
Acta Cybernetica 23 (2017) 269–281.

Synchronous Forest Substitution Grammars∗

Andreas Malettia

— dedicated to the memory of Zoltán Ésik (1951–2016) —

Abstract

The expressive power of synchronous forest (tree-sequence) substitution
grammars (SFSGs) is studied in relation to multi bottom-up tree transduc-
ers (MBOTs). It is proved that SFSGs have exactly the same expressive
power as compositions of an inverse MBOT with an MBOT. This result is
used to derive complexity results for SFSGs and the fact that compositions of
an MBOT with an inverse MBOT can compute tree translations that cannot
be computed by any SFSG, although the class of tree translations computable
by MBOTs is closed under composition.

Keywords: tree transducer, synchronous grammar, regular tree language,
machine translation

1 Introduction

Synchronous forest substitution grammars (SFSGs) [19] or the rational binary tree
relations [17] computed by them received renewed interest recently due to their
applications in Chinese-to-English machine translation [21, 22]. The fact that
[19] and [17] arrived independently and with completely different backgrounds at
the same model shows that SFSGs are a natural, practically relevant, and theo-
retically interesting model for tree translations. Roughly speaking, SFSGs are a
synchronous grammar formalism [2] that utilizes only first-order substitution as in
a regular tree grammar [7, 8], but allows several components that develop simulta-
neously for both the input and the output side. This feature allows them to model
linguistic discontinuity on both the source and target language. The rational binary
tree relations or equivalently the tree translations computed by SFSGs can also be
characterized by rational expressions [17] and automata [16].

Multi bottom-up tree transducers (MBOTs) [1, 4] are restricted SFSGs, in which
only the output side is allowed to have several components. They were rediscovered

∗This article is an extended and revised version of [Maletti: Synchronous forest substitution
grammars. In Proc. Algebraic Informatics, LNCS 8080, pages 235–246, 2013]

aUniversität Leipzig, Institute of Computer Science, PO box 100 920, 04009 Leipzig, Germany,
E-mail: maletti@informatik.uni-leipzig.de

DOI: 10.14232/actacyb.23.1.2017.15

270 A. Maletti

in [5, 6], but were studied extensively by [3, 11, 1] already in the 70s and 80s. Their
properties [13] are desirable in statistical syntax-based machine translation [10].
This led to a closer inspection [4, 15, 9] of their properties in recent years. Overall,
their expressive power is rather well-understood by now.

In this contribution, we investigate the expressive power of SFSGs in terms
of MBOTs. We show that the expressive power of SFSGs coincides exactly with that
of compositions of an inverse MBOT followed by an MBOT. This characterization
is natural in terms of bimorphisms and shows that the input and the output tree
are independently obtained by a full MBOT from an intermediate tree language,
which is always regular [7, 8]. This paves the way to complementary results. In
particular, we derive the first complexity results for SFSGs and we demonstrate that
the composition in the other order (first an MBOT followed by an inverse MBOT)
contains tree translations that cannot be computed by any SFSG. This shows a
limitation of MBOTs, which are closed under composition [4]. Overall, we can
thus also characterize the expressive power of SFSGs by an arbitrary chain of
inverse MBOTs followed by an arbitrary chain of MBOTs.

2 Preliminaries

We use N for the set of nonnegative integers, and N+ = N \ {0} for the set of
positive integers. For all k ∈ N, the set {i ∈ N+ | i ≤ k} is abbreviated to [k].
In particular, [0] = ∅. For all relations R ⊆ A × B and subsets A′ ⊆ A, we let
R(A′) = {b ∈ B | ∃a ∈ A′ : (a, b) ∈ R}. Moreover,

R−1 = {(b, a) | (a, b) ∈ R} dom(R) = R−1(B) ran(R) = dom(R−1) ,

which are called the inverse of R, the domain of R, and the range of R, respectively.
Given relations R ⊆ A × B and S ⊆ B × C, the composition R ; S ⊆ A × C of R
followed by S is R ; S = {(a, c) ∈ A × C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S}.
These notions and notations are lifted to sets and classes of relations as usual. For
every k ∈ N, we also write Ak = A×· · ·×A containing the factor A exactly k times.

