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In a causal world the direction of the time arrow dictates how past causal events in a variable X produce
future effects in Y . X is said to cause an effect in Y , if the predictability (uncertainty) about the future
states of Y increases (decreases) as its own past and the past of X are taken into consideration. Causality
is thus intrinsic dependent on the observation of the past events of both variables involved, to the prediction
(or uncertainty reduction) of future event of the other variable. We will show that this temporal notion of
causality leads to another natural spatio-temporal definition for it, and that can be exploited to detect the
arrow of influence from X to Y , either by considering shorter time-series of X and longer time-series of Y (an
approach that explores the time nature of causality) or lower precision measured time-series in X and higher
precision measured time-series in Y (an approach that explores the spatial nature of causality). Causality
has thus space and time signatures, causing a break of symmetry in the topology of the probabilistic space,
or causing a break of symmetry in the length of the measured time-series, a consequence of the fact that
information flows from X to Y .

INTRODUCTION

In a causal world the direction of the time ar-
row dictates how past causal events produce fu-
ture effects. The determination of the direction
and the intensity of the arrow of influence, causal-
ity, is one of the first questions one tries to an-
swer in order to model a system. In ecology, it is
fundamental to understand whether zooplankton
concentration drives fish population. In meteo-
rology, one wishes to determine whether and how
surface sea temperature affects atmospheric tem-
perature in different parts of the globe, or how
green house gases drive global temperature. In
finance, tax and expenditure correlates with sav-
ing and growth. In geology, one wants to access
the direction of the flows of underground water
from some measurements of water reservoir lev-
els. In urbanism, one wants to understand how
electricity consumption drives (or is driven by)
urbanism or how building environment leads to
obesity. Given the relevance of the topic, several
methods have been developed in the last decades
to study causality. Among then, there are the ap-
proaches that access causality based on informa-
tional quantities. They are sustained by the fun-
damental idea that if X causes an effect in Y , then
uncertainty about future states of Y is reduced
by considering the past of Y and the past of X,
a hypothesis that implicitly adopts the Granger
causal idea that observations in the past of both
X (causing system) and Y (where the effect is pro-
duced) can be used to predict the future state of
Y . This work aims at unifying the Granger defi-
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nition of causality defined in terms of predictabil-
ity with those based on information quantities by
studying the spatio-temporal dynamics of causal-
ity. We will show that if a system X causes an
effect in a system Y , then not only causal informa-
tion from X to Y is positive, but also longer-time
or higher-resolution observations in Y can be used
to predict the past states of the system X, an ob-
servation that will lead us to propose a new infor-
mational theoretic quantity that we name Causal
Mutual Information (CaMI), and that can assist
us in easily quantifying the direction of the flow of
information. This work will show that causality
has space and time signatures, and each signature
can be advantageously exploited to study the di-
rection of influence in different systems. More-
over, we will show that our quantity allows for a
simple, experimental appealing and less computa-
tional demanding approach, but rigorous, quan-
tification of causality.

The determination that a past event in a system has
caused a present effect on another system provides a
straight measurement of the direction of influence in
these systems. Causal relationships between two events
happening in two different systems X and Y can be es-
tablished by verifying whether past events in X and Y
influence future events in Y . Such understanding is fun-
damental to characterise, model, and predict behaviour
in natural, social, and technological systems. The study
of the cause-effect relationships is defined as causality.
Causality is a concept that envolves the temporal rela-
tionship among past, present and future events of vari-
ables. Our studies show however that the temporal na-
ture of causality from X to Y can not only be redefined
in terms of the reduction of uncertainty from the variable
X solely based on observations in the past, present and
future, of Y (a property that can be understood from
the way Transfer Entropy (TE)1 is defined, and also in-



2

tuitively derived from Granger causality defined by the
way past dynamical states directly and linearly influences
dynamical future states), but also that causality can be
defined in terms of the topological feature of the proba-
bilistic space. In a deterministic system, two temporally
related events defined by two particular states of the sys-
tem are also intrinsically related in space. This space-
time ergodic duality in a deterministic system indicates
that time-causality should lead to space-causality, a prop-
erty that we will explore in this work to create novel ways
to quantify causality. If there is a direct flow of informa-
tion from X to Y , this is physically interpreted as to that
the uncertainty about past of X is reduced by observa-
tions of future states of Y . This physical interpretation
of causal information, and that is the core behind the
definition of Granger causality, can be demonstrated by
analysing the topology of the probabilistic space - explor-
ing the spatio character of causality, without the need to
construct a model of the observed data, as it would be
the usual procedure from the Granger approach.

When a perturbation affects a system, its influence is
transmitted from the perturbation’s source to the other
variables of the system. The path the perturbation
takes to propagate within the system can be predicted
analysing the causality of events in the system. A smart
way to study causality is through a controlled experi-
ment where perturbations can be designed to extract the
causal structure of the system. However, the desired ex-
periment could be too expensive, technically impossible
to perform, or too invasive. Therefore, it is important to
develop methods to identify the causal structure of a sys-
tem only from observational data, without employing any
perturbative technique. The identification of the causing
and affected systems from observational data has been
of great interest for many scientists. Consequently, and
also because the identification of causality is fundamen-
tal to the effective observation, modelling, and control-
ling of any complex system, several techniques to infer
and quantify causality have been recently proposed1–11.

Granger5,12,13 considered that if a variable x(t) causes
an effect in y(t), then predictions of y(t) are improved
by considering its own past complemented by the past
of x(t). Based on this assumption, he constructed sta-
tistical tests to validate this hypothesis. To adopt this
hypothesis to study causality from data by construct-
ing linear models, Granger causality introduce measures
mostly used in correlation based approaches (directed
partial coherence)14, Directed Coherence15, Partial Di-
rect Coherence16, direct Directed Transfer Function17,
which are capable of identifying interactions in linear
systems, but are not suitable to detect causality among
subsystems composing a non-linear system8. Due to this,
methods based on Granger causality appropriated to de-
tect causality in nonlinear system were developed9,10.
Granger causality can also be adopted by informational
theoretical quantities, of special interest to us, such as
the TE, Directed Information Theory14,18, Conditional
Mutual Information6, Partial Transfer Entropy19, and

Mutual Information from Mixed Embeddings (MIME)20,
which explore the intuitive notion that if systemX causes
an effect in system Y then, as specifically defined by
transfer entropy, the amount of uncertainty in future val-
ues of Y is reduced by knowing the past values of X given
past values of Y.

