
Acta Cybernetica 23 (2017) 371–378.

Statistical Analysis of DH1 Cryptosystem
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Abstract

In this paper we shall use some standard statistical methods to test the
avalanche effect of a previously introduced cryptosystem based on automata
compositions, called DH1 cryptosystem. We have generated sample data of
encryption and decryption. In our first set of analysis we simply estimated
the probabilities of the atoms of the discrete distribution separately in order
to compare them with those of the binomial test distribution. In the second
statistical analysis, we turned to a goodness-of-fit test. For this we used
the χ2-test. Thirdly, we assumed that the sample comes from a binomial
distribution and we calculated the maximum likelihood estimation of the two
parameters. Finally we discuss some well-known further tests on randomness
and related results. Our main conclusions based on the statistics all confirm
that the avalanche effect is fulfilled.
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1 Introduction

Modern block cyphers are symmetric cryptosystems operating on fixed-length
groups of bits, called blocks. These blocks contains at least 128 bits. The cryp-
tosystem transforms the plaintext blocks into cyphertext blocks one by one. In [1]
the authors introduced a novel block cypher based on abstract automata and Latin
cubes, which is called DH1 cryptosystem in [3]. Another type of cryptosystem based
on compositions of automata can be found in [2]. The basic idea of DH1 cryptosys-
tem is to use a giant size finite automaton and a pseudorandom generator. The set
of states of the automaton consists of all possible plaintext/cyphertext blocks, and
the input set of the automaton contains all possible pseudorandom blocks. The size
of the pseudorandom blocks are the same as the size of the plaintext/cyphertext
blocks: 128 bits. For each plaintext block the pseudorandom generator generates
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út 36, Hungary, E-mail: domosi@nyf.hu

bFaculty of Informatics, University of Debrecen, H-4028 Debrecen, Kassai út 26, Hungary,
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the next pseudorandom block, and the automaton transforms the plaintext block
into a cyphertext block by the effect of the pseudorandom block. The key is the
transformation matrix of the automaton.

A = ({0, 1, ..., n− 1}, {0, 1, ..., n− 1}, δ)

δ 0 1 ... n− 1
0 c0,0 c0,1 ... c0,n−1

1 c1,0 c1,2 ... c1,n−1

...
...

...
. . .

...
n− 1 cn−1,1 cn−1,2 ... cn−1,n−1

• n = 2128

• the states (c0,0, ..., cn−1,n−1) are numbers between 0 and n− 1

• each row is a permutation of states (other case decryption is impossible)

• each column is a permutation of states (other case statistical attacks are
possible)

• input letters are pseudorandom numbers between 0 and n− 1

• the key is the transition function itself (+ an initial value: the seed of the
pseudorandom number generator (PRNG)).

The following example shows the encryption of a secret message which contains the
following 3 blocks: 12993,999833,22212211

• plaintext blocks: 12993,999833,22212211

• suppose the (secret) pseudorandom number blocks are: 2012200, 239993,178

• ciphertext blocks: c2012200,12993, c239993,999833, c178,22212211
(δ(2012200, 12993), δ(239993, 999833), δ(178, 22212211)).

The problem with this idea is the following. The size of the transition matrix of
the automaton is huge, namely 2128 × 2128 × 16 bytes, which is impossible to store
in the memory or on a hard disk. The solution is to use an automata network.
Automata network consists of smaller automata, and it is able to simulate the
work of a huge automaton [4]. In [1] the authors introduced a simple automata
network which consist of 16 automaton, each of them calculates only one byte of
the cyphertext block. Using this simple automata network makes possible simple
calculations, but the authors had to introduce an automata network which main
rounds contains 4 steps, and each step contains 2 sub steps to have an appropriate
avalanche effect. Avalanche effect is an important property for block cyphers,
meaning one bit change in the plaintext block should effect significant change in
the cyphertext block, and one bit change in the cyphertext block should effect
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significant change in the corresponding plaintext block. The experimental results
shows that 2 main rounds are enough for appropriate avalanche effect, but in this
paper we are going to show detailed statistical analysis based on our test data
samples.

