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Abstract. We use a Riemannnian approximation scheme to define a notion of intrinsic Gaussian

curvature for a Euclidean C2-smooth surface in the Heisenberg group H away from characteristic

points, and a notion of intrinsic signed geodesic curvature for Euclidean C2-smooth curves on
surfaces. These results are then used to prove a Heisenberg version of the Gauss–Bonnet theorem.
An application to Steiner’s formula for the Carnot-Carathéodory distance in H is provided.
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1. Introduction

A full understanding of the notion of curvature has been at the core of studies in differential
geometry since the foundational works of Gauss and Riemann. The aim of this paper is to propose a

suitable candidate for the notion of intrinsic Gaussian curvature for Euclidean C2-smooth surfaces
in the first Heisenberg group H, adopting the so called Riemannian approximation scheme, which
has proved to be a very powerful tool to address sub-Riemannian issues.

Referencing the seminal work of Gauss, we recall that to a compact and oriented Euclidean C2-

smooth regular surface Σ ⊂ R3 we can attach the notions of mean curvature and Gaussian curvature
as symmetric polynomials of the second fundamental form. To be more precise, for every p ∈ Σ
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we have a well-defined outward unit normal vector field, N(p) : Σ → S2, usually called the Gauss

normal map. For every p ∈ Σ, the differential of the Gauss normal map dN(p) : TpΣ → TN(p)S2,

defines a positive definite and symmetric quadratic form on TpΣ whose two real eigenvalues are

usually called principal curvatures of Σ at p. The arithmetic mean of these principal curvatures
is the mean curvature and their product is the Gaussian curvature. The importance of the latter
became particularly clear after Gauss’ famous Theorema Egregium, which asserts that Gaussian
curvature is intrinsic and is also an isometric invariant of the surface Σ.

The notions of curvature, as briefly recalled above, can be extended to far more general situa-
tions, for instance to submanifolds of higher codimension in Rn, and also to the broader geometrical
context provided by Riemannian geometry, as was done by Riemann. In particular, we will con-
sider 2-dimensional Riemannian manifolds isometrically embedded into 3-dimensional Riemannian
manifolds. We refer to Section 5 for details.

Our interest in the study of curvatures of surfaces in H is motivated by the still ongoing studies
in the context of sub-Riemannian manifolds or more specific structures like Carnot groups, whose
easiest example is provided by the first Heisenberg group H. Restricting our attention to H, there
is a currently accepted notion of horizontal mean curvature H0 at non-characteristic points of
Euclidean regular surfaces. This notion has been considered by Pauls ([29]) via the method of
Riemannian approximants, but has also been proved to be equivalent to other notions of mean
curvature appearing in the literature (e.g. [13] or [20]).

The method of Riemannian approximants relies on a famous result due to Gromov, which states
that the metric space (H, dcc) can be obtained as the pointed Gromov–Hausdorff limit of a family

of metric spaces (R3, gε), where gε is a suitable family of Riemannian metrics. The Riemannian
approximation scheme has also proved to be a very efficient tool in more analytical settings, for
instance, in the study of estimates for fundamental solutions of the sub-Laplacian ∆H (e.g. [18, 8])

as well as regularity theory for sub-Riemannian curvature flows (e.g. [9]). The preceding represents
only a small sample of the many applications of the Riemannian approximation method in sub-
Riemannian geometric analysis, and we refer the reader to the previously cited papers for more
information and references to other work in the literature. The monograph [10] provides a detailed
description of the Riemannian approximation scheme in the setting of the Heisenberg group.

Let us denote by X1, X2 and X3 the left-invariant vector fields which span the Lie algebra h of H.
In particular, [X1, X2] = X3. In order to exploit the contact nature of H it is customary to define

an inner product 〈·, ·〉H which makes {X1, X2} an orthonormal basis. A possible way to define a

Riemannian scalar product is to set Xε
3 :=

√
εX3 for every ε > 0, and then to extend 〈·, ·〉H to a

scalar product 〈·, ·〉ε which makes {X1, X2, X
ε
3} an orthonormal basis. The family of metric spaces

(R3, gε) converges to (H, dcc) in the pointed Gromov–Hausdorff sense.
Within this family of Riemannian manifolds, we can now perform computations adopting the

unique Levi-Civita connection associated to the family of Riemannian metrics gε. Obviously, all the
results are expected depend on the positive constant ε. The plan is to extract horizontal notions

out of the computed objects and to study their asymptotics in ε as ε→ 0+. This is the technique
adopted in [29] to define a notion of horizontal mean curvature.

It is natural to ask whether such a method can be employed to study the curvature of curves,
and especially to articulate an appropriate notion of intrinsic Gaussian curvature. One attempt in
this direction has been carried out in [11], where the authors proposed a notion of horizontal second
fundamental form in relation with H-convexity. A different notion of intrinsic Gaussian curvature
for graphs has been suggested in [19].
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Our approach follows closely the classical theory of Riemannian geometry and leads us to the

following notion of intrinsic curvature for a Euclidean C2-smooth and regular curve γ = (γ1, γ2, γ3)

defined on an interval [a, b] and taking values in H:

(1.1) k0
γ =


|γ̇1γ̈2 − γ̇2γ̈1|
(γ̇2

1 + γ̇2
2)3/2

, if γ(t) is a horizontal point of γ,

√
γ̇2

1 + γ̇2
2

|ω(γ̇)|
, if γ(t) is not a horizontal point of γ.

Here ω = dx3 − 1
2 (x1dx2 − x2dx1) is the standard contact form on R3. We stress that, when

dealing with purely horizontal curves, the above notion of curvature is already known and appears
frequently in the literature.

An analogous procedure allow us to define also a notion of intrinsic signed geodesic curvature

for Euclidean C2-smooth and regular curves γ = (γ1, γ2, γ3) : [a, b] → Σ ⊂ H living on a surface

Σ = {x ∈ H : u(x) = 0}, with u ∈ C2(R3). This notion takes the form

(1.2) k0,s
γ,Σ =


p̄γ̇1 + q̄γ̇2

|ω(γ̇)|
, if γ(t) is a non-horizontal point,

0, if γ(t) is a horizontal point,

where ∇Hu = (X1u,X2u), p̄ = X1u
‖∇Hu‖H and q̄ = X2u

‖∇Hu‖H . We refer to Section 3 and Section 4 for

precise statements and definitions.
In the same spirit we introduce a notion of intrinsic Gaussian curvature K0 away from charac-

teristic points. We will work with Euclidean C2-smooth surfaces Σ = {x ∈ H : u(x) = 0}, whose

characteristic set C(Σ) is defined as the set of points x ∈ Σ where ∇Hu(x) = (0, 0). The explicit
expression of K0 reads as follows:

(1.3) K0 = −
(

X3u

‖∇Hu‖H

)2

−
(

X2u

‖∇Hu‖H

)
X1

(
X3u

‖∇Hu‖H

)
+

(
X1u

‖∇Hu‖H

)
X2

(
X3u

‖∇Hu‖H

)
.

A few remarks are now in order. The Riemannian approximation scheme which we use, can in
general depend upon the choice of the complement to the horizontal distribution. Nevertheless, in
the context of H the choice which we have adopted is rather natural. We want also to stress that
the existence of the limit defining the intrinsic curvature of a surface depends crucially on the can-

cellation of certain divergent quantities in the limit as ε→ 0+. As presented here, such cancellation
stems from the specific choice of the adapted frame bundle on the surface, and on symmetries of the
underlying left-invariant group structure on the Heisenberg group. It is an interesting question to
understand to what extent similar phenomena hold in other sub-Riemannian geometric structures.
We plan to return to this problem in future work.

We want also to remark that the quantity in (1.3) cannot easily be viewed as a symmetric poly-
nomial of any kind of horizontal Hessian. Moreover, the expression of K0 written above resembles
one of the integrands, the one which would be expected to replace the classical Gaussian curvature,
appearing in the Heisenberg Steiner’s formula proved in [5]. The discrepancy between these two
quantities will be the object of further investigation.

The definition of an appropriate notion of intrinsic Gaussian curvature leads to the question of
proving a suitable Heisenberg version of the celebrated Gauss–Bonnet Theorem, which is the first
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main result of this paper. For a surface Σ = {x ∈ H : u(x) = 0}, with u ∈ C2(R3), our main
theorem is as follows.

Theorem 1.1. Let Σ ⊂ H be a regular surface with finitely many boundary components (∂Σ)i,

i ∈ {1, . . . , n}, given by Euclidean C2-smooth regular and closed curves γi : [0, 2π] → (∂Σ)i. Let

K0 be the intrinsic Gaussian curvature of Σ, and k0,s
γi,Σ

the intrinsic signed geodesic curvature

of γi relative to Σ. Suppose that the characteristic set C(Σ) satisfies H1
E(C(Σ)) = 0, and that

‖∇Hu‖−1
H is locally summable with respect to the Euclidean 2-dimensional Hausdorff measure near

the characteristic set C(Σ). Then∫
Σ
K0 dH3

cc +
n∑
i=1

∫
γi

k0,s
γi,Σ

dγ̇i = 0.

The sharpness of the assumption made on the 1-dimensional Euclidean Hausdorff measure

H1
E(C(Σ)) of the characteristic set C(Σ) is discussed in Section 6, while comments on the local

summability asked for ‖∇Hu‖−1
H are postponed to Section 8. The measure dγ̇i on the ith boundary

curve (∂Σ)i in the statement of Theorem 1.1 is the limit of scaled length measures in the Riemannian
approximants. We remark that this measure vanishes along purely horizontal boundary curves.

Gauss–Bonnet type theorems have previously been obtained by Diniz and Veloso [23] for non-

characteristic surfaces in H, and by Agrachev, Boscain and Sigalotti [1] for almost-Riemannian

structures. We would also like to mention the results obtained by Bao and Chern [6] in Finsler
spaces.

The notion of horizontal mean curvature has featured in a long and ongoing research program
concerning the study of constant mean curvature surfaces in H, especially in relation to Pansu’s
isoperimetric problem (e.g. [28], [30], [26], [21] or [10]). A simplified version of the aforementioned

Gauss–Bonnet Theorem 1.1, i.e., when we consider a compact, oriented, Euclidean C2-surface with
no boundary, or with boundary consisting of fully horizontal curves, ensures that the only compact
surfaces with constant intrinsic Gaussian curvature have K0 = 0.

Our main application concerns a Steiner’s formula for non-characteristic surfaces. This result
(see Theorem 7.3) is a simplification of the Steiner’s formula recently proved in [5].

The structure of the paper is as follows. In Section 2 we provide a short introduction to the
first Heisenberg group H and the notation which we will use throughout the paper, with a special
focus to the Riemannian approximation scheme. In Section 3 and 4 we adopt the Riemannian

approximation scheme to derive the expression (1.1) for the intrinsic curvature of Euclidean C2-

smooth curves in H, and the expression (1.2) for the intrinsic geodesic curvature of curves on

surfaces. In Section 5, we will derive the expression (1.3) for the intrinsic Gaussian curvature. In
Section 6 we prove Theorem 1.1 and its corollaries. Section 7 contains the proof of Steiner’s formula
for non-characteristic surfaces. In Section 8 we present a Fenchel-type theorem for horizontal closed
curves (see Theorem 8.5) and we pose some questions. One of the more interesting and challenging
questions concerns the summability of the intrinsic Gaussian curvature K0 with respect to the
Heisenberg perimeter measure near isolated characteristic points. This summability issue is closely
related to the open problem posed in [22] concerning the summability of the horizontal mean
curvature H0 with respect to the Riemannian surface measure near the characteristic set. To end
the paper, we add an appendix where we collect several examples of surfaces for which we compute
explicitly the intrinsic Gaussian curvature K0.
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2. Notation and background

Let H be the first Heisenberg group where the non-commutative group law is given by

(y1, y2, y3) ∗ (x1, x2, x3) =

(
x1 + y1, x2 + y2, x3 + y3 −

1

2
(x1y2 − x2y1)

)
.

The corresponding Lie algebra of left-invariant vector fields admits a 2-step stratification, h = v1⊕v2,

where v1 = span{X1, X2} and v2 = span{X3} for X1 = ∂x1 − 1
2x2∂x3 , X2 = ∂x2 + 1

2x1∂x3 and

X3 = [X,Y ] = ∂x3 . On H we consider also the standard contact form of R3:

ω = dx3 −
1

2
(x1dx2 − x2dx1) .

The left-invariant vector fields X1 and X2 play a major role in the theory of the Heisenberg group
because they span a two-dimensional plane distribution HH, known as the horizontal distribution,
which is also the kernel of the contact form ω:

HxH := span{X1(x), X2(x)} = (Kerω)(x), x ∈ H.
This smooth distribution of planes is a subbundle of the tangent bundle of H, and it is a non
integrable distribution because [X1, X2] = X3 /∈ HH. We can define an inner product 〈·, ·〉x,H on

HH, so that for every x ∈ H, {X1(x), X2(x)} forms a orthonormal basis of HxH. We will then

denote by ‖ · ‖x,H the horizontal norm induced by the scalar product 〈·, ·〉x,H. In both cases, we will

omit the dependence on the base point x ∈ H when it is clear.

Definition 2.1. An absolutely continuous curve γ : [a, b] ⊂ R → H is said to be horizontal if

γ̇(t) ∈ Hγ(t)H for a.e. t ∈ [a, b].

Definition 2.2. Let γ : [a, b]→ H a horizontal curve. The horizontal length lH(γ) of γ is defined
as

lH(γ) :=

∫ b

a
‖γ̇‖H dt.

It is standard to equip the Heisenberg group H with a path-metric known as the Carnot–
Carathéodory, or cc, distance:

Definition 2.3. Let x, y ∈ H, with x 6= y. The cc distance between x, y is defined as

dcc(x, y) := inf{lH(γ)|γ : [a, b]→ H, γ(a) = x, γ(b) = y}

Dilations of the Heisenberg group are defined as follows:

(2.1) δr(x1, x2, x3) = (rx1, rx2, r
2x3), r > 0

It is easy to verify that dilations are compatible with the group operation:

δr(y ∗ x) = δr(y) ∗ δr(x), x, y ∈ H, r > 0,
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and that the cc distance is homogeneous of order one with respect to dilations:

dcc(δr(x), δr(y)) = r dcc(x, y), x, y ∈ H, r > 0.

The scaling behavior of the left-invariant vector fields X1, X2, X3 with respect to dilations is as
follows:

X1(f ◦ δr) = r X1f ◦ δr, X2(f ◦ δr) = r X2f ◦ δr, X3(f ◦ δr) = r2X3f ◦ δr.
We are now ready to implement the Riemannian approximation scheme. First, let us define

Xε
3 :=

√
εX3 for ε > 0. We define a family of Riemannian metrics (gε)ε>0 on R3 such that

{X1, X2, X
ε
3} becomes an orthonormal basis. The choice of this specific family of Riemannian

metrics on R3 is indicated by the following theorem.

Theorem 2.4 (Gromov). The family of metric spaces (R3, gε) converges to (H, dcc) in the pointed

Gromov–Hausdorff sense as ε→ 0+.

This deep result continue to hold even for more general Carnot groups, but there is one additional
feature which is valid for H:

Proposition 2.5. Any length minimizing horizontal curve γ joining x ∈ H to the origin 0 ∈ H is

the uniform limit as ε→ 0+ of geodesic arcs joining x to 0 in the Riemannian manifold (R3, gε).

For both results, we refer to [10, Chapter 2].

Continuing with notation, the scalar product that makes {X1, X2, X
ε
3} an orthonormal ba-

sis will be denoted by 〈·, ·〉ε. Explicitly, this means that, given V = v1X1 + v2X2 + v3X3 and
W = w1X1 + w2X2 + w3X3,

〈V,W 〉ε = v1w1 + v2w2 + 1
ε v3w3.

Obviously, if we write V and W in the {X1, X2, X
ε
3} basis, i.e., V = v1X1 + v2X2 + vε3X

ε
3 where

vε3 = v3√
ε

(and similarly for W ), we have

〈V,W 〉ε = v1w1 + v2w2 + vε3w
ε
3 = v1w1 + v2w2 + 1

ε v3w3.

The following relations allow us to switch from the standard basis {e1, e2, e3} to {X1, X2, X
ε
3} and

vice versa: 
e1 = X1 + 1

2
√
ε
x2X

ε
3,

e2 = X2 − 1
2
√
ε
x1X

ε
3,

e3 = 1√
ε
Xε

3,

and


X1 = e1 − 1

2x2e3,

X2 = e2 + 1
2x1e3,

Xε
3 =
√
ε e3.

In exponential coordinates, the metric gε is represented by the 3×3 symmetric matrix (gε)ij := 〈ei, ej〉ε,
for i, j = 1, 2, 3. In particular,

gε(x1, x2, x3) =

1 + 1
4εx

2
2 − 1

4εx1x2
1
2εx2

− 1
4εx1x2 1 + 1

4εx
2
1 − 1

2εx1
1
2εx2 − 1

2εx1
1
ε

 .

Then det(gε(x)) = 1
ε and

g−1
ε (x1, x2, x3) =

 1 0 −x2
2

0 1 x1
2

−1
2x2

1
2x1

4ε+(x21+x22)
4
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Following the classical notation of Riemannian geometry, we will denote by gij the elements of the

matrix gε, and by gij the elements of its inverse g−1
ε .

A standard computational tool in Riemannian geometry is the notion of affine connection.

Definition 2.6. Let X (M) be the set of C∞-smooth vector fields on a Riemannian manifold M .

Let D(M) be the ring of real-valued C∞-smooth functions on M . An affine connection ∇ on M is
a mapping

∇ : X (M)×X (M)→ X (M),

usually denoted by (X,Y ) 7→ ∇XY , such that:

i) ∇fX+gY Z = f∇XZ + g∇Y Z.
ii) ∇X(Y + Z) = ∇X(Y ) +∇X(Z).

iii) ∇X(fY ) = f∇XY +X(f)Y,

for every X,Y, Z ∈ X (M) and for every f, g ∈ D(M).

It is well known that every Riemannian manifold is equipped with a privileged affine connection:
the Levi-Civita connection ∇. This is the unique affine connection which is compatible with the
given Riemannian metric and symmetric, i.e.,

X〈Y, Z〉ε = 〈∇XY , Z〉ε + 〈Y,∇XZ〉ε
and

∇XY −∇YX = [X,Y ]

for every X,Y, Z ∈ X (M). A direct proof of this fact yields the famous Koszul identity :

(2.2)
〈Z,∇XY 〉ε =

1

2

(
X〈Y,Z〉ε + Y 〈Z,X〉ε − Z〈X,Y 〉ε

− 〈[X,Z], Y 〉ε − 〈[Y,Z], X〉ε − 〈[X,Y ], Z〉ε
)

for X,Y, Z ∈ X (M).
It is possible to write the Levi-Civita connection ∇ in a local frame by making use of the

Christoffel symbols Γmij . In our case, due to the specific nature of the Riemannian manifold (R3, gε),

we can use a global chart given by the identity map of R3. The Christoffel symbols are uniquely
determined by

∇eiej = Γmij em, i, j,m = 1, 2, 3.

Lemma 2.7. The Christoffel symbols Γmij of the Levi-Civita connection ∇ of (R3, gε) are given by

(2.3) Γ1
ij =


0, (i, j) ∈ {(1, 1), (1, 3), (3, 1), (3, 3)},
1
4εx2, (i, j) ∈ {(1, 2), (2, 1)},
− 1

2εx1, (i, j) = (2, 2),
1
2ε , (i, j) ∈ {(2, 3), (3, 2)},

(2.4) Γ2
ij =


− 1

2εx2, (i, j) = (1, 1),
1
4εx1, (i, j) ∈ {(1, 2), (2, 1)},
− 1

2ε , (i, j) ∈ {(1, 3), (3, 1)},
0, (i, j) ∈ {(2, 2), (2, 3), (3, 2), (3, 3)},
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and

(2.5) Γ3
ij =



− 1
4εx1x2, (i, j) = (1, 1),

1
8ε(x

2
1 − x2

2), (i, j) ∈ {(1, 2), (2, 1)},
− 1

4εx1, (i, j) ∈ {(1, 3), (3, 1)},
1
4εx1x2, (i, j) = (2, 2),

− 1
4εx2, (i, j) ∈ {(2, 3), (3, 2)},

0, (i, j) = (3, 3).

Proof. It is a direct computation using

Γmij =
1

2

3∑
k=1

{
∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

}
gkm,

for i, j,m = 1, 2, 3. �

We now compute the Levi-Civita connection ∇ associated to the Riemannian metric gε.

Lemma 2.8. The action of the Levi-Civita connection ∇ of (R3, gε) on the vectors X1, X2 and Xε
3

is given by

∇X1X2 = −∇X2X1 =
1

2
X3,

∇X1X
ε
3 = ∇Xε

3
X1 = − 1

2
√
ε
X2,

∇X2X
ε
3 = ∇Xε

3
X2 = 1

2
√
ε
X1.

Proof. It follows from a direct application of the Koszul identity (2.2), which here simplifies to

〈Z,∇XY 〉ε = −1

2

(
〈[X,Z], Y 〉ε + 〈[Y,Z], X〉ε + 〈[X,Y ], Z〉ε

)
.

�

To make the paper self-contained, we recall here the definitions of Riemann curvature tensor R
and of sectional curvature.

Definition 2.9. The Riemann curvature tensor R of a Riemannian manifold M is a mapping
R(X,Y ) : X (M)→ X (M) defined as follows

R(X,Y )Z := ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z, Z ∈ X (M).

Remark 2.10. Note that the Riemann curvature tensor R satisfies the functional property

(2.6) R(fX, Y )Z = R(X, fY )Z = R(X,Y )(fZ) = fR(X,Y )Z,

for every X,Y, Z ∈ X (M) and every f ∈ D(M).

Definition 2.11. Let M be a Riemannian manifold and let Π ⊂ TpM be a two-dimensional

subspace of the tangent space TpM . Let {E1, E2} be two linearly independent vectors in Π. The

sectional curvature K(E1, E2) of M is defined as

K(E1, E2) :=
〈R(E1, E2)E1, E2〉
|E1 ∧ E2|2

,

where ∧ denotes the usual wedge product.
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One of the main reasons to introduce the notion of affine connection, is to be able to differentiate
smooth vector fields along curves: this operation is known as covariant differentiation (see [25],

Chapter 2). Formally, let Z = z1e1 + z2e2 + z3e3 be a smooth vector field (written in the standard

basis of R3) along a curve γ = γ(t). The covariant derivative of Z along the curve γ is given by

DtZ =

3∑
m=1

dzmdt +

3∑
i,j=1

Γmij zj
dxi
dt

 em,

where the xi’s are the coordinates of γ in a local chart and Γmij are the Christoffel symbols introduced

before.
In particular, if Z = γ̇, we have

(2.7) Dtγ̇ =

3∑
m=1

γ̈m +
3∑

i,j=1

Γmij γ̇iγ̇j

 em.

3. Riemannian approximation of curvature of curves

Let us define the objects we are going to study in this section.

Definition 3.1. Let γ : [a, b]→ (R3, gε) be a Euclidean C1-smooth curve. We say that γ is regular
if

γ̇(t) 6= 0, for every t ∈ [a, b].

Moreover, we say that γ(t) is a horizontal point of γ if

ω(γ̇(t)) = γ̇3(t)− 1

2
(γ1(t)γ̇2(t)− γ2(t)γ̇1(t)) = 0.

Definition 3.2. Let γ : [a, b] ⊂ R → (R3, gε) be a Euclidean C2-smooth regular curve in the

Riemannian manifold (R3, gε). The curvature kεγ of γ at γ(t) is defined as

(3.1) kεγ :=

√
‖Dtγ̇‖2ε
‖γ̇‖4ε

− 〈Dtγ̇, γ̇〉2ε
‖γ̇‖6ε

.

We stress that the above definition is well posed, indeed by Cauchy-Schwarz,

‖Dtγ̇‖2ε
‖γ̇‖4ε

− 〈Dtγ̇, γ̇〉2ε
‖γ̇‖6ε

≥ ‖γ̇‖
2
ε‖Dtγ̇‖2ε − ‖γ̇‖2ε‖Dtγ̇‖2ε

‖γ̇‖6ε
= 0.

Remark 3.3. We recall that in Riemannian geometry the standard definition of curvature for a
curve γ parametrized by arc length is kεγ := ‖Dtγ̇‖ε. The one we gave before is just more practical

to perform computations for curves with an arbitrary parametrization.

Let us briefly recall the definition of gε-geodesics, cf. [10, Chapter 2]. For a Euclidean C2-smooth

regular curve γ : [a, b]→ (R3, gε), define its penalized energy functional Eε to be

Eε(γ) :=

∫ b

a

(
|γ̇1(t)|2 + |γ̇2(t)|2 +

1

ε
|ω(γ̇(t))|2

)
dt.
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Using a standard variational argument, we can derive the system of Euler-Lagrange equations for
the functional Eε: we will call gε-geodesics the critical points, which are actually curves, of the
functional Eε. In other words, we will say that γ is a gε-geodesic, if for every t ∈ [a, b] it holds that

(3.2)

 γ̈1(t) = −1
ε γ̇2(t)ω(γ̇(t)),

γ̈2(t) = 1
ε γ̇1(t)ω(γ̇(t)),

(ω(γ̇(t))|γ(t))
′ = 0.

