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Balanced Active Learning Method for

Image Classification

Dávid Pappa and Gábor Szűcsa

Abstract

The manual labeling of natural images is and has always been painstaking
and slow process, especially when large data sets are involved. Nowadays,
many studies focus on solving this problem, and most of them use active
learning, which offers a solution for reducing the number of images that need
to be labeled. Active learning procedures usually select a subset of the whole
data by iteratively querying the unlabeled instances based on their predicted
informativeness. One way of estimating the information content of an image
is by using uncertainty sampling as a query strategy. This basic technique
can significantly reduce the number of label needed; e.g. to set up a good
model for classification. Our goal was to improve this method by balancing
the distribution of the already labeled images. This modification is based on
a novel metric that we present in this paper. We conducted experiments on
two popular data sets to demonstrate the efficiency of our proposed balanced
active learning (BAL) approach, and the results showed that it outperforms
the basic uncertainty sampling.

Keywords: active learning, image classification, uncertainty sampling, bal-
anced method

1 Introduction

Nowadays, for categorizing the huge amounts of visual contents both online and
offline, image classification is an indispensable tool. The number of images available
online is increasing with the rapidly growing Internet usage. Besides this numerous
electronic devices are capable of taking a digital picture (e.g. cameras, telephones
and so on), furthermore, smart devices are a click away from uploading and sharing
these pictures. This leads to massive data warehouses that need to be structured,
i.e. categorized. The classification of images requires labeled instances, but usually
the contents are unlabeled, and labeling them is a costly manual process. Active
learning [2] is a way of addressing this problem since it selects a subset of the data
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by iteratively querying the most informative image(s) from the unlabeled ones, and
then it builds the classification model based on this subset instead of the whole
data. In this way, the active learning algorithm seeks to label as few instances as
possible (i.e., minimizing the labeling cost) while it attempts to retain the same
level of accuracy that could be achievable by using the total dataset. The most
important question is how to estimate the informativeness of unlabeled instances,
since different query strategies may lead to a better or worse classification accuracy,
compared to that using random sampling. There are many proposed strategies in
the literature, e.g. uncertainty sampling [33], query-by-committee [31], expected
model change [6], expected error reduction [20]. Uncertainty sampling is a widely
used, and the simplest query strategy framework, which aims to query the instances
with least certainty about their labels.

The main goal of our study was to improve the accuracy by enhancing it with
a distribution analysis on the labeled dataset. We developed and implemented a
solution to determine the distribution based on a novel penalty metric. We demon-
strated the efficiency of the proposed approach on two large datasets; namely, the
PASCAL VOC2010 [10] training and validation data, and the Caltech101 [17] image
collection (see Section 5 for details and Figure 1 for sample images). Note that the
queried images could be re-annotated by relying on human labor to deliver a more
useful feedback on the effectiveness of the proposed approach in a production-like
active learning environment. Of course, this approach would be resource-intensive,
hence we decided to use a viable substitute to measure the benefits of the BAL algo-
rithm (where we used the ground truth categorizations provided by the datasets).

2 Related Work

Now, we will briefly review the related studies on active learning. We will focus
on computer vision problems (especially on images) [6, 13, 31, 33] that require
substantial amounts of training data to perform accurate classification. Nowadays
active learning is gaining increasing interest in the computer vision community. In
the following, we review relevant work on active learning and image classification.
Some of these studies are only theoretical ones [7] without any experimental part or
results. The authors of [32] used simple margin selection method for SVM for the
active selection of object windows in images. The system autonomously refines its
models by actively requesting crowd-sourced annotations on images crawled from
the Web. The authors of [24] suggested combining spectral and spatial information
directly in the iterative process of sample selection, where the criterion involves the
concept of spatial entropy.