2 Data and methodology

To test our system, we calculated the number of the identical bytes in two 16 bytes
long independent random strings. We have tested 1.000.000 pairs, and saved the
result. We also compared 1.000.000 ciphertext block pairs, where the corresponding
plaintext blocks had just 1 bit difference. Finally we compared 1.000.000 plaintext
block pairs, where the corresponding ciphertext blocks had just 1 bit difference.

Table 1 : Frequency table of the four samples

identical bytes EN1R DE1R EN2R DE2R
0 915924 916422 938843 939081
1 43064 42710 59403 59145
2 22670 22397 1717 1746
3 880 921 37 28
4 11050 11064 0 0
5 410 396 0 0
6 179 225 0 0
7 11 4 0 0
8 5574 5594 0 0
9 125 136 0 0
10 72 89 0 0
11 3 1 0 0
12 36 40 0 0
13 0 0 0 0
14 1 1 0 0
15 0 0 0 0
16 0 0 0 0

Basically we have generated this way 4 different samples: on the one hand we
had samples obtained after encyption (encoding, denoted by EN) and decryption
(decoding, denoted by DE), on the other hand after 1 round and 2 rounds (de-
noted by 1R and 2R) of encryption or decryption. Hence we shall refer to the 4
samples as EN1R, EN2R, DE1R, DE2R, respectively. (See Table 1, where we show
the frequencies of the possible values –i.e. the number of identical bytes– of the
distributions for all samples.)

Based on the generated samples we considered three different statistical ques-
tions to analyse the distribution of the number of different blocks in the pairs. But
the main aim behind all questions, of course, was to check wether the avalanche
effect can be confirmed in our case. Clearly, in an ideal situation – i.e. where we
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have an appropriate avalanche effect – one should get a binomial distribution with
parameters n = 16 and p = 1 − 1/256 for the generated data, since in that case
one can get no additional information from the data about the coding method.
Therefore in what follows we shall call the binomial distribution with the above
parameters simply the ’reference distribution’. With different ways we analyze
whether our data show significant difference from the reference distribution or not.

For what follows we shall denote the probabilities of the test (reference) dis-

tribution by p
(0)
i , for i = 0, 1, . . . , 16, whereas the probabilities of the real (true)

distribution will be denoted by p∗i , for i = 0, 1, . . . , 16.
In our first set of analysis we simply estimated the probabilities of the 16 atoms

of the discrete distribution separately. We calculated the point estimate of the
probabilities, furtherore, considering the interval estimate of the probabilities we
used confidence level α = 0, 999, i.e. 99,9% and calculated the maximum value of
the margin of errors, which has the form

∆ =
1

2
z1−α

2

√
1

n
,

where z1−α
2

is a quantile of the standard normal distribution of order 1− α
2 and n

is the sample size. It is well known that the margin of error takes its maximum for
probability 1/2. Since we have a large sample size we decided to fix the confidence
level at a very high value, so that small differences are indicated. This way one can
see the difference between the probabilities obtained from the reference binomial
distribution and the estimated probabilities from the sample.

In the second statistical analysis, we turned to a goodness-of-fit test. For this
we used the χ2-test of goodness of fit with the well-known test statistics

χ2 =

k∑
i=1

(fi − f∗i )2

f∗i
,

where fi and f∗i are the observed and the expected frequencies (the latter one being
based on the test distribution) for category (probability) i, i = 1, . . . , k, respectively.
The aim is of course to check if the null hypothesis can be confirmed according to
what the theoretical distribution of the population what the data is coming from
coinsides the reference binomial distribution, which is our test distribution.

In our third analysis, we assumed that the sample comes from a binomial distri-
bution (based on the results obtained to the previous questions) and we calculated
simply the maximum likelihood estimation of the two parameters of the distribution
and compared them to those of the reference distribution.

3 Statistical results

Before turning to the analysis it is worth to mention that one should check the
basic properties of the sample. In other words, since we will use some standard
statistical methods which are all based on independent and identically distributed
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sample (i.i.d. sample) one should verify these properties. Which concerns our case,
either after one round or two rounds and either in case of encryption or decryption
one can clearly see that the generation method of the data assures us that on the one
hand the data element show no independence on the other hand their (theoretical)
distribution is the same.

Table 2 : Difference of the point estimates and the theoretical values (i.e.

p̂i − p(0)i , i = 0, 1, . . . , 16)

EN1R DE1R EN2R DE2R
0 -2.337318e-02 -2.287610e-02 -4.551571e-04 -2.170959e-04
1 -1.587231e-02 -1.622635e-02 4.667083e-04 2.086489e-04
2 2.093660e-02 2.066358e-02 -1.642037e-05 1.257791e-05
3 8.482781e-04 8.892772e-04 5.277280e-06 -3.722757e-06
4 1.104961e-02 1.106360e-02 -4.043097e-07 -4.043097e-07
5 4.099966e-04 3.959962e-04 -3.805267e-09 -3.805267e-09
6 1.790002e-04 2.250000e-04 -2.735813e-11 -2.735813e-11
7 1.100001e-05 4.000000e-06 -1.532668e-13 -1.532668e-13
8 5.574006e-03 5.594000e-03 -6.761772e-16 -6.761772e-16
9 1.250001e-04 1.360000e-04 -2.357045e-18 -2.357045e-18
10 7.200007e-05 8.900000e-05 -6.470319e-21 -6.470319e-21
11 3.000003e-06 1.000000e-06 -1.384025e-23 -1.384025e-23
12 3.600004e-05 4.000000e-05 -2.261480e-26 -2.261480e-26
13 -2.728784e-29 -2.728784e-29 -2.728784e-29 -2.728784e-29
14 1.000001e-06 1.000000e-06 -2.293096e-32 -2.293096e-32
15 -1.199004e-35 -1.199004e-35 -1.199004e-35 -1.199004e-35
16 -2.938736e-39 -2.938736e-39 -2.938736e-39 -2.938736e-39

Which concerns the point estimations for the four samples, Table 2 contains the
results, namely: we show the difference of the point estimates and the theoretical

values (obtained from the test distribution). In other words we show p̂i − p
(0)
i

for all i = 0, 1, . . . , 16, where p̂i is clearly the point estimate (namely the relative
frequency) of p∗i . One can compare it with the maximum value of the margin of error
∆ descibed in the previous section. With α = 0, 999 we obtain ∆ = 0, 001545116.
We can see from the table that after 1 round some of the estimates have a relatively
large difference from the theoretical value, namely larger than 10−2 and hence
larger than ∆ both in case of encryption or decryption. However, after 2 rounds
the results are much better since the largest difference at issue is still clearly under
10−3. Thus we can conclude that after two rounds the generated data do not
show difference from the theoretical test distribution, with 99,9% of confidence one
could not differentiate between the test probabilities and the obtained empirical
probabilities. Thus after four rounds the cryptosystem in this way show to fulfill
the appropriate avalanche effect.

The results obtained from the χ2-test can be seen in Table 3. Note that due
to the large sample size we had the following concern. One cannot generally hope
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a clear confirmation of the null hypothesis, since very small differences of the dis-
tributions may lead to the rejection of the null hypothesis in such a case. (That
is why sometimes the P-values are used only as an indicator: choosing different
test distributions the one giving the largest P-value is accepted even if it does not
show perfect fit by the test.) However, the results gave a clear picture, namely
they lead to the same conclusions as in the previous analysis: after 2 rounds with
both samples we cannot reject the null hypothesis that the data comes from the
reference distribution. This again confirm that the cryptosystem seems to fulfill
the avalanche effect.