Given a set Σ, the set Σ∗ =
⋃
k∈N Σk is the set of all words over Σ, which

includes the empty word ε ∈ Σ0. The concatenation of two words u,w ∈ Σ∗ is
denoted by u.w or just uw. The length |w| of a word w ∈ Σ∗ is the unique k ∈ N
such that w ∈ Σk. We simply write wi for the i-th letter of w, so wi = σi for
all i ∈ [k] provided that w = σ1 · · ·σk with letters σi ∈ Σ for all i ∈ [k]. Given
a set A, the set TΣ(A) of all Σ-trees indexed by A is the smallest set T such that
A ⊆ T and σ~u ∈ T for all σ ∈ Σ and ~u ∈ T ∗. Such a sequence ~u of trees is
also called forest. Consequently, a tree t is either an element of A, or it consists
of a root node labeled σ followed by a forest ~u of |~u| children. To improve the
readability, we often write a forest ‘t1 · · · tk’ as ‘t1, . . . , tk’, where t1, . . . , tk ∈ TΣ(A).
In addition, we identify the tree t with the forest (t). The positions pos(t) ⊆ N∗+ of

Synchronous Forest Substitution Grammars 271

a tree t ∈ TΣ(A) are inductively defined by

pos(a) = {ε} and pos(σ~u) = {ε} ∪
|~u|⋃
i=1

{i.p | p ∈ pos(~ui)}

for every a ∈ A, σ ∈ Σ, and ~u ∈ TΣ(A)∗. For each forest ~u ∈ TΣ(A)∗, we

let pos(~u) =
⋃|~u|
i=1{#i−1.p | p ∈ pos(~ui)}. Positions are totally ordered via the

(standard) lexicographic ordering � on N∗+, which can be extended to (N+ ∪{#})∗
with the convention that the additional letter # is larger than all numbers; i.e., n ≺
for every n ∈ N+. Let t, t′ ∈ TΣ(A) and p ∈ pos(t). The label of t at position p
is t(p), the subtree rooted at position p is t|p, and the tree obtained by replacing
the subtree at position p by t′ is denoted by t[t′]p. Formally, they are defined by
a(ε) = a|ε = a and a[t′]ε = t′ for every a ∈ A and

t(p) =

{
σ if p = ε

~ui(p
′) if p = i.p′ with i ∈ N+

t|p =

{
t if p = ε

~ui|p′ if p = i.p′ with i ∈ N+

t[t′]p =

{
t′ if p = ε

σ(~u1, . . . , ~ui−1, ~ui[t
′]p′ , ~ui+1, . . . , ~u|~u|) if p = i.p′ with i ∈ N+

for all t = σ~u with σ ∈ Σ and ~u ∈ TΣ(A)∗. We immediately also extend this
notion to forests ~u ∈ TΣ(A)∗ for all #ip ∈ pos(~u) with i ∈ N and p ∈ pos(~ui+1) by
~u(#ip) = ~ui+1(p) and ~u|#ip = ~ui+1|p and

~u[t′]#ip = (~u1, . . . , ~ui−1, ~ui[t
′]p, ~ui+1, . . . , ~u|~u|) .

In the following, let ~u ∈ TΣ(A)∗ be a forest. By our identification of trees TΣ(A)
with forests TΣ(A)1 of length 1, this choice includes trees. A position p ∈ pos(~u)
is a leaf in ~u if p.1 /∈ pos(~u). For every selection S ⊆ A ∪ Σ of labels, we let
posS(~u) = {p ∈ pos(~u) | ~u(p) ∈ S} and poss(~u) = pos{s}(~u) for every s ∈ A ∪ Σ.
The forest ~u ∈ TΣ(A) is linear in S ⊆ A if |poss(~u)| ≤ 1 for every s ∈ S. The
variables of ~u are var(~u) = {a ∈ A | posa(~u) 6= ∅}. Given a selection S ⊆ A and
a mapping θ : S → TΣ(A)∗ such that |θ(s)| = |poss(~u)| for all s ∈ S, also called
suitable substitution for S in ~u, the forest ~uθ is obtained from ~u by replacing for
every s ∈ S the leaves poss(~u) in lexicographic order by the trees θ(s). Formally,
for every s ∈ S, let poss(~u) = {ps1, . . . , psks} with ps1 ≺ · · · ≺ psks . Then

~uθ = ~u[θ(s1)1]ps11
· · · [θ(s1)|θ(s1)|]ps1ks1

· · · [θ(s`)1]ps`1 · · · [θ(s`)|θ(s`)|]ps`ks`
,

where S = {s1, . . . , s`}.
Given two sets Σ and ∆ with � /∈ ∆, a mapping d : Σ→ (∆∪{�}) is a delabeling.