As we already mentioned in the Introduction, uncertainty sampling is a fre-
quently adopted strategy in active learning (because of its simplicity), which builds
upon the presence of uncertainty in classification. Minakawa et al. [23] apply this
uncertainty sampling method to image sequence recognition in an active learning
scenario; a margin sampling criterion and entropy criterion were used in the condi-
tion part of this method. Many other works on uncertainty sampling methods are
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Figure 1: Samples taken from the PASCAL 1 test set; here each column corre-
sponds to a different category; namely, airplane, boat, cat, motorbike and sheep,
respectively

based on the entropy notion. In a recent paper [33], the authors evaluate the uncer-
tainty via random walks on a graph, and Shannon Entropy is used to measure the
uncertainty of random variables in this random process. We compared our method
with the most frequently used uncertainty sampling technique (based on entropy
criterion) in this paper. Another solution called the DBALStream method [14]
is based on uncertainty sampling as well for active learning over evolving stream
data. This approach has to decide whether to label an instance or not, but the
method works in only the kind of scenario where each instance in the stream is
processed as soon as it arrives. In the uncertainty sampling topic, one of the most
recent paper [28] attempts to distinguish between the two types of uncertainties
(conflicting-evidence vs. insufficient-evidence), but it does not provide another al-
ternative approach for improving uncertainty sampling. One possible drawback of
the uncertainty sampling algorithms is that they ignore the output distributions
for the remaining class labels [12]; however our solution attempts to overcome this
problem by a proposed balancing extension.

3 Image Classification

In the case of active learning, we iteratively query new images to expand the training
set, and build a new classification model every time the training set changes. The
decision of which image is next in line to be queried depends on the current model,
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therefore the model creation process is an important part of the classification and
the quality of the classification is an important part of the active learning. Following
the general trend, we applied the BoW (Bag-of-Words) model [11, 16, 18] for the
mathematical representation of the images and SVMs (Support Vector Machines)
[1, 8, 16] for the classification.

The key idea behind the BoWmodel is to represent an image (based on its visual
content) with so-called visual code words while ignoring their spatial distribution.
This technique consists of three steps, these being (i) feature detection, (ii) feature
description and (iii) image description as usual phases in computer vision. For
feature detection we utilized the Harris-Laplace corner detector [4, 22], and SIFT
(Scale Invariant Feature Transform) [19] to describe them. We should add that
we used the default parameterization of SIFT proposed by Lowe; hence we got
descriptor vectors with 128 dimensions. To define the visual code words from the
descriptor vectors, we used the GMM (Gaussian Mixture Model) [25, 30], which is
a parametric probability density function represented as a weighted sum of (in our
case 256) Gaussian component densities. As can be seen below,

p(X | λ) =

K∑

j=1

ωjg(X | µjoj), (1)

where µj and oj denote the expected value and the variance of the jth Gaussian
component, respectively, and here K = 256. We calculated the λ parameter with
the ML (Maximum Likelihood) estimation using the iterative EM (Expectation
Maximization) algorithm [9, 30]. We performed K-means clustering [21] over all
the descriptors with 256 clusters to get the initial parameter model for the EM.
Next, we had to create a descriptor that specifies the distribution of the visual code
words in an image called the high-level descriptor. To represent an image with a
high-level descriptor, the GMM-based Fisher vector was calculated, as can be seen
in Equation 2. These vectors were the final representations (image descriptor) of
the images.

F = ▽λ log p(X | λ). (2)

For the classification subtask, we used a variation of SVM called the C-SVC
(C-support vector classification) [1, 8] with a RBF (Radial Basis Function) kernel.
Furthermore we applied the one-against-all approach to extend the SVM to the
multi-class classification case.

4 Proposed Approach

Uncertainty sampling is the most common active learning query strategy frame-
work, which queries the instances with least certainty about their labels. There
are numerous ways to measure the amount of uncertainty, the easiest one being
to query the instance whose prediction is the least confident. The problem with
this approach is that it just processes information about the most probable class,
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and throws away information about the remaining label distribution. On the other
hand, a different uncertainty sampling variant called margin-sampling takes the
first and second most probable class labels, but this still ignores many information.
More general and probably the most popular uncertainty sampling strategies use
entropy as an uncertainty measure, and query the instance with the maximum one.

