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ABSTRACT 
Air pollution has become a growing concern around the world.  Human exposure to 

hazardous air pollutants is associated with a range of health problems and increased 

mortality. An estimated 40,000 early deaths per year are caused by the exposure to air 

pollutants in the UK alone, which cost over £20 billion annually to individuals and 

health services1. In this work, novel solidly mounted resonator (SMR) devices were 

developed for integration in a low-cost, portable air quality monitor for the real-time 

monitoring of particulate matter and volatile organic compounds (VOCs). Finite 

element models of the SMRs were developed to aid their design and simulate the 

response of the sensors to particles and exposure to VOCs.  

For particle sensing, a SMR based unit was developed, working in a dual mode 

configuration. The unit was characterised inside an environmental chamber, together 

with commercial reference instruments, to particles of known size and composition. A 

detection limit of 20 µg/m3 was found (below the safe exposure limit). To target fine 

particles (<2.5 µm), a virtual impactor was incorporated into the system. 

For VOC detection, the SMR devices were functionalised with polymer coatings to 

detect acetone and toluene vapours (most common VOCs in air).  A polymer drop-

coating system was developed to complete this aim (polymer film thicknesses 

<100nm).  An automated VOC test station was developed to characterise the SMR 

based sensors to low ppm concentrations of the target vapours (<200 ppm). The SMR 

devices demonstrated a limit of detection of 5 ppm to toluene and 50 ppm of acetone 

(well below the safe exposure limits).  

A novel CMOS based SMR device, suitable for volume production and monolithic 

integration, was designed with an integrated microheater and CMOS acoustic mirror. 

The heater was included to vary the temperature of the sensing area (to enhance the 

sensitivity of the SMR to a particular VOC through temperature modulation or to clear 

particles off the surface). The fabricated device (1.9 GHz) exhibited good performance 

(𝑄𝑠=500), demonstrating the effectiveness of the CMOS fabricated acoustic mirror.  

The device developed in this work offers a potential solution to fulfil the need for a 

miniature, low-cost air quality monitor for personal and smart home applications.

                                                 
1 Royal College of Physicians (2016). “Every breath we take: the lifelong impact of air pollution”. London: RCP. 



 

 

 

 

 

 

 

INTRODUCTION 

1.1 PREFACE 

In the last two decades, air pollution has become a serious issue worldwide. Hazardous 

substances found in the atmosphere cause not only environmental damage but are also 

associated with severe adverse effects on human health. Air pollution has been related 

to a wide range of diseases which affect millions of human lives and cost billions in 

health care services globally.  

The spiralling health care costs have alerted governments to the need of 

monitoring air quality. Sensor networks have started to appear, although the substantial 

cost of equipment has limited their deployment to select sites. There is a growing 

demand for affordable personal air quality monitors which can track air quality during 

daily activities and provide accessible data (i.e. on a smart device).  This chapter 

introduces the health risks of air pollution and the current policies to limit human 

exposure. The current state-of-the-art sensing instruments are studied in detail, with 

focus on volatile organic compounds and particulate matter, which are considered 
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extremely hazardous to human health.  Lastly, the aims of this project are presented 

and the outline of the thesis is given. 

1.2 AIR QUALITY MONITORING 

Human exposure to both indoor and outdoor pollutants can have a large impact 

on wellbeing. A broad range of health problems, including cardiovascular and 

respiratory diseases, caused by the short- and long- term exposure to air pollutants 

have been reported in several European cities and all around the world [1-5]. Evidence 

of increased morbidity and mortality rates, and decreased life expectancy due to both 

indoor and outdoor air pollution have also been documented [6-9].   

In 2012, air pollution accounted for 3.7 million deaths globally. This figure 

increased to 5.5 million deaths in 2013, with developing countries being the most 

affected [10, 11]. In the EU, indoor air pollution is estimated to have contributed to 

99,000 deaths in 2012 [12]. In 2016 an estimated 40,000 deaths were attributed to the 

exposure to outdoor pollutants (per year) across the UK. It is estimated such deaths 

present an annual cost of over £20 billion to individuals and health services [12].  

Indoor concentrations of airborne pollutants have been found to be two to five 

times higher than those found in outdoor environments [13]. This is of great concern, 

as in day-to-day life people spend most of their time in indoor environments [14, 15] 

whether at home or in a workplace, at school, in public buildings, public transport or 

in personal vehicles. For this reason, monitoring of indoor air quality has drawn special 

attention as it can strongly influence our health, wellbeing and comfort.  

The quality of indoor air can also be directly affected by the outdoor air quality, 

i.e. outdoor air pollutants can easily enter buildings or vehicles through doors and 

windows (adding to the sources of indoor pollution). Therefore, monitoring of both 

indoor and outdoor air quality is very important. Figure 1.1 illustrates the sources of 

indoor air pollutants that can be encountered in a typical house. 

According to their sources, air pollutants can be classified into primary or 

secondary pollutants. The former are those produced by a known source, either natural 

or anthropogenic, whereas the latter includes those pollutants formed through chemical 
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reactions, usually by atmospheric oxidation of some primary pollutants. The six most 

common ambient air pollutants and their sources are shown in Figure 1.2. The work 

described in this thesis is primarily focused on the detection of PM and VOCs and 

these are discussed in detail in the following sections.  

 

Figure 1.1 Sources of indoor air pollution in a typical household. 

     

Figure 1.2 (a) Emission of air pollutants in the US (2015) and (b) their sources. Data from 

[16]. 
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 Aiming to gain a better understanding of the relationship between air pollutants 

and their associated health effects, several initiatives have been undertaken worldwide 

over the last 30 years, which have helped to identify the necessary actions to reduce 

the emission of pollutants and their harmful effects on human health [17-19]. The 

World Health Organisation (WHO) published the first edition of Air Quality 

Guidelines for Europe in 1987 [20]. These air quality guidelines (AQGs) are intended 

to provide information and offer guidance to policymakers about the health impact of 

air pollution and serve as the basis for establishing standards for air quality monitoring. 

The WHO has regularly revised new scientific evidence on the health effects 

of several air pollutants resulting in the second edition of AQGs published in 2000 and 

a global update in 2006 [21, 22]. The WHO Regional Office for Europe implemented 

two projects in 2013, in order to review the new evidence on the effects of air pollutants 

on health [23, 24], More recently in 2015, a WHO expert consultation took place in 

order to discuss the latest available evidence for the future update of the WHO global 

air quality guidelines [25].  

Authorities in various countries have implemented standards and regulations 

aiming to minimise the emission of harmful pollutants. In the EU, these standards are 

enforced by the European Commission directive on air quality adopted in 2008 where 

limit and target values for average periods of exposure are established for several 

pollutants [26].  In the next sections, two of the most hazardous air pollutants are 

introduced, i.e. particulate matter and volatile organic compounds, which are the focus 

of this work. 

 PARTICULATE MATTER 

Particulate matter is the name given to the mixture of chemical substances in the form 

of very small particles, liquid and solid, that can be found suspended in the ambient 

air. Particle pollutants are found in a wide range of particle sizes and shapes (ranging 

from a few nanometres to up to 100 µm in diameter), have different chemical 

compositions and come from different sources. According to their size, particulate 

pollutants are commonly referred as PM10 (coarse particles with diameter equal or less 

than 10 µm), PM2.5 (fine particles with aerodynamic diameter equal or less than 
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2.5 µm) and ultrafine particles (UFPs) with aerodynamic diameter smaller than 

0.1 µm. Figure 1.3 shows a size comparison of airborne particulate matter.  

 

Figure 1.3 Size comparison of PM10, PM2.5 and Ultrafine particles. Adapted from [27]. 

Primary emission sources of PM can include road traffic, agricultural activities, 

industrial processes and fuel combustion. Natural PM pollution can stem from 

windblown dust, sea spray and volcanic activity whereas secondary PM is formed 

through the chemical reaction of gases present in the atmosphere such as ammonia 

(NH3), sulphur dioxide (SO2), nitrogen oxides (NOx) and also non-methane VOCs to 

form particulate sulphates, nitrates and organic aerosols, respectively [28, 29].   

 Due to their size, particulate matter (especially PM2.5 and UFPs) is considered 

greatly hazardous for human health as the finest particles can pass through the airways 

and penetrate deeply into the lungs as represented in Figure 1.4, where the potential 

penetration of airborne particles into the respiratory system is depicted.  

In the past year, a vast range of clinical, epidemiological and toxicological 

studies concerning the health effects of human exposure to PM have been conducted 

[30-32]. There has been strong evidence of the impact of long-term and short-term 

exposure to PM pollution on mortality and morbidity [33]. Cardiovascular diseases 

including heart failure, abnormal heart rhythm and ischaemic heart disease have been 

associated with PM exposure [34-37]. Respiratory problems such as decrease of lung 
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capacity, risk of lung cancer and asthma have been related to PM pollution [38-41]. 

Other health problems including diabetes, atherosclerosis, skin diseases and impact on 

birth outcomes [42-46] have also been associated to PM exposure. 

 

Figure 1.4 Penetration of airborne particulate matter of different sizes into the respiratory 

system. Adapted from [47, 48]. 

 When looking at the review reports of the United States Environmental 

Protection Agency (EPA) [49] and the WHO [23], it is clear how airborne PM is 

impacting public health. Between the period of 2000 and 2013, pollution due to PM 

increased by 6% [11]. Therefore, the need to take measures to reduce air pollutants, 

especially PM, is clear. The WHO first published AQGs for PM2.5 and PM10 in their 

WHO global update 2005 and the European Commission established a PM limit and 

target values in the Directive 2008/50/EC [26]. Table 1.1 shows the standards and 

objectives for particulate matter currently enforced in the EU [26]. 
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Table 1.1 Limit and target values for PM10 and PM2.5 established by the European 

Commission [26]. 

PARTICULATE 

MATTER 

AVERAGING 

PERIOD 
VALUE COMMENTS 

PM2.5 

Calendar year 25 µg/m3 
Target value enforced 

 1 January 2010 

Calendar year 20 µg/m3 
Limit value to be met by  

1 January 2020 

PM10 

24 hours 50 µg/m3 
Limit value enforced 

 1 January 2005 

Calendar year 40 µg/m3 
Limit value enforced 

 1 January 2005 

 VOLATILE ORGANIC COMPOUNDS 

Although various definitions have been used for the term volatile organic compounds 

[50-52], in general, VOCs refer to organic chemicals in liquid or solid form that easily 

evaporate at room temperature (therefore they are present as vapours in the 

atmosphere). Hundreds of compounds fall into this category. VOCs emitted from both 

anthropogenic and natural sources pose significant health risks. Acute effects such as 

headaches, dizziness, eyes, nose and skin irritation are associated with the human 

exposure to VOCs [53]. Other respiratory problems such as asthma and the association 

of VOCs with mortality have been reported [54-56]. 

Aromatic VOCs such as benzene, toluene, ethylbenzene and xylene (BTEX) 

have been found to have the most significant adverse health effects. The 

carcinogenicity of benzene has been evaluated and strong evidence was found to 

associate exposure to benzene with cancer in humans [57]. Prolonged exposure to 

benzene has also been linked to leukaemia in adults and children [58, 59].  

Sources of VOC emissions in indoor environments include the use of 

household products and solvents, cigarette smoke, cooking and building materials [60-

62]. Outdoor sources include industrial processes, motor vehicle exhausts and natural 

emissions from plants [50, 63]. Aromatic VOCs and alkanes are the most common 

found in outdoor and indoor environments [64].   
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Currently, there are regulations in the EU that establish the exposure limit to 

benzene at 5 µg/m3 per calendar year. This limit value was enforced in January 2010 

[26]. However, no regulations have been enforced for other VOCs. In some cases, 

individual member states of the EU enforce their own restrictions. For example, the 

Health and Safety Executive (HSE) in the United Kingdom established workplace 

exposure limits (WELs) for a wide range of substances and VOCs. The values for the 

long- and short- term exposure limits are given in Table 1.2, for the VOCs of most 

interest for air quality monitoring.   

Table 1.2 Workplace exposure limits (UK HSE regulations) [65].  

VOLATILE 

ORGANIC 

COMPOUND 

LONG-TERM 

EXPOSURE 

LIMIT1 

(ppm) 

SHORT-TERM 

EXPOSURE LIMIT2 

(ppm) 

Toluene 50 100 

Acetone 500 1500 

Xylene 50 100 

Benzene 1 - 

Ethylbenzene 100 125 

n-octane 300 375 

Formaldehyde 2 2 
1 8-hr TWA reference period, 2 15-minute reference period 

Table 1.3 lists the most common VOCs found indoors from a dataset of around 

5000 samples. The 5 VOCs which are detected the most frequently (i.e. highest total 

% detect values) are shown, from a list of 300 compounds.  

Table 1.3 Indoor Air Concentrations of VOCs [66, 67]. 

VOLATILE 

ORGANIC 

COMPOUND 

TOTAL % 

DETECTS 

50TH 

PERCENTILE 

VALUE 

µg/m3 (ppb) 

95TH 

PERCENTILE 

VALUE 

µg/m3 (ppb) 

Toluene 96.4 24 (6.37) 144 (38.21) 

Acetone 94 35 (14.73) 190 (80) 

Xylene 92.9 17.6 (4.05) 83.5 (19.23) 

Benzene 91.1 4.7 (1.47) 29 (9.08) 

Ethylbenzene 85.7 3.7 (0.85) 17 (3.92) 

* 90th percentile value 
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1.3 SENSORS FOR AIR QUALITY MONITORING 

Human exposure to volatile organic compounds and particulate matter is related to a 

variety of adverse health effects, as presented in section 1.1. Monitoring of the 

concentration levels of these harmful pollutants has become of great interest. 

Knowledge of the quality of the air in our surrounding environments can provide the 

motivation to minimise human exposure to harmful pollutants and thus prevent the 

associated health effects. 

 Several methods and techniques have been used previously for the detection of 

PM and VOCs. Commercial instruments for outdoor and indoor air quality monitoring 

are widely available. The development of low-cost, portable and wearable devices, 

capable of providing continuous and real-time measurements for personal air quality 

monitoring during everyday activities, are of particular interest. A review on the state-

of-the-art instruments and technologies for PM and VOC detection are presented 

below. 

 SENSORS FOR PARTICULATE MATTER MONITORING 

Generally, instruments used for the detection of airborne particles can be classified as 

samplers and monitors. The former use an air flow sample to collect particles, usually 

onto a filter. Particles collected are then taken to the laboratory where they can be 

gravimetrically analysed. Particle samplers cannot be used for real-time 

measurements. However, particles collected using this technique can be further 

analysed (physically and chemically) in the laboratory.  

Particle monitors are automated particle instruments that provide real-time 

measurements of particle concentration. The concentration of PM in air is given in 

mass per unit volume, typically µg/m3. Commercially available particle monitors are 

based on different measurement methods. Table 1.4 shows a comparison of common 

techniques used for particle measurements.  

The Tapered element oscillating microbalance (TEOM) analyser uses an 

oscillating element on which particles in a sample air are collected. The change of the 

oscillating frequency of the microbalance element is related to the mass of particles on 
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its surface. In turn, this is related to the concentration of PM. The instruments can only 

measure one diameter of particles at a time, which is defined by an inlet filter.  

Beta attenuation monitors (BAM) are based on the absorption of β radiation by 

airborne particles. A cycling ribbon filter moves in between a β radiation source and 

the detector. When a sample air is drawn through the filter, airborne particles are 

loaded onto the ribbon. The loaded particles cause an attenuation of the beta rays which 

is related to the total mass of PM.  

Low pressure impactors (LPIs) and electrical low pressure impactors (ELPIs) 

both use impactors to separate particles in air by their size. These operate on a principle 

based on inertia. Air, containing particles, is drawn into impactors which have a 

structure consisting of sharp changes in flow direction. The small particles which are 

able to stay in the air flow channel, follow the sharp changes in flow path. The larger 

particles leave the flow path, and impact into a collection plate. The flow rate and 

structure of the channels in the device determine the cut-off diameters between the 

particle sizes.  

LPIs are not suitable for real-time monitoring. They typically use a series of 

impactor stages (‘cascade impactor’) to categorise the particles by size. The collection 

plates are weighed after each measurement to calculate the mass concentration present. 

ELPIs operate on a similar basis, although real-time measurements can be achieved. 

The particles are charged when they enter the system, before they are separated using 

a cascade impactor, as used in a LPI. The electrical charge carried by particles that are 

collected after each stage can be measured. The charge measured is proportional to the 

number concentration of the particles collected.  

Scanning mobility particle sizer (SMPS) instruments measure particle size 

distribution and concentration using differential mobility analysis. An electric field is 

created inside the instrument, which causes the particles to drift according to their 

electrical mobility. The mobility distribution is analysed, from which particle size can 

be calculated.  

Electrical mobility is also used in fast mobility particle sizer (FMPS) systems 

to measure particle number and concentration. In these systems, particles are charged 
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when they enter the unit. A high-voltage electrode is located in the centre of the system, 

surround by a series of electrometers. As the particles approach the electrode, they are 

repelled towards the electrometers. The mobility distribution can be analysed, by 

considering the location on the electrometers that the particles reach (a particle with 

lower electrical mobility will land lower on the electrometers).  

Table 1.4 Comparison of techniques used for particle measurements [68-71]. 

METHOD 
REAL 

TIME 

MEASURED 

PARAMETER 

SIZE 

RANGE 

(µm) 

DETECTION 

LIMIT 
ADVANTAGES DISADVANTAGES 

Filter 

based 

sampler 

× 

Mass  

concentration 

Depends 

on filter 

size 

10 µg/m3 

▪ Simple and 

reliable 

▪ Possible physical 

and chemical 

analysis of 

particles 

▪ Time consuming 

▪ High operating 

cost 

▪ 24hr averaging 

time 

TEOM ✓ 2.5-10 1.5 µg/m3 

▪ Fast response time 

(0.5s). 

▪ Greater precision 

than filter sampler 

▪ Filter may need 

changing at high 

concentrations. 

▪ High capital cost 

LPI × 

Mass 

concentration 

and size 

distribution 

0.03-10 - 
▪ Reliable 

▪ Large size range 

▪ Potential loss of 

particles at low 

pressures. 

ELPI ✓ 

Number 

concentration 

and size 

distribution 

0.07-10 1000/cm3 
▪ Robust 

 

▪ Wide channel 

plates may affect 

the result 

SMPS × 0.025-1 100/cm3 

▪ Measures small 

particles 

▪ No particle shape 

assumptions. 

▪  Not suitable for 

large sized 

particles. 

▪ Slow scanning 

time (>16s) 

FMPS ✓ 0.056-0.56 1000/cm3 

▪ Fast response time 

(1 second) 

▪ High flow rate 

(10 L/min) 

▪ Lower accuracy 

than SMPS 

BAM ✓ 
Mass 

concentration 
2.5-10 1 µg/m3 

▪ Suitable for real-

time data with 

short time 

resolution (<1 hr) 

▪ Needs a 

radioactive 

source 

Optical 

(scattering) 
✓ 

Particle 

number and 

size 

distribution 

0.25-32 0.1 µg/m3 

▪ Good response 

time (6s) 

▪ Insensitive to 

vibrations 

▪ Sensitive to 

ambient pressure 

changes. 

Optical methods are the most commonly used for particle detection, counting 

and particle size measurements. These methods can be based on different principles 
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such as light scattering, light absorption and light attenuation. Optical particle counters 

(OPCs) use a light source (typically a laser) and a detector. Light is scattered by the 

airborne particles passing through the beam light and this scattered light is detected. 

Pulses of scattered light determine the particle number whereas the particle size is 

determined by the intensity of the light. 

Industrial instruments commonly used for PM monitoring in outdoor 

environments (example photographs shown in Figure 1.5) are bulky, heavy and 

expensive (cost range from $20,000 to $30,000 USD depending on options and 

accessories required) [72].  Furthermore, they cannot provide personal and real-time 

information about the quality of the air in our surrounding environment as they are 

often placed only in strategic open locations (monitoring points) such as the ones used 

in the national air quality monitoring networks across Europe and the UK [29]. In the 

UK, particulate matter monitoring stations are commonly located in either ‘kerbside’ 

(within 1 m from a busy road) or ‘urban centre’ (e.g. away from roads, in a pedestrian 

precinct) sites.   

Unlike these instruments, indoor PM monitors are compact and lightweight. 

They are usually placed on a bench or table and used to assess the air quality inside 

buildings such as homes, offices, schools or laboratories (cleanrooms) providing more 

accessible, real-time information of the indoor air we breathe. The majority of indoor 

PM monitors available in the market are optical based such as the DC1100 (Dylos 

Corporation) or the SpeckTM fine particulate matter monitor. Other mass-based 

instruments such as cascade impactors are also available. These instruments are 

relatively affordable (<$500), but they are still too costly for mass distribution and for 

use in the general population as personal monitors.  

Portable monitors are those that can be carried. Handheld devices usually fall 

into this category. Handheld devices provide a more convenient way for monitoring 

personal exposure to airborne particles. They are especially useful to localise PM 

pollution sources. These devices are battery powered and small enough to fit in one 

hand (to be carried around in the field). Even though handheld devices can be used as 

mobile instruments, they are not categorised as personal monitors. Personal monitors 

are wearable devices, small enough to fit in a pocket.  
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(a)     (b)     

PartisolTM 2000i Air Sampler (Thermo Scientific 

Inc.) mounted on optional stand. Dimensions: 

37.1 cm (D) x 47.0 cm (W) x 77.2 cm (H), 

Weight: 37.2 kg. [73] 

 

TEOMTM 1405 Continuous Ambient Particulate 

Monitor (Thermo Scientific Inc.). Dimensions: 

48.3 cm (D) x 43.2 cm (W) x 75.0 cm (H), 

Weight: 18 kg. [74]  

(c)         (d)  

BAM-1020 Continuous Particulate Monitor 

(Enviro Technology Services plc). Dimensions: 

40.0 cm (D) x 43 cm (W) x 31.0 cm (H), Weight: 

24.5 kg. [75] 

GRIMM EDM164 (GRIMM Aerosol Technik 

GmbH). Dimensions: 20.0 cm (D) x 40.0 cm (W) 

x 40.0cm (H), Weight: 12 kg. [76] 

Figure 1.5 Example of commercial particle samplers and monitors based on different 

measurement principles: (a) Gravimetric particle sampler, (b) TEOM analyser, (c) Beta 

attenuation monitor, (d) Optical particle counter. 
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A wearable optical based particle monitor has been recently introduced by 

TZOA (TZOA Enviro-Tracker). This device is still under research and development 

and is currently only available to pre-order [77]. Table 1.5 presents a comparison of 

commercially available portable devices for PM monitoring. Examples of these 

instruments are presented in Figure 1.6. Most of these instruments are optical based. 

(a)  

 

(b)   

Indoor air quality monitors: (a) DC 1100 Air quality monitor (Dylos Corporation). (b) SpeckTM. 

Dimensions: 9.4 cm (D) x 11.4 cm(W) x 8.9 cm (H). Weight: 164.4g. [78, 79] 

(c)    (d)   (e)  

Handheld portable particle monitors: (c) DustTrakTM II Aerosol Monitor 8532 (TSI Inc.). Dimensions: 

12.5 cm x 12.1 cm x 31.6 cm. Weight: 1.3 kg.  (d) GT-321 Handheld Particle counter (Met One 

Instruments, Inc.). Dimensions: 9.3 cm (W) x 5.1 cm (D) x 15.9 cm (H). Weight: 0.79 kg. (e) Fluke 985 

Particle Counter (Fluke Inc.) Dimensions: 27.2 cm x 9.9 cm x 5.3 cm. Weight: 0.68 kg. [80-82] 

   

OPC-N2 Particle Monitor 

(Alphasense Ltd). [83] 

PM2.5 Sensor Module 

DN7C3CA007 (Sharp 

Corporation). [84] 

Personal Cascade Impactor 

290 Series (Tisch 

Environmental). 

Figure 1.6 Commercially available portable and handheld particle monitors. 
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Over time, researchers have sought the development of low-cost, personal PM 

instruments. These particle sensors have been proposed based on a variety of operating 

principles, using different readout techniques and implementing filters or virtual 

impactors (VI) to classify the particles. Representative examples of these approaches 

are presented in Table 1.6. A virtual impactor is a device that separates particles from 

an air flow into two airstreams, according to their aerodynamic diameter (different 

sized particles have different inertia). Particles with sizes above a specified cut-off 

diameter follow the minor flow channel while particles smaller than the cut-off 

diameter are collected at the major flow channel.  

Table 1.6 A summary of approaches for the development of personal instruments for the 

detection of airborne particles. 

OPERATING 

PRINCIPLE 
DESCRIPTION REF. 

Corona discharge 

Particles become charged when passing through a corona 

discharge region. The current produced due to the flow 

of charged particles in the system is related to the 

concentration of particles. 

[85] 

Gravimetric or 

mass sensors 

Measurement of the change in the resonance frequency 

of the device to determine the mass of aerosol particles. 

Thermally actuated MEMS resonators 

Thin film piezoelectric on silicon resonators 

Silicon resonant cantilevers 

[86-88] 

[89, 90] 

[91-98] 

Acoustic devices [99-101] 

Paddle-type silicon 

cantilever 

Dust particles are attracted by applying an electrostatic 

field to the electrode and particle mass is measured as a 

change in the oscillation phase.  

[102] 

MEMS 

electrometer 

Operating principle similar to a vibrating reed 

electrometer. Use of MEMS vibrating capacitance to 

detect small currents from ionized particles.   

[103] 

Of all the approaches listed above, the greatest progress towards a personal 

monitor has been achieved using silicon resonant cantilevers. In particular, the 

collaboration between the Institute of Semiconductor Technology (IHT) and the 

Fraunhofer-Wilhelm-Klauditz-Institut in Braunsweig, Germany has led to the 
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development of sensors for the detection of airborne nanoparticles. In these devices, a 

Wheatstone bridge configuration is used for signal readout.  

The research group have carried out different experimental set-ups. For 

example, in one article Wasisto et al. describe an experiment where the cantilever was 

operated using its fundamental mode with an aerosol sampler, based on the 

dielectrophoresis method for trapping the particles [93]. The study of cantilevers 

operated in the second resonant mode has also been reported [96] and the integration 

of heating resistors and electrostatic sampling was analysed [92]. Further work has 

been reported [95, 97, 104] and has led to the development of a portable cantilever-

based airborne nanoparticle detector [98], following a previous work reported by 

Merzch et al. [91]. 

As an alternative approach, acoustic wave technology has also been proposed 

for the detection of micro-sized particles.  Acoustic wave devices such as quartz crystal 

microbalance (QCM) and surface acoustic wave (SAW) devices have been 

investigated as mass sensors for particle sensing. The total mass of particles deposited 

on the sensing area of these devices is measured as a shift in their resonance frequency. 

This is further discussed in section 0. 

 SENSORS FOR THE DETECTION OF VOCS 

Several technologies based on different physical or chemical effects are used for the 

detection of gases and vapours. In the last few years, researchers have focused on the 

development of low-cost, low-power and small gas sensors capable of fast-response 

and accurate detection of VOCs. A comparison between available technologies is 

presented in Table 1.7. 

Gas chromatography (GC) is a well-known and common technique for 

measuring gas concentrations in mixtures. GC is an analytical method mainly used in 

the laboratory for the quantitative and qualitative analysis of volatile organic 

compounds. Even though this technology has shown an excellent performance with 

high precision, sensitivity and selectivity for the detection of VOCs [105], gas 

chromatographs are considerably bulky, slow and costly [106]. Although some efforts 
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have been made towards the miniaturization of these instruments [107, 108], further 

work is required in this field. 

Electrochemical sensors consist of a diffusion barrier, a sensing electrode and 

a counter electrode separated by an electrolyte. The gas diffuses through the membrane 

reaching the sensing electrode surface, where it is oxidized or reduced, generating a 

current flow. These sensors are basically electrochemical cells that can operate in 

amperometric or potentiometric mode. Electrochemical sensors are primary used for 

the detection of oxygen (O2) and toxic gases such as carbon monoxide (CO) and 

hydrogen sulphide (H2S). They offer an affordable solution for VOC detection. 

However, due to their short life span, susceptibility to poisoning and bulky design 

[109] their use as air quality monitors is limited.  

Metal oxide semiconductor (MOS) gas sensors make use of semiconductor 

materials, usually metal oxides (MOX) such as tin oxide (SnO2), titanium dioxide  

(TiO2) or tungsten trioxide (WO3) and a heating element such as a resistive filament 

or micro-hotplate. The conductivity of the sensing material changes due to the 

interaction between its surface and the target gas.  The sensitivity of MOX sensors 

mainly depend on the sensing material, its thickness and the operating temperature 

[106]. Traditional MOX sensors have high power consumption (>200 mW) and exhibit 

cross sensitivities [110, 111] limiting their use in portable and wearable devices for air 

quality monitoring. However, recent developments have proved the use of WO3 based 

sensors with low power consumption (<65 mW) and limited cross sensitivity for the 

detection of NO2 [112]. 

 Photoionization detectors (PID) are the gold standard for the detection of 

VOCs. This type of sensors can detect volatile organic compounds at very low 

concentrations (ppb levels) with fast response time (only a few seconds) and good 

sensitivity [113] . PIDs use an ultraviolet (UV) light source and two electrodes. The 

UV light ionizes the vapour molecules, resulting in a measured ion current 

proportional to the vapour concentration. The UV source is basically a lamp which 

emits UV light with a certain wavelength determined by the type of gas in the lamp. 

Only vapours with ionization potential equal or lower than the lamp output energy can 

be detected. Lamps with 10.6 eV (krypton gas, magnesium fluoride windows) are the 
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most widely used in PIDs as they can detect a variety of compounds and have a long 

life span (~6000 hours) [113]. PID sensors, however, have limited selectivity and 

usually correction factors need to be applied for specific VOCs [114]. 

Optical gas sensors are based on the optical absorption of a gas at a specific 

wavelength. In particular, non-dispersive infrared (NDIR) sensors can detect gases 

with unique infrared (IR) absorption. NDIR sensors mainly consist of a IR radiation 

source, an IR detector and a path (gas chamber) between the IR source and the detector. 

These sensors benefit from selectivity by using wavelength filters when a specific gas 

is absorbed over a specific wavelength range. Unlike other gas sensor technologies, 

optical sensors work on a physical absorption process, offering very fast response (<1 

second), reduced drift and high gas specificity [115].   However, restriction on their 

miniaturization comes from the need for the IR radiation to travel a long distance (e.g. 

10 cm) through the sample gas.  

A list of commercial VOC sensors is given in Table 1.8. This list is not 

exhaustive; however, it summarises the current standard of commercially available 

sensors. There is no defined standard for product data sheets, and as such 

manufacturers often choose not to disclose performance details of their sensors (i.e. 

limit of detection etc.).  

Acoustic wave devices are also used for VOC detection. This is accomplished 

by applying a selective coating on the sensing area of the device. These sensors are 

highly sensitive, low cost and have fast response times. However, they exhibit limited 

selectivity and susceptibility to noise [106]. A review of acoustic devices for VOC 

detection is presented in Chapter 2. 

Based on the review of all the available sensor technologies, a device based on 

an acoustic wave resonator is preferred for use in this work. Acoustic sensors offer 

performance advantages compared to other techniques, such as: miniaturisation, long 

lifetime, high sensitivity, low power-consumption and low-cost. The project aims 

listed below summarise the steps needed to realise an acoustic sensor for this air quality 

monitoring application.   
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Table 1.7 A review of gas sensing technologies for the detection of VOCs. [106, 113, 116-

118] 

GAS SENSING 

TECHNOLOGY 
ADVANTAGES DISADVANTAGES 

Gas 

chromatography 

(GC) 

▪ Excellent separation 

performance 

▪ High precision, 

sensitivity, selectivity and 

reproducibility. 

▪ Expensive 

▪ Bulky, difficult in 

miniaturization. 

▪ Long response time 

Electrochemical 

sensors 

▪ Short response time 

▪ High accuracy 

▪ Wide range of detection 

▪ Low cost 

▪ Primary sensitive to toxic 

gases and O2 (not for VOCs) 

▪ Short life span 

▪ Bulky design 

▪ Susceptibility to poisoning 

Metal Oxide 

sensors (MOX) 

▪ Fast response 

▪ Affordable solution 

▪ Wide range of target 

gases 

▪ High sensitivity to 

combustible gases 

(methane, propane) 

▪ Compact 

▪ Long life span 

▪ Relatively low sensitivity 

▪ Sensitive to environmental 

effects (humidity) 

▪ High power consumption  

▪ Exhibit Cross-sensitivity 

Photoionization 

detector (PID) 

▪ Gold standard for VOC 

detection 

▪ High sensitivity 

▪ Fast response time  

▪ Long lifetime (depending 

on lamp used) 

▪ Wide range of target 

gases 

▪ Low selectivity (correction 

factors needed) 

▪ Require periodic cleaning 

and calibration. 

 

 

Non-dispersive 

infrared sensors 

(NDIR) 

▪ High sensitivity 

▪ Very fast response time 

▪ High gas specificity 

▪ Reduced drift 

▪ Minimal maintenance and 

calibration 

▪ High cost 

▪ Sensitive to environmental 

effects (humidity) 

▪ Difficult miniaturization 

 

 

Acoustic Wave 

Sensors 

▪ Long lifetime 

▪ High sensitivity 

▪ Low cost 

▪ Low power consumption 

▪ Small footprint 

▪ Fast response time 

▪ Can be used for wireless 

applications 

▪ Sensitive to environmental 

effects (temperature, 

humidity) 

▪ Limited selectivity 

▪ Susceptible to noise 
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1.4 AIMS OF THE PROJECT 

Large size, complexity, high fabrication costs and portability limitations are the major 

problems found in many of the current technologies used for air quality monitoring. 

The target of this project is to fulfil the need for an affordable and portable air quality 

monitoring system, for the detection of particulate matter and volatile organic 

compounds. The aim of this work is to develop a miniature, low-cost sensor with low 

power consumption, which is CMOS compatible and capable of high volume 

manufacturing and monolithic integration with CMOS circuitry.  

The work in this thesis mainly focuses on the development of the sensing 

element (a solidly mounted resonator) for its future integration within a monolithic 

system as a personal air quality monitor and communication/integration within a 

smartphone. The objectives of this research are summarised as follows: 

▪ IMPLEMENT AN ANALYTICAL MODEL AND DEVELOP FINITE ELEMENT MODELS OF A 

SOLIDLY MOUNTED RESONATOR.  

To design a device with optimal performance for sensing applications (VOC, 

particles) the device parameters must be investigated. The device should be able to 

detect fine particles (<10 µm diameter) and VOCs in low concentrations (ppm 

levels). Simulation results will be used to verify the resonant frequency, ensure the 

device will work within manufacturing tolerances and estimate sensitivity (3D 

model required).   

▪ DESIGN, FABRICATE AND DEVELOP HIGH FREQUENCY SOLIDLY MOUNTED 

RESONATORS. 

The resonators will be designed and manufactured using standard microfabrication 

processes. The devices will need to be characterised and tested to investigate their 

suitability for the detection of fine particles and volatile organic compounds.  

▪ DESIGN A DISCRETE SENSING UNIT FOR PARTICLE SENSING.  

For low-cost air quality monitoring, a portable sensing unit is required which can 

be interfaced to a computer (i.e. no specialist equipment needed). The unit needs to 

have low power consumption (able to be battery powered) and function without 
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sensitivity to temperature or humidity. The unit must be able to detect particles 

which are hazardous to health (<10 µm diameter).  

▪ DESIGN AN AUTOMATED TESTING APPARATUS FOR EXPOSING THE DEVICE TO VOCS.  

To be able to be used in air quality monitoring applications, the solidly mounted 

resonator should be capable of detecting VOCs within their safe exposure limits. A 

testing rig is needed to generate controlled low concentration of the VOCs and 

produce step changes of gas concentrations.  

▪ CHARACTERISE THE SOLIDLY MOUNTED RESONATORS TO THE EXPOSURE OF ORGANIC 

VAPOURS AND PARTICULATE MATTER. 

To verify the functionality of the device to low concentration of VOCs (generated 

on the testing apparatus) and fine particulate matter deposited on the sensor surface.  

▪ DESIGN A CMOS COMPATIBLE SOLIDLY MOUNTED RESONATOR. 

To develop a low-cost and low power personal air quality monitor with improved 

performance, the device must be capable of being fabricated within a standard 

CMOS process together with the integrated CMOS circuitry. The device must have 

a long-life span (being able to clean the sensing surface after particles become 

deposited) and improved sensitivity of VOCs.  

1.5 THESIS OUTLINE 

This thesis describes the design, development and characterisation of solidly mounted 

acoustic resonators for air quality monitoring. Chapter 1 introduces the sources of 

indoor air pollutants and their associated health hazards. Air quality guidelines and 

safe exposure limits of air pollutants currently enforced in the European Union are 

discussed.  The state-of-the-art technologies for the detection of particulate matter and 

volatile organic compounds are reviewed. 

 Chapter 2 covers background information on acoustic wave technology 

(principle of operation and wave propagation). The chapter also includes an overview 

on surface and bulk acoustic wave devices and a comparison between both 

technologies and their sensing applications, with more emphasis on bulk acoustic 
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devices. Additionally, performance metrics, driving circuitry and CMOS integration 

of these devices are discussed. 

Chapter 3 discusses the design considerations of the devices and describes the 

implementation of analytical and finite element models to evaluate their performance 

prior to fabrication. The layout design of the devices is also presented. 

Chapter 4 details the fabrication process of the designed devices. The devices 

are characterised and their temperature and humidity dependence is investigated. 

These results are compared to the simulated results obtained in Chapter 3.  

Chapter 5 describes the use of the fabricated devices for particle sensing 

applications. The devices are characterised with fine particles of known size and 

composition and results are compared to finite element simulations. The development 

of a discrete particle sensing unit is presented. Interface circuitry is designed so that 

the system can operate in a dual mode configuration. Experimental results from an 

environmental chamber are presented. Further improvements to this unit are described 

with the development of a hybrid sensor system that includes an active air sampler and 

a module to separate particles by size. 

Chapter 6 covers characterisation of the SMRs to the exposure of organic 

vapours. The partition coefficients of selected polymer-vapour pairs are investigated. 

The SMR devices are coated with a polymer film using two polymer deposition 

methods (spray and drop coating). The development of an automated VOC test station 

capable of delivering concentrations in the ppb levels is presented and experimental 

results of polymer-coated devices are presented to the exposure of two different 

analytes (acetone and toluene).  

Chapter 7 describes the design, modelling and characterisation of a novel 

CMOS based SMR with an embedded single crystal silicon micro heater. The acoustic 

mirror and heater were fabricated in a standard SOI CMOS process, that will allow 

high volume production and on-chip integration. Thermal simulations of the heater 

and CMOS acoustic mirror performance are presented. Experimental results of particle 

sensing are shown.  
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Chapter 8 gives an overall discussion of the results and reviews the aims of the 

project. Further work on the development of a monolithic system is discussed, 

including the possible integration with a smart device. 
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ACOUSTIC WAVE 

TECHNOLOGY 

2.1 INTRODUCTION 

The various sensing technologies available for air quality monitors were 

introduced in Chapter 1. In this project, acoustic wave technology is employed for the 

development of an air quality sensor. This chapter introduces this technology by 

reviewing the generation of acoustic waves and their propagation modes in 

piezoelectric materials.  The two main types of acoustic waves, i.e. surface acoustic 

waves (SAW) and bulk acoustic waves (BAW), are discussed. Acoustic devices using 

these wave modes are introduced and their performance metrics are reviewed. A 

detailed comparison between SAW and BAW based devices is presented.  

General applications of acoustic wave devices are discussed with focus of 

sensing applications. In particular, a review on acoustic devices used for particle 

sensing and VOC detection is presented. For an acoustic device to be used in a 

real-time, portable sensing application, the system must have reasonable power 



 

Chapter 2. Acoustic Wave Technology   40 

 

 

requirements and not need bulky laboratory equipment. Driving circuitry for the 

acoustic devices is introduced (oscillator topologies), which enables sensor read-out 

without the need for specialist instruments.  

Driving circuitry constructed from discrete components is adequate for small-

scale testing, although for mass-production, circuitry implemented in CMOS 

technologies is required.  For a low cost, low power sensor system the acoustic device 

must be integrated with the circuitry on the same substrate. In this chapter, the different 

approaches of integrating complementary metal oxide semiconductor circuits with 

microelectromechanical systems are introduced and the current art of monolithic 

integration of BAW devices is discussed.  

2.2 THE PIEZOELECTRIC EFFECT 

The operating principle of acoustic wave devices is based on the piezoelectric effect. 

Piezoelectricity was first observed by the Curie brothers in 1880 [1] and refers to the 

property of some crystals to generate an electrical displacement when mechanical 

stress is applied (direct piezoelectric effect) or vice versa: to experience a mechanical 

deformation when an electrical field is applied (inverse piezoelectric effect).  

The coupling between the electrical field and mechanical displacement is 

described by the piezoelectric constitutive equations shown below in their stress-

charge form [2]: 

𝑇𝑖 = 𝑐𝑖𝑗
𝐸𝑆𝑗 − 𝑒𝑖𝑗𝐸𝑗 

(2.1)  

𝐷𝑖 = 𝜀𝑖𝑗
𝑆𝐸𝑗 + 𝑒𝑖𝑗𝑆𝑗 (2.2)  

where 𝑇𝑖, 𝑐𝑖𝑗, 𝑆𝑗, 𝑒𝑖𝑗, 𝐸𝑗, 𝐷𝑖 and 𝐸𝑖𝑗 are the stress components, the stiffness constants, 

the strain components, the piezoelectric stress constants, the electric field components, 

the electrical displacement components and the permittivity constants, respectively. 

The superscripts E and S denote that the constants are measured at a constant electric 

field and constant strain, respectively.  
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For a crystal structure to exhibit piezoelectric properties, the structure must 

have no centre of symmetry. Among the 32 classes of crystalline materials (categorised 

according to number of rotational axes and reflection planes), 20 classes are non-

centrosymmetric.  

Single crystals such as quartz, lithium niobate and lithium tantalate exhibit 

piezoelectricity as a result of their crystalline structure. These materials can be natural 

(e.g. quartz) or man-made (e.g. lithium niobate).  Different angles of cut, with respect 

to the crystallographic axis, are possible due to the anisotropic structure of these 

crystals. Thus, various types of acoustic wave modes can be generated, and the crystals 

can be used at a range of frequencies [3].   

Man-made piezoelectric materials include piezoceramic materials (such as lead 

zirconate titanate or barium titanate) and piezopolymer materials (such as 

polyvinylidene difluoride, PVDF). For this application, only piezoelectric materials 

capable of being deposited as thin films are considered (i.e. PZT, AlN and ZnO). AlN 

and ZnO are Wurtzite crystals, which have hexagonal structures, as shown in Figure 

2.1.  

 

Figure 2.1 Representation of the hexagonal Wurtzite unit cell as found in zinc oxide [4]. 

The stress-strain relation for hexagonal wurtzite crystals is shown in (2.3). The 

corresponding values for ZnO and AlN are given in Table 2.1. The number of unique 

piezoelectric constants decreases as crystal symmetry increases [2]. For hexagonal 

crystals, there are a total of five independent elastic constants due to the degree of 

symmetry.  



 

Chapter 2. Acoustic Wave Technology   42 

 

 

(

 
 
 

 σxx 

σyy

σzz

σyz

σzx

 σxy )

 
 
 

=

(

 
 
 
 

 C11 C12 C13 0 0 0

 C12 C11 C13 0 0 0

 C13 C13 C33 0 0 0

 0 0 0 C44 0 0

 0 0 0 0 C44 0

 0 0 0 0 0
C11-C12

2
 )

 
 
 
 

(

 
 
 

 εxx 

εyy

εzz

εyz

εzx

 εxy )

 
 
 

 (2.3)  

Table 2.1 Elastic stiffness coefficients (GPa) for ZnO and AlN. 

 C11 C12 C13 C33 C44 C66 REF. 

ZnO 210 121 105 211 42.5 44.3 [4] 

AlN 396 137 108 373 116 129.5 [5] 

Given an understanding of the material crystal structure, acoustic sensors can be 

designed for different applications, depending of the type of waves required. In the 

next section, the propagation of acoustic waves generated in the piezoelectric materials 

is discussed.  

2.3 ACOUSTIC WAVES PROPAGATION 

Acoustic waves are disturbances within a medium caused by an excitation source. As 

they propagate, the energy is transferred along the elastic medium (gas, liquid or solid) 

in the form of oscillation or vibration [6]. The propagation speed of the wave depends 

on the mechanical properties of the medium.  

 Two main types of acoustic waves can be generated in a piezoelectric material, 

when an electric voltage is applied, namely Surface Acoustic Waves (SAW) and Bulk 

Acoustic Waves (BAW). As the name suggests, the main difference is the way in 

which the acoustic waves propagate through the piezoelectric material.  

Depending on the orientation of the piezoelectric crystal, different types of 

acoustic waves can be generated as depicted in Figure 2.2. Longitudinal and shear 

(transverse) waves have particle displacements that are parallel and normal to the 

direction of wave propagation, respectively. In Rayleigh waves, surface particles move 

in elliptical paths, with two distinctive particle displacement components: longitudinal 
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and vertical shear. Other types of waves include Lamb and Love waves which are well 

documented in publications by Ballentine [2], Rosenbaum [7] and Auld [8]. 

  

Figure 2.2 Representation of the particle displacement of (a) longitudinal, (b) shear and (c) 

Rayleigh waves. [9, 10] 

An important design criterion for acoustic wave based sensors is the careful 

selection of the mode of acoustic wave. This dictates the efficiency of the devices for 

a given sensing application (gas or liquid media) which will be discussed in section 0. 

For example, longitudinal waves are suitable for use in gaseous media but not suitable 

for liquid applications (they become attenuated). A comparison of the operation of the 

different types of waves according to their mode is presented by Gardner et al. [3]. 

The next two sections discuss the devices that utilise SAW and BAW waves for 

various applications. All these devices fundamentally operate through the use of 

piezoelectric materials. 

2.4 SURFACE ACOUSTIC WAVE DEVICES 

Surface acoustic wave devices consist of a piezoelectric substrate on which metallic 

interdigital transducers (IDTs) are patterned using a photolithography process. An IDT 

is formed by two comb-shaped electrodes [3] with periodically spaced fingers. In SAW 

devices, acoustic waves propagate along the surface of the substrate. For the case of 

Rayleigh waves, the most commonly used wave mode, their wave motion extends 

below the piezoelectric surface, to a depth of approximately one wavelength [2].  

 SAW devices can be classified into delay line and resonator configurations. A 

SAW delay line is depicted in Figure 2.3. An electrical signal applied to the input IDT 

generates an acoustic wave which propagates along the surface until it reaches the 
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output IDT. Here, mechanical to electrical conversion takes place (direct piezoelectric 

effect) and an output electrical signal is generated.  

 

Figure 2.3 Structure of a SAW delay line device.  

The resonant frequency of the device is mainly determined by the periodicity of the 

IDT as per equation (2.4), along with other geometric parameters such as the acoustic 

aperture and number of finger pairs. 

𝑓𝑜 =
𝑣

𝜆
 (2.4)  

where 𝑣 is the acoustic velocity of the piezoelectric material, 𝜆 is the wavelength 

(periodicity) and 𝑓𝑜 is the fundamental resonant frequency.  Typical operating 

frequencies of SAW devices range between 30 MHz and 1 GHz [3]. For frequencies 

above 2 GHz, the IDTs become difficult to manufacture given the fine dimensions 

required, when in general, mask accuracy is limited to 0.25 µm.  

A two-port SAW resonator (SAWR) is shown in Figure 2.4a. The operating 

principle is the same as the delay line configuration but it incorporates additional 

reflector gratings. These reflectors aid the reflecting and confining of the wave 

between the IDTs to reduce acoustic losses [10]. The one-port configuration (shown 

in Figure 2.4b) employs a single IDT to both generate and receive the acoustic wave.  

Commonly used piezoelectric substrate materials for SAW devices are Quartz, 

Lithium Niobate (LiNbO3) and Lithium Tantalate (LiTaO3).  Depending on their 

crystal cut and orientation, shear horizontal (SH) or Rayleigh waves can be excited. 

Relevant characteristics of different cuts of these materials are presented in [3, 11, 12]. 

The temperature coefficient (TC) of a piezoelectric material describes the relation 



 

Chapter 2. Acoustic Wave Technology   45 

 

 

between a change in temperature and the consequent change in a physical property of 

the material (e.g. elastic constant values, acoustic velocity).  

One of the most relevant properties of quartz crystal is that its TC value is 

dependent on the cut angle of the crystal. ST-cut quartz (42°-Y cut angle) has a TC of 

0 ppm/°C (material properties are not dependant on temperature) and thus, it is 

attractive for sensing applications to eliminate temperature effects, that will influence 

the sensor readings. 

 

Figure 2.4 Schematic of (a) Two-port and (b) One-port SAW resonators. 

2.5 BULK ACOUSTIC WAVE DEVICES 

The basic configuration of a BAW resonator is shown in Figure 2.5. It comprises of a 

piezoelectric material sandwiched between two metal electrodes. Applying an 

electrical signal between the electrodes generates an acoustic wave that propagates 

through the bulk of the piezoelectric material. Due to the reflection of the wave at the 

surfaces of the electrodes in contact with air, a standing wave is formed inside the 

piezoelectric layer. 
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 The fundamental resonant frequency is determined by the thickness, 𝑑, of the 

piezoelectric layer and the acoustic velocity, 𝑣,  of the material by [13, 14]: 

𝑓𝑜 =
𝑣

2𝑑
 (2.5)  

Thus, at the fundamental resonant frequency, the thickness of the piezoelectric 

layer is half the wavelength of the acoustic wave (see equation (2.4)).  

 

Figure 2.5 BAW resonator configuration and wave propagation. 

Although equation (2.5) provides a good approximation of the fundamental frequency, 

the characteristics of the electrodes (i.e. thickness, density) influence the resonant 

frequency of the device [14, 15]. Thus, this will be considered during the design 

process, as described in Chapter 3.    

 QUARTZ CRYSTAL MICROBALANCE 

Quartz crystal microbalance (QCM) is the most widely known BAW resonator [11]. 

They are formed by an AT-cut quartz crystal (36° YX cut), usually disk-shaped, with 

patterned metal electrodes on both sides. An electrical signal applied across the 

electrodes produces standing shear waves (thus they are also referred as thickness 

shear mode (TSM) resonator). A photograph of a commercial QCM device is shown 

in Figure 2.6. 
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Figure 2.6 Photograph of commercial QCM device (10 MHz). 

The Sauerbrey equation describes the effects of mass loading on the resonant 

frequency of a quartz crystal, given as [16]: 

∆𝑓 =
2𝑓𝑜

2

√𝜇𝜌
∙
∆𝑚

𝐴
 (2.6)  

where ∆𝑓 is the change in resonant frequency, 𝑓𝑜 the fundamental resonant frequency, 

𝜇 the elastic constant, 𝜌 the density, ∆𝑚 the mass load and 𝐴 is the area. The addition 

of a uniform mass, of thickness 𝑑, in contact with the surface of the device causes a 

shift in the resonant frequency of the crystal with mass sensitivity defined as [17]: 

𝑆𝑚 =
𝐴∆𝑓

∆𝑚
= −

𝑓𝑜
𝜌𝑑

 (2.7)  

The thinner the quartz crystal, the higher the resonant frequency of the device and 

therefore, the higher the sensitivity that can be attained [17].  

For their use in sensing applications, acoustic devices operating at high 

frequencies (>1 GHz) are desired, as the sensitivity is directly proportional to the 

frequency of operation. The operating frequencies of QCM devices is limited by the 

mechanically achievable thickness of the quartz crystal [18] (limited to ~50 µm).  Thin 

quartz crystals are very fragile and difficult to handle, thus QCMs typically can only 

operate at frequencies in the range of 5-30 MHz [11]. SAW devices are limited to 

operate at frequencies up to 2 GHz due to the fine pitch required for the IDTs 



 

Chapter 2. Acoustic Wave Technology   48 

 

 

(~0.25 µm), which become difficult to pattern. These manufacturing limitations 

clearly restrict the sensitivity of QCM and SAW devices. Thin film BAW acoustic 

resonators, capable of operating at high frequencies (2-5 GHz), were developed to 

overcome the restrictions of QCM and SAWs. In the next section, the operation of 

these resonators is discussed. 

 THIN FILM BULK ACOUSTIC RESONATORS 

Thin film technology and modern micromachining techniques have made possible the 

development of bulk acoustic wave devices working at high frequencies, typically in 

the range of 2-5 GHz [19-21]. Thin film bulk acoustic resonators consist of a thin 

piezoelectric layer (deposited by various methods such as sputtering, up to a maximum 

6 µm thick) sandwiched between two metal electrodes and fabricated on top of a carrier 

substrate, typically silicon. To prevent wave dissipation into the substrate and obtain 

high quality factors, acoustic isolation must be provided.   

 Depending on the way in which the acoustic energy in confined within the 

resonator structure, two different types of thin film BAW resonators can be identified, 

namely free-standing Film Bulk Acoustic Resonator (FBAR) and Solidly Mounted 

Resonator (SMR), depicted in Figure 2.7. 

 

Figure 2.7 Structure of thin film BAW resonators (a) membrane FBAR, (b) air-gap FBAR 

and (c) SMR. Figures are not to scale. 

First reported in 1980 by three independent groups, [13, 22, 23], FBAR devices 

take advantage of the low acoustic impedance of air to provide acoustic isolation to 
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the substrate. An air gap is created between the substrate and the resonator structure 

either by bulk micromachining (membrane FBAR) or surface micromachining (air-

gap FBAR).  

The very first SMR concept was proposed by Newell in 1965 [24] who 

described the use of quarter wavelength layers with large impedance ratios to isolate 

the resonator from the substrate (avoiding the need of micromachining an air gap). 

Decades later, Lakin et al. [25] demonstrated a SMR device for wireless systems 

applications.  

Solidly mounted resonators make use of an acoustic mirror formed by 

alternating layers of low and high acoustic impedance materials. The impedance 

mismatching of these layers reflects the acoustic energy back to the resonator structure 

preventing energy leakage. The operation and design of solidly mounted resonators 

(including the acoustic mirror) are discussed in detail in Chapter 3. 

To be able to assess the advantages and disadvantages of the different types of 

devices (SAW, FBAR and SMR), the methods of measuring performance of the 

devices must be understood. A detailed comparison is given in section 2.7. The 

performance criteria for acoustic devices is described in section 2.6.  

2.6 PERFORMANCE METRICS 

 QUALITY FACTOR 

One of the key performance parameters for bulk acoustic waves resonators is the 

quality factor. This performance metric indicates how well the acoustic energy is 

confined within the resonator. The fundamental definition of the Q factor relates the 

total energy stored in the resonator and the power dissipated per cycle as [26]:  

Q = 𝜔 ∙
Energy Stored

Power dissipated
 (2.8)  

 

A BAW resonator with high quality factor is desirable as this means that the 

energy is efficiently trapped in the resonator structure and thus low energy losses are 

present in the system. Energy dissipation in BAW devices can steam from different 
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loss mechanisms such as Ohmic losses in the electrodes and contacts, mechanical 

losses due to laterally leaking waves (spurious modes) and viscous damping [27-29].   

For the suppression of spurious modes two methods are commonly reported in 

the literature  [28, 30, 31]. The first method, apodization, involves the careful design 

of the top electrode of the resonator, to avoid parallel sides on the active area (also, the 

angle between any two sides must not be near 90°) [32]. This entails that none of the 

edge points on the active area have the same lateral resonator path (different path 

lengths will be possible from all the points). Thus, a large number of broader peaks are 

created, giving the effect of a smoother pass band (a reduction compared to the sharp 

spurious modes) [33].  

The second method was proposed by Kaitila, in order to prevent the spurious 

modes from being excited, as opposed to apodization, which only reduces their effect 

[30]. The method suggests adding a border region at the edge of the active area. The 

border must match the boundary conditions for homogenous excitation in the active 

area [28]. This has the effect of removing the lateral wave vector components, and 

leaves only the main mode to couple electromechanically [33]. This method is 

preferred as it can be used to reduce the losses due to the lateral modes (thereby 

increasing the Q factor of the device), unlike apodization, which reduces the spurious 

modes, but does not greatly improve performance.  

In the case of SMRs, another primary loss mechanism should be taken into 

account, namely the acoustic energy dissipation to the substrate. This is discussed in 

the following chapter. In short, appropriate design of the acoustic mirror is necessary 

to ensure these losses are minimised and to obtain a high Q factor.  

The Q factor is an important parameter in characterising oscillators and 

resonators that must be measured carefully. Several methods of determining the Q 

factor of a resonator have been proposed [34]. These methods aim to overcome the 

frequency dependent additive noise and measurement noise that make calculation of 

the Q factor very sensitive and susceptible to spurious results [18].  

One of the most commonly used practical techniques involves using the phase 

derivative method to extract the Q factor from the impedance measured of the BAW 
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device. Equation (2.9) shows the Q factor calculation, where 𝜙 represents the 

admittance or impedance phase [35].  

Q =
1

2
𝑓𝑠 |

𝑑𝜙

𝑑𝑓
|
𝑓=𝑓𝑠 

 
(2.9)  

The most accessible method is often termed the 3dB method [36]. This method 

uses the S21 parameter against frequency data, which is usually smoothed or filtered to 

reduce the sensitivity to noise. The points where the magnitude of the S21 response 

falls to -3 dB either side of the centre resonant frequency are measured. The Q factor 

is then calculated by dividing the difference between the two -3 dB points by the 

resonant frequency [37].  To overcome the measurement noise affecting the accurate 

determination of BAW resonator Q factors it was proposed the raw data be fitted to a 

model curve prior to calculating the -3 dB points [18]. However, this method is not 

suited to resonators that have spurious ripple and non-ideal loss, which are common 

artefacts in BAW devices.  

A complementary method of measuring the performance of acoustic devices, 

the electromechanical coupling coefficient, is discussed below. A well optimised 

design will consider both parameters (Q factor and electromechanical coupling 

coefficient).  

 ELECTROMECHANICAL COUPLING COEFFICIENT 

The electromechanical coupling coefficient, 𝑘2, measures how efficiently the 

electrical energy is converted to mechanical energy in piezoelectric materials, it is 

expressed as: 

𝑘2 =
stored mechanical energy

applied electrical energy
  (2.10)  

 

The electromechanical coupling coefficient is a piezoelectric material property 

dependant on the piezoelectric and elastic parameters of the material. For the 

longitudinal mode, it can be expressed as [19]: 
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𝑘2 =
𝑒33

2

𝑐33
𝐷 𝜀33

𝑆  (2.11)  

 

where 𝑒33 is the elastic constant, 𝑐33
𝐷  is the elastic stiffness at constant electric displacement 

and 𝜀33
𝑆  is the dielectric permittivity.  

The overall mechanical-to-electrical conversion efficiency of the entire 

resonator structure (not only of the piezoelectric layer) is given by the effective 

electromechanical coupling coefficient, 𝑘𝑒𝑓𝑓
2  determined by [9]:  

𝑘𝑒𝑓𝑓
2 =

𝜋

2
∙
𝑓𝑠
𝑓𝑝

∙ cot (
𝜋

2
∙
𝑓𝑠
𝑓𝑝

)  (2.12)  

 

where 𝑓𝑠 and 𝑓𝑝 are the series and parallel resonant frequency, respectively. In practice, 

the effective coupling coefficient is approximated as:  

𝑘𝑒𝑓𝑓
2 =

𝜋2

4
∙
𝑓𝑠
𝑓𝑝

∙ (
𝑓𝑝 − 𝑓𝑠

𝑓𝑝
)  (2.13)  

 The electromechanical coupling coefficient, 𝑘2, and the effective 

electromechanical coupling coefficient, 𝑘𝑒𝑓𝑓
2 , have usually different values. While the 

former only depends on the piezoelectric material parameters, the latter is influenced 

by the properties of other materials used in the electrodes and additional losses in the 

entire structure such as the lateral spurious modes.   

2.7 COMPARISON BETWEEN ACOUSTIC TECHNOLOGIES 

In this section, a comparison between SAW and thin film BAW technologies is 

presented, followed by a review of the two types of BAW resonators (FBAR and 

SMR).  

 COMPARISON BETWEEN BAW AND SAW TECHNOLOGIES 

FREQUENCY OF OPERATION.  In SAW devices, the frequency of operation is limited by 

the achievable IDT pitch and finger width. Commercially devices are in the range of 
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500 MHz to 1 GHz [3] although a limit of 2.5 GHz could be achieved with finger width 

of 0.25 µm [18]. 

Typical operating frequencies of commercial BAW devices are in the range of 

2 - 5GHz [19], however devices working at frequencies up to 20 GHz can be obtained 

with piezoelectric films as thin as 220 nm [38].  

SIZE. The footprint of BAWs is about 3 to 5 times smaller than that of SAWs. 

Miniature BAWs allow their integration in mobile communication devices.  

PERFORMANCE. BAW devices exhibit higher Q values in the high frequency range 

(>2 GHz), have smaller Ohmic losses of the electrodes compared to that of the IDTs 

in SAWs and demonstrate better temperature coefficients of frequency (TCFs) than 

SAW at -20 ppm/°C and -45 ppm/°C, respectively.  [18, 39, 40]. 

MANUFACTURING. BAW devices can be fabricated on any substrate. Silicon substrates 

are usually preferred due to their low cost, availability and good thermal properties. 

Standard IC equipment, readily available in CMOS foundries can be employed for the 

processing of BAW devices. This makes the devices suitable for monolithic integration 

and low cost, high-volume production [41]. 

SAW devices usually only require a one-mask photolithography process and 

the deposition of only two materials. In contrast, BAW devices require more 

fabrication steps involving the deposition of several layers and the use of up to ten 

photolithography masks, increasing the total manufacturing time and cost [18, 34]. 

In the case of SAW design, the resonant frequency is determined by the 

parameters of the IDTs, which can be modified in the mask design. A single wafer can 

contain multiple SAW designs of different operating frequencies. For BAW devices, 

the frequency is determined by the thicknesses of the layers. As the layer thickness is 

fixed across a wafer, only devices working at the same frequency can be fabricated at 

a time. When BAW devices are manufactured, accurate control of the thicknesses of 

the layers is needed and so there is room for fabrication inaccuracies between wafer to 

wafer. [39] 
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POWER HANDLING. Due to their parallel plate geometry, BAW filters can have better 

power handling capabilities compared to SAW devices [18, 40]. 

PACKAGING. BAW devices use microcaping packaging technology, allowing 

packaging in a few steps using batch processing (wafer-level packaging) [40, 41]. 

Conversely, SAW devices use hermetic packages, to prevent humidity damaging the 

IDTs [42]. Often, flip chip technology is used with LTCC packages, that can be sealed 

with a lid [40]. Packaging represents the biggest cost for SAW devices. 

 COMPARISON BETWEEN FBAR AND SMR TECHNOLOGIES 

ELECTROMECHANICAL COUPLING COEFFICIENT. Compared to SMRs, FBAR devices 

exhibit 𝑘𝑒𝑓𝑓
2  values ~0.4% higher than SMRs [40]. The air-electrode interface yields 

excellent reflectivity at any frequency [41] and is more effective at trapping the 

acoustic energy [18]. However, the reflectivity of the acoustic mirror in SMRs is a 

function of frequency and thus can be tailored to eliminate harmonics [41].  

TEMPERATURE COEFFICIENT OF FREQUENCY. In SMRs, the use of SiO2 layers in the 

acoustic mirror (with positive TCF) helps compensate for the negative TCF of the 

other layers in the structure. Thus, SMRs have lower TCFs (-20 ppm/°C) compared to 

FBARs (-30 ppm/°C) [18]. 

SOURCES OF LOSSES. Both FBARs and SMRs suffer from three main loss mechanisms 

(losses due to lateral modes, Ohmic losses and scattering losses). However, additional 

losses are present in SMR devices related to the energy leaking through the acoustic 

mirror. Therefore, higher Q values are observed in FBAR devices [40]. 

DESIGN. Unlike SMR devices, the design of FBAR devices is more straight forward. 

The performance of FBARs is only dependent on the process. A one-dimensional 

model can suffice for their design. On the other hand, the design of SMRs becomes 

more complicated, and often 2D models are required for the design of the acoustic 

mirror. At the same time however, this provides flexibility in the design, which helps 

optimize the device [18].  
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MANUFACTURING. Both FBAR and SMR devices can be manufactured upon any 

substrate. Silicon is usually the substrate of choice due its near-unlimited availability, 

low cost and excellent thermal properties [41] (it is widely used in IC processes). All 

processes required for the fabrication of BAW devices are CMOS compatible, in terms 

of thermal budget and contamination issues. Thus, BAW devices can be manufactured 

in a standard CMOS foundry, using existing IC equipment and infrastructure [41]. This 

CMOS compatibility makes BAW devices suitable to be integrated with the circuitry 

fabricated in a CMOS process. However, the fabrication of the BAW device itself is 

performed only in a post-CMOS process, as discussed in section 2.11. 

HANDLING. FBAR devices are very fragile (due to the cavity formed to isolate the 

device) and so they should be handled with care. They are prone to mechanical damage 

during dicing and packaging [18]. On the other hand, SMRs are mechanically more 

robust [41].  

2.8 APPLICATIONS 

Electro-acoustic devices became popular in many technical applications during the 

1980s, particularly SAW devices for use in commercial products in the 

telecommunications area (in the range of 100 MHz to a few GHz) [43]. After serving 

the mobile communications market for more than 20 years, the need of technology 

capable to meet the very stringent power requirements and electrical specifications for 

applications at frequencies above 3 GHz led to the development of BAW devices, with 

the first commercial BAW filters introduced in 2001 [40, 42].  

RF applications of FBAR devices such as filters and duplexers have overcome 

the limitations of SAW and ceramic technologies and can nowadays be manufactured 

at competitive prices using standard IC manufacturing processes [21]. A comparison 

between BAW and SAW technologies was presented in section 2.7.  

With the advances in mobile technology, there has been a surge in demand for 

low power, low cost sensors and transducers for portable consumer electronics. The 

RF MEMS market has shown a staggering growth over the last decade. It is estimated 

that in just five years (2010 to 2015) the RF MEMS market grew from a global worth 

of $359 Million to $1.1 Billion [44, 45].  



 

Chapter 2. Acoustic Wave Technology   56 

 

 

In particular, the market for BAW filters has enjoyed a huge growth since 2011. 

This is largely due to increased reliance on a wide range of wireless technologies 

(e.g. WiFi, Bluetooth, 3G, 4G networks) in mobile communications. Smartphones 

usually use BAW filters to isolate the signals from each other. BAW technology 

delivers excellent performance at the GHz frequencies needed for mobile applications. 

The market for BAW filters dominates the RF MEMS market share (~90%), as shown 

in Figure 2.8. The market is set to exponentially grow to almost $2.5 Billion by 2019 

[46].   

 

Figure 2.8 Total MEMS Market by Device. 

 SENSING APPLICATIONS 

Although SAW and BAW devices have been used extensively in the 

telecommunications industry, acoustic devices are also widely used in sensing 

applications.  SAW sensors have been used for the last 4 decades, and in the last 20 

years they have matured from a popular research area to a strong commercial market. 

Today there is still great interest in SAW devices in the acoustic sensors research field, 

due to their low-cost, small size and good sensitivity [47]. 
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 The sensing mechanism of acoustic devices relies on a change in the properties 

of the propagating wave (frequency, amplitude, phase or velocity) caused by the 

interaction with the environment [2]. Acoustic devices are sensitive to physical 

properties (mechanical or electrical) occurring at their surface (e.g. mass loading, 

viscosity or conductivity) [48]. 

  For their use in sensing applications, acoustic devices are commonly used in 

an oscillator circuit. Perturbations induced by the physical property being measured 

are related to a change in the oscillation frequency. However, it is important to consider 

any external disturbances to the device such as changes in temperature, humidity and 

pressure which will produce undesirable changes not directly related to the property 

of interest.  

A popular method to eliminate common mode interference is the use of a dual 

oscillator configuration as depicted in Figure 2.9 [49, 50]. This method uses a 

differential principle implemented using a mixing circuit. One acoustic device is used 

as the reference element while the second acts as the sensing element. The reference 

and sensing oscillator frequencies are mixed in a heterodyne process. A low pass filter 

is used to output only the differential frequency. In this way, any frequency changes 

measured from the differential output will be solely due to the property being 

measured. 

 

Figure 2.9 Block diagram of dual oscillator configuration and mixing circuitry.  
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Table 2.2 Example of sensing applications of acoustic wave devices. 

SENSING APPLICATION EXAMPLE 

Pressure and Temperature 

sensors 

 

▪ Two-port SAW resonators on ST-cut quartz by 

Benetti et al. [51]. 

▪ Quartz thickness shear mode sensor for downhole 

pressure measurements [52]. 

▪ Aluminium Nitride and Zinc oxide-based FBARs 

for simultaneous measurement of pressure and 

temperature by Chiu et al. [53] and He et al. [54]. 

Chemical vapour  

sensors 

 

▪ An array of four polymer-coated SAW resonators 

for pheromone detection. [55] 

▪ Chemical sensor based on a Thin Film Bulk 

Acoustic Resonator using a thin film of Pd as 

chemically interactive membrane [56] 

▪ Vapour phase detection of odorant molecules 

based on Solidly Mounted Resonator [57]. 

Humidity sensors 

 

▪ Surface acoustic wave sensor using polyvinyl-

alcohol film demonstrated by Penza et al. [58] 

▪ Quartz crystal microbalance based on 

nanodiamond sensing films [59]. 

▪ Zinc oxide-based FBAR devices with 

hygroscopic polymeric materials [60].  

▪ Graphene oxide coated FBAR device driven by 

Pierce oscillator by Xuan et al. [61]    

Gravimetric or mass 

sensors 

 

▪ Zinc oxide based film bulk acoustic resonator 

reported by Lin et al. [62] with a mass sensitivity 

3654 Hz∙cm2/ng. 

▪ A surface acoustic wave resonator for the 

detection of fine particles [63]. 

▪ A system for measuring particle mass 

concentration based on quartz crystal 

microbalance [64]. 

Biosensing and  

Liquid phase sensors 

 

▪ QCM based sensor for the detection of 

Escherichia coli. [65] 

▪ Two-port SH-SAW Resonator [66] and SH-SAW 

in a delay line configuration [67] on 36° YX 

LiTaO3 piezoelectric substrate for the 

discrimination between liquids of basic tastes. 

▪ Solidly Mounted Resonators operating in shear 

mode for liquid sensor applications [68, 69]. 
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Sensing applications of acoustic devices are very wide-ranging. These devices have 

been used, for example, as gravimetric, temperature, pressure and humidity sensors. If 

functionalised with selective coatings, they can also serve as chemical sensors [11] in 

both gas and liquid phases (depending of propagation mode, to be explained in section 

0). This has made them very attractive for biosensing applications [43, 70]. Several 

works have reported the use of acoustic wave devices in a variety of sensing 

applications. Representative examples are compiled in Table 2.2 above. 

 COUPLING TO GASES, SOLIDS AND LIQUIDS 

Thin film BAW resonators can operate in longitudinal or shear mode. In the case of 

wurtzite piezoelectric materials, the mode of operation is determined by the direction 

of the applied electric field relative to the c-axis orientation. 

BAW resonators are typically operated in the longitudinal mode, also referred 

as thickness extensional mode (TEM) [71]. The c-axis orientation of the deposited thin 

films together with the standard BAW configuration best support this mode [41]. 

Longitudinal waves are excited when the electric field is applied parallel to the c-axis.  

 BAW devices can also operate in the thickness shear mode (TSM). TSM waves 

can be excited in BAW devices by applying an electric field perpendicular to the c-

axis of the piezoelectric material. This can be accomplished in two different ways: (1) 

deposition of c-axis inclined piezoelectric layers [70, 72, 73] or (2) lateral field 

excitation (LFE) [71, 74].  

Several different techniques have been proposed to deposit the tilted layers and 

promising results have been reported in the literature [73, 75]. However, these 

techniques are confined to use in research laboratories, as the controlled directional 

deposition process required to create uniformly tilted c-axis grains is not possible when 

using industrial main-stream manufacturing [76].  

The second way of achieving a TSM resonator involves patterning coplanar 

electrodes on the top surface of the piezoelectric material. With this method higher Q 

values can be obtained because the electrodes are not directly in the path of the acoustic 

wave [74].   
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For gaseous and solid phase sensing applications, BAW resonators are mainly 

operated in the longitudinal mode. In gas sensing applications, these devices are 

functionalised with a selective coating, which absorbs the gas or vapour changing the 

mass loading of the resonator, as will be explained in more detail in section 6.2.  

For in-liquid sensing applications, however, a BAW device operating in the 

thickness shear mode is desirable. The longitudinal mode is not appropriate for liquid 

phase applications due to energy dissipation into the liquid which can result in a 

decrease of the quality factor of the resonator of about 95% [77]. Conversely, shear 

waves do not produce compressional motion into liquids [72] resulting in lower 

attenuation of the acoustic energy. Thus, shear mode resonators are preferred for 

biosensing applications.  

  PARTICLE SENSING 

Acoustic wave devices, particularly QCMs and SAWs, have been previously proposed 

for particle detection. The sensitivity of these devices, however, is limited by their 

operating frequency. In an early work by Chuan [78], QCM devices coated with an 

adhesive layer were used within an impactor instrument for the mass measurement of 

particles. Trying to improve the sensitivity of this instrument, Bowers and Chuan 

developed a particulate mass sensing instrument based on a commercial delay line 

SAW device and a SAW resonator [79, 80].  

In a more recent work conducted at the National Taiwan University, two QCM 

devices were used together with two virtual impactors (VIs) for the measurement of 

particle mass and size distribution at a time [64].  Delay line SAW devices were used 

with electrostatic precipitators for PM measurements in the work by Stanley [81].  

Recent work at the University of Warwick focused on the development of a particle 

sensor consisting of two SAW resonators working at a frequency of 262 MHz and 

associated to interface circuitry for the detection of micro sized particles [63, 82], 

finding a relationship between particle size and mass sensitivity.  

Researchers at the University of California, USA worked on the development 

of a particulate matter monitor based on a thin film bulk acoustic resonator (FBAR) as 

the mass sensitive element [83].  They proposed the use of thermophoresis for the 
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deposition of the particles onto the FBAR device and used a thermofluidic interconnect 

for the air sample flow. Further improvements were made to this first prototype by the 

same research group including the addition of an air-based microfluidic circuit and 

incorporation of a miniature air sampler and VI [84, 85]. A much higher sensitivity 

was observed for these devices compared to the previously mentioned works 

employing QCMs and SAW devices as summarised in Table 2.3. 

Table 2.3 Comparison of mass sensitivities of reported acoustic wave devices for particle 

detection. 

ACOUSTIC 

DEVICE 

RESONANT 

FREQUENCY 
SENSITIVITY 

LIMIT OF 

DETECTION 

TEST  

PARTICLES 
NOTES REF. 

QCM ~ 5MHz 0.288 Hz/ng > 3.47 ng 
Silicon dioxide  

(0.5 -8 µm) 

Coated with thin 

photoresist.  
[86] 

QCM 10 MHz 0.7 Hz/ng 3 ng 
Aerosol 

particles 

Coated with an 

adhesive layer.  
[79, 80] 

QCM ~12 MHz - 
Minimum mass 

detected: 0.83 µg 
Acrylic 

particles 

Device coated 

with hydrogel  
[64] 

SAW  

love wave  
125 MHz 

0.2 

m°m3/s∙µg 

Concentration 

range:  

0-400 µg/m3 

PM2.5, PM10 

generated from 

burning candle 

/soldering iron 

Silica guiding 

layer. Phase shift 

measurements 

[87] 

SAW  

delay line 
158 MHz 266 Hz/ng - 

Aerosol 

particles 
- [79] 

SAW 

resonator 
200 MHz 904 Hz/ng 3 pg 

Monodisperse 

olive oil aerosol 

particles 

Mass sensitivity 

dependant on 

mass location on 

the device. 

[80] 

SAW 

resonator 
262 MHz 275 Hz/ng 0.2 ng 

Gold particles 

diameter 0.75 

µm 

Mass sensitivity 

dependant on 

particle size 

[63] 

FBAR 1.6 GHz 
2.5 Hz per 

µg/m3 

1 pg 

18 µg/m3 

Environmental 

Tabaco smoke 

from cigarette  

Thermophoresis 

used for particle 

deposition.  

[83] 

 VOC SENSING 

VOC sensing with acoustic devices is usually accomplished by coating the device with 

a thin sensitive layer. Several works have been published for the detection of VOCs 

using QCM and SAW based sensor technologies. Extensive reviews of these works 

can be found in the literature [88, 89]. In this section, a brief review regarding the use 

of thin film BAW resonators for VOC detection is presented. Table 2.4 gives 

representative examples of such devices. 
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For their application in air quality monitoring, VOC sensors based on BAW 

resonators should be capable of detecting the maximum safe exposure limits of the 

target vapour (given in Table 1.2). Thus, the sensitivity and limit of detection of these 

sensors are very important factors to consider.  

Thin polymer coatings (of a few hundreds of nanometres) applied to the 

sensing area of the BAW resonators is the most common method to detect gases and 

vapours using FBARs. However, alternative approaches have been proposed such as 

the use of the piezoelectric layer itself as sensitive layer [90].  

Table 2.4 Examples of BAW devices used for VOC detection. 

ACOUSTIC 

DEVICE 

SENSING 

LAYER 

TARGET 

VAPOUR 

SENSITIVITY / 

DETECTION 

LIMIT 
NOTES REF. 

ZnO based 

FBAR 1.7 GHz 
Not disclosed 

Benzene 

Ethanol 

Formaldehyde 

2500 Hz/ppm 

84 Hz/ppm 

5067 Hz/ppm 

The use of a 

microheater for the 

reference oscillator 

is proposed. 

[91] 

ZnO based 

FBAR 1.4 GHz 
- 

Acetone 

Ethanol 

4 ppm LOD 

6ppm LOD 

ZnO thin film of 

the resonator used 

as sensing layer 

[90] 

AlN based  

SMR 8 GHz 
PMMA Acetone 900 m2/kg - [92] 

ZnO based 

SMR 2 GHz 
PVDF 

DMMP Vapour 

(10-50 ppm) 
718 kHz/ppm - [93] 

ZnO based 

SMR 1.44 GHz 
PDMS 

Toluene 

(1000ppm – 

7000ppm) 

7.29 Hz/ppm 

60 ppm LOD 

Low concentration 

of the vapour not 

tested 

[94] 

AlN based 

SMR 2.5 GHz 

20-80 nm 

PMMA 
Acetone 300-700 Hz/ppm 

Different 

sensitivities 

according to 

polymer thickness 

[95] 

 

For acoustic devices to be used in real-time, low cost applications, read-out circuitry 

must be developed. Bulky and expensive instruments (i.e. network analysers) are 

suitable only for laboratory characterisation and require highly qualified operators.  

The next section introduces the electronic circuitry used to drive acoustic resonators 

and measure the response of these devices. 
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2.9 DRIVING CIRCUITRY  

Three main methods can be used for measuring the response of piezoelectric 

resonators, namely amplitude, phase and frequency measurements [48]. In this work, 

a frequency measurement system using an oscillator circuit will be used as it provides 

a simple yet accurate, compact and inexpensive solution for sensing applications [3]. 

An overview of oscillators for this implementation is presented here. 

A basic feedback oscillator is shown in Figure 2.10. It consists of an RF 

amplifier of voltage gain 𝐴(𝑗𝜔) with its output fed back into the input signal in a 

positive feedback loop. The loop gain around the feedback loop is given by 𝐴𝛽, where 

𝛽(𝑗𝜔) is the transfer function describing the feedback network, in this case the acoustic 

resonator, which determines the oscillation frequency. 

 

Figure 2.10 Basic form of feedback oscillator. 

For oscillations to be sustained, the Barkhausen criterion must be met. The criterion 

states the loop gain must equal unity and the phase shift around the loop must be zero 

or a multiple of 360°. In most cases the amplifier provides a 180° phase shift and thus 

the acoustic resonator must provide an additional phase shift of 180° ±𝑛360°, where 

𝑛 is an integer, as stated in equation (2.15). The amplifier gain must provide sufficient 

gain to overcome the insertion losses of the resonator and meet criteria (2.14).   

|𝐴𝛽| = 1  (2.14)  

∠𝐴𝛽 = ±𝑛360°  
 

(2.15)  
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 OSCILLATOR CONFIGURATIONS 

Most widely used crystal oscillators are the Colpitts and Pierce oscillators, depicted in 

Figure 2.11 in a transistor-based implementation. Both oscillators (as well as the Clapp 

oscillator) have similar configurations, with the main difference being the grounding 

location. 

     

 

Figure 2.11 Common implementations of (a) Colpitts and (b) Pierce crystal oscillator using 

transistors. [96] 

The Colpitts oscillator is a parallel resonant circuit, where the resonator 

behaves as an inductor. Although simple in appearance, its operation is complex and 

careful selection of the components should be made. If non-optimal values are used, 
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parasitics will dominate the oscillating frequency. It offers fair stability up to low 

Megahertz range and very low power consumption [96]. However, due to low 

impedance of the static capacitance of the resonators at high frequencies (~600 MHz), 

sufficient negative resistance is required to maintain oscillation [97, 98]. Operation of 

Colpitts oscillators at high frequencies are rarely reported in the literature due to their 

complex and inflexible design which must be carefully tailored to a specific device.  

 PIERCE OSCILLATOR 

Due to its simplicity, the most desirable and commonly used oscillator 

configuration is the Pierce oscillator [99]. For acoustic resonators operating at high 

frequencies (>500 MHz), the Pierce oscillator configuration (shown in Figure 2.12 for 

implementation with an inverting amplifier) is usually preferred as less parasitic 

effects are introduced to the system [100]. This provides good frequency stability and 

large output at low power level [96] with only a few components.  Furthermore, this 

oscillator configuration can be easily implemented in CMOS technology, for the 

development of a miniature, low power system with the advantage of no inductors 

required (which would increase the overall die size of an IC).    

 

Figure 2.12 Pierce Oscillator topology. 

As opposed to the Colpitts configuration, the Pierce oscillator is a series 

resonant circuit, where the acoustic resonator is resistive. The total phase shift around 
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the loop is 360°. An inverting amplifier provides a 180° phase shift and loop gain to 

sustain oscillation. The acoustic resonator, C1 and C2 form the feedback network 

providing the additional 180° phase shift to meet the Barkhausen criteria. The 

resonator determines the oscillation frequency (near series resonance). Rs is a biasing 

resistor for the inverting amplifier. In this work a transistor-based Pierce type oscillator 

was designed to drive the acoustic resonators. Details on this design are presented in 

Chapter 6. 

 CMOS IMPLEMENTATION 

Electronic circuitry implemented with discrete components has been used to drive 

BAW devices in the research field, where the use of discrete components benefits from 

high design flexibility. [61, 101, 102]. These are transistor-based oscillators 

implemented on a printed circuit board (PCB) using SMD components, to which the 

BAW device is interfaced, usually via wire bonding.  The use of discrete components 

allows rapid deployment, testing and great design flexibility of the circuitry. However, 

discrete circuits are not suitable for low-cost volume manufacturing, they can exhibit 

reliability issues (associated with the soldering and bonding process) and they can have 

a large footprint. 

Compared to these conventional discrete solutions, the implementation of 

BAW driving electronics in CMOS technology not only can improve the oscillator 

performance (and included signal processing circuitry) but can significantly reduce the 

overall die size and manufacturing costs (for mass production). Integration of BAW 

devices with IC’s has allowed the development of miniature, low-power systems that 

are extensively used in the RF communication technologies, and can be used for the 

development of low-cost sensing devices.   

When designing an oscillator circuit, particularly for sensing applications, the 

performance characteristics of the oscillator (i.e. frequency stability) should be 

carefully considered. They can significantly impact the overall performance of the 

sensor system (limit of detection). Frequency stability is commonly measured in terms 

of the oscillator phase noise, which refers to phase fluctuations in the nominal 

oscillator frequency.  



 

Chapter 2. Acoustic Wave Technology   67 

 

 

Phase noise is characterised in the frequency domain and measured as the ratio 

of the output power, 𝑃𝑠, at the oscillator frequency, 𝜔0, to the noise power, 𝑃𝑛, 

considering a unit bandwidth at an offset, ∆𝜔, from the frequency of oscillation [103]. 

Phase noise can be measured from the output spectrum of the oscillator, obtained with 

a spectrum analyser. As an example, Figure 2.13 shows the implementation of a 

CMOS Pierce oscillator, together with the measured output spectrum and phase noise 

analysis as reported by Johnston et al. [104]. Table 2.5 reviews BAW based oscillators 

implemented in CMOS technologies and their performance parameters, as reported in 

the literature.  

 

Figure 2.13 (a) Pierce oscillator implemented in CMOS technology, (b) the output spectrum 

and (c) the phase noise measurement. Adapted from [104].  Oscillator resonance frequency 

at 864.54 MHz and phase noise level of -104 dBc/Hz at an offset of 100 kHz. 

The integrated circuitry (implemented in CMOS technology) must be 

interfaced to the BAW devices. This BAW-CMOS integration can be performed in 

several ways and successful developments have been reported in the literature. In 

section 2.10 the general approaches to integrating CMOS and microelectromechanical 

systems (MEMS) are discussed, which are, in principle, also applicable to BAW 

devices. Section 2.11 reviews the state-of-the-art of integrating BAW devices (i.e. 

FBARs and SMRs) with the CMOS circuitry.  
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Table 2.5 Comparison of BAW based oscillators found in the literature. 

BAW 

RESONATOR 

OSCILLATOR 

TOPOLOGY 

CMOS 

TECHNOLOGY 

OPERATING 

FREQUENCY 

PHASE NOISE 

(dBc/HZ) 
POWER REF 

AlN based 

FBAR 
Colpitts 

0.35 µm 

CMOS 
604 MHz 

-149 at 100 

kHz 
5.3 mW [105] 

AlN based 

FBAR 
Colpitts 

0.35 µm 

BiCMOS 
5.46 GHz 

-121 at 100 

kHz 
- [106] 

AlN based 

FBAR 
Colpitts 90 nm CMOS 6.3 GHz -110 at 1 MHz 475 µW [107] 

AlN based 

FBAR 
Pierce 

0.18 µm 

CMOS 
1.9 GHz 

-120 at 100 

kHz 
300 µW [108] 

AlN based 

FBAR 
Pierce 

0.13 µm 

CMOS 
1.9 GHz 

-120 at 100 

kHz 
89 µW [109] 

AlN based 

FBAR 
Pierce 

0.25 µm 

CMOS 
1.6 GHz -102 at 10 kHz 4 mW [83] 

ZnO based 

SMR 
Pierce 

0.18 µm RF 

CMOS 
864.5 MHz 

-104 at 100 

kHz 
- [110] 

AlN based 

SMR 
Differential 65 nm CMOS 2.5 GHz 

-130 at 100 

kHz 
1.2 mW [111] 

AlN based 

SMR 
Differential 65 nm CMOS 2.11 GHz 

-124 at 100 

kHz 
50 µW [112] 

AlN based 

SMR 
Butler 

Qubic4+ 

BiCMOS 
2 GHz 

-120 at 100 

kHz 
- [113] 

 

2.10 CMOS INTEGRATION OF MEMS 

Interface circuitry for the operation of microelectromechanical systems (MEMS) can 

be realised through integrated circuits (ICs), fabricated in CMOS technologies, as 

discussed in the previous section.  The integration of MEMS and IC components in a 

single chip enables the miniaturisation of sensors, actuators and transducers with the 

advantages of low power consumption, low cost, increased reliability, reduction of 

parasitic effects and improved performance compared to the use of discrete 

components.  

Commercial MEMS products (gyroscopes, accelerometers, pressure sensors, 

microphones, BAW filters, etc.) are usually interfaced with CMOS circuitry and 

packaged together in a single chip. This MEMS-IC integration enables the 

development of a complete sensor system that can be used in more complex electronic 
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modules with applications in a broad range of areas such as healthcare, automotive, 

aerospace, environmental and wireless communications.  

Integration and packaging of MEMS and ICs can be realised following two 

main approaches: (1) hybrid integration and (2) monolithic integration. The selection 

of an integration method can be performed based on general considerations such as 

device complexity, field of application, performance requirements and manufacturing 

costs [114, 115]. These integration methods are detailed below. 

 HYBRID INTEGRATION 

In hybrid integration, MEMS and ICs are manufactured on separate substrates using 

independent fabrication processes. While ICs are fabricated in CMOS foundries, 

MEMS are commonly manufactured with standard microfabrication technologies. 

MEMS and IC dies (either bare or packaged) are mounted together on a common 

substrate (laminate platform, ceramic package), and are interfaced using wire bonding 

or flip chip technologies (other interconnections methods can be used such as quilt 

packaging [116]).  

Hybrid integration can be realised in a 2D (side-by-side) or 3D (stacked) 

arrangement. Two-dimensional hybrid integrated systems (depicted in Figure 2.14a) 

are known as multi-chip modules (MCM). MEMS and ICs are horizontally placed next 

to each other on the carrier substrate and interfaced to one another and to the package. 

If the dies are arranged vertically (in a stacked configuration), a system-in-a-package 

(SiP) is obtained. This ‘three-dimensional’ arrangement is depicted in Figure 2.14b. 

 

Figure 2.14 Hybrid MEMS-IC integration: (a) multi-chip module (2D integration) and (b) 

system-in-a-package (3D integration) interconnected via wire bonding and flip chip. Figures 

are not to scale. 
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This hybrid integration approach allows high design flexibility (devices can be 

tested, modified or redesigned independently) and rapid development at reasonable 

fabrication costs [115]. However, the need of external interconnections (bond wires, 

solder bumps) adds parasitic capacitance and resistance that can attenuate the signals 

and deteriorate the performance of the system [117]. In terms of physical size, the 

footprint and thickness of the system can significantly increase (as two separate 

devices must be placed side by size or stacked). Figure 2.15 shows an example of a 

hybrid system of two BAW devices (developed in this work) interfaced to an ASIC 

chip. Devices are placed side-by-side in a LTCC package (6 mm × 6mm) and 

interconnected via wire bonding. 

 

Figure 2.15 Photograph of an example hybrid SMR based sensor system working in dual 

configuration, showing ASIC chip and two SMR devices, developed in this work. Overall 

dimensions are 6 mm × 6 mm.  

 MONOLITHIC INTEGRATION 

MEMS are monolithically integrated with the CMOS circuitry when both MEMS and 

ICs are fabricated on a single substrate. These systems are commonly referred as 

system-on-chip (SoC). This integration approach allows further miniaturisation (small 

footprint and low thickness) and improved performance, compared to hybrid systems.  

However, systems are more complex and only allow for low flexibility in the design 

procedure. In terms of performance, monolithic systems have the advantages of 

increased reliability and reduced parasitic capacitance (no external interconnections 

are required), power consumption and noise levels [117]. Furthermore, packaging of 

the systems is less complex (it can be performed at wafer level) yielding to reduced 

fabrication, packaging and testing costs [115].  
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Monolithic integration can be realised in three different ways according to the 

sequence in which the CMOS circuity and the MEMS structures are processed. These 

approaches are referred as: (a) pre-CMOS (MEMS process takes place before the 

CMOS process, (b) inter-CMOS (MEMS are processed during the CMOS process) 

and (c) post-CMOS (MEMS processing after the CMOS process). These approaches 

are discussed in more detail below. As an example, Figure 2.16 depicts the post-CMOS 

monolithic integration of a BAW device above the IC electronics. 

 

Figure 2.16 Monolithic MEMS-IC integration: A cross-section of a BAW device integrated 

above the CMOS circuitry. Adapted from [118].  

2.10.2.1 PRE-CMOS INTEGRATION  

In the monolithic integration of MEMS and CMOS circuitry using a pre-CMOS 

process (also termed ‘MEMS-first’), MEMS structures are fabricated prior to the 

CMOS process. In this approach, no tight constraints exist in terms of thermal budget 

(amount of thermal energy transferred to the wafer, related to the high temperatures 

processes used and their duration). For the processing of MEMS (very high thermal 

budgets up to 1100 °C are possible). Using such high temperature material processes 

allows for the fabrication of high performance MEMS [115] (e.g. stress release of thick 

polysilicon layers can be achieved at high temperatures). However, CMOS foundries 

do not accept pre-processed wafers, unless they meet strict entry-requirements (i.e. 

high surface planarity and contamination-free), which require careful wafer 

preparation. Thus, pre-CMOS integration is usually only performed at a commercial 

level, where the process can be completed in-house provided IC processing capabilities 

are available.  
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A representative example of a pre-CMOS integration process is the M3EMS 

technology developed by Sandia National Laboratories (Albuquerque, USA) [119]. In 

this process, a polysilicon microstructure is manufactured in a trench (formed by wet 

etching into the bulk silicon) with a deposited nitride layer at the bottom. Polysilicon 

studs are also formed to provide contact between the CMOS metal layers and the 

MEMS device. After forming the polysilicon microstructures, the trench is refilled 

with oxide and planarized using chemical-mechanical polishing (CMP). Subsequently, 

the structure is annealed to release stress and sealed with a nitride membrane. The 

wafer is then ready to use within a standard CMOS process. MEMS structures have 

been successfully fabricated using this M3EMS process, e.g. the inertial sensors 

reported by Allen et al. [120] and the resonant accelerometer by Seshia et al. [121].  

2.10.2.2 INTER-CMOS INTEGRATION 

In the inter-CMOS approach, also referred as interleaved, intra or intermediate-CMOS, 

the CMOS processing steps are interrupted to perform additional deposition of 

polysilicon layers or micromachining process, to form the MEMS structures. Thus, the 

polysilicon structures are formed before the CMOS back-end processing (formation of 

interconnect metallization). In this way, the deposition of polysilicon and annealing 

are compatible with the process (with the annealing process limited up to 900 °C so 

that doping profiles of the front-end CMOS process are not affected) [119].  

Examples of available commercial devices fabricated with this inter-CMOS 

approach are capacitive pressure sensors by Infineon Technologies (Neubiberg, 

Germany) and accelerometers by Analog Devices (Norwood, USA) [114]. Scheiter et 

al. described the fabrication of a pressure sensor, fabricated in a BiCMOS process 

technology following these inter-CMOS processing steps [122].   

Inter-CMOS monolithic integration requires access to a custom CMOS 

production line, where both the fabrication and micromachining can be performed. 

This requirement is commonly not available in CMOS foundries, that are unlikely to 

admit back into their line pre-processed wafers with post-micromachining steps. This, 

together with the high associated costs, limits the utility of this processing technology 

[115, 119]. 
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2.10.2.3 POST-CMOS INTEGRATION 

Post-CMOS integration of MEMS (also called MEMS-last processing) refers to the 

approach in which the MEMS structures are fabricated only after the CMOS process 

has been completed. Post-CMOS integration offers high flexibility, short development 

cycles and low cost processing [114, 115]. In this approach, CMOS circuitry can be 

fabricated at any CMOS foundry and MEMS structures subsequently manufactured at 

dedicated MEMS facilities (standard CMOS production lines and MEMS 

infrastructure are used, with no special requirements, as opposed to the pre-CMOS and 

inter-CMOS integration).  

Fabrication processes following the CMOS process steps are limited by the 

overall thermal budget, which is determined by the metallization layer and the doping 

profiles of transistors (the maximum process temperature for standard Al metallization 

process is ~450 °C [119]), also limiting the materials of choice for the MEMS 

structures [115]. Deposition processes such as PECVD, sputtering, electroplating and 

wet/dry bulk and surface micromachining can be used during post-CMOS integration. 

However, high temperature deposition processes (e.g. LPCVD deposition of 

polysilicon) and annealing, which require temperatures above 600 °C, are 

incompatible [119]. Careful design of the post-CMOS integration of MEMS is 

required (considering the thermal budget) to avoid damage to the CMOS circuitry 

(affecting the doping profiles).  

Post-CMOS integration can be realised following either an additive technique 

(MEMS are manufactured on top of the CMOS substrate) or subtractive method 

(MEMS are formed by machining the CMOS substrate). The former technique is more 

elaborate as it usually requires a greater number of processing steps to build the MEMS 

structure. These two methods are described below. 

Post-CMOS integration, where the MEMS structures are fabricated on top of 

the CMOS substrate, is accomplished by adding and patterning layers of materials on 

top of the finished CMOS wafer, after which surface micromachining techniques are 

used to release the MEMS structure. In this approach, a good surface planarity of the 

CMOS substrate and good electrical and mechanical contact are required [119]. 

Furthermore, MEMS materials and sacrificial layer must be compatible with the 
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CMOS substrate, in terms of thermal budget and etching selectivity. This approach 

allows integration on the MEMS structure on top of the CMOS circuitry, which 

reduces the die area and allows further miniaturisation of the system. 

Subtractive post-CMOS integration is accomplished by means of bulk 

micromachining of the CMOS substrate to create a cavity. This approach is widely 

used for the fabrication of piezo resistive pressure sensors, membranes and cantilevers. 

The silicon substrate is commonly back-etched by anisotropic wet etching with KOH 

(time controlled or using an etch stop layer). Dry etching methods and front-side 

etching can also be used in this approach. A review of several approaches to realise 

this subtractive technique is presented by Fischer et al. [115] and examples of CMOS-

MEMS devices fabricated using these approaches are summarised by Hongwei Qu 

[114].  

In summary, there is a need of miniature devices capable of being 

manufactured at very low cost in volume production. The integration of MEMS with 

integrated circuits, (fabricated in CMOS technology) allows miniaturisation of 

microsystems with improved performance, which can be used in more complex 

electronic systems. Several approaches can be implemented for the integration of 

MEMS and CMOS circuitry, with two main categories: hybrid and monolithic 

integration. Selection of a MEMS-IC integration approach is driven by performance 

requirements and costs.  

Hybrid solutions consist of MEMS and IC’s fabricated in separate substrates 

and interfaced via wire bonding or flip chip technology. This method allows for high 

design flexibility at the expense of larger footprints and deterioration of the system 

performance (due to the use of external interconnections). On the other hand, 

monolithic integration eliminates the need of external interconnections (both MEMS 

and ICs are fabricated in the same substrate), thus devices with improved performance 

and miniature size can be manufactured at low cost. This integration approach, 

however, involves complex design with low flexibility.   
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2.11 CMOS-BAW INTEGRATION 

Advances in wireless communication technologies and the growing demand for 

personal devices (mobile phones, smart wearables) have generated a need for low 

power, low-cost and miniature components suitable to be used together with integrated 

circuits (ICs).  

BAW devices emerged as alternative of SAW and ceramic devices in the 

communications area, where they are extensively used as antenna filters in mobile 

phones. The limitations for the IC integration of ceramic and SAW filters (size, 

packaging, costs) lead to the development of BAW filters. Their small footprint (<1 

mm2) and compatibility with silicon technologies allow for IC integration and 

miniaturisation of RF modules, offering high performance at reduced size. The 

potential use of this technology for sensing applications was soon recognised, making 

the development of BAW devices and their integration with CMOS circuitry of great 

interest in the research and commercial community. 

Thin film BAW devices are, however, especially susceptible to noise due to 

their high operating frequencies. Short interconnections between the BAW device and 

the driving circuitry can considerably reduce parasitics and noise, allowing improved 

functionality of the system. Hybrid integration of thin film BAW devices has helped 

minimising the parasitic effects (associated with long wires/tracks used in discrete 

implementations) and significantly reducing the overall size of the system (as devices 

are placed in close proximity to the IC). 

Several approaches have been proposed to integrate thin film BAW devices 

with the active CMOS circuitry in a hybrid configuration.  Augustiniak et al. reported 

on a 0.13 µm CMOS chip interfaced to a SMR substrate via flip chip bonding 

(implementation shown in Figure 2.17a) for use in gravimetric liquid applications 

[123]. Similar to this approach, Vanhelmont et al. made use of flip chip technology to 

attach both the CMOS chip (fabricated in a BiCMOS process) and the SMR device 

onto a common carrier substrate (with overall size 2.8 mm ×2 mm) [113].  
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Figure 2.17  Hybrid BAW-CMOS implementations (a) using flip chip technology [123] and 

(b) wire bonding interconnections [84]. 

Other approaches used wire bonding to interconnect the CMOS circuitry and 

the BAW device. As an example, Elbrecht et al. reported on a hybrid BAW based RF 

filter packaged together with the active circuitry in a low-cost laminate package with 

overall dimensions of 3 mm × 3 mm [124]. Similarly, Chee et al. interfaced a FBAR 

device (1.9 GHz) to the CMOS die, onto a test board using two short bond wires to 

interconnect them (entire system was 1.7 mm × 0.8 mm in size).  Figure 2.17b shows 

the hybrid integrated system developed by Paprotny et al. [84]. In this implementation, 

a 0.25 µm CMOS process was used for the IC, which was interfaced to a FBAR device 

via wire bonding. 

Even though hybrid BAW systems demonstrated improved performance at 

reduced size (compared to discrete implementations), the need of external 

interconnections to interface two separate substrates make this implementation 

unsuitable for low cost production. Other disadvantages include the increased overall 

size of the system (dies are placed side by side) and additional parasitic inductance 

introduced by the external interconnections.  

Further attempts to miniaturize these systems while maintaining a low 

production cost without compromising performance, has led to the monolithic 

integration of BAW devices and ICs.  Fabrication processes used in the manufacture 

of BAW devices (e.g. magnetron sputtering) do not require any high temperature 

process, making them compatible with CMOS processes. Thus, BAW devices can be 

realised in conventional CMOS foundries, provided the materials used (metals for the 

electrodes) are also compatible with the CMOS substrate, in terms of thermal budgets 

[41, 124]. Although the possibility to monolithically integrate thin film BAW devices 
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was identified at an early stage of the development of this technology, there are very 

few reports of this being implemented in the literature.  

The state-of-the-art monolithic integration of thin film BAW devices is realised 

following a post-CMOS processing approach. Both electronic circuitry and BAW 

device are fabricated on a single substrate. The integrated circuitry is manufactured 

first in a standard CMOS process, which is followed by the fabrication of the BAW 

device on the same substrate. CMOS integration of both FBAR and SMR devices have 

been proposed and demonstrated in the literature [110, 118, 124-130]. Two different 

approaches have been mainly implemented for BAW monolithic integration: (1) the 

IC and BAW devices are integrated side-by-side in the same substrate or (2) the BAW 

device is fabricated above the IC substrate. These two integration alternatives are 

depicted in Figure 2.18 for both FBAR and SMR devices.  

 

Figure 2.18 Approaches of CMOS Integration of BAW devices: in (a) and (c) FBAR and 

SMR devices are fabricated in a post-CMOS process aside the CMOS circuitry. FBAR and 

SMR integration above the IC is depicted in (b) and (d). This implementation is also realised 

in a post-CMOS process [110, 118, 124-130].  

The following points must be considered for the integration of BAW devices 

with the CMOS circuitry on the same substrate [131]: (1) A higher number of 

lithography steps are required for the fabrication of the integrated system (processing 

steps for the IC plus those for the BAW); (2) the manufacturing yield of the joint 
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process is lower compared to the yield obtained from separate processes; (3) the 

integration may result in increased manufacturing costs if the BAW device (with a 

small footprint) is combined with a large IC; and (4) as with any monolithically 

integrated system, the design flexibility is reduced. 

An example of the implementation shown in Figure 2.18a is the integrated 

FBAR filter based on an on-off keying receiver reported by Fang et al. [129], where a 

bulk micromachining process was used to release the FBAR structure (dry etching of 

the Si substrate). Alternatively, the use of surface micromachining has also been 

proposed by Dunn et al. [126]. Compared to this approach, the monolithic integration 

of a FBAR device above the IC (first implemented by Dubois et al. [118], and depicted 

in Figure 2.18b) allows further miniaturisation (and thus further cost reduction) of the 

integrated system.  

To realise the configuration shown in Figure 2.18b, an air gap, to provide 

isolation to the resonator structure, must be created by surface micromachining. Air 

gap FBARs, however, are fragile and should be handled with care during dicing and 

packaging.  On the positive side, interconnecting the FBAR and the IC is easier, 

compared to the configuration in Figure 2.18d, as the distance between the top 

electrode and the top metal of the IC is considerably reduced.  

As discussed in section 2.7.2, SMR devices exhibit better power handling 

capabilities, lower TCFs and are mechanically more robust compared to FBAR 

devices. This has driven the interest to develop monolithically integrated SMR 

devices. Elbrecht et al. [124] first described a process that combined a RF bipolar 

process with the fabrication of a SMR device, as depicted in Figure 2.18c. In this 

process, an additional silicon nitride layer is embedded within the oxide layers of the 

CMOS process. This nitride layer acts as an etch stop during the formation of a cavity 

(etching of the oxide) where the acoustic mirror is embedded. In this way, the face 

level of the FBAR top electrode and the CMOS top layer is minimised but at the 

expense of increased die area. 

Another approach for the CMOS-SMR integration has been implemented and 

used in mass sensing applications by Tukkiniemi et al.[130] and Johnston et al. [132], 

depicted in Figure 2.18d. The SMR device is built above the CMOS substrate in a post-
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CMOS process and interconnections are created to the top metal layer of the CMOS 

process. This configuration offers the advantage of reduced die size, but significantly 

increases the thickness of the device and distance between the SMR-IC 

interconnections. Furthermore, post-fabrication of the SMR device requires the 

deposition of several layers and use of a large number of photolithography masks (5 

to 10), which increases the manufacturing time and cost, and can considerably decrease 

the manufacturing yield.  

2.12 CONCLUSIONS 

Acoustic wave devices, working on the principle of piezoelectricity, have been 

extensively used in the telecommunications industry for several decades. In the sensing 

area, they have matured from a research field to a strong commercial market (i.e. QCM 

and SAW devices). A variety of piezoelectric materials can be used to realise acoustic 

wave devices (e.g. quartz, lithium niobate, aluminium nitride, polyvinylidene 

fluoride). These materials exhibit different properties (e.g. propagation velocity, 

temperature dependence) and according to their cut and orientation, different modes 

of acoustic waves can be generated (e.g. longitudinal, transverse, Rayleigh). 

Transverse (shear) waves are preferred for in-liquid applications as they do not 

propagate in liquids and only experience minimum attenuation, compared to 

longitudinal waves. For gas and solid phase applications, devices working in the 

longitudinal mode are suitable. 

The sensing mechanism of these devices is based on the change in the 

properties of the propagating waves (amplitude, phase, velocity) and their sensing 

applications are extensive (e.g. pressure, temperature, humidity, mass and biosensors). 

In particular, applications of acoustic wave devices for particle sensing and VOC 

detection were reviewed in detail. QCM and SAW devices have been reported 

extensively for such applications. However, their operating frequency is limited (up to 

30 MHz for QCMs and to 2 GHz for SAWs), thus limiting their sensitivity.  

FBARs and SMRs have several advantages compared to SAWs and QCMs 

(smaller footprint, higher operation frequencies in the range of 2-5 GHz, higher 

sensitivity, better power handling, higher Q values, better TCFs) but in terms of 
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manufacturing, more fabrication steps and micromachining are required. Several 

reports on the use of these devices for VOC detection were reviewed but only a limited 

number of publications are available on their use in particle sensing. 

Although the frequency response of acoustic devices can be measured using 

specialist equipment (i.e. network analyser), these instruments are only suitable for 

laboratory testing as they are bulky, expensive and require highly trained personnel. 

For use in a portable, low-cost and low power air quality monitor, electronic circuitry 

is required to drive the acoustic devices and measure the sensor response. Driving the 

acoustic devices with oscillator circuits (e.g. Colpitts and Pierce oscillator topologies) 

provide an inexpensive and accurate solution for sensing applications. However, 

careful design of the circuitry is required to provide good frequency stability and 

reduce parasitic effects.  

Discrete driving circuitry is not suitable for low-cost, mass production. The 

implementation of such circuitry in CMOS technology allows for low-cost, volume 

manufacturing, reduced chip size and improved performance. The CMOS 

compatibility of FBARs and SMRs makes it possible to monolithically integrate these 

devices. Approaches to integrate these devices with the CMOS circuitry in the same 

substrate have been demonstrated, based on a post-CMOS integration approach.  

  Due to their mechanical robustness, increased power handling and higher 

design flexibility, monolithic integration of SMR devices has been given special 

interest in both telecommunications and sensing research areas.  Current state-of-the-

art SMR-CMOS integration requires the deposition and patterning of a number of 

layers (a minimum of four) for the reflector stack, which significantly increases the 

distance between the SMR-IC interconnections, and increases the fabrication time and 

associated costs.   

 From the background research on acoustic devices, the high frequency (high 

sensitive) BAW devices are suitable for sensing VOC at low concentrations and 

detection of fine particles. Specifically, in this work SMR devices will be utilised, as 

they offer the best performance (in terms of Q-factor, power handling and TCF) and 

are mechanically robust. In this work, an SMR device for air quality monitoring 

applications will be fabricated. The next chapter discusses the first steps in the design 
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process of the SMR design, including the design parameters and modelling techniques. 

Finite element models are developed and simulations results presented, also taking into 

account temperature effects on the device.  
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DESIGN AND MODELLING OF 

SOLIDLY MOUNTED 

RESONATORS 

3.1 INTRODUCTION 

In Chapter 2, the theoretical background of acoustic wave devices and their use in 

sensor applications were introduced. This chapter details the complete development 

process of a SMR for air quality monitoring, starting from the basic design 

considerations and the different modelling techniques used for BAW resonator design. 

Analytical and finite element models are implemented to aid the design process. 

Simulation results are presented and used to evaluate the performance of the acoustic 

mirror, the frequency response of the devices and their temperature dependency of 

frequency.  

 

Preliminary layout designs of the devices are described. These devices will be 

used as the initial platform, towards developing a CMOS based SMR. Thus, the SMRs 

were designed considering CMOS compatibility.  
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 PIEZOELECTRIC THIN FILMS 

The sensitivity of acoustic wave based sensors is directly proportional to the frequency 

of operation of the devices. Therefore, acoustic devices operating in the GHz range are 

desirable for use in sensing applications. The maximum operating frequency of QCMs 

is limited by the mechanically achievable minimum thickness of the quartz 

piezoelectric crystal [1], and the maximum resonant frequency of SAWs is limited by 

the manufacturability of the IDTs. Thanks to the use of thin film technology 

(deposition of thin films of materials <100 µm), devices working at higher resonant 

frequencies (in the GHz range) can be fabricated (FBAR and SMR devices), and thus 

highly sensitive sensors based on these devices can be developed.   

Widely used piezoelectric materials for the development of thin film BAW 

resonators are aluminium nitride (AlN), zinc oxide (ZnO) and lead zirconium titanate 

(PZT) with a hexagonal wurtzite crystal structure and well known thin film deposition 

processes (e.g. magnetron sputtering) [2-5].  The relevant physical properties of these 

piezoelectric materials are given in Table 3.1. Although not used in thin film devices, 

and not a CMOS compatible material, properties of quartz are also given for 

comparison.  

Table 3.1 Properties of commonly used piezoelectric materials for BAW devices [6-15]. 

MATERIAL AlN  ZnO  PZT 
Quartz 

(ST cut) 

Longitudinal acoustic 

velocity (m/s) 
10400 6350 5400 3158 

Piezoelectric coupling 

coefficient (%) 
6.5 8.5 25 0.16 

Temperature coefficient 

of frequency (ppm/°C) 
-25 -60 - 0 

Dielectric constant  10.4 10.9 350 4.4 

Density (kg/m3) 3270 5680 7550 2650 

Attenuation at 1 GHz 

(dB/µS) ~5 8.3 
400-

2100 
3.1 
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PZT is a very good candidate for thin film BAW devices, with a high coupling 

coefficient and a high dielectric constant. However, it exhibits high acoustic 

attenuation at frequencies above 1 GHz, which leads to high insertion losses. Thus, it 

is commonly preferred only for low frequency, broadband applications [10, 16].  

ZnO exhibits a higher piezoelectric coupling coefficient (+24%) compared to 

AlN. However, its temperature dependency of frequency is a factor of 2.4 greater. 

Compared to AlN, thinner ZnO films are required for a given frequency due to its 

lower acoustic velocity. In terms of manufacturability, ZnO is CMOS compatible in 

terms of thermal budget and can be used in a post-CMOS process. However, ZnO is 

not compatible within CMOS facilities as Zn decreases minority carrier lifetimes in 

silicon. Thus, ZnO based BAW devices are unlikely to transfer into high volume 

production or on-chip integration [17, 18]. Furthermore, ZnO is chemically not very 

stable, which can cause reliability problems in humid environments [19].  

Even though the electromechanical coupling coefficient of ZnO is slightly 

higher than that of AlN, the high electrical resistivity, low density, lower temperature 

coefficient of frequency (TCF), high thermal conductivity and its compatibility with 

standard integrated circuits fabrication technologies makes AlN more commonly 

preferred over ZnO [20]. AlN provides the best compromise between performance and 

manufacturability [19]. Indeed, AlN is used in most commercially available BAW 

devices operating in the GHz range [20].   

 Regardless of the piezoelectric material used, the performance of a device is 

directly affected by the quality of the films deposited (e.g. uniformity). High quality 

piezoelectric films are desired in order to obtain BAW resonators with high quality 

factors [16]. Poorly grown films with high density grains and impurities will scatter 

the acoustic waves [21]. The deposition of high quality piezoelectric thin films for 

their application in BAW devices is a wide research field on its own. Several studies 

have been carried out to investigate these deposition techniques [6, 22, 23]. The 

deposition of AlN and ZnO thin films by sputtering have been demonstrated to provide 

the performance required for high frequency applications [24, 25].   
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 ACOUSTIC MIRROR  

The quality factor of BAW resonators not only depends on the quality of the 

piezoelectric layers but also on the effective confinement of the acoustic energy within 

the resonator [16]. In SMR devices, acoustic isolation to the substrate is achieved by 

means of the so-called acoustic mirror, also commonly referred as reflector stack or 

Bragg reflector due to its analogy with optics.  

 The acoustic mirror is formed by alternating layers of low and high acoustic 

impedance materials with thicknesses equal to quarter-wavelength (λ/4) of the 

fundamental frequency. This configuration was first proposed by Newell [26]. The 

impedance mismatching between these layers causes a large portion of the acoustic 

energy to be reflected at each interface of the stack thus preventing energy leakage to 

the substrate as depicted in Figure 3.1. 

 

Figure 3.1 Structure of the acoustic mirror and stress field distribution in the SMR. 

The effective confinement of the acoustic energy mainly depends on the 

impedance ratio mismatch of the materials and the number of layers used. The larger 

the impedance ratio, the better the performance of the reflector. Well-designed 

acoustic mirrors are capable of confining practically all the energy, achieving a 

reflectivity of at least 99.98% [19]. Depending on the materials used, maximum 
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reflectivity can be achieved with a total of only 4 layers, as in the case of W/SiO2 

(impedance ratio of ~8). An acoustic mirror formed by Al/SiO2 (impedance ratio of 

~1.3), would require >10 layers to achieve a good reflectivity.  

Common material combinations used for the reflector stack in SMR devices 

are W/SiO2 [27] and Mo/SiO2 [28, 29] due to their high acoustic impedance ratio of 8 

and 5, respectively. Other material combinations such as ZnO/Pt [30] have been 

proposed, which make use of the same piezoelectric material to form the mirror, thus 

simplifying the fabrication process. A detailed discussion on the design and selection 

of materials for the acoustic mirror in this work is presented in section 3.3.2. 

The most common acoustic mirror configuration uses a low acoustic 

impedance material for the top layer of the reflector stack with the piezoelectric film 

thickness at half-wavelength (λ/2). This configuration not only has shown larger Q 

values and coupling coefficients [31] but also helps to temperature-compensate the 

BAW device, if materials with positive temperature coefficients are used for the top 

layer such as SiO2 [32]. Temperature compensation of SMR devices is further 

discussed in section 3.1.4. 

The implementation of fully insulating and fully conductive acoustic mirrors 

has been proposed [33-36]. Fully conductive reflectors have shown improved 

performance thanks to the reduced Ohmic losses [37]. On the other hand, fully 

dielectric reflectors can be useful in filter applications to avoid crosstalk between 

devices in the same substrate [38] and reduce parasitics between the electrodes and the 

upper metal layer [39]. However, unlike fully insulating structures, reflector stacks 

including metal layers have better power handling capabilities due to the increased 

heat conductivity through the reflector [17, 37].  

 ELECTRODES  

Materials used for the electrodes in SMRs have an effect in the performance 

characteristics of the device. By using electrode materials with high acoustic 

impedance, high effective coupling coefficients can be obtained. The larger the 

impedance mismatch between the electrode and the piezoelectric materials, the better 



 

Chapter 3. Design and Modelling of Solidly Mounted Resonators 102 

 

 

the acoustic energy is confined in the resonator [21, 40]. However, other properties 

such as density and electrical conductivity need to be considered. 

The electrical resistivity of thin metal films (<200 nm) of high acoustic 

impedance materials can be up to two times higher than the corresponding bulk 

resistivities [17]. Metals such as aluminium and gold do not experience this effect, 

with comparable resistivity values in thin film and bulk forms. Increased resistivity 

lead to electrical losses and degradation of the Q factor in SMRs [21, 41]. Thus, metals 

with low resistivity are preferred to reduce the resistive losses.  

The use of thick electrodes and materials of high conductivity can minimise 

the series electrical loss and improve the Q factor [20]. However, there is a 

compromise between the electrode thickness and mechanical losses (i.e. thicker 

electrodes increase the mass load on the resonator). In order to minimise this mass 

loading effect, materials with low densities are required [41, 42]. A trade-off between 

metal density, acoustic impedance and conductivity is required. 

Figure 3.2 shows a comparison between the density, acoustic impedance and 

electrical resistivity values of common metals.  Metals such as platinum (Pt), tungsten 

(W) and iridium (Ir) have advantageous high acoustic impedances, but come with the 

disadvantage of high density. On the other hand, aluminium (Al) offers good 

conductivity and low density, but has low acoustic impedance.   

 

Figure 3.2 Comparison of mechanical and electrical properties of commonly used electrode 

materials in SMR devices. Material data from [43]. 
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Considering the important properties for resonator design, molybdenum (Mo) 

offers a favourable compromise of low density, high acoustic impedance and adequate 

conductivity. Therefore, Mo is a popular choice for electrode material in the literature 

[44, 45]. Other materials for the electrodes such as ruthenium (Ru), carbon nanotubes 

(CNT) and iridium (Ir) have also been investigated [46, 47].  

The material used for the bottom electrode plays an important role in the 

quality of the piezoelectric layer. The bottom electrode acts as a seeding layer for the 

piezoelectric material, where its surface roughness influences the growth of high 

quality piezoelectric film. Materials such as Ir and Mo have been reported to produce 

high quality AlN piezoelectric films [48, 49].  

The geometry and surface area of the electrodes do not affect the resonant 

frequency of the device [50]. However, the total surface of the active area (overlap of 

top and bottom electrodes) can directly impact the attenuation of the device. An 

increase in the surface area of the electrode results in an increase of S-parameter values 

[10, 51]. Furthermore, the use of certain geometries of the electrodes (e.g. non-parallel 

side edges) have been proposed for the suppression of spurious lateral modes [52, 53].  

 TEMPERATURE COMPENSATION 

Temperature dependence of the resonant frequency in SMRs is attributed to the change 

with temperature of the mechanical and electrical properties of the materials, in 

particular to the thermal variations of the elastic constants which are directly related 

to a change in acoustic velocity and the resulting change in resonant frequency.  

Unlike ST-cut quartz substrates frequently used in SAW devices (with a TCF 

of 0 ppm/°C), the piezoelectric thin films commonly used in BAW resonators (AlN 

and ZnO), have negative and relatively high TCFs as shown in Table 3.1 (p. 98).  

Compensation of the temperature variations in SMRs can be achieved by 

adding a layer of a positive TCF material such as SiO2 close to the piezolayer [32]. 

Several ways of implementing these composite configurations have been proposed and 

are used in temperature compensated SMRs [32, 54, 55]. However, these methods can 
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affect the performance of the devices, degrading their electromechanical coupling 

coefficient and Q factor [56].  

The influence of the entire SMR structure in the total TCF of the device has 

been also investigated. The electrodes and the two uppermost layers of the reflectors 

have been found to have the most significant effect and an adjustment to the thickness 

of these two layers can be done in order to achieve a temperature compensated device 

with better performance characteristics [57].  

In the use of acoustic wave devices for sensing applications, a common method 

to supress the temperature effects (and other common mode interferences such as 

humidity and pressure) is the use of a dual mode configuration, where two identical 

devices are used, one of them acting as the sensing channel and the other as a reference 

device [58]. This method will be employed in this work for the development of SMR 

based sensors.  

3.2 MODELLING OF SOLIDLY MOUNTED RESONATORS 

 ONE-DIMENSIONAL MASON MODEL 

The Mason electromechanical equivalent circuit for piezoelectric crystals [59] is 

commonly used for the analysis of piezoelectric resonators in thickness mode [29, 36, 

60, 61]. The piezoelectric layer is represented as a three-port network with one electric 

port and two mechanical ports. An ideal transformer is used to take into account the 

electro-acoustic interaction. This is a one-dimensional analytical model, which 

together with the transmission line theory can be employed to model BAW devices.  

Figure 3.3 shows the equivalent circuit representation of an SMR device based 

on the Mason model. The piezoelectric film is a three-port component while all other 

material layers of the SMR structure (acoustic mirror layers and electrodes) are 

represented as cascaded two-port networks. At one end (left), the surface of the top 

electrode in contact with air is modelled as a mechanical short while the reflector stack 

(right) is terminated with the impedance of the substrate.   
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Figure 3.3 Equivalent circuit representation of the Solidly Mounted Resonator according to 

the Mason model. 

The parameters of the Mason equivalent model shown in Figure 3.3 are defined 

as follows: 

𝑍𝑇 = 𝑗𝑍𝐿   tan (𝜃/2) (3.1)  

𝑍𝑆 = 
−𝑗𝑍𝐿

sin𝜃
 (3.2)  

𝐶𝑜 = 
𝜀33𝐴

𝑑𝑝
 (3.3)  

ℎ =  
𝑒33

𝜀33
 (3.4)  

 

𝑍𝑇 and 𝑍𝑠 are given in terms of the mechanical impedance 𝑍𝐿 = 𝐴𝜌𝑣, where 𝐴 is the 

active area of the SMR, 𝜌 is the density of the material (for each layer) and 𝑣 is the 

acoustic velocity of the material. 𝜃 = 𝑘𝑑 is the total phase across the line section. For 

each layer of thickness 𝑑, the corresponding propagation coefficient 𝑘 is defined as 

𝑘 = 𝜔/𝑣, where 𝜔 is the angular frequency. 𝐶𝑜 is the parallel capacitance given by 

the relationship between the permittivity of the piezoelectric material, 𝜀33, the 

thickness of the piezoelectric layer, 𝑑𝑝, and the active area, A. ℎ is a constant given by 

the ratio between piezoelectric strain constant, 𝑒33, and the permittivity.  

 The impedance 𝑍𝑖𝑛 at the electrical port has been derived by Lakin [62] and 

can be expressed as: 
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𝑍𝑖𝑛 = 
1

𝑗𝜔𝐶𝑜
[1 − 𝐾2

tan𝜙

𝜙
∙

(𝑧𝑏 + 𝑧𝑡) cos2 𝜙 + 𝑗 sin2𝜙

(𝑧𝑏 + 𝑧𝑡) cos 2𝜙 + 𝑗(𝑧𝑏𝑧𝑡 + 1) sin 2𝜙
] (3.5)  

 

where 𝜙 = (𝑘𝑑𝑝)/2 is the half phase across the piezoelectric layer. 𝑧𝑏 and 𝑧𝑡 are the 

acoustic impedances at the boundaries of the piezoelectric layer (𝑍𝑏 and  𝑍𝑡 as shown 

in Figure 3.3), normalised to the acoustic impedance of the piezolayer (𝑍𝑝). 𝐾2 is the 

piezoelectric coupling coefficient given by: 

𝐾2 =

𝑒33
2

𝜀33𝑐33

1 +
𝑐33
𝜀33

 (3.6)  

where 𝑐33 is the elastic constant of the piezoelectric material. 

The acoustic impedances  𝑍𝑏 and  𝑍𝑡 at the boundaries (bottom and top) of the 

piezolayer can be found by using transmission line theory.  Each of these layers is 

uniquely defined and the ABCD parameters of the resulting two-port networks are 

specified by a 2×2 transfer matrix as shown below: 

[
𝐴 𝐵
𝐶 𝐷

] =  

[
 
 
 
 1 +

𝑍𝑇

𝑍𝑆
   2𝑍𝑇 +

𝑍𝑇
2

𝑍𝑆

1

𝑍𝑆
1 +

𝑍𝑇

𝑍𝑆 ]
 
 
 
 

 (3.7)  

where 𝑍𝑇 and 𝑍𝑆 are defined in equations (3.1) and (3.2). This allows for a cascaded 

network by multiplying each of the matrices of the boundary layers [63]. 

 At the top electrode interface in contact with air, the acoustic impedance is 

close to zero. In the case of the top electrode being formed by only one metal layer, 

the impedance at the top boundary can be given by:  

𝑍𝑇 = 𝑗𝑍𝑇𝐸 tan 𝜃 (3.8)  

where 𝑍𝑇𝐸 is the acoustic impedance of the top electrode material. 

 The acoustic impedance of the bottom boundary can be used to calculate the 

transmissivity of the acoustic mirror as follows [64]:    
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𝑇(𝑑𝐵) = 10 log(1 − |𝑅|2) (3.9)  

where 𝑅 is the reflectivity of the acoustic mirror given by: 

R = 
𝑍𝑝 − 𝑍𝑏

𝑍𝑝 + 𝑍𝑏
 (3.10)  

 

The quality factor of the reflector stack can be described in terms of the 

transmittance by considering the energy transmitted through the reflector as lost, in 

this way the Q-factor of the acoustic mirror can be given as [65]:  

𝑄𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 = 
2𝜋

𝑇
 (3.11)  

 

In order to estimate the resonant frequency of the SMR devices as well as the 

performance of the reflector stack for the longitudinal waves, equations (3.5) - (3.10) 

were implemented in a script using Matlab® R2015a. This model aided the design of 

the SMR devices throughout this work. An example of the Matlab script is given in 

Appendix A. 

 FINITE ELEMENT MODEL 

The vast majority of engineering phenomena are boundary value problems expressed 

by partial differential equations (PDEs). For complex geometries with different 

materials, analytical solutions cannot be obtained for the entire problem domain.  The 

finite element method (FEM) discretises the problem by dividing the domain into 

smaller parts (finite elements) connected with nodes. The PDEs are approximated with 

algebraic equations that can be solved for each element and then put back together to 

find an approximate numerical solution for the entire domain.  

 Commercial software is available to perform finite element analysis. The 

typical procedure when using these software packages consists of (1) defining the 

geometry domain, material properties, boundary conditions, physics and mesh (pre-

processing), (2) the computation of the numerical analysis (processing), and (3) 

analysis and display of the obtained results (post-processing). 
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In this work, the Acoustic Module of COMSOL Multiphysics® v4.4 [66] was 

employed to perform the finite element analysis of the designed solidly mounted 

resonators. The interaction between electrical potential and mechanical displacement 

is solved using the piezoelectric interface (pzd) according to the piezoelectric 

constitutive equations (2.1) and (2.2) in the stress-charge form. Both 2D and 3D finite 

element models of the resonators were developed. The geometries of the developed 

models are shown in Figure 3.4 below. 

 

Figure 3.4 Geometry of the (a) two-dimensional and (b) three-dimensional finite element 

model of the SMR 

The 2D model used the plane strain assumption where the out of plane 

thickness is defined [67]. In order to reduce computation time, the 3D model consisted 

of only a quarter of the complete structure of the SMR by taking advantage of the 

symmetry of the device. Perfectly matched layers (PMLs) were used to account for the 

absorption of the elastic waves at the boundaries. Further details on the implementation 

of the FEM models are given in Appendix B.  

The developed FEM models were used to evaluate the resonant frequency of 

the SMRs, the displacement profile of the mechanical waves and the temperature 

dependence of frequency. The results obtained are presented in the following sections. 

Sensitivity to the deposition of fine particles and the absorption of volatile organic 

compounds was also evaluated with the FEM models and will be discussed in 

Chapters 5 and Chapter 6, respectively. 



 

Chapter 3. Design and Modelling of Solidly Mounted Resonators 109 

 

 

 MODIFIED BUTTERWORTH VAN DYKE MODEL 

The Butterworth Van Dyke (BVD) model is an equivalent electrical circuit for BAW 

resonators in the fundamental mode [68-70]. Due to its simplicity, this lumped element 

model is widely used for circuit design purposes to model the frequency behaviour of 

the resonator with the aid of circuit simulation software. 

 Larson et al. [71] modified the BVD model to take into account acoustic losses 

in the piezoelectric layer. The modified Butterworth Van Dyke (MBVD) model is 

shown in Figure 3.5, it is formed by two branches: 𝑅𝑚, 𝐶𝑚 and 𝐿𝑚 form the motional 

arm representing the mechanical resonance. 𝑅𝑜 and 𝐶𝑜 form the static arm. 

 

Figure 3.5 Modified Butterworth Van Dyke (MBVD) model for a BAW resonator. 

𝑅𝑜 represents the acoustic losses while 𝐶𝑜 is the electrical plate capacitance 

formed by the resonator structure given as: 

𝐶0 =
𝜀𝐴

𝑑
 (3.12)  

where 𝜀 is the piezoelectric permittivity, 𝐴 is the active area and 𝑑 is the piezoelectric 

thickness. The electrical resistance of the electrodes is represented by 𝑅𝑠. 

The series and parallel resonant frequencies and the corresponding quality 

factors can be expressed in terms of these lumped elements by [72, 73]:  

𝑓𝑠 = 
1

2𝜋 √𝐿𝑚𝐶𝑚

  (3.13)  
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𝑓𝑝 = 𝑓𝑠√1 +
𝐶𝑚

𝐶𝑜
  (3.14)  

𝑄𝑠 = 
1

2𝜋𝑓𝑠 𝐶𝑚𝑅𝑚
  (3.15)  

𝑄𝑝 = 𝑄𝑠√1 +
𝐶𝑚

𝐶𝑜
  (3.16)  

The series resonance is set by the LC circuit of the motional arm and occurs 

when the capacitive and inductive reactance have the same magnitude cancelling their 

effects (minimum impedance). The parallel resonance is set by the capacitance of the 

static arm 𝐶0 with 𝐶𝑚 and 𝐿𝑚. In this work, the MBVD model of the fabricated SMR 

devices was extracted and used in the design on the driving circuitry, as will be 

discussed in Chapter 6. 

3.3 DESIGN AND SIMULATION OF SMRS FOR SENSING APPLICATIONS 

A 1D Mason model was used to evaluate the performance of the acoustic reflector and 

the frequency behaviour of the designed SMRs. While the one dimensional model can 

provide a very good estimation of the resonant frequency of the SMRs and the 

reflectivity of the acoustic mirror, it does not take into account the lateral energy 

leakage at the edges of the device [1]. The 2D and 3D FEM models developed in 

COMSOL Multiphysics® were helpful to compute these spurious modes. However, 

the computation time and computer memory usage had to be considered when 

selecting the number of dimensions and mesh elements for efficient simulations [74].   

 DESIGN PARAMETERS 

Solidly mounted resonators were designed to operate in the longitudinal mode for use 

in mass sensing applications (particle sensing and VOC detection). For these 

applications, lateral field excitation or tilting of the piezoelectric crystal are not 

required. 

Acoustic devices (thin film BAW resonators) operating at frequencies between 

1 GHz and 2 GHz are the most commonly reported for sensing applications (see Table 
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2.4). These devices provide an excellent compromise between improved sensitivity 

and the increased presence of parasitic capacitance. High frequency signals are more 

susceptible to noise and parasitic effects. The interface electronic circuitry for these 

signals requires careful design to ensure improved stability, which directly affects the 

sensitivity and limit of detection of a sensing system.  

In this work, two different devices were designed to operate at the fundamental 

frequencies of 870 MHz and 1.5 GHz, both below the 2 GHz bound. The lower 

frequency resonator was developed to provide a test module which could be trialled 

with different interface circuit designs, to find a suitable oscillator circuit for use at 

high frequency. Furthermore, to aid the development of initial interface circuits, 

reduced parasitic capacitances (associated to lower frequency devices) were preferred.  

For the two operating frequencies, devices with two different electrode 

materials were designed: aluminium (Al) because of its low density and good 

conductivity to reduce mass loading effects, and gold (Au/Cr) due its high acoustic 

impedance. Both top and bottom electrodes used the same material and thickness. For 

the SMRs with gold electrodes, a seed layer of chrome was used for improved 

adhesion, with negligible effects. The electrodes are either 200 nm Al electrodes or 

Au/Cr electrodes in a ratio of 10:1. 

Zinc oxide was selected as the piezoelectric material in this work, with two 

main advantages: (1) the high-quality and low-stress of the ZnO thin film layers 

(achieved when deposition is performed at room temperature) and (2) the thinner 

piezoelectric film required for the 870 MHz design (~3.65 µm compared to ~6.6 µm 

required for AlN). A thicker layer would considerably increase the total deposition 

processing time and induce more stress in the films.  

For the design of the acoustic mirror, a combination of metal and insulating 

layers was selected (as this is the configuration that will be later used in the design of 

a CMOS based acoustic mirror, presented in Chapter 7). Table 3.2 gives the materials 

and properties used in the design of the SMRs.  Table 3.3 summarises the final design 

parameters. The design procedure of the device (acoustic mirror, electrodes) is 

explained in detail in the following sections.   
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Table 3.2 Material properties used for the 

modelling of the SMRs. 

MATERIAL 
DENSITY 

(kg/m3) 

ACOUSTIC  

VELOCITY 

(m/s) 

Si 2330 8320 

Mo 10200 6340 

W 19350 5210 

SiO2 2070 5710 

Al 2700 6450 

Cr 7150 6630 

Au 19300 3430 

ZnO 5680 6370 
 

Table 3.3 Final thicknesses of the layers for 

the SMR designs. 

MATERIAL 

THICKNESS  

DESIGN  
870 MHZ 

DESIGN  
1.5 GHZ 

Mo 1.82 µm 1.05 µm 

W 1.53 µm 887 nm 

SiO2 1.65 µm 995 nm 

Al 200 nm 200 nm 

ZnO 3.35 µm 1.85 µm 

Cr 10 nm 10 nm 

Au 100 nm 100 nm 

ZnO 2.85 µm 1.35 µm 
 

ZnO properties: elastic constant 𝑐33 = 211 GPa, 

piezoelectric constant 𝑒33 = 1.32 C/m2, dielectric 

constant = 10.2.  

 

 ACOUSTIC MIRROR DESIGN 

In the development of a SMR device, careful design and accurate deposition of the 

acoustic mirror layers is fundamental to achieve high quality factors at the desired 

operating frequency. Typical Q factors of  SMR devices are in the range of 500 to 800 

compared to FBAR devices, which exhibit Q values of about 2000 [64]. The lower Q 

values of SMRs is attributed to the acoustic energy leaking into the substrate. 

A wide range of materials can be employed in the implementation of the 

acoustic mirror in SMR devices. As mentioned before, a large ratio of high to low 

acoustic impedance materials is preferred to maximize the wave reflection, thus 

requiring less number of layers to form the reflector. The combination of W/SiO2, with 

an impedance ratio of nearly eight, has been shown to be very efficient as only a total 

of four layers are required to obtain good reflectivity [75].  

The acoustic mirror layers in this work were designed with a 𝜆/4 thickness. 

During the design procedure, several material pairs were considered for this 

implementation. The relevant properties of these materials are shown in Table 3.4. 

Materials were chosen to achieve the maximum wave reflection with a minimum 

number of layer pairs. Furthermore, only CMOS compatible metals were considered 

and chosen as the high acoustic impedance material. 
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Table 3.4 Properties of the materials considered for the implementation of the quarter 

wavelength acoustic mirror and the required thicknesses for the design frequencies. 

MATERIAL 
DENSITY 

(kg/m3) 

ACOUSTIC  

VELOCITY 

(m/s) 

ACOUSTIC 

IMPEDANCE 

(kg/m2s) ×106 

λ/4  

870 MHZ 

(nm) 

λ/4  

1500 MHZ 

(nm) 

Mo 10200 6280 65 1804 1046 

W 19350 5210 101 1497 868 

Al 2700 6450 17.1 1853 1075 

Ti 4505 6260 27.3 1798 1073 

Pt 21500 4080 87.7 1172 680 

SiO2 2170 5540 13.1 1591 923 

ZnO 5680 6330 35.6 1818 1055 

For selected combinations of material pairs, simulations were performed using 

the 1D Mason model, assuming a silicon substrate of 500 µm thickness, an aluminium 

bottom electrode of 200 nm and an active area of 0.04 mm2. Results from these 

simulations are shown in Figure 3.6, where the transmittance and bandwidth of the 

acoustic mirrors are shown (for longitudinal waves) for a total of 4 and 6 layers.  

The transmittance of the acoustic mirror formed by two pairs of W/SiO2 was 

found to be -33 dB which corresponds to a reflection coefficient of 0.99974. This 

reflector performs extremely well considering that it is formed by only 4 layers.  For 

the Pt/SiO2 and Mo/SiO2 acoustic mirrors with 4 layers, the reflections are 99.958% 

and 99.859%, respectively. All other material combinations were not considered as 

even with 6 layers they perform poorly (more than three layer pairs would have to be 

deposited in order to achieve good reflection, making the fabrication process more 

complex).  

In general, it was observed that the acoustic mirror structures formed by a total 

of 6 layers exhibited higher reflectivity (+40%) but narrower bandwidth (-20%) 

compared to the structures with only 4 layers (shown in Figure 3.6c). Although high 

reflectivity is the main parameter in the design of an acoustic mirror (for optimum 

confinement of the acoustic energy within the resonator), wider bandwidth can result 

advantageous. A significant variation of the piezoelectric layer thickness (during 

fabrication), will produce a significant shift of the designed resonant frequency of the 

device. In this case, an acoustic mirror with a wide bandwidth can still confine the 

energy efficiently. 
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Figure 3.6 Simulated transmittance of different λ/4 acoustic mirrors for longitudinal waves at 

870 MHz with (a) 4 layers and (b) 6 layers using the one-dimensional model and (c) the 

corresponding bandwidths.  

The selected material combinations for the acoustic reflector in this work were 

W/SiO2 and Mo/SiO2. On one hand, tungsten and molybdenum were chosen as the 

high acoustic impedance layer due to their acoustic velocity and CMOS compatibility. 

On the other hand, silicon dioxide was selected as the low acoustic impedance layer 

due to its low density, low acoustic velocity and positive temperature coefficient, to 

help with the temperature compensation of the resonator [76].   
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For comparison, the transmittance of a λ/4 acoustic mirror with three pairs of 

Mo/SiO2 and two pairs of W/SiO2 is shown in Figure 3.7 for both SMR design 

frequencies of 870 MHz and 1.5 GHz.  

  

(a) (b) 

Figure 3.7 Simulated longitudinal waves transmittance of the acoustic reflector consisting of 

(a) three pairs of Mo/SiO2 and (b) two pairs of W/SiO2 based on the one-dimensional model.  

As expected, the Mo/SiO2 reflector showed a slightly higher (+20%) 

reflectivity at the desired frequencies (due the larger number of layers used). However, 

all these reflector structures exhibited low transmittance at the desired centre 

frequencies. Additionally, a wider bandwidth was observed for the 1.5 GHz design in 

both designs (Mo/SiO2 and W/SiO2).  

In this work, the Mo/SiO2 layers were selected due to the good adhesion 

properties of these materials and the lower density of Mo, compared to W. SMR 

devices with a Mo/SiO2 acoustic mirror were further simulated to analyse their 

frequency response and study the effect of the piezoelectric layer thickness.  

For a Mo/SiO2 reflector with 4 layers, the simulated transmittance is -25.53 dB 

which is just below the minimum calculated transmittance for a Q=2000 (-25.5 dB). 

For improved performance, a Mo/SiO2 acoustic mirror with a total of 6 layers was 

preferred, giving a very low transmittance of -40.42 dB which corresponds to a 

reflection coefficient of 0.9999, thus confining practically all the acoustic energy. 

To further evaluate the performance of the designed acoustic mirror, 

simulations were obtained from the 2D finite element model.  The standing wave 
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amplitude was plotted as a function of depth into the SMR [40] and the vertical 

displacement profile was obtained for the longitudinal wave as shown in Figure 3.8.  

As observed, the amplitude of the standing wave reduces at each interface with no 

considerable energy leaking into substrate, hence achieving optimal reflection of the 

longitudinal waves. 

 

  

(a) (b) 

Figure 3.8 (a) Displacement profile for the longitudinal wave at resonant frequency and (b) y-

displacement at the cross section of the device.   

It is important to note that in the conventional quarter-wavelength design used 

in this work, any shear waves generated in the device will be poorly reflected at the 

designed frequency (as shown in Figure 3.9). These shear waves will be transmitted 

through the reflector [77], leaking into the substrate and thus, limiting the Q-factor of 

the devices. This arises from the fact that the propagation velocity of shear waves is 

roughly half the velocity of the longitudinal waves, making the thickness of the 

reflector layers about λ/2 for the shear mode [64, 78].  

Optimization of the acoustic mirror structure (thicknesses of the layers) has 

been proposed to reflect both longitudinal and shear waves effectively to obtain 

resonators with high quality factors (Q>1000) [65, 79-81]. However, these 

optimisation procedures usually require the reflector layers near the resonator 

(piezoelectric and electrodes) to be thicker compared to the λ/4 approach, giving place 

to asymmetric structures. This compromises the piezoelectric coupling of the device 
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as a large portion of the acoustic energy (stress field) resides outside the piezoelectric 

film [17]. In this work, a conventional λ/4 approach is used in the design procedure of 

the SMR devices due to trade-off between simplicity and effective reflection of the 

acoustic energy. 

 

Figure 3.9 Longitudinal and shear wave transmittance of the designed Mo/SiO2 acoustic 

mirror for the fundamental frequency at 870 MHz. 

 FREQUENCY RESPONSE SIMULATIONS 

The Mason model is a one-dimensional model where the lateral dimension of 

the resonator is considered infinite. For a sufficiently large BAW device, the resonant 

frequencies can be precisely predicted by a 1D model [74]. However, the model cannot 

be used to study spurious modes in the SMR caused by laterally standing waves, as 

the finite lateral dimensions are not considered. A two-dimensional (or three-

dimensional) model is needed to this aim [1].  

Figure 3.10 shows the simulated impedance curves of the designed SMRs 

obtained with the 1D Mason model over a large range of frequencies. The fundamental 

modes can be observed at 872 MHz and 1.49 GHz which are very close to the design 

frequencies. Second harmonics at 2.68 GHz and 4.5 GHz are observed for each of the 

designs, respectively.  

To compare the results obtained with the Mason model, the 2D and 3D FEM 

models developed in COMSOL® were used to compute the frequency response of the 
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designed SMRs. The resulting curves are shown in Figure 3.11 compared to that 

obtained with the 1D model. 

 

Figure 3.10 Simulated frequency response of the Mo/SiO2 based SMRs with designed 

frequencies at 870 MHz and 1.5 GHz and aluminium electrodes for the longitudinal mode 

obtained using the 1D model.  

 

Figure 3.11 Comparison of the 1D analytical model and the 2D and 3D FEM models of the 

frequency response of the SMR design at 870 MHz with Al electrodes.  
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A good agreement was observed between all three models in terms of 

impedance values and resonant frequencies. However, the spurious modes were only 

apparent in the FEM simulations. These spurious modes originate from the lateral plate 

waves in the device. Suppression of these modes could be accomplished by appropriate 

design of the border region of the structure [82]. 

When comparing the simulations results obtained from the 2D and 3D models, 

no significant differences were observed. The spurious modes were predicted by both 

models and the resonant frequencies were very close at 869 MHz and 872 MHz with 

the 2D and 3D model, respectively. As the 3D model requires considerably longer 

computation times (by a factor of 20 times), frequency response simulations presented 

hereafter were obtained using only the 1D and 2D models, unless otherwise stated.  

The impedance curves for all four SMR designs are shown in Figure 3.12. In 

the case of the 870 MHz design, devices with Au/Cr electrodes demonstrated a lower 

resonant frequency (-1%), while in the 1.5 GHz design a +0.5% variation was 

observed. These variations are minimal and within the range of the designed 

frequencies at ~870 MHz and ~1.5 GHz. Again, good correlation between the 1D and 

2D models was observed. Spurious modes were present in both waveforms but less 

apparent on the 1.5 GHz design, which are enlarged in the inset. 

From the simulated impedance curves, the series and parallel resonance 

frequencies were extracted. The quality factors were calculated using the phase 

derivative method of equation (2.9) and the effective coupling coefficients were 

evaluated from equation (2.13). These values are summarised in Table 3.5 for all four 

SMR designs.  

The effective electromechanical coupling factor is greater for the SMR devices 

using Au/Cr electrodes (100nm/10nm) while the quality factors are slightly higher for 

the devices with Al electrodes (200 nm). This can be attributed to the high acoustic 

impedance of gold (effects of Cr are negligible due to high acoustic impedance) and 

the low density and good conductivity of Al, respectively. Quality factors at the series 

resonance demonstrated higher values than at the parallel resonant frequency as a 

result of laterally propagating waves [81].   
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(a) 

 

(b) 

Figure 3.12 Simulated electrical behaviour of the designed SMRs obtained using (a) the 1D 

and (b) 2D FEM model.  

Table 3.5 Calculated 𝒌𝒆𝒇𝒇
𝟐  and Q factor for series and parallel frequencies obtained from the 

2D FEM simulation data. 

 SMR DESIGN 𝒇𝒔 𝒇𝒑 𝑸𝒔 𝑸𝒑 𝒌𝒆𝒇𝒇
𝟐  

8
7
0
 

M
H

z 
 

Al Electrodes 872.4 MHz 900.5 MHz 639 467 6.14 % 

Au/Cr Electrodes 864.6 MHz 893.3 MHz 632 453 6.32 % 

1
.5

 

G
H

z Al Electrodes 1.49 GHz 1.53 GHz 622 524 6.18 % 

Au/Cr Electrodes 1.5 GHz 1.56 GHz 627 434 6.86 % 
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 TEMPERATURE EFFECTS 

Temperature stability is a very important factor to consider when using acoustic wave 

devices in sensing applications. For the application of this work, changes in the 

environmental temperature is likely to be very significant. If the air quality monitor is 

located outside, the ambient temperature would have diurnal and seasonal variations 

(-10°C to -50°C). These temperature variations have a significant effect on the 

resonant frequency of the SMR, which can be larger than the frequency shift caused 

by the physical parameter under investigation. In order to ensure accurate sensor 

output measurements, thermal variations should be monitored and the temperature 

effects taken into account in the final sensor readings.   

Temperature dependence of the resonant frequency in BAW devices can be 

measured in terms of the temperature coefficient of frequency defined as [83]: 

 

TCF = 
1

𝑓𝑜
∙
∆𝑓

∆𝑇
 × 10

6
  (ppm/°C) (3.17)  

 

where 𝑓𝑜 is the fundamental resonant frequency and ∆𝑓 is the change in frequency due 

to the temperature change ∆𝑇. Piezoelectric thin films used in BAW resonators have 

negative and relatively high TCFs (see Table 3.1, p.98). For sensing applications, it is 

desirable that the total TCF of the BAW device is low, to reduce frequency variations 

due to temperature. The total TCF of an SMR can strongly depend on the two 

uppermost layers of the acoustic reflector [57].  

Simulations were performed in COMSOL Multiphysics® to investigate the 

TCF of the designed devices. In order to account for temperature variations in the FEM 

model, temperature-dependant material properties were added, namely the thermal 

expansion coefficients and the thermal coefficients of the elastic constants [84, 85]. A 

frequency response analysis was again performed with a parametric sweep of 

temperature from 25°C to 155°C in steps of 10°C. The computed frequency shifts of 

the series and parallel resonant frequencies as a function of the temperature are shown 

in Figure 3.13 for the fundamental longitudinal mode. 
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With rising temperature, the acoustic velocity of the longitudinal waves drops 

due to the decrease in the elastic constants of ZnO. This together with the effect of 

thermal expansion leads to a decrease in the resonant frequency of the device. A 

negative linear variation of both the series and parallel resonant frequencies was 

observed.  

From the obtained results, the TCFs of the designed devices were extracted 

using equation (3.17). The TCF of the series resonance for the 870 MHz design with 

Al electrodes was calculated as -33.2 ppm/°C, while the SMR with Au/Cr electrodes 

exhibited a TCF of -34.7 ppm/°C. For the 1.5 GHz design, TCFs of -31.9 ppm/°C and 

-37.1 ppm/°C were obtained for the devices with Al and Au/Cr electrodes, 

respectively. A summary of the computed TCFs is given in Table 3.6. 

  
(a) (b) 

Figure 3.13 Simulated resonant frequency shifts as a function of temperature of the designed 

SMRs for (a) the series resonant frequency and (b) the parallel resonant frequency. Linear 

fits are also shown. 

The series resonant frequency simulations demonstrated the 1.5 GHz devices 

exhibit a notably higher TCF (+15%) compared to the 870 MHz resonators. For the 

parallel resonance, the frequency shifts are similar for both the 870 MHz and 1.5 GHz 

devices. The highest frequency shifts are found for the series resonant frequency of the 

1.5 GHz devices with Au/Cr.   

In a report by Pinkett and Hunt [86], the TCF was noted of 6 fabricated devices 

when the temperature was varied from -50 to 175°C. The series TCF was found to 

increase for half the devices and decrease for the other half, demonstrating the variance 
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of the TCF due to temperature is reliant on material properties. Manufacturing 

tolerances and the minute variation in material properties have an effect.  

Table 3.6 Simulated temperature coefficient of frequency for the series and parallel resonant 

frequencies of the designed SMR devices. 

DESIGN SMR DESIGN 
TCF (𝒇𝒔) 

(ppm/°C) 

TCF (𝒇𝒑) 

(ppm/°C) 

870 MHz  
Al Electrodes -33.2 -30 

Au/Cr Electrodes -34.7 -34.2 

1.5 GHz 
Al Electrodes -31.9 -24.7 

Au/Cr Electrodes -37.1 -27.9 

 

3.4 LAYOUT DESIGN OF THE SMR DEVICES 

The layout design of the SMRs consisted of six main patterns of the top and bottom 

electrodes as shown in Figure 3.14. Different dimensions were used for the active area 

giving a total of 25 different SMR designs. All layout designs had a square surface 

area of the top and bottom electrodes with dimensions varying from 125 µm to 250 µm 

in the case of design (a), and between 250 µm and 400 µm for designs (b) to (d). 

Designs (e) and (f) had both an active area of 390 µm. The footprint for all the designs 

was 1.5 mm × 1.5 mm. 

Different dimensions of the active area were implemented. For particle 

detection, a larger surface area may be desirable in order to provide a sufficient region 

where the particles can be accumulated in relation to the particle size under analysis. 

Furthermore, the effect of the size of the sensing area on the performance of the device 

can also be evaluated.  

For the electrical characterisation of the SMRs, a planar transmission line 

structure was incorporated, when possible. The top electrode was integrated within a 

short coplanar waveguide (CPW) for the connection to the measurement system. The 

use of CPWs reduces parasitic effects arising from bond wires and provides a ground-

signal-ground (GSG) configuration for a convenient method of making contact with 

the device, enabling on-wafer measurements [10].  



 

Chapter 3. Design and Modelling of Solidly Mounted Resonators 124 

 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 3.14 Basic SMR design layouts of top and bottom electrodes with incorporated 

transmission lines. 

The coplanar waveguide (CPW) was designed for a characteristic impedance 

of approximately 50 Ω to match the impedance of the measurement equipment, cables 

and connectors. The characteristic impedance of the CPW is determined by its 

dimensions and the properties of the substrate. Careful design of the CPW is needed 

to obtain the desired characteristic impedance. To avoid diminishing the performance 

of the resonators, extension tracks from the top and bottom electrodes (and 

transmission lines) are kept as short as possible (~200 µm). Long extension tracks can 

add considerable parasitic capacitance that results in a decrease of the 

electromechanical coupling coefficient and the quality factor of the device [17], 

especially when using metal layers underneath (for the acoustic mirror). Using such 

short extensions was feasible as extending the pad contacts away from the sensing area 

is not essential for the intended applications in this work.  

A FEM model can aid the design of the CPW. This would be helpful as the 

capacitance created between the metal layer of the acoustic reflector needs to be 
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considered. Such capacitance could be avoided or minimised by using all insulating 

acoustic reflectors [39]. In this work, however, metal/insulating reflectors are preferred 

as a first approach towards the construction of a CMOS acoustic mirror, where the 

metal layers and insulating layers (SiO2) of a CMOS process must be used.  

The CPW was designed using the expressions derived from conformal 

mapping techniques [87], for a characteristic impedance of 50 Ω. Even though the 

CPW lies on the piezoelectric layer, the dimensions of the CPW in this work were 

calculated for a high resistivity silicon substrate, considering that the thickness of the 

ZnO layer is negligible compared to the Si substrate, it has a very similar dielectric 

constant (εr=10.2 compared to εr=11.2) and the lines are very short.  

Opening vias through the piezoelectric layer were included in all the layouts to 

provide access to the bottom electrode. Designs were labelled in the form ‘MBLxxx’ 

where MBL stands for Microsensors and Bioelectronics Laboratory and xxx is a three-

digit number assigned to the device. The development of photolithography masks, 

required for the fabrication of these devices, is presented in the following chapter. As 

designed, these devices will be fabricated using both Al and Au/Cr electrodes. A 

summary of the designs is presented in Table 3.7. 

Table 3.7 Summary of SMR design layouts specifying active area dimensions. 

ID  

LABEL 

BASIC 

DESIGN  

LAYOUT 

ACTIVE AREA  

DIMENSION 

(µm) 

MBL000 (a) 125 

MBL002 (a) 150 

MBL003 (a) 200 

MBL004 (a) 250 

MBL005 (a)* 125 

MBL006 (a)* 150 

MBL007 (a)* 200 

MBL008 (a)* 250 

MBL009 (b) 250 

MBL020 (b) 400 

MBL022 (b)* 250 

MBL023 (b)* 400 

MBL024 (c) 250 
 

ID  

LABEL 

BASIC 

DESIGN  

LAYOUT 

ACTIVE AREA  

DIMENSION 

(µm) 

MBL025 (c) 400 

MBL026 (c) 250 

MBL027 (c) 400 

MBL028 (c)* 250 

MBL029 (c)* 400 

MBL030 (d) 250 

MBL032 (d) 400 

MBL033 (d) 250 

MBL034 (d) 400 

MBL035 (e) 390 

MBL036 (f) 390 

MBL037 (a) 175 

* Extensions were added to enlarge terminations 

of the ground planes and electrode extensions to 

ease bonding of the devices. 
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3.5 CONCLUSIONS 

This chapter detailed the design procedure for SMR devices, to be used in air quality 

monitoring applications (i.e. particle sensing and VOC detection). To aid the design of 

these resonators, considerations regarding material properties (piezoelectric films, 

electrodes, acoustic mirror) were presented and the modelling techniques for BAW 

devices were reviewed.  

A 1D Mason equivalent model for the SMR was implemented in a Matlab 

script. This model aided the design of the device (frequency response) and the acoustic 

mirror (transmittance simulations). Finite element models were developed to analyse 

the temperature dependency of frequency of the devices. A comparison of the 

simulation results using these modelling techniques was presented.  

Frequency simulations are in good agreement across the models (impedance 

curves and resonant frequencies). However, lateral spurious modes could only be 

predicted with the FEM models, as they consider the finite dimensions of the device. 

Computation times for the 1D analytical model were 12 times faster, compared to the 

2D FEM model. Thus, the Mason model was mainly used through this work for 

frequency response simulations.  

SMR devices were designed for two different resonant frequencies (870 MHz 

and 1.5 GHz) to work in the longitudinal mode, for gravimetric sensing.  These 

frequencies were selected based on the required thickness of the piezoelectric layer. 

These devices are a first generation of SMRs, designed for their manufacture by 

standard microfabrication techniques, but considerations were taken at this stage 

towards their implementation of CMOS based devices at a later stage. 

The structure of the acoustic mirror was formed by metal and insulating layers 

(this configuration must be used in a CMOS based device). The final design of the 

acoustic mirror was formed by three pairs of alternating Mo/SiO2 layers, obtaining a 

reflectivity of 99.99%. For the electrode materials, Al and Au/Cr electrodes were 

chosen. Al provides good conductivity and low density; whereas Au/Cr exhibits a high 

acoustic impedance (Cr was used as an adhesion layer). For the piezoelectric layer, 

ZnO was used to obtain high-quality, low stress films, for the required thicknesses.  
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Performance characteristics of the SMR designs were extracted from the 2D 

FEM model, with simulated Q factors of ~640 and electromechanical coupling 

coefficients of ~6.2%. Temperature stability of the devices was evaluated, with TCFs 

values of about -34 ppm/°C. However, manufacturing tolerances and variations in the 

properties of the deposited materials are likely to create discrepancies between the 

simulated and experimental data.  

The layout design of the devices included coplanar wave guides, designed for 

a characteristic impedance of 50 Ω. These CPWs enable characterisation of the device, 

using standard GSG configuration probes. Six main layout designs of the top and 

bottom electrodes were realised with dimensions of the active area (overlap between 

bottom and top electrode) ranging from 125 µm to 400 µm. The overall area of SMR 

design was 2.25 mm2. 

In the next chapter, the fabrication and characterisation of the devices designed 

in this chapter are presented. The effects of temperature and humidity variation on the 

resonant frequency of the SMRs are experimentally tested.  
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FABRICATION AND 

CHARACTERISATION OF 

SOLIDLY MOUNTED 

RESONATORS 

4.1 INTRODUCTION 

In this chapter, the fabrication process of the solidly mounted resonators designed in 

Chapter 3, is described. Standard microfabrication techniques were employed for the 

fabrication using a three-mask photolithography process. The mask design and process 

parameters are discussed.  

Electrical characterisation of the devices is presented and their performance 

parameters are extracted (Q factor, 𝑘𝑒𝑓𝑓
2 ). The manufacturing tolerances of the layer 

thicknesses are investigated. Frequency dependence on ambient effects (temperature 

and humidity) is also characterised and experimental results are compared to the 

simulation results presented in Chapter 3. The fabricated devices are the fundamental 
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elements for the development of an air quality sensor and the basis towards the 

development of a CMOS compatible acoustic device. 

4.2 FABRICATION OF THE SOLIDLY MOUNTED RESONATORS
2 

Fabrication of the ZnO based SMRs was performed in collaboration with the 

University of Cambridge (UK). It took place at the Centre for Advanced Photonics and 

Electronics (CAPE), University of Cambridge.  

Table 4.1 summarizes the material thicknesses for fabrication as designed in 

Chapter 3. Originally, a 6-mask photolithography process was proposed for the 

fabrication of these devices, for which a total of six masks were designed and 

manufactured. However, the actual fabrication was simplified to a 3-mask fabrication 

process. Thus, only the 3-mask process is presented in this chapter. The complete 

6-mask fabrication process is discussed in Appendix C. It was designed to provide 

acoustic isolation to individual devices through the patterning of the reflector layers in 

order to avoid cross-talking between devices on the same substrate.   

Table 4.1 Designed thicknesses of the thin films for the fabrication of the ZnO based SMR 

devices working at 870 MHz and 1.5 GHz. 

SMR WITH ALUMINIUM ELECTRODES 

MATERIAL 
THICKNESS 

870 MHz 1.5 GHz 

SiO2 1.65 µm 995 nm 

Mo 1.82 µm 1.05 µm 

Al 200 nm 200 nm 

ZnO 3.35 µm 1.85 µm 
 

 

SMR WITH GOLD ELECTRODES 

MATERIAL 

THICKNESS 

870 MHz 1.5 GHz 

SiO2 1.65 µm 995 nm 

Mo 1.82 µm 1.05 µm 

Au/Cr 100/10 nm 100/10 nm 

ZnO 2.85 µm 1.35 µm 

 DESIGN OF THE PHOTOMASKS 

The lithographic photomasks were designed in Tanner EDA layout Editor (L- Edit 

v15.1). Finalised mask designs were submitted for manufacture as GDSII files. The 

                                                 
2 The work presented in this section was performed in collaboration with Mr Girish Rughoobur, PhD 

student at the University of Cambridge.  
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photomasks were fabricated on a 5” by 5” mask plate (0.060” thick) in Soda Lime 

glass with chrome coating (JD Photo Tools, UK) at super high resolution (128k dpi 

or 5 dots/µm) and a critical dimension of 15 microns, offering an affordable solution 

yet good quality features are achieved (features as small as 5 µm). The specifications 

(polarity and view side) for each photomask and the type of photoresist used during 

lithography are given in Table 4.2.  

Table 4.2 Specifications of the photomasks for the lithography process. 

MASK ID POLARITY VIEW SIDE 
TYPE OF 

RESIST 
DESCRIPTION 

BOT Darkfield 
Right read 

Chrome down 
Positive 

Patterning of bottom 

electrode 

TOP Darkfield 
Right read 

Chrome down 
Positive Patterning of top electrode 

PIE Darkfield 
Right read 

Chrome down 
Negative 

Patterning of piezoelectric 

thin film 

  Each mask was identified with a three-character abbreviation as shown above. 

The layout of the mask was designed for a patterning area of a 4-inch wafer and 

included a total of six alignment marks. All 25 different SMR layout designs were 

arranged in a 5×5 array with four devices of each design (as shown in Figure 4.1). This 

array acted as a “reticule” that was repeated across the patterning area of the mask. In 

this way, SMR designs were distributed across the wafer and could be tested from 

different locations within the wafer. It is likely that variations of the thickness and 

material properties will exist between locations of the dies, influencing the resonant 

frequency and electrical characteristic of the devices [1].  

The device ID number, the electrode material, the piezoelectric material and 

the design date were patterned in the top mask layer. This helped to clearly identify 

the devices at a later stage (looking under the microscope). Dicing guide marks were 

incorporated in the TOP mask which were employed during mechanical sawing, and 

alignment marks were also included. Polarity of the masks was not critical as an image 

reversal resist was used (AZ5214E). 
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Figure 4.1 Layout design of the top mask showing distribution of the SMR designs within 

the patterning area.  

 THREE-MASK FABRICATION PROCESS 

The 3-mask fabrication process (depicted in Figure 4.2) consisted on the following 

steps: 

1. SUBSTRATE CLEANING. Double-side polished, 4- inch, 525 µm thick (+/- 25µm), 

p-type silicon wafers with crystallographic orientation (100) