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Abstract

The strategic closed-loop supply chains (CLSCs) literature makes the assumption that a consumer’s

willingness-to-pay (WTP) for a remanufactured product is a fraction of his/her WTP for the cor-

responding new product, and this fraction, called discount factor, is assumed to be constant among

consumers. Recent empirical research challenges this assumption, by showing that there is consider-

able variability in discount factors among consumers. This paper considers a complex model in the

CLSC literature: strategic remanufacturing under quality choice, and compares its solution under

constant discount factors with the solution that assumes a probability distribution for the discount

factors (which is analytically intractable and must be obtained numerically). We consider quality

choice and remanufacturing for both monopoly and competitive cases. Overall, we find remarkable

consistency between the results of the constant and variable discount factor models. Thus, we make

a convincing argument that the constant discount factor assumption is robust and can be used due

to its tractability.

Keywords: Strategic planning, remanufacturing, game theory, closed-loop supply chains

1. Introduction

Remanufacturing is the process of restoring a used product to a common aesthetic and operating

standard (Lund, 1984). In many cases, products remanufactured by an original equipment manu-

facturer (OEM) are essentially like-new (e.g., Ferguson and Souza, 2010). However, the empirical

closed-loop supply chain (CLSC) literature convincingly demonstrates that, in general, consumers’

willingness-to-pay (WTP) for remanufactured products are lower than for new products, and this is
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reflected in lower prices for remanufactured products (for a review, see Souza, 2013). For example,

Guide and Li (2010) auction new and remanufactured power tools and Internet routers on eBay,

with fulfillment by the respective OEMs, and with the same warranty as new products. They find

that the final auction price for remanufactured products is 15% lower than for their corresponding

new counterparts. As another example, Subramanian and Subramanyam (2012) compare prices of

new and remanufactured products at eBay, and find that price discounts for remanufactured prod-

ucts, after controlling for warranty, range between 15% and 40% for different types of consumer

electronics. The drivers of this lower WTP have been investigated in the recent CLSC literature,

and are related to lower perceived quality, as we further discuss in section 2.

Because consumers’ WTP for remanufactured products are generally lower than their WTP

for corresponding new products, OEMs that offer remanufactured products must carefully price

new and remanufactured products to maximize profitability. This is because the addition of a

remanufactured product to an OEM’s product line has a positive market expansion effect, but also

a negative cannibalization effect, and prices of remanufactured and new products determine the

magnitude of these effects (see, e.g., Souza, 2013). Pricing is also critical for an OEM to deter

competition from independent remanufacturers (Ferguson and Toktay, 2006). The literature has

analyzed these and other strategic CLSC problems, as discussed in section 2, using analytic models.

In these models, the classical approach to model a consumer’s WTP for remanufactured products is

to multiply her WTP for corresponding new products by a discount factor, as follows. Consumers

are characterized by their WTP for a new product, denoted by θ; consumers are heterogeneous and

θ ∼ U [0, 1]. A customer of type θ has a WTP δθ for the remanufactured unit, where δ ≤ 1 is the

discount factor (also called durability level by some authors), assumed constant across consumers.

As shown in section 3, assuming that the discount factor δ is constant across consumers results

in linear demand curves for new and remanufactured products, which is tractable for analyzing

strategic CLSC problems.

Abbey et al. (2017), however, find that consumers differ significantly in their discount factors

for remanufactured products. They empirically derive a probability distribution of discount factors

for the iPhone 6, whose cumulative density function (cdf) is plotted in Figure 1, along with a

truncated normal distribution with the same mean and standard deviation (the smooth curve in

Figure 1), which demonstrates a good fit. They also assess the impact of this variable discount

2
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Figure 1: The empirical CDF and the corresponding CDF of the truncated normal distribution

factor finding on the simplest analytical model of the CLSC literature—whether a monopolist OEM

should offer a remanufactured product, in addition to its new product. Their analysis considers

the solutions under constant and variable discount factor assumptions. They show that the general

insights provided by the model with constant discount factors hold under variable discount factors

in this simple model. Thus, their paper provides initial evidence of the robustness of the constant

discount factor assumption.

The major contribution of this paper is to show the robustness of the constant discount factor

assumption for significantly more complex strategic models in the CLSC literature: the models—

both monopoly and competition—where quality choice for the new product is also a decision variable

by the firm(s), in addition to prices of new and remanufactured products. This is because, as we

see in section 3.1, equation (1), a model with quality choice results in non-linear demand curves for

new and remanufactured products, even under a constant discount factor assumption. Despite these

analytical challenges, the quality choice model under constant discount factors has been analyzed

by Atasu and Souza (2013) for the monopolist OEM, whereas competition against an independent

remanufacturer (IR) has been analyzed by Örsdemir et al. (2014). We analyze quality choice models

for both a monopolist OEM, and OEM competition against an IR under variable discount factors,

and compare the findings against those with constant discount factors from Örsdemir et al. (2014).

To further demonstrate robustness, we consider two significant extensions: (i) when there is a

convex collection cost (for both monopoly and competition), and (ii) when both the OEM and IR

offer remanufactured products, in addition to the new product by the OEM. There is some empirical

evidence that unit collection costs increase in the quantity collected in some settings (Atasu et al.,

2013); hence our proposed extension. Second, there are several industry scenarios where both the

OEM and IR offer remanufactured products (Souza, 2013). The models with variable discount

3
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factors are analytically intractable—even the demand functions cannot be obtained in closed form,

as we show in section 3.2, equations (7)-(8)—and must thus be solved numerically.

We find that the constant discount factor model is reasonably robust in generating valid qual-

itative insights in this complex setting. For example, there is consistency in how optimal and/or

equilibrium prices and quality behave as a function of parameter values, such as unit costs, and

mean discount factors. We find, of course, (relatively small) differences in the actual optimal values

of prices and quality between constant and variable discount factor models. One additional insight

brought by the variable discount model is that a firm (either OEM or IR) remanufactures under a

much wider set of remanufacturing costs and discount factors, because for a given remanufactured

product price that is less than the new product price, there is always a non-zero segment of con-

sumers who are willing to buy the remanufactured product. This result holds for both monopoly

and competition settings. Despite the differences in optimal and/or equilibrium prices between

the two models, we remind the reader that the purpose of stylized models is not to provide ac-

tual decision support for firms in making pricing decisions, but rather to offer qualitative insights

into strategic behavior. Thus, we provide convincing evidence that the tractable constant discount

factor assumption is robust for use in stylized models for generating insights.

This paper is organized as follows. In section 2 we present a literature review. In section 3

we briefly describe the analytic model by Örsdemir et al. (2014) for both the monopolist OEM

case, as well as when the OEM competes with an IR. We then describe how the models change

under variable discount factors. In section 4, we describe our experimental design and the numerical

solution approach. In section 5, we provide the numerical results for the monopolist OEM comparing

both constant and variable discount factor models. In section 6, we provide the comparison for the

case where the OEM competes with an IR. In section 7.1, we consider the extension with convex

collection costs, for both monopoly, and OEM competition with an IR. In section 7.2, we consider

the extension where both OEM and IR offer remanufactured products, in addition to the OEM’s

new product. We conclude in section 8.