The basis of our approach is this variation of uncertainty sampling. As we
mentioned previously, we used SVM for classification. According to the literature,
querying the closest instance to the linear decision boundary is analogous to un-
certainty sampling with a probabilistic binary linear classifier [3, 13, 27]. SVM
is basically not a probabilistic classifier so we applied a variation of Platt's [15]
approach as a probability estimator to get the probability values (confidence val-
ues) of the possible labels. This approach is included in LIBSVM [5, 29], and we
calculated the entropy based on it by using

Hj = −

m∑

i=1

P (li | tj)× logP (li | tj), (3)

where Hj denotes the entropy of the jth unlabeled image, m is the number of
categories and P (li | tj) denotes the confidence value that li is the label of image
tj . Furthermore, we defined a novel so-called penalty metric as

Penaltyj = CTRj∗ ×
1

m
, (4)

where j∗ denotes the estimated category of the jth unlabeled image, and CTRj∗

denotes a general counter whose value increases by 1 with each iteration of queries
when the received category is other then j∗. Thus each unlabeled image possess a
penalty value depending on its predicted category. Here, we normalized the CTR

values by the number of classes (m), hence the penalty metric also depends on the
number of classes. When the learning system queries a particular category (i.e. an
image from that category), the penalty value of each unlabeled image we predict to
be in that category is reset to zero. Within each cycle, we merge the actual penalty
values with the ones coming from uncertainty sampling, and these results will give
the final decision scores. The fusion was made based on a β weighting coefficient
in the following formula:

HPj = (1− β) ×Hj + β × Penaltyj, (5)

where HPj denotes the informativeness of the jth unlabeled image. The higher
the HP score of an image is, the more likely it will query its label. Therefore, we
sorted the images by their HP values in descending order and chose the first (few)
candidate images for labeling. In order to keep the same value of β for different
data sets or tasks (i.e. the different number of classes), we decided to use the kind of
normalization we described in Equation 4. The advantage of our proposed approach
is that it strikes a balance among the classes of labeled instances, especially when
the number of classes is very high, perhaps a hundred or more (see Section 5). In
the following, we present our balanced active learning (BAL) algorithm in a pseudo
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code (see Algorithm 1); note that in the third line, the ”terminating condition is

false” statement should be replaced with the desired one (which in our case was
size(IL) 6= size(IU )).

Algorithm 1 Balanced Active Learning Algorithm (BAL)

input: Unlabeled image set IU
initialize: Create the initial labeled image set IL. ∀C ∈ IU : select an image
while (terminating condition is false) do
Train SVM model M based on the actual IL
for ∀ image j ∈ IU do

Calculate class membership probabilities (P (C | j)) using M

Calculate the entropy (Hj) using Equation 3
Calculate the penalty metric (Penaltyj) using Equation 4
Merge the entropy with the penalty metric (HPj) using Equation 5

end for

sort: ∀ image j ∈ IU by HPj in descending order
query: image jq from top of the list: jq = query(argmaxj∈IUHPj)
insert: jq and its real label l into IL: IL = IL ∪ {jq, l}
remove: jq and its real label l from IU : IU = IU \ {jq, l}
reset: penalty metrics based on the learned real label: ∀j ∈ Cl : Penaltyj = 0

end while

5 Experimental Results

5.1 Experimental Environment

Next, we will present the experimental results of our proposed balanced active
learning query strategy. We evaluated three strategies for comparison. These were

• Random sampling

• Uncertainty sampling using entropy as measure

• The proposed balanced active learning (BAL) approach. That is, uncertainty
sampling using an entropy metric merged with a novel penalty metric cal-
culated from the distribution of recently queried class labels (see Algorithm
1)