Thus, a delabeling is similar to a relabeling [7, 8], but it can also map symbols to a
special symbol �, which will yield that those symbols are deleted, when they occur
with exactly one child and project on the delabeling of the child. The delabeling

272 A. Maletti

induces a mapping τd : TΣ(A)→ TΣ∪∆(A) such that τd(a) = a for all a ∈ A and

τd(σ~u) =


τd(~u1) if d(σ) = � and |~u| = 1

σ(τd(~u1), . . . , τd(~u|~u|)) if d(σ) = � and |~u| 6= 1

d(σ)(τd(~u1), . . . , τd(~u|~u|)) otherwise

for all σ ∈ Σ and ~u ∈ TΣ(A)∗.
Finally, let us recall the regular tree languages [7, 8]. A (finite-state) tree au-

tomaton (TA) is a tuple G = (Q,Σ, I, R) such that Q is a finite set of states, Σ is
an alphabet of symbols, I ⊆ Q is a set of initial states, and R ⊆ Q × Σ × Q∗ is a
finite set of rules. A rule (q, σ, ~r) ∈ R is typically written q → σ~r. Given sentential
forms ξ, ζ ∈ TΣ(Q) we write ξ ⇒G ζ if there exists a rule q → σ~r ∈ R and an
occurrence p ∈ posq(ξ) of q in ξ such that ζ = ξ[σ~r]p. The tree automaton G
generates the tree language L(G) = {t ∈ TΣ | ∃q ∈ I : q ⇒∗G t}, where ⇒∗G is the
reflexive and transitive closure of ⇒G. A tree language L ⊆ TΣ is regular if there
exists a TA G such that L = L(G). The class of regular tree languages is denoted
by ‘Reg’. Moreover, ‘FTA’ denotes the class of partial identities computed by the
regular tree languages; i.e., FTA = {idL | L ∈ Reg}, where idL = {(t, t) | t ∈ L}.

3 Synchronous forest substitution grammars

In this section, we introduce our main model, the (finite-state) synchronous forest-
substitution grammar (SFSG), which is the natural finite-state generalization of the
(local non-contiguous) synchronous tree-sequence substitution grammars of [19].
Although we often speak about grammars in the following, we will continue to use
‘states’ instead of ‘nonterminals’. SFSGs naturally coincide in expressive power
with the binary rational relations studied by [17, 16], which we will show later.
We immediately present it in a form inspired by tree bimorphisms [1] and tree
grammars with multi-variables [17].

Definition 1. A (finite-state) synchronous forest-substitution grammar (SFSG) is
a tuple G = (Q,Σ,∆, I, R), where
• Q is a finite set of states,
• Σ and ∆ are alphabets of input and output symbols,
• I ⊆ Q is a set of initial states, and
• R ⊆ TΣ(Q)∗ ×Q× TΣ(Q)∗ is a finite set of rules.

It is a multi bottom-up tree transducer (MBOT) if R ⊆ TΣ(Q)×Q× TΣ(Q)∗ and
a multiple regular tree grammar (MRTG) if R ⊆ TΣ(Q)×Q× {ε}.

In simple terms, an SFSG consists of a finite set of rules that specify a state,
for which the rule applies together with a sequence of input tree fragments and a
sequence of output tree fragments. In an application of such a rule all fragments
replace occurrences of the guarding state at the same time in the input and output
tree. This also yields that all occurrences of the same state in those fragments are
implicitly linked and prepared to be replaced in parallel in a future rule application.

Synchronous Forest Substitution Grammars 273

γ1

q

γ1

q

q
— ε

γ2

q

γ2

q

q
— ε α α q

— ε α q′

— α α

σ

q q′ q
q0
—

σ

q′ α q′

γ1

q′
q′

—

γ1

q′

γ1

q′

γ2

q′
q′

—

γ2

q′

γ2

q′

Figure 1: Example rules of the SFSG of Example 1.

An MBOT is a restricted SFSG, in which only a single input tree fragment is allowed
in each rule. Compared to its traditional definition [4] the linearity of the single
input tree fragment in the states Q is not required here, but as we will see nonlinear
rules will not be useful in our version of MBOTs. To make the rules more readable,

we also write `1 · · · `k
q

— r1 · · · rk′ or ~̀
q

— ~r for a rule (`1, . . . , `k, q, r1, . . . , rk′) ∈ R.

Example 1. Let G = (Q,Σ,Σ, {q0}, R) be the SFSG such that
• Q = {q0, q, q

′} and Σ = {α, γ1, γ2, σ}, and
• for every γ ∈ {γ1, γ2} the following rules are in R:

ρ0 = σ(q, q′, q)
q0
— σ(q′, α, q′) ργ = γ(q) γ(q)

q
— ε ρα = α α

q
— ε

ρ′γ = γ(q′)
q′

— γ(q′) γ(q′) ρ′α = α
q′

— α α .

The rules are illustrated in Figure 1, where we indicate the implicit links by splines.
Clearly, this SFSG G is neither an MBOT nor an MRTG, although the rules for q
are valid MRTG rules and the rules for q′ are valid MBOT rules.

It remains to define the semantics of SFSGs. We use a bottom-up variant of the
classical fixed-points semantics of an SFSG G. It closely corresponds to a semantics
based on the evaluation of derivation trees (and that of bimorphisms), which we also
define as well. We inductively define the pairs of input and output tree sequences
generated by each state, which we call pre-translations. Each pre-translation for a

state q ∈ Q is obtained from a rule ρ = ~̀ q
— ~r of R by replacing all occurrences of

a state q′ ∈ var(~̀.~r) by the corresponding components of a pre-translation for q′.

