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Summary

We consider shape restricted nonparametric regression on a closed set , where it is 

reasonable to assume the function has no more than H local extrema interior to . Following a 

Bayesian approach we develop a nonparametric prior over a novel class of local extremum splines. 

This approach is shown to be consistent when modeling any continuously differentiable function 

within the class considered, and is used to develop methods for testing hypotheses on the shape of 

the curve. Sampling algorithms are developed, and the method is applied in simulation studies and 

data examples where the shape of the curve is of interest.

Keywords

Constrained function estimation; Isotonic regression; Monotone splines; Nonparametric; Shape 
constraint

1. Introduction

This paper considers Bayesian modeling of an unknown function , where it is 

known that f0 has at most H local extrema, or change points, interior to , and one wishes 

to estimate the function subject to constraints or test the hypothesis the function has a 

specific shape. For example, one may wish to consider a monotone function versus one 

having an N shape. We propose a spline construction that allows for nonparametric 

estimation of shape-constrained functions having at most H change points. The approach 

places a prior over a knot set dense in , and, to sample over the models defined by this 

knot set, a Markov chain Monte Carlo algorithm is developed to sample models. The method 

allows for nonparametric hypothesis testing of different shapes within the class of functions 

considered.

The shape-constrained regression literature focuses primarily on functions that are 

monotone, convex, or have a single minimum; that is, cases with H ≤ 1. Ramgopal et al. 

(1993), Lavine & Mockus (1995), and Bornkamp & Ickstadt (2009) consider priors over 

cumulative distribution functions used to model monotone curves. Holmes & Mallick 

(2003), Neelon & Dunson (2004), Meyer (2008), and Shively et al. (2009) develop spline-
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based approaches for monotone functions. Hans & Dunson (2005) design a prior for 

umbrella-shaped functions, while Shively et al. (2011) propose methods for fixed- and free- 

knot splines that model continuous segments having a single unknown change point.

Extending these approaches to broader shape constraints is not straightforward. For 

example, to obtain H = 3 change points, one could define a prior over B-spline bases de 

Boor (2001, page 87)) having four monotone segments that alternately increase and 

decrease. However, for even a moderate number of pre-specified knots and a known number 

of change points, allowing for uncertainty in the locations of the change points leads to a 

daunting computational problem. Bayesian computation via Markov chain Monte Carlo is 

subject to slow mixing and convergence rates in alternating between updating the spline 

coefficients conditionally on the change points and vice versa, and it is not clear how to 

devise algorithms that can efficiently update both simultaneously. These difficulties are 

compounded by allowing for the possibility that some of the change points should be 

removed, which is commonly the situation in applications. By defining a new spline basis 

based on the number of change points, we bypass these issues.

Little work has been done on nonparametric Bayesian testing of curve shapes. Salomond 

(2014) and Scott et al. (2015) consider Bayesian nonparametric testing for monotonic versus 

an unspecified nonparametric alternative, but do not consider shapes beyond monotonicity. 

Our approach allows for testing of all shapes, where shape is defined as the type and 

sequence of extrema. For example, one can use this approach to test for an umbrella shape 

verses an N-shaped curve and use the same procedure to test the umbrella shape against 

monotone alternatives.

We propose a new approach to incorporating shape constraints based on splines that are 

carefully constructed to induce curves having a particular number of extrema. This is similar 

in spirit to the I-spline construction of Ramsay (1988) or the C-spline construction for 

convex splines (Meyer, 2008; Meyer et al., 2011), both of which create a spline construction 

based upon the derivative of the spline. When paired with positivity constraints on the spline 

coefficients, our construction enforces shape restrictions on the curve of interest by limiting 

the number of change points.

Another key aspect of our approach is that we place a prior over a countable dense set of 

knots, which allows the number of the splines in the model space to grow. This bypasses the 

sensitivity to choice of the number of knots, while facilitating computation and theory on 

consistency. In particular, we propose a prior over nested model spaces where the location of 

the knots is known for each model. This allows for a straightforward reversible jump 

Markov chain Monte Carlo algorithm (Green, 1995) based upon Godsill (2001). This is 

different from much of the previous Bayes literature allowing unknown numbers of knots 

(Biller, 2000; DiMatteo et al., 2001). In these methods, the knot locations are unknown, and 

the reversible jump Markov chain Monte Carlo proposal must propose a knot to add or 

delete as well as its location. Such algorithms are notoriously inefficient.
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2. Model