We used two large and popular image classification data sets in our experiments,
namely the PASCAL VOC2010 [10] training and validation datasets, and the Cal-
tech101 [17] image collection. The PASCAL VOC2010 consists of 20 classes and
it has 10,103 images in total. We randomly selected 50 images from each category
to form a subset of this data set. The Caltech101 collection contains 8677 images
taken from 101 different (real) categories and an additional noise category. We
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discarded the noise category to simplify the data set and randomly chose 30 images
from each class to create our second subset. Afterwards, we randomly selected
10 categories from the PASCAL and 20 categories from the Caltech101 subsets to
form two additional subsets. The following table presents the details concerning
our chosen data sets; and in Figure 1 we can see some sample images from the
PASCAL 1 test set.

Table 1: Details of the randomly selected subsets and imbalanced data sets

Number of classes Number of runs Number of images
CALTECH101 1 20 10 600
CALTECH101 2 101 10 3030
CALTECH101 3 20 1 1961
CALTECH101 4 101 1 8677
PASCAL 1 10 10 500
PASCAL 2 20 10 1000

The distribution of images among the classes were even in the created subsets,
but our approach is also capable of handling imbalanced data sets. Therefore we
included two more test sets (CALTECH101 3 and CALTECH101 4) those consisted
of the same categories as CALTECH101 1 and CALTECH101 2, but the number of
images were not reduced (i.e. CALTECH101 4 was the whole Caltech101 dataset).

During the experiments, each queried image and its label was moved to the
training set from the test set. For the initial training set, we randomly selected
an image from each category. In the last iteration, the size of the training set
and test set were the same; e.g. in the case of PASCAL 1 data set, the learning
system stopped querying the unlabeled instances when the number of training
images reached 250. As can be seen in the third column of Table 1, we performed
the experiments several times with the same data set, and we averaged out the
results of the separate runs.

5.2 Results

Now we will turn to the results. Within each cycle, we evaluated the accuracy and
MAP (Mean Average Precision) [26] metrics on the actual test set. After a series of
tests, we chose β to be 0.1 (see Equation 5); because this gave a sufficient weight for
the penalty metric to positively influence the entropy. It should be added that the
proposed approach is highly sensitive to the choice of β (see Figure 5 for details).
The overall results of the generated subsets of the Caltech101 collection and the
PASCAL data set can be seen in figures 2 and 3, respectively; and the results of the
unbalanced test sets can be seen in Figure 4. As we mentioned previously, each data
set was tested several times to be able to take the average of the separate runs and
thus give a more trustworthy result. This was important because we commenced
each of the tests with different initial training sets, since the first images were
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randomly selected. In the graphs we can see the averages, and for our proposed
approach, we also included error bars to show the minimum and maximum values
at each sampling point. This presents the variance of the BAL algorithm, as can
be seen in the following figures.

Figure 2: Evaluation of the results obtained on the CALTECH101 1 and CAL-
TECH101 2 datasets. The accuracy and MAP metrics are on the y-axis, while the
number of trained images is on the x-axis. The proposed approach, uncertainty
sampling and random sampling are represented by solid, dashed and dotted lines,
respectively.

As the results of the CALTECH101 1 test set in Figure 2 show, the distribu-
tion analysis has a beneficial effect. The basic uncertainty sampling with entropy
(represented by a dashed line) yielded worse results at the first 150 iterations. This
was because it queried many instances from the same category, but this could not
happen with the proposed approach, since it balances the label distribution. At
the last sampling point, our approach gave better results than the other competitor
methods. In Figure 2, the results of the CALTECH101 2 test set are also presented.
As can be seen, the balanced active learning algorithm consistently outperforms the
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other two approaches. Based on this, we may conclude that the balancing technique
is more advantageous when the number of classes is relatively high.

Figure 3: Evaluation of the results obtained on the PASCAL 1 and PASCAL 2
datasets. The accuracy and MAP metrics are on the y-axis, while the number of
trained images is on the x-axis. The proposed approach, uncertainty sampling and
random sampling are represented by solid, dashed and dotted lines, respectively.

The results of the PASCAL 1 and PASCAL 2 test sets are shown in Figure 3;
in the graphs we can discern some similarities in the pattern of the curves to those
in Figure 2. For example, the proposed approach gave the highest metrics among
the three methods for almost each sampling point for both test sets; although if
we look at the accuracy values of PASCAL 2, we see that the difference in the
results is higher and less volatile between our BAL approach and the other two
methods. This observation seems to support our hypothesis about the existence
of a proportional relationship between the performance of BAL algorithm and the
number of categories.

The results of CALTECH101 3 and CALTECH101 4 can be seen in Figure 4.
In this case, the accuracy and MAP values were higher for the last sampling point,
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Figure 4: Evaluation of the results got on the CALTECH101 3 and CALTECH101
4 datasets. The accuracy and MAP metrics are on the y-axis, while the number of
trained images is on the x-axis. The proposed approach, uncertainty sampling and
random sampling are represented by solid, dashed and dotted lines, respectively.

because the learning system had more training images. Although this difference
decreased, the proposed approach outperforms the other two competitor methods
tested here almost at every sampling point (except the first few at CALTECH101
3). However, the BAL algorithm attains an accuracy of 1.0 and MAP of 1.0 faster
(i.e. with fewer training images) than the general uncertainty sampling; therefore
our proposed approach reduces the number of required training instances to achieve
the maximum possible classification accuracy, which is the main goal of our study
(and using active learning in general).

We summarized the result obtained of all our experiments in Table 2; the ac-
curacy and MAP values shown in the table were measured for the last iteration.
As can be seen, the proposed approach outperformed the other query strategies in
every case here.

In the last experiment, we give a brief explanation of our choice of β (see
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Table 2: Summary of the accuracy and MAP values got on the four test sets

Rand. sampling Unc. sampling BAL approach

Acc. MAP Acc. MAP Acc. MAP
CALTECH101 1 0.562 0.609 0.642 0.660 0.683 0.688

CALTECH101 2 0.366 0.390 0.401 0.445 0.456 0.484

CALTECH101 3 0.842 0.770 0.998 0.997 1.000 1.000

CALTECH101 4 0.648 0.514 0.876 0.725 0.916 0.755

PASCAL 1 0.350 0.374 0.378 0.453 0.455 0.482

PASCAL 2 0.266 0.238 0.260 0.266 0.312 0.347

Figure 5: Sensitivity for the choice of β on the CALTECH101 1 dataset. Accuracy
metric is on the y-axis, while the number of trained images is on the x-axis. The
cases β = 0.1, β = 0.5 and β = 0.9 are represented by solid, dashed and dotted
lines, respectively.

Figure 5). We used the CALTECH101 1 data set for this test, and we evaluated
the results for the following β values: 0.1, 0.5, 0.9 and 0. Here, β = 0 is a special
case, since it returns the general uncertainty sampling with an entropy measure
(i.e. the dashed line in the upper left sub-figure of Figure 2). This figure tells
us that the proposed approach is highly sensitive to the choice of β, because with
the wrong values it is possible to achieve a worse performance than that using the
simple entropy measure.
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6 Conclusions

In this paper we presented a new query strategy for active learning, which is an
improvement of the basic uncertainty sampling technique. The proposed approach
combines the entropy measure with a novel penalty metric to balance the class
distribution of labeled instances. This modification solves a possible deficiency of
the uncertainty sampling, the skipping of certain categories. We employed two
large data sets (PASCAL VOC2010 and Caltech101) to demonstrate the efficiency
of our approach, and we evaluated the accuracy and MAP metrics. Our experiments
demonstrated that the proposed balanced active learning (BAL) approach generally
outperforms the random sampling and the basic uncertainty sampling methods.
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