Table 3 : Results obtained from the χ2-test

EN1R DE1R EN2R DE2R
test stat. 4.366657e+19 4.367992e+19 5.357948e-06 1.725129e-06

P-values ≈0 (<10e-10) ≈0 (<10e-10) ≈ 1 ≈ 1

conclusion H1 H1 H0 H0

Finally, Table 4 shows the results obtained by the maximum likelihood estima-
tions of the two parameters of the binomial distribution (assuming that the data
is from the family of binomial distributions). For the test distribution we have
p = 1 − 1/256 ≈ 0, 9960938 and N = 16. The results after two rounds support
again the acceptence of the reference distribution as the real one, since the errors
in the estimates are less than 10−4, which is quite satisfactory.

Table 4 : Results obtained by the maximum likelihood estimations

EN1R DE1R EN2R DE2R
p 0.9569296 0.9566545 0.9960694 0.9960817
N 16.52644 16.53131 15.99994 15.99997

3.1 The Lempel-Ziv, Sárközy and Mauduit randomness tests

One of the criteria used to evaluate the AES candidate algorithms was their demon-
strated suitability as random number generators. That is, the evaluation of their
output utilizing statistical tests should not provide any means by which to dis-
tinguish them computationally from a truly random source. In order to test our
cryptosystem we performed some basic randomness testing such as the Lempel-Ziv
test and Sárközy and Mauduit methods. Data compression methods are very good
starting point for testing pseudo randomness of a finite binary string. Applying
the Lempel-Ziv test we were not able to distinguish the output of our cryptosystem
from true random sources. In order to fulfill further requirements we performed
the Sárközy and Mauduit methods [5, 6] so that to study the behaviour of pseu-
dorandom sequences generated by our cryptosystem. Let EN = {e1, e2, . . . , eN} ∈
{−1,+1}N represent a finite binary sequence. Let us define

U(EN ,M, a, b) =

M∑
j=1

ea+jb.
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The well-distribution measure of EN is defined by

W (EN ) = max
a,b,t
|U(EN , t, a, b)| = max

a,b,t

∣∣∣∣∣∣
t∑

j=1

ea+jb

∣∣∣∣∣∣
where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and 1 ≤ a+b ≤
a+ tb ≤ N . Furthermore let us define

V (EN ,M,D) =

M−1∑
n=0

en+d1 en+d2 . . . en+dk .

The correlation measure of order k of EN is defined by

Ck(EN ) = max
M,D
|V (EN ,M,D)| = max

M,D

∣∣∣∣∣
M−1∑
n=0

en+d1 en+d2 . . . en+dk

∣∣∣∣∣
where the maximum is taken over all M and D = (d1, . . . , dk) such that 0 ≤
d1 ≤ · · · ≤ dk ≤ N −M . The goodness of a PRNG is determined by the order of
W (EN ) and Ck(EN ). Our first results on the issue showed that we were not able to
distinguish the output of our cryptosystem from true random sources by analyzing
the deviation of W (EN ) and Ck(EN ).

There are many different statistical methods for testing the pseudorandomness
of a binary string. For instance, The National Institute of Standards and Technol-
ogy (NIST) published a statistical package consisting of 15 statistical tests that were
developed to test the randomness of arbitrarily long binary sequences produced by
either hardware or software based cryptographic random or pseudorandom num-
ber generators. Our latest (positive) test results confirm that it is meaningful and
hopeful to run further tests on the cryptosystem in this direction. Note that ac-
cording to the first few test results the DH1 cryptosystem successfully passed the
criteria of NIST test so we would like to continue our research in this direction.

4 Conclusions

The results from the statistical estimations and tests show that the distributions of
the 3 samples are the same with the same parameters, their distribution coincides
with the theoretical binomial distribution, which means that the cryptosystem has
an appropriate (efficient, statistically significant) avalanche effect. The first few
statistical test results suggest that the output of the cryptosystem can not be
distinguished from true random sources by statistical tests.
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[3] P. Dömösi, J. Gáll, G. Horváth, N. Tihanyi: Some remarks on the DH1 Cryp-
tosystem based on automata compositions, in preparation.
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