We are now ready to present a first result concerning the curvature kεγ .

Lemma 3.4. Let γ : [a, b] → (R3, gε) be a Euclidean C2-smooth regular curve in the Riemannian

manifold (R3, gε). Then

(3.3) kεγ =

√
(γ̈1 + 1

ε γ̇2ω(γ̇))2 + (γ̈1 − 1
ε γ̇1ω(γ̇))2 + 1

εω(γ̈)2

(γ̇2
1 + γ̇2

2 + 1
εω(γ̇)2)2

−
(γ̈1γ̇1 + γ̈2γ̇2 + 1

εω(γ̇)ω(γ̈))2

(γ̇2
1 + γ̇2

2 + 1
εω(γ̇)2)3

.

In particular, if γ(t) is a horizontal point of γ,

(3.4) kεγ =

√
γ̈2

1 + γ̈2
1

(γ̇2
1 + γ̇2

2)2
− (γ̈1γ̇1 + γ̈2γ̇2)2

(γ̇2
1 + γ̇2

2)3
=
|γ̈2γ̇1 − γ̈1γ̇2|
(γ̇2

1 + γ̇2
2)3/2

.

Proof. We first compute the covariant derivative of γ̇ as in (2.7), using (2.3), (2.4) and (2.5). In

components, with respect to the standard basis of R3, we have

(3.5)

(Dtγ̇)1 = γ̈1 +
γ2

2ε
γ̇1γ̇2 −

γ1

2ε
γ̇2

2 +
1

ε
γ̇3γ̇2 = γ̈1 +

1

ε
γ̇2ω(γ̇),

(Dtγ̇)2 = γ̈2 −
γ2

2ε
γ̇2

1 +
γ1

2ε
γ̇1γ̇2 −

1

ε
γ̇3γ̇1 = γ̈2 −

1

ε
γ̇1ω(γ̇),

(Dtγ̇)3 = γ̈3 −
γ1γ2

4ε
γ̇2

1 +
(γ2

1 − γ2
2)

4ε
γ̇1γ̇2 −

γ1

2ε
γ̇1γ̇3 +

γ1γ2

4ε
γ̇2

2 −
γ2

2ε
γ̇2γ̇3.

Now we express Dtγ̇ in the basis {X1, X2, X
ε
3}:

(3.6) Dtγ̇ =
(
γ̈1 +

1

ε
γ̇2ω(γ̇)

)
X1 +

(
γ̈2 −

1

ε
γ̇1ω(γ̇)

)
X2 +

(
1√
ε
ω(γ̈)

)
Xε

3,

where

ω(γ̈(t)) = γ̈3(t)− 1

2
(γ1(t)γ̈2(t)− γ2(t)γ̈1(t)) ,

coincides with the expression (ω(γ̇))′ in (3.2). Recalling that

(3.7) γ̇ = γ̇1X1 + γ̇2X2 + ( 1√
ε
ω(γ̇))Xε

3,

we compute

〈Dtγ̇, γ̇〉ε = γ̈1γ̇1 + γ̈2γ̇2 +
1

ε
ω(γ̇)ω(γ̈).

Therefore

(3.8) kεγ =

√
(γ̈1 + 1

ε γ̇2ω(γ̇))2 + (γ̈2 − 1
ε γ̇1ω(γ̇))2 + 1

εω(γ̈)2

(γ̇2
1 + γ̇2

2 + 1
εω(γ̇)2)2

−
(γ̈1γ̇1 + γ̈2γ̇2 + 1

εω(γ̇)ω(γ̈))2

(γ̇2
1 + γ̇2

2 + 1
εω(γ̇)2)3

.
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On the other hand, if γ(t) is a horizontal point for γ, then ω(γ̇(t)) = 0 and

Dtγ̇ = γ̈1X1 + γ̈2X2.

It follows that

kεγ =

√
γ̈2

1 + γ̈2
1

(γ̇2
1 + γ̇2

2)2
− (γ̈1γ̇1 + γ̈2γ̇2)2

(γ̇2
1 + γ̇2

2)3
,

as desired. �

Remark 3.5. The pointwise notion of curvature provided by (3.3) is continuous along the curve γ.
Moreover, we want to stress that this notion is independent of the parametrization chosen.

We now use the previous results to study curvatures of curves in the Heisenberg group H.

Definition 3.6. Let γ : [a, b]→ H be a Euclidean C2-smooth regular curve. We define the intrinsic

curvature k0
γ of γ at γ(t) to be

k0
γ := lim

ε→0+
kεγ ,

if the limit exists.

It is clear that, a priori, the above limit may not exist. In order to deal with the asymptotics as

ε→ 0+ of the quantities involved, let us introduce the following notation: for continuous functions
f, g : (0,+∞)→ R,

(3.9) f(ε) ∼ g(ε), as ε→ 0+ def⇐⇒ lim
ε→0+

f(ε)

g(ε)
= 1.

Lemma 3.7. Let γ : [a, b]→ H be a Euclidean C2-smooth regular curve. Then

(3.10) k0
γ =


|γ̇1γ̈2 − γ̇2γ̈1|√

(γ̇2
1 + γ̇2

2)3
, if γ(t) is a horizontal point of γ,√

γ̇2
1 + γ̇2

2

|ω(γ̇)|
, if γ(t) is not a horizontal point of γ.

Proof. The first result follows from the fact that the expression (3.4) for the curvature at horizontal

points in (R3, gε), is independent of ε. For the other case, we need to study the asymptotics in ε.

Using the notation introduced in (3.9), we have

‖Dtγ̇‖ε ∼
1

ε

√
(γ̇2

1 + γ̇2
2)|ω(γ̇)|, as ε→ 0+,

‖γ̇‖ε ∼
1√
ε
|ω(γ̇)|, as ε→ 0+,

〈Dtγ̇, γ̇〉ε ∼
1

ε
ω(γ̇)ω(γ̈), as ε→ 0+.

Therefore

‖Dtγ̇‖2ε
‖γ̇‖4ε

→ γ̇2
1 + γ̇2

2

ω(γ̇)2
, as ε→ 0+,

〈Dtγ̇, γ̇〉2ε
‖γ̇‖6ε

∼ ε3ω(γ̇)2ω(γ̈)2

ε2ω(γ̇)6
→ 0, as ε→ 0+.



INTRINSIC CURVATURE AND A GAUSS–BONNET THEOREM IN THE HEISENBERG GROUP 12

Altogether,

k0
γ = lim

ε→0+
kεγ =

√
γ̇2

1 + γ̇2
2

|ω(γ̇)|
,

as desired. �

Remark 3.8. We stress that the gε-length of a non horizontal curve always blows up once we take

the limit as ε → 0+. The remarkable fact provided by Lemma 3.7 is that this never occurs for

the curvature kεγ . We notice that, as in Remark 3.5, the intrinsic curvature k0
γ is independent of

the parametrization. In the horizontal case, the quantity k0
γ is the absolute value of the signed

horizontal curvature of a horizontal curve which arises in the study of horizontal mean curvature.
See Remark 5.4 for more details.

There is another fact to notice. If we consider a Euclidean C2-smooth regular curve γ : [a, b]→ H,

which is partially horizontal and partially not, the quantity k0
γ(t) in (3.10), need not be a contin-

uous function (in contrast to Remark 3.5). Moreover, in view of the independence of k0
γ of the

parametrization, when we approach a horizontal point of γ from non-horizontal points of γ, we
always find a singularity. Let us clarify the last sentences with an example.

Example 3.9. Consider the planar curve

γ(θ) := (cos(θ) + 1, sin(θ), 0) , θ ∈ [0, 2π).

The curve γ is horizontal only for θ = π, indeed ω(γ̇) = −1+cos(θ)
2 , which vanishes only for θ = π.

The horizontal curvature k0
γ is a pointwise notion, therefore we have

k0
γ(θ)|θ=π =

√
γ̈2

1 + γ̈2
1

(γ̇2
1 + γ̇2

2)2
− (γ̈1γ̇1 + γ̈2γ̇2)2

(γ̇2
1 + γ̇2

2)3

∣∣∣∣
θ=π

= 1,

and for θ ∈ [0, 2π) \ {π},

k0
γ(θ) =

√
γ̇2

1(θ) + γ̇2
2(θ)

|ω(γ̇(θ))|
=

2

|1 + cos(θ)|
→ +∞, as θ → π.

In the classical theory of differential geometry of smooth space curves in R3, there is a famous
rigidity theorem (see for instance [24]) stating that every curve is characterized by its curvature

and its torsion, up to rigid motions. Similar questions are addressed in [15] and [16] but with a
different approach, viewing the first Heisenberg group H as flat 3-dimensional manifold carrying a
pseudo-hermitian structure.

We now have a notion of horizontal curvature for Euclidean C2-smooth regular curves in (H, dcc).
A first result in the direction of the classical rigidity theorem is the following.

Proposition 3.10. Let γ : [a, b]→ (H, dcc) be a Euclidean C2-smooth regular curve. The intrinsic

curvature k0
γ of γ is invariant under left translation and rotations around the x3-axis of γ.

Proof. Fix a point g = (g1, g2, g3) ∈ H. Define the curve γ̃ as the left translation by g of γ,

γ̃(t) := Lg(γ(t)) =

(
γ1(t) + g1, γ2(t) + g2, γ3(t) + g3 −

1

2
(γ1(t)g2 − γ2(t)g1)

)
, t ∈ [a, b].
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It is clear that
˙̃γi = γ̇i and ¨̃γi = γ̈i, i = 1, 2,

and therefore k0
γ = k0

γ̃ .

For the second assertion, fix an angle θ ∈ [0, 2π) and define the curve γ̄ as the rotation by θ of
γ around the x3-axis,

γ̄(t) := (γ1(t) cos(θ) + γ2(t) sin(θ),−γ1 sin(θ) + γ2 cos(θ), γ3) , t ∈ [a, b].

An easy computation shows that in this case we have

˙̄γ2
1 + ˙̄γ2

2 = γ̇2
1 + γ̇2

2 , ¨̄γ2
1 + ¨̄γ2

2 = γ̈2
1 + γ̈2

2 , ˙̄γ1 ¨̄γ1 + ˙̄γ2 ¨̄γ2 = γ̇1γ̈1 + γ̇2γ̈2,

and therefore k0
γ = k0

γ̄ . �

Remark 3.11. The behavior of the curvature k0
γ under dilations is as follows: if γ is a C2 smooth

regular curve and r > 0, then

k0
δrγ =

1

r
k0
γ .

Here δrγ denotes the curve (rγ1, rγ2, r
2γ3) when γ = (γ1, γ2, γ3).

4. Riemannian approximation of geodesic curvature of curves on surfaces

In order to prove a Heisenberg version of the Gauss–Bonnet Theorem, we need the concept of
intrinsic signed geodesic curvature. This section will be devoted to the study of curvature of curves
living on surfaces.

Let us fix once for all the assumptions we will make on the surface Σ in this and the coming

section. We will say that a surface Σ ⊂ (R3, gε), or Σ ⊂ H, is regular if

(4.1) Σ is a Euclidean C2-smooth compact and oriented surface.

In particular we will assume that there exists a Euclidean C2-smooth function u : R3 → R such
that

Σ = {(x1, x2, x3) ∈ R3 : u(x1, x2, x3) = 0}
and ∇R3u 6= 0. As in [10, Section 4.2], our study will be local and away from characteristic points
of Σ. For completeness, we recall that a point x ∈ Σ is called characteristic if

(4.2) ∇Hu(x) = (0, 0).

The presence or absence of characteristic points will be stated explicitly.
To fix notation (following the one adopted in [10, Chapter 4]), let us define first

p := X1u, q := X2u and r := Xε
3u.

We then define

(4.3)

l := ‖∇Hu‖H, p̄ :=
p

l
and q̄ :=

q

l
,

lε :=
√

(X1u)2 + (X2u)2 + (Xε
3u)2, r̄ε :=

r

lε
,

p̄ε :=
p

lε
and q̄ε :=

q

lε
.

In particular, p̄2 + q̄2 = 1. It is clear from (4.2) that these functions are well defined at every
non-characteristic point of Σ.
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Definition 4.1. Let Σ ⊂ (R3, gε) be a regular surface and let u : R3 → R be as before. The
Riemannian unit normal νε to Σ is

νε :=
∇εu
‖∇εu‖ε

= p̄εX1 + q̄εX2 + r̄εX
ε
3,

where ∇εu is the Riemannian gradient of u.

Definition 4.2. Let Σ ⊂ (R3, gε) be a regular surface and let u : R3 → R be as before. For every

point g ∈ Σ, we introduce the orthonormal basis {E1(g), E2(g)} for TgΣ, where

E1(g) := q̄(g)X1(g)− p̄(g)X2(g)

and

E2(g) := r̄ε(g) p̄(g)X1(g) + r̄ε(g) q̄(g)X2(g)− l

lε
(g)Xε

3(g).

On TgΣ we define a linear transformation Jε : TgΣ→ TgΣ such that

(4.4) Jε(E1(g)) := E2(g), and Jε(E2(g)) := −E1(g).

In the following we will omit the dependence on the point g ∈ Σ when it is clear.

Let us spend a few words on the choice of the basis of the tangent plane TgΣ. The vector E1 is

a horizontal vector given by J(∇Hu/‖∇Hu‖H), where J is the linear operator acting on horizontal

vector fields by J(aX1 + bX2) = bX1 − aX2. This vector is called by some authors characteristic
direction and plays an important role in the study of minimal surfaces in H and in the study of the
properties of the characteristic set char(Σ), see for instance [13], [14] and [12].

In order to perform computations on the surface Σ, we need a Riemannian metric and a connec-
tion. Classically, see for instance [27] or [25], there is a standard way to define a Riemannian metric

gε,Σ on Σ so that Σ is isometrically immersed in (R3, gε). Once we have a Riemannian metric on

the surface Σ, we can define the unique Levi-Civita connection ∇Σ on Σ related to the Riemannian
metric gε,Σ. This procedure is equivalent to the following definition.

Definition 4.3. Let Σ ⊂ (R3, gε) be a Euclidean C2-smooth surface. For every U, V ∈ TgΣ we

define ∇Σ
UV to be the tangential component of ∇, namely

∇Σ
UV = Π (∇UV ) ,

where Π : R3 → TΣ.

Note that to compute ∇UV we are considering an extension of both U and V to R3.

As a notational remark, given a Euclidean C2-smooth and regular curve γ ⊂ Σ, we will denote

the covariant derivative of γ̇ with respect to the gε,Σ-metric, as DΣ
t γ̇.

We are now interested in detecting the curvature of a Euclidean C2-smooth regular curve γ on
a given regular surface Σ ⊂ H.

We start with a technical lemma that will simplify our treatment in the ensuing discussion.
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Lemma 4.4. For p̄, q̄, lε and r̄ε as before, we have

lε → ‖∇Hu‖, as ε→ 0+,(4.5)

r̄ε → 0, as ε→ 0+,(4.6)

r̄ε
lε
→ 0, as ε→ 0+,(4.7)

r̄ε√
ε lε
→ X3u

‖∇Hu‖2
, as ε→ 0+,(4.8)

1

ε
r̄2
ε →

(X3u)2

‖∇Hu‖2
, as ε→ 0+,(4.9)

r̄ε
ε
∼ (X3u)√

ε ‖∇Hu‖
, as ε→ 0+(4.10)

Proof. All the limits and asymptotics follow directly from the definitions in (4.3). �

Lemma 4.5. Let γ : [a, b]→ Σ be a Euclidean C2-smooth, regular and non-horizontal curve. The

covariant derivative DΣ
t γ̇ of γ̇ with respect to the gε,Σ-metric is given by

DΣ
t γ̇ = (DΣ

t γ̇)1E1 + (DΣ
t γ̇)2E2,

where

(4.11)

(DΣ
t γ̇)1 = q̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
− p̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

)
,

(DΣ
t γ̇)2 = r̄εp̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
+ r̄εq̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

)
− l√

ε lε
ω(γ̈).

Moreover, if γ : [a, b]→ Σ is Euclidean C2-smooth, regular and horizontal curve, we have

(4.12) DΣ
t γ̇ = (q̄γ̈1 − p̄γ̈2)E1 + r̄ε (p̄γ̈1 + q̄γ̈2)E2,

Proof. The covariant derivative Dtγ̇ in the {X1, X2, X
ε
3} basis is as in (3.6). Projecting Dtγ̇ via Π

into the tangent plane TgΣ, we find

DΣ
t γ̇ : = 〈Dtγ̇, E1〉εE1 + 〈Dtγ̇, E2〉εE2

=

[
q̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
− p̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

)]
E1

+

[
r̄εp̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
+ r̄εq̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

)
− l√

ε lε
ω(γ̈)

]
E2.

The situation is much simpler if γ is horizontal, indeed it suffices to set ω(γ̇) = ω(γ̈) = 0 in the
previous expression. �

Definition 4.6. Let Σ ⊂ (R3, gε) be a regular surface. Let γ : [a, b]→ Σ be a Euclidean C2-smooth

and regular curve, and let DΣ
t be the covariant derivative of γ̇ with respect to the Riemannian metric

gε,Σ. The geodesic curvature kεγ,Σ of γ at the point γ(t) is defined to be

kεγ,Σ :=

√√√√‖DΣ
t γ̇‖2ε,Σ
‖γ̇‖4ε,Σ

−
〈DΣ

t γ̇, γ̇〉2ε,Σ
‖γ̇‖6ε,Σ

.
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Definition 4.7. Let Σ ⊂ H be a regular surface and let γ : [a, b] → Σ be a Euclidean C2-smooth

and regular curve. The intrinsic geodesic curvature k0
γ,Σ of γ at the non-characteristic point γ(t)

is defined as
k0
γ,Σ := lim

ε→0+
kεγ,Σ,

if the limit exists.

As in Section 3, our first task is to show that the above limit does always exist.

Lemma 4.8. Let Σ ⊂ H be a regular surface and let γ : [a, b]→ Σ be a Euclidean C2-smooth and
regular curve. Then

k0
γ,Σ =

|p̄γ̇1 + q̄γ̇2|
|ω(γ̇)|

if γ(t) is a non-horizontal point, while

k0
γ,Σ = 0

if γ(t) is a horizontal point.

Proof. First, let γ(t) be a non-horizontal point of the curve γ. From Lemma 4.5, we know that

DΣ
t γ̇ =

(
q̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
− p̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

))
E1

+

(
r̄εp̄
(
γ̈1 + 1

εω(γ̇)γ̇2

)
+ r̄εq̄

(
γ̈2 − 1

εω(γ̇)γ̇1

)
− l√

ε lε
ω(γ̈)

)
E2.

For γ̇, recalling (3.7) we have

γ̇ = (q̄γ̇1 − p̄γ̇2)E1 +

(
r̄εp̄γ̇1 + r̄εq̄γ̇2 −

l√
ε lε

ω(γ̇)

)
E2.

Recalling (4.10), we have

‖DΣ
t γ̇‖2ε,Σ =

(
q̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
− p̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

))2

+

(
r̄εp̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
+ r̄εq̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

)
− l√

ε lε
ω(γ̈)

)2

∼ 1

ε2
ω(γ̇)2(p̄γ̇1 + q̄γ̇2)2, as ε→ 0+.

In a similar way, we have that

‖γ̇‖ε,Σ =

√
(q̄γ̇1 − p̄γ̇2)2 +

(
r̄εp̄γ̇1 + r̄εq̄γ̇2 −

l

lε
1√
ε
ω(γ̇)

)2

∼ 1√
ε
|ω(γ̇)|, as ε→ 0+.

A bit more involved computation shows that

〈DΣ
t γ̇, γ̇〉ε,Σ ∼

1

ε
M, as ε→ 0+,

where M does not depend on ε. Therefore, at a non-horizontal point γ(t) , we have

k0
γ,Σ =

|p̄γ̇1 + q̄γ̇2|
|ω(γ̇)|

.
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Now let γ(t) be a horizontal point of the curve γ. In this case,

DΣ
t γ̇ = (q̄γ̈1 − p̄γ̈2)E1 + r̄ε (p̄γ̈1 + q̄γ̈2)E2,

γ̇ = (q̄γ̇1 − p̄γ̇2)E1 + r̄ε (p̄γ̇1 + q̄γ̇2)E2.

Recalling (4.6), we have

‖DΣ
t γ̇‖2ε,Σ → (q̄γ̈1 − p̄γ̈2)2 , as ε→ 0+,

‖γ̇‖2ε,Σ → (q̄γ̇1 − p̄γ̇2)2, as ε→ 0+,

〈DΣ
t γ̇, γ̇〉ε,Σ → (q̄γ̇1 − p̄γ̇2)(q̄γ̈1 − p̄γ̈2), as ε→ 0+.

Therefore

k0
γ,Σ =

√
(q̄γ̈1 − p̄γ̈2)2

(q̄γ̇1 − p̄γ̇2)4
− (q̄γ̇1 − p̄γ̇2)2(q̄γ̈1 − p̄γ̈2)2

(q̄γ̇1 − p̄γ̇2)6
= 0,

as desired. �

Remark 4.9. In the last computation, it is possible to divide by the term q̄γ̇1 − p̄γ̇2, because it
cannot be 0 when γ(t) is a horizontal point. Indeed, let g ∈ Σ be a non-characteristic point, then
we know that

dim(Hg ∩ TgΣ) = 1.

At a horizontal point γ(t), we have that γ̇ ∈ Hg ∪ TgΣ. On the other hand, E1 ∈ Hg ∩ TgΣ as well.

Therefore, if q̄γ̇1 − p̄γ̇2 = 0, this would imply that we would have

〈γ̇, E1〉ε = 0,

and therefore that either dim(Hg ∩ TgΣ) = 2 or γ̇ = 0, which would lead to a contradiction.

For planar curves it is possible to define a notion of signed curvature. Actually, it is possible to
define an analogous concept for curves living on arbitrary two-dimensional Riemannian manifolds
(see for instance [27, Chapter 9]).

Definition 4.10. Let Σ ⊂ (R3, gε) be a regular surface and let γ : [a, b] → Σ be a Euclidean C2-

smooth and regular curve. Let ∇Σ be the Levi-Civita connection on Σ related to the Riemannian
metric gε,Σ. For every g ∈ Σ, let {E1(g), E2(g)} be an orthonormal basis of TgΣ. The signed

geodesic curvature kε,sγ,Σ of γ at the point γ(t) is defined as

kε,sγ,Σ :=
〈DΣ

t γ̇, Jε(γ̇)〉ε,Σ
‖γ̇‖3ε,Σ

,

where Jε is the linear transformation on TgΣ defined in (4.4).

Remark 4.11. If we take the absolute value of kε,sγ,Σ, we recover precisely kεγ,Σ. Indeed, by definition

of Jε, {γ̇/‖γ̇‖ε, Jε(γ̇)/‖γ̇‖ε} is another orthonormal basis of TgΣ oriented as {E1(g), E2(g)}. Since

DΣ
t γ̇ is defined as the projection of Dtγ̇ onto TgΣ, we have

DΣ
t γ̇ = 〈DΣ

t γ̇,
γ̇

‖γ̇‖ε
〉ε

γ̇

‖γ̇‖ε
+ 〈DΣ

t γ̇,
Jε(γ̇)

‖γ̇‖ε
〉ε
Jε(γ̇)

‖γ̇‖ε
.
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In particular,

‖DΣ
t γ̇‖2ε
‖γ̇‖4ε

=
〈DΣ

t γ̇, γ̇〉2ε,Σ
‖γ̇‖6ε

+
〈DΣ

t γ̇, Jε(γ̇)〉2ε
‖γ̇‖6ε

and so

|kε,sγ,Σ| =
|〈DΣ

t γ̇, Jε(γ̇)〉ε|
‖γ̇‖3ε

=

√
‖DΣ

t γ̇‖2ε
‖γ̇‖4ε

− 〈D
Σ
t γ̇, γ̇〉2ε
‖γ̇‖6ε

= kεγ,Σ.

Definition 4.12. Let Σ ⊂ H be a regular surface and let γ : [a, b]→ Σ be a Euclidean C2-smooth

and regular curve. The intrinsic signed geodesic curvature k0,s
γ,Σ(t) of γ at the non-characteristic

point γ(t) is defined as

k0,s
γ,Σ := lim

ε→0+
kε,sγ,Σ.

Again, we need to show that the above limit actually exists.

Proposition 4.13. Let Σ ⊂ H be a regular surface and let γ : [a, b]→ Σ be a Euclidean C2-smooth
and regular curve. Then

k0,s
γ,Σ =

p̄γ̇1 + q̄γ̇2

|ω(γ̇)|
if γ(t) is a non-horizontal point, and

k0,s
γ,Σ = 0

if γ(t) is a horizontal point.

