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Initial Algebra for a System of

Right-Linear Functors∗

Anna Labellaa and Rocco De Nicolab

Abstract

In 2003 we showed that right-linear systems of equations over regular
expressions, when interpreted in a category of trees, have a solution when-
ever they enjoy a specific property that we called hierarchicity and that is
instrumental to avoid critical mutual recursive definitions. In this note, we
prove that a right-linear system of polynomial endofunctors on a cocartesian
monoidal closed category which enjoys parameterized left list arithmeticity,
has an initial algebra, provided it satisfies a property similar to hierarchicity.
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1 Introduction

Our paper [4] acknowledges that “the ideas that led to the work stemmed from
discussions with Zoltán Ésik”; as a homage to Zoltán here we generalise the results
of [4] to a much larger setting. There we defined the class of the linear systems whose
solution is expressible as a tuple of nondeterministic regular expressions [3] when
they are interpreted as trees of actions rather than as sets of action sequences. We
exactly characterized those systems that have a regular expression as a “canonical”
solution, and showed that any regular expression can be obtained as a canonical
solution of a system of the defined class.

The key ingredient for obtaining the wanted solution was our restriction to
“hierarchical” equations that were instrumental to avoid critical mutual recursive
definitions. Indeed, if we model variables as nodes of graphs and their dependences
as directed arcs, we required that whenever a variable y depends on x, (x is at the
beginning of a loop that contains y) we have that y never occurs in other loops
originated by other variables different from x.

Thus, in [4] we proved that a right-linear system of equations, interpreted in
a category of trees has a solution whenever it is hierarchical. In this short note
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and without words.

aDipartimento di Informatica, Sapienza Università di Roma, E-mail: labella@di.uniroma1.it
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we prove that a right-linear system of polynomial endofunctors on a cocartesian
monoidal closed category which enjoys parameterized left list arithmeticity, has
an initial algebra, provided it satisfies a property similar again to a hierarchicity
condition. We could thus say that the “solution” for the system provided here is
canonical in a strict sense.

2 Initial algebras and llist-arithmeticity

In order to introduce an initial algebra for a linear polynomial endofunctor ex-
pressed in terms of (canonical) sum + and a possibly non commutative tensor prod-
uct ⊗, we have to consider a notion of recursive object which generalizes Cockett
definition [2] of rec(U, V ), where the canonical product × played the role of multi-
plication. As a matter of fact, we still ask for an initial algebra for an endofunctor
U ⊗ (−) + V : C → C in a monoidal category (C,⊗, I), but we have to be aware of
a non commutative situation. We chose to have the left composition, because our
result is particularly meaningful for categories which are monoidal (right) closed
whose objects have an elegant representation (see Proposition 1).

Definition 1. Given a cocartesian monoidal category (C,⊗, I), we call U∗V the
initial algebra of the functor U ⊗ (−) + V , if it does exist. In that case there is a
morphism U ⊗ (U∗V ) +V → U∗V canonical w.r.t. any other U ⊗ (−) +V -algebra.
This means that, U∗V is equipped with two morphisms ρ0, ρ1 such that, given an-
other object X with two similar morphisms x0, x1, there is a unique morphism λ
making the following diagram commute.

@
@
@
@@R ? ?

- �

�

V U ⊗ U∗VU∗V

x0 λ U ⊗ λ

ρ1ρ0

X U ⊗X
x1

In case C is a partial order, U∗V is the minimal solution of the corresponding
inequation U ⊗ X + V ≤ X. But, in any case, being U∗V an initial algebra, we
have that U ⊗U∗V +V ' U∗V (U ⊗U∗V +V = U∗V , in the case of partial order),
i.e. it is an initial fixed point.

When ⊗ is the canonical product, we do get the well known definition of
rec(U, V ) provided by Cockett [2], i.e., the V -parameterized list(U), that becomes
list(U) when V ' 1 is the terminal object. Since the constant value of the tensor
product we consider is on the left and the tensor product is non-commutative, we
will talk about left lists, that we will refer as llist and as parameterized llist.

