectral index 〈β〉 as function of the

intrinsic magnitude MUV at the same redshifts. The model prediction for the intrinsic colours

are shown as solid black lines with shaded regions indicating the standard errors on the mean.

Blue squares indicate the observations by Bouwens et al. [2014]. The horizontal solid grey line

shows the value β = –2.23 that is adopted in the Meurer et al. [1999] relation (see text). A

coloured version of this figure is available online.
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can experience different absorptions/obscurations depending on the columns of dust in their

surroundings. For this reason, we compute the flux emerging from the j-th galaxy by apply-

ing a different extinction to each stellar particles i, and then summing up their contribution

to obtain the total escaping luminosity:

L̄jλ =
∑
i
K i(τλ) liλM∗,i, (3.16)

whereK i(τλ) is the extinction factor per stellar particle, as a function of the optical depth τλ

at a specific wavelength λ. Note that the modeling ofK i(τλ) is a complicated task because

of the multi-phase nature of the ISM: both the medium surrounding each stellar particle and

the diffuse ISM contribute to the extinction. Hence,K i(τλ) depends on the dust content and

on its spatial distribution relative to the stars. During their lifetime, stars evolve, changing

their intrinsic SED, and interact with their environment through mechanical, chemical and

radiative feedback effects. For these reasons, the values of K i(τλ) experienced by stellar

populations change with time.

In our reference model, we assume that all stars form in molecular clouds, from which

they escape in a typical timescale tesc
3, moving into the diffuse phase. Hence, if the age of

the stellar population is t? < tesc, the emitted radiation is extinguished by the additional

column of dust of the parent molecular cloud, namely:

τλ = τmc
λ + τdiff

λ if t? < tesc

τλ = τdiff
λ if t? ≥ tesc. (3.17)

A similar model was originally proposed by Charlot and Fall [2000] as an idealised

description of the ISM to compute the effects of dust on the integrated spectral properties

of galaxies, and it has been applied by Forero-Romero et al. [2010] to describe the clumpy

structure of the ISM in high-z galaxies. The observed flux is finally computed solving the

radiative transfer equation in both phases, by assuming a homogeneous, one-dimensional

and isotropic gas/dust distribution, i.e. :

3This value can be also interpreted as the molecular cloud dissipation timescale.
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K i(τλ) = e–(τ
mc
λ +τdiff

λ ) if t? < tesc

K i(τλ) = e–τ
diff
λ if t? ≥ tesc. (3.18)

More details on the calculation of τλ for both phases can be found in the next section.

3.2.5 Dust optical depth

The optical depth at a fixed λ depends both on the type of absorbers present in the medium

and on their column density. Observations of high-z galaxies probe the restframe UV range,

where the radiation is mostly extinguished by dust and the optical depth can be computed

as,

τλ = Σd kλ, (3.19)

where Σd is the dust column density and kλ is the extinction coefficient per unit dust mass.

We assume that molecular clouds can be approximated as spheres of constant mass Mcloud

and volume density nmol, and that their surface density can be expressed as,

Σmc
ISM = 9.9 × 102 M�

pc2

(
Mcloud

106.5 M�

)1/3 ( nmol
1000 cm–3

)2/3
, (3.20)

where we adopt nmol = 1000 cm–3 (see Section 3.2.3) and a cloud mass of Mcloud =

106.5M�, which corresponds to the typical mass of the largest giant molecular clouds

observed in the Milky Way [Murray, 2011]. Following Hutter et al. [2014], we compute

the diffuse gas column density as,

Σdiff
ISM =

Mdiff
ISM

πr2d
(3.21)

and the radius of the gas distribution as rd = 4.5 λ rvir [Ferrara et al., 2000], where rvir

is the dark matter halo virial radius and λ = 0.04 is the mean value of the dark matter

halo spin distribution. Finally, under the assumption that dust is uniformly mixed with the

gas, the dust surface densities in the two phases can be derived as Σmc
d = Dmc Σmc

ISM and

Σdiff
d = Ddiff Σdiff

ISM.

The dust extinction coefficient, kλ, depends on the grain size distribution and on the

optical properties of the grain species. Unfortunately, we still lack a model that is able to
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Figure 3.3. Mass-averaged stellar age (top

panel) and metallicity (bottom panel) of the

simulated galaxies as a function of their in-
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A coloured version of the figure is available

online.

self-consistently predict the evolution of the dust mass and extinction properties. In the

local Universe, the average dust extinction properties of the Milky Way, the Large and

Small Magellanic Clouds are different, probably as a result of their different star formation

and chemical evolution histories [Cardelli et al., 1989, Pei, 1992, Weingartner and Draine,

2001]. At high redshifts, the SED of star forming galaxies is generally modeled with the

Calzetti et al. [1994] attenuation law, although a steeper extinction curve, such as the SMC,

often provides a better description [Reddy et al., 2010]. Using a sample of quasars at

3.9 ≤ z ≤ 6.4, Gallerani et al. [2010] inferred a mean extinction curve that is flatter than

the SMC curve which is generally applied to quasar at z < 4. They discussed the pos-

sibility that this difference may indicate either a different dust production mechanism at

high redshift, or a different mechanism for processing dust into the ISM and suggested that

the same transitions may also apply to normal, star-forming galaxies at z > 4. Indeed,

at z ∼ 6 evidence of an extinction law very similar to the one predicted by theoretical

models for dust formed in SN ejecta has been found in the spectra of the reddened quasar

SDSSJ1048+46 at z = 6.2 [Maiolino et al., 2004], the GRB050904 afterglow at z = 6.3

[Stratta et al., 2007] and the GRB071025 at z ∼ 5 (Perley et al. 2010, see however Zafar

et al. 2010 for a different conclusion).

Since we do not know how the dust extinction properties change with redshift, here

we consider four different extinction curves, that we show in Fig. 3.1: the SMC extinction

curve [Weingartner and Draine, 2001, Pei, 1992], the Calzetti model [Calzetti et al., 2000],
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the extinction curve derived for grains formed in SN ejecta [Bianchi and Schneider, 2007],

and the mean extinction curve (MEC) inferred by [Gallerani et al., 2010]4 The vertical

solid line indicates the value λ = 1500Å at which we compute the galaxy restframe UV

luminosity, and the shaded region identifies the wavelength range where we compute the

β slopes. In this range, the Calzetti, SMC and MEC models show a smooth increase with

λ–1, although with a different slope. Conversely, the SN extinction curve shows a spectral

bump due to amorphous carbon grains [Bianchi and Schneider, 2007]. Overall, we expect

the MEC curve normalized to the SN extinction coefficient at λ = 3000Å to have the

largest effect on the restframe UV colours. In fact, the extinction coefficient per unit dust

mass for this model at 1500Å is a factor ≈ 2.7 larger than the one predicted by the Calzetti

extinction curve.

3.3 Results

In this section, we first present the physical properties of the simulated galaxies at 5 ≤ z ≤

8, and we compute their intrinsic UV luminosities and β slopes. We then explore the effects

of dust extinction as predicted by different extinction models.

3.3.1 Physical properties of early galaxies

For each simulated galaxy, we first compute the absolute UV magnitude at 1500Å, MUV,

and the β slope in the wavelength range [1500–3000]Å, from the SED presented in Section

3.2.2. Hence, we assume that the UV emission produced by the stellar populations does

not suffer any extinction from interstellar dust. At each redshift, we distribute galaxies in

different magnitude bins and compute the resulting UV LF and the average colour, 〈β〉.

Fig. 3.2 shows a comparison between the model predictions and a collection of obser-

vational data taken from the literature (see the caption for details). At z ∼ 7–8, the intrinsic

LFs underpredict the number of galaxies at the bright-end (with MUV ≤ –21) and at the

faint-end (with MUV ≥ –18). This is an effect of the limited volume size and mass resolu-

tion of the simulation (see also Salvaterra et al. 2013). At lower z, the effect of numerical

4The MEC and Calzetti attenuation models have been normalized at λ = 3000Å to the values predicted by

the SN and SMC and by the Milky Way extinction curves, respectively.
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et al. [2015], Maiolino et al. [2015], Watson et al. [2015], and Zavala et al. [2015], see text.
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resolution is smaller, but we do not find any galaxy with intrinsic MUV ≤ –23 in the sim-

ulated volume. In a future study, we plan to apply this analysis to a new simulation with a

larger box size and a comparable mass resolution. In fact, our main interest is to increase

the statistics at the high-mass end, where we expect the effects of dust extinction to be more

prominent. Within these limitations, at z < 7 the number of galaxies at the bright-end is

larger than observed, as already discussed by Salvaterra et al. [2013], Dayal et al. [2013],

Finkelstein et al. [2015a] and Khakhaleva-Li and Gnedin [2016b]. We find that, while the

observed LF at z ∼ 8 is consistent with negligible dust extinction, at z ∼ 5 observations

seem to require significant dust extinction at all luminosities brighter than MUV ∼ –18.

At all redshifts, the predicted intrinsic 〈β〉 slopes are much bluer than observed, partic-

ularly at the bright end (bottom panels). The simulated galaxies show similar colours at all

luminosities, with 〈β〉 ∼ –2.5, and only a very modest increase with cosmic time. These

colours are bluer than the β = –2.23 adopted in the Meurer et al. [1999] relation (shown by

the horizontal grey line), as already noticed by Wilkins et al. [2012].

The above trends can be easily understood by looking at the mean physical properties of

the stellar populations in the simulated galaxy samples. Fig. 3.3 shows the mass-averaged

stellar age (upper panel) and metallicity (bottom panel) of the simulated galaxies at 5 ≤

z ≤ 8 as a function of their intrinsic UV magnitudes. We find that galaxies with a given

luminosity tend to be slightly younger and less metal-enriched at higher redshift (80 Myr ≤

〈t∗〉 ≤ 160Myr and 0.03 Z� ≤ 〈Z∗〉 ≤ 0.06 Z� for galaxies with MUV = –20 and 5 ≤

z ≤ 8), and that the average stellar age and metallicity increases with the intrinsic UV

luminosity, showing a larger dispersion of values for fainter galaxies with MUV ≥ –18.

However, their overall properties do not show a significant evolution with UV magnitude

and redshift, consistent with their relatively constant intrinsic UV colours.

Over the same UV luminosity and redshift range, the dust mass in their ISM varies

significantly. This is shown in Fig. 3.4, where we plot the dust mass, Md, derived as ex-

plained in Section 3.2.3, and the dust-to-gas mass ratio, D, as a function of the intrinsic

UV magnitudes. The dust mass increases with UV luminosity and - for a given luminosity

- galaxies become more dust-enriched with cosmic time. As already discussed in Chapter

2, the dust mass increases with stellar mass, hence with the intrinsic UV luminosity. In

low-mass galaxies, the dust mass has mostly a stellar origin (SNe and AGB stars). In mas-
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sive and chemically evolved galaxies, grain growth becomes progressively more efficient,

providing the dominant contribution to the total dust mass. Hence, the dust mass in the

molecular phase increases with galaxy luminosity and becomes as large as the dust mass in

the diffuse phase for galaxies with intrinsic MUV < –20.