2·1. Local Extremum Spline Construction

Let ℱH be a set of functions defined on the closed set , such that for f0 ∈ ℱH, f0 is 

continuously differentiable and has H or fewer local extrema interior to . Such functions 

can be modeled using B-spline approximations of the form

(1)

Here, βk is a scalar coefficient and B(j,k)(x) is a B-Spline function of order j defined on the 

knot set , τ1 ≤…≤ τK, which includes end knots. For any knot set, de Boor 

(2001, page 145) showed that there exist spline approximations such that ‖f − f0‖∞ ≤ Δ 

‖f0‖∞, where Δ is the maximum difference between adjacent knots. Though this construction 

can be used to model f0 with arbitrary accuracy, it does not ensure that the approximating 

function f is itself in ℱH.

We force f ∈ ℱH to have at most H local extrema by defining a new spline basis

(2)

where B(j,k)(x) is a B-spline constructed using the knot set , {α1, …, αh} are distinct 

change points, and M is a fixed integer. Letting , if βk ≥ 0, for all k ≥ 1, any 

linear combination of local extremum spline basis functions for any distinct values of α1,…, 

αH in (2) will be in ℱH.

Proposition 1—If  for any K ≥ 1 with M ∈ {−1, 1}, j ≥ 1, and 

βk ≥ 0 for all k ≥ 1, then f ∈ ℱH.

This result follows from the constraint on the βk coefficients. By forcing βk ≥ 0 for k ≥ 1, the 

sign of the derivative is controlled by the polynomial , which allows a 

maximum of H local extrema located at the change points {α1, …, αH}. When βk = … = 

βk+1 = 0 and αh ∈ [τk+j, τk+j+1], αh does not define a unique extremum. In this case, there is 

a flat region, and multiple configurations of the change point parameters can give the same 

curve. Otherwise, the extrema are uniquely defined for all , and fewer than H 
extrema can be considered if .

Theorem 1—For any f0 ∈ ℱH and ε > 0 there exist a knot set  and a local extremum 

spline fLX defined on this knot set such that
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The flexibility of local extremum splines is attributable to the B-splines used in their 

construction. The proof of Theorem 1 assumes that M can be chosen to be positive or 

negative, which allows all functions in ℱH to be approximated. If M is fixed, then any 

function with H − 1 extrema can be modeled. For exactly H extrema, the approach is limited 

to modeling functions that are either initially increasing or initially decreasing, and this 

depends on the sign of M.

Though the polynomial weighting does not affect the ability of the local extremum spline to 

model arbitrary functions in ℱH, it does impact the magnitude of the spline, 

, which may cause difficulty in the prior specification. To minimize this 

effect it is often beneficial to construct the splines on the interval (−0·5, 0·5). Additionally, it 

is often beneficial to multiply M by a fixed constant to aid in prior specification.

2·2. Infill Process Prior

Bayesian methods for automatic knot selection (Biller, 2000; DiMatteo et al., 2001) 

commonly define priors over the number and location of knots. Using free knots presents 

computational challenges, while fixed knots are too inflexible; we address this by defining a 

prior over a branching process where the children of each generation represent knot 

locations that are binary infills of the previous generation. This defines a nested set of spline 

models such that successive generations produce knots that can be arbitrarily close.

To make these ideas explicit, define  with N ∈ {0, 1, 

2, 3, …}. Assume for the sake of exposition, and consider an infinite complete binary tree. 

In this tree, each node at a given depth N is uniquely labeled using an element from . If 

the node’s label is a/2N+1, its children are labeled (2a − 1)/2N+2 and (2a + 1)/2N+2. For 

example, the node labeled 3/8 at N + 2 has children labeled 5/16 and 7/16, and the root node 

labeled 1/2 has children labeled 1/4 and 3/4.

We induce a prior on the set of local extremum spline basis functions through a branching 

process over this tree. The process starts at the root node N = 0 where the generation of 

children occurs via two independent Bernoulli experiments having probability of success ζ. 

On each success, a child is generated, and its label is added to the knot set. This process 

repeats until it dies out. If ζ < 0·5, the probability of extinction is 1 (Feller, 1974, page 297). 

To favor parsimony, we define the probability of success for a node at a given depth N to be 

0·5N+1, which decreases the probability of adding a new node the larger the tree becomes. 

The tree ℳ generated from this process corresponds to a knot set . We complete the knot 

set by adding end knots {0, 1}.