Proof. We already know that

DΣ
t γ̇ =

(
q̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
− p̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

))
E1+(

r̄εp̄

(
γ̈1 +

1

ε
ω(γ̇)γ̇2

)
+ r̄εq̄

(
γ̈2 −

1

ε
ω(γ̇)γ̇1

)
− l

lε
√
ε
ω(γ̈)

)
E2.

and

γ̇ = (q̄γ̇1 − p̄γ̇2)E1 +

(
r̄εp̄γ̇1 + r̄εq̄γ̇2 −

l

lε
√
ε
ω(γ̇)

)
E2,

and therefore, by definition of Jε,

Jε(γ̇) = −
(
r̄εp̄γ̇1 + r̄εq̄γ̇2 −

l

lε
√
ε
ω(γ̇)

)
E1 + (q̄γ̇1 − p̄γ̇2)E2.

After some simplifications, we get

〈DΣ
t γ̇, Jε(γ̇)〉ε,Σ = r̄εγ̇1

(
γ̈2 −

1

ε
ω(γ̇)γ̇2

)
(p̄2 + q̄2)− r̄εγ̇2

(
γ̈1 +

1

ε
ω(γ̇)γ̇1

)
(p̄2 + q̄2)

l

lε
√
ε

[
ω(γ̇)

(
q̄γ̈1 +

1

ε
q̄ω(γ̇)γ̇2 − p̄γ̈2 +

1

ε
p̄ω(γ̇)γ̇1

)
+ q̄ω(γ̈)γ̇1 − p̄ω(γ̈)γ̇2

]
Therefore, exploiting Lemma 4.4, for a non-horizontal curve γ, we have

〈DΣ
t γ̇, Jε(γ̇)〉ε,Σ ∼

(
1
ε

)3/2
ω(γ̇)2 (q̄γ̇2 + p̄γ̇1) , as ε→ 0+.
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Recalling that ‖γ̇‖ε,Σ ∼ 1√
ε
|ω(γ̇)|, as ε→ 0+, we find

〈DΣ
t γ̇, Jε(γ̇)〉ε,Σ
‖γ̇‖3ε,Σ

→ (p̄γ̇1 + q̄γ̇2)

|ω(γ̇)|
, as ε→ 0+.

As for the previous results, the case of γ horizontal is slightly easier, because ω(γ̇) = ω(γ̈) = 0.
Therefore,

DΣ
t γ̇ = (q̄ (γ̈1)− p̄ (γ̈2))E1 + r̄ε (p̄ (γ̈1) + q̄ (γ̈2))E2,

γ̇ = (q̄γ̇1 − p̄γ̇2)E1 + r̄ε (p̄γ̇1 + q̄γ̇2)E2,

Jε(γ̇) = −r̄ε (p̄γ̇1 + q̄γ̇2)E1 + (q̄γ̇1 − p̄γ̇2)E2

Hence, from Lemma 4.4,

〈DΣ
t γ̇, Jε(γ̇)〉ε = r̄ε [− (q̄γ̇1 − p̄γ̇2) (p̄γ̇1 + q̄γ̇2) + (p̄γ̇1 + q̄γ̇2) (q̄γ̇1 − p̄γ̇2)]→ 0, as ε→ 0+,

as desired. �

Remark 4.14. The intrinsic geodesic curvature (both signed and unsigned) is invariant under isome-

tries of H (left translations and rotations about the x3-axis), and scales by the factor 1
r under the

dilation δr. Compare Proposition 3.10 and Remark 3.11. We omit the elementary proofs of these
facts.

5. Riemannian approximation of curvatures of surfaces

In this section we want to study curvatures of regular surfaces Σ ⊂ H. As in the previous
sections, the idea will be to compute first the already known curvatures of a regular 2-dimensional

Riemannian manifold Σ ⊂ (R3, gε), and then try to derive appropriate Heisenberg notions taking

the limit as ε→ 0+.
First, we need to define the second fundamental form IIε of the embedding of Σ into (R3, gε):

(5.1) IIε =

(
〈∇E1νε, E1〉ε 〈∇E1νε, E2〉ε
〈∇E2νε, E1〉ε 〈∇E2νε, E2〉ε

)
.

The explicit computation of the second fundamental form in our case can be found in [10]. For
sake of completeness, we recall here the complete statement.

Theorem 5.1 ([10], Theorem 4.3). The second fundamental form IIε of of the embedding of Σ

into (R3, gε) is given by

(5.2) IIε =


l

lε
(X1(p̄) +X2(q̄)) − 1

2
√
ε
− lε
l
〈E1,∇H(r̄ε)〉ε

− 1

2
√
ε
− lε
l
〈E1,∇H(r̄ε)〉ε −

l2

l2ε
〈E2,∇H( rl )〉ε +Xε

3(r̄ε)

 .

The Riemannian mean curvature Hε of Σ is

Hε := tr(IIε),

while the Riemannian Gaussian curvature Kε is

Kε := Kε(E1, E2) + det(IIε).
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Here Kε(E1, E2) denotes the sectional curvature of (R3, gε) in the plane generated by E1 and E2.
We need to spend a few words about the last definition, which is actually a result known as Gauss
equation. The geometric meaning is that the second fundamental form IIε is the right object to
measure the discrepancy between the two sectional curvatures, of the ambient manifold, and of the
isometrically immersed one.

Proposition 5.2. Away from characteristic points, the horizontal mean curvature H0 of Σ ⊂ H is
given by

(5.3) H0 = lim
ε→0+

Hε = divH

(
∇Hu

‖∇Hu‖H

)
,

and the intrinsic Gaussian curvature K0 is given by

(5.4)

K0 = lim
ε→0+

Kε

= −
(

X3u

‖∇Hu‖H

)2

−
(

X2u

‖∇Hu‖H

)
X1

(
X3u

‖∇Hu‖H

)
+

(
X1u

‖∇Hu‖H

)
X2

(
X3u

‖∇Hu‖H

)
.

In (5.3) the expression divH denotes the horizontal divergence of a horizontal vector field, which
is defined as follows: for a horizontal vector field V = aX1 + bX2,

divH(V ) = X1(a) +X2(b).

Proof. By definition,

Hε = trace(IIε) =
l

lε
(X1(p̄) +X2(q̄))− l2

l2ε
〈E2,∇H( rl )〉ε +Xε

3(r̄ε).

We recall that r =
√
εX3u and therefore in the limit as ε→ 0+, we obtain

H0 = lim
ε→0+

Hε = X1

(
X1u

‖∇Hu‖H

)
+X2

(
X2u

‖∇Hu‖H

)
.

As we have already observed in the computation of H0, the term

− l
2

l2ε
〈E2,∇H( rl )〉ε +Xε

3(r̄ε)

tends to zero as ε→ 0+, and therefore in analyzing det(IIε) we can focus only on the term

−
(
− 1

2
√
ε
− lε
l
〈E1,∇H(r̄ε)〉ε

)2

.

Clearly,

−
(
− 1

2
√
ε
− lε
l
〈E1,∇H(r̄ε)〉ε

)2

∼ − 1

4ε
− 〈E1,∇H

(
X3u

‖∇Hu‖H

)
〉ε, as ε→ 0+.

It remains to compute the sectional curvature Kε(E1, E2). By Definition 2.11, the functional

property in Remark 2.10, and orthonormality of the basis {E1, E2}, we have

Kε(E1, E2) = − 1

4ε
− 1

ε
r̄2
ε .
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Hence

K0 = lim
ε→0+

Kε

= −
(

X3u

‖∇Hu‖H

)2

−
(

X2u

‖∇Hu‖H

)
X1

(
X3u

‖∇Hu‖H

)
+

(
X1u

‖∇Hu‖H

)
X2

(
X3u

‖∇Hu‖H

)
,

as desired. �

Remark 5.3. As already mentioned in the introduction, it is clear from the previous computations
that the existence of the limit defining the intrinsic Gaussian curvature K0 is based on the can-

cellation of two divergent terms (as ε→ 0+), one coming from the sectional curvature K̄ε(E1, E2),
and the other coming from the determinant of the second fundamental form IIε. We remark once
more that such cancellation depends on both the choice of the frame {E1, E2} on the surface Σ,
and on intrinsic symmetries of the Heisenberg group H.

Remark 5.4. It is well known (see, for instance [10]) that the horizontal mean curvature of Σ at a
non-characteristic point x coincides, up to a choice of sign, with the signed horizontal curvature of
the Legendrian curve γ in Σ through x. This is the unique horizontal curve γ defined locally near
x, γ : (−δ, δ) → Σ, such that γ(0) = x and γ̇(0) = J(∇Hu/||∇Hu||H) ∈ HxH ∩ TxΣ. The signed

horizontal curvature of γ = (γ1, γ2, γ3) is given by

γ̇1γ̈2 − γ̇2γ̈1√
(γ̇2

1 + γ̇2
2)3

.

Observe that the absolute value of this expression coincides with the intrinsic curvature k0
γ intro-

duced in Definition 3.6, when considered on horizontal curves.

Remark 5.5. The horizontal mean curvatureH0 and intrinsic Gauss curvature K0 have been given in
terms of a defining function u for the surface Σ. The preceding remark shows thatH0 is independent
of the choice of the defining function. Concerning K0, we note that Kε is independent of the choice
of the defining function because it is the Riemannian Gaussian curvature of (Σ, gε|Σ), therefore the

same holds true for its limit K0 as ε→ 0+.

We conclude this section with a brief discussion of the local summability of the horizontal
Gaussian curvature K0 with respect to the Heisenberg perimeter measure near isolated charac-
teristic points. This observation will be used in our subsequent study of the validity of a intrinsic
Gauss–Bonnet theorem in H. Without loss of generality, suppose that the origin is an isolated
characteristic point of Σ. Consider a neighborhood U of the origin on Σ. Due to the expression
(5.4), and since the Heisenberg perimeter measure dσH is given by

dσH =
‖∇Hu‖H
‖∇R3u‖R3

dH2
R3 ,

there exists a positive constant C = C(U) > 0 such that

(5.5) |K0|dσH ≤
C

‖∇Hu‖H
dH2

R3 .

Finer results turn out to be particularly difficult to achieve. We postpone further discussion of this
topic to Section 8.
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6. A Gauss–Bonnet theorem

The goal of this section is to prove Theorem 1.1. Before doing that, we need to recall a couple
of technical results concerning, respectively the Riemannian length measure, and the Riemannian

surface measure. Let us first consider the case of a curve γ : [a, b] → (R3, gε) in the Riemannian

manifold (R3, gε). We define the Riemannian length measure,

dγ̇ε := γ]

(
‖γ̇‖ε dL1

x[a,b]

)
= ‖γ̇‖ε dt.

Lemma 6.1. Let γ : [a, b]→ (R3, gε) be a Euclidean C2-smooth and regular curve. Then

(6.1) lim
ε→0+

√
ε

∫
γ
dγ̇ε =

∫ b

a
|ω(γ̇)| dt =:

∫
γ
dγ̇,

Proof. As we already saw, ‖γ̇‖ε =
√
γ̇2

1 + γ̇2
2 + Lω(γ̇)2, hence by the definition of dγ̇ε and the

dominated convergence theorem,

lim
ε→0+

√
ε

∫
γ
dγ̇ε =

∫ b

a
lim
ε→0+

√
ε ‖γ̇‖ε dt =

∫ b

a
lim
ε→0+

√
ε

√
γ̇2

1 + γ̇2
2 +

1

ε
ω(γ̇)2 dt =

∫ b

a
|ω(γ̇)| dt

as desired. �

Remark 6.2. It is clear that this scaled measure vanishes on fully horizontal curves.

Let us also recall a technical result concerning the scaled limit of the Riemannian surface measure.

Proposition 6.3 ([10], Chapter 5.1.). Let Σ ⊂ (R3, gε) be a Euclidean C2-smooth surface. Let dσε
denote the surface measure on Σ with respect to the Riemannian metric gε. Let M be the 2 × 3
matrix

(6.2) M :=

(
1 0 −x2

2
0 1 x1

2

)
.

If Σ = {u = 0} with u ∈ C2(R3), then

(6.3) lim
ε→0+

√
ε

∫
Σ
dσε =

∫
Σ

‖∇Hu‖H
‖∇R3u‖R3

dH2
R3 =

∫
Σ
dH3

cc,

where dH2
R3 denotes the Euclidean 2-Hausdorff measure and dH3

cc the 3-dimensional Hausdorff

measure with respect to the cc metric dcc. If Σ = f(D) with

f = f(u,v) : D ⊂ R2 → R3,

and Euclidean normal vector to Σ given by ~n(u,v) = (fu × fv)(u,v), then

(6.4) lim
ε→0+

√
ε

∫
Σ
dσε =

∫
D
‖M~n‖R2 dudv.