Definition 2. Let G = (Q,Σ,∆, I, R) be an SFSG. A pre-translation for q ∈ Q
is a pair 〈~u,~v〉 consisting of an input tree sequence ~u ∈ T ∗Σ and an output tree
sequence ~v ∈ T ∗∆. For every state q ∈ Q, the pre-translations Gq ⊆ T ∗Σ × T ∗∆
generated by q are defined to be the smallest set Tq such that 〈~̀θ, ~rθ′〉 ∈ Tq for all

rules ρ = ~̀ q
— ~r ∈ R and suitable substitutions θ : var(~̀)→ T ∗Σ and θ′ : var(~r)→ T ∗∆

for var(~̀) in ~̀ and for var(~r) in ~r, respectively, with pre-translations 〈θ(q′), θ′(q′)〉
of Tq′ for every q′ ∈ var(~̀.~r). The derivation tree corresponding to the newly

constructed pre-translation 〈~̀θ, ~rθ′〉 is ρ(tq1 , . . . , tqk), where var(~̀.~r) = {q1, . . . , qk}

274 A. Maletti

with q1 <N · · · <Q qk for some fixed total order ≤Q on Q and tq′ is the derivation

tree corresponding to the pre-translation 〈θ(q′), θ′(q′)〉 for every q′ ∈ var(~̀.~r). The
derivation tree language Dq(G) ⊆ TR contains all derivation trees for the pre-
translations 〈~u,~v〉 ∈ Gq.

Example 2. Let us recall the SFSG G of Example 1. The rules ρα = αα
q

— ε and

ρ′α = α
q′

— α α immediately yield the corresponding pre-translations 〈α α, ε〉 ∈ Gq
and 〈α, α α〉 ∈ Gq′ with derivation trees ρα and ρ′α, respectively. The former
pre-translation can be combined with the rule ργ for γ ∈ {γ1, γ2} to obtain the pre-
translation 〈γ(α)γ(α), ε〉 ∈ Gq with derivation tree ργ(ρα), and more generally, the
pre-translations

〈γi1(· · · (γik(α)) · · ·) γi1(· · · (γik(α)) · · ·), ε〉 ∈ Gq

for all k ∈ N and i1, . . . , ik ∈ {1, 2}. The derivation tree corresponding to the
displayed pre-translation is ργi1 (· · · (ργik (ρα)) · · ·). Similarly, if we use the rules ρ′γ
with γ ∈ {γ1, γ2} on the already mentioned pre-translation 〈α, α α〉 ∈ Gq′ and the
such obtained pre-translations, then we derive the pre-translation

〈γi1(· · · (γik(α)) · · ·), γi1(· · · (γik(α)) · · ·) γi1(· · · (γik(α)) · · ·)〉 ∈ Gq′

using the derivation tree ρ′γi1 (· · · (ρ′γik (ρ′α)) · · ·) for all k ∈ N and i1, . . . , ik ∈ {1, 2}.
Plugging those pre-translations into the rule ρ0, we obtain pre-translations of the
form 〈σ(t, t′, t), σ(t′, α, t′)〉 ∈ Gq0 . We illustrate the last step of the combination
process in Figure 2.

The tree translation computed by an SFSG is now simply the set of all those
pre-translations computed by the initial states that have sequences of length 1 for
the input and output side. The restriction to sequences of length 1 is necessary
to obtain a relation on trees. Finally, we also formally define the tree language
generated by an SFSG although this notion is most suitable for MRTGs.

Definition 3. Let G = (Q,Σ,∆, I, R) be an SFSG. It computes the tree trans-
lation τG ⊆ TΣ × T∆ defined by τG = (

⋃
q∈I Gq) ∩ (TΣ × T∆). The tree lan-

guage L(G) ⊆ TΣ generated by G is L(G) = (
⋃
q∈I Gq) ∩ (TΣ × {ε}). Two SFSGs

are (translation) equivalent if their computed tree translations coincide and language
equivalent if their generated tree languages coincide. The classes SFSG and MBOT

contain all tree translations computable by SFSGs and MBOTs, respectively, and
the class MRTG denotes the class of all tree languages generated by MRTGs.

In the rest of this section, we present a normal form for MBOTs and an al-
ternative characterization of SFSGs in terms of classical bimorphisms [1] using a
tree language of MRTG as center language. The former result demonstrates that our
MBOTs are as expressive as the notion discussed in [4]. We conclude with some
simple properties of SFSG, but we start with the normal form for MBOTs.