In Fig. 3.4 we also show the data and upper limits on the dust mass inferred from

observations at z ∼ 5.1 – 5.7 [Capak et al., 2015], z ∼ 6.5 – 7 [Kanekar et al., 2013, Ouchi

et al., 2013, Ota et al., 2014, Schaerer et al., 2015, Maiolino et al., 2015], z ∼ 7.5 [Watson

et al., 2015] and z ∼ 9.6 (Zavala et al. 2015, that we arbitrarily report in the z ∼ 8 panel).

As in Chapter 2 [Mancini et al., 2015], we have estimated the dust mass from the observed

mm flux assuming optically thin emission, a dust emissivity kνres = k0(λ0/λres)β (with

k0 = 0.77 cm2/gr, λ0 = 850 µm and β = 1.5, Ota et al. 2014), and a dust temperature

of 35 K. The resuting dust masses (shown as starred data points) have been reported only

for indicative purposes, as a more meaningful comparison between model predictions and

observations is given in Section 3.4. While the predicted dust masses are consistent with

observations at z ∼ 5.1 – 5.7 and with the upper limits inferred at z > 6, the data reported

by Watson et al. [2015], and recently confirmed with deeper observations by Knudsen et al.

[2017], on the z = 7.5 galaxy A1689-zD1, requires more efficient grain growth, as if the

galaxy were characterized by a denser ISM [Mancini et al., 2015, Michałowski, 2015].

Due to their different gas content, the average dust-to-gas mass ratio is smaller in the

diffuse phase than in molecular clouds and, in both phases, D grows with UV luminosity.

Hence, we expect the most massive galaxies, with the largest intrinsic UV luminosity, to

experience a larger degree of dust extinction. Yet,D shows a large dispersion, particularly

in the molecular phase, and galaxies with the same intrinsic UV luminosity can be charac-

terized by values of D which differs by 2 - 3 orders of magnitudes, particularly at lower z.

At z . 6, galaxies with MUV ≤ –21 have dust masses which range between 106M� and

≈ 5 × 107M� and dust-to-gas mass ratios in the molecular phase that can reach values of

D ≥ 10–3. Conversely, at z & 7, most of the simulated galaxies have Md < 106M� and

D < 10–4. On the basis of these results we expect dust extinction to be more relevant for

bright galaxies, particularly at z . 6, where the deviations between the intrinsic UV LF

and the data, shown in Figure 3.2, are more significant.
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3.3.2 The effects of dust extinction on the UV luminosities and colours

We first consider the simplest model of dust extinction from the diffuse phase only, com-

puting the optical depth using Eqs. (3.17)-(3.18) with tesc = 0. In Fig. 3.5, we show the

UV LF and CMR assuming the SMC, the Calzetti, the SN and the MEC extinction curves.

For reference, we also show the intrinsic UV LF and 〈β〉 colours discussed in the previous

section, assuming no dust extinction. It is clear that dust extinction decreases the number

of galaxies at the bright end, particularly at z ≤ 6. The strongest effect is achieved using

the MEC-SN and SN curves, as these models predict the largest kλ at λ = 1500Å, fol-

lowed by the SMC, the Calzetti and the MEC-SMC curves (see Fig. 3.1). These different

models have an even larger effect on the CMR, as this is sensitive to the shape of the ex-

tinction curve over the wavelength range 1500Å ≤ λ ≤ 3000Å. In fact, while the SN,

the Calzetti, and the MEC-SMC models introduce only a mild reddening in the predicted

colours, the SMC and MEC-SN models increase the 〈β〉 creating a dependence on the UV

magnitude, with the brightest galaxies being redder than the fainter ones. Hence, this anal-

ysis shows that estimating dust attenuation from the observed β can lead to very different

results depending on the adopted extinction curve. A flat extinction curve in the UV can

hide a significant mass of dust under relatively blue colours. Overall, we find that - due to

the lowD of the diffuse phase (see Fig. 3.4), when tesc = 0 dust extinction introduces only

a modest reddening to the UV colours and it has a negligible effet on the LFs at z & 6.

We finally discuss the effects of dust extinction on young stellar populations that are still

embedded in their parent molecular clouds, assuming tesc = 10 and 15 Myr in Eqs. (3.17)-

(3.18). The results are shown in Fig. 3.6, where we have adopted the SMC extinction curve.

For reference, we also report in the same figure the intrinsic UV LF and colours as well

as the results discussed above, when tesc = 0. Not surprisingly, the longer the time young

stellar populations spend in their natal molecular clouds, the largest is the effect of dust

extinction, both on the bright-end of the luminosity function and on the β slopes (see also

Forero-Romero et al. 2010). Due to the larger values of D in the molecular phase, the

predicted 〈β〉 for MUV = –20 galaxies at z ∼ 8 increases from ∼ –2.5 when tesc = 0

(essentially the intrinsic β value) to ∼ –2.3 when tesc = 10 – 15 Myr. The increasing

efficiency of grain growth causes MUV = –20 galaxies at z ∼ 5 to have 〈β〉 = –2.3 when

tesc = 0 and as large as –2 (–1.8) when tesc = 10 (15) Myr.
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3.4 Comparison with observations

In this section, we first compare the model predictions with the observed UV LFs and

CMR. Then, we analyze the origin of the scatter around the CMR and the stellar mass - UV

luminosity relation at different z. Finally, we compute the IRX and dust attenuation factors

as a function of β.

3.4.1 UV luminosity function and Colour-Magnitude-Relation

To compare the predicted LFs and CMR with the observed ones we follow Bouwens et al.

[2014, 2015] and adopt the same procedure to compute the LFs and 〈β〉 from the synthetic

galaxies SEDs.

At each redshift, filters sample different ranges of the rest-frame galaxy SED. To be

consistent with Bouwens et al. [2014], we use the z850, Y105 and H160 filters for galaxies

at z ∼ 5, Y105 and H160 filters for z ∼ 6, H160 and J125 filters for z ∼ 7 and H160 and

JH140 filters for z ∼ 85. To compute the AB magnitude at each filter, we first define the

pivot wavelength of a given filter a with transmission Tλ as,

λa
p =

√√√√ ∫ +∞
–∞ λTλ(λ) dλ∫ +∞
–∞ Tλ(λ)/λdλ

. (3.22)

Then, we compute the weighted filter flux Fa for a source at redshift z with a given flux fλ
as,

Fa =

∫ +∞
–∞ λ f(λ/(1 + z))T(λ) dλ∫ +∞

–∞ λT(λ) dλ
. (3.23)

Finally, we define the absolute AB magnitude as,

Ma
AB = –2.5 log10

 Fa

erg s–1 Å–1

λa
p

Å

2 (1 + z)–2
 – 97.78. (3.24)

The β slopes at z ∼ 5 are computed as a least-square linear fit on the three filters, wheras at

5With z850, Y105, J125, JH140 and H160 we refer to HST filters F850LP, F105W, F125W, F140W and

F160W, respectively.
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higher z we use the relation6,

β =
log10(Fa/Fb)
log10(λa

p/λb
p)

. (3.25)

The first step is slightly different from the method adopted by Bouwens et al. [2014], where

they use the effective wavelength assuming a power spectrum of ∝ λ–2 instead of the pivot

wavelength. Finally, to compare with the LFs computed by Bouwens et al. [2015], we

evaluate the AB magnitude at 1600 Å assuming a spectral slope given by the corresponding

photometric β.

The results are plotted in Fig. 3.7. Model predictions at 5 ≤ z ≤ 8 are obtained assum-

ing the SMC extinction curve and tesc = 10 (orange curve) and 15 Myr (green curve). The

shaded regions represent Poissonian errors associated to each magnitude bin. In the bottom

panels we show the results of the systematic analysis by Bouwens et al. (2014, blue data

points) and the corresponding best-fit relation (black dot-dashed lines). For comparison,

we also report data from Wilkins et al. [2011], Finkelstein et al. [2012], Bouwens et al.

[2012], Dunlop et al. [2012, 2013], and Duncan et al. [2014], all shown with grey data

points. At z ∼ 8, current observations of the β slopes are highly uncertain, due to the small

sizes of galaxy samples and photometric uncertainties introduced by the limited filter sepa-

ration. The grey shaded region in the z ∼ 8 bottom panel shows the CMR relation obtained

extrapolating the lower-z slope and the best-fit intercept at z ∼ 8 [Bouwens et al., 2014].

Although both models appear to well reproduce the trend of an increasing reddening

with luminosity observed by Bouwens et al. (2014) at 5 ≤ z ≤ 7, at the brightest luminosi-

ties the statistics is too poor for a meaningful comparison. At each redshift, we identify

a limiting luminosity above which the number of sources per magnitude bin is < 10, and

we illustrate the corresponding magnitude range with dashed lines. To better populate this

luminosity range, a larger simulation volume would be required. In fact, at 5 . z . 6 the

number of simulated galaxies with intrinsic –23 ≤ MUV ≤ –20.5 ranges between 40 and

65. These are the galaxies which suffer the largest dust extinction, with 〈AUV〉 ∼ 1.7 (1.1)

at z ∼ 5 (6), and are observed at –21.3 ≤ MUV ≤ –18.8 (–21.9 ≤ MUV ≤ –19.4). Extrap-

olating these trends, we predict the brightest galaxies observed at z ≤ 6 with MUV . –22
6To estimate the error introduced by this procedure, we compute the photometric β for synthetic spectra

with known β in the range -3 and 0 and we find that the difference between the photometric determination and

the input value is always less than 2%.
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Figure 3.7. Comparison between the predicted UV luminosity functions (top panels) and 〈β〉 slopes

(bottom panels) with observations. Data are the same as in Fig. 3.2. In the bottom panels we

have added observations from Wilkins et al. [2011], Finkelstein et al. [2012], Bouwens et al.

[2012], Dunlop et al. [2012, 2013], and Duncan et al. (2014, all shown with grey data points).

The black dot-dashed lines represent the best-fit to the observations of Bouwens et al. (2014,

blue data points) at z ∼ 5, 6, and 7 and the shaded grey region is obtained extrapolating the

lower-z slope and the best-fit intercept at z ∼ 8. The theoretical models adopt a SMC extinction

curve and tesc = 10 (solid orange) and 15 Myr (solid green) with shaded regions representing

the Poissonian errors in each magnitude bin (top panels) and the standard errors on the mean

values (bottom panels). Dashed lines indicate the luminosity range where less than 10 model

galaxies are found in each magnitude bin (see text). The horizontal grey lines show the value

β = –2.23 adopted in the Meurer et al. [1999] relation. A coloured version of this Figure is

available online.
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to be massive (Mstar > 5 × 1010M�) and dust-enriched (Mdust > 108M�), with typical

AUV > 1.7, consistent with their relatively red observed colours, 〈β〉 ∼ –1.5 (see Fig. 3.10).

We conclude that while the ISM dust has a negligible effect on the galaxy UV LFs at

z ∼ 7 and 8, it reduces the number of galaxies with MUV ≥ –18 and ≥ –19 at z ∼ 5 and

6 to values in very good agreement with observations. The CMR and its dependence on

z is sensitive to the extinction properties of the grains and to the dust distribution in the

ISM. In particular, the observed trends suggest a steep extinction curve in the wavelength

range 1500Å ≤ λ ≤ 3000Å, and that stars with age ≤ 15 Myr are embedded in their dense

molecular natal clouds and their UV luminosity suffers a larger dust extinction.