The classical Gauss–Bonnet theorem for a regular surface Σ ⊂ (R3, gε) with boundary compo-

nents given by Euclidean C2-smooth and regular curves γi (see for instance [27, Chapter 9] or [25])
states that

(6.5)

∫
Σ
Kε dσε +

n∑
i=1

∫
γi

kε,sγi,Σ dγ̇iε = 2πχ(Σ),
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where Kε is the Gaussian curvature of Σ, kε,sγi,Σ is the signed geodesic curvature of the ith boundary

component γi, dγ̇iε = ‖γ̇i‖εdθ and χ(Σ) is the Euler characteristic of Σ. It is clear that for a regular

surface Σ ⊂ (R3, gε) without boundary, (6.5) simplifies to∫
Σ
Kε dσε = 2πχ(Σ).

Recalling the considerations made on the Riemannian surface measure dσε, it is natural to multiply

(6.5) by a factor
√
ε,

(6.6)

∫
Σ
Kε
√
ε dσε +

n∑
i=1

∫
γi

kε,sγi,Σ
√
ε dγ̇iε = 2π

√
ε χ(Σ),

and then hope to derive a Gauss–Bonnet Theorem as a limit as ε→ 0+. The most difficult task is
to take care of the possible presence of characteristic points on Σ. In order to deal with them, we
provide the following general definition:

Definition 6.4 ((R)-property). Let S ⊂ R2 be any set in R2. We say that the set S satisfies the

removability (R)-property, if for every δ > 0, there exist a number n = n(δ) ∈ N and smooth simple

closed curves γ1, . . . , γn : I ⊂ R→ R2, such that

S ⊂
n⋃
i=1

int(γi), and
n∑
i=1

length(γi) ≤ δ,

where lengthE(γ) denotes the usual Euclidean length of a curve in R2.

It is clear that if the set S consists of finitely many isolated points, then it satisfies the (R)-

property. A more complicated example is provided by the self-similar Cantor set C(2)(λ) in R2

with scaling ratio λ < 1/4. Here C(2)(λ) = C(1)(λ) × C(1)(λ), where C(1)(λ) denotes the unique
nonempty compact subset of R which is fully invariant under the action of the two contractive
similarities f1(x) = λx and f2(x) = λx+ 1− λ.

Proposition 6.5. When λ < 1
4 , the self-similar Cantor set C(2)(λ) satisfies the (R)-property.

Proof. At the nth stage of the iterative construction of C(2)(λ) we have 4n pieces. We can surround

every such piece with a smooth closed curve γkn. For sake of simplicity let us take a Euclidean circle

whose radius rkn is comparable to λn. Therefore

4n∑
k=1

lengthE(γkn) . 4nλn → 0, as n→ +∞,

because λ < 1/4. �

Lemma 6.6. If S ⊂ R2 is compact and such that H1
E(S) = 0 then S satisfies the (R)-property.

Proof. First, since S is compact, we can take a finite covering of S made of Euclidean balls
{B(gi, ri)}i=1,...,m, with gi ∈ S for every i = 1, . . . ,m, and such that

∑m
i=1 ri ≤ δ. Enlarging

these balls by a factor which will not depend on δ, we can assume that S lies entirely in the interior
of the union of these balls. Now we define the surrounding curves, as the boundaries of the unions
of these balls. By construction, the Euclidean length of such curves is comparable to δ. �
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Remark 6.7. The converse of Lemma 6.6 also holds true. In other words, the validity of the (R)-

property for a compact set S ⊂ R2 is equivalent to H1
E(S) = 0.

Before proving Theorem 1.1, let us make another useful remark. Let us denote by Π the projection

Π : H → R2 onto the first two components. Consider a surface Σ ⊂ H as in the hypothesis of
Theorem 1.1. Then

H1
E(C(Σ)) = H1

E(Π(C(Σ))).

In particular, if H1
E(C(Σ)) = 0, then its projection Π(C(Σ)) satisfies the (R)-property.

Proof of Theorem 1.1. The proof of Theorem 1.1 will be a combination of different steps.

Step 1: First we consider the case of a regular surface without characteristic points. Precisely,
let Σ ⊂ H be a regular surface without characteristic points, and with finitely many boundary

components (∂Σ)i, i ∈ {1, . . . , n}, given by Euclidean C2-smooth closed curves γi : [0, 2π]→ (∂Σ)i.
We may assume that none of the boundary components are fully horizontal. Let K0 be the intrinsic

Gaussian curvature of Σ, and let k0,s
γi,Σ

be the intrinsic signed geodesic curvature of γi, for every

i ∈ {1, . . . , n}. Then ∫
Σ
K0 dH3

cc +

n∑
i=1

∫
γi

k0,s
γi,Σ

dγ̇i = 0.

Proof of Step 1. The results will follow passing to the limit as ε→ 0+ in∫
Σ
Kε
√
ε dσε +

n∑
i=1

∫
γi

kε,sγi,Σ
√
ε dγ̇iε = 2π

√
ε χ(Σ).

To do this, we need to apply Lebesgue’s dominated convergence theorem. Let us start with the
integral of Kε. We take a partition of unity {ϕi}, i = 1, . . . ,m. Calling Σi := supp(ϕi) ∩ Σ, for
every i = 1, . . . ,m, we have ∫

Σ
Kε
√
ε dσε =

m∑
i=1

∫
Σi

Kεϕi
√
ε dσε.

Let us choose a parametrization of every Σi, ψi : Di → Σi, then, for every i = 1, . . . ,m, it holds
that ∫

Σi

Kε ϕi
√
ε dσε =

∫
Di

Kε ϕi |Mε~n| dv dw,

where

Mε :=

 1 0 −x2
2

0 1 x1
2

0 0
√
ε

 ,

and ~n denotes the Euclidean normal vector to Σ.
It is now sufficient to check whether there exist two positive constants M1 and M2, independent of
ε, such that

|Kε| ≤M1, and |Mε~n| ≤M2.
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The second estimate is proved in Proposition 6.3, see [10]. For the first one, we recall that the
explicit expression of Kε is given by

(6.7)

Kε = −1

ε
r̄2
ε −

(
l

lε

)3

(X1p̄+X2q̄)〈E2,∇H

(r
l

)
〉ε +

l

lε
(X1p̄+X2q̄)X

ε
3r̄ε

−
(
l

lε

)4 (
〈E1,∇H

(r
l

)
〉ε
)2
− 1√

ε

(
l

lε

)2

〈E1,∇H

(r
l

)
〉ε.

Since lε = ‖∇εu‖ε =

√
(X1u)2 + (X2u)2 + (

√
εX3u)

2 ≥ ‖∇Hu‖H, we have that

l

lε
=
‖∇Hu‖H
‖∇εu‖ε

≤ 1.

Since ε < 1, it also holds that

lε ≤
√

(X1u)2 + (X2u)2 + (X3u)2.

Moreover, since u ∈ C2(R3) and Σ is a compact surface without characteristic points, there exists
a positive constant C1 > 0 such that

|X1p̄+X2q̄| =
∣∣∣∣X1

(
X1u

‖∇Hu‖H

)
+X2

(
X2u

‖∇Hu‖H

)∣∣∣∣ ≤ C1.

Therefore we have the following list of estimates:

1

ε
r̄2
ε =

1

ε

(Xε
3u)2

l2ε
≤
(

X3u

‖∇Hu‖H

)2

≤ C2.∣∣∣〈E2,∇H

(r
l

)
〉ε
∣∣∣ =

∣∣∣r̄εp̄X1

(r
l

)
+ r̄εq̄X2

(r
l

)∣∣∣
= ε|X3u|

∣∣∣∣ X1u

‖∇Hu‖H
X1

(
X3u

‖∇Hu‖H

)
+

X2u

‖∇Hu‖H
X2

(
X3u

‖∇Hu‖H

)∣∣∣∣
≤ |X3u|

∣∣∣∣ X1u

‖∇Hu‖H
X1

(
X3u

‖∇Hu‖H

)
+

X2u

‖∇Hu‖H
X2

(
X3u

‖∇Hu‖H

)∣∣∣∣ ≤ C3.

1√
ε

∣∣∣〈E1,∇H

(r
l

)
〉ε
∣∣∣ =

1√
ε

∣∣∣∣q̄X1

( √
εX3u

‖∇Hu‖H

)
− p̄X2

(√
εX3u‖∇Hu‖H

)∣∣∣∣
≤
∣∣∣∣ X2u

‖∇Hu‖H
X1

(
X3u

‖∇Hu‖H

)∣∣∣∣+

∣∣∣∣ X1u

‖∇Hu‖H
X2

(
X3u

‖∇Hu‖H

)∣∣∣∣ ≤ C4.

Similarly,
|Xε

3r̄ε| ≤ C5.

Altogether,

|Kε| ≤ C2 + C1 · C3 + C1 · C5 + C2
4 + C4 =: M1,

as desired.
It remains to see what happens for the boundary integrals. Without loss of generality, let us

assume we are given a surface Σ with only one boundary component, given by a smooth curve γ.
We need to estimate ∣∣∣∣√ε〈DΣ

t γ̇, Jε(γ̇)〉ε
‖γ̇‖2ε

∣∣∣∣ ,
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where

〈DΣ
t γ̇, Jε(γ̇)〉ε = r̄ε(γ̇1γ̈2 − γ̇2γ̈1)

+
1√
ε

l

lε
[ω(γ̇) (q̄γ̈1 − p̄γ̈2) + ω(γ̈) (q̄γ̇1 − p̄γ̇2)]

− 1

ε
ω(γ̇)r̄ε(2γ̇1γ̇2) +

(
1

ε

)3/2 l

lε
ω(γ̇)2(p̄γ̇1 + q̄γ̇2),

and

‖γ̇‖2ε = γ̇2
1 + γ̇2

2 +
1

ε
ω(γ̇)2.

Note that there exists a positive constant C0 > 0, such that

γ̇2
1 + γ̇2

2 +
1

ε
ω(γ̇)2 ≥ γ̇2

1 + γ̇2
2 + ω(γ̇)2 ≥ C0 > 0.

Now, we have
√
ε |r̄ε(γ̇1γ̈2 − γ̇2γ̈1)|

(γ̇2
1 + γ̇2

2 +
1

ε
ω(γ̇)2)

≤ ε |γ̇1γ̈2 − γ̇2γ̈1||X3u|
‖∇Hu‖H(γ̇2

1 + γ̇2
2 + Lω(γ̇)2)

≤ |X3u|
‖∇Hu‖H

|γ̇1γ̈2 − γ̇2γ̈1|
γ̇2

1 + γ̇2
2 + ω(γ̇)2

≤ C6.

1√
ε

l

lε

√
ε | [ω(γ̇) (q̄γ̈1 − p̄γ̈2) + ω(γ̈) (q̄γ̇1 − p̄γ̇2)] |

(γ̇2
1 + γ̇2

2 +
1

ε
ω(γ̇)2)

≤ |ω(γ̇)||q̄γ̈2 − p̄γ̈2|+ |ω(γ̈)||q̄γ̇1 − p̄γ̇2|
γ̇2

1 + γ̇2
2 + ω(γ̇)2

≤ C7.

2
√
ε|ω(γ̇)||r̄ε||γ̇1γ̇2|

ε(γ̇2
1 + γ̇2

2 +
1

ε
ω(γ̇)2)

≤ 2|ω(γ̇)||X3u||γ̇1γ̇2|
‖∇Hu‖H (γ̇2

1 + γ̇2
2 + ω(γ̇)2)

≤ C8.

l

lε

√
εω(γ̇)2|p̄γ̇1 + q̄γ̇2|

ε3/2(γ̇2
1 + γ̇2

2 +
1

ε
ω(γ̇)2)

≤ ε3/2ω(γ̇)2

ε3/2ω(γ̇)2
|p̄γ̇1 + q̄γ̇2| = |p̄γ̇1 + q̄γ̇2| ≤ C9.

The behavior of the measure has been already treated in Lemma 6.1. �

Step 2: Due to Lemma 6.6, we can surround the projection of the characteristic set Π(C(Σ))

with smooth simple closed curves {βj}j=1,...,n(δ) such that

(6.8)

n(δ)∑
j=1

lengthE(βj) ≤ δ.

