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Prediction of RoHCv1 and RoHCv2 Compressor

Utilities for VoIP

Máté Tömösköziac, Patrick Seelingb, Péter Eklera,
and Frank H.P. Fitzekc

Abstract

Modern cellular networks utilising the long–term evolution (LTE) and the
coming 5G set of standards face an ever–increasing demand for low–latency
mobile data from connected devices. Header compression is employed to min-
imise the overhead for IP–based cellular network traffic, thereby decreasing
the overall bandwidth usage and, subsequently, transmission delays. Here,
we employ machine learning approaches for the prediction of Robust Header
Compression version 1’s and version 2’s compression utility for VoIP transmis-
sions, which allows the compression to dynamically adapt to varying channel
conditions.

We evaluate various regression models employing r2 and mean square error
scores next to complexity (number of coefficients) based on an RTP specific
training data set and separately captured live VoIP audio calls. We find that
the proposed weighted Ridge regression model explains about at least 50 %
of the observed results and the accuracy score may be as high as 94 % for
some of the VoIP transmissions.

Keywords: robust header compression, mobile multimedia, cellular net-
works, bandwidth savings, linear regression, machine learning

1 Introduction

Nowadays IP–based communication is prominent in various industry applications
worldwide and it is even expected to increase as indicated, e.g. in [20]. With
the wide distribution of LTE enabled smart–phones and Internet capable devices
(IoT), as well as the adoption the coming 5G standard, user and machine alike are
constantly connected to service providers, regardless whether of they are motionless
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or in motion. For real–time IP–based wireless connections, packets have to be sent
in such a way that the users and applications experience only a minimal degradation
in service quality.

During wireless communication the limited bandwidth and the relatively higher
rate of errors require special attention. Since there is a large inequality between
packet payloads and protocol headers during transmissions, there exists a common
packetisation overhead for each packet. As an example, for a normal audio–only
session the operators can save more than half of the data transmission costs by
compressing various fields in the protocol headers above the link layer. This is
possible because most of the fields in an IP traffic contain values that are constant
or increase in a predetermined way during a transmission.

The reduction of this packetisation overhead sent over cellular and other wireless
networks is typically realised through header compression mechanisms. Header
compression approaches reduce the protocol encapsulation overhead between, say,
wireless base stations and mobile clients. The compression approach is commonly
based on a compressor/decompressor concept operating between the data link layer
and the network layer on a sender/receiver pair’s protocol stack implementations.

The first IP header compression scheme was the Compressed Transport Control
Protocol (CTCP or VJHC). It was proposed by Van Jacobson [11] and it only han-
dles the TCP protocol. CTCP combines TCP and IP headers together for better
results and lower complexity. The compression algorithm itself employs delta cod-
ing. The advantage of this approach is the high compression ratio. Unfortunately,
it is very susceptible to bit errors, which results in the dropping of many of the
following packets by the receiver and there is no built–in error detection; instead it
relies on the protection schemes of the lower and higher level protocols.

An improvement on this was introduced by Perkins in [19]. The delta coding
for the neighbouring packets is replaced by a reference frame, much like modern
video compressions. In this case, the first packet of a frame is sent as–is and the
following packets use the delta coding to refer to the first one. This results in
better tolerance to errors compared to CTCP, but it produces a lower compression
gain. An improvement for the above approach by Calveras ([3] and [4]) proposes
a dynamic frame length scheme as a function of the channel state. Both of these
approaches suffer from desynchronisation when the first (uncompressed) packet is
lost, which results in the corruption of all of the packets in the same frame. A
suggested improvement is available from Rossi ([22] and [21]).

As the next step, the compression of RTP was addressed with the develop-
ment of the Compressed Real Time Protocol (CRTP) [5]. RObust Checksum-based
COmpression (ROCCO) [24] is a refinement of CRTP, which improves the header
compression performance for highly error–prone links and long round–trip times.
In a similarly way, Enhanced Compressed RTP (ECRTP) [6] is a refinement of
CRTP.

