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Abstract

A modern tool for age-related macular degeneration (AMD) investigation
is Optical Coherence Tomography (OCT), which can produce high resolution
cross-sectional images of retinal layers. AMD is one of the most frequent
reasons for blindness in economically developed countries. AMD means de-
generation of the macula, which is responsible for central vision. Since AMD
affects only this specific part of the retina, untreated patients lose their fine
shape- and face recognition, reading ability, and central vision. Here, we
deal with the automatic localization of subretinal fluid areas and also ana-
lyze retinal layers, since layer information can help to localize fluid regions.
We present an algorithm that automatically delineates the two extremal reti-
nal layers, successfully localizes subretinal fluid regions, and computes their
extent. We present our results using a set of SD-OCT images. The quanti-
tative information can also be visualized in an anatomical context for visual
assessment.
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1 Introduction

Age-related macular degeneration is one of the most frequent reasons for blindness
in economically developed countries. In the world, more and more people suffer
from AMD, which presents a challenge to the health systems. AMD means degen-
eration of the macula which is responsible for central vision. Since AMD affects
only this specific part of the retina, untreated patients lose their fine shape- and
face recognition, reading ability, and central vision [11].
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In essence, AMD has two forms, namely dry and wet form, and the latter
causes fast and serious visual impairment in 10% of the cases [14]. In this type
of disease, abnormal angiogenesis starts from the choroid under the macula. Fluid
and blood leak out of the neovascularized membrane to retina layers, and this ruins
the photoreceptors.

Experiments have demonstrated that the vascular endothelial growth factor
(VEGF) plays a vital role in the formation of choroidal neovascularization [5].
Currently, the most common and effective clinical treatment for wet AMD is anti-
VEGF therapy, which is a periodic intravitreal (into the eye) injection [12].

In the last decade, Optical Coherence Tomography (OCT) has been widely
used in the diagnosis of AMD and follow-up therapy. Spectral domain OCT (SD-
OCT) produces 3D image volumes, which have been useful in clinical practice.
Existing OCT systems are partially suited to monitoring the progress of the disease,
but OCT reveals many features about AMD such as hyper-reflective dots (HRD),
subretinal fluid and cysts. Figure 1 presents an SD-OCT B-scan with biomarkers
of AMD.

Figure 1: Original Optical Coherence Tomography (SD-OCT) image with biomark-
ers of AMD.

In the literature, a large number of publications exist on detecting retinal layers
based on various techniques. One approach is the automatic segmentation pro-
cedure using graph theory [1, 2, 8]. In this approach, the graph nodes usually
relate to image pixels, the graph edges are assigned to pairs of pixels, and the edge
weights depend on the intensity differences between the two pixels, and also may
depend on spatial distance between the pixels. Image segmentation then becomes
a graph cutting problem, which can be handled by dynamic programming. These
approaches are less tolerant to noise, which is a disadvantage, because images are
often very noisy. Another basic idea relies on the well-known energy-minimizing
active contour method which, unfortunately, cannot handle low contrast and noise.
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Yazdanpanah et al. [21] suggested a multi-phase framework with a circular shape
prior for modeling the boundaries of retinal layers and estimating the shape param-
eters. They used a contextual scheme to balance the weights of different terms in
the energy functional. Also, machine learning has been widely used in recent years
for retinal image analysis. Lang et al. [13] used a random forest classifier to segment
retinal layers. The random forest classifier learns the boundary pixels between lay-
ers and produces an accurate probability map for each boundary, which is further
processed to finalize boundaries. Procedures based on active contour or machine
learning provide an effective solution, but these methods are too time-consuming.
Hassan et al. [10] used a structure tensor approach combined with a nonlinear dif-
fusion process for layer detection. A structure tensor is a second-moment matrix
that displays similarities and prominent orientations of the image gradient. Some
other approaches use optimized boundary tracking [7] or polynomial smoothing [15].
These algorithms are rather complex.

Many studies focus on automatic detection of subretinal fluid in OCT images.
One of the most popular approaches is based on the Split-Bregman optimization
technique [9]. This method is used to segment dark regions (depending on the
image acquisition settings) between layers. These segmented regions are treated as
possible fluid candidates. A random forest classifier is trained to distinguish true
fluid regions from false segments [3, 22]. Also, a fuzzy level set method was intro-
duced by Wang et al. [19] to identify fluid-filled regions. They use the combination
of three types of scans (two types of B-scans and a C-scan) to generate a com-
prehensive volumetric segmentation of the retinal fluid. The remaining artifacts
are removed by identifying morphological characteristics and vascular shadowing.
Novosel et al. [16] recommended a locally-adaptive loosely-coupled level set method.
This approach exploits the local attenuation coefficient differences of layers around
an interface to delineate the fluid. This concept can also handle abrupt attenua-
tion coefficient variations and topology-disrupting anomalies. SEAD (symptomatic
exudate-associated derangements) segmentation in 3D volumes plays and important
role in the treatment of neovascular AMD. The accurate detection is a challenge
because of the large diversity of SEAD size, location and shape. Xu et al. [20]
proposed a voxel classification-based approach using a layer-dependent stratified
sampling strategy to address the class imbalance problem in SEAD detection.

In this paper, we deal with the automatic localization of subretinal fluid areas
and also analyze retinal layers, since layer information can help to localize fluid
regions. We present an algorithm that automatically delineates the ILM (inner-
limiting membrane) and RPE (retinal pigment epithelium) retinal layers, success-
fully localizes subretinal fluid regions, and computes their extent. We present our
results using a set of SD-OCT images and we depict our results in two different
ways. Our proposed method is based on simple operations that can detect impor-
tant regions quickly and efficiently. Each layer can be distorted by the effect of the
disease. Our method can estimate the distortion rate and possible normal layer
boundary, which may be useful for doctors. This feature of our algorithm makes it
special, whereas the above-mentioned algorithms cannot estimate the boundary of
a normal layer.
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2 Methods

Now, we will present our proposed method for detecting boundary layers and sub-
retinal fluid regions. The procedure first delineates the inner and outer boundary
retinal layers (ILM and RPE, resp.) using vertical profiles of OCT cross-section
images. Then subretinal fluid regions are localized and delineated. This is followed
by calculating quantitative measures such as the extent of subretinal fluid in each
slice, thickness and creasing of retinal layers. Once we have this information for
each slice, other (regional or global) metrics (e.g. subretinal fluid volume) can also
be readily computed.

2.1 ILM and RPE layer extraction

The OCT images are affected by distortions like “shadowing” by blood vessels, and
these may lead to false detections. First, we improve the image quality by noise
filtering and contrast enhancement using a fuzzy operator [4]. This can highlight
major retinal layers. We analyze vertical profiles of the filtered image and large
intensity steps in pixel density are assumed to correspond to change in tissue. The
function is defined by the expression

κ∗ν =
1

1 + 1−ν
ν

(
1−x
x

ν
1−ν

)λ , (1)

where ν is the threshold, x is the pixel intensity and λ denotes sharpness of the
filtering. As we mentioned earlier, the κ∗ν function can highlight boundary layers
and help suppress noise. We determined dynamically the input parameter ν in a
simple way. We sampled from the top range of the image and calculated the average
intensity for this ROI. The λ parameter value was set to 3, empirically. Figure 2
shows an example where the κ∗ν function was applied.

After filtering, we divided the image into bars with fixed width. A bar consisted
of 10 consecutive pixel columns and we calculated the horizontal projections of each

(a) (b)

Figure 2: Sample OCT image before (a) and after (b) applying the κ∗ν function.
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Figure 3: Calculated horizontal projection of a bar (a) and the Savitzky-Golay
filtered data (b).

bar to determine the boundaries. One of the major steps of our proposed procedure
is to analyze the vertical profiles. As this signal was noisy, it was necessary to filter
the data. We used the Savitzky-Golay filter [18], which is a smoothing digital
filter. This filter is good at preserving the relevant high frequency components of
the signal, which is an important aspect for our detection method. In Fig. 3, there
is an example of a projection (Fig. 3(a)) and its filtered version (Fig. 3(b)).

To determine of the outer layer boundary is harder than the inner boundary,
because Choriocapillaris and Chorodoidal vessels are located under the RPE layer.
The intensity of these regions vary, so several peaks appear in the projections.
Fortunately, in most cases, these minimum points are not prominent, and do not
cause a problem in the choice of the right locations. The algorithm chooses the
outstanding local minimum from the projected data to identify the possible inner
and outer layers.

Some of our OCT image volumes are strongly affected by noise or blood vessels
shadows. To achieve a more efficient and reliable segmentation, we need to estimate
the artifacts caused by the blood vessels. Below, we describe a method for detecting
blood vessels from the region of interest (ROI), so we have information about
the position of retinal blood vessels for each slice, which will aid layer boundary
detection.

2.2 Blood vessel segmentation

Now, we summarize our simple approach for segmenting retinal blood vessels in
fundus images. Fundus images are also provided with the OCT studies, in addition
to the cross-section slices, and spatial correspondence is well defined. Hence we can
use the fundus image for vessel segmentation and later use this information when
processing the OCT slices.

Major vessels cause a bigger shadowing effect on the OCT slices than the minor
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capillaries. Here, we do not seek to have a perfect segmentation of the whole vessel
tree. The segmentation output will be used to identify those positions (bars) on
the OCT slices where shadowing may be significant, since this can invalidate our
underlying assumption about large intensity steps matching layer boundaries. Once
we can localize these less reliable parts of the image, we can specially treat (or even
exclude) these parts from the layer boundary detection algorithm and handle them
as “missing data” rather than using “false information”.

Many published methods in the literature [6] deal with the retina vessel segmen-
tation problem and try to achieve the most accurate segmentation possible. For
our purposes, a rough estimate is sufficient, as the vessels are not the objective of
our studies, they merely locally spoil the contrast which hinders layer detection. It
can be seen in Fig. 4(a) that the central region (the macula and its surrounding) is
significantly darker than other parts of the image, hence the contrast between blood
vessels and their surrounding background differs in the central and the peripherical
parts of the image. Here our aim is to localize these regions and homogenize them
in a simple way. For this, we use a Gaussian-pyramid technique with 4 levels. Fig-
ure 4(b)) depicts one level of the pyramid. Intensity homogenization is performed
as a pixel operator according to the following formula:

I(x,y) = C · IB(x, y)/IO(x, y) for all pixels (x, y) in the image , (2)

where IO is the original image, IB is the blurred image, and C is the maximal
intensity in IO. Figure 4(c) shows the result of applying (2).

Intensity homogenization is followed by a contrast enhancement step, using an
adaptive fuzzy contrast stretching method, which is more effective than a com-
monly used contrast stretching procedure. Let I denote the input image, Imax
the maximum intensity and Imin the minimum intensity of the image. The linear
membership function µi,j is defined as

µi,j = (Ii,j − Imin)/(Imax − Imin) , (3)

i.e., the membership value for pixel (i, j) corresponds to the degree of brightness
of the gray level intensity of that pixel relative to the intensity range of the whole
image. This is a simple way to assign fuzzy membership values to elements of a
set (to the pixels, in our case). In a fuzzy processing approach, memberships are
manipulated instead of original properties. We achieve contrast enhancement by
using the intensification operator (INT) [17]

µ′i,j =

{
2 · (µi,j)

2, if 0 ≤ µi,j ≤ T ,

1 − 2 · (1 − µi,j)
2, otherwise ,

(4)

where T is an adaptively calculated threshold value. We used the statistical mean of
the intensities in each window to calculate T . Eq. (4) transforms membership values
that are above the threshold to values that are much higher and membership values
that are lower than the threshold to values that are much lower, in a nonlinear
manner. The last step here is defuzzification, i.e., generating properties in the
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Figure 4: Main steps of retinal blood vessel segmentation: (a) original image, (b)
one level of the Gaussian-pyramid, (c) homogenization, (d) fuzzy contrast stretching
(in complementer image), (e) binarization, (f) output image (after removal of false
objects).

original dimensions from the resulted memberships. I ′i,j denotes the calculated new
intensity for pixel (i, j), and it is got by applying the inverse of the transformation
used for fuzzification:

I ′i,j = Imin + µ′i,j · (Imax − Imin) . (5)

Figure 4(d) illustrates the contrast enhanced image. The contrast enhanced
image is turned into binary values in order to extract possible blood vessel regions,
using adaptive thresholding in a sliding 15×15 window. In the next step, we elimi-
nate false positive objects, because vessels constitute a connected object, so smaller
segments perhaps arise from noise. We use morphological closing with a rectangle
shaped structure element. The size of the element is consistent with the thinnest
blood vessel. Afterwards, we reject all those regions whose area is less than 10
pixels and whose shape is not elongated. Once we have the vessel mask on the
fundus image, we can project these data values onto the OCT cross-sections.
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2.3 Automatic detection of subretinal fluid

Before turning to the subretinal fluid regions, we will assume that blood vessels and
the ILM and RPE boundaries are already found in each OCT slice. Our procedure
uses these data values when estimating subretinal fluid regions. Subretinal fluid is
close to the RPE layer and appears as a larger hyporeflective connected component.
For processing, we use the negative of signals, because our medical colleagues use
the inverted presentation of images for the visual assessment and also exported the
image data for us in this format. When layers are very creased due to AMD, these
regions split up into multiple objects. To localize the fluid, we first use the Savitzky-
Golay filtered signal that was introduced in Section 2.1. Once again, we process
the OCT slices in vertical stripes, and based on the above assumptions, we look for
minimum locations on the horizontal projections that are closest to the RPE layer.
Some outliers can be filtered out based on assumptions about the layer thickness.
Using the vessel shadow information, we can filter out those stripes that are less
reliable than the others, and fit a smooth curve to the reliably detected minimum
locations, thus approximating the fluid surface in the less reliable positions. In
Section 2.1, we recommended a possible normal outer layer boundary. This can
help us to define the degree of creasing of the layers and it also supports outlier
filtering. These conditions reduce the dataset sufficiently, so after this step, we can
fit a curve to the detected points and outline the subretinal fluid region.

3 Evaluation

3.1 Image data

Our evaluation dataset contained 11 Heidelberg Spectralis OCT scans of wet age-
related macular degeneration patients treated with anti-VEGF intravitreal injec-
tions. The scanning parameters were: a 49 scan pattern, a pattern size of
5.8×5.8 mm, a distance between B-scans of 121µm, a size X of 512 pixels, a size
Z of 496 pixels; the pixel size was 11.44µm and 3.87µmm in X and Z directions,
respectively.

Manual ILM and RPE layer segmentation was performed by ophthalmologists
for 7 image sequences. This was treated as the ground truth for evaluating the
boundary layer detection method on these 7 volumes.

3.2 Results and discussion

The proposed method was implemented in MATLAB, with the help of the Im-
age Processing Toolbox. We evaluated our retinal layer detection algorithm in
two different ways. Firstly, to compare the results of our algorithm against the
manual delineations, we calculated the mean, maximum and standard deviation
of boundary errors for every surface. The 7 curves shown in Figure 5 depict the
error histogram for those OCT volumes where manual annotation was available.
Each curve aggregates the boundary errors in the 49 scans (slices) of a study.
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Figure 5: Error histogram of 7 image sequences.

Table 1: Summary of the mean, standard deviation, and maximum error (in pixels)
between manually segmented and automatically detected layers in 7 annotated
OCT image sequences.

Mean Standard deviation Maximum
Seq 02 2.01 1.56 17
Seq 03 2.10 0.69 15
Seq 04 1.44 0.65 15
Seq 05 1.96 0.80 19
Seq 06 2.39 1.63 18
Seq 07 2.17 0.64 15
Seq 08 1.83 0.65 17

All 1.98 0.94 16.57

It shows that the highest error measure is between 1 and 4 pixels in most cases
and Table 1 asserts to this statement. As shown in Table 1, the maximal dis-
tance between manually segmented and automatically detected layer boundary is
19 pixels (ca. 73.5µm). This deflection comes from two sources: the substantial
jumps between B-scans and layer distortions due to the disease. Unfortunately,
we could not exploit 3D information directly to segment layers because there are
some anomalies among slices of the OCT volume, due to the image acquisition and
registration process (within the device’s software).