When the grains are assumed to follow the MEC normalized to the SN extinction co-

efficient at λ = 3000Å (see the curve shown in Fig.3.1), the number of galaxies with

MUV ≤ –19 at z ∼ 5 is too small compared to the observed LF. Conversely, if the MEC

is normalized to the SMC extinction coefficient at λ = 3000Å, the flatter slope at shorter

wavelenghts reduces the predicted 〈β〉, at odds with observations. A better agreement is

found if, following Gallerani et al. [2010], the MEC is assumed to reflect a population of

grains with intermediate properties between SN and SMC dust, and we adopt a normaliza-

tion factor equal to kMEC = (1 – p) kSMC +pkSN at 3000Å. Current observations do not

allow to discriminate between the SMC and MEC models if p ≤ 40%. It is interesting to

note that evidence for an SMC-like extinction curve being preferred for galaxies at high-

z has been reported in many recent observational studies [Tilvi et al., 2013, Oesch et al.,

2013, Capak et al., 2015, Bouwens et al., 2016].

Independently of the grain properties, the observed CMR requires dust evolution mod-

els in a 2-phase ISM, where SNe and AGB stars contribute to dust enrichment, dust grains

grow their mass in dense molecular clouds, and are destroyed by SN shocks in the diffuse

phase.

This conclusion is further strengthened by comparing our results with the recent stud-

ies by Shimizu et al. [2014], Finkelstein et al. (2015, see in particular their Section 7), and

Khakhaleva-Li and Gnedin [2016b]. In these studies, the dust-to-gas mass ratio has been

assumed to simply scale with the gas metallicity. In Shimizu et al. [2014], they reproduce

the observed UV-luminosity function and β evolution with redshift at z ≥ 7 by adjusting the

dust-to-metal mass ratio, the effective radius of the dust distribution, and a parameter which
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controls the relative dust/star geometry. In the semi-analytical models that Finkelstein et al.

[2015a] compare with observations, a dust slab model is adopted and the normalization of

the dust optical depth is assumed to be ∝ exp(–z/2) to obtain a reasonably good fit to the

observed UV-LFs at z ≥ 5. They suggest that this scaling may be physically interpreted as

due to an evolution of the dust-to-metal ratio or of the dust geometry. Our model allows

to predict the redshift and luminosity dependence of the dust optical depth, with the only

free parameter being the residence time of young stars in molecular clouds. Finally, using

a dust radiative transfer model, Khakhaleva-Li and Gnedin [2016b] reproduce the observed

UV-LFs at z ∼ 6 and 7, but their predictions are inconsistent with the data at z ∼ 8 and

lead to colour-magnitude relations that are shallower than observed. In their model dust is

assumed to scale with metallicity and to be instantaneously sublimated in ionized regions.

While the latter is certainly a reasonable assumption, it is not enough to capture the com-

plex dynamical interplay between dust formation and destruction in the different phases

of the ISM, which is ultimately responsible for the observed evolution with redshift of the

luminosity and the dust extinction.

3.4.2 Scatter in the β – MUV and Mstar – MUV relations

High-z galaxy samples show a considerable scatter in the measured β slopes, even after

accounting for observational effects [Castellano et al., 2012, Bouwens et al., 2014, Rogers

et al., 2014]. Studying the distribution of galaxy colours at different redshifts can provide

interesting indications on the origin and evolution of the CMR.

Fig. 3.8 shows the predicted distribution of galaxy colours at z ∼ 5, 6, 7, and 8 as a

function of the UV magnitude, assuming the SMC extinction curve and tesc = 15 Myr.

Each data point represents an individual galaxy, colour-coded depending on the mass of

dust present in its ISM. The shaded regions show the 1–σ scatter around the CMR shown in

Fig. 3.7 (green line) using the same UV magnitude bins. The amount of scatter in the colour

distribution increases with cosmic time, as a result of the progressively larger degree of dust

enrichment. At each z, the scatter in the colour distribution increases with luminosity, as

the brightest galaxies are also more massive and dust enriched. This is consistent with the

analysis of Rogers et al. [2014] of a galaxy sample at z ∼ 5, where they find an increasing

width of the colour distribution towards brighter galaxies. We find that there is a minimum
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Figure 3.8. Predicted β slopes as a function of the UV magnitude at z ∼ 5, 6, 7 and 8 (from left

to right). Each data point represents a galaxy and it is colour-coded according to the mass

of dust in the ISM (colour scale on the right). We have assumed the SMC extinction curve

and tesc = 15 Myr. The grey shaded regions show the 1-σ scatter around the CMR shown in

Fig. 3.7. A coloured version of this Figure is available online.
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Figure 3.9. Same as Fig. 3.8 but for the stellar mass. In each panel, the solid line is the best-fit

relation for the simulated galaxies and the other lines show the relations inferred from obser-

vational data by González et al. [2011], Grazian et al. [2015], Schaerer et al. [2015] and Song

et al. [2016]. A coloured version of this Figure is available online.
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Figure 3.10. Same as Fig. 3.11 but for the dust attenuation factor at 1500Å. A coloured version of

this Figure is available online.

value of β that grows with UV luminosity as a consequence of a minimum level of dust

enrichment produced by stellar sources. This effect is independent of z but the number of

galaxies at the bright end grows with time. At each z, galaxies with the reddest colours can

have largely different luminosities: for a given β slope, the brightest galaxies are generally

dustier. At z . 6, sources with luminosities in the range –18 ≤ MUV ≤ –19, where we have

adequate statistics, appear to be a mix of intrinsically faint blue galaxies and of red objects

which have suffered strong dust extinction. The latter population grows with cosmic time

as a result of progressively more efficient grain-growth in their ISM.

Fig. 3.9 shows that the population of dusty, UV-faint galaxies at z ∼ 5 and 6 lie off

the mean Mstar – MUV relations inferred from observations at comparable and higher-z

[González et al., 2011, Duncan et al., 2014, Grazian et al., 2015, Schaerer et al., 2015,

Song et al., 2016]7 Using deep optical and infrared imaging provided by HST, Spitzer

and the VLT in the CANDELS-UDS, GOODS-South and HUDF, Grazian et al. [2015]

show that the data at 3.5 < z < 4.5 are consistent with a constant mass-to-light ratio

but with a considerable scatter. In particular, they find a population of relatively faint

7Systematic uncertainties associated with sample selection and stellar mass estimation lead to large dis-

crepancies between different observational studies, even when using the same data set [Song et al., 2016]. At

higher redshift, the scatter is reduced and the simulated galaxies follow a tighter Mstar – MUV relation. This

may be an evolutionary effect, as z ∼ 7 and 8 galaxies have experienced limited dust enrichment. However, due

to the limited volume of our simulation, we can not exclude that massive, dusty, UV faint galaxies may have

formed at these redshifts. Interestingly, there are observational evidences for massive, red galaxies at z ∼ 4 – 5

[Grazian et al., 2015, Song et al., 2016].
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Figure 3.11. The IR excess as a function of UV slope β for the simulated galaxies at z ∼ 5, 6, 7 and

8 (from left to right). Each data point represents a galaxy and it is colour-coded according to

the mass of dust in the ISM (colour scale on the right). We have assumed the SMC extinction

curve and tesc = 15 Myr. The black solid lines show the Meurer et al. [1999] correlation

with β0 = –2.5, the blue dashed lines show the relation inferred by Talia et al. [2015], and

the magenta solid lines the relation predicted for the SMC extinction curve. The data points at

z ∼ 5 represent the ALMA detected (green squares) and ALMA non detected (orange triangles)

sources reported by Capak et al. [2015]. The upper limits shown in all panels with light green

triangles are the results recently reported by Bouwens et al. [2016] for galaxies at z ∼ 4 – 10

(see text). A coloured version of this Figure is available online.

galaxies (with MUV ∼ –18) with masses Mstar ∼ 1011M�, which can be comparable

in number to UV bright galaxies with the same stellar mass. Because of their red colours,

these galaxies can not be selected by standard LBG criteria based on UV rest-frame colours.

The difference between the galaxy stellar mass function inferred from UV-selected star

forming galaxies by González et al. [2011] and the mass function derived by Duncan et al.

[2014] and Grazian et al. [2015] has been interpreted as due to a growing contribution of

massive dusty galaxies at z . 5.5. While at higher redshifts there is better agreement, this

may be due to a selection effect and the epoch of appearance of massive dusty galaxies may

require future deep infrared surveys [Grazian et al., 2015].

3.4.3 The IR excess

Dust attenuation of star forming galaxies at high redshift is commonly evaluated using

methods based on the observed correlation between the spectral slope β and the infrared
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excess, IRX [Meurer et al., 1999]. The latter is defined as the ratio between the IR to UV

fluxes (at λ = 1600Å), IRX = LogFIR/F1600 and it is a measure of dust absorption.

Hence the IRX-β relation shows that dust absorption is correlated to UV reddening and

provides a powerful tool to reconstruct the unattenuated UV flux when only UV rest-frame

data is available. The original idea was proposed by Meurer et al. [1999] using a sample of

local starbursts from which the following relations were derived:

IRX = Log(100.4A1600 – 1) + 0.076 ± 0.044, (3.26)

and

A1600 = 4.43 + 1.99 β, (3.27)

where A1600 = 1.086 τ1600 is the dust attenuation at 1600Å and the dispersion on the

fit was 0.55 mag in A1600 and 0.28 on β [Meurer et al., 1999]. The relation obviously

depends on the intrinsic spectrum of the sources and on the extinction curve. The zero

point of the relation implies that the intrinsic spectral slope of the sources is assumed to

be β0 = –2.23. This value has been reported as a grey solid line in Figs. 3.5 - 3.7 to

show that all the simulated galaxies at 5 ≤ z ≤ 8 have bluer intrinsic colours. Indeed,

modifications of the original relation to account for the lower metallicities and younger

ages of galaxies at high redshift have been proposed in the literature. Using a small sample

of galaxies at z ∼ 2.8–3 with deep IR observations and measured spectroscopic metallicities

from the CANDELS+HUGS survey, Castellano et al. [2014] derived the relation A1600 =

5.32 + 1.99 β. This implies a value of the intrinsic slope β0 = –2.67, consistent with the

sub-solar metallicities and young ages inferred for their sample galaxies. In Figs. 3.11 and

3.10 we show the Meurer et al. [1999] relation modified assuming a value of β0 = –2.5,

the mean intrinsic colours of the simulated galaxies (solid black lines). In the same figures,

we also show the much flatter relations derived by Talia et al. [2015] using the UV spectra

of a sample of 62 IR-selected galaxies at 1 < z < 3 (blue dashed lines), which is more

consistent with the relation inferred by Pettini et al. [1998] for the SMC extinction curve

(solid magenta lines). The inferred IRX - β is known to depend on the galaxy sample

selection method. While UV and optically selected samples distribute systematically lower

than starbursts on the IRX - β plane [Cortese et al., 2006, Boissier et al., 2007], two different

distributions are found in IR-selected samples. Luminous and Ultraluminous IR galaxies
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distribute above the Meurer et al. [1999] relation [Goldader et al., 2002, Takeuchi et al.,

2010, Howell et al., 2010, Reddy et al., 2010, Overzier et al., 2011, Casey et al., 2014,

Forrest et al., 2016], quiescent star forming galaxies distribute below it [Takeuchi et al.,

2010, Buat et al., 2012, Talia et al., 2015].