Robust Header Compression (RoHC) builds on these predecessors and version 1
of RoHC, which was introduced in [2], and was modelled on the concept of ex-
tensibility with various profiles that were added later (see IP [12], UDP-Lite [16]
and TCP profiles [18]). However, version 2 of Robust Header Compression, defined
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in [17], opts for simplicity in design over extensibility.
For a brief overview of these header compression schemes see [7] or [25]. RoHCv1

was incorporated into 3GPP–UMTS and WiMAX networks with significant indus-
try support to date and recently revised as RoHCv2 in RFC 5225 [17]. The new
version increases the use–cases of RoHCv1 and it includes the enhancements pro-
posed in–between in RFCs 3843, 4019, 4224, 4995, or 4997, without rendering any
parts obsolete. The main goals of the augmented RoHCv2 are increased simplicity
and robustness under similar network conditions, while maintaining or increasing
performance. For a short review of Robust Header Compression’s technical details,
see [25].

Although both versions of RoHC achieve around 80–90 % in gain (see [28] and
[26]), in spite of this neither of these compression designs accounts for the varying
channel conditions that may be encountered in wireless setups (e.g., as a result
of weak signals or interference). Specifically, the RFC for RoHCv2 in [17] states
that “A compressor always ... repeats the same type of update until it is fairly
confident that the decompressor has successfully received the information.” and
“The number of repetitions that is needed to obtain this confidence is normally
related to the packet loss and out–of–order delivery characteristics of the link where
header compression is used; it is thus not defined in this document [RFC 5525].”
The impact of these repetitions is closely related to the protocol field dynamics of
compressed IP–streams and it will differ from application to application.

Our present research efforts seek to address this issue by enabling current com-
pressor implementations to configure themselves online, thereby making the com-
pression adaptable to changing channel conditions and various network stream char-
acteristics, which will in turn minimise compression overhead and it will pave the
way for the adaptation of header compression in IoT scenarios.

Previous efforts regarding optimal configuration of the compression have only
targeted the first version of RoHC. For employment with UMTS, the authors of
[14] and [31] have studied and recommended optimal configurations for each com-
pression mode to balance performance and robustness, while [15] relies on QoS
information derived from the RRC layer of the radio link to dynamically configure
the compression. The authors of [13] have proposed an adaptive optimistic ap-
proach, where the compressor switches to a high number of context refreshes when
a negative feedback is received and uses a timer to return to the initial refresh count
if no further errors occur. Again for RoHCv1, the authors of [10] use the idea of
adjusting the sliding window width and the (re)initialisation timeout setting for
specific (aeronautical) scenarios.

Here our current study, however, focuses on the optimal configuration of both
RoHCv1 and RoHCv2 in an implementation independent and RFC compliant way
which also exploits various header field dynamics to further the application of
header compression for non–audio transmission use–cases as well. In [27], we in-
vestigated how the compressions react to different fluctuations in the headers and
reviewed the compressor configurations which maximise utility. We showed that
the appropriate choice of compressor repetition configuration increases the over-
all utility under dynamic channel conditions and finding the optimal configuration
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might produce significant benefits. Our preliminary analysis of compression utili-
ties and their prediction with linear regression in [29] resulted in limited, but viable
prediction accuracy. Building on these we proposed a profiling scheme for RoHCv2
in [30] that provides a higher overall accuracy and we evaluated the attainable gains
by employing a dynamic configuration using linear regression with polynomial basis
functions.

In this study, we survey and extend our method to include version 1 of Ro-
bust Header Compression and compare the results provided by various regression
methods including Support Vector Regression. These results may be employed in
the RoHC compression process to dynamically adapt to changing channel condi-
tions. Following our preliminaries, we introduce key utility concepts in Section 2.
A description of the experimental setup is shown in Section 3, then in Section 4
we present our results. Finally in Section 5 we provide a brief summary and make
some suggestions for future study.