For a generic tensor product, ⊗, we have that the initial algebra of U ⊗ (−) +V
is U∗V that we call parameterized llist(U); in case V ' I the initial algebra is U∗I
that we call llist(U).
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One can easily prove (see Adámek theorem in [1]) that in a monoidal cocartesian
category, which has colimits for every countable chain, there is an initial algebra
for all the functors above. Such initial algebras can be obtained as initial fixed
points, i.e., as colimits of the chain built starting from the initial object 0 and then
repeatedly applying the functor.

Proposition 1. In a monoidal cocartesian, chain cocomplete category C, semidis-
tributive on the right, in the sense of [5], we have that:

1. There is a canonical morphism U∗V → U∗I ⊗ V

2. If tensor product distributes on the right w.r.t. chain colimits, e.g. it has a
right adjoint, then we have U∗V ' U∗I ⊗ V

Proof.

1. It suffices to prove that U∗I ⊗V is a fixed point of the same functor as U∗V .
From this, the existence of the required canonical morphism would follow
because U∗V is the initial fixed point. To prove that U∗I⊗V is a fixed point,
let us apply the functor U⊗(−)+V to U∗I⊗V . By using the associativity law
and the right distributivity law, we get the following series of isomorphisms:

U ⊗ (U∗I⊗V ) +V ' (U ⊗U∗I)⊗V + I⊗V ' (I+U ⊗U∗I)⊗V ' U∗I⊗V.

2. If the tensor product preserves chain colimits, it preserves also fixed points.
In particular it is true in case C is monoidal (right)-closed.

If we write U∗ instead of U∗I, Proposition 1 allows us to interchangeably use
U∗ ⊗ V and U∗V when working with monoidal closed categories.

By relying on Proposition 1 we have that if C has llist(U), it has also pa-
rameterized llist(U). In analogy with the case of categories with cartesian product
where a category having (parameterized) lists is called list-arithmetic 1, we will call
our category left− list-arithmetic or llist-arithmetic when it has (parameterized)
llists.

Proposition 2. Given a cocartesian monoidal right closed category C which has
initial algebra for the functor U ⊗ (−) + I, it has initial algebra for all the functors
U ⊗ (−) + V .

Proof. The proof follows from Proposition 1. If U∗ is an initial algebra for functor
U ⊗ (−) + I, U∗ ⊗ V is an initial algebra for functor U ⊗ (−) + V .

We can now consider three instances of llist-arithmetic categories that build on
A∗, the free monoid generated by an alphabet A:

1This name is related to the fact that, when a list-arithmetic category is also a pretopos, it is
possible to develop arithmetic in it and we speak of an arithmetic universe in the sense of Joyal
[7].
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P (A∗) the algebra of sets of words on A, a monoidal category w.r.t. concatenation
whose morphisms are inclusions. Here parameterized llist(U,V), i.e. U∗V , is
the binary Kleene star U∗V and as a consequence of Proposition 1 we have
that it is reducible to the unary star because P (A∗) is a monoidal right closed
category (the derivation operation is right adjoint to concatenation). In this
case, the tensor product distributes over sums on both sides.

Set|A∗ the topos of A∗-labelled sets, where the (non-commutative) tensor product
is obtained from the concatenation in A∗. By taking a (commutative) monoid
M , we could obtain from Set|M a (commutative) monoidal structure.

Tree(A) is generalization of P (A∗). Structured sets of computations are organised
as a category of generalised trees built over a (complete) meet-semilattice
monoid generated from A. The tensor product ⊗ is provided by the concate-
nation of trees allowed by the concatenation of A∗. This concatenation is
non commutative and only right-distributive w.r.t. sums [5], but also right
closed. The category Tree(A) has initial algebra for functors s⊗ (−) + t, i.e
it is llist-arithmetic with the llist s∗t given by iteration of a tree s, followed
every time by a copy of t [4]2.