In this work, along the lines of the work in Ref.14,
we intend to unify the concept of causality based on the
predictability of dynamical states introduced by Granger
with the concept of causality defined in terms of transfer
entropy, by considering the spatio-temporal character of
causality. We will also introduce an unnoticed informa-
tional quantity that fully explores the space-time prop-
erties of causality, and that we call Causal Mutual Infor-
mation (CaMI). CaMIX→Y measures the total amount
of information being transmitted from X to Y , includ-
ing both the information shared between both variables
and that can be used to predict the present state of X
by observations in Y (i.e., Mutual Information), and the
causal information transmitted from X to Y and that can
be used to predict the past states of X by observations of
the past and future states of Y (i.e., Transfer Entropy).

Our proposed definition of causality, quantified by the
quantity CaMI, is based on the physical notion that if X
causes effect in Y , then longer observations of the vari-
able Y (or alternatively higher resolution observations)
than the one considered for X can be used to predict the
past of X. CaMI is calculated only by the probabilities
of joint events, without the need of conditional events.
This allows one to do a reduction in the dimensional-
ity of the probability space used to quantify causality,
resulting in a method that demands low computational
power, and therefore allows for a quick assessment of
causality. To illustrate why this is of any interest, notice
that when calculating TE one needs to calculate condi-
tional probabilities. However, conditional probabilities
require the calculation of joint probabilities. CaMI only
considers joint probabilities, sparing one from the need
to further calculate conditional probabilities, but never-
theless a quantity that trivially provides the directional-
ity index, the net transfer entropy between two systems.
Thus, permitting the study of causality with less compu-
tational resources. Then, we show that the topology of
the probabilistic space of joint probabilities determined
by the shapes and forms of the partitions being gener-
ated by a dynamical process can also be used to not only
visualize the spatio-temporal character of causality but
also quantify causality, through the here defined CaMI.
The emergence of the spatio-temporal nature of causal-
ity can be cumbersome or impossible to obtain with the
usual higher-dimensional space of conditional probabili-
ties, from which TE is calculated. A direct application of
the topological properties of the joint probabilistic space
is that from it is possible to state not only about the
direction of information between the measured variables,
but also to determine regions, the here called causal bub-
bles, that define ranges for the variables that are respon-
sible for most of the information transmitted between two
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systems. The topology of this space can also be used to
demonstrate that if there is a flow of information from
the variable X to Y , then it is also true that observa-
tions in Y allows for an accurate prediction of location
of the past dynamical states of variable X. As we shall
see, there are preferential places and preferential times to
measure the information being transmitted. Another ad-
vantage of our approach is that our detection of causality
is oriented to treat experimental systems, since our prob-
abilistic space is based on partitions, which can be con-
structed based on the available experimental resolution of
the data, or on the sampling rate of the measurements, al-
lowing one to work with longer or short time-series. The
usual causal analysis based on the value of TE calculated
over equal-sized cells or from probabilities estimated by
kernels would only provide a scalar number, with no in-
formation about the dynamics behind the process or the
topology of the probabilistic space.

I. COUPLED MAPS

For this study of causality, we consider discrete coupled
maps, whose connected nodes are described by:

xin+1 = f(xin, r)(1− α) +
α

ki

M∑
j=1

Aijf(xjn, r), (1)

where xin is the trajectory of map i, n is the time index
of the variable of the dynamics, α ∈ [0, 1] is the coupling
parameter, Aij is the adjacency matrix (with entries of 1
or 0 depending on the existence of a connection between
two nodes or not, respectively), r is the fixed parameter
of each map, ki is the degree of node i (ki =

∑
(Aij)

and f(xn, r) is the map governing the dynamics that can
be described by the Logistic map f1(xn, r) = rxn(1 −
xn) 21. A disconnected node (ki = 0) is described by
xin+1 = f(xin, r). We assume there are Nd maps forming
the network.

Giving two variables X and Y, we are interested in
determining the direction of influence that one variable
imposes over the other one. If X influences Y, we repre-
sent this interaction by X → Y .

II. PARTITIONS, STATE AND PROBABILISTIC
SPACE, AND SYMBOLIC TRAJECTORIES

In what follows, we consider that marginal observa-
tions are being made in the relevant variables, defining
events in one variable by the falling of a trajectory point
within an interval. This interval represents the resolu-
tion of the observer. These marginal observations and
their probabilities, will be used to calculate the probabil-
ities to quantify causality. For simplicity in our analysis,
we encode these partitions into symbols, and treat the
trajectories as symbolic trajectories.

A. Order-m Partitions, symbolic representation, and
dynamics on it

Consider two discrete scalar time-series X =
{x0, x1, x2, · · · , xn−1} and Y = {y0, y1, y2, · · · , yn−1}
with n elements, and Φ = {X,Y} defines a pair of vari-
ables taken from two subsystem in a complex network or
coupled system. Therefore, a point in a 2-dimensional
state space ΩXY with coordinates [X ×Y] representing
the states of the subsystems Φ at time t has coordinates
{xt, yt}.

We define a marginal partition of order-m of the co-
ordinate X as CX(m), defined by the boundary curves
LX(m) = {lX1 (m), · · · , lXr (m)}, which in this work are
assumed to be straight lines, orthogonal to the direction
ofX. Then, this partition is composed by columns cXi (m)
where each one is separated from any other by one and
only one curve lXi (m) ∈ LX(m). Similarly, for the co-
ordinate Y we can define a marginal partition CY (m),
formed by rows cYi (m), enclosed by the set of boundary
curves LY (m) = {lY1 (m), · · · , lYr (m)}, which in this work
are assumed to be straight lines, orthogonal to the di-
rection of Y . Since we have a 2D time-series, we can
construct a space partition CXY (m) as a splitting of the
space ΩXY formed by the union of the lines in LX(m)
and LY (m), so

CXY (m) = C(m)X ∪ C(m)Y . (2)

Areas enclosed by the straight lines of CXY (m) form
the cells cXYi (m) of the partition CXY (m) that are en-
coded by the symbols sXYi (m). SXY (m) represents all
the possible symbols encoding cells in the partition of
order-m.