Synchronous Forest Substitution Grammars 275

σ

q q′ q
q0
—

σ

q′ α q′

〈 t t , ε〉 〈 t′ , t′ t′ 〉

Figure 2: Illustration of the combination of a rule with pre-translations.

Lemma 1. For every MBOT G = (Q,Σ,∆, I, R) there is a translation equivalent
MBOT G′ = (Q,Σ,∆, I, R′) such that t is linear in Q and var(~r) ⊆ var(t) for

every t
q

— ~r ∈ R′.

Proof. We set R′ = {t q
— ~r ∈ R | t linear in Q, var(~r) ⊆ var(t)}, which makes sure

that the MBOT G′ obeys the required restrictions. The translation equivalence
of G and G′ remains a proof obligation. We first observe that |~u| = 1 for every
state q ∈ Q and pre-translation 〈~u,~v〉 ∈ Gq due to the rule shape of G. Now,

let ρ = t
q

— ~r ∈ R be a rule that admits a state q′ ∈ var(~r) \ var(t). To build
a pre-translation utilizing ρ (whose derivation tree has root label ρ), we need a
pre-translation 〈ε,~v〉 ∈ Gq′ because q′ ∈ var(t.~r), but q′ /∈ var(t). Such pre-
translations do not exist, hence the rule ρ is useless (i.e., there are no derivation
trees that contain ρ), which proves that deleting it does not affect the semantics.

Similarly, let ρ = t
q

— ~r ∈ R be a rule such that t is not linear in Q; i.e., there
exists a state q′ ∈ Q such that |posq′(t)| ≥ 2. To utilize such a rule, we need a
pre-translation 〈~u,~v〉 ∈ Gq′ with |~u| = |posq′(t)| ≥ 2, which again do not exist.
Consequently, both types of rules can be deleted without effect, which proves that
G and G′ are translation equivalent.

Consequently, our class MBOT coincides with the notion of [4], so we can freely
use the known properties of MBOT. Already in [12, 4] MBOTs were transformed
into a normal form before composition. In this normal form, at most one (input or
output) symbol is allowed in each rule. For our purposes, a slightly less restricted
variant, in which at most one input symbol may occur in each rule is sufficient since
we compose the input parts of two MBOTs. Let us recall the relevant normalization
result [4].

Lemma 2 (see [4, Lemma 14]). For every MBOT G = (Q,Σ,∆, I, R) there exists a
translation equivalent MBOT G′ = (Q′,Σ,∆, I ′, R′) in normal form, which means

that |posΣ(t)| ≤ 1 for every rule t
q

— ~r ∈ R′.

Proof. By Lemma 1 we can construct a translation equivalent MBOT G′′ in the
sense of [4]. With the help of [4, Lemma 14], we can then construct a translation
equivalent MBOT G′ in normal form.

For MBOTs in normal form, we can now define the determinism property, which
we use to avoid the k-morphisms of [1]. We note that deterministic MBOTs are

276 A. Maletti

slightly more expressive than k-morphisms.

Definition 4. An MBOT (Q,Σ,∆, I, R) in normal form is deterministic if |I| = 1,

t /∈ Q for every t
q

— ~r ∈ R, and for every q ∈ Q and σ ∈ Σ there exists at most

one rule t
q

— ~r ∈ R with t(ε) = σ. It is a deterministic linear top-down tree
transducer with regular look-ahead (deterministic LTOPR) if additionally |~r| ≤ 1

for all t
q

— ~r ∈ R.

We conclude with the presentation of some simple properties of SFSG includ-
ing one characterization of it in terms of bimorphisms. We will develop another
bimorphism characterization in the next section.

Lemma 3. We observe that (i) SFSG = SFSG−1, (ii) both the domain dom(τ) and
the range ran(τ) of a tree translation τ ∈ SFSG are not necessarily regular, and
(iii) MBOT (SFSG.

Proof. The first property is immediate because the syntactic definition of SFSGs
is completely symmetric. The tree translation τG computed by the SFSG G of
Example 1 is such that both its domain and its range are not regular, which proves
the second property. Finally, the inclusion in the third item is obvious, and its
strictness follows because dom(τ) is regular for every τ ∈ MBOT by Lemma 1 and
[4, Theorem 25], so τG /∈ MBOT.

Theorem 1. For every SFSG G there exists an MRTG G0 and two deterministic
LTOPRs G1 and G2 such that τG = {(τG1

(t), τG2
(t)) | t ∈ L(G0)}.

Proof. Let G = (Q,Σ,∆, I, R) be the SFSG. We start with the construction of the
MRTG G0 = (Q ∪ {?},Σ ∪∆ ∪ {γ}, ∅, {?}, R0) such that ? /∈ Q, γ /∈ Σ ∪∆, and

R0 = {γ(q0, q0)
?