Secondly, as you can see in the right-hand example in Figure 6, there is a big
difference between the manually annotated and the automatically segmented outer



624 Melinda Katona and László G. Nyúl

Figure 6: Visual comparison of expert annotated (in red) and automatically de-
tected (in yellow) layers.

layer because our algorithm follows the distorted layers. Still, the recommended
possible normal boundary aligns well with the manual annotation, so it avoids the
false detection. Nevertheless, in most cases, the mean errors are less than 2 pixels
and deviations are small between layers delineated by medical experts and the
boundaries determined automatically, hence the difference is usually negligible.

In Section 2.3, we proposed a method for the automatic detection of subretinal
fluid. Unfortunately, expert annotation was not yet available for the quantitative
evaluation on a larger set of cases. Figure 6 illustrates the performance of the
algorithm in a qualitative manner, presenting some example scans with overlaid
manual layer segmentation.

The main advantage of our proposed method is its simplicity, i.e. it uses simple
images processing operations which can be parallelized, and it does not need lots of
parameters that are difficult to tune to the application (in contrast to the energy
minimization approach, say).

Automatically calculated quantitative descriptors may be graphically presented
to the reader to aid interpretation of data. The first is a traditional slice-by-slice
display which provides a good depth context within a slice, but no spatial context
between slices. In a colored overlay (image fusion), an anatomical display offers
regional context and color encodes quantitative parameters. Figure 7 shows a
restricted subretinal fluid area where the results were verified by ophthalmologists
and they said that they the segmentation, quantification and also the visualization
technique quite useful.

4 Concluding remarks

Here, we presented an algorithm for the detection of subretinal fluid areas and
retinal layers and we presented some visualization techniques to illustrate the result.
We calculated metrics to quantify features of the OCT from the perspective of AMD
patients. After seeing the results, medical doctors at our clinic think that digital
image processing can help in the quantitative assessment of the OCT features of
AMD by providing automatic tools that can detect abnormalities and describe via
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Figure 7: An illustration of detected boundaries and quantitation. The blue curves
represent the detected boundaries, the green curve is the fitted normal layer bound-
ary and the red curve shows the detected fluid volume boundary.

Figure 8: Color overlay of the subretinal fluid volume thickness. Left: The red
boundaries indicate the subretinal fluid in each slice. Right: The color/hue repre-
sents subretinal fluid thickness.
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objective metrics the current state of the disease and longitudinal changes during
treatment. Using SD-OCT to follow up changes of subretinal fluid volume will
become a useful tool for detecting subtle changes during the course of treatment.
Further studies are planned in order to evaluate these new tools in a cohort of AMD
patients.
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thank Dr. József Dombi for suggesting the use of fuzzy operators in the image
preprocessing step.

References

[1] Abhishek, A. M., Berendschot, T. T. J. M., Rao, S. V., and Dabir, S. Seg-
mentation and analysis of retinal layers (ILM & RPE) in Optical Coherence
Tomography images with Edema. In Biomedical Engineering and Sciences
(IECBES), 2014 IEEE Conference on, pages 204–209, 2014.

[2] Chiu, S. J., Li, X. T., Nicholas, P., Toth, C. A., Izatt, J. A., and Farsiu, S.
Automatic segmentation of seven retinal layers in SDOCT images congruent
with expert manual segmentation. Optics Express, 18(18):19413–19428, 2010.

[3] Ding, W., Young, M., Bourgault, S., Lee, S., Albiani, D. A., Kirker, A. W.,
Forooghian, F., Sarunic, M. V., Merkur, A. B., and Beg, M. F. Automatic
detection of subretinal fluid and sub-retinal pigment epithelium fluid in optical
coherence tomography images. In 2013 35th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), pages
7388–7391, 2013.