The dynamics of points in this partition are rep-
resented by the transformation Ut: (xi+1, yi+1) =
Ut(xi, yj), and Upt (xt, yt) = (xt+p, yt+p). The symbolic
dynamics of points in this partition are regulated by the
transformation T , a surjective mapping of the states of
variables in ΩXY to a specific symbol in SXY (m). T pro-
vides a symbolic sequence Φ in the partition CXY (m).
From Eq. (1), T is the transformation that maps points
from ΩXY into itself, a 2D projection of the whole Nd-
dimensional network.

Given the partition CXY (m), we define a transition
matrix Π(m) where the element Π(m)ij = 1 if the cell
cXYi (m) is the pre-image of the cell cXYj (m) (i.e., there

is a dynamical evolution from cell cXYi to cell cXYj ).
We define a transition matrix of order-m (Π℘(m)) as:

Π℘ij(m) =

{
1 if Fm(ci) ∩ cj 6= ∅
0 Otherwise

(3)

A partition is defined as an order-m if it generates a
transition matrix of order m.

We adopt a partition defined by marginal probabilities
because we want to define informational measures that
quantify the predictability one has to predict the state
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of one variable by measuring only the state of the other
variable, assuming that variables are being measured by a
physical process, i.e., there is a measurement resolution.

B. Probabilistic space and symbolic trajectory

Now, let us define a L time-delay and time-forward co-
ordinate system from which probabilities are calculated.
The time-delay trajectory Φ−L(t) = {X−L(t), Y−L(t)} =
{xt−L, · · · , xt−1, yt−L, · · · , yt−1} represents a short seg-
ment with length L (e.g. L points) of the time-series
Φ(t) taken for a time spam between the integer time
t − L until the time t − 1, the time t representing the
time moment from where past and future are defined.
By applying the transformation T to a segment of length
L of the time-series Φ−L(t), we generate a sequence
of symbols that represent the itinerary followed by
the past length-L trajectory. The trajectory points
Φσ
−L(t) follow an itinerary along the partitions CX(m)

(σ ≡ X), CY (m) (σ ≡ Y ), or CXY (m)(σ ≡ XY ), which
are given by {cσit−L

(m), cσit−L+1
(m), · · · , cσit−1

(m)}.
If σ = XY , then (xt−L, yt−L) ∈ cXYit−L

(m). If

σ = X, then xt−L ∈ cXit−L
(m). The itinerary

Cσ−L(t,m) = {cσit−L
(m), cσit−L+1

(m), · · · , cσit−1
(m)}

is encoded by a symbolic sequence Sσ−L(t,m) =
{sσit−L

(m), sσit−L+1
(m), · · · , sσit−1

(m)}, from which
probabilities can be calculated. Similarly, the
forward-time trajectory Φσ

L(t) = {XL(t), YL(t)}
follows an itinerary (or visits the sequence of cells)
CσL(t,m) = {cσit+1

(m), cσit+2
(m), · · · , cσit+L−1

(m)}
that is encoded by the symbolic sequence
SσL(t,m) = {sσit+1

(m), sσit+2
(m), · · · , sσit+L−1

(m)}.
An (k + m)-order partition Cσ(k + m) is generated

by the k-pre-iteration of the boundary curves compos-
ing the m-order partition Cσ(m). The pre-iteration
is given by the evolution operator U−k. This order-
(k + m) partition is formed by the cells cσi (k + m).
Notice that a cell cXYi (k + m) ∈ CXY (m + k), with
CXY (m + k) ≡ U−k(CXY (m)) in an order-(k + m) par-
tition represents points that follow a particular length-
L = k + m symbolic itinerary (or length-L trajectory)
in the order-1 partition. The probability measure of a
length-L itinerary µ({cσit−L

(1), cσit−L+1
(1), · · · , cσit−1

(1)})
is assumed to be equal to the probability measure of
points in a cell of an order-L partition and given by
µ({cσi (L)}), with xt−L ∈ cσi (L). Many length-L tra-
jectories can follow the same itinerary. The probability
P calculated over the symbolic sequence of a length-L
itinerary along the order-m partition is represented by
P ({sσit−L

(1), sσit−L+1
(1), · · · , sσit−1

(1)}). If the partition
is generating, then this probability is also equal to the
probability of points to belong to a cell si(L) of an or-
der L partition and given by P (si(L)), with i such that
T (X−L) = si(L), where si(L) is a length-L symbolic se-
quence that gives the name of a cell in an order-L parti-
tion.

Thus, there are two ways of calculating probabilities.
One based on the probability of the trajectory itineraries,
which produce the probability measures µ. The other
based on the symbolic itinerary, which produces the prob-
ability measures P . There is however a fundamental dif-
ference between both probabilities. Whereas µ is cal-
culated over a higher (m + k)-order partition with non-
overlapping well defined cells, and therefore, it requires
the use of a generating partition, P refers to the prob-
ability of a symbolic sequence defined by the marginal
lower m-order original partition. It therefore does not
require that the higher-order partition is generating. In
our practical numerical calculations, we adopt the prob-
abilities P to calculate our informational quantities.

We assume in the following that the initial partition is
order-1 (m = 1), therefore, there is only one straight line
in LX(1) and one straight line in LY (1). Each of these
symbolic itineraries along the order-1 original partition
can be encoded by the symbolic name of a cell in an order-
L partition. An event in CXY (1) is defined by trajectory
points falling in cXYi (1) ∈ CXY (1).

C. A generating partition

An order-m+ k partition Cσ(m+ k) is generated from
an order-m Cσ(m) by

Cσ(m+ k) = U−k(Cσ(m)). (4)

The partition Cσ(m) is a ”generating” partition if the
all the cells in Cσ(m + k) are non-overlapping and the
union of the partition boundary curves in an order-(m+1)
partition restores the boundary curves of an order-(m)
partition. The higher order partitions shown in this work
satisfy Eq. (4), however, higher-order cells do overlap.
This overlapping is however minor to the orders treated
here, although will affect the topological properties of the
probabilistic space, this overlapping is not significant to
all the results presented in this work, in particular to the
nominal value of the CaMI quantity. This naturally will
prevent the observed partitions to be generating. Con-
sequently, this would have an impact if one would want
to calculate CaMI for longer time-delays, in terms of the
order-1 partition. Not the case for the present work.