— ε | q0 ∈ I} ∪ {~̀.~r
q

— ε | ~̀ q
— ~r ∈ R} .

Let Γ = Σ ∪∆ ∪ {γ}. The two deterministic LTOPRs G1 and G2 simply project
on the first and second subtree, respectively. We omit their straightforward, albeit
technical specification and the obvious correctness proof.

Using Theorem 1 the relation of SFSG to the binary rational relations of [17]
should be apparent. The main difference that remains is that we cannot specify
the order, in which components are substituted. However, this does not restrict
the expressive power. For the converse inclusion between SFSG and certain bimor-
phism, we restrict ourselves to linear tree homomorphisms [7, 8], which are slightly
cumbersome to define in our notation. Note that the LTOPRs constructed in the
previous proof are actually linear tree homomorphisms. We let LHOM denote the
class of all linear tree homomorphisms, and assume that each tree homomorphism h
is extended to act on state leaves as the identity; i.e., h(q) = q for all q ∈ Q.

Theorem 2. For all MRTGs G0 = (Q,Γ, ∅, I, R0) and all tree homomorphisms
h1 : TΓ → TΣ and h2 : TΓ → T∆ there exists an SFSG G = (Q,Σ,∆, I, R) such that
τG = {(τG1(t), τG2(t)) | t ∈ L(G0)}.

Synchronous Forest Substitution Grammars 277

Proof. We let R = {h1(`1) · · ·h1(`k)
q

— h2(`1) · · ·h2(`k) | `1 · · · `k
q

— ε ∈ R0}. We
again omit the straightforward correctness proof.

Consequently, SFSG can be characterized by bimorphisms [1] with linear tree
homomorphisms and a center language from MRTG.

4 Composition and decomposition

For our second characterization of SFSG, we first characterize it in terms of MBOT.
Since we already showed that MBOT (SFSG in Lemma 3, we need a composition
of MBOTs to characterize the expressive power of SFSGs. The relevant decompo-
sition is presented in Theorem 3, and the corresponding composition is presented
in Theorem 5.

Theorem 3 (see [17, Proposition 4.5]). For every SFSG G, there exist two deter-
ministic MBOTs G1 and G2 such that τG = τ−1

G1
; τG2

.

Proof. Let G = (Q,Σ,∆, I, R) be the SFSG. As usual, we assume a total or-
der ≤ on Q, and whenever we explicitly list states like {q1, . . . , qk}, we assume
that q1 < · · · < qk. We construct the two MBOTs G1 = (Q,R,Σ, I, R1) and
G2 = (Q,R,∆, I, R2) such that

• R1 = {ρ(q1, . . . , qk)
q

— ~̀ | ρ = ~̀ q
— ~r ∈ R, var(~̀.~r) = {q1, . . . , qk}}, and

• R2 = {ρ(q1, . . . , qk)
q

— ~r | ρ = ~̀ q
— ~r ∈ R, var(~̀.~r) = {q1, . . . , qk}}.

Obviously, both G1 and G2 are deterministic MBOTs. A straightforward induction
can be used to prove that G1 and G2 translate derivation trees of Dq(G) with q ∈ Q
into the corresponding input and output tree, respectively. Since each derivation
tree t ∈ Dq(G) uniquely determines the corresponding input and output tree, we
immediately obtain that τG = τ−1

G1
; τG2

. A more detailed proof can be found
in [17].

In the proof of Theorem 3 the rule ρ uniquely determines the state q. Nev-
ertheless, the constructed MBOTs have (potentially) several states as we need to
check the finite-state behavior of the SFSG. It follows straightforwardly from the
proof of Theorem 3 that each SFSG can be characterized by a regular derivation
tree language and two deterministic MBOTs mapping the derivation trees to the
input and output trees. This view essentially coincides with the bimorphism ap-
proach [1], and SFSGs are equally expressive as the bimorphisms of [1], in which
both the input and output morphisms are allowed to be k-morphisms. We reuse
this characterization later on, so we make it explicit here.

Theorem 4. SFSG = dMBOT−1 ; FTA ; dMBOT, where dMBOT is the class of all tree
translations computed by deterministic MBOTs.

Now we are ready to state our first composition result. We first prove it using
several known results on decompositions and compositions together with a few new
results.

278 A. Maletti

Theorem 5. MBOT−1 ; MBOT ⊆ SFSG.

Proof. Let G1 and G2 be the given input MBOTs. Without loss of generality, let
G1 and G2 be in normal form (see Lemma 2). With the help of the construction
of [4, Lemma 6] applied to both G1 and G2 we obtain delabelings d1 and d2, regular
tree languages L1, L2 ∈ Reg, and deterministic MBOTs G′1 and G′2 such that

τG1
= d−1

1 ; idL1
; τG′

1
and τG1

= d−1
2 ; idL2

; τG′
2
.

This situation is depicted in Figure 3. We observe that

τ−1
G1

; τG2
= (d−1

1 ; idL1
; τG′

1
)−1 ; (d−1

2 ; idL2
; τG′

2
) = τ−1

G′
1

; idL1
; d1 ; d−1

2 ; idL2
; τG′

2
.

Next, we show that the composition d1 ; d−1
2 can equivalently be expressed as the

composition e−1
2 ; e1 for some delabelings e1 and e2 following the construction of [3,

Sect. II-1-4-2-1]. To this end, let d1 : Σ → ∆ ∪ {�}, and we set Σ′ = {σ | σ ∈
Σ, d1(σ) = �}, which is an alphabet containing copies of the elements of Σ that are
erased by d1. Similarly, let d2 : Γ→ ∆∪{�}, and we set Γ′ = {γ | γ ∈ Γ, d2(γ) = �}
to an alphabet that contains copies of those elements of Γ that are erased by d2.
Moreover, let

∆′′ = {〈σ, γ〉 | σ ∈ Σ, γ ∈ Γ, d1(σ) = d2(γ) 6= �}

and ∆′ = Σ′ ∪ Γ′ ∪∆′′. Then we construct the two delabelings e1 : ∆′ → Σ ∪ {�}
and e2 : ∆′ → Γ ∪ {�} as follows:

e2(σ) = σ e2(γ) = � e2(〈σ, γ〉) = σ

e1(σ) = � e1(γ) = γ e1(〈σ, γ〉) = γ

for all σ ∈ Σ′, γ ∈ Γ′, and 〈σ, γ〉 ∈ ∆′′. We leave the formal proof of d1;d−1
2 = e−1

2 ;e1

to the interested reader, but mention that it can be achieved by a simple induction.
Thus, we arrive at

τ−1
G1

; τG2
= τ−1

G′
1

; idL1
; d1 ; d−1

2 ; idL2
; τG′

2
= (τ−1

G′
1

; idL1
; e−1

2) ; (e1 ; idL2
; τG′

2
)

using the just explained exchange of the delabelings. Since inverse delabelings
preserve regular tree languages, we let L′1 = e−1

2 (L1) and L′2 = e−1
1 (L2), which are

clearly both regular, so also their intersection L′1∩L′2 is regular [7, 8]. Consequently,

τ−1
G1

; τG2
= (τ−1

G′
1

; e−1
2) ; idL′

1∩L′
2

; (e1 ; τG′
2
) ,

which we can further simplify to τ−1
G′′

1
; idL′

1∩L′
2

; τG′′
2

by composing the delabelings

e1 and e2 with the deterministic MBOTs G′1 and G′2 to obtain the deterministic
MBOTs G′′1 and G′′2 , respectively, using [4, Theorem 23]. With this final step, we
obtain a bimorphism representation of τ−1

G1
; τG2 and according to Theorem 4 we

have τ−1
G1

; τG2
∈ SFSG.

Synchronous Forest Substitution Grammars 279

L′1 ∩ L′2

L1 L2

e2 e1

τG′
1 d1 d2

τG′
2

Figure 3: Illustration of the approach used in the proof of Theorem 5.

Problem String level Tree level

Parsing O
(
|G| · (|w1| · |w2|)2r+2

)
O
(
|G| · |t1| · |t2|

)
Translation O

(
|G| · |w1|r+2

)
O
(
|G| · |t1|

)
Table 1: Complexity results for an SFSG G and input strings (w1, w2) as well as

trees (t1, t2), where r = max {|~̀.~r| | ~̀ q
— ~r ∈ R} is the length of the longest

sequence of input and output tree fragments in a rule of G.

Corollary 1 (of Theorems 3 and 5). SFSG = MBOT−1 ; MBOT.

We conclude with some additional properties of SFSG and their consequences
for MBOT using our main result of Corollary 1. In particular, it is known [9] that
the output string language of an MBOT is a language generated by an LCFRS
(linear context-free rewriting system) [20, 18]. Using Corollary 1, we can conclude
that both the input and the output string language of an SFSG are generated by
an LCFRS as well. Similarly, together with Theorem 1 we can also conclude that
the input and output tree languages are in MRTG. Moreover, we can import several
complexity results from MBOT [14] to SFSG as indicated in Table 1.

Lemma 4 (see [16, Example 5]). SFSG is not closed under composition.

Corollary 2. MBOT ; MBOT−1 6⊆ SFSG.

Proof. Assume on the contrary that MBOT ; MBOT−1 ⊆ SFSG. Then

SFSG ; SFSG ⊆ (MBOT−1 ; MBOT) ; (MBOT−1 ; MBOT) ⊆ MBOT−1 ; SFSG ; MBOT

⊆ MBOT−1 ; (MBOT−1 ; MBOT) ; MBOT ⊆ MBOT−1 ; MBOT = SFSG

using Corollary 1, our assumption, Corollary 1, the closure under composition
for MBOT [4, Theorem 23], and Corollary 1 once more. However, the result contra-
dicts Lemma 4, thus our assumption is false, proving the result.

280 A. Maletti

References

[1] Arnold, André and Dauchet, Max. Morphismes et bimorphismes d’arbres.
Theoret. Comput. Sci., 20(1):33–93, 1982.

[2] Chiang, David. An introduction to synchronous grammars. In Proc. 44th ACL.
ACL, 2006. Part of a tutorial given with K. Knight.

[3] Dauchet, Max. Transductions de forêts — Bimorphismes de magmöıdes.
Première thèse, Université de Lille, 1977.

[4] Engelfriet, Joost, Lilin, Eric, and Maletti, Andreas. Composition and de-
composition of extended multi bottom-up tree transducers. Acta Inform.,
46(8):561–590, 2009.

[5] Fülöp, Zoltán, Kühnemann, Armin, and Vogler, Heiko. A bottom-up charac-
terization of deterministic top-down tree transducers with regular look-ahead.
Inf. Process. Lett., 91(2):57–67, 2004.

[6] Fülöp, Zoltán, Kühnemann, Armin, and Vogler, Heiko. Linear deterministic
multi bottom-up tree transducers. Theoret. Comput. Sci., 347(1–2):276–287,
2005.

[7] Gécseg, Ferenc and Steinby, Magnus. Tree Automata. Akadémiai Kiadó, 1984.
2nd edition available at https://arxiv.org/abs/1509.06233.

[8] Gécseg, Ferenc and Steinby, Magnus. Tree languages. In Rozenberg, Grze-
gorz and Salomaa, Arto, editors, Handbook of Formal Languages, volume 3,
chapter 1, pages 1–68. Springer, 1997.

[9] Gildea, Daniel. On the string translations produced by multi bottom-up tree
transducers. Comput. Linguist., 38(3):673–693, 2012.

[10] Knight, Kevin and Graehl, Jonathan. An overview of probabilistic tree trans-
ducers for natural language processing. In Proc. 6th CICLing, volume 3406 of
LNCS, pages 1–24. Springer, 2005.

[11] Lilin, Eric. Propriétés de clôture d’une extension de transducteurs d’arbres
déterministes. In Proc. 6th CAAP, volume 112 of LNCS, pages 280–289.
Springer, 1981.

[12] Maletti, Andreas. Compositions of extended top-down tree transducers. In-
form. and Comput., 206(9–10):1187–1196, 2008.

[13] Maletti, Andreas. Why synchronous tree substitution grammars? In Proc.
2010 HLT-NAACL, pages 876–884. ACL, 2010.

[14] Maletti, Andreas. An alternative to synchronous tree substitution grammars.
J. Nat. Lang. Engrg., 17(2):221–242, 2011.

Synchronous Forest Substitution Grammars 281

[15] Maletti, Andreas. How to train your multi bottom-up tree transducer. In Proc.
49th ACL, pages 825–834. ACL, 2011.

[16] Radmacher, Frank G. An automata theoretic approach to rational tree rela-
tions. In Proc. 34th SOFSEM, volume 4910 of LNCS, pages 424–435. Springer,
2008.

[17] Raoult, Jean-Claude. Rational tree relations. Bull. Belg. Math. Soc. Simon
Stevin, 4(1):149–176, 1997.

[18] Seki, Hiroyuki, Matsumura, Takashi, Fujii, Mamoru, and Kasami, Tadao. On
multiple context-free grammars. Theoret. Comput. Sci., 88(2):191–229, 1991.

[19] Sun, Jun, Zhang, Min, and Tan, Chew Lim. A non-contiguous tree sequence
alignment-based model for statistical machine translation. In Proc. 47th ACL,
pages 914–922. ACL, 2009.

[20] Vijay-Shanker, K., Weir, David J., and Joshi, Aravind K. Characterizing
structural descriptions produced by various grammatical formalisms. In Proc.
25th ACL, pages 104–111. ACL, 1987.

[21] Zhang, Min, Jiang, Hongfei, Aw, Aiti, Li, Haizhou, Tan, Chew Lim, and Li,
Sheng. A tree sequence alignment-based tree-to-tree translation model. In
Proc. 46th ACL, pages 559–567. ACL, 2008.

[22] Zhang, Min, Jiang, Hongfei, Li, Haizhou, Aw, Aiti, and Li, Sheng. Gram-
mar comparison study for translational equivalence modeling and statistical
machine translation. In Proc. 22nd CoLing, pages 1097–1104. ACL, 2008.