3 Right-linear hierarchical systems of functors

It is a result of classical theory of regular languages [8] that we can consider a gram-
mar on an alphabet A as a continuous operator from P (A∗)n to P (A∗)n consisting
of a system of n linear equations in n variables. This system can be “solved” by
repeatedly applying the rule

X = U∗V implies X = U ⊗X + V (∗ − rule)

In this way, we obtain a minimal fixed point for the operator associated with the
grammar. In the present categorical context, we could say this rule is a direct
consequence the llist-arithmeticity of the considered structure.

In [4], we extended this result to the category Tree(A), but, due to the fact that
only a right side distributivity of tensor product w.r.t. sum holds, we had to restrict
the class of solvable systems by considering only so-called right-linear hierarchical
systems (rlhs) that allowed us to avoid critical mutual recursive definitions. For-
mulated according to the current terminology the result of [4] is described by the
following proposition.

Proposition 3. In the category Tree(A), the ∗ − rule provides a solution for
hierarchical (see below) finite right-linear systems of polynomial equations.

Now we do generalize this result again and show that llist-arithmeticity in a
cocartesian right-distributive monoidal category C all finite right-linear hierarchical
systems of functors have an initial algebras.

2Actually, Tree(A) is a coherent llist-arithmetic category, but not a pre-topos because not all
its monos are regular.
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When such a category C contains as its objects the elements of an alphabet
A, some of the objects of C can be rendered as regular expressions generated by
means of the following BNF starting from the elments a of an alphabet A.

E ::= 0 | I | a | E + E | E ⊗ E | E∗ where a is in A.

In such a grammar, 0 denotes the initial object of our category, I denotes the unit
for ⊗, that is the tensor product of C. Moreover + stands for the coproduct of C
and ∗ denotes the llist-constructor.

Our result will be formulated by relying on such terminology. Indeed, if we
suppose that C is cocartesian monoidal closed and elements of A are its objects,
then the interpretation of llists will allow the construction of parameterized llists,
as described in Proposition 2.

Our aim is to prove that, by relying on the following rule

U ⊗X + V → X implies U∗V → X (initiality − rule)

that guarantees that if there is a morphism U⊗X+V → X then there is a canonical
morphism U∗V → X, it is possible to find an initial algebra for every right-linear
hierarchical system of functors on regular expressions.

Summing up, we will extend the result proved in [4] for Tree(A) to a category
C with the properties mentioned above. To this aim we have to formulate it in
terms of functors instead of equations of linear functions in order to prove that
the obtained solution is canonical because it is the initial algebra of the system of
functors.

We need to provide some definitions.

Definition 2.

• Given a category C interpreting regular expressions, a functor F : Cn → C
of the form

∑
1≤i≤n Ui ⊗Xi + V is called right-linear polynomial functor in

n variables.

• A right-linear polynomial functor is called simple when all Ui and V do not
contain the ()∗ operator.

• A right-linear polynomial system of functors of dimension n is a n-tuple

Φ =< F1, . . . , Fn >: Cn → Cn

of right-linear polynomial functors in n variables.

Given a functor F : C ×D → C, for every object d of D, we can consider the
endofunctor F ((−), d) : C → C.

Moreover, if F is a functor with n-argument
∑

1≤i≤n Ui ⊗ Xi + V : Cn → C,

we can write it as U1 ⊗X1 +
∑

2≤i≤n Ui ⊗Xi + V : C × Cn−1 → C.
Then, taking d as

∑
2≤i≤n Ui ⊗ Xi + V , llist-arithmeticity implies that the

functor U1 ⊗ (−) + d : C → C has an initial algebra U∗1 ⊗ d for every d. Obviously,
the same can be done for every index i.
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Let us recall now Bekič theorem about initial algebras of functors [6] that is
important because it means that the simultaneous construction of an initial algebra
for a system of n operators in n variables can be replaced by recursively constructing
of initial algebras for one operator at a time.