Letting  be the number of knots for tree ℳ including end knots, there are K + j − 1 

basis functions. Letting βk denote the coefficient on , we choose the prior:
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(3)

where Exp(βk; λ) is an exponential distribution with rate parameter λ, π is the prior 

probability of βk = 0, and the βk are drawn independently conditionally on ℳ, π, and λ. For 

the intercept, we let β0 ~ N(0, c), and we allow for greater adaptivity to the data through 

hyperpriors, π ~Be(ν, ω) and λ ~ Ga(δ, κ)1(λ > ε), which is a truncated gamma 

distribution, that is truncated slightly above zero to guarantee posterior consistency. In 

practice, this value is set to 10−5, making the prior indistinguishable from the Gamma 

distribution.

To allow uncertainty in locations of the change points, we choose the prior

(4)

where TN{(b − a)/2, 1, a, b} is a normal distribution with mean (b − a)/2 and variance 1, 

truncated below by a and above by b with . If  or , then 

the change point is removed. We assume that M is pre-specified corresponding to prior 

knowledge of whether the function is initially increasing or decreasing, though 

generalizations to place a Bernoulli or alternative prior on M are straightforward.

The prior for the change point parameters is defined such that . A change point 

placed outside of  allows the derivative of f to be non-zero at inf  or sup . In practice, 

results are insensitive to the choice of a and b. In what follows, we choose 

and , where .

2·3. Prior Properties

Define ℱH+ as the space of continuously differentiable functions with H or fewer local 

extrema, such that, for all f0 ∈ ℱH+ having exactly H extrema, the first extremum from the 

left is a maximum, and, for all functions in f0 ∈ ℱH+ having less than H extrema, the 

function is also in ℱH−1. Conversely, define ℱH− as the set of continuously differentiable 

functions with H or fewer local extrema, such that for all functions having exactly H 
extrema, the first from the left is a minimum, and for all functions f0 ∈ ℱH− having less than 

H extrema, they are also in ℱH−1. The prior places positivity in ε−neighborhoods of any f0 

in ℱH− or ℱH+ depending on the sign of M.

Lemma 1—Letting fLX be a randomly generated local extremum spline from the prior 

defined in §2·2 for all f0 ∈ ℱH−1,
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This holds for all f0 ∈ ℱH+ if H is odd and M < 0 or H is even and M > 0. Otherwise, if H is 

even and M > 0 or H is odd and M < 0, this holds for all f0 ∈ ℱH−.

Using this result we can show posterior consistency. Assume that Y = (y1,…, yn)T are 

observed at locations (x1,…,xn) such that . Following Choi & Schervish 

(2007), assume that the design points are independent and identically distributed from some 

probability distribution Q on the interval , or observed using a fixed design such that 

max(|xi − xi+1|) < (K1n)−1, where 0 < K1 < 1 and i < n. Define the neighborhoods Wε,n = {(f, 
σ) : ∫ |f(x) − f0(x)|dQn(x) < ε, |σ/σ0 − 1| < ε} and Uε = {(f, σ) : dQ(f, f0) < ε, |σ/σ0 − 1| < ε}, 

where dQ(f1, f2) = inf {ε > 0 : Q[{x : |f1(x) − f2(x)| > ε}] < ε}. Under the assumption that the 

prior over σ assigns positive probability to every ε–neighborhood of σ0, one has:

Theorem 2—Let fLX be a randomly generated curve from the prior defined in §2·2 with f0 

∈ ℱH−1. If  is the joint distribution of  conditionally on ,  is a 

sequence of open subsets in ℱH−1 that is defined by Wε,n for fixed designs or by Uε for 

random designs, and ∏n is the posterior distribution of f0 given , then

Further, for all H odd if M < 0, this relation holds for f0 ∈ ℱH+, otherwise it holds for f0 ∈ 
ℱH−. Similarly, for H even if M > 0, then f0 ∈ ℱH+, otherwise it holds for f0 ∈ ℱH−.

The proof of this consistency result follows from Choi & Schervish (2007) and the prior 

positivity result above. The condition on the prior over σ2 can be satisfied with an inverse-

Gamma distribution.

2·4. Bayes Factors for Testing Curve Shapes

Our approach allows one to define the shape of the curve through the α vector and to place 

prior probability on a class of functions having a given shape, i.e the number and type of 

extrema in . When there are flat regions of f0 the shape of the curve is not uniquely 

identifiable based upon the configuration of α, and hypothesis tests may be inconclusive. 