2. Literature Review

OEMs remanufacture for such reasons as value recovery, product line extension, use for war-

ranty fulfillment, and brand protection against independent remanufacturers (see, e.g., Atasu et al.,

4
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2010, Ferguson and Souza, 2010). These reasons led to a significant stream of normative CLSC

research on an OEM’s decision to remanufacture, including optimal pricing under competition (e.g.,

Majumder and Groenevelt, 2001, Debo et al., 2005, Ferguson and Toktay, 2006, Ferrer and Swami-

nathan, 2006), marketing strategies (e.g., Atasu et al., 2008, Oraiopoulos et al., 2012), impact of

remanufacturing on new product quality and design (Atasu and Souza, 2013, Galbreth et al., 2013,

Subramanian et al., 2013, Örsdemir et al., 2014), strategic product acquisition (Guide et al., 2003),

and production capacity (Vorasayan and Ryan, 2006). This research assumes constant discount

factors, which results in tractable linear demand curves as we see in the next section.

Recent behavioral CLSC research empirically scrutinizes this constant discount factor assump-

tion. Ovchinnikov (2011) finds that WTP for remanufactured products decrease if remanufactured

products are priced too low, due to a low-quality perception. Ovchinnikov et al. (2014) empirically

derive demand functions, using conjoint analysis, that are not linear. Agrawal et al. (2015) show

how remanufacturing by an OEM is perceived differently by consumers than remanufacturing by an

IR. Abbey et al. (2015) use consumer experiments to obtain the attractiveness of remanufactured

products as a function of price discounts, brand equity, and quality perceptions. For technology

products, they find that under low discount levels the attractiveness of remanufactured products in-

creases with an increasing discount level, confirming theoretical predictions. Yet, they also find that

too high price discounts may decrease the attractiveness of remanufactured products, in line with

Ovchinnikov (2011). Finally, Abbey et al. (2017) empirically derive the probability distribution of

discount factors for a remanufactured iPhone 6.

This paper contributes to the CLSC literature by showing that the insights provided by the

quality choice model of Örsdemir et al. (2014), which is arguably the most complex analytic model

in the literature using the constant discount factor assumption, carry over to the (realistic) situation

where discount factors are variable; we use the empirically-derived discount factor distribution of

Abbey et al. (2017) as the basis of our analysis. In addition, we provide two significant extensions.

First, we consider convex collection costs, which has been shown to hold empirically by Atasu et al.

(2013) in some settings. Second, we consider the case where both the OEM and IR offer reman-

ufactured products, in addition to the OEM’s new product. This latter extension is analytically

challenging even with constant discount factors. As a result, only simplified versions of it without

quality as a decision variable have been analyzed analytically (e.g., Atasu et al., 2008, Ferrer and

5
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Swaminathan, 2006), or the model has been analyzed numerically (Örsdemir et al., 2014).

3. Analytic model

3.1. Quality choice under constant discount factor for remanufactured products

We first briefly describe the benchmark quality choice model by Örsdemir et al. (2014); we refer

to their paper for additional details. The notation is shown in Table 1. In their model, which is

based on long-standing marketing literature (e.g., Mussa and Rosen, 1978, Moorthy, 1988), quality is

modeled as a single, continuous decision variable s, which indicates a critical performance dimension

for which consumers are willing to pay for, such as megapixels in a digital camera.

Table 1: Notation
Parameters
α unit cost for the remanufactured product as a fraction of the new product’s unit cost
β scaling parameter in the unit cost

Decision variables
pn price of the new product
pr price of the remanufactured product
s quality level

Auxiliary variables
θ WTP for the new product with unit quality level
δ discount factor for WTP for remanufactured products
qn quantity of new products
qr quantity of remanufactured products
θab a consumer type that is indifferent between alternatives a and b

Monopolist OEM. If the OEM provides a new product with quality s at price pn, then the net

utility that a consumer of type θ ∼ U [0, 1] derives from this product is Un(θ) = θs−pn, where θ

is interpreted as WTP of a consumer for a product with unit quality level. Thus, if only the new

product is available the sales quantity given a unit market size is qn = 1·Pr{θs−pn≥ 0}= 1− pn
s ,

where the last equality results from the uniform distribution for θ. A customer of type θ has a

WTP δθ for the remanufactured unit, where δ≤1 is the discount factor, assumed constant across

consumers. Note that, as defined, a higher discount factor δ means that consumers consider the

remanufactured product more similar to the new product. Thus, a consumer of type θ has a net

utility for the remanufactured product priced at pr equal to Ur(θ) = δθs−pr. Equating Un(θ) and

Ur(θ) results in the consumer θrn = pn−pr
(1−δ)s that is indifferent between the two products. Likewise,

setting Ur(θ) = 0 results in the consumer θzr = pr
δs that is indifferent between buying a remanufac-

6
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tured product and buying nothing. With the uniform distribution for θ, this yields:

qn(pn, pr, s) = 1− pn − pr
(1− δ)s

and qr(pn, pr, s) =
pn − pr
(1− δ)s

− pr
δs
. (1)

Note that, if the quality s is normalized to one, as in a significant portion of the CLSC literature,

then (1), which originate from the assumption of a constant discount factor δ across consumers,

result in linear demand curves; this ensures tractability. When the quality choice s is a decision

variable, then the demand curves are non-linear in s.

Following the literature on quality choice, the unit cost for the new product is convex increasing

in the quality level, βs2, whereas the unit cost for the remanufactured product, including the cost

of collecting a used product, is a fraction α of the unit cost of the new product, αβs2. The monop-

olist OEM first selects the optimal quality of the product s∗. It then determines the prices of new

and remanufactured products to optimize its profit in a single period. In the CLSC literature, one

period is the length of the product’s life with consumers, after which it must be remanufactured

to be useful again. Considering a stationary setting, the period in the model can be thought of

a period in an infinite planning horizon with identical periods. The price choices are constrained

in such a way that the quantity of remanufactured products cannot exceed the quantity of new

products because used products, or cores, are the key input for remanufacturing as follows. Since

a new product lasts one period, a used product in a period corresponds to a new product sold in

the previous period; considering the infinite-horizon setting with identical periods, qn is the same

in all periods, hence the constraint qr ≤ qn. Another possibility for such core availability constraint

would be to set qr ≤ τqn, where τ < 1 indicates that not all used products can be recovered. We use

the constraint qr ≤ qn in order to directly compare our results with those of Örsdemir et al. (2014).

Incorporating the additional parameter τ would increase the region where total remanufacturing

(i.e., the core availability constraint is tight) is optimal, but would not change the key insights about

the robustness of the constant discount factor model. To solve this problem, backward induction is

used. First, the OEM solves the pricing optimization problem for a given quality level s:

max
pn,pr|s

π(pn, pr, s) = (pn − βs2)qn(pn, pr, s) + (pr − αβs2)qr(pn, pr, s), (2)

s.t. 0 ≤ qr(pn, pr, s) ≤ qn(pn, pr, s).

Then, the OEM solves for the optimal quality level, given the optimal prices:

max
s≥0

π(p∗n(s), p∗r(s), s), (3)

7
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where p∗n(s) and p∗r(s) are the optimal prices (as a function of the quality level s) found in (2). The

closed-form solution to problem (1)-(3) can be found in Örsdemir et al. (2014).