[4] Dombi, J. Modalities, pages 53–65. Springer Berlin Heidelberg, 2012.

[5] Ferrara, N. Vascular endothelial growth factor: Basic science and clinical
progress. Endocrine Reviews, 25(4):581–611, 2004.

[6] Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R.,
Owen, C. G., and Barman, S. A. Blood vessel segmentation methodologies in
retinal images a survey. Computer Methods and Programs in Biomedicine,
108(1):407–433, 2012.

[7] Fu, D., Tong, H., Luo, L., and Gao, F. Retinal automatic segmentation method
based on prior information and optimized boundary tracking algorithm. In
Proc. SPIE, volume 10033, pages 100331C:1–100331C:6, 2016.



An Approach to the Quantitative Assessment of Retinal Layer Distortions 627

[8] Garvin, M. K., Abramoff, M. D., Wu, X., Russell, S. R., Burns, T. L.,
and Sonka, M. Automated 3-D Intraretinal Layer Segmentation of Macular
Spectral-Domain Optical Coherence Tomography Images. IEEE Transactions
on Medical Imaging, 28(9):1436–1447, 2009.

[9] Goldstein, Tom, Bresson, Xavier, and Osher, Stanley. Geometric applications
of the split Bregman method: Segmentation and surface reconstruction. Jour-
nal of Scientific Computing, 45(1):272–293, 2010.

[10] Hassan, B., Raja, G., Hassan, T., and Akram, M. U. Structure tensor based
automated detection of macular edema and central serous retinopathy using
optical coherence tomography images. Journal of the Optical Society of Amer-
ica, 33(4):455–463, 2016.

[11] Hee, M. R., Baumal, C. R., Puliafito, C. A., Duker, J. S., Reichel, E., Wilkins,
J. R., Coker, J. G., Schuman, J. S., Swanson, E. A., and Fujimoto, J. G.
Optical Coherence Tomography of Age-related Macular Degeneration and
Choroidal Neovascularization. Ophthalmology, 103(8):1260–1270, 1996.

[12] Kovach, J. L., Schwartz, S. G., Jr., H. W. Flynn, and Scott, I. U. Anti-VEGF
treatment strategies for wet AMD. Journal of Ophthalmology, 22:786870:1–
786870:7, 2012.

[13] Lang, A., Carass, A., Hauser, M., Sotirchos, E. S.and Calabresi, P. A., Ying,
H. S., and Prince, J. L. Retinal layer segmentation of macular OCT images us-
ing boundary classification. Biomedical Optics Express, 4(7):1133–1152, 2016.

[14] Lim, J.I. Age-Related Macular Degeneration. CRC Press, 2012.

[15] Lu, S., l. Cheung, C. Y., Liu, J., Lim, J. H., s. Leung, C. K., and Wong, T. Y.
Automated layer segmentation of optical coherence tomography images. IEEE
Transactions on Biomedical Engineering, 57(10):2605–2608, 2010.

[16] Novosel, J., Wang, Z., de Jong, H., van Velthoven, M., Vermeer, K. A., and
van Vliet, L. J. Locally-adaptive loosely-coupled level sets for retinal layer and
fluid segmentation in subjects with central serous retinopathy. In 2016 IEEE
13th International Symposium on Biomedical Imaging (ISBI), pages 702–705,
2016.

[17] Pal, S. K. and King, R. A. Image enhancement using smoothing with fuzzy
sets. IEEE Transactions on Systems, Man, and Cybernetics, 11(7):494–501,
1981.

[18] Schafer, R. W. What Is a Savitzky-Golay Filter? IEEE Signal Processing
Magazine, 28(4):111–117, 2011.

[19] Wang, J., Zhang, M., Pechauer, A. D., Liu, L., Hwang, T. S., Wilson, D. J., Li,
D., and Jia, Y. Automated volumetric segmentation of retinal fluid on optical
coherence tomography. Biomedical Optics Express, 7(4):1577–1589, 2016.



628 Melinda Katona and László G. Nyúl
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