In practice, when dealing with experimental (with
noise) or simulated time-series, as we will proceed in this
work, the boundaries and the cells of higher order-L par-
titions are determined from symbolic sequences of length
L created from an order-1 partition. Initial conditions
generating a symbolic sequences of length L in the X−L
coordinate created from an order-1 partition (a binary
partition) will belong to an order-L marginal partition
along this coordinate. Marginal and joint probabilities
are also estimated from the probabilities of appearances
of symbolic sequences by Eqs. (6) and (8), respectively.
More details on how this is done including the composed
subspace Y−LYL where joint events in the variable Y are
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calculated and where marginal partitions will have an or-
der of 2L can be seen in Sec. III. See also Eq. (12) and
following explanations to understand how to calculate
CaMI from the higher-order partitions, from symbolic
sequences.

D. An example

As an example of how trajectory points visit the
partition with different orders and how this trajec-
tory is symbolic encoded and probabilities are calcu-
lated, we consider a dynamic process along a 1D bi-
nary partition. Assume xt ∈ CX(1). Then, ΦX−L(t) =

{xt−L, xt−L+1, · · · , xt−1} = X−L(t) and ΦXL (t) =
{xt, xt+1, · · · , xt+L−1} = XL(t), and SX−L(t, 1) =

{sXit−L
(1), sXit−L+1

(1), · · · , sXit−1
(1)} and SXL (t, 1) =

{sXit (1), sXit+1
(1), · · · , sXit+L−1

(1)}. Observing a trajectory

composed by {X−L(t), XL(t)} considering the partition
CX(1) allow us to conclude that the trajectory of the
system has visited a sequence of cells described by a se-
quence of symbols {SXY−L (t, 1), SXYL (t, 1)}.

Assuming L = 2, it exists an order-2 partition gener-
ated by U−1(CX(1)) whose cells represent intervals where
points within generate SX−2(t, 1) and SX2 (t, 1). Moreover,
a cell in an order-2 partition is encoded by a symbol that
represents the whole symbolic sequence of length-2 tra-
jectories along the partition CX(1), and therefore there
exist i such that sXi (2) = S−2(t, 1)X and there exist j
such that sXj (2) = S2(t, 1)X . Consequently, P (sXi (2)) =

P (S−2(t, 1)X) and P (sXj (2)) = P (S2(t, 1)X).
In Fig. 1, we can see the relationship between a trajec-

tory of length-4 in an order-1 and an order-2 partitions.
This figure also illustrates how an order-2 partition is
generated from an order-1 partition.

E. Probabilistic spaces and informational quantities

We now define some notations for the probabilities and
informational quantities to simplify the exposition of our
next derivations.

The notations P (XL) or P (YL) represent P (cXL
i (L))

or P (cYL
i (L)). So, P (XL) represents the probabili-

ties of finding points in the cells cXL
i (L) or similarly

P (XL) = P (sXL
i (L)). Therefore, the Shannon’s entropy

of length-L symbolic sequences, represented by H(XL)
or H(X−L), is calculated by

H(XL) = −
∑
i

P (cXL
i (L)) log(P (cXL

i (L))), (5)

So, if the ”generating” property of the partition holds,
entropies of length-L trajectories along an order-1 parti-
tion space can be calculated by the measure of the cells
encoding symbolic sequences of length 1 appearing in

	

FIG. 1. In this diagram a length-4 trajectory is plotted in
the state space and two partitions are shown, one of order-1
defined by the line lX1 (and the borders of the state space)
and another of order-2 defined by the union of lX1 with
U−1(lX1 ). The trajectory along the order-1 partition gen-
erates the symbolic itinerary {SX

−L(1), SX
L (1)} = {st−2 =′

0′, st−1 =′ 1′, st =′ 1′, st+1 =′ 0′} and along the order-2 parti-
tion generates the symbolic itinerary {SX

−L(t, 2), SX
L (t, 2)} =

{st−2(2) =′ 01′, st−1(2) =′ 11′, st(2) =′ 10′, st+1(2) =′ 00′}.
Notice, however, that the first symbol in st(2) =′ 10′ rep-
resents the present location in an order-1 partition and the
second symbol represents the location of the first iteration.
Therefore, the second symbol in st(2) =′ 10′, represents the
same first symbol in st+1(2) =′ 00′

the higher order-L partitions. This approach is specially
oriented for analytical derivations based on the study
of networks of coupled dynamical systems. Otherwise,
when dealing with time-series coming from experiments
or numerical simulations, as it is the case of the present
work, we calculate entropies considering the probabili-
ties of length-L symbolic sequences observed along the
order-1 partition. So,

H(XL) = −
∑
i

P (sXL
i (L)) log(P (sXL

i (L))), (6)

where sXL
i (L) represents a length-L symbolic sequence.

Let us now define a 2-dimensional state space
ΩX−LY−L ≡ [X−L×Y−L] and with a trajectory ΦX−LY−L

on it.

The joint entropy of a composed space H(XL, YL) is
then defined by

H(XL, YL) = −
∑

P (cXLYL
i (L)) log(P (cXLYL

i (L))).

(7)

Assuming that the generating property of the parti-
tions do not hold, then the quantity in Eq. (7) is esti-



6

	

FIG. 2. (a) Visualization of the space ΩX−LY−LYL formed
by the coordinates (X−1, Y−1, Y1) and an order-1 partition
in each subspace formed by pair of coordinates. (b) Visu-
alization of the reduced-dimensional space with coordinates

(X−1,W
Y−1Y1

2 ) and its asymmetric partition. Along X−1 an

order-1 partition is considered. Along W
Y−1Y1

2 an order-2
partition is considered.

mated by

H(XL, YL) = −
∑
i

P (sXLYL
i (L)) log(P (sXLYL

i (L))).

(8)
By P (XL, YL), we represent the probability of a joint

event calculated by P (c
XL(L)YL(L)
i ), and by P (XL|YL),

we represent a conditional probability event representing

the probability density of a point falling in the row c
YL(L)
i

and then being iterated to the column c
XL(L)
i .

Extended 3-dimensional spaces can be constructed
by the composition of ΩX−LY−L with the 1-dimensional
space representing the present of variable Y observed in
an order-L partition, or a space constructed from the
time-forward trajectory that visits an itinerary of length-
L in an order-1 partition. We represent this space by
(ΩYL) or X (ΩXL). Notice that a point belonging to

a partition in cYL
i (L) will produce an length-L itinerary

along the order-1 partition.
We are interested in the spaces ΩX−LY−LYL

or ΩY−LX−LXL composed by the variables
{X−L(t), Y−L(t), YL(t)} or {Y−L(t), X−L(t), XL(t)}.
It will be of further interest the spaces ΩY−LYL and
ΩX−LXL

Figure 2(a) shows the space ΩX−LY−LYL formed by the
time-delay coordinates X−L, Y−L and time-forward co-
ordinate YL, with L = 1, and an order-1 partition in all
subspaces defining our probabilistic space. The order-1
partition for the 2D space formed by (Y−1 × Y1) shows
the symbolic names of columns, rows and the composed
cells.

Notice that the 2D space {Y−1, Y1} with an order-1
partition, where probabilities are calculated (Fig. 2(a)),

can be reduced to a 1D space W
Y1Y−1

2 with an order-
2 partition (Fig. 2(b)). A partition cell in the space

W
Y1Y−1

2 represents point that are in c
Y−1

i (l) and move
to cj(1) ∈ Y1, and therefore produce probabilities of the
joint events P (Y−1, Y1) = P (Y−1)P (Y1|Y−1). In a gen-
eral situation, for an arbitrary L, probabilities in the
space {X−L, Y−L} and {Y−L, YL} could be calculated
over an order-L partition on each subspace. The re-
duced probabilistic space would be composed by a co-
ordinate X−L where probabilities are calculated over

an order-L partition and the coordinate W
Y−LYL

2L where
probabilities would be calculated over an order-2L par-

tition. A cell in W
Y−LYL

2L would represent joint events
P (Y−L, YL) = P (Y−L)P (YL|Y−L).

Notice that one can consider subspaces X−L and Y−L
with an order-L partition each, and the subspace YJ with
an order-J partition, with J 6= L, composing the space
ΩX−LY−LYJ . Then, the reduced space W would have a
probabilistic space formed by a partition of order (J+L).

III. THE TOPOLOGY OF CAUSALITY

A. Generating higher-order partitions

We consider two non-coupled Logistic maps (α = 0 in
Eq. (1)), represented by X and Y , to illustrate how we
construct our partitions. Setting lX1 = 0.5, if xi ≤ lX1
then T (xi) = 0 (and sXi (1) = “0”), and if xi > lX1 then
T (xi) = 1 (and sXi (1) = “1”). Applying these rules for
a trajectory of this uncoupled system, we generate Fig.
3(a). In Fig. 3(b), we show in green two columns of the
order-2 partition obtained by U−1(lX1 ). Setting lY1 = 0.5,
therefore LXY = {lX1 , lY1 }, we generate Fig. 3(c). The
same coloured regions in this figure represent cells in an
order-3 partition created by U−2(CXY (1)). The order-3
partition has columns and rows enclosed by straight lines
LX(3) = U−2(lX1 (1)) and LY (3) = U−2(lY1 (1)) respec-
tively, forming the partition CXY (3) = U−2(CXY (1)).
In this case, each column and row have boundaries that
describe a generating partition of one Logistic map.

In practice, we do not make pre-iterations of the
partition lines to determine the higher-order parti-
tions. Once we choose LX and LY , the rows, columns,
and cells of higher-order partitions are visualised
by the colours of points that encode a particular
symbolic sequence, using the following algorithm.
Given a trajectory, we construct the length-L seg-
ments of it ΦXYL (n) = {(x1n, x2n), . . . , (x1n+L, x

2
nL

)},
and whose symbolic sequence is represented by
SXYL (n, 1) = {sXn (1), sXn+1(1), . . . , sXn+L−1(1) •
sYn (1), sYn+1(1), . . . , sYn+L−1(1)}. This symbolic se-
quence is then encoded into an integer number that is
used in the palete of colours to set the colour of the
point (x1n, x

2
n) that will produce the length-L symbolic

sequence SXYL (n, 1). Points will belong to the same
column (row) if their symbolic sequence SXL (n, 1)
(SYL (n, 1)) is the same, and will belong to the same
cell if their symbolic sequence SXYL (n, 1) is the same.
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FIG. 3. Panel (a) shows two columns with name s1(1) = “0”
in red and s2(1) = “1” in blue, for the order-1 partition in
X. Panel (b) shows in green two columns from an order-
2 partition in X with names s1(2) = “00” and s4(2) = “10”.
Panel (c) shows, by the regions of the same color, cells cXY

i (3)
of an order-3 partition.

To set the palete of colours, we produce an integer for
the colour of the point ΦL(n) = (x1n, x

2
n) of an order-k

partition generated from an order-1 partition, using the
following encoding rule

colour(ΦL(n)) = θx(n) ∗ 2k + θy(n), (9)

where θx(n) =
∑L
i=1 s

X
n+1−i(1)2L−i and θy(n) =∑2L

i=1 s
Y
n+1−i(1)22L−i.

B. Understanding the arrow of influence

We now show how the topological properties of
higher-order partitions change according to the coupling
strength α between 2 or more coupled systems as in Eq.
(1), and how these topological asymmetries can be used
to determine the arrow of influence in these systems.

The symmetry in the structure of the partition in Fig.
3(c) reflects the fact that the two systems are not coupled.
Imagine that an observer measure an event in the variable
Y at a time n: Y (n) = x2n = 0.5. Applying U−k(lY1 ), for
any k, will create always a vertical line stretching from 0

to 1, meaning that an observation in Y at time n cannot
be used to localize the state of the variable X at time
n − k. The consequence, as we will show next is that
there is no flow of information fromX to Y . The contrary
is also true, i.e., one can also use similar arguments to
conclude that there is no flow of information from Y to
X.

For a coupled system in a master (node X) and a slave
(node Y ) configuration, assuming a coupling strength of
α = 0.09, we have created partitions of different orders
(from order-1 to order-5) and shown in Fig. 4. One can
see how the increase of the order increases the topologi-
cal complexity of the partitions, for example going from
Fig. 4(a) to Fig. 4(d). Paying attention to the higher
order rows, defined by the enclosure of U−k(lY1 ) along the
Y variable, in Fig. 4(e-h), and the higher-order columns,
defined by enclosure of U−k(lX1 ), we can observe how they
are not enclosed any longer by straight lines. This asym-
metry is the consequence of X driving Y .

We now want to analyse the different topological fea-
tures of the higher-order partitions when we consider dif-
ferent orders in X and Y . For that we produce Fig. 5
obtained from two Logistic maps coupled in a master
(X) and slave (Y ) configuration with a coupling strength
α = 0.09. We have selected two orders for our partitions
in X and Y : 2 and 5. Figure 5 (a) shows the different
cells (same colour region) of a partition created by the
intersection of an order 2 partition in X and order 5 par-
tition in Y . Figure 5(b) shows the different cells of a
partition of an order 2 in Y and an order 5 in X. The
asymmetry in Fig. 5(a) indicates that the system has an
arrow of influence X → Y.

C. Local mutual information

Pointwise mutual information (PMI) is a probabilistic
measure of the amount of information that two different
random variables posses locally between them. Given a
particular partition, the PMI only takes into considera-
tion the information computed over a single cell and not
over the entire set of cells as the MI. PMI is defined as

PMI(i, j) = Hi
X +Hj

Y −H
i,j
XY , (10)

where: Hi
X = −P (sXi ) log(P (sXi )), Hj

Y =

−P (sYj ) log(P (sYj )), and Hi,j
XY = −P (sXYk ) log(P (sXYk )),

with k representing the cell formed by the overlapping
of the higher-order row i with the higher-order column
j. Therefore, MI is just the average of PMI over cells of
the partition. In the following, we consider a normalized
variant of PMI, named normalized Pointwise Mutual
Information (nPMI), introduced in Ref.22, and defined
as:

nPMI =
PMI(i, j)

log
(
P (sXYk )

) . (11)
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FIG. 4. Panel (a) shows an order-1 partition CXY
1 , each

coloured region represents a cell. Panel (b) shows the order-
2 partition given by CXY

1 = U−1(CXY (1)). Panels (c-d)
show the corresponding order-3 and order-4 partitions, gener-
ated by U−2(CXY (1)) and U−3(CXY (1)) respectively, coloured
regions represent the cells in the partition. Panels (e-g)
show U−1(lY (1)),U−2(lY (1)) and U−3(lY (1)) respectively,
and each coloured ”horizontal” stripe represents a higher-
order row. Finally panel (h) shows only the higher-order rows
of an order-5 partition, enclosed by U−4(lY (1)).

The advantage of the nPMI over PMI is the reduction
of the sensitivity of the measure to short time-series.

Using nPMI in the partitions considered in Fig. 5,
we can calculate the amount of information exchanged
between variables X and Y , when they are being encoded
by symbolic sequences of different lengths. As we shall
see in the next section, this quantity actually can be used
to infer the directionality of the flow of information being
transferred.

Figure 6 shows the nPMI for two directed coupled Lo-
gistic maps for an order-5 partition CXY as the order
of the partition along the variable Y in Fig. 5(a). The
surprising fact is that nPMI is larger for a special union
of cells enclosed by one of the solutions of U−3(lY1 ) that
forms closed curves. We call these special union of cells,
causal bubbles, from its closed graphical representation.
We can see that the bubbles are areas containing trajec-

 

 
 

FIG. 5. Panel (a) shows the partition of order 5 in Y and
order 2 in X. Panel (b) shows the partition of order 2 in Y
and order 5 in X.

	

FIG. 6. nPMI for a directed coupled Logistic map with a
coupling strength of 0.09. It can be observed how the nPMI
is higher inside the bubbles.

tory points responsible for a large amount of information
exchanged between X and Y, and as explained in the
following, a consequence of the fact that X → Y.

D. Causal bubbles

Figure 7 shows an illustration of how these bubbles are
created. The partition line lY1 represented by the black
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dashed line in panel (a) is iterated once producing the
red curves such as the ones showed in panel (b), and
eventually after 2L−1 backwards iterations these curves
form a closed contour as is shown in panel (c) by the
closed red curves.

	

	

	
	

FIG. 7. (a) Dashed black line represents lY1 . (b) The red
curves are obtained by one backward iteration of lY1 . (c) The
closed red curve is obtained by 2L− 1 backward iterations of
lY1 .

Assume that the future of the observed variable
yt+L−1, L iterations forward in y, has a value that lays
exactly at the partition line, i.e. yt+L−1 ∈ lY1 . The vari-
able to be predicted has an arbitrary value at t+L−1, so
xt+L−1 can assume any value in the state space. Then,
after one backward iteration, yt+L−2 ∈ U−1(lY1 ) is lo-
cated on the red lines in panel (b). After 2L−1 backward
iterations yt−L has a position along the red closed curve
in panel (c), enclosing a bubble area.

Therefore, the first observation in the variable y at
time t + L − 1 cannot tell anything about the position
of the variable xt+L−1. Assuming the observer has full
knowledge of the dynamical equations, it makes one ob-
servation at y obtaining the value yt+L−1, which in this
imaginary example lays at lY1 . The smart observer uses
the knowledge of the dynamics and makes 2L − 1 back-
ward iteration of lY1 . The observer will conclude that, if
yt+L−1 ∈ lY1 , then yt−L ∈ IY and xt−L ∈ IX , where IX
is the x-interval enclosed by the red curve, panel(c). So,
by making one observation of the future of y and using
the knowledge of the dynamics (which can be obtained

by inspection of the time-series or from modelling the
system), the observer can better localize the state of the
past variable x, if X → Y. Moreover, if more observa-
tions are done (from the future to the past) in y, more
likely the observer is to improve its knowledge about the
location of xt−L by doing similar analysis.

If there is no physical connection between system X
and system Y, and no flow of information from X to Y,
the bubbles are not formed, and therefore, one cannot
localize the position of the variable X by observing Y.

It is worth mentioning that the studied system is non-
invertible, and therefore, if future of Y depends on the
past X (as one would naturally conclude if doing the
Granger analysis by constructing a model from the data),
it is not necessarily obvious that the past of X can be
predicted by the future of Y . The causal bubble however
demonstrates that this is indeed true.