2 Methods and Metrics

Below we evaluate the gains possible with dynamic configuration based on various
measurements with the RoHCv1 and RoHCv2 reference implementations provided
by acticom GmbH1 for RTP traffic. We utilise systematically generated and real–
life captured streams to allow consecutive evaluations with the same underlying
data streams. These streams were replayed and RoHC–compressed before artificial
packet losses were applied (if any). The resulting packet stream was sent to the
RoHC decompressor. This is adequate since UDP does not define any feedback of
its own. For the creation of our data sets we repeated this process with multiple
streams and different configuration–option permutations.

Let Pi denote the payload data size of the ith packet, UHi denote the size of
the ith uncompressed protocol headers, and CHi denote its compressed header size.
Here we shall define actual performance measures, similar to those described in [23],
as (i) the actual savings (or alternatively the gain) of the encapsulation overhead
(headers), namely

SHi =
UHi − CHi

UHi
, (1)

(ii) the actual savings for individual packets (with payload) as

SPi =
UHi − CHi

UHi + Pi
, (2)

and (iii) the respective average savings for a sequence or session of N packets as

S =
1

N

N∑
i=1

Si, (3)

1See http://www.acticom.de
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where the latter describes the bandwidth savings from a network provider point of
view.

In order to accurately predict the usefulness of the compression, we need to take
into account parameters that potentially decrease the overall compression gain. In
this study, we define a utility function as

ui(x) = {x ∈ Rk : ui(x) ∈ [−1.0, 1.0] ⊂ R and k, i ∈ Z},

where x is a vector representing the k observed (independent) variable values for
a given packet i. A ui value of 1.0 is interpreted as the optimal utility and a −1.0
value as the most disadvantageous.

In our view, conditions that counterbalance optimal utility are decompressor
feedback and decompression failure. During compression, feedback is produced by
the decompressor and sent back to the compressor entity either on a dedicated
channel or piggybacked onto a compressed packet (in the case of a peer–to–peer
setup). Since compression feedback is generated by the compression layer and
not as part of the original stream, each feedback byte decreases the overall gain. If
there are decompression failures (commonly due to decompressor desynchronisation
caused by extensive packet losses on the channel), each compressed packet failing
decompression is sent completely in vain (the RoHC RFC forbids the interpretation
of such packets). In this case, each byte of the compressed packet decreases the
compression gain as well, since the transmission of such packets wastes bandwidth.

We will consider the following approach for the generation of the utility function.
Let SHi denote the savings of the ith packet as defined in Equation 1, and FBi

denote the ratio between the size of the feedback generated after the decompression
of the same packet and the length of the corresponding uncompressed header. The
the utility of the ith packet is

Ui =

N∑
i=0

(φ(i) · a · SHi − b · FBi), (4)

where the coefficients a and b allow fine–tuning of the cost of compressed packet
and feedback transmissions. Here, the indicator function φ(i) represents the de-
compression success of the ith packet as

φ(i) =

{
−1, decompression of the ith packet failed

1, otherwise.
(5)

For our measurements we shall assume cost symmetry for the sending on the up-
stream channel of the decompressor entity and receiving on the downstream chan-
nel. This assumption also presumes that the loss of individual packets does not
affect the overall utility and these cases are handled by the application layer. This
consideration is fair, since we only focus on RTP compression for our model and
these streams almost exclusively rely on UDP as their transport layer protocol. In
practice, application examples can be found in the domains of real–time audio–
video transmission, like VoIP calls and video–surveillance. Consequently, we set a
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and b in Equation 4 to 1.0. This simplifies the determination of the utility function
to

U ′
i =

N∑
i=0

(φ(i) · SHi − FBi). (6)

We should add that this assumption is scenario–specific and represents the best–
case transmission conditions, which might not be attainable in every setup. The
round–trip time in cellular networks could be significantly longer and most feedback
would arrive much later than in the optimal case, which might result in consecutive
decompression failures (due to decompressor desyncronisation).