For an example of this, see the consistency arguments for monotone curve testing in Scott et 

al. (2015). In what follows, we assume that  at all points in  except within flat 

regions.

Let ℍ1 and ℍ2 denote two distinct and non-nested sets of α values, corresponding to distinct 

shapes. These sets are defined by the number of , the number of , and 

the number of . One can compute pr(Y|f0 ∈ ℍ1) and pr(Y|f0 ∈ ℍ2), with the 

corresponding Bayes factor between the two shapes being

(5)
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This quantity is not available analytically, but can be estimated through posterior simulation 

by monitoring the α and β vectors.

Any two shapes falling within ℱH can be compared using this approach. Alternatively, one 

may be interested in the hypothesis that f0 is in a class of functions with at least K extrema. 

For example, one may wish to assess whether or not the function is monotone. In this case, 

one can define ℍ1 to correspond to functions in ℱH with F or more extrema and  to 

functions with less than F extrema. The value of H can be elicited as an upper bound on the 

number of extrema to avoid highly irregular functions. For such tests, the following result 

holds.

Proposition 2—Let ℍ1 be the class of functions in ℱH with F or more extrema and 

. If f0 ∈ ℍ1, then

as n → ∞

This result, an application of Theorem 1 in Walker et al. (2004), It follows from the fact that 

local extremum spline representations having fewer than F change points can never be 

arbitrarily close to the function of interest.

3. Posterior Computation

We rely on Godsill (2001) to develop a reversible jump Markov chain Monte Carlo 

algorithm to sample between models. Consider moves between models ℳ and ℳ′, where the 

model ℳ′ has one extra knot that is a child of a node also in ℳ. As described further in the 

Supplementary Material, most of the local extremum spline basis functions for model ℳ and 

ℳ′ are identical, with only j + 2 different functions. Let β−ℳ denote the coefficients on all 

the splines that are the same as well as σ2, π and λ, which are parameters shared between 

both models. The remaining spline coefficients are βℳ and  for models ℳ and ℳ′, 

respectively. As in Godsill, given the shared vector β−ℳ, we marginalize βℳ and out of 

the posterior to compute p(ℳ′ | Y, β−ℳ) and p(ℳ | Y, β−ℳ). This marginalization requires 

numerical integration of multivariate normal distributions, which is performed using Genz 

(1992) and Genz & Kwong (2000). The probability of a move between two models is 

determined by the ratio

(6)

where a knot insertion is made with probability min(1, h), a knot deletion is made with 

probability min(1, 1/h), and q(ℳ; ℳ′) is the transition probability between ℳ and ℳ′.
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All proposals are made between models that are nested and differ by only one knot. When 

the current model has no children we propose a knot insertion with unit probability. 

Otherwise, the proposal adds or deletes a knot with probability 1/2, and the inserted or 

deleted knot is chosen uniformly. For a knot insertion, as we are going from model ℳ to ℳ′, 

the available knots are represented by all failures in the branching process that generated ℳ. 

A knot deletion going from model ℳ′ to ℳ represents all of the nodes in the branching 

process that generated ℳ′ that do not have any children. All other parameters, including the 

spline coefficients, are sampled in Gibbs steps described in the supplement.

The posterior distribution is often multimodal, with the sampler getting stuck in a single 

mode, when widely different parameter values have relatively large support by the data, with 

low posterior density between these isolate modes. To increase the probability of jumps 

between modes, a parallel tempering algorithm (Geyer, 1991, 2011) is implemented.

4. Simulation

4·1. Simulation Specification

We investigate our approach through simulations for functions having 0, 1, or 2 local 

extrema interior to . For all simulations, we place a Ga(1, 1) prior over σ. For the hyper 

prior on π, we let ν = 2 and ω = 18, which puts low prior probability on flat curves. 

Additionally, for the hyper prior over λ, we let δ = 0·2 and κ = 2, which favors smaller 

values of β. All local extremum splines were constructed using B-splines of order 2 with M 
= 100.

The Markov chain Monte Carlo algorithm was implemented in the R programming language 

with some subroutines written in C++ and is available from the first author. Depending on 

the complexity of the function, the algorithm took between 60 and 90 seconds per 50, 000 

samples using one core of a 3·3 gigahertz Intel i7-5830k processor. Parallelizing the 

tempering algorithm on multiple cores may substantially reduce the computation time. 

Additional information on the convergence of the algorithm, as well as impact of the B-

spline order used, is provided in the Supplementary Material.

4·2. Curve Fitting

We compare the local extremum spline approach to other nonparametric methods, including 

Bayesian P-splines (Lang & Brezger, 2004), a smoothing spline method described in Green 

& Silverman (1993), and a frequentist Gaussian process approach described in Chapter 5 of 

Shi & Choi (2011). We consider seven different curves with between 0 and 2 extrema and 

compare the fits of the other approaches and of a local extremum spline specified to have at 

most H = 2 change points. The following true curves are investigated:
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We set yi = fj(xi) + εi with εi ~ N(0, σ2). Functions f1, f2 and f3 are monotone, f4 and f5 have 

one change point, and f6 and f7 have two change points. For each simulation, a total of 100 

equidistant points were sampled in . We consider σ2 = 1, 4. For each simulation 

condition, 250 data sets were generated, fitted and compared using the mean squared error, 

, for the local extremum spline, smoothing spline, Bayesian P-

spline, and Gaussian process approaches.

For the local extrema approach, we collected 50,000 Markov chain Monte Carlo samples, 

with the first 10, 000 samples disregarded as burn-in. For the parallel tempering algorithm, 

we specify 12 parallel chains with {κ1, …, κ12} = {1/30, 1/24, 1/12, 1/9, 1/5, 1/3·5, 1/2, 

1/1·7, 1/1·3, 1/1·2, 1/1·1, 1}, and monitor the target chain with κ12 = 1. The P-spline 

approach was defined using 30 equally-spaced knots, and the prior over the second-order 

random walk smoothing parameter was IG(1, 0·0005), distribution, which was one of the 

recommended choices in Lang & Brezger (2004).·In this approach, 25,000 posterior samples 

were taken, discarding the first 5,000 as burn in. For the smoothing spline method, the R 

function ‘smooth.spline’ was used. Finally, the Gaussian process approach used a frequentist 

implementation given in the R package ‘GPFDA.’

Table 1 gives the integrated mean squared error of the various approaches. All numbers 

marked with an asterisk are significantly different from local extremum splines. The local 

extremum approach integrated mean square error is always smaller than the others, and in 

most cases it is significantly different at the 0·05 level. Generally, when there is a high 

signal-to-noise ratio, the methods perform similarly, but when the ratio decreases, 

specifically in flat regions, the local extremum approach was superior as it removed 

artifactual bumps from the estimate.

4·3. Hypothesis Testing

We perform a simulation experiment investigating the method’s ability to correctly identify 

the shape of the response function for three sets of hypotheses. In the first case, the null 

hypothesis is the set of all functions with one or more extremum, and the alternative, ℍ1, is 

the set of all monotone functions. In the second test, the null consists of all monotone 

functions, and the alternative, ℍ2, is all functions with one or more extremum. Finally, for 

the third test the null hypothesis is the set of functions having at most one extrema, and the 

alternative, ℍ3, is the set of functions with two extrema first having a local maximum 

followed by a local minimum. Functions are defined on . The nine functions used 

in this simulation are:
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For the simulation, data are generated assuming yi = gj(xi) + εi, where εi ~ N(0, σ2) and σ2 = 

1. We consider sample sizes n = 100, 200, 300, and 400, with 50 data sets constructed where 

points are sampled evenly across , for each sample condition. The local extremum 

approach is as above except, but 150,000 posterior samples are taken with the first 10,000 

disregarded as burn-in. For tests ℍ1 and ℍ2, the local extremum approach is compared with 

the Bayesian method of Salomond (2014) and the frequentist methods of Baraud et al. 

(2005) and Wang & Meyer (2011). For the method of Baraud et al. we use the test where ℓn = 

25, and for the method of Wang and Meyer we use k = 4 splines, which were the most 

powerful tests presented in the respective articles.

The Bayesian tests produce Bayes factors, while the frequentist tests have corresponding test 

statistics. We compare the methods based upon area under the receiver operating curve. For 

the simulation, the false positive rate was computed from the values of the test statistics for 

the other functions not in the test set. As a frequentist calibration of our Bayesian test, one 

can choose a threshold on the Bayes factor to control the type I error rate at a specified level 

based on an approximation to the distribution of the Bayes factor under the null hypothesis. 

We describe this approximation in the Supplementary Material.

Figure 1 shows the receiver operating curve for hypothesis ℍ1. This shows that the local 

extremum approach is superior to the other three approaches across all false positive rates. 

Further, the estimated area under the receiver operating curve is 0·94, better than the 

approaches of Salomond at 0·86, Baraud at 0·77, and Wang and Meyer at·0·74. When 

looking at the impact of sample size on the tests, the power of the local extrema approach 

increases as the sample size increases, does so at a rate greater than competitors, and is 

similarly superior for hypothesis ℍ2, data not shown.

For hypothesis ℍ3, there is not an equivalent methodology in the literature, but the 

performance of our approach is excellent. The area under the receiver operator curve is 0·94. 

For the Bayes factor cut point of 6, Table 2 gives results across all simulation 

conditions.·Our test achieves high power for function g7, even though it differs this function 

is only slightly different from g3. Function g8 is the same as g5, this simulation gives 

evidence that the departure from monotonicity may be due to the pronounced U shape in the 

data and not necessarily because there are two extrema, which requires more data to 

conclude in favor of ℍ3.
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4·4. Seasonal Influenza and Pneumonia Death Rate

In temperate climates, the prevalence of influenza peaks in the winter months while 

dropping in the warmer months. Estimating this seasonal effect as well as departures from 

this effect, may be of interest when estimating the magnitude of an influenza epidemic. 

Here, we expect a peak in the winter months followed by a trough in the summer months. 

Parametric models for this pattern may not be adequate to model the observed phenomena, 

and smoothing approaches do not guarantee this pattern. We use local extremum splines, 

setting H = 2, to estimate this trend for Virginia, North Carolina and South Carolina for data 

collected by the Centers for Disease Control and Prevention National Center for Health 

Statistics Mortality surveillance branch.

Figure 2 plots the estimated mortality rates, estimated using an additive model defined by a 

quadratic trend representing a decrease in mortality over time, a seasonal component defined 

using local extremum spline, and a P-spline that represents departures from the overall trend. 

This seasonal component is different from the trend published by the Centers for Disease 

Control (Viboud et al., 2010), mainly due to the asymmetry in the local extrema approach 

during the winter months, which cannot be captured by a single sinusoidal function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1

Proofs of results

Proof of Proposition 1

It is well known that  is continuous for j ≥ 1 and for j ≥ 1 and for all 

. Further,  is a polynomial; therefore, 

 is continuous with anti-derivative 

.

If βk ≥ 0 for all k ≥ 1, then  for all  and 

 can only change sign when x = αh. Thus, 

there are at most H local extrema interior to , with . □
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Proof of Theorem 1

Consider f0 ∈ ℱH, where f0 has exactly H change-points. Functions with less than H change 

points can be modeled by removing the required change point parameters from  and 

continuing with the proof below.

Let fBS be a taut B-spline approximation of f0 of order j + 1 defined on the knot set 

having exactly H extrema such that

Here fBS is defined on , where Δ = maxk |τk − τk+j| < 1. As f0 and fBS are continuous and 

differentiable, we define C such that ‖f0‖ < C < ∞ and ‖fBS‖ < C. The measurable set of taut 

spline functions  can be shown to exist (de Boor, 2001) 

and we define a map  where  a subset of all possible local extremum 

spline functions with H change points. Consider

(A1)

and let β0 = fBS(0). For the exactly H extrema  in fBS defined by the taut 

spline, set . Additionally, if  with H odd, then set M = −1; 

otherwise set M = 1. In the case where  with H odd, then set M = 1 

otherwise set M = −1.

Rewriting the right hand side of (A1) in a form based upon the derivative, we have

where the derivative of fBX is based upon the derivative formula for B-Splines (de Boor, 

2001) and .

Because of the taut spline construction of fBS, we know that for all k, h such that αh ∉ [τk, 
τk+j−1] one has sgn(κk) = sgn(G(x)), for all x ∈ [τk, τk+j−1]. Here sgn(·) is the signum 

function. On each of these intervals let

WHEELER et al. Page 12

Biometrika. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As B(j,k)(x) ≥ 0, we have βk ≥ 0; further, one has

for all intervals such that αh ∈ [τk, τk+j−1].

For the at most H coefficients defined on splines that are nonzero in the intervals αh ∈ [τk, 
τk+j−1], set these coefficients to zero. As there are a finite number of intervals whose error is 

non-zero and fBS is bounded, the maximum error is at most (H + 1)(j + 1)ΔC for any x and

Consequently, for any ε, consider taut B-spline constructions on knot sets  such that Δ ≤ 

ε[{2(H + 1)(j + 1)}C]−1 that also have ‖f0 − fBS‖∞ < ε/2. Then one has

completing the proof. □

Proof of Lemma 1

The function  in Theorem 1 is measurable. If  is measurable on some abstract measure 

space, one has  for any ε > 0 and some . Given the prior 

puts probability over knot sets having knot spacings that are arbitrarily close, that is Δ ≤ 

ε[{2(H + 1)(j + 1)}C]−1 as in Theorem 1, we conclude that 

 for all ε > 0. □

Proof of Theorem 2

We verify the conditions given in A1 and A2 of Theorem 1 of Choi & Schervish (2007). If 

there is positive prior probability, Lemma 1, within all neighborhoods of (f0, σ2), one can 

use Choi & Schervish (2007), section 4, to show that the conditions of A1 of Theorem 1 are 

met. To verify A2 we have that ℱH+ and ℱH+ are subsets of all continuous differentiable 

functions on  which were considered in Choi & Schervish (2007); consequently, we 

appeal to Theorem 2 and 3 of Choi & Schervish (2007) to construct suitable tests for both 

random and fixed designs using Wε,n and Uε. We need only verify (iii) in part A2.

As in Choi & Schervish (2007), assume that  with 1/2 < α < 1. We show that 

 and 

WHEELER et al. Page 13

Biometrika. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for some C0, C1, C2, C3 > 0. Define  as the design matrix given model ℳ and a 

particular α figuration. Let  and Kℳ be the number of spline 

coefficients in model ℳ then

(A2)

Where the last inequality comes from the the Chernoff bounds.

Now let pr*(ℳ) be the probability of a branching process where ζ < 0.5 is constant for all 

children, then there exists a  such that {pr*(ℳ)}2 ≥ pr (ℳ) for all ℳ such that . 

Partition the sum into the finite sum where  and the infinite sum . As the 

finite sum is finite for all 0 < t < λ, continuing with (A2):

where the last inequality exists as λ is bounded above zero, which implies one can choose 

some t < λ such that (λ − πt)/(λ − t)ζ < 1. This implies that

A derivation similar to the above can be used to show the same holds for pr(‖f′LX(x)‖∞ > 

Mn) ≤ C2 exp(−nC3). One can find a  and substitute B for A and 

 for  in the above derivation.
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Fig. 1. 
The receiver operating curve for the four tests defined for hypothesis ℍ1 for all 1,400 

simulations. The black line represents the local extremum spline, dashed line the approach 

of Salomond, dashed-dotted line the approach of Baraud, and dotted line the approach of 

Wang and Meyer.
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Fig. 2. 
Estimate of the expected rate of seasonal influenza and pnuemonia deaths using the local 

extremum spline, black line, compared to the observed rate of influenza and pnuemonia 

deaths estimated using the Center for Disease Control’s standard approach, gray line. Dots 

represent observed state level influenza and pneumonia percentages.
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Table 1

Estimated mean squared error for all functions. For each function, the left value represents the simulation 

condition σ2 = 1 and the right value represents the simulation condition σ2 = 4. Asterisks signify that the 

number is significantly different than the local extremum spline at the one-sided 0·05 level.

True Function Local Extremum Splines Smoothing Splines Bayesian P-Splines Gaussian Process

f1 1·60/0·49 2·11*/0·58 2·28*/0·55 2·15*/0·71*

f2 2·59/0·09 4·19*/0·13* 3·82*/0·11* 5·26*/0·15*

f3 1·57/0·49 2·43*/0·67* 2·26*/0·92* 2·64*/0·79*

f4 1·70/0·49 2·10*/0·56* 2·15*/0·49 1·90*/ 0·59*

f5 2·55/0·61 3·69*/1·12* 3·39*/0·98* 3·90*/1·14*

f6 2·17/0·69 2·57/0·72 5·16*/0·72 2·44/0·79*

f7 2·38/0·66 3·39*/1·05* 3·96*/0·85* 3·30*/0·90*

Biometrika. Author manuscript; available in PMC 2018 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript
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Table 2

Percent of samples where the model was correctly chosen as having two extrema, which is hypothesis ℍ3, 

using a cut point of 6.

Function n

100 200 300 400

g7 78 90 98 96

g8 14 32 22 46

g9 76 88 98 100
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