We can now work with a new surface Σδ which has no characteristic points, and boundary com-
ponents which are given by the curves γi’s and the curves βj ’s. Step 1 tells us that for every

δ > 0, ∫
Σδ

K0 dH3
cc +

n∑
i=1

∫
γi

k0,s
γi,Σδ

dγ̇i = −
n(δ)∑
j=1

k0,s
βj ,Σδ

dβ̇j ,
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which, combined with (6.8), implies that for every δ > 0,∣∣∣∣∣
∫

Σδ

K0 dH3
cc +

n∑
i=1

∫
γi

k0,s
γi,Σδ

dγ̇i

∣∣∣∣∣ =

∣∣∣∣∣∣
n(δ)∑
j=1

k0,s
βj ,Σδ

dβ̇j

∣∣∣∣∣∣ ≤ δ,
and this completes the proof. �

Corollary 6.8. Let Σ ⊂ H be a regular surface without boundary, or with boundary components

given by Euclidean C2-smooth horizontal curves. Assume that the characteristic set C(Σ) satisfies

H1(C(Σ)) = 0 and that ‖∇Hu‖−1
H is locally summable with respect to the Euclidean 2-dimensional

Hausdorff measure, near the characteristic set C(Σ). Then the intrinsic Gaussian curvature K0

cannot be an always positive or negative function. In particular, Σ cannot have constant non-zero
intrinsic Gaussian curvature K0.

Proof. If Σ has no boundary, then by Theorem 1.1 we have∫
Σ
K0 dH3

cc = 0,

and therefore K0 cannot have a sign.
The same holds for boundary components given by horizontal curves because the intrinsic signed

curvature k0,s
γ,Σ of a horizontal curve γ is 0. �

Remark 6.9. At the moment we do not know any example of a regular surface with intrinsic
Gaussian curvature K0 constantly equal to zero. On the other hand, if we remove the requirement
of Σ being compact, all vertically ruled (smooth) surfaces have K0 = 0 at every point.

The following examples show that the assumption made in Theorem 1.1 about the 1-dimensional
Euclidean Hausdorff measure of the characteristic set C(Σ) is sharp.

Example 6.10. Let Σ = {(x1, x2, x3) ∈ H : u(x1, x2, x3) = 0}, with

(6.9) u(x1, x2, x3) =


x3 −

x1x2

2
+ x2 exp((x1 + 1)−2), x1 < 1, x2, x3 ∈ R,

x3 −
x1x2

2
, x1 ∈ [−1, 1], x2, x3 ∈ R,

x3 −
x1x2

2
+ x2 exp((x1 − 1)−2), x1 > 1, x2, x3 ∈ R.

We have that
C(Σ) = {(x1, 0, 0) : x1 ∈ [−1, 1]}.

The idea now is to consider the projection of C(Σ) and to surround it with a curve in R2. Then,
we will lift it to the surface Σ, exploiting that Σ is given by a graph. For δ > 0, define

γ(θ) :=
5⋃
i=1

γi(θ), θ ∈ [0, 2π],

where

γ1(θ) :=

(
1 + δ cos

(
π

2 tan(δ)
θ

)
, δ sin

(
π

2 tan(δ)
θ

))
, θ ∈ [0, tan(δ)),

γ2(θ) :=

(
− 2

π − 2 tan(δ)
θ +

π

π − 2 tan(δ)
, δ

)
, θ ∈ [tan(δ), π − tan(δ)),
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γ3(θ) := (−1 + δ cos (α(θ)) , δ sin (α(θ))) , θ ∈ [π − tan(δ), π + tan(δ)),

γ4(θ) := (t(θ),−δ) , θ ∈ [π + tan(δ), 2π − tan(δ)),

γ5(θ) := (1 + δ cos (β(θ)) , δ sin (β(θ))) , θ ∈ [2π − tan(δ), 2π),

with

α(θ) :=
π

2 tan(δ)
θ + π − π2

2 tan(δ)
,

t(θ) :=
2

π − 2 tan(δ)
θ − 3π

π − 2 tan(δ)
,

β(θ) :=
π

π − 2 tan(δ)
θ + 2π

(
1− π

2 tan(δ)

)
.

Now we need to control the integral of the signed curvature. It will be made of five pieces. Three
of them (namely for i = 1, 3, 5), will behave exactly like when we deal with isolated characteristic
points, because the velocity of those parts goes to 0 as δ → 0. It remains to check the other two
integrals. We can re-parametrize those two parts as follows:

γ2(s) = (−s, δ), and γ4(s) = (s,−δ), s ∈ [−1, 1].

Because of the results concerning the signed curvature, it does not matter what happens to the
third component. In this situation, we get that

γ̇2(s) = (−1, 0), and γ̇4(s) = (1, 0), s ∈ [−1, 1],

and

p̄(x1, x2, x3) = − x2

|x2|
, q̄(x1, x2, x3) = 0.

Therefore p̄|γ2 = 1 and p̄|γ4 = −1. Then∫ 1

−1
p̄|γ2(γ̇2)1 ds+

∫ 1

−1
p̄|γ4(γ̇4)1 ds = −2.

Example 6.11. Let Σ = {(x1, x2, x3) ∈ H : x3 = x1 x2
2 }. The projection of the characteristic set

Π(C(Σ)) is the 1-dimensional line {x2 = 0}. Consider the curve

γ(t) =

(
cos(t), sin(t),

sin(2t)

4

)
, t ∈ [0, 2π],

which lives on the surface Σ as boundary component of a new surface Σ̃ which is now bounded.
Simple computations show that in this case

K0 = 0, k0,s

γ,Σ̃
=

1

| sin(t)|
, ω(γ̇) =

cos(2t)

2
− 1

2
.

Therefore, ∫
Σ̃
K0 dH3

cc +

∫
γ
k0,s

γ,Σ̃
dγ̇ = 4,

in contrast with the statement of Theorem 1.1.

We end this section with an explicit example.
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Example 6.12 (Korányi sphere). Consider the Korányi sphere SH,

SH := {(x1, x2, x3) ∈ H : (x2
1 + x2

2)2 + 16x2
3 − 1 = 0}.

A parametrization of SH is

f(ϕ, θ) :=

(√
cos(ϕ) cos(θ),

√
cos(ϕ) sin(θ),

sin(ϕ)

4

)
, ϕ ∈

(
−π

2
,
π

2

)
, θ ∈ [0, 2π).

In particular, recalling the definition (6.2) of M and after some computations, we get that

‖M(fϕ × fθ)‖R2 =

√
cos(ϕ)

4
.

A direct computation shows that the intrinsic Gaussian curvature of SH is given by

(6.10) K0 = − 2

x2
1 + x2

2

+ 6(x2
1 + x2

2) = − 2

cos(ϕ)
+ 6 cos(ϕ),

which is locally summable around the isolated characteristic points with respect to the the Heisenberg
perimeter measure.

Thus, by a special instance of Theorem 1.1

(6.11)

∫
SH
K0 dH3

cc = 0.

Equation 6.11 can also be verified directly using (6.10).

Further examples can be found in the appendix.

7. Application: a simplified Steiner’s formula

The main application of the Gauss–Bonnet Theorem concerns a simplification to the Steiner’s
formula recently proved in [5] concerning cc neighborhoods of surfaces without characteristic points.

Let us first recall some notation and background from [5].
Let Ω ⊂ H be an open, bounded and regular domain with smooth boundary ∂Ω. Let δcc be the

signed cc-distance function from ∂Ω. The ε-neighborhood Ωε of Ω with respect to the cc-metric is
given by

(7.1) Ωε := Ω ∪ {g ∈ H : 0 ≤ δcc(g) < ε} .
Remark 7.1. In this section, we make no use of the Riemannian approximation scheme. We therefore
proceed to reuse the variable ε in its traditional role as a small distance parameter, as in (7.1).

We define the iterated divergences of δcc as follows:

divH
(i)(δcc) =

{
1, i = 0

divH(divH
(i−1) δcc· ∇Hδcc), i ≥ 1

Finally we put

A := ∆Hδcc, B := −(X3δcc)
2, C := (X1δcc)(X32δcc)− (X2δcc)(X31δcc),

D := X33δcc, E := (X31δcc)
2 + (X32δcc)

2.
(7.2)

In order to make the paper self-contained, we recall a technical result from [5]. Define the
operator g acting on smooth real valued functions as

g(α) := 〈∇Hα,∇Hδ〉.
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For a real-valued function h we have

(7.3) divH(h∇Hδcc) = h∆Hδcc + 〈∇Hh,∇Hδcc〉 = hA+ g(h).

Note that g is linear and satisfies the Leibniz rule, i.e.

g(α+ β) = g(α) + g(β),

g(αβ) = g(α)β + αg(β).

The following lemma holds (see [5], Lemma 4.2). The proof involves a number of lengthy calcu-
lations using higher derivatives of the cc distance function.

Lemma 7.2. The following relations hold:

g(1) = 0,(7.4)

g(A) = B + 2C −A2,(7.5)

g(B) = 0,(7.6)

g(C) = D −AC,(7.7)

g(D) = −E,(7.8)

g(E) = −2AE + 2CD.(7.9)

We now state the main result of this section, which gives a simplification to the main theorem
of [5] (a Steiner’s formula for the cc distance function).

Theorem 7.3. Let Ω ⊂ H be an open, bounded and regular domain whose boundary ∂Ω is a

Euclidean C2-smooth compact and oriented surface with no characteristic points. For sufficiently
small ε > 0 define the ε-neighborhood Ωε of Ω with respect to the cc-metric as in (7.1). Then

L3(Ωε) = L3(Ω) + εH3
cc(∂Ω) +

ε2

2

∫
∂Ω
AdH3

cc +
ε3

3!

∫
∂Ω
C dH3

cc+

+∞∑
j=1

(∫
∂Ω

(Bj−1D) dH3
cc

)
ε2j+2

(2j + 2)!
+

+∞∑
j=1

(∫
∂Ω

(Bj−1(AD − E)) dH3
cc

)
ε2j+3

(2j + 3)!
,

where A, B, C, D and E are given as in (7.2).

Proof. Let us write ∂fΩε := {g ∈ H : δcc(g) = ε}. The evolution of the non-characteristic set

∂Ω can be explicitly described if we know the defining function of ∂Ω, see [3]. In our situation,

we can assume that ∂Ω = {g ∈ H : δcc(g) = 0}. In particular, the results from [3] tell us

that there exists a map N : [0, ε] × ∂Ω → R3, such that N (·, g) : [0, ε] → R3 is continuous,

N (ε, ·) → ∂fΩε is smooth and N (0, g) = id|∂Ω(g). We claim that there exists a continuous map

a(ε, g) := angle(TN (ε,g)∂fΩε;HN (ε,g)). Since ∂Ω has no characteristic points, a(0, g) > 0 for every

g ∈ ∂Ω. The continuity of a(·, ·) implies that there exists ε0, 0 < ε0 < ε, so that a(s, g) > 0 for

every g ∈ ∂Ω and for every s ∈ (0, ε0). In particular this shows that we can choose a sufficiently
small ε > 0 so that ∂fΩε is still a non-characteristic set.

We will use the following proposition from [5] (see Proposition 3.3) which can be proved with
the help of the sub-Riemannian divergence formula.
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Proposition 7.4. Let h : Ωε → R be a C1 function. Then the vector field h∇Hδcc : Ωε → R3

satisfies ∫
{s<δcc<t}

divH(h∇Hδcc) dL3 =

∫
δ−1
cc (t)

h dH3
cc −

∫
δ−1
cc (s)

h dH3
cc.

We are interested in a Taylor series expansion of the function

ε 7→ L3(Ωε),

about ε = 0. The analyticity of this function has been already proved in [5], therefore let us denote

by f (i)(ε) the ith derivative of ε 7→ L3(Ωε). The first three elements of the expansion are obtained

as in [5]. For the other terms, we need to recall that by Theorem 3.4 of [5], for every i ≥ 0,

(7.10) f (i)(s) =

∫
δ−1
cc (s)

(divH
(i−1) δcc) dH3

cc, for every s ∈ [0, ε0).

In particular, for i = 3, divH
(2) δcc = B+2C and the expression B+C coincides with the horizontal

Gaussian curvature K0. Therefore we can apply the Gauss–Bonnet Theorem 1.1 to obtain

f (3)(s) =

∫
δ−1
cc (s)

C dH3
cc

and hence

f (3)(0) =

∫
∂Ω
C dH3

cc.

We now claim that

(7.11) f (2j+2)(s) =

∫
δ−1
cc (s)

(Bj−1D) dH3
cc for j ≥ 1

and

(7.12) f (2j+3)(s) =

∫
δ−1
cc (s)

(Bj−1(AD − E)) dH3
cc for j ≥ 1,

from which the indicated values of the coefficients in the series expansion of ε 7→ L3(Ωε) are obtained
by setting s = 0.

The formulas in (7.11) and (7.12) can be obtained inductively by evaluating difference quotient
approximations to the indicated derivatives using the inductive hypothesis and the divergence
formula in Proposition 7.4. First,

f (4)(s) = lim
ε→0

1
ε

(
f (3)(s+ ε)− f (3)(s)

)
= lim

ε→0

1
ε

(∫
δ−1
cc (s+ε)

C dH3
cc −

∫
δ−1
cc (s)

C dH3
cc

)

= lim
ε→0

1
ε

∫
{s<δcc<s+ε}

divH(C∇Hδcc) dL3 =

∫
δ−1
cc (s)

divH(C∇Hδcc) dH3
cc.

By (7.3) and Lemma 7.2, divH(C∇Hδcc) = CA+ g(C) = AC + (D−AC) = D and so (7.11) holds
in the case j = 1.
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Similarly, for j ≥ 2,

f (2j+2)(s) = lim
ε→0

1
ε

(
f (2j+1)(s+ ε)− f (2j+1)(s)

)
= lim

ε→0

1
ε

(∫
δ−1
cc (s+ε)

(Bj−2(AD − E)) dH3
cc −

∫
δ−1
cc (s)

(Bj−2(AD − E)) dH3
cc

)

= lim
ε→0

1
ε

∫
{s<δcc<s+ε}

divH(Bj−2(AD − E)∇Hδcc) dL3

=

∫
δ−1
cc (s)

divH(Bj−2(AD − E)∇Hδcc) dH3
cc.

By (7.3) and Lemma 7.2,

divH(Bj−2(AD − E)∇Hδcc) = Bj−2(AD − E)A+ g(Bj−2(AD − E))

= Bj−2(A2D −AE) +Bj−2(Ag(D) +Dg(A)− g(E))

= Bj−2(A2D −AE −AE +BD + 2CD −A2D + 2AE − 2CD)

= Bj−1D

and so (7.11) holds in the case j ≥ 2.

A similar computation establishes (7.12) for all j ≥ 1. This completes the proof. �

8. Questions and remarks

As is clear from the proof of the Gauss–Bonnet theorem, it is of crucial interest to prove local
summability of the intrinsic Gaussian curvature K0 around isolated characteristic points, with
respect to the Heisenberg perimeter measure. For the horizontal mean curvature H0 of Σ this is
an established result, see [22]. In the same work [22], it is showed that the situation could change
dramatically if we address the problem of local integrability of H0 with respect to the Riemannian
surface measure, near the characteristic set. In this case, it is conjectured that we should have
locally integrability if we are close to an isolated characteristic point of Σ, and a counterexample
in the case in which the characteristic set char(Σ) is 1-dimensional is presented.

Question 8.1. Is the intrinsic Gaussian curvatureK0 locally summable with respect to the Heisenberg
perimeter measure, near the characteristic set?

Recalling (5.5), it is clear that the local summability of K0 is closely related to the integrability
of H0 near isolated characteristic points with respect to the Riemannian surface measure. As far
as we know, the best results in this direction are those of [22], which provide a class of examples

where we have local integrability. In the same spirit of [22], we have the following result.

Proposition 8.2. Let Σ ⊂ H be a Euclidean C2-smooth surface. Suppose Σ has cylindrical sym-

metry near an isolated characteristic point g, then K0 ∈ L1(Σ, dH3
cc).

Proof. Without loss of generality we can assume that the isolated characteristic point is the origin
0 = (0, 0, 0), and that locally around 0 the surface Σ is given by the 0-level set of the function

u(x1, x2, x3) := x3 − f
(
x2

1 + x2
2

4

)
,
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where f ∈ C2. For simplicity, let us denote by f(r) := f
(
x21+x22

4

)
. Then,

X3u = 1, X1u = −1
2(x2 + x1f

′(r)) and X2u = 1
2(x1 − x2f

′(r)),

therefore ‖∇Hu‖H = 1
2

√
x2

1 + x2
2

√
1 + (f ′(r))2. In order to compute the intrinsic Gaussian curva-

ture K0 we need

X1

(
1

‖∇Hu‖H

)
= 2∂x1

(
(x2

1 + x2
2)−

1
2 (1 + (f ′)2)−

1
2

)
= −2x1(1 + (f ′)2) + f ′ f ′′ x1(x2

1 + x2
2)

(x2
1 + x2

2)3/2(1 + (f ′)2)3/2
,

and

X2

(
1

‖∇Hu‖H

)
= 2∂x2

(
(x2

1 + x2
2)−

1
2 (1 + (f ′)2)−

1
2

)
= −2x2(1 + (f ′)2) + f ′ f ′′ x2(x2

1 + x2
2)

(x2
1 + x2

2)3/2(1 + (f ′)2)3/2
.

After some simplifications we get

(8.1) K0 = − 2

(x2
1 + x2

2)(1 + (f ′)2)
+

f ′ f ′′

(1 + (f ′)2)2
,

which is summable. �

A generalization of (8.1) appears in Example A.5.

It is obvious that the local summability of ‖∇Hu‖−1
H implies the local summability of the intrinsic

Gaussian curvature K0, but it is not necessary, as showed by the following example.

Example 8.3. Let Σ = {(x1, x2, x3) ∈ H : u(x1, x2, x3) = 0}, for

u(x1, x2, x3) = x3 −
x1 x2

2
− exp

(
−(x2

1 + x2
2)−2

)
.

The origin 0 = (0, 0, 0) is an isolated characteristic point of Σ, indeed

X1u = −x2 −
4x1 exp

(
−(x2

1 + x2
2)−2

)
(x2

1 + x2
2)3

, and X2u = −
4x2 exp

(
−(x2

1 + x2
2)−2

)
(x2

1 + x2
2)3

.

Switching to polar coordinates x = r cos(θ), y = r sin(θ), we have

‖∇Hu‖2H = r2 sin2(θ) +
16 exp(−2r−4)

r10
+

4r2 sin(2θ) exp(−r−4)

r6
≤ r2 sin2(θ) + exp(−r−4).

Therefore we are interested in the summability of the following integral

(8.2)

∫ ε

0

∫ 2π

0

r√
r2 sin2(θ) + exp(−r−4)

dθ dr.
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Now, setting g(r) := r−1 exp(−r−2), we have∫ ε

0

∫ 2π

0

r√
r2 sin2(θ) + exp(−r−4)

dθ dr &
∫ ε

0

∫ 2π

0

1

| sin(θ)|+ g(r)
dθ dr

≥
∫ ε

0

(∫ δ

0

1

| sin(θ)|+ g(r)
dθ

)
dr

≈
∫ ε

0

(∫ δ

0

1

θ + g(r)
dθ

)
dr

=

∫ ε

0
log

(
1 +

δ

g(r)

)
dr,

which is divergent.
Unfortunately this does not provide an example of a surface with isolated characteristic points

whose intrinsic Gaussian curvature K0 is not locally integrable with respect to the Heisenberg
perimeter measure. Indeed, after quite long computations, one can prove that in this case the
intrinsic Gaussian curvature K0 is actually locally integrable.

Our second question relates to the possible connection existing between the intrinsic Gaussian
curvature K0 and one of the integrands appearing in the localized Steiner’s formula proved in [5].

In particular, if we consider a Euclidean C2-smooth and regular surface Σ ⊂ H a defining function
u such that ‖∇Hu‖H = 1, then we have that

K0 = B + C,

where B and C are defined as in Section 7.

Question 8.4. Is there any explanation for the discrepancy between the horizontal Gaussian curva-
ture K0 and the fourth integrand appearing in the Steiner’s formula proved in [5]?

We want to mention that the expression we got for the intrinsic Gaussian curvature K0 appears
also in the paper [20] in the study of stability properties of minimal surfaces in H, and also in the

upcoming manuscript [17].
We end this paper with a Fenchel-type theorem for fully horizontal curves.

Theorem 8.5. Let γ : [a, b] → H be a Euclidean C2-smooth, regular, closed and fully horizontal
curve. Then

(8.3)

∫
γ
k0
γ dγ̇H > 2π,

where dγ̇H is the standard Heisenberg length measure of Definition 2.2.

Proof. Define the projected curve

γ̃(t) := Π(γ)(t) = (γ1(t), γ2(t), 0){e1,e2,e3}.

Then γ̃ is a planar Euclidean C2-smooth, regular and closed curve whose curvature k coincides

precisely with the intrinsic curvature k0
γ of γ. Due to the fact that the curve is horizontal,∫
γ
k0
γ dγ̇H =

∫
γ̃
k dγ̇R2 ,

where dγ̇R2 denotes the standard Euclidean length measure in R2.
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The classical Fenchel Theorem (see [24], Chapter 5.7) assures that∫
γ̃
k dγ̇R2 ≥ 2π,

and states that equality is achieved if and only if the curve γ̃ is convex. It is a well known fact
concerning horizontal curves that the projection of a closed fully horizontal curve γ has enclosed
oriented area equal to 0. Therefore its projection γ̃ cannot be a convex curve, and the inequality
has to be strict. This completes the proof. �

Appendix A. Examples

We want to collect here a list of explicit examples where we compute the intrinsic Gaussian
curvature explicitly.

Example A.1. Any vertically ruled surface Euclidean C2-smooth surface Σ has vanishing intrinsic
Gaussian curvature, i.e. if

Σ = {(x1, x2, x3) ∈ H : f(x1, x2) = 0},

for f ∈ C2(R2), then K0 = 0. In particular, every vertical plane has constant intrinsic Gaussian
curvature K0 = 0.

Example A.2. The horizontal plane through the origin, Σ = {(x1, x2, x3) ∈ H : x3 = 0}, has

K0 = − 2

(x2
1 + x2

2)
.

Example A.3. The Korányi sphere, Σ = {(x1, x2, x3) ∈ H : (x2
1 + x2

2)2 + 16x2
3 − 1 = 0}, has

K0 = − 2

(x2
1 + x2

2)
+ 6(x2

1 + x2
2).

Example A.4. Let α > 0. The paraboloid, Σ = {(x1, x2, x3) ∈ H : x3 = α(x2
1 + x2

2)}, has

K0 = − 1

1 + 16α2

2

(x2
1 + x2

2)
.

Example A.5. Every surface Σ given as a x3-graph, Σ = {(x1, x2, x3) ∈ H : x3 = f(x1, x2)}, with

f ∈ C2(R2), has

K0 = − 2

‖∇Hu‖2H
+

1

‖∇Hu‖4H
(Hessf) (∇Hu, J∇Hu) ,

where u(x1, x2, x3) := x3 − f(x1, x2).

For x3-graphs, we have another useful result that provides a sufficient condition for the intrinsic
Gaussian curvature K0 to vanish.

Lemma A.6. Let Σ ⊂ H be as before. Let g ∈ Σ and suppose that Σ is a Euclidean C2-smooth
x3-graph and X1u and X2u are linearly dependent in a neighborhood of g. Then K0(g) = 0.

Proof. In the case of a x3-graph, X3u = 1 and we have

K0 = − 1

|∇0u|2
+
X2uX1(1

2 |∇0u|2)−X1uX2(1
2 |∇0u|2)

|∇0u|4
.



INTRINSIC CURVATURE AND A GAUSS–BONNET THEOREM IN THE HEISENBERG GROUP 36

Assume that aX1u+ bX2u = in a neighborhood of g. Let us suppose that b 6= 0; the case a 6= 0 is
similar. Without loss of generality, assume that b = 1. We expand
(A.1)

K0 =
−(X1u)2 − (X2u)2 +X1uX2uX1X1u+ (X2u)2X1X2u− (X1u)2X2X1u−X1uX2uX2X2u

|∇0u|4

and use the identities X2u = aX1u,

X1X2u = aX1X1u,

X2X1u = X1X2u−X3u = aX1X1u− 1

and

X2X2u = aX2X1u = a− a2X1X1u

to rewrite the numerator of (A.1) entirely in terms of X1u and X1X1u. A straightforward compu-
tation shows that the expression for K0 vanishes. The case when a 6= 0 is similar. �

Example A.7. Every surface Σ given as a x1-graph, Σ = {(x1, x2, x3) ∈ H : x1 = f(x2, x3)} with

f ∈ C2(R2), has

K0 = − f2
3

‖∇Hu‖2H
+

(x2
1 − x2

2)f33

8 ‖∇Hu‖4H

(
x1 f3 +

x1x2 f
2
3

2

)
−
f23(1 + x2

2 f3)

‖∇Hu‖2H
+

1

‖∇Hu‖4H

(
x2

1 f
3
3

8
+

(1 + x2
2 f3)

2
f3

)
,

where u(x1, x2, x3) := x1 − f(x2, x3). A similar result holds for x2-graphs.
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