3 Description of the Procedure

In order to create the input needed for the compression, we have systematically
produced a number of compressed streams for our evaluation setup. Let ∆ID
denote the IPv4 Identification Number difference between consecutive packets, ∆TS
denote the RTP Timestamp difference, with other stream characteristics denoted in
a similar fashion. We will determine stream types to be used for training different
header field dynamics features in our models, as described in Table 1. Note that
these streams represent various field changes individually and do not necessarily
model real–life audio streams. We will refer to these as training streams, which tell
us how the compressor implementation reacts to changes in the input.

Table 1: Systematically generated RTP streams employed for the training of the
regression models.

Ideal Optimal input stream with ∆ID = 1, ∆SN = 1,

∆TS = 1 for both IPv4 and IPv6 versions.

RTP Marker–bit bursts (at the start of talkspurts),

Marker–bit as in the ideal scenario, but the Marker–bit is set (unset)

every 10 packets for both the IPv4 and IPv6 versions.

Payload Represents changes in the RTP Payload type after every

type 10 packets for both the IPv4 and IPv6 versions.

SSRC RTP SSRC switches between two specific values after every

10 packets for both the IPv4 and IPv6 versions.

∆ID IPv4 ID field fluctuations.

∆TS RTP Timestamp field fluctuations.

∆SN RTP Sequence Number field fluctuations.

∆M RTP Marker–bit field fluctuations.

∆PT RTP Payload Type field fluctuations.
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For the streams that teach header field fluctuations, we created separate versions
with 5 different fluctuation probabilities (where Pf := 0.0, 0.15, 0.25, 0.35 and 0.5).
We also examined different discrete configurations for the building of the models,
namely the optimistic mode repetition count in the interval of [0; 5]. Each generated
stream observes the logical requirements of RTP/UDP/IP traffic, meaning that, for
instance, the IP ID or the RTP Sequence Number always increases. The fluctuation
probability values are based on an uncorrelated model and combined with the
channel loss simulation, along with the above mentioned compressor configurations,
provide the complete set of parameters needed for the generation of the training
data and the configuration of the measurement runs.

In addition to the above streams, real VoIP streams were captured as well,
which we used for the validation of the generated models. For this purpose, we
utilised the Asterisk VoIP server2, which connected a fixed desktop client and an
Android smartphone, both using the ZoIPer VoIP client software3. This configu-
ration employed the GSM 06.10 codec, which is the full–rate audio codec version
that results in 33 bytes of payload. The RTP Timestamp and Sequence numbers
have a constant delta of 160 and 1, respectively. The RTP Marker–bit is always
set to 0, except for the first two packets. We also employed the Ekiga open source
softphone software4 for further verification as well.

During the assessment, we measured the compression output for each of the
above streams under simulated loss rates Pl ∈ [0.0; 0.5), based on correlated loss
probabilities. The classical Gilbert–Elliot model was employed to simulate these
correlated losses under dynamically changing channel conditions. Losses are pre-
sumed to cover both missing and corrupted packets (we will assume that the receiv-
ing device can detect bit–errors and will discard such packets). The Gilbert–Elliot
model, depicted in Figure 1, is a two–state Markov–chain, where we simplify the
model as follows: (i) no errors occur in the good state and (ii) no packet is conveyed
successfully in the bad state.

In our measurement setup we streamline this in such a way that only two pa-
rameters are used, i.e., pg,g := 1.0− pg,b and pb;b := 1.0− pb,g. We initially assume
an error–free channel with pg,b := 0.0, which we continuously increase with a delta
of 0.01. The transition from the bad state to the good state mirrors this configura-
tion, which ensures that the loss pattern will generally contain equally long bursts of
packet losses and error–free transmissions. This is sufficient for our measurements,
as we are only interested in ascertaining how the compression reacts to continuously
repeating losses (bursts) on the channel. Therefore, an exact statistical modelling
of a WLAN setup, say, like the ones described in [8] or [9], is outside of the scope
of this study.