IV. CAUSAL MUTUAL INFORMATION (CAMI)

We are now ready to define a new informational quan-
tity named Causal Mutual Information from X to Y
(CaMIX→Y ) as the mutual information between joint
events in X−L and the set composed by the joint events
of Y−L and YL as

CaMIX→Y = MI(X−L;Y−L, YL) = MI(X−L;W
YLY−L

2L ).
(12)

Analogously, CaMIY→X = MI(Y−L;W
XLX−L

2L ). So, in
practice, CaMIX→Y is calculated by computing the mu-
tual information between symbolic sequences of length L
in the variable X and symbolic sequences of length 2L in
the variable Y .

Notice that CaMI is not permutable since,
CaMIX→Y 6= CaMIY→X . As we can see, CaMIX→Y
is the Mutual information between trajectory points in

the subspace XL and the subspace W
YLY−L

2L and that
measures the amount of information between longer
time-series of past, present and future of Y and shorter
time-series of the past of X. The fundamental idea
behind the reason for us to propose CaMI as a measure
of causality is that if there is a flow of information from
X to Y , then longer observations in the Y variable can
be used to predict the past of states of X. CaMI is also a
quantity that measures the total amount of information
extracted from one variable by observing another vari-
able, not only the shared amount (non causal, measured
by the Mutual Information) but also the transmitted
amount (causal, measured by the Transfer Entropy).

Considering the coupled system and the same parti-
tion used to create Fig. 5(a), the magnitude of the com-
puted CaMIX→Y is 0.17. Considering the coupled sys-
tem and the same partition used to create Fig. 5(b), the
magnitude of the computed CaMIY→X is 0.04. The dif-
ference in the CaMI’s magnitudes, meaning CaMIX→Y -
CaMIY→X > 0, and the asymmetry in Fig. 5(a) with
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the existence of the causal bubbles indicate the pres-
ence of a system whose direction of causality is given
by X → Y, and therefore, there is a flow of influ-
ence from X to Y . As we shall see, for this situation,
CaMIY→X=MI(X−L;Y−L), meaning that the variables
share some common, non causal information.

Notice that the PMI as defined in Eq. (10) is just one
of the terms considered in the calculation of CaMI.

A. Transfer Entropy and Causal Mutual Information

Having two random processes X and Y , the amount of
information transferred from process X to Y (X → Y )
can be quantified by the Transfer Entropy1, defined as:

TX→Y = H (YL | Y−L)−H (YL | Y−L, X−L) , (13)

where H(X) is the Shannon’s entropy ofX, H(XL | Y−L)
is the knowledge (reduce of entropy) of process X from
time t to t + L − 1 if the past of process Y from t − 1
to t−L is known, and H (YL | Y−L, X−L) represents the
knowledge of the process Y from time t to t + L − 1, if
the past of X and Y in the interval from t − 1 to t − L
is known. Transfer entropy was shown to be related to
another famous causality measure23,24, the directed infor-
mation, directed information being a cumulative version
of transfer entropy, and being currently considered the
appropriated measure to deal with channels of commu-
nication with feed-back, those where the output is feed-
backed to the input of the channel.

We can express Eq. (13) as a function of joint entropies
and not conditional one using te chain rule for entropy
and Bayes theorem:

TX→Y = H(YL, Y−L)−H(Y−L)−
H(Y−L, YL, X−L) +H(Y−L, X−L)

(14)

But notice that CaMI can also be written as

CaMIX→Y = MI(X−L;YL, Y−L) =

H(X−L) +H(YL, Y−L)−H(X−L, YL, Y−L).
(15)

Finally, comparing Eq. (15) with (14), we conclude
that

CaMIX→Y = TX→Y +MI(X−L;Y−L), (16)

where MI(X−L;Y−L) = H(X−L) + H(Y−L) −
H(X−L, Y−L) is the mutual information of the system
composed by X and Y . Both quantities are shown over
a Venn diagram in Fig. 8 for their comparison. One can
see that CaMI carries more information about the con-
sidered variables than transfer entropy. CaMIX→Y rep-
resents the amount of information exchanged between X
and Y (provided by the term MI(X−L;Y−L)) and the
transfer entropy from X to Y . Whereas MI(X−L;Y−L)
measures how much the observation of a length-L tra-
jectory along the variable X (or Y ) can be predicted

by observations of a length-L trajectory of the variable
Y (or X), the transfer entropy from X to Y measures
how much one can predict from the past state of the X
by making observations of the past, present, and future
states of the variable Y . One important fact to notice is

	

	
	

FIG. 8. Representation over a Venn diagram of the CaMI.
Panel (a): Causal Mutual Information, CaMIX→Y . Panel
(b): Transfer entropy, TX→Y .

that since MI(X−L;Y−L) = MI(Y−L;X−L), the direc-
tionality index defined by TX→Y − TY→X , and therefore
representing the net flow of information between both
variables, can be calculated by

DI = TX→Y − TY→X = CaMIX→Y − CaMIY→X .
(17)

As another remark, notice that transfer entropy is de-
fined as the conditional mutual information and there-
fore, T (X → Y ) = MI(X−L;YL|Y−L), see Ref.6. Recall-
ing that CaMIX→Y = MI(X−L; (Y−L, YL)), it is easy
to see that to define CaMI we have replaced the condi-
tional probabilities in the transfer entropy TX→Y to joint
probability ones in CaMIX→Y .

V. HIGHER-RESOLUTIONS INITIAL MARGINAL
PARTITIONS

We have previously seem that the probabilities of
length-L symbolic sequences representing trajectory
points following an itinerary along order-1 marginal par-
titions can be used to calculate CaMI, and therefore, be
used to detect the causal direction of the flow of infor-
mation. We have seen that the topology of a higher-
order 2D asymmetric partition, where each coordinate
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has different orders, can be used to determine the ar-
row of influence between two variables. The higher-order
partitions were generated out of order-1 marginal parti-
tions. However, in certain practical situations, for exam-
ple in stochastic or experimental systems, higher-order
partitions generated out of lower-order partitions should
be expected to produce no discernible topological set
that could orient one to the correct direction of the flow
of information. It is thus interesting to verify whether
and for which boundary conditions a marginal partition
with NX boundary lines along the variable X (LX(m))
and a marginal partition with NY boundary lines along
the variable Y (LY (2m)) could be used to estimate a
physically consistent CaMIX→Y . Simply put, CaMIX→Y
calculated in this way would be obtained by measuring
the mutual information between lower-resolution obser-
vations along the variable X and higher-resolutions ob-
servations along the variable Y .