The figures also show the simulated galaxies at 5 ≤ z ≤ 8, colour-coded depending

on the level of dust enrichment. We have assumed the SMC extinction curve and tesc =

15 Myr. For each galaxy, we compute the IRX at 1500Å assuming that all the absorbed

UV radiation is re-emitted in the IR. We account also for the contribution of resonantly

scattered Lyman-α photons, which is estimated to be 7% of the UV radiation [Khakhaleva-

Li and Gnedin, 2016b].

At z ∼ 7 and 8, we find that all the simulated galaxies are characterized by an IRX

considerably smaller than that predicted by the Meurer et al. [1999] relation, and are con-

sistent with that predicted for the SMC and the one derived by Talia et al. [2015]. However,

a second population of dusty galaxies appears at z . 6, which progressively shifts towards

the Meurer et al. [1999] relation, although with a large scatter. This is the same population

that lies off the stellar mass - UV luminosity relation shown in Fig. 3.9 and that dominates

the scatter in the colour distribution shown in Fig. 3.8. Our analysis suggests that lower

stellar mass and less chemically mature galaxies at high-z are characterized by smaller

IRX and A1500 than implied by the Meurer et al. [1999] relation for galaxies with the same

colours. Their ISM dust is mostly contributed by stellar sources and their dust attenuation

is smaller, consistent with what has been found for young (< 100 Myr) LBGs at z ∼ 3 by

Siana et al. [2009] and Reddy et al. [2010], and more recently by [Bouwens et al., 2016]

using ALMA 1.22 mm-continuum observations of a 1 arcmin2 region in the Hubble Ultra

Deep Field. However, we find that massive and more chemically evolved galaxies, where

grain growth in dense gas increases the mass of ISM dust, introduce a considerable scatter

in the IRX at a given UV continuum slope. At z ∼ 5.25, galaxies with –2 < β < –1.5 can

have IRX in the range 0.3 - 4 and it is very hard to infer the proper dust attenuation factor

from the UV slope alone (see Fig.3.10).

In Fig. 3.11 we also show the IR excess of z ∼ 5.1–5.7 galaxies inferred by Capak et al.

[2015], which have been argued to be significantly more dust-poor and less IR-luminous

than lower z galaxies with similar UV colours. To be consistent with the data points shown
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in Fig.3.4, we have computed the IRX values of the Capak et al. [2015] sources, from their

measured (or upper limits) 158 µm flux, adopting a modified black body spectrum with

emissivity index β = 1.5 [Ota et al., 2014] and a dust temperature Td = 35 K, as described

in Section 3.1. This yields values of the FIR emissivities that are 25% larger, but consistent

within the errors, with the ones reported by (Capak et al. 2015, see their Table 5). We find

that simulated galaxies which follow the SMC and the Talia et al. [2015] correlations at

the same z are marginally compatible with the IRX of the ALMA detected sources (green

squares), given the large uncertainties on their β slopes. However, the simulated galaxies

with IRX compatible with the upper limits inferred for the ALMA undetected sources (or-

ange triangles) have significantly bluer colours, consistent with their low dust content. Our

study confirms that it is difficult to explain the low IRX of the Capak et al. [2015] sources,

unless their β slopes have been overestimated or the dust temperature (hence the FIR flux)

has been underestimated. A similar conclusion applies to the recent results reported by

Bouwens et al. [2016] using stacked constraints on the IRX for a sample of z ∼ 4 – 10

galaxies of the HUDF obtained with deep 1.2 mm-continuum observations (see the upper

limits in Fig. 3.11). A more detailed analysis of these latest findings is deferred to a future

study.



76

Chapter 4

Conclusions

Dust plays a very important role in the star formation cycle. It promotes the formation

of molecular hydrogen [Krumholz et al., 2012, Gnedin and Kravtsov, 2010], hence affect-

ing the rate of star formation [Bigiel et al., 2008, Krumholz et al., 2011]. At very low

metallicities, collisional excitation of dust grains followed by thermal emission provides

an important cooling channel in star forming regions, possibly allowing the formation of

the first low-mass and long-lived stars [Schneider et al., 2002, 2006, 2012b]. However,

the origin of dust at high redshift and the level of dust enrichment expected in the first

low-metallicity galaxies are still debated issues.

Due to the short evolutionary timescales of their stellar progenitors, SNe have been

proposed to be the major sources of dust at high redshift. Indeed, theoretical models have

shown that a few hundreds days after the explosions, gas-phase metals can condense in the

expanding SN ejecta, forming a large variety of grain species [Todini and Ferrara, 2001,

Nozawa et al., 2003, Bianchi and Schneider, 2007, Cherchneff and Lilly, 2008, Sarangi

and Cherchneff, 2013, Marassi et al., 2014, 2015]. When compared to observations of SN

remnants done with Herschel and - more recently - with ALMA [Gomez and Matsuura,

2012, Dunne et al., 2009, Barlow et al., 2010, Matsuura et al., 2011, Otsuka et al., 2010, De

Looze et al., 2017], that are sensitive to the dynamically dominant cold dust component, the

predicted masses of freshly formed dust are in broad agreement [Schneider et al., 2014].

Yet, a large uncertainty remains on the fraction of freshly formed dust that will survive

the passage of the reverse shock [Bianchi and Schneider, 2007, Bocchio et al., 2016]. For

example, following the predicted time evolution of the dust mass in the ejecta of SN 1987A



CHAPTER 4. CONCLUSIONS 77

and CasA, Bocchio et al. [2016] find that SN 1987A is too young for the reverse shock

to have affected the dust mass. Hence the observed dust mass of [0.7 – 0.9] M� in this

source is indicative of the mass of freshly formed dust in SN ejecta. In Cas A, the reverse

shock has already destroyed ∼ 10% of the initial dust mass. However, the largest dust

mass destruction is predicted to occur between 103 and 105 yr after the explosions. Hence,

current observations can only provide an upper limit to the effective SN dust yields, and

can not be used to quantify the contribution of SNe to dust enrichment, as often done in the

literature [Watson et al., 2015, Laporte et al., 2017a].

The contribution of AGB to high-z dust enrichment has often been neglected, based on

the assumption that their longer evolutionary timescales prevent them from reaching their

dust production phase at z > 6. However, this is rather a misconception as the evolutionary

timescales of intermediate mass stars with masses between ∼ 2 to ∼ 8M� range between 40

Myr and 1 Gyr, and hence these stars have enough time to reach their dust production phase

even at z ≥ 6 [Valiante et al., 2009]. Rather, their contribution to early dust enrichment

depends on the mass- and metallicity-dependent dust yields. Using AGB dust yields from

Ferrarotti and Gail [2006], Zhukovska et al. [2008], Valiante et al. [2009] have shown

that AGB stars can contribute up to ∼ 50% of the total dust mass produced by a burst of

stars in less than 300 Myr. These figures have been recently revised in light of new AGB

dust yields that are computed following the time-dependent chemical composition of the

stellar atmospheres as predicted by numerical stellar models [Ventura et al., 2012b,a, Di

Criscienzo et al., 2013, Ventura et al., 2014]. These new models predict a larger metallicity

dependence of dust production rates of massive AGB stars. As a result, it is found that at

Z < 0.2 Z� AGB contribution to the total dust mass is always sub-dominant with respect

to that of SNe, and at higher metallicities it becomes dominant on longer timescales, ∼

500 Myr [Schneider et al., 2015].

Clearly, the relative importance of SNe and AGB stars as sources of dust at high-z is

still debated and it depends on persisting modelling uncertainties of dust production, and on

the star formation history and chemical evolution of individual galaxies. In addition, once

injected in the ISM, dust grains will be exposed to a large variety of physical conditions that

will affect their physical properties [Hirashita et al., 2014a, 2016]. Among these, shocked

gas fronts propagating in the ISM as result of SN explosions are believed to be the principal
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environments where grain destruction can occur [McKee et al., 1987, Jones et al., 1994,

Bocchio et al., 2014]. In the environments where dust survives, the grains can grow in

mass by accreting gas phase metals (Draine 2011, Hirashita 2012, Hirashita and Li 2013,

Köhler et al. 2015, but see however Ferrara et al. 2016).

Many successful progresses have been made in implementing dust enrichment in galax-

ies by both semi-analytic [Valiante et al., 2012, 2014, de Bennassuti et al., 2014, 2017, Pop-

ping et al., 2017], semi-numerical [Dayal et al., 2010b, Dayal and Ferrara, 2012, Wilkins

et al., 2013, 2016, Khakhaleva-Li and Gnedin, 2016a, Cullen et al., 2017, Narayanan et al.,

2017], and numerical models [Bekki, 2015, McKinnon et al., 2017, Zhukovska et al., 2016,

Aoyama et al., 2017]. In this Ph.D. thesis, I have presented our original contribution to

these advancements [Mancini et al., 2015, 2016], where we have developed a new semi-

numerical model to investigate the earliest phases of dust enrichment in the Universe and

how these affect the properties of the first galaxies. In particular, the questions we have

tried to answer are the following.

What is the dominant stellar source of dust in z > 6 galaxies?

With our semi-numerical model, we have reconstructed individual star formation histo-

ries of galaxies with masses Mstar > 109M�. For each of these, we have estimated the

mass of dust produced by SNe and AGB stars. On average, we find that stellar sources

of dust dominate the ISM enrichment at z > 10, below which grain growth in dense ISM

clouds provides the dominant contribution. Among stellar sources of dust, SNe appear al-

ways dominant, but the average contribution of AGB stars can be as large as ∼ 40%. This

confirms that the contribution of AGB stars to high-redshift dust formation cannot be ne-

glected, especially for the galaxies currently targeted by observational searches [Valiante

et al., 2009, Mancini et al., 2015].

What are the physical conditions that allow rapid dust enrichment at high redshifts?

Observational data targeting normal star forming galaxies at z > 6 have so far provided

conflicting evidence for the presence of dust in their ISM. In most cases, ALMA data have

been able to provide only upper limits on their dust thermal emission [Kanekar et al., 2013,

Ouchi et al., 2013, Ota et al., 2014, Schaerer et al., 2015, Maiolino et al., 2015, Zavala
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et al., 2015]. On the other hand, the detection of large dust masses in two gravitationally

lensed galaxies, A1689-zD1 at z = 7.5 [Watson et al., 2015] and A2744 YD4 at z = 8.38

have challenged the idea that dust enrichment can be neglected for these high-z systems

[Michałowski, 2015, Mancini et al., 2015]. Indeed, A1689-zD1 has been able to accumu-

late a dust mass comparable to that of the Milky Way, Mdust ∼ (3 – 6)×107M� in less than

600 Myr of cosmic evolution (assuming star formation to have started at z ∼ 25). The anal-

ysis that we have carried out suggests that very efficient grain growth must have occurred

in the ISM of this galaxy, with a grain growth time-scale τacc,0 = 0.2 Myr, one order of

magnitude shorter than required to reproduce the observed dust-to-gas ratio in the Milky-

Way and in most local dwarf galaxies [de Bennassuti et al., 2014, Zhukovska, 2014]. Most

notably, the same grain growth time-scale would be able to explain the 6 × 106M� dust

mass inferred for A2744 YD4 [Laporte et al., 2017a] z = 8.38, only 600 Myr after the Big

Bang. Conversely, a similarly small grain growth time-scale - if applied to all the galaxies

at these high redshifts - would largely exceed the upper limits obtained from ALMA ob-

servations of 6 ≤ z ≤ 7 galaxies [Kanekar et al., 2013, Ouchi et al., 2013, Ota et al., 2014,

Schaerer et al., 2015, Maiolino et al., 2015]. Our study suggests that in these high redshift

faint dusty star forming galaxies the cold atomic and molecular phases of the ISM, where

grain growth is more efficient, must have had an average density of ∼ 104 cm–3, compara-

ble to the molecular gas density inferred from CO excitation analyses of starburst galaxies

at comparable (although slightly smaller) redshifts [Carilli and Walter, 2013]. Interestingly,

a recent follow-up study of A2744 YD4 suggests that the galaxy could be an interacting

system of two proto-galaxies or an early disk in formation with a clumpy structure arising

from dynamical instabilities [Knudsen et al., 2017]. In either case, the average density of

the gas is increased and these conditions seem to make A1689-zD1 suitable for accelerated

grain growth.

How does dust enrichment affect the UV properties of 5 ≤ z ≤ 8 galaxies?

To explore how dust extinction could affect the UV luminosities and colours of high-z

galaxies, as a first step we have computed the UV LF and CMR for all the simulated galax-

ies, using the metallicity and age-dependent stellar emission spectra, but assuming no dust

extinction. The comparison with existing observational data shows that while the observed
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LF at z ∼ 8 is consistent with negligible dust extinction, at z ∼ 5 observations seem to

require significant dust extinction at all luminosities brighter than MUV = –18, in agree-

ment with independent studies [Salvaterra et al., 2013, Dayal et al., 2013, Khakhaleva-Li

and Gnedin, 2016a]. At all redshifts, the predicted intrinsic β slopes are much bluer than

observed, particularly at the bright end. Hence, our study suggests that even a modest level

of dust enrichment can significantly affect the UV colours of high redshift galaxies, partic-

ularly at the bright end [Mancini et al., 2016].

What can we learn from existing data on the properties of dust at 5 ≤ z ≤ 8?

Using our semi-numerical approach, we have explored different dust extinction models,

varying the dust extinction law and time interval during which stars are still embedded in

their natal clouds, thus experiencing a larger dust extinction. We find that current data

on the UV LF and CMR at 5 ≤ z ≤ 8 seem to favour a steep, SMC-like extinction law

and a cloud residence time of ≤ 15 Myr. Using this simple model, we analyze the scatter

in the colour distribution, and we find that this increases with cosmic time, as a result of

the progressively larger degree of dust enrichment. At each z, the scatter in the colour

distribution increases with luminosity, as the brightest galaxies are also more massive and

dust enriched. Hence, our analysis suggests that z ≥ 5 galaxies are a mix of intrinsically

faint blue galaxies and of red objects which have suffered strong dust extinction, and that

the latter population grows with time, as a result of more efficient grain-growth in their ISM

[Mancini et al., 2016].

These findings indicate that physical properties derived only from rest-frame UV data

should be taken with care. Indeed, lower stellar mass and less chemically mature galaxies

at high-z are characterized by smaller IRX and A1500 than implied by the Meurer et al.

(1999) relation for galaxies with the same colours. As a result, their star formation rate

may be overestimated if dust attenuation factors are derived using the Meurer et al. (1999)

relation, and that more realistic dust correction for young galaxies, which have not yet

experienced major dust enrichment, can be derived from their UV colours using a flatter

IRX - relation, such as the one implied by the SMC curve. On the other hand, we also

predict a population of dusty, UV-faint galaxies at z ∼ 5 and 6 that lies off the mean

Mstar – MUV relations inferred from observations at comparable and higher-z [González
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et al., 2011, Duncan et al., 2014, Grazian et al., 2015, Schaerer et al., 2015]. Indeed, the

difference between the galaxy stellar mass function inferred from UV-selected star forming

galaxies by González et al. [2011] and the mass function derived by Duncan et al. [2014],

Grazian et al. [2015] using deep optical and infrared data has been interpreted as due to a

growing contribution of massive dusty galaxies at z 6 5.5.

Finally, our model predictions are in tension with the IR excess of z ∼ 5.1–5.7 galaxies

inferred by [Capak et al., 2015], which have been argued to be significantly more dust-poor

and less IR-luminous than lower redshift galaxies with similar UV colours. We suggest

that the β slopes of these galaxies may have been overestimated or that their IR luminosi-

ties (that are derived from a single data point) may have been underestimated due to a poor

assumption on the dust temperature or on the dust emissivity [Mancini et al., 2016]. These

suggestions have proved to be correct by new analyses of the same sample [Barišić et al.,

2017, Faisst et al., 2017] and the new observations are in much better agreement with the

theoretical predictions.

What is the best strategy to improve our understanding of early dust formation?

The progresses made in the past few years have demonstrated that ALMA has the poten-

tial to detect dust emission from galaxies up to z ∼ 7.5 and beyond, and the upcoming

James Webb Space Telescope will be able to extend rest-frame UV observations up to very

high redshifts, allowing to probe the first phases of metal and dust enrichment in the Uni-

verse. In order to fully exploit the physical information encoded in these extraordinary

data, theoretical models must be able to predict the properties of the interstellar medium

of these galaxies, including their dust content. Recent attempts have been made to include

dust formation and its reprocessing in the ISM directly in numerical simulations [Bekki,

2015, McKinnon et al., 2017, Zhukovska et al., 2016, Aoyama et al., 2017, Graziani, 2017,

in prep]. Ultimately, this is were we have to convey our theoretical efforts and the work

presented in this Ph.D. thesis represents an important step in this direction.
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J. S. Kartaltepe, C. M. Casey, and V. Smolčić. Dust Properties of [CII] Detected z ∼ 5.5

Galaxies: New HST/WFC3 Near-IR Observations. ArXiv e-prints, July 2017.

R. Barkana and A. Loeb. In the beginning: the first sources of light and the reionization

of the universe. Phys. Rep., 349:125–238, July 2001. doi: 10.1016/S0370-1573(01)

00019-9.

R. Barkana and A. Loeb. Concentrating the dark matter in galaxy clusters through tidal

stripping of baryonically compressed galactic halos. MNRAS, 405:1969–1975, July

2010. doi: 10.1111/j.1365-2966.2010.16587.x.

M. J. Barlow, O. Krause, B. M. Swinyard, B. Sibthorpe, M.-A. Besel, R. Wesson, R. J.

Ivison, L. Dunne, W. K. Gear, H. L. Gomez, P. C. Hargrave, T. Henning, S. J. Leeks,

T. L. Lim, G. Olofsson, and E. T. Polehampton. A Herschel PACS and SPIRE study of

the dust content of the Cassiopeia A supernova remnant. A&A, 518:L138, July 2010.

doi: 10.1051/0004-6361/201014585.

G. D. Becker, M. Rauch, and W. L. W. Sargent. High-Redshift Metals. I. The Decline of C

IV at z > 5.3. ApJ, 698:1010–1019, June 2009. doi: 10.1088/0004-637X/698/2/1010.

S. V. W. Beckwith, M. Stiavelli, A. M. Koekemoer, J. A. R. Caldwell, H. C. Ferguson,

R. Hook, R. A. Lucas, L. E. Bergeron, M. Corbin, S. Jogee, N. Panagia, M. Robberto,

P. Royle, R. S. Somerville, and M. Sosey. The Hubble Ultra Deep Field. AJ, 132:

1729–1755, November 2006. doi: 10.1086/507302.

K. Bekki. Cosmic Evolution of Dust in Galaxies: Methods and Preliminary Results. ApJ,

799:166, February 2015. doi: 10.1088/0004-637X/799/2/166.



BIBLIOGRAPHY 84

J. Benjamin, C. Heymans, E. Semboloni, L. van Waerbeke, H. Hoekstra, T. Erben, M. D.

Gladders, M. Hetterscheidt, Y. Mellier, and H. K. C. Yee. Cosmological constraints

from the 100-deg2 weak-lensing survey. MNRAS, 381:702–712, October 2007. doi:

10.1111/j.1365-2966.2007.12202.x.

S. Bertone and F. Stoehr, Whit. D. M.. M. Galactic winds and transport of metals into the

IGM in semi-analytic simulations. In R. de Grijs and R. M. González Delgado, editors,

Starbursts: From 30 Doradus to Lyman Break Galaxies, volume 329 of Astrophysics and

Space Science Library, page P6, May 2005.

S. Bianchi and R. Schneider. Dust formation and survival in supernova ejecta. MNRAS,

378:973–982, July 2007. doi: 10.1111/j.1365-2966.2007.11829.x.

F. Bigiel, A. Leroy, F. Walter, E. Brinks, W. J. G. de Blok, B. Madore, and M. D. Thornley.

The Star Formation Law in Nearby Galaxies on Sub-Kpc Scales. AJ, 136:2846–2871,

December 2008. doi: 10.1088/0004-6256/136/6/2846.

M. Bocchio, A. P. Jones, and J. D. Slavin. A re-evaluation of dust processing in supernova

shock waves. A&A, 570:A32, October 2014. doi: 10.1051/0004-6361/201424368.

M. Bocchio, S. Marassi, R. Schneider, S. Bianchi, M. Limongi, and A. Chieffi. Dust grains

from the heart of supernovae. A&A, 587:A157, 2016.

S. Boissier, A. Gil de Paz, A. Boselli, B. F. Madore, V. Buat, L. Cortese, D. Burgarella, J. C.

Muñoz-Mateos, T. A. Barlow, K. Forster, P. G. Friedman, D. C. Martin, P. Morrissey,

S. G. Neff, D. Schiminovich, M. Seibert, T. Small, T. K. Wyder, L. Bianchi, J. Donas,

T. M. Heckman, Y.-W. Lee, B. Milliard, R. M. Rich, A. S. Szalay, B. Y. Welsh, and

S. K. Yi. Radial variation of attenuation and star formation in the largest late-type disks

observed with galex. ApJS, 173:524, 2007.

W. B. Bonnor. The Formation of the Nebulae. With 3 Figures. ZAp, 39:143, 1956.

R. Bouwens, M. Aravena, R. Decarli, F. Walter, E. da Cunha, I. Labbe, F. Bauer, F. Bertoldi,

C. Carilli, S. Chapman, E. Daddi, J. Hodge, R. Ivison, A. Karim, O. Le Fevre, B. Mag-

nelli, K. Ota, D. Riechers, I. Smail, P. van der Werf, A. Weiss, P. Cox, D. Elbaz,

J. Gonzalez-Lopez, L. Infante, P. Oesch, J. Wagg, and S. Wilkins. ALMA Spectroscopic



BIBLIOGRAPHY 85

Survey in the Hubble Ultra Deep Field: The Infrared Excess of UV-selected z=2-10

galaxies as a function of UV-continuum Slope and Stellar Mass. ArXiv e-prints, June

2016.

R. J. Bouwens, G. D. Illingworth, P. A. Oesch, I. Labbé, M. Trenti, P. van Dokkum,

M. Franx, M. Stiavelli, C. M. Carollo, D. Magee, and V. Gonzalez. Ultraviolet Lu-

minosity Functions from 132 z ∼ 7 and z ∼ 8 Lyman-break Galaxies in the Ultra-deep

HUDF09 and Wide-area Early Release Science WFC3/IR Observations. ApJ, 737:90,

August 2011. doi: 10.1088/0004-637X/737/2/90.

R. J. Bouwens, G. D. Illingworth, P. A. Oesch, M. Franx, I. Labbé, M. Trenti, P. van

Dokkum, C. M. Carollo, V. González, R. Smit, and D. Magee. UV-continuum Slopes at

z ∼ 4-7 from the HUDF09+ERS+CANDELS Observations: Discovery of a Well-defined

UV Color-Magnitude Relationship for z ≥ 4 Star-forming Galaxies. ApJ, 754:83, August

2012. doi: 10.1088/0004-637X/754/2/83.

R. J. Bouwens, G. D. Illingworth, P. A. Oesch, I. Labbé, P. G. van Dokkum, M. Trenti,

M. Franx, R. Smit, V. Gonzalez, and D. Magee. UV-continuum Slopes of > 4000 z ∼

4-8 Galaxies from the HUDF/XDF, HUDF09, ERS, CANDELS-South, and CANDELS-

North Fields. ApJ, 793:115, October 2014. doi: 10.1088/0004-637X/793/2/115.

R. J. Bouwens, G. D. Illingworth, P. A. Oesch, M. Trenti, I. Labbé, L. Bradley, M. Car-

ollo, P. G. van Dokkum, V. Gonzalez, B. Holwerda, M. Franx, L. Spitler, R. Smit, and

D. Magee. UV Luminosity Functions at Redshifts z ∼ 4 to z ∼ 10: 10,000 Galaxies from

HST Legacy Fields. ApJ, 803:34, April 2015. doi: 10.1088/0004-637X/803/1/34.

R. A. A. Bowler, J. S. Dunlop, R. J. McLure, A. B. Rogers, H. J. McCracken, B. Milvang-

Jensen, H. Furusawa, J. P. U. Fynbo, Y. Taniguchi, J. Afonso, M. N. Bremer, and O. Le

Fèvre. The bright end of the galaxy luminosity function at z'7: before the onset of mass

quenching? MNRAS, 440:2810–2842, May 2014. doi: 10.1093/mnras/stu449.

R. A. A. Bowler, J. S. Dunlop, R. J. McLure, H. J. McCracken, B. Milvang-Jensen, H. Furu-

sawa, Y. Taniguchi, O. Le Fèvre, J. P. U. Fynbo, M. J. Jarvis, and B. Häußler. The galaxy

luminosity function at z ' 6 and evidence for rapid evolution in the bright end from z '

7 to 5. MNRAS, 452:1817–1840, September 2015. doi: 10.1093/mnras/stv1403.



BIBLIOGRAPHY 86

V. Bromm. Formation of the first stars. Reports on Progress in Physics, 76(11):112901,

November 2013. doi: 10.1088/0034-4885/76/11/112901.

V. Bromm and A. Loeb. The formation of the first low-mass stars from gas with

low carbon and oxygen abundances. Nature, 425:812–814, October 2003. doi:

10.1038/nature02071.

V. Bromm and N. Yoshida. The First Galaxies. ARA&A, 49:373–407, September 2011.

doi: 10.1146/annurev-astro-081710-102608.

V. Bromm, A. Ferrara, P. S. Coppi, and R. B. Larson. The fragmentation of

pre-enriched primordial objects. MNRAS, 328:969–976, December 2001. doi:

10.1046/j.1365-8711.2001.04915.x.

V. Bromm, P. S. Coppi, and R. B. Larson. The Formation of the First Stars. I. The Primor-

dial Star-forming Cloud. ApJ, 564:23–51, January 2002. doi: 10.1086/323947.

V. Buat, S. Noll, D. Burgarella, E. Giovannoli, V. Charmandaris, M. Pannella, H. S. Hwang,

D. Elbaz, M. Dickinson, G. Magdis, N. Reddy, and E. J. Murphy. Goods-herschel: dust

attenuation properties of uv selected high redshift galaxies. A&A, 545:A141, 2012.

D. Calzetti, A. L. Kinney, and T. Storchi-Bergmann. Dust extinction of the stellar continua

in starburst galaxies: The ultraviolet and optical extinction law. ApJ, 429:582–601, July

1994. doi: 10.1086/174346.

D. Calzetti, L. Armus, R. C. Bohlin, A. L. Kinney, J. Koornneef, and T. Storchi-Bergmann.

The Dust Content and Opacity of Actively Star-forming Galaxies. ApJ, 533:682–695,

April 2000. doi: 10.1086/308692.

M. A. Campisi, U. Maio, R. Salvaterra, and B. Ciardi. Population III stars and

the long gamma-ray burst rate. MNRAS, 416:2760–2767, October 2011. doi:

10.1111/j.1365-2966.2011.19238.x.

P. L. Capak, C. Carilli, G. Jones, C. M. Casey, D. Riechers, K. Sheth, C. M. Carollo,

O. Ilbert, A. Karim, O. Lefevre, S. Lilly, N. Scoville, V. Smolcic, and L. Yan. Galaxies

at redshifts 5 to 6 with systematically low dust content and high [c ii] emission. Nature,

522(422), 2015.



BIBLIOGRAPHY 87

J. A. Cardelli, G. C. Clayton, and J. S. Mathis. The relationship between infrared, optical,

and ultraviolet extinction. ApJ, 345:245, 1989.

C. L. Carilli and F. Walter. Cool Gas in High-Redshift Galaxies. ARA&A, 51:105–161,

August 2013. doi: 10.1146/annurev-astro-082812-140953.

C. M. Casey, N. Z. Scoville, D. B. Sanders, N. Lee, A. Cooray, S. L. Finkelstein, P. Capak,

A. Conley, G. De Zotti, D. Farrah, H. Fu, E. Le Floc’h, O. Ilbert, R. J. Ivison, and

T. T. Takeuchi. Are dusty galaxies blue? insights on uv attenuation from dust-selected

galaxies. ApJ, 796:95, 2014.

M. Castellano, A. Fontana, D. Paris, A. Grazian, L. Pentericci, K. Boutsia, P. Santini,

V. Testa, M. Dickinson, M. Giavalisco, R. Bouwens, J.-G. Cuby, F. Mannucci, B. Clé-

ment, S. Cristiani, F. Fiore, S. Gallozzi, E. Giallongo, R. Maiolino, N. Menci, A. Moor-

wood, M. Nonino, A. Renzini, P. Rosati, S. Salimbeni, and E. Vanzella. The bright end

of the z ∼ 7 UV luminosity function from a wide and deep HAWK-I survey. A&A, 524:

A28, December 2010. doi: 10.1051/0004-6361/201015195.

M. Castellano, A. Fontana, A. Grazian, L. Pentericci, P. Santini, A. Koekemoer, S. Cris-

tiani, A. Galametz, S. Gallerani, E. Vanzella, K. Boutsia, S. Gallozzi, E. Giallongo,

R. Maiolino, N. Menci, and D. Paris. The blue UV slopes of z ∼ 4 Lyman break galax-

ies: implications for the corrected star formation rate density. A&A, 540:A39, April

2012. doi: 10.1051/0004-6361/201118050.

M. Castellano, V. Sommariva, A. Fontana, L. Pentericci, P. Santini, A. Grazian, R. Amorin,

J. L. Donley, J. S. Dunlop, H. C. Ferguson, F. Fiore, A. Galametz, E. Giallongo, Y. Guo,

K.-H. Huang, A. Koekemoer, R. Maiolino, R. J. McLure, D. Paris, D. Schaerer, P. Tron-

coso, and E. Vanzella. Constraints on the star-formation rate of z ∼ 3 lbgs with measured

metallicity in the candels goods-south field. A&A, 566:A19, 2014.

S. Charlot and S. M. Fall. A simple model for the absorption of starlight by dust in galaxies.

ApJ, 539:718, 2000.

I. Cherchneff and E. Dwek. The Chemistry of Population III Supernova Ejecta. I. For-

mation of Molecules in the Early Universe. ApJ, 703:642–661, September 2009. doi:

10.1088/0004-637X/703/1/642.



BIBLIOGRAPHY 88

I. Cherchneff and S. Lilly. Primordial Massive Supernovae as the First Molecular Factories

in the Early Universe. ApJ, 683:L123–L126, August 2008. doi: 10.1086/591906.

B. Ciardi and A. Ferrara. The First Cosmic Structures and Their Effects. Space Sci. Rev.,

116:625–705, February 2005. doi: 10.1007/s11214-005-3592-0.

P. C. Clark, S. C. O. Glover, R. S. Klessen, and V. Bromm. Gravitational Fragmentation

in Turbulent Primordial Gas and the Initial Mass Function of Population III Stars. ApJ,

727:110, February 2011. doi: 10.1088/0004-637X/727/2/110.

S. Cole, W. J. Percival, J. A. Peacock, P. Norberg, C. M. Baugh, C. S. Frenk, I. Baldry,

J. Bland-Hawthorn, T. Bridges, R. Cannon, M. Colless, C. Collins, W. Couch, N. J. G.

Cross, G. Dalton, V. R. Eke, R. De Propris, S. P. Driver, G. Efstathiou, R. S. Ellis,

K. Glazebrook, C. Jackson, A. Jenkins, O. Lahav, I. Lewis, S. Lumsden, S. Maddox,

D. Madgwick, B. A. Peterson, W. Sutherland, and K. Taylor. The 2dF Galaxy Redshift

Survey: power-spectrum analysis of the final data set and cosmological implications.

MNRAS, 362:505–534, September 2005. doi: 10.1111/j.1365-2966.2005.09318.x.

L. Cortese, A. Boselli, V. Buat, G. Gavazzi, S. Boissier, A. Gil de Paz, M. Seibert, B. F.

Madore, and D. C. Martin. Uv dust attenuation in normal star-forming galaxies. i. esti-

mating the lTIR/lFUV ratio. ApJ, 637:242, 2006.

F. Cullen, R. J. McLure, S. Khochfar, J. S. Dunlop, and C. Dalla Vecchia. The First Billion

Years project: constraining the dust attenuation law of star-forming galaxies at z ' 5.

MNRAS, 470:3006–3026, September 2017. doi: 10.1093/mnras/stx1451.

E. da Cunha, B. Groves, F. Walter, R. Decarli, A. Weiss, F. Bertoldi, C. Carilli, E. Daddi,

D. Elbaz, R. Ivison, R. Maiolino, D. Riechers, H.-W. Rix, M. Sargent, and I. Smail.

On the Effect of the Cosmic Microwave Background in High-redshift (Sub-)millimeter

Observations. ApJ, 766:13, March 2013. doi: 10.1088/0004-637X/766/1/13.

P. Dayal and A. Ferrara. Lyα emitters and Lyman-break galaxies: dichotomous twins.

MNRAS, 421:2568–2579, April 2012. doi: 10.1111/j.1365-2966.2012.20486.x.

P. Dayal, A. Ferrara, and A. Saro. The cool side of Lyman alpha emitters. MNRAS, 402:

1449, 2010a.



BIBLIOGRAPHY 89

P. Dayal, H. Hirashita, and A. Ferrara. Detecting Lyman alpha emitters in the submillime-

tre. MNRAS, 403:620–624, April 2010b. doi: 10.1111/j.1365-2966.2009.16164.x.

P. Dayal, J. S. Dunlop, U. Maio, and B. Ciardi. Simulating the assembly of galaxies at red-

shifts z = 6-12. MNRAS, 434:1486–1504, September 2013. doi: 10.1093/mnras/stt1108.

P. Dayal, A. Ferrara, J. S. Dunlop, and F. Pacucci. Essential physics of early galaxy forma-

tion. MNRAS, 445:2545–2557, December 2014. doi: 10.1093/mnras/stu1848.

M. de Bennassuti, R. Schneider, R. Valiante, and S. Salvadori. Decoding the stellar fossils

of the dusty Milky Way progenitors. MNRAS, 445:3039–3054, December 2014. doi:

10.1093/mnras/stu1962.

M. de Bennassuti, S. Salvadori, R. Schneider, R. Valiante, and K. Omukai. Limits on

Population III star formation with the most iron-poor stars. MNRAS, 465:926–940,

February 2017. doi: 10.1093/mnras/stw2687.

I. De Looze, M. J. Barlow, B. M. Swinyard, J. Rho, H. L. Gomez, M. Matsuura, and

R. Wesson. The dust mass in Cassiopeia A from a spatially resolved Herschel analysis.

MNRAS, 465:3309–3342, March 2017. doi: 10.1093/mnras/stw2837.

A. L. DeSouza and S. Basu. The luminosity of Population III star clusters. MNRAS, 450:

295–304, June 2015. doi: 10.1093/mnras/stv523.

M. Di Criscienzo, F. Dell’Agli, P. Ventura, R. Schneider, R. Valiante, F. La Franca, C. Rossi,

S. Gallerani, and R. Maiolino. Dust formation in the winds of AGBs: the contribution at

low metallicities. MNRAS, 433:313–323, July 2013. doi: 10.1093/mnras/stt732.

Bruce T. Draine. Physics of the Interstellar and Intergalactic Medium. Princeton Univ.

Press, 2011.

K. Duncan, C. J. Conselice, A. Mortlock, W. G. Hartley, Y. Guo, H. C. Ferguson, R. Davé,

Y. Lu, J. Ownsworth, M. L. N. Ashby, A. Dekel, M. Dickinson, S. Faber, M. Giavalisco,

N. Grogin, D. Kocevski, A. Koekemoer, R. S. Somerville, and C. E. White. The mass

evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z <

7 in the CANDELS GOODS-South field. MNRAS, 444:2960, 2014.



BIBLIOGRAPHY 90

J. S. Dunlop. A Deep ALMA Image of the Hubble Ultra Deep Field. The Messenger, 166:

48–52, December 2016.

J. S. Dunlop, R. J. McLure, B. E. Robertson, R. S. Ellis, D. P. Stark, M. Cirasuolo, and

L. de Ravel. A critical analysis of the ultraviolet continuum slopes (β) of high-redshift

galaxies: no evidence (yet) for extreme stellar populations at z > 6. MNRAS, 420:901,

2012.

J. S. Dunlop, A. B. Rogers, R. J. McLure, R. S. Ellis, B. E. Robertson, A. Koekemoer,

P. Dayal, E. Curtis-Lake, V. Wild, S. Charlot, R. A. A. Bowler, M. A. Schenker,

M. Ouchi, Y. Ono, M. Cirasuolo, S. R. Furlanetto, D. P. Stark, T. A. Targett, and

E. Schneider. The uv continua and inferred stellar populations of galaxies at z ' 7-9

revealed by the hubble ultra-deep field 2012 campaign. MNRAS, 432:3520, 2013.

L. Dunne, S. J. Maddox, R. J. Ivison, L. Rudnick, T. A. Delaney, B. C. Matthews,

C. M. Crowe, H. L. Gomez, S. A. Eales, and S. Dye. Cassiopeia A: dust factory

revealed via submillimetre polarimetry. MNRAS, 394:1307–1316, April 2009. doi:

10.1111/j.1365-2966.2009.14453.x.

R. Ebert. Über die Verdichtung von H I-Gebieten. Mit 5 Textabbildungen. ZAp, 37:217,

1955.

A. L. Faisst, P. L. Capak, L. Yan, R. Pavesi, D. A. Riechers, I. Barisic, K. C. Cooke, J. S.

Kartaltepe, and D. C. Masters. Are high redshift Galaxies hot? - Temperature of z > 5

Galaxies and Implications on their Dust Properties. ArXiv e-prints, August 2017.

H. Feldman, R. Juszkiewicz, P. Ferreira, M. Davis, E. Gaztañaga, J. Fry, A. Jaffe, S. Cham-

bers, L. da Costa, M. Bernardi, R. Giovanelli, M. Haynes, and G. Wegner. An Esti-

mate of Ωm without Conventional Priors. ApJ, 596:L131–L134, October 2003. doi:

10.1086/379221.

A. Ferrara, M. Pettini, and Y. Shchekinov. Mixing metals in the early Universe. MNRAS,

319:539–548, December 2000. doi: 10.1046/j.1365-8711.2000.03857.x.

A. Ferrara, S. Viti, and C. Ceccarelli. The problematic growth of dust in high-redshift

galaxies. MNRAS, 463:L112–L116, November 2016. doi: 10.1093/mnrasl/slw165.



BIBLIOGRAPHY 91

A. S. Ferrarotti and H.-P. Gail. Composition and quantities of dust produced by AGB-

stars and returned to the interstellar medium. A&A, 447:553–576, February 2006. doi:

10.1051/0004-6361:20041198.

S. L. Finkelstein, C. Papovich, B. Salmon, K. Finlator, M. Dickinson, H. C. Ferguson,

M. Giavalisco, A. M. Koekemoer, N. A. Reddy, R. Bassett, C. J. Conselice, J. S.

Dunlop, S. M. Faber, N. A. Grogin, N. P. Hathi, D. D. Kocevski, K. Lai, K.-S. Lee,

R. J. McLure, B. Mobasher, and J. A. Newman. Candels: The Evolution of Galaxy

Rest-frame Ultraviolet Colors from z = 8 to 4. ApJ, 756:164, September 2012. doi:

10.1088/0004-637X/756/2/164.

S. L. Finkelstein, R. E. Ryan, Jr., C. Papovich, M. Dickinson, M. Song, R. S. Somerville,

H. C. Ferguson, B. Salmon, M. Giavalisco, A. M. Koekemoer, M. L. N. Ashby,

P. Behroozi, M. Castellano, J. S. Dunlop, S. M. Faber, G. G. Fazio, A. Fontana, N. A.

Grogin, N. Hathi, J. Jaacks, D. D. Kocevski, R. Livermore, R. J. McLure, E. Merlin,

B. Mobasher, J. A. Newman, M. Rafelski, V. Tilvi, and S. P. Willner. The evolution of

the galaxy rest-frame ultraviolet luminosity function over the first two billion years. ApJ,

810:71, 2015a.

S. L. Finkelstein, M. Song, P. Behroozi, R. S. Somerville, C. Papovich, M. Milosavlje-
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Hogg, Ž. Ivezić, G. R. Knapp, D. Q. Lamb, B. C. Lee, R. H. Lupton, T. A. McKay,

P. Kunszt, J. A. Munn, L. O’Connell, J. Peoples, J. R. Pier, M. Richmond, C. Rockosi,

D. P. Schneider, C. Stoughton, D. L. Tucker, D. E. vanden Berk, B. Yanny, and D. G.

York. Cosmological parameters from SDSS and WMAP. Phys. Rev. D, 69(10):103501,

May 2004. doi: 10.1103/PhysRevD.69.103501.

F.-K. Thielemann, D. Argast, F. Brachwitz, W. R. Hix, P. Höflich, M. Liebendörfer,

G. Martinez-Pinedo, A. Mezzacappa, I. Panov, and T. Rauscher. Nuclear cross sec-



BIBLIOGRAPHY 111

tions, nuclear structure and stellar nucleosynthesis. Nuclear Physics A, 718:139–146,

May 2003. doi: 10.1016/S0375-9474(03)00704-8.

V. Tilvi, C. Papovich, K.-V. H. Tran, I. Labbé, L. R. Spitler, C. M. S. Straatman, S. E. Pers-

son, A. Monson, K. Glazebrook, R. F. Quadri, P. van Dokkum, M. L. N. Ashby, S. M.

Faber, G. G. Fazio, S. L. Finkelstein, H. C. Ferguson, N. A. Grogin, G. G. Kacprzak,

D. D. Kelson, A. M. Koekemoer, D. Murphy, P. J. McCarthy, J. A. Newman, B. Salmon,

and S. P. Willner. Discovery of Lyman Break Galaxies at z ∼ 7 from the zFourGE Survey.

ApJ, 768:56, May 2013. doi: 10.1088/0004-637X/768/1/56.

P. Todini and A. Ferrara. Dust formation in primordial Type II supernovae. MNRAS, 325:

726–736, August 2001. doi: 10.1046/j.1365-8711.2001.04486.x.

L. Tornatore, S. Borgani, K. Dolag, and F. Matteucci. Chemical enrichment of galaxy

clusters from hydrodynamical simulations. MNRAS, 382:1050–1072, December 2007a.

doi: 10.1111/j.1365-2966.2007.12070.x.

L. Tornatore, A. Ferrara, and R. Schneider. Population III stars: hidden or disappeared?

MNRAS, 382:945–950, December 2007b. doi: 10.1111/j.1365-2966.2007.12215.x.

M. J. Turk, J. S. Oishi, T. Abel, and G. L. Bryan. Magnetic Fields in Population III Star

Formation. ApJ, 745:154, February 2012. doi: 10.1088/0004-637X/745/2/154.

R. Valiante, R. Schneider, S. Bianchi, and A. C. Andersen. Stellar sources of

dust in the high-redshift Universe. MNRAS, 397:1661–1671, August 2009. doi:

10.1111/j.1365-2966.2009.15076.x.

R. Valiante, R. Schneider, S. Salvadori, and S. Bianchi. The origin of the dust in high-

redshift quasars: the case of SDSS J1148+5251. MNRAS, 416:1916–1935, September

2011. doi: 10.1111/j.1365-2966.2011.19168.x.

R. Valiante, R. Schneider, R. Maiolino, S. Salvadori, and S. Bianchi. Quasar feedback in

the early Universe: the case of SDSS J1148+5251. MNRAS, 427:L60–L64, November

2012. doi: 10.1111/j.1745-3933.2012.01345.x.



BIBLIOGRAPHY 112

R. Valiante, R. Schneider, S. Salvadori, and S. Gallerani. High-redshift quasars host galax-

ies: is there a stellar mass crisis? MNRAS, 444:2442–2455, November 2014. doi:

10.1093/mnras/stu1613.

L. Vallini, P. Dayal, and A. Ferrara. Molecular hydrogen in Lyman alpha emitters. MNRAS,

421:3266–3276, April 2012. doi: 10.1111/j.1365-2966.2012.20551.x.

L. B. van den Hoek and M. A. T. Groenewegen. New theoretical yields of intermediate

mass stars. A&AS, 123:305–328, June 1997. doi: 10.1051/aas:1997162.

G. A. Vázquez and C. Leitherer. Optimization of Starburst99 for Intermediate-Age and

Old Stellar Populations. ApJ, 621:695–717, March 2005. doi: 10.1086/427866.

B. P. Venemans, G. A. Verdoes Kleijn, J. Mwebaze, E. A. Valentijn, E. Bañados, R. Decarli,

J. T. A. de Jong, J. R. Findlay, K. H. Kuijken, F. La Barbera, J. P. McFarland, R. G.

McMahon, N. Napolitano, G. Sikkema, and W. J. Sutherland. First discoveries of z ∼ 6

quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey.

MNRAS, 453:2259–2266, November 2015. doi: 10.1093/mnras/stv1774.

P. Ventura, M. D. Criscienzo, R. Schneider, R. Carini, R. Valiante, F. D’Antona,

S. Gallerani, R. Maiolino, and A. Tornambé. Dust formation around AGB and SAGB

stars: a trend with metallicity? MNRAS, 424:2345–2357, August 2012a. doi:

10.1111/j.1365-2966.2012.21403.x.

P. Ventura, M. di Criscienzo, R. Schneider, R. Carini, R. Valiante, F. D’Antona,

S. Gallerani, R. Maiolino, and A. Tornambé. The transition from carbon

dust to silicate production in low-metallicity asymptotic giant branch and super-

asymptotic giant branch stars. MNRAS, 420:1442–1456, February 2012b. doi:

10.1111/j.1365-2966.2011.20129.x.

P. Ventura, F. Dell’Agli, R. Schneider, M. Di Criscienzo, C. Rossi, F. La Franca,

S. Gallerani, and R. Valiante. Dust from asymptotic giant branch stars: relevant

factors and modelling uncertainties. MNRAS, 439:977–989, March 2014. doi:

10.1093/mnras/stu028.



BIBLIOGRAPHY 113

E. I. Vorobyov, A. L. DeSouza, and S. Basu. The Burst Mode of Accretion in Primordial

Protostars. ApJ, 768:131, May 2013. doi: 10.1088/0004-637X/768/2/131.

K. Wada and A. Venkatesan. Feedback from the First Supernovae in Protogalaxies: The

Fate of the Generated Metals. ApJ, 591:38–42, July 2003. doi: 10.1086/375335.

L. Wang, D. Baade, E. Baron, S. Bernard, V. Bromm, P. Brown, G. Clayton, J. Cooke,

D. Croton, C. Curtin, M. Drout, M. Doi, I. Dominguez, S. Finkelstein, A. Gal-Yam,

P. Geil, A. Heger, P. Hoeflich, J. Jian, K. Krisciunas, A. Koekemoer, R. Lunnan,

K. Maeda, J. Maund, M. Modjaz, J. Mould, K. Nomoto, P. Nugent, F. Patat, F. Pacucci,

M. Phillips, A. Rest, E. Regos, D. Sand, B. Sparks, J. Spyromilio, L. Staveley-Smith,

N. Suntzeff, S. Uddin, B. Villarroel, J. Vinko, D. Whalen, J. Wheeler, M. Wood-Vasey,

Y. Yang, and B. Yue. A First Transients Survey with JWST: the FLARE project. ArXiv

e-prints, October 2017.

D. Waters, S. Wilkins, T. Di Matteo, Y. Feng, R. Croft, and D. Nagai. Monsters in the dark:

Predictions for luminous galaxies in the early universe from the bluetides simulation.

ArXiv e-prints, 2016.

D. Watson, L. Christensen, K. K. Knudsen, J. Richard, A. Gallazzi, and M. J. Michałowski.

A dusty, normal galaxy in the epoch of reionization. Nature, 519:327–330, March 2015.

doi: 10.1038/nature14164.

J. C. Weingartner and B. T. Draine. Dust Grain-Size Distributions and Extinction in the

Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. ApJ, 548:296–309,

February 2001. doi: 10.1086/318651.

Z. L. Wen, J. L. Han, and F. S. Liu. Mass function of rich galaxy clus-

ters and its constraint on σ8. MNRAS, 407:533–543, September 2010. doi:

10.1111/j.1365-2966.2010.16930.x.

D. Whalen, B. van Veelen, B. W. O’Shea, and M. L. Norman. The Destruction of Cos-

mological Minihalos by Primordial Supernovae. ApJ, 682:49-67, July 2008. doi:

10.1086/589643.



BIBLIOGRAPHY 114

D. J. Whalen, W. Even, L. H. Frey, J. Smidt, J. L. Johnson, C. C. Lovekin, C. L. Fryer,

M. Stiavelli, D. E. Holz, A. Heger, S. E. Woosley, and A. L. Hungerford. Finding the

First Cosmic Explosions. I. Pair-instability Supernovae. ApJ, 777:110, November 2013.

doi: 10.1088/0004-637X/777/2/110.

S. D. M. White, G. Efstathiou, and C. S. Frenk. The amplitude of mass fluctuations in the

universe. MNRAS, 262:1023–1028, June 1993. doi: 10.1093/mnras/262.4.1023.

S. M. Wilkins, A. J. Bunker, E. Stanway, S. Lorenzoni, and J. Caruana. The

ultraviolet properties of star-forming galaxies - I. HST WFC3 observations of

very high redshift galaxies. MNRAS, 417:717–729, October 2011. doi:

10.1111/j.1365-2966.2011.19315.x.

S. M. Wilkins, V. Gonzalez-Perez, C. G. Lacey, and C. M. Baugh. Predictions

for the intrinsic UV continuum properties of star-forming galaxies and the implica-

tions for inferring dust extinction. MNRAS, 424:1522–1529, August 2012. doi:

10.1111/j.1365-2966.2012.21344.x.

S. M. Wilkins, A. Bunker, W. Coulton, R. Croft, T. D. Matteo, N. Khandai, and Y. Feng.

Interpreting the observed UV continuum slopes of high-redshift galaxies. MNRAS, 430:

2885–2890, April 2013. doi: 10.1093/mnras/stt096.

S. M. Wilkins, Y. Feng, T. Di-Matteo, R. Croft, E. R. Stanway, A. Bunker, D. Waters, and

C. Lovell. The photometric properties of galaxies in the early Universe. MNRAS, 460:

3170–3178, August 2016. doi: 10.1093/mnras/stw1154.

C. J. Willott, L. Albert, D. Arzoumanian, J. Bergeron, D. Crampton, P. Delorme, J. B.

Hutchings, A. Omont, C. Reylé, and D. Schade. Eddington-limited Accretion and

the Black Hole Mass Function at Redshift 6. AJ, 140:546–560, August 2010. doi:

10.1088/0004-6256/140/2/546.

S. E. Woosley and T. A. Weaver. The Evolution and Explosion of Massive Stars. II. Ex-

plosive Hydrodynamics and Nucleosynthesis. ApJS, 101:181, November 1995. doi:

10.1086/192237.



BIBLIOGRAPHY 115

X.-B. Wu, F. Wang, X. Fan, W. Yi, W. Zuo, F. Bian, L. Jiang, I. D. McGreer, R. Wang,

J. Yang, Q. Yang, D. Thompson, and Y. Beletsky. An ultraluminous quasar with a twelve-

billion-solar-mass black hole at redshift 6.30. Nature, 518:512–515, February 2015. doi:

10.1038/nature14241.

J. S. B. Wyithe and R. Cen. The Extended Star Formation History of the First Generation

of Stars and the Reionization of Cosmic Hydrogen. ApJ, 659:890–907, April 2007. doi:

10.1086/511948.

H. Xu, K. Ahn, M. L. Norman, J. H. Wise, and B. W. O’Shea. X-Ray Back-

ground at High Redshifts from Pop III Remnants: Results from Pop III Star For-

mation Rates in the Renaissance Simulations. ApJ, 832:L5, November 2016a. doi:

10.3847/2041-8205/832/1/L5.

H. Xu, M. L. Norman, B. W. O’Shea, and J. H. Wise. Late Pop III Star Formation During

the Epoch of Reionization: Results from the Renaissance Simulations. ApJ, 823:140,

June 2016b. doi: 10.3847/0004-637X/823/2/140.

H. Xu, M. L. Norman, B. W. O’Shea, and J. H. Wise. Late Pop III Star Formation During

the Epoch of Reionization: Results from the Renaissance Simulations. ApJ, 823:140,

June 2016c. doi: 10.3847/0004-637X/823/2/140.

N. Yoshida, T. Abel, L. Hernquist, and N. Sugiyama. Simulations of Early Structure For-

mation: Primordial Gas Clouds. ApJ, 592:645–663, August 2003. doi: 10.1086/375810.

N. Yoshida, V. Bromm, and L. Hernquist. The Era of Massive Population III Stars: Cos-

mological Implications and Self-Termination. ApJ, 605:579–590, April 2004. doi:

10.1086/382499.

N. Yoshida, K. Omukai, L. Hernquist, and T. Abel. Formation of Primordial Stars in a

ΛCDM Universe. ApJ, 652:6–25, November 2006. doi: 10.1086/507978.

T. Zafar, D. J. Watson, D. Malesani, P. M. Vreeswijk, J. P. U. Fynbo, J. Hjorth, A. J. Levan,

and M. J. Michałowski. No evidence for dust extinction in grb 050904 at z ∼ 6.3. A&A,

515(A94), 2010.



BIBLIOGRAPHY 116

J. A. Zavala, M. J. Michałowski, I. Aretxaga, G. W. Wilson, D. H. Hughes, A. Montaña,

J. S. Dunlop, A. Pope, D. Sánchez-Argüelles, M. S. Yun, and M. Zeballos. Early science

with the large millimeter telescope: dust constraints in a z ∼ 9.6 galaxy. MNRAS, 453:

L88, 2015.

S. Zhukovska. Dust origin in late-type dwarf galaxies: ISM growth vs. type II supernovae.

A&A, 562:A76, February 2014. doi: 10.1051/0004-6361/201322989.

S. Zhukovska, H.-P. Gail, and M. Trieloff. Evolution of interstellar dust and stardust in

the solar neighbourhood. A&A, 479:453–480, February 2008. doi: 10.1051/0004-6361:

20077789.

S. Zhukovska, C. Dobbs, E. B. Jenkins, and R. S. Klessen. Modeling Dust Evolution in

Galaxies with a Multiphase, Inhomogeneous ISM. ApJ, 831:147, November 2016. doi:

10.3847/0004-637X/831/2/147.

A. Zitrin, I. Labbé, S. Belli, R. Bouwens, R. S. Ellis, G. Roberts-Borsani, D. P. Stark, P. A.

Oesch, and R. Smit. Lymanα Emission from a Luminous z = 8.68 Galaxy: Implications

for Galaxies as Tracers of Cosmic Reionization. ApJ, 810:L12, September 2015. doi:

10.1088/2041-8205/810/1/L12.


	Abstract
	Introduction
	The formation of the first haloes
	Star formation in mini-halos
	Star formation in Lyman- cooling halos
	Observing the first galaxies
	The UV luminosity function at z > 5
	The colour-magnitude relation of z > 5 galaxies


	Dust in high-z normal star forming galaxies
	The model
	The numerical simulation
	The semi-analytical code

	The observed sample
	Results

	UV colours of high-z galaxies
	Introduction
	Method
	Cosmological simulation
	Intrinsic galaxy spectra
	Dust evolution model
	Modeling the extinction
	Dust optical depth

	Results
	Physical properties of early galaxies
	The effects of dust extinction on the UV luminosities and colours

	Comparison with observations
	UV luminosity function and Colour-Magnitude-Relation
	Scatter in the - MUV and Mstar-MUV relations
	The IR excess


	Conclusions