Together with 10 correlated loss sequences generated for each loss probability
instance, resulting in 500 experiments for each configuration/stream combinations,
a final data set of 6500 measurement runs with a total of 6, 500, 000 packets was
created which we preprocessed for further analysis (e.g., calculating the mean sav-

2See https://www.asterisk.org for details
3See http://www.zoiper.com for details.
4See http://www.ekiga.org for details.
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Figure 1: Gilbert–Elliot channel model with two different loss probability states
g(ood) and b(ad).

ings and confidence intervals for each measurement). Here, the 6500 runs cover all
the relevant feature–configuration–loss rate combinations. Though each run con-
tains only 1000 packets, the model would not benefit from a longer stream length
as all of the runs simulate just one type of field behaviour. This is sufficient, since
if multiple behaviours were to be present in a stream, the feature with the lowest
modelled utility would dominate in the output model.

As the input of the machine learning algorithms, we isolated the following in-
dependent features:

• Measurement characteristics: loss rate

• Configurations: optimistic approach repeat count

• Stream characteristics: Pf (∆ID), Pf (∆SN), Pf (∆TS), Pf (∆M), Pf (∆PT ),
Pf (∆SSRC) and IP version

The fluctuation probabilities (Pf ) indicate the likelihood, for a given field, that
its difference between two consecutive packets will diverge from the established
delta value. The expected delta value is well known for certain fields (e.g., IP
ID, RTP SN), but for other fields it is possible that a change occurs during the
lifetime of a given transmission (e.g., RTP Timestamps). For such cases, we will
assume that a constant fluctuation probability that is greater than 0.75 over ten
consecutive packets indicates a change in the delta. (We should add that, in general,
a fluctuation probability which is greater than 0.5 indicates a change in this delta.
However, we decided to employ a greater margin of error to make the transition
to a new delta less sensitive). Also, the modelling of other field fluctuations is
not required, as they would be classified as static, know or inferred, therefore they
either do not change during the lifetime of the given transmission or would belong
to separate logical streams.

Overall, our modelling approach attempts to determine the utility function cal-
culated based on Equation 6, which in turn was derived from the measured header
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savings (Equation 1) as the dependent feature. To achieve this goal, we chose three
different regression methods for the creation of our models and compared them
with respect to their attained accuracy. Specifically, we employed Ridge regression,
Bayesian linear regression, and Ridge regression with sample weights. In each case
the complexity or shrinkage parameter α was set to 0.5, as this turned out to be a
good choice regarding accuracy.

We decided to use Ridge regression because not all of the observed features are
necessarily independent in a statistical sense or add a significant contribution to
the predictor function, as seen in [29]. Ridge regression also uses the L2 norm to
avoid overfitting. We should mention, that based on our observations, a smaller
regularisation term like L1 (LASSO) or l = 0.5 – which is used to achieve sparsity in
the independent variables – will not result in a significantly better accuracy for any
of the models. Also, Bayesian regression was chosen because it avoids overfitting
and it is capable of estimating the complexity parameter.

In order to achieve non–linearity in the training input, we used transformations
which created polynomial combinations of the input features to the second and
third order (i.e., basis functions, as in [1]). We will also provide results with Sup-
port Vector Regression (SVR) using RBF kernels as a baseline comparison. The
modelling of non–linear dependencies using Neural Networks is outside of the scope
of this study.

The machine learning and related techniques were implemented using the scikit-
learn5 data mining and data analysis library based on NumPy, SciPy and matplotlib
for Python. We also refer to [1] for further details on these methods.

Since the resulting models are represented by a linear function, predictions with
the final model are not computationally demanding and can readily be implemented
in compressors even on resource–constrained systems.

For the weighted Ridge regression model, we employed weights as shown in
Figure 2. A weight set to 100 was assigned to the ideal input stream.

This approach ensures that the model is less biased towards streams with fluc-
tuations. We additionally assigned weights based on the observed loss rate, which
was multiplied by the repeat count configuration value of the given measurement.
The reason for the latter is that, based on our observations, the predictions become
less accurate as the repeat count increases. By assigning higher weights this way,
our model will be more reliable in general. The weight function, not taking into
account stream types and configurations, is

w′(l) = 0.5 · (l + 0.25)3, (7)

where w′(l) denotes the weight value for a given loss rate l in [0.0, 1.0]. As the input
weight value for the regression, we normalised w′ for the [0.0, 0.5] interval like so:

w(l) = 1.0− w′(l)

w′(0.5)
. (8)

5See http://scikit-learn.org.
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Figure 2: For the weighted Ridge–approach, sample weights are assigned to the
observations based on the type of stream being used, the repeat count configuration
of the compressor and the (simulated) loss rate found during the measurement
stages.

This approach ensures that the model converges less rapidly towards the higher
loss rates and will be more accurate for lower ones. Note that weights are only
employed during the training of the models and are not part of the input of the
verification dataset.

4 The Evaluation of the Prediction Quality

Next, we will make use of the coefficient of determination, denoted by r2, for the
evaluation of the accuracy scores of the models, which tells us how well the data
matches a statistical model. An r2 value of 1.0 indicates that the model perfectly
fits the data, while an r2 of 0.0 indicates that it does not fit the data at all.

We divided our observed measurement datasets into two, depending on whether
the streams were the synthetic ones used during the training of the model or those
generated by VoIP transmissions (denoted as training, Asterisk and Ekiga in our
tables, respectively). The latter ones were used for independent validation. We
should mention that we did not use cross–validation techniques on our input dataset
(i.e., training), as we only used it to “profile” the compressor implementation.
Hence the training accuracy scores serve only as a baseline comparison. Generally
speaking, one is only interested in the modelling of the captured real–life streams
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(i.e., the Asterisk and Ekiga streams in this study) based on the previously modelled
compressor. Since both of these streams are independent of the training dataset
(which was created by a packet generator tool), they can capture the accuracy of
the model quite well.

4.1 Accuracy

We will first look at the overall r2 and mean square error results got for the models
trained on up to 15 % packet loss rates for both RoHCv1 and RoHCv2, as show
in Table 2. We observe that for the training datasets (based on the systematically
generated traffic), the Bayesian regression is the most accurate and surpasses the
other models by about 10 % at most closely followed by the non–sample–weighted
Ridge regression. Also, the weighted Ridge model is on average 15 % worse than
the others. This is expected, since the regression takes into account some of the
streams with higher precedence, thereby it will not fit as well streams that have
lower sample–weights assigned. Consequently, the overall r2 scores are lower for
the weighted Ridge models applied on the training dataset. We also see similar
results for the mean square error values in Table 2b.

However, for the independent VoIP streams for version 2 of RoHC the weighted
Ridge approach provides the best accuracy which may be about 0.2 better in some
cases. Yet, for version 1, the predictions have a very low accuracy in general and
relatively high errors, which indicates that RoHCv1’s utility function cannot be
accurately derived in the [0%; 15%) loss–rate range (at least for the implementation
in question).

In Table 3, we provide the predictor scores for the models trained on up to 50 %
packet losses. We once again observe, that for the training dataset, the Bayesian
regression is the most accurate, while for the independent VoIP streams it is the
weighted Ridge approach followed by the Bayesian approach. Nevertheless, we
observe that all of the models lose at least 1

3 of their accuracy compared to the
15 % models. However, the results for an SVR model are also provided here as
a baseline comparison. In almost every case the various regression approaches
outperform the SVR in accuracy by up to 40 %.

Table 3b also shows the calculated mean square error values, which measure the
difference between the observed value and the estimated value. We immediately
notice that Bayesian regression gives the smallest determined error values for the
training input (0.022 for v1 and 0.015 for v2), while the general and the weighted
Ridge regression approaches give the smallest errors for the real–world VoIP streams
(0.006 for v1 and 0.009 for v2).

We attribute this finding to the construction of our measurement scenarios.
Since the weighted Ridge regression is biased towards normal behaviour, it is less
likely to capture the erratic fluctuations of the streams used for the training of the
regression models (i.e., the unweighted Ridge and Bayesian regressions evaluated
here). This makes the utility prediction of the weighted model for the VoIP model
significantly more accurate.
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Table 2: Utility model accuracy up to 15 % loss–rates.

Stream Order Ridge Bayesian Weighted SVR

RoHC Version v1 v2 v1 v2 v1 v2 v1 v2

First 0.61 0.69 0.61 0.7 0.46 0.63

Training Second 0.8 0.8 0.86 0.87 0.72 0.72 0.69 0.72

Third 0.88 0.87 0.93 0.94 0.8 0.8

First 0.4 0.68 0.41 0.66 0.39 0.7

Asterisk Second 0.43 0.57 0.43 0.59 0.4 0.73 0.4 0.29

Third 0.35 0.52 0.28 0.69 0.4 0.73

First 0.23 0.84 0.23 0.81 0.2 0.93

Ekiga Second 0.29 0.64 0.23 0.66 0.2 0.94 0.35 0.29

Third 0.29 0.56 0.08 0.86 0.18 0.94

(a) r2 values

Stream Order Ridge Bayesian Weighted SVR

RoHC Version v1 v2 v1 v2 v1 v2 v1 v2

First .062 .027 .061 .027 .1 .036

Training Second .032 .019 .023 .012 .046 .026 .05 .025

Third .02 .011 .011 .006 .032 0.018

First .023 .016 .022 .014 .01 .006

Asterisk Second .01 .012 .006 .007 .01 .005 .009 .019

Third .007 .009 .008 .006 .01 .005

First .05 .008 .055 .01 .125 .037

Ekiga Second .059 .017 .095 .037 .125 .035 .049 .023

Third .082 .027 .124 .038 .126 .036

(b) Mean Square Error values

4.2 Complexity

We now turn to the question of the overall complexity required for solving the
predictor function of the models based on the number of features and summations
in the resulting polynomial equations, as suggested in Table 4.

We initially observe that as the order of the solution increases, the coefficient
count of our model exponentially increases as well. However, if only coefficients
which are larger than 0.01 are taken into account, the feature count may be signif-
icantly reduced by about 50 %.

Figure 3 shows the relationship between the order of the polynomial basis func-
tions and the r2 values relative to the measured loss rates for the unweighed Ridge
regression, for both RoHCv1 and RoHCv2.
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Table 3: Utility model accuracy up to 50 % loss–rates.

Stream Order Ridge Bayesian Weighted SVR

RoHC Version v1 v2 v1 v2 v1 v2 v1 v2

First 0.66 0.61 0.66 0.61 0.6 0.55

Training Second 0.85 0.8 0.87 0.84 0.82 0.75 0.75 0.72

Third 0.9 0.87 0.92 0.9 0.87 0.84

First 0.66 0.24 0.66 0.24 0.59 0.20

Asterisk Second 0.58 0.42 0.59 0.43 0.62 0.45 0.63 0.35

Third 0.63 0.39 0.65 0.4 0.65 0.45

First 0.49 0.29 0.49 0.29 0.49 0.51

Ekiga Second 0.48 0.53 0.48 0.57 0.59 0.69 0.22 0.36

Third 0.55 0.5 0.57 0.6 0.64 0.71

(a) r2 values

Stream Order Ridge Bayesian Weighted SVR

RoHC Version v1 v2 v1 v2 v1 v2 v1 v2

First .06 .037 .06 .037 .08 .046

Training Second .027 .019 .023 .015 .032 .024 .044 .027

Third .019 .012 .014 .009 .023 .015

First .028 .03 .027 .029 .035 .019

Asterisk Second .027 .018 .027 .014 .033 .013 .026 .025

Third .025 .015 .029 .015 .031 .013

First .039 .01 .041 .012 .108 .032

Ekiga Second .057 .017 .082 .031 .111 .034 .048 .015

Third .078 .029 .104 .039 .111 .035

(b) Mean Square Error values

Table 4: The complexity of the models based on the independent feature counts
used with the total number of summations (in parentheses) in the predictor equation
and the number of features (summations) that have coefficients greater than 0.01.