We study the mutual information of a system (as
the one shown in Fig. 9), with a coupling strength
α = {0, 0.05, 0.1} and β = 0.1−α. In Fig. 10, we show by
colours the values of the MI calculated considering Eqs.
(5) and (7) between variables X and Y for a partition CX
for X and CY for Y , with different number of columns
and rows, respectively. The number of NX and NY are
shown in the axis of Fig. 10. Recall that CaMIX→Y is
just the mutual information between variables X and Y
where the partition of X has order L and the partition
of Y has order 2L. In here we want to test the plau-
sible idea that causality can also be detected when the
variables are observed with different spatial resolutions.
We, therefore, want to test whether MI is capable of de-
tecting the direction for the flow of information when
a probabilistic space has an arbitrary number of equal
rectangular areas.

In Figs 10(a)-(c), if the partition in X has the same
number of cells than the partition in Y , MI grows with
the growing of the number of cells. As expected, one can
see that if the flow of information is from X → Y (as in
panel (a)), then partitions with more cells in Y than in
X produce larger MI (or CaMI) than partition with less
cells in Y than in X.

	

FIG. 9. Two Logistic maps bi-directionally coupled . The
coupling strengths α and β are related by β = 0.1− α.

Surprisingly, Fig. 10(a) shows a novel feature for the
MI of coupled systems. If the flow of information goes
fromX → Y, then given a partition in Y with a particular
number of cells (i.e., resolution), the value of MI obtained
is roughly invariant for the chosen resolution in X. This
implies that the amount of information one can realize
from X by making measurements in Y is almost solely
dependent on the resolution of the observation in Y , and

there is a sufficient large amount of number of cells in
Y . In Fig. 10(b) the flow of information goes from Y to
X and therefore, for a sufficiently large number of cells
in X, the information that one can deduce from Y by
measuring X almost solely depends on the resolution of
X. Finally, in Fig. 10 (c) for the bidirectionally coupled
system, with equal coupling strengths, one has that the
values for MI will depend on both resolution of variables
X and Y in a complementary way, i.e. if the sum of the
number of rows and columns is maintained, MI remains
roughly invariant. In fact the relationship is described
by a diagonal hyperbola. This phenomenum can also be
used to detect the directionality of the coupling.

	

	

	
	

FIG. 10. Mutual information of coupled Logistic maps com-
puted on an asymmetric partition with different number of
rows and columns. The horizontal and vertical axis show the
different amount of rows and columns of the partition. Panel
(a) shows the result for α = 0.1 and β = 0, so information
flows from X to Y . Panel (b) the results for α = 0 and
β = 0.1, so information flows from X to Y . Panel(c) shows
the result for α = 0.05 and β = 0.05

VI. CONCLUSION

In this work, we have investigated the spatio-temporal
properties of causality, causality meaning the study of
the arrow of influence between two systems. The spatio-
temporal nature of causality can be exploited to detect
the arrow of influence from X to Y , either by consider-
ing shorter time-series of X and longer time-series of Y ,
an approach that explores the time nature of causality,
or lower precision measured time-series in X and higher
precision measured time-series in Y , an approach that
explores the spatial nature of causality. Thus, this work
shows that causality can be detected not only by the
analyses of the topological properties of higher-order par-
titions generated by lower-order marginal partitions (the
”space” property of causality), but also by considering
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the probabilities on these partitions, reflecting the den-
sity of trajectories of a given time-length (the ”time”
property of causality). To apply this abstract notion of
causality into a quantitative approach, we have intro-
duced a new informational quantity, the causal mutual
information, CaMIX→Y that measures the total amount
of information being transmitted from X to Y , the infor-
mation shared between both variables and that can be
used to predict the present state of X by observations in
Y (i.e., the Mutual Information), and the causal infor-
mation directed transmitted from X to Y , which can be
used to predict the past states of X by observations of the
past and future states of Y (i.e., the Transfer Entropy).

Since CaMI does not require the calculations of con-
ditional probabilities, but rather only joint probabilities,
the probabilistic spaces involved in its calculation can
be lower-dimensional, enabling a quick estimation of TE.
This property is well wished for causal analysis of large
complex systems such as the brain, or for technological
applications that employ TE, for example, the recently
proposed brain-based cryptography (see Ref.25). Also,
less data is required for the determination of causality,
since the probability space can be constructed according
to the available data.

Another important result of this work was to show that
measuring a driven variable with finer resolution than
that used to observe the driving variable allows us to
obtain more information about the driving system, but
not the other way around. Increasing the resolution of
observation of the driving variable brings no additional
information about the driven variable. This observation
could also be exploited to detect directionality in net-
worked systems.

A potential advantage of our approach is that even
thought the analysis of causality is bivariate, employ-
ing two observables taken from two subsystems X and
Y in a larger system, the topological properties of the
constructed probabilistic space can potentially discern
whether information is being sent physically from X to
Y , or whether it is being mediated by other subsystems
and variables (in this case, there is no physical connection
between X and Y ). This special property of the proba-
bilistic space shown to exist to fully deterministic systems
to detect causality allows one to detect direct or mediate
effects without the need to calculate multivariate con-
ditional probabilities, from which one can detect direct
or mediated influences in stochastic systems Ref.11,26,
an approach suitable for both dynamical and stochas-
tic systems, but that however requires the use of large
dimensional probabilistic spaces. In the multivariate ap-
proach to detect causality, the conditional probabilities
of multivariate variables need to take into consideration
the influence of co-founders27, entities that mediates the
transfer of information from X and Y systems. In fact,
our approach was recently tested to infer the topology
and the synaptic nature (either chemical or electrical) of

complex neural networks. It was shown28 that CaMI can
be used to successfully infer the topology of the neural
network with no mistakes, and also discern about the
nature of the connections, even when the network is in
the presence of both dynamical and observational addi-
tive Gaussian noise, and even when only observational
time-series based on local averages are available.
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