Bekič theorem
Given two functors F : C × D → C and G : C × D → D, let (Fµ(d), χd) be
an initial F ((−), d)-algebra for each object d of D and suppose that there exists
an initial algebra, say < ξ, ζ > with ξ : Fµ(β) → α , ζ : G(α, β) → β, of the
functor < Fµ ◦ prD, G >: C ×D → C ×D, where the first component is obtained
by composing the projection prD : C ×D → D with the functor constructing the
D-parameterized initial algebra Fµ : D → C; then the pair < χβ , G(ξ, β)•ζ >
where

• χβ : F (Fµ(β), β)→ Fµ(β)

• G(ξ, β)•ζ : G(Fµ(β), β)→ β

is an initial algebra of the functor < F,G >: C ×D → C ×D.

To understand the impact of this theorem in our context, let us consider a simple
case where F and G are two right-linear polynomial functors over two variables3

and C coincides with D: {
F ≡ ax+ by
G ≡ a′x+ b′y + c′

We take the initial algebra a∗by (not depending on x) associated with the first
functor, when it is considered as F ((−), by), and then we substitute this value in
the expression of G to obtain a′a∗by + b′y + c′. We can get from this an initial
algebra for the pair < F,G >, i.e. for the system. Indeed, using distributivity on
the right, we get (a′a∗b + b′)y + c′ and thus, thanks to the initiality rule, we get
(a′a∗b+ b′)∗c′ as the second component of the initial algebra for the functor system
above.

It is worth noting that this has been possible only because there was no constant
term in the definition of F . Indeed, the slightly different system{

F ′ ≡ ax+ by + c
G ≡ a′x+ b′y + c′

is not solvable using the same machinery. In fact, in this case, we would obtain
a∗(by + c) as initial algebra for F ′((−), by + c) , and once this is substituted in G
we would get a′a∗(by+ c) + b′y+ c′, but then, due to the lack of left distributivity,
the initiality rule cannot be used.

3In the sequel we will often omit the symbol ⊗ using juxtaposition to replace it and use small
letters for variables.
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In general, for n functors, we have that, if F is F1, then G is < F2, . . . , Fn >
and the initial algebras can be inductively obtained by performing appropriate
substitutions. We fix a variable, say x1, in the expression of F1 and consider the
parameterization of F1 w.r.t. the sum of all the monomials not containing x1. We
calculate the parameterized initial algebra and substitute this value everywhere for
x1. Please notice that a constant functor has this constant with its identity as an
initial algebra.

Summing up, in our case the first requirement of Bekič’s theorem is always
satisfied because our category is llist-arithmetic; but we have to impose additional
conditions on the system of functors in order to meet the second requirement.

Given the system Φ ≡< F1, . . . , Fn > with variables x1 . . . , xn, let us now define
a different indexing for both, functors and variables. This will allow us to introduce
a (partial) order on the set of variables in Φ in such a way that we can exclude
their mutual interference when we build the initial algebra step by step. The partial
ordering, ≤, is obtained by using a string of natural numbers as index for every
variable while guaranteeing that two different variables do not have the same index.
For any two indexed variables xs and xt, we will write xs ≤ xt if t is a prefix of s.

We will consider hierarchical (rlhs) any system for which it is possible to in-
troduce an indexing that satisfies a number of conditions that we will introduce
below.

Definition 3. Let xs ≤ xt, we say that

• xs is ruled by xt if xt appears in Fs.

• xs is recursive if xs appears in the expression of Fs;

• xs is strictly recursive if it is recursive and is not ruled by any other variable.

Definition 4. Right Linear Hierarchical Systems - rlhs
A system of right-linear functors Φ whose variables are ordered by ≤ is hierarchical
if it is possible to associate, as index to every functor, a common prefix of the
indexes of the variables appearing in its expression (either of the same length or at
most one number longer), with the only possible exception for one of the variables,
in case this rules on all the others. Moreover, the indexing has to guarantee that:

1. the ordering of the indexes of the functors is tree-shaped;

2. a variable can be ruled by at most another one;

3. If xi appears in Fi (it is recursive), then alternatively, either Fi does contain
a constant different from 0, or it does contain a variable ruling on xi;

4. If xi does not appear in Fi, then all variables that are immediately smaller
than xi (one number more in their index) appear in Fi and, some of them
can have a common ruling variable while the others are strictly recursive in
the functor corresponding to them.
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If we look at the examples above, we have that we can index the first system as{
F0 ≡ ax0 + bxε
Fε ≡ a′x0 + b′xε + c′

to obtain a rlhs.
Due to the presence of a constant in both the expressions, we cannot provide a

similar ordering for the second system. Indeed, none of the two functors can satisfy
condition 3. of Definition 4. {

F0 ≡ ax0 + bxε + c
Fε ≡ a′x0 + b′xε + c′

We give now a more complex example of a right-linear system that can be indexed
in such a way that it is rlhs. Please notice that, in the example below, we provide
directly the indexed equational system. The original one can be recovered by giving
different names to the variables and the functors with different indexes. After
presenting the indexed system we also outline the procedure to obtain its initial
algebra.

Example 1. Consider the following system

Φ :< F211, F212, F21, F22, F11, F1, F2, Fε >

where we have indexed functors and, accordingly, their variables.

F211 ≡ cx211 + x2

F212 ≡ ax212 + bx2

F21 ≡ x211 + x212

F22 ≡ cx22 + I

F11 ≡ ax11 + b

F1 ≡ x11 + c

F2 ≡ x21 + x22

Fε ≡ ax1 + x2 + a

All variables under x21 depend on the ruling variable x2 (which becomes recur-
sive when substitutions are made into F2), and the corresponding functors do
not contain any constant. We will start from F211 and F212, that are leaf func-
tors according to ≤. The parametrized initial algebra for F211 is c∗x2 while the
one for F212 is a∗bx2. Since F211 and F212 have no constant and x211 and x212
have the same ruling variable, we can substitute c∗x2 and a∗bx2 in F21 to obtain
c∗x2+a∗bx2 = (c∗+a∗b)x2 thanks to right distributivity. We can now consider F22.
Its initial algebra is the constant c∗, thus in F2 we can replace x21 and x22 with



Initial Algebra for a System of Right-Linear Functors 199

(c∗+a∗b)x2 and c∗, which yields (c∗+a∗b)x2+c∗ that has (c∗+a∗b)∗c∗ as initial al-
gebra. We consider now F11, whose initial algebra is a∗b, that we substitute in F1 to
obtain (a∗b)+ c as initial algebra; finally once we substitute all variables in Fε with
the corresponding initial algebras we get the constant (a(a∗b+c)+(c∗+a∗b)∗c∗+a.
Which is the basis for obtaining the full solution by means of appropriate substi-
tutions.

Theorem 1. In a right semidistributive category C where we have a parameterized
initial algebra for linear polynomial functors (parameterized llists), all right-linear
hierarchical systems of functors, with chosen indexing, have a family of regular
expressions as their initial algebra.

Proof. Given a hierarchical right-linear functors system, we can find an initial al-
gebra for it by repeatedly using the (initiality − rule) above, and by relying on
Bekič theorem. This theorem provides an initial algebra for a system of functors in
presence of parameterized initial algebras; to take advantage of it we need to show
that the restricted set of hierarchical systems satisfy its two conditions. The first
condition, i.e. the existence of parameterized initial algebras for a chosen functor
in a recursive variable holds by hypothesis, the second one corresponds to the fact
that the reduced system (with fewer functors) obtained after substituting the initial
algebra has still an initial algebra. We then proceed by induction on the length of
indexes starting from the longest ones. This is possible because, by exploiting right
distributivity, we can take out a (ruling) variable as a common factor from terms
containing it. This is due to our definition of rlhs.

Let us start by considering a functor Fi which has maximal index. The expres-
sion corresponding to Fi cannot contain variables with indexes longer than i. Thus,
the expression may contain xi and at most a single variable, say xt ruling on it (t
is a strict prefix of i), moreover when such ruling variable is present the expression
does not contain any constants.

Let us consider the two cases separately:

1. In case xi is strictly recursive, we obtain as initial algebra of Fi a constant
term which might be 0 in case the expression contains only 0 as a constant.

2. In case the expression of Fi contains a variable xt ruling on xi, the initiality
rule gives a parameterized (w.r.t. xt) initial algebra.

When substituting these terms in Fs with s an immediate prefix of i (i = s n), we
obtain a sum of constants and of terms all containing the same variable xt (due
to condition 4. in Definition 4, no other term with another ruling variable can be
present in Fs). We can then take xt as a common factor. Now we distinguish two
cases, if t = s we can proceed as above because all variables with an index longer
than t have been eliminated. If t is instead a strict prefix of s, we can operate
further substitutions until we reach functor Ft possibly having other terms with
the same variable and nomore variables with a longer index. In this way we have
in any case reduced the system to a smaller one, still rlhs, producing an initial
algebra at every step. At this point we can apply the procedure again.
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It could seem that a very particular kind of linear functors system is taken into
account, but we can prove that any regular expression, when interpreted in C is
the initial algebra of some finite linear hierarchical system of functors.

Theorem 2. Given a cocartesian monoidal semidistributive category C, where we
can interpret regular expressions in such a way that the ()∗ operator is the llist-
operator corresponding to the tensor product ⊗, every regular expression E can be
obtained as the initial algebra of the root component of a n-tuple of right-linear
hierarchical system of simple polynomial functors < F1, . . . , Fn >: Cn → Cn .

In order to prove item 1. of Theorem 2 we need to transform every regular
expression in normal form and we will show that any normal form can be first
associated with a system of simple quadratic polynomial functors and that the
system can be associated with a rlhs of simple linear polynomial functors. The
way we obtain such a rlhs guarantees that the original regular expression E is
the component in the initial algebra of the generated rlhs associated to the root
functor.

Here we omit the details of the proof, it proceeds along the same lines of the
corresponding one in [4] while referring to functors rather than to equations. In
particular we need to use normal forms similar to that of Definition 1. in [4] and
functor systems associated to them like in Definition 5. of [4]. From the functor
systems we will do obtain system of quadratic functors (like in Proposition 1. in
[4]) which we transform into linear ones (Proposition 2. in [4]). The fact that the
regular expression E is the initial algebra of the root component of the system
will descend from the construction, while the verification of the hierarchicity of the
system is now almost immediate by the chosen indexing strategy.

4 Conclusions

A classical result of the theory of regular languages [8] states that we can obtain
solutions of systems of linear equations over regular expressions interpreted as lan-
guages variables.

In [4] we showed that right-linear systems of equations over regular expressions,
when interpreted in a category of trees, have a solution whenever they enjoy a
specific property that we called hierarchicity.

Here, we have completed the generalisation by considering cocartesian non com-
mutative monoidal categories where the tensor product preserves colimits and a
property similar to hierarchicity is satisfied. The key requirement for this kind of
categories was the presence of an iteration operator thought of as initial algebra
of a linear polynomial functor. The existence of such initial algebra is a form of
a one-side list arithmeticity. Now list arithmeticity is a key ingredient to develop
arithmetics in a pretopos [7]: this fact could suggest further investigations about a
connection between results in (possibly non deterministic) language theory and in
an arithmetic based on a one-side natural number object.
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