Order All coefficients Coeff’s > 0.01

First 9 (9) 9 (9)

Second 90 (99) 57 (66)

Third 495 (594) 192 (249)
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Figure 3: 1st, 2nd and 3rd order Ridge regression and SVR accuracy scores got for
the r2 values relative to the loss–rate.
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We observe that while the third order solution gives the best results, the ac-
curacy of the second order one is also quite close to that of the third order one.
In general, the second order solution results in an increase of r2 by about 0.1–0.2
compared to the first order solution, whereas the third order r2 is about 5 % better
than the second order solution in some cases. A fourth order solution, however,
does not bring about any improvement in the accuracy of the model.

4.3 Accuracy and Losses

We shall now evaluate the model accuracies for the prediction of the real–life VoIP
calls for different loss rates. Figure 4a illustrates the relation between the r2 value
and the loss rates of the Asterisk VoIP downstream for RoHCv2.

At first glance we notice that all of the first order predictors have a very high
accuracy throughout. This is most likely due to this particular stream being well
behaved, as in the original stream no significant fluctuations are present. For the
downstream Asterisk call (not shown in the figure), the utility function starts to
fluctuate quite rapidly from 8 % losses. We also see a similar trend for the Ekiga
stream compression (Figure 4b).

For most of the other streams with an increase in the loss rate, the prediction
accuracy falls quite rapidly, but in each case the weighted approach proves to be
more stable and the accuracy score is about 90 % on average.

As the order of models increases, the prediction accuracy increases as well. In
general, the higher order models provide a more stable prediction and the different
model types remain close to each other with an increase in the order. A counter–
intuitive result here is that the first order models perform better for higher loss
probabilities than the more complex solutions (except for the weighted Ridge ap-
proach). For version 1 of RoHC, predicting the utility function is less reliable as the
accuracy varies between 0.2 and 0.9 without any recognisable pattern. However,
the r2 scores do become unstable for losses 12 % and higher with both the Asterisk
and the Ekiga streams.

5 Conclusions

Here we present a procedure that can be used for profiling Robust Header Compres-
sion (version 1 and version 2) compressor implementations. We compared Ridge
and Bayesian regressions, Support Vector Regression, as well as Ridge regression
with sample weights to construct a predictor in order to derive the compression util-
ity values for RoHCv1 and RoHCv2. This will allow compressors to dynamically
adapt to varying channel conditions in the future.
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Figure 4: VoIP downstream prediction accuracy with up to 15 % losses for RoHCv2.
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Based on the performance evaluation of the applied prediction, we find that the
Bayesian approach predicts both the training dataset and the independent VoIP
scenarios quite well and it has an r2 value of 0.66–0.93 and 0.61–0.94 for RoHCv1
and RoHCv2 training streams, respectively. We also reviewed prediction accuracies
for real–life VoIP transmissions, which yielded r2 values of 0.5 on average for both
versions.

However, in order to make the predictor less sensitive to a subset of the training
streams and also more accurate for the lower loss rates, we devised a weighting
strategy for Ridge regression, which is more precise for less error prone channels.
This approach achieves a prediction accuracy of at least 0.5 on either of the VoIP
transmissions and it may be as good as 0.94 in some cases.

We also find that the second order polynomial base functions provide a good
compromise between accuracy and complexity. A second order predictor would
require 99 summations, while a third order predictor needs 594. The significantly
reduced number of prediction variables and the linear regression make this a suitable
approach for low computational resource environments with desired high through-
put. When encountering significant channel impairments or larger numbers of
streams, however, the reduced prediction accuracy will only allow for a general
approximation of the utility level. This issue could be mitigated with a larger and
more diverse set of profiles as well as more intricate and computationally demanding
approaches to the prediction, which is part of our ongoing work.
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