Competition between OEM and IR. Now, the OEM offers only new products, whereas the IR offers

a remanufactured version of the OEM’s product. The OEM first chooses the quality level of the

new product. Then, for a given quality level, the OEM and IR compete by choosing the new and

remanufactured product prices, respectively, under the core availability constraint. The OEM and

IR make simultaneous pricing moves, as assumed by Örsdemir et al. (2014), and this is also consis-

tent with other competition models in the CLSC literature. This results in a game, which can be

solved by backward induction, as follows. First, the OEM and IR solve the following pricing game:

max
pn|pr,s

πOEM (pn, pr, s) = (pn − βs2) · qn(pn, pr, s), (4)

s.t. qn(pn, pr, s) ≥ 0.

max
pr|pn,s

πIR(pr|s, pn) = (pr − αβs2) · qr(pn, pr, s), (5)

s.t. 0 ≤ qr(pn, pr, s) ≤ qn(pn, pr, s).

The OEM then chooses the optimal quality s∗ that maximizes its profit:

max
s≥0

πOEM (p∗n(s), p∗r(s), s). (6)

The game comprised of (1) and (4)-(6) has a closed-form Nash equilibrium solution, given by Örs-

demir et al. (2014). Although other equilibria are possible in a multi-period game, the equilibrium

solution to the above model corresponds to a stationary equilibrium in an infinite-horizon setting

with identical periods, which is standard in the CLSC literature (Souza, 2013).

3.2. Quality choice under variable discount factor for remanufactured products

Under a variable discount factor, δ is no longer constant, but has a probability distribution with

cdf F (·), such as the one shown in Figure 1, with support [0, 1]; denote the probability density

function of δ as f(·). A consumer can then be described as a point (θ, δ) in the respective plane.

The starting point from the derivation of the demand functions is similar to the constant discount

factor model. In particular, we equate the utility of buying a new product Un(θ) = θs−pn to

the utility of buying a remanufactured product Ur(θ, δ) = δθs−pr to yield the indifference curve

θrn = pn−pr
(1−δ)s . Likewise, we equate the utility of buying a remanufactured product Ur(θ, δ) to the

utility of buying nothing Uz = 0, yielding the indifference curve θzr = pr
δs . Finally, we equate the

utility of buying a new product Un(θ) to that of buying nothing Uz, yielding θzn= pn
s .

8
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Figure 2: Consumer behavior depending in θ and δ

Figure 2 graphically depicts the consumer regions for buying new products (N), buying re-

manufactured products (R), and not buying (Z) in the plane (θ, δ). Each shaded region (e.g.,

N) characterizes the consumer types (θ, δ) who have higher utility for that alternative (i.e., the

new product) than for the other alternatives (i.e., the remanufactured product, and nothing). As

a result, demand functions for new and remanufactured products are the double integrals of the

probability distributions of consumer types θ and δ over the respective regions, as follows:

qn(pn, pr, s) =

∫ pr/pn

0
f(δ) dδ

∫ 1

θzn

dθ +

∫ 1−(pn−pr)/s

pr/pn

f(δ)

∫ 1

θrn

dθ dδ, (7)

qr(pn, pr, s) =

∫ 1

pr/pn

f(δ)

∫ 1

θzr

dθ dδ −
∫ 1−(pn−pr)/s

pr/pn

f(δ)

∫ 1

θrn

dθ dδ. (8)

The first term in (7) corresponds to the rectangle formed by θ values between θzn and 1, and δ values

between 0 and pr
pn
, where the latter is the intersection of the curves θzn and θrn. The second term in

(7) corresponds to the area formed by θ values between the curve θrn and 1, and δ values between
pr
pn

(the intersection of the curves θzn and θrn) and 1− pn−pr
s , where the latter is the intersection of

the curve θrn and θ=1. The first term in (8) corresponds to the area formed by θ values between

the curve θzr and 1, and δ values between pr
pn

(the intersection of the curves θzr and θrn) and 1.

The second term in (8) is the area related to the second term in (7).

Although a closed-form solution to (7) and (8) is possible for a simple continuous distribution

of δ, such as the uniform, there is no closed-form solution when δ follows a (truncated) normal

9
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distribution, such as the one in Figure 1, which shows a good empirical fit.1 Thus, the demand

curves must be derived numerically: for each possible triple (pn, pr, s), the integrals in (7)-(8) are

computed numerically to generate the corresponding qn(pn, pr, s) and qr(pn, pr, s).

Now, in the monopolist OEM case, the OEM solves the optimization model consisting of (7), (8)

and (2)-(3). In the case where the OEM competes with the IR, the equilibrium is found by solving

(7), (8), and (4)–(6). Given the fact that the demand functions themselves (7) and (8) cannot be

found in closed-form, the respective solution and equilibrium need to be found numerically. We

describe the experimental design and solution procedure for our numerical analysis next.

4. Experimental design and numerical solution approach

Experimental design. The numerical study consists of two parts, namely the case of the monop-

olist OEM, and the case of competition between the OEM and the IR. We consider a truncated

normal distribution for the discount factor, following its good fit with the empirical discount factor

distribution found by Abbey et al. (2017) for the iPhone 6, and shown in Figure 1. To analyze

the impact of different values of E[δ], as well as the impact of different levels of variability in the

distribution of δ, we consider five truncated normal distributions: truncated N(0.3, 0.12), trun-

cated N(0.6, 0.22), truncated N(0.3, 0.052), truncated N(0.6, 0.12), and truncated N(0.8, (0.8
6 )2).

The five curves provide three different levels of E[δ], namely 0.3, 0.6, and 0.8, and two levels of

variability, with coefficients of variation (CV) equal to 1/3 and 1/6. In addition, we also consider

the benchmark constant discount factor, that is, a CV of zero. Essentially, we use the minimum

and maximum values of 0.3 and 0.8 for E[δ] in our design because they still allow us to use a trun-

cated normal distribution with reasonable values of variability, considering that the distribution of

discount factors has a support in [0,1]. In fact, for E[δ] = 0.8, the CV value of 1/3 is not possible

with a truncated normal distribution. We emphasize that the truncated normal distribution for δ

has empirical support, as shown in Figure 1 (Abbey et al., 2017). Furthermore, we are not aware

of any remanufactured product that sells with discounts higher than 70% relative to the price of a

comparable new product; reported price discounts in the literature range between 15% and 55 %

(Subramanian and Subramanyam, 2012, Hauser and Lund, 2003), and hence values for E[δ] below

1Abbey et al. (2017) show that even in case of a uniform δ distribution, demand functions are non-linear and
optimal solutions for the simple monopolist OEM model without quality choice can only be derived numerically.
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0.3 are unlikely to happen in practice. We present mainly the results for E[δ] = 0.6 (as the results

for E[δ] = 0.3 and E[δ] = 0.8 are similar), except where we report on the behavior of the solution

with respect to E[δ]. We select E[δ] = 0.6 to report most of the results, because it is similar to the

value found by Abbey et al. (2017) for the remanufactured iPhone 6, which is E[δ] = 0.57.

In terms of unit cost for the new product, we normalize β = 1, as in Örsdemir et al. (2014).

For the remanufactured product’s unit cost as a fraction α of the new product’s unit cost, which

is necessarily less than one, we consider a wide range of possible values: α ∈ {0.1, 0.2, ..., 0.9}.

Henceforth, we refer to α simply as the relative unit cost of the remanufactured product.

For each of the above eight distributions for δ (including the constant δ case), and the nine

possible values of α, we analyze both the monopolist OEM and competition with IR cases. The

experimental design thus yields 8 · 9 · 2 = 144 experimental cells. For each cell, we compute the

benchmark solution of Örsdemir et al. (2014) (under constant discount factors), and the numerical

solution under variable discount factors.

Numerical solution approach for monopoly case. For any given value of the quality level s, and

considering the well-behaved objective function (2), we approximate the optimal price combination

(p∗n, p
∗
r) by combining an eight-directional local search procedure with a best-improvement strategy.

A step size of 10−6 was used to ensure sufficient precision. The initial feasible solution was found

with a grid search on a coarse 200x200 grid of prices. For determining the optimal quality level we

then performed a grid search over the range of s ∈ (0, 1) to ensure a precision of three digits.

Numerical solution approach for competition between OEM and IR. For a given quality level s, we

find the equilibrium prices by applying a two-stage process. First we converted the game (4) and

(5) into a matrix game on a coarse grid of prices pn and pr and solved it (see, e.g., Belleflamme

and Peitz, 2015). Then, we iteratively changed pn (to improve πOEM ) and pr (to increase πIR) by

local search to better approximate the intersection point of the best-response functions. For this

purpose, we applied a step size of 10−6. We then determined the quality level s that maximizes

πOEM by performing a grid search over the range s ∈ (0, 1) to ensure a precision of three digits.

5. Numerical results: monopolist OEM

In this section, we consider the monopolist OEM’s case. We adopt the superscript “F” (for

“forecast”) to denote the values of variables obtained by solving the benchmark constant discount

11
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Table 2: Production strategy regions
production strategy regions for

α E[δ] = 0.3 E[δ] = 0.6 E[δ] = 0.8
CV= 1

3
CV= 1

6
CV= 0 CV= 1

3
CV= 1

6
CV= 0 CV= 1

6
CV= 0

0.1 P P P T T T T T
0.2 P P P T T T T T
0.3 P P N T T T T T
0.4 P N N P P P T T
0.5 N N N P P P T T
0.6 N N N P P N T T
0.7 N N N P P N P P
0.8 N N N P N N P N
0.9 N N N P N N P N

factor model, and the superscript “opt” to denote the variable value obtained by solving the model

with variable discount factors. The following formatting rule is applicable to all figures in our

paper: When “CV = 1
6 ” appears in the legend, it denotes the corresponding results obtained from

cases where the discount factor follows the truncated N(0.6, 0.12) distribution; “CV = 1
3 ” indicates

that the discount factor follows the truncated N(0.6, 0.22) distribution, and “Const. δ” indicates

the benchmark constant discount factor model with δ = 0.6. In addition, solutions to the variable

discount factor model are plotted with solid lines while solutions to the benchmark constant discount

factor model are plotted with dashed lines.

5.1. Monopoly: Comparison between constant and variable discount factor solutions

Let (sF∗, pF∗n , pF∗r ) denote the solution for the benchmark model that assumes constant discount

factors, and (sopt∗, popt∗n , popt∗r ) denote the solution for the model with variable discount factors.

5.1.1. Comparison of production strategy regions

Table 2 displays the production strategy regions for both constant and variable discount factor

models. We use “T”, “P” and “N” to respectively denote the scenarios of total remanufacturing

(q∗r = q∗n), partial remanufacturing (q∗r < q∗n), and no remanufacturing (q∗r = 0). Under constant

discount factors, Örsdemir et al. (2014) show that the monopolist OEM remanufactures if α < δ,

which is shown in Table 2 in the CV= 0 columns. Under variable discount factors, we defined no

remanufacturing when qr < 0.0001 which is a precision of our numerical results. From Table 2, it

is clear that remanufacturing (either partial or total) is optimal for a wider range of cost values α

under variable discount factors. For example, consider E[δ] = 0.6. Under constant discount factors

12
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Figure 3: Impact of α on optimal prices pn (left) and pr (right) in the monopoly case (E[δ] = 0.6, CV= 1
3
)

0.1 0.3 0.5 0.7 0.9
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sopt sF

0.1 0.3 0.5 0.7 0.9

0.03

0.04

0.05

0.06

α

π

πopt πF

Figure 4: Impact of α on optimal quality level s (left) and profit π (right) in the monopoly case (E[δ] = 0.6, CV= 1
3
)

(CV = 0), remanufacturing is not optimal for α ≥ 0.6, however, remanufacturing is always optimal

when CV = 1/3.

5.1.2. Comparison of optimal values

Figure 3 plots the optimal prices at different levels of α for the two different models. The

optimal price for the remanufactured product is always higher under variable discount factors than

under the benchmark constant discount factor model. Note that in Figure 3 (right), there are no

values for pFr plotted for α ≥ 0.6, because remanufacturing is not optimal under the benchmark

model if α ≥ δ. As a result, for α ≥ 0.6, the optimal new product prices are similar across models.

The optimal quality levels in Figure 4 (left) have a similar behavior as the new product prices,

for both models. This is expected in the constant discount factor model, as Örsdemir et al. (2014)

show that p∗n is a quadratic function of s∗; we show here that this strong correlation between p∗n and

s∗ also carries over to the variable discount factor model. Finally, Figure 4 (right) indicates that

13
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the profit πopt decreases monotonically with α under variable discount factors, as remanufacturing

always occurs in this case, and profits decrease as the volume of remanufacturing decreases due to

higher unit costs. Under the benchmark constant discount factor model, the (forecasted) profit πF

decreases, as expected, with α until no-remanufacturing becomes optimal.

5.2. Comparison of profits achieved by the solutions proposed by the two models

In this subsection, we compare the actual profits that result from adopting the solutions from the

two models. To find the impact of using the benchmark solution, computed under the assumption

of constant discount factors, on actual (not forecast) profit, consider that the OEM (mistakenly)

assumes constant discount factors, and uses the benchmark model to compute (sF∗, pF∗n , pF∗r ). We

then find the OEM’s actual profit πRB from using this solution in a world with variable discount

factors. More precisely, πRB is the profit computed using the solution (sF∗, pF∗n , pF∗r ), but with the

appropriate demand functions (7) and (8). The comparisons of the two solutions are displayed for all

values of E[δ] and CV in Table 3, where we also include columns for the percent differences between

the decision variables of the two models. That is, we also report on the percent deviations, defined

as: ∆s∗=100%· sF∗−sopt∗
sopt∗ , ∆p∗n=100%· p

F∗
n −p

opt∗
n

popt∗n
, ∆p∗r=100%· p

F∗
r −p

opt∗
r

popt∗r
, and ∆Π∗=100%·ΠRB∗−Πopt∗

Πopt∗ .

Thus, the absolute value of ∆Π∗ is the loss in profit when using the benchmark model as a heuristic

to set optimal quality levels and prices. From Table 3 we point out the following: (i) The absolute

percent differences in remanufactured product prices are almost always considerably higher than the

absolute percent differences in new product prices; (ii) the absolute percent differences in quality

levels move in the same direction as the percent differences in new product prices; and (iii) the

absolute percent differences in profits almost always decrease in α and increase in E[δ]. Overall,

however, the results point to consistency between constant and variable discount factor models.

6. Numerical results: competition between the OEM and an IR

We now turn our attention to the numerical results for the case where the OEM competes with

an IR: The OEM offers new products, whereas the IR offers remanufactured products.

6.1. Competition: Comparison between constant and variable discount factor solutions

Comparison of equilibrium regions. Under constant discount factors, Örsdemir et al. (2014) show

the existence of four types of equilibria, depending on the ratio α/δ. Specifically, in decreasing

14
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Table 3: Comparison of differences in decision making in the monopoly case

E(δ) CV α sopt∗ popt∗n popt∗r πopt∗ sF∗ pF∗
n pF∗

r πRB ∆s∗(%) ∆p∗n(%) ∆p∗r(%) ∆Π∗(%)

0.3 1/3 0.1 0.37 0.25 0.08 0.038 0.38 0.26 0.06 0.038 2.4 3.3 -15.9 -2.0
0.3 1/3 0.2 0.34 0.23 0.08 0.037 0.34 0.23 0.06 0.036 -0.1 0.0 -25.4 -3.3
0.3 1/3 0.3 0.34 0.22 0.10 0.037 0.33 0.22 – 0.037 -0.5 -0.6 – -0.2
0.3 1/3 0.4 0.33 0.22 0.11 0.037 0.33 0.22 – 0.037 -0.2 -0.2 – > -0.1

0.6 1/3 0.1 0.53 0.39 0.24 0.053 0.49 0.34 0.18 0.040 -9.0 -12.9 -24.3 -24.1
0.6 1/3 0.2 0.49 0.36 0.22 0.049 0.44 0.31 0.17 0.037 -9.1 -13.1 -24.5 -24.1
0.6 1/3 0.3 0.45 0.33 0.20 0.045 0.41 0.29 0.15 0.034 -9.0 -13.0 -24.4 -24.1
0.6 1/3 0.4 0.42 0.30 0.19 0.042 0.37 0.25 0.14 0.034 -11.2 -15.9 -26.2 -19.2
0.6 1/3 0.5 0.38 0.26 0.18 0.040 0.34 0.23 0.13 0.036 -9.2 -12.5 -27.6 -9.6
0.6 1/3 0.6 0.35 0.24 0.18 0.038 0.33 0.22 – 0.037 -5.8 -8.0 – -3.4
0.6 1/3 0.7 0.34 0.23 0.19 0.038 0.33 0.22 – 0.037 -2.5 -3.5 – -1.6
0.6 1/3 0.8 0.34 0.23 0.20 0.037 0.33 0.22 – 0.037 -1.1 -1.5 – -0.6
0.6 1/3 0.9 0.33 0.22 0.21 0.037 0.33 0.22 – 0.037 -0.2 -0.3 – -0.1

0.3 1/6 0.1 0.37 0.25 0.07 0.038 0.38 0.26 0.06 0.038 2.1 3.1 -1.5 -0.2
0.3 1/6 0.2 0.34 0.23 0.07 0.037 0.34 0.23 0.06 0.037 0.5 0.8 -9.9 -0.6
0.3 1/6 0.3 0.33 0.22 0.08 0.037 0.33 0.22 – 0.037 -0.2 -0.2 – > -0.1

0.6 1/6 0.1 0.50 0.36 0.20 0.049 0.49 0.34 0.18 0.043 -3.8 -5.8 -9.9 -12.0
0.6 1/6 0.2 0.46 0.33 0.18 0.045 0.44 0.31 0.17 0.040 -3.6 -5.5 -9.6 -12.0
0.6 1/6 0.3 0.43 0.30 0.17 0.042 0.41 0.29 0.15 0.037 -3.7 -5.7 -9.8 -12.0
0.6 1/6 0.4 0.38 0.27 0.16 0.039 0.37 0.25 0.14 0.038 -3.3 -4.9 -10.8 -3.2
0.6 1/6 0.5 0.35 0.24 0.15 0.038 0.34 0.23 0.13 0.037 -2.1 -2.9 -14.4 -2.2
0.6 1/6 0.6 0.34 0.23 0.16 0.037 0.33 0.22 – 0.037 -1.1 -1.4 – -0.4
0.6 1/6 0.7 0.33 0.22 0.18 0.037 0.33 0.22 – 0.037 -0.2 -0.3 – -0.1

0.8 1/6 0.1 0.59 0.41 0.34 0.061 0.55 0.37 0.28 0.047 -7.6 -10.2 -15.8 -23.1
0.8 1/6 0.2 0.53 0.37 0.30 0.056 0.50 0.34 0.26 0.043 -5.7 -8.5 -14.3 -23.1
0.8 1/6 0.3 0.49 0.34 0.28 0.052 0.46 0.31 0.24 0.040 -5.8 -7.6 -13.2 -23.1
0.8 1/6 0.4 0.45 0.31 0.25 0.048 0.43 0.29 0.22 0.037 -4.8 -6.6 -12.3 -23.1
0.8 1/6 0.5 0.42 0.29 0.24 0.045 0.40 0.27 0.21 0.035 -4.8 -6.9 -12.6 -23.1
0.8 1/6 0.6 0.40 0.28 0.23 0.042 0.38 0.26 0.19 0.032 -6.3 -8.9 -14.6 -23.1
0.8 1/6 0.7 0.37 0.26 0.21 0.040 0.34 0.23 0.18 0.034 -6.9 -10.1 -15.1 -15.0
0.8 1/6 0.8 0.35 0.24 0.21 0.038 0.33 0.22 – 0.037 -4.8 -6.7 – -2.8
0.8 1/6 0.9 0.34 0.23 0.21 0.037 0.33 0.22 – 0.037 -2.0 -2.7 – -0.7

order of α/δ, the equilibria are as follows. R1: the IR is not a threat and thus the OEM sets

s∗ as if it were a monopolist; R2: The OEM deters the IR from entering by setting s∗ above

the monopoly level; R3: The IR conducts partial remanufacturing (qr < qn); and R4: The IR

conducts total remanufacturing (qr = qn). Table 4 displays the equilibria that occur, for both

models. As the expected discount factor E[δ] decreases, or α increases, both models predict it

to be more likely that the volume of remanufacturing by the IR decreases, from total to partial

remanufacturing. As previously discussed for the monopoly case, variability in the discount factor

δ makes remanufacturing more attractive (now, for the IR), and hence equilibrium regions R1 and

R2 (no remanufacturing) take place less often under variable discount factors.
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Table 4: Equilibrium regions
Equilibrium regions for

α E[δ] = 0.3 E[δ] = 0.6 E[δ] = 0.8
CV = 1

3
CV = 1

6
CV = 0 CV = 1

3
CV = 1

6
CV = 0 CV = 1

6
CV = 0

0.1 R3 R3 R3 R4 R4 R4 R4 R4
0.2 R3 R3 R3 R4 R4 R4 R4 R4
0.3 R3 R3 R3 R4 R4 R3 R4 R4
0.4 R3 R3 R3 R4 R3 R3 R4 R4
0.5 R3 R2 R2 R3 R3 R3 R4 R4
0.6 R2 R2 R1 R3 R3 R3 R4 R3
0.7 R2 R2 R1 R3 R3 R3 R4 R3
0.8 R2 R2 R1 R3 R3 R2 R3 R3
0.9 R2 R1 R1 R3 R3 R2 R3 R2

Comparison of equilibrium values. We now present comparisons for the equilibrium values of the

decision variables between variable and constant discount factors. Figure 5 plots the optimal quality

levels as a function of the relative unit cost of the remanufactured product α for the two models. As

discussed in the previous section, the equilibrium regions under constant discount factors change

from R4 to R3 to R2 as α increases; thus the kinks in the curves. In addition, as shown by

Örsdemir et al. (2014) under constant discount factors, the optimal quality level (also, new product

price) increases in α in equilibrium region R3, decreases in α in region R2 (a higher quality level

is necessary to deter the IR when remanufacturing is cheaper on a per unit basis), and it remains

constant with α in regions R1 (IR is not a threat) and R4 (total remanufacturing by the IR). A

similar pattern is observed under variable discount factors, except that equilibrium R2 does not

take place.

Figure 6 plots the optimal prices as a function of the relative unit cost of the remanufactured

product α for the two models. We observe from Figure 6 (left, bold lines) that, just like in the

monopoly case, the optimal new product price follows the same pattern as quality level in Figure

5 (bold lines). The remanufactured product price also follows a similar trend as the new product

price under both models. Figure 7 illustrates the corresponding equilibrium profits for the OEM

(left) and IR (right) as a function of α for both models. Both models predict that the OEM’s profit

increases in α, while the IR’s profit decreases in α, as a larger α makes the IR less competitive.

Again, there is reasonable consistency between the constant and variable discount factor models.

6.2. Comparison of profits achieved by the equilibria found by the two models

Similarly to the analysis of section 5.2, we provide here an analysis of the impact of using

the benchmark equilibrium, computed under the assumption of constant discount factors, on

16
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Figure 5: Impact of α on optimal quality level s in the competition case (E[δ] = 0.6, CV= 1
3
)
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Figure 6: Impact of α on optimal prices pn (left) and pr (right) in the competition case (E[δ] = 0.6, CV= 1
3
)

0.1 0.3 0.5 0.7 0.9

0.01

0.02

0.03

0.04

α

πOEM

π
opt
OEM

πF
OEM

0.1 0.3 0.5 0.7 0.9

0.01

0.02

0.03

0.04

α

πIR

π
opt
IR

πF
IR
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3
)

actual profits achieved by the OEM and IR. To that end, we compute the actual profit πRB
j ,

j ∈ {OEM, IR}, that results from using the benchmark equilibrium values computed under con-

stant discount factors (sF∗, pF∗n , pF∗r ), but with the appropriate demand functions (with variable

discount factors). We then compare these values against the equilibrium values under variable
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discount factors.

Table 5 displays the results of these comparisons for all levels of E[δ] and CV. We conclude the

following. First, as E[δ] increases, the differences in prices, quality levels, and actual profits between

the two equilibria increases. When consumers find remanufactured products more attractive, it

becomes more important to correctly estimate the demand functions (through variable discount

factors) to properly price new and remanufactured products. Second, the IR usually suffers the

highest (percent) impact of incorrectly setting the prices, as its profits are lower than the OEM’s,

and hence are more sensitive to using the incorrect price. Third, there does not appear to be any

pattern regarding the percent differences in prices, quality levels, and actual profits between the

two models as the relative unit cost of the remanufactured product α increases. This is mostly

due to the changes in equilibrium types (R1, R2, R3, and R4) as α increases, as discussed in the

previous section.

7. Extensions

In this section we consider two model extensions to further strengthen the robustness of our

results. First, we consider the case of convex collection cost. Second, we model a richer case of

competition, where both the OEM and the IR can offer remanufactured products.

7.1. Convex collection cost

So far, we have abstracted from directly modeling collection costs; instead, such costs have

been (indirectly) included in the unit remanufacturing cost α. In practice, any firm willing to

remanufacture needs to exert costly effort to obtain the necessary cores. Collecting an extra unit

may become more difficult with increasing volumes of collected cores, in some settings. As an

example, a firm may have to turn to more remote consumer markets to obtain more cores when the

local market has been exhausted. To model such settings, we consider an extra convex collection

cost term −ηq2
r in the objective function (2) for the monopoly case, and in (5) for the competition

case, where η is a scaling parameter. This quadratic functional form is in line with the empirical

observations by Atasu and Souza (2013) and Atasu et al. (2013) in some settings. We analyze both

constant and variable discount factors numerically, using the same experimental design of section 4,

with the additional collection cost parameter η in two levels: low (η = 0.3) and high (η = 0.7). We

report here the results for an illustrative case below; other cases have similar behavior and insights.
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Figure 8: Impact of α on optimal prices pn (left) and pr (right) in the monopoly case with convex collection costs
(E[δ] = 0.6, CV = 1

3
)

0.1 0.3 0.5 0.7 0.9

0.3

0.4

0.5

0.6

α

s

η = 0.3 η = 0.7

Const.δ, η = 0.3 Const.δ, η = 0.7

0.1 0.3 0.5 0.7 0.9

0.04

0.05

0.06

α

π

η = 0.3 η = 0.7

Const.δ, η = 0.3 Const.δ, η = 0.7

Figure 9: Impact of α on optimal quality level s (left) and profit π (right) in the monopoly case with convex collection
costs (E[δ] = 0.6, CV = 1

3
)

Monopoly case results. Figures 8 and 9 replicate the findings from Figures 3 and 4 for the monopolist

OEM under the two levels of collection cost. Essentially, all the findings for pn, pr, s and π are

structurally identical to those already discussed in Section 5.1.2 for both constant and variable

discount factor models; as a result we omit the full set of results for brevity.

Competition case results. We now consider the setting where the OEM competes with an IR under

convex collection costs. Figures 10 and 11 show the impact of α on the equilibrium decisions s,

and (pn, pr), respectively, under constant and variable discount factors, for two values of η, low

and high. It is clear that the equilibrium decisions move in the same direction for both constant

and variable discount factor models, thus confirming the robustness of the constant discount factor

model. We now turn to specific insights brought upon by adding convex collection costs.
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Figure 10: Impact of α on equilibrium quality level s in the competition case with convex collection costs (E[δ] = 0.6,
CV = 1

3
)
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Figure 11: Impact of α on equilibrium prices pn (left) and pr (right) in the competition case with convex collection
costs (E[δ] = 0.6, CV = 1

3
)

In our previous analysis without convex collection costs, Figure 5 shows that the behavior of

the equilibrium quality level s is non-monotonic with respect to the unit relative remanufacturing

cost α, because there is a change in equilibrium regions from total to partial remanufacturing as α

increases, under both variable and constant discount factor models. In Figure 10, where there are

convex collection costs, quality (weakly) increases in α for both constant and variable discount factor

models. The reason is, with convex collection costs, the total remanufacturing scenario (qr = qn)

disappears for both constant and variable discount factor models. Because collection cost increases

with qr at an increasing rate, higher levels of remanufacturing become less and less attractive for

the IR. Furthermore, in the analysis without convex collection costs, the equilibrium new product

price (Figure 6, left) changes in the same direction as the equilibrium quality level (Figure 5) under
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Figure 12: Impact of α on equilibrium OEM’s profit πOEM (left) and IR’s profit πIR (right) in the competition case
with convex collection costs (E[δ] = 0.6, CV = 1

3
)

both constant and variable discount factors. This also happens under convex collection costs, as

shown in Figures 10 and 11 (left).

In Figure 6 (right), without convex collection costs, the IR does not remanufacture for α>0.7,

whereas in Figure 11 (right), with convex collection costs, the IR does not remanufacture for

α>0.6 (0.5) for η=0.3 (0.7), under constant discount factors. The convex collection cost structure

makes it less attractive for the IR to remanufacture. Under variable discount factors, however,

Figures 6 and 11 indicate that the IR always remanufacture in this example. Again, variable

discount factors make remanufacturing more attractive, which is in line with the insights from

section 6.1, obtained without convex collection costs. Finally, Figure 12 confirms that, as the

unit relative remanufacturing cost α increases, the OEM’s profit increases, whereas the IR’s profit

decreases, under both constant and variable discount factors. In sum, the overal robustness of the

constant discount factor model is confirmed under convex collection costs, for both monopoly and

competition.

7.2. Extended competition: Remanufacturing by both OEM and IR

In this section, we extend our base competition model to also allow the OEM to remanufacture

its own product and thus compete with the IR for remanufactured products. Given its analytical

difficulty, this case has only been numerically analyzed by Örsdemir et al. (2014) under constant

discount factors. In terms of notation in this section, the only change with respect to Table 1 is

that the subscript r now refers to the remanufactured product by the OEM, whereas the subscript i
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now refers to the remanufactured product by the IR. So, for example, pi is the IR’s remanufactured

product’s price. There is also a new parameter to differentiate consumer’s WTP for the IR’s

remanufactured product relative to the OEM’s, as we discuss next.

7.2.1. Demand functions

As before, a consumer of type (θ, δ) has a WTP for the new product θ, and has a WTP

for the OEM’s remanufactured product δθ. That same consumer type, however, has a WTP

for the IR’s remanufactured product equal to γθδ, where γ ∈ [0, 1] is assumed to be constant

across consumers. We thus assume that there is heterogeneity in WTP in consumers towards

remanufactured products in general (given by δ), as before, and that remanufacturing by an IR

implies an additional fixed discount on their WTP for remanufactured products. There is some

empirical support for consumers preferring products remanufactured by an OEM as opposed to

an IR. For example, Subramanian and Subramanyam (2012) show that remanufactured products

sold by an OEM-authorized reseller command higher average prices than products remanufactured

by an IR. To the best of our knowledge, however, there is no empirically-derived distribution of

discount factors for both OEM and IRs, hence our simplifying assumption that γ is constant across

consumers. This assumption also ensures some tractability in deriving demand curves as follows.

A consumer of type (θ, δ) derives net utilities Un=θs−pn from a new product, Ur=δθs−pr from

an OEM’s remanufactured product, Ui = γδθs−pi from an IR’s remnuanufactured product, and

Uz = 0 from buying nothing. Similarly to section 3.2, equating the net utilities from each pair of

alternatives yields indifference curves (now six, as opposed to three): θrn= pn−pr
(1−δ)s , θzr= pr

δs , θzn= pn
s ,

θin= pn−pi
(1−γδ)s , θir= pr−pi

(1−γ)δs , and θzi=
pi
γδs .

Demand functions under constant discount factors δ. First, consider the case where δ is constant

across consumers. A consumer purchases a new product if θ>max
{
pn−pr
(1−δ)s ,

pn
s ,

pn−pi
(1−γδ)s

}
, the OEM’s

remanufactured product if max
{
pr
δs ,

pr−pi
(1−γ)δs

}
< θ < pn−pr

(1−δ)s , the IR’s remanufactured product if
pi
γδs <θ<min

{
pn−pi

(1−γδ)s ,
pr−pi

(1−γ)δs

}
, and nothing if θ <min

{
pr
δs ,

pn
s ,

pi
γδs

}
. An algebraic manipulation,

similar to what was used to derive (1), results in the demand functions, which are omitted for

brevity (details available upon request).

Demand functions under variable discount factors δ. Now, consider the case where δ is variable

across consumers. Figure 13 graphically depicts the consumer regions for buying new products
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Figure 13: Consumer behavior in the extended competition case depending in θ and δ (γ = 0.8, s = 1, pn = 0.6,
pr = 0.4, pi = 0.3)

Table 6: The values of a-k in Figure 13.

a = θzn(0) = pn
s d = θir(1) = pr−pi

(1−γ)s g = pi
γpn

j = pn
s + γpr−pi

(1−γ)s

b = θin(0) = pn−pi
s e = θzr(1) = pr

s h = pr/pn k = 1− pn−pr
s

c = θrn(0) = pn−pr
s f = θzi(1) = pi

γs i = pr−pi
(1−γ)pn+γpr−pi

(N), buying remanufactured products from the OEM (R) and the IR (I), and not buying (Z) in

the plane (θ, δ). The values of a-k in Figure 13 are given in Table 6.

Under reasonable assumptions (pn>pr>pi) it holds that a>b>c. Further on, if pi≥γpr then

d ≤ f , the IR does not remanufacture (qi = 0), and demand functions (7)-(8) apply (Case 1). If

pi<γpr it holds that d> e> f , g < h< i< k, and j > a (all functions and intersection points are

ordered as in Figure 13) and the IR does remanufacture (Case 2). In Case 2, demand functions

(using abbreviations from Table 6) become:

qn(pn, pr, pi, s) =

∫ g

0
f(δ) dδ

∫ 1

a
dθ +

∫ i

g
f(δ)

∫ 1

θin

dθ dδ +

∫ k

i
f(δ)

∫ 1

θrn

dθ dδ, (9)

qr(pn, pr, pi, s) =

∫ 1

i
f(δ)

∫ 1

θir

dθ dδ −
∫ k

i
f(δ)

∫ 1

θrn

dθ dδ, (10)

qi(pn, pr, pi, s) =

∫ i

g
f(δ)

∫ θin

θzi

dθ dδ +

∫ 1

i
f(δ)

∫ θir

θzi

dθ dδ. (11)
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Again, we assume the supports of θ and δ to be in the range [0,1], or else truncated accordingly.

To model the strength of each party in core collection, we add a new parameter ρ to represent

the fraction of total cores that are available to the OEM, so that 1−ρ is the fraction available to the

IR. That is, qr(pn, pr, pi, s) ≤ ρqn(pn, pr, pi, s), and qi(pn, pr, pi, s) ≤ (1 − ρ)qn(pn, pr, pi, s). Thus,

if ρ > 0.5 (ρ < 0.5), the OEM (IR) has an advantage in core collection. The game to be solved

is similar to the game stated in (4)-(6), except that the demand functions are given by (9)-(11),

the OEM’s profit function has an additional term to represent its net revenues from selling its

remanufactured product qr(pr − αβs2), subject to its core availability constraint qr ≤ ρqn; finally,

the IR’s profit function is the net revenues from selling its remanufactured product qi(pi − αβs2)

subject to its core availability constraint qi ≤ (1−ρ)qn. Here, we make the assumption, for simplicity

of presentation and space purposes, that both OEM and IR have the same remanufacturing costs.

Numerical solution approach and experimental design. Under either constant or variable discount

factors, the model needs to be solved numerically by a procedure similar to that described in section

4, with the additional complication that now the second-stage game between the OEM and IR has

an additional decision variable for the OEM, pr. This significantly increases computational time,

as the search space for an equilibrium is now three-dimensional, as opposed to two-dimensional. In

terms of experimental design, we use the same parameter values described in section 4, with the

addition of two new parameters, γ, and ρ. For γ, we consider low and high values γ ∈ {0.6, 0.9};

the low value of γ = 0.6 represents a case of weak competition (values of γ lower than 0.6 are

not interesting as the IR is not able to compete with the OEM), whereas the high value γ = 0.9

represents the case of a stronger IR. For the core availability parameter ρ, we consider three levels

to represent scenarios where the OEM (IR) has an advantage in core collection ρ = 2
3 (ρ = 1

3), and

where the OEM and IR are in equal position (ρ = 1
2).

7.2.2. Results

Similarly to Figures 5, 6, and 7 from section 6.1, we use a representative case to illustrate the

difference between equilibria for constant discount factors (superscript “F”) and variable discount

factors (superscript “opt”). They are shown in Figure 14 for the equilibrium prices pn, pr, and

pi, and in Figure 15 for the equilibrium quality level s, and profits, respectively. OEM’s (IR’s)

variables are shown in bold (regular) lines. Figure 14 (left) shows that both constant and variable
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Figure 14: Impact of α on optimal prices pn (left) and pr and pi (right) in the extended competition case (E[δ] = 0.6,
CV= 1

3
, γ = 0.6, and ρ = 1

3
)

discount factor models predict that α has little impact on new product prices, except when there

is a change in the equilibrium region (from total to partial remanufacturing as α increases).

Figure 14 (right) shows that both constant and variable discount factor models predict that

remanufactured product prices typically increase in α, with a potential decrease when there is a

change from total to partial remanufacturing. Both constant and variable discount factor models

also predict that the IR stops remanufacturing at a lower value of α than the OEM, due to valuation

disadvantage γ < 1 in the eyes of consumers. Finally, in line with all previous findings, remanu-

facturing is more attractive under a wider range of α values under variable than under constant

discount factors. Figure 15 (right) shows that the IR’s profit decreases monotonically in α under

both constant and variable discount factor models. Both constant and variable discount factor

models also predict that the OEM’s profit may increase in α at high enough values of α when the

IR is being driven out of the market. In sum, the constant discount factor model demonstrates its

reasonable robustness in this extended competition case as well.

Considering that the full analysis of such an extended competition model is beyond the scope

of this paper (as our objective is to compare constant and variable discount factor solutions), we

provide a quick analysis of the most impactful parameter values on this extended competition model

through regression analyses as follows. We consider a restricted set of results from our experimental

design, where we only have low and high values of each parameter: E[δ] ∈ {0.3, 0.6}, CV ∈ {1
6 ,

1
3},

γ ∈ {0.6, 0.9}, ρ ∈ {1
3 ,

2
3}, and α ∈ {0.3, 0.7}. This results in 32 different experimental cells in a

full-factorial fashion, with solutions for both constant and variable discount factors. We then run
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Figure 15: Impact of α on optimal quality level s (left) and πOEM and πIR (right) in the extended competition case
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)

six different regressions, where in each regression the dependent variable is a particular equilibrium

value of the variable discount factor model (e.g., sopt∗), and the independent variables are the five

parameters E[δ], CV, γ, ρ, and α. Despite the small sample size, the relative magnitude of the

t-statistics for the respective regression coefficients in this high-low experimental design provides

a measure of that variable’s impact on the dependent variable (Wagner, 1980). Although a larger

sample size may improve the accuracy of the regression coefficients (Kelley and Maxwell, 2003),

our objective here is not to estimate the regression coefficients. Rather, our focus is on the relative

impact of each parameter on the variable of interest, which is captured by the magnitude of a

coefficient’s t-statistic (not the coefficient itself) relative to those of other parameters, considering

the simple high-low experimental design (Wagner, 1980). Likewise, we conduct five additional

regressions where the dependent variables are now the the difference between constant and variable

discount factor solutions as defined in section 5.2 (e.g., ∆s∗ = 100% · sF∗−sopt∗
sopt∗ is a dependent

variable in a regression). We do not conduct a regression for ∆Π∗IR, as in some cases ΠF
IR = 0,

which renders ∆Π∗IR meaningless. The results are displayed in Table 7, where t-values for the

intercepts are not displayed.

For sopt∗, the most impactful parameter is E[δ] (t-value = 1.61), although the impact is not

significant at p < 0.1 in this restricted 32-cell design, because the variation in equilibrium values of

sopt∗ is small across the design. For popt∗n , the most significant (negative) impact is from γ (t-value

= -2.28), as a stronger IR (higher γ) means that the OEM must reduce its new product price

to better compete with the IR. For popt∗r , the most significant impact is from E(δ) (t-value =7,
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Table 7: Values of t-statistics for variable coefficients in regressions (one regression per column)

Variable sopt∗ popt∗n popt∗r popt∗i πopt∗
OEM πopt∗

IR ∆s∗(%) ∆p∗n(%) ∆p∗r(%) ∆p∗i (%) ∆Π∗
OEM (%)

E[δ] 1.61 0.20 7.00** 5.48** -4.04** 4.01** 0.69 0.47 1.60 2.11** -2.80**

CV 1.00 1.14 1.96* 1.26 -0.49 0.55 -0.39 -0.42 -0.96 -0.68 -1.35
γ -1.17 -2.28** -4.92** 1.49 -4.77** 1.87* 0.73 0.83 2.22** 1.66 -1.00
ρ -1.00 -0.54 -0.86 -0.37 2.52** -1.35 2.04* 2.20** 2.16** 2.28** 2.25**

α -1.35 -0.44 4.58** 4.70** 1.23 -3.64** 0.88 0.88 -0.90 -0.77 5.28**

[*] p<0.1; [**] p<0.05

positive as a larger expected WTP means a larger price), followed by γ (t-value = -4.92), then

α (t-value = 4.58), and CV (t-value = 1.96, positive as a larger CV means the OEM can price

the remanufactured product higher, in line with the results of section 5.1). For popt∗i , the most

significant impact is again from E(δ) (t-value=5.48), followed by α (t-value = 4.70, again positive

as a larger cost means a larger price). The OEM’s profit πopt∗OEM has its highest (negative) impact

from γ (t-value = -4.77), followed by E(δ) (t-value=-4.04), ρ (t-value = 2.52, positive as a higher

ρ means a higher availability of cores for the OEM). The IR’s profit, on the other hand, is mostly

(negatively) impacted by E(δ) (t-value=4.01), followed by α (t-value = -3.64), γ (t-value = 1.87,

as a higher WTP for IR remanufactured products increases IR profit). In terms of the deviations

∆ of the equilibrium values between constant and variable discount factors, the most impactful

parameter is ρ, which has a high positive t-value in all five regressions; this means that a higher

value of ρ increases the deviation between constant and variable discount factor equilibrium values.

All other parameters do not explain the differences, except for γ in ∆p∗r , and α in ∆Π∗OEM . In

these cases, a higher γ (α) means a relative higher remanufactured product price (OEM’s profit)

forecasted by the constant discount factor model compared to the variable discount factor model.

8. Conclusion

This paper has studied the robustness of the constant discount factor assumption for reman-

ufactured products—an assumption widely used in the prescriptive CLSC literature, particularly

in strategic-level, stylized models—considering recent empirical challenges to it. In particular, we

take as an input the approximately normal probability distribution of discount factors empirically

derived by Abbey et al. (2017) for the iPhone 6, and use it in what is arguably the most complex

stylized models in the CLSC literature: quality choice with remanufacturing, under monopoly and

competitive settings. This problem has been studied by Atasu and Souza (2013) and Örsdemir
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et al. (2014) under constant discount factors. We also provide two significant extensions: convex

collection costs, and an extended competition case, where both OEM and IR can offer remanufac-

tured products, in addition to new products by the OEM. The quality choice model with variable

discount factors is intractable and must be solved numerically.

Overall, we find reasonable consistency in the results between the variable and constant discount

factor models, for both monopoly and competitive cases. We believe this paper makes a convincing

argument that the constant discount factor assumption is appropriate for use in stylized strategic

models involving remanufacturing. The variable discount factor model brings additional insights:

(i) the remanufacturing firm optimally prices the remanufactured product higher than the price

suggested under constant discount factors; (ii) a higher variability in the distribution of discount

factors makes remanufacturing more attractive in a wider cost range, as a larger variability implies

that there is a larger fraction of customers with WTP higher than the mean; and consequently (iii)

profits are higher for the remanufacturing firm when the variability in discount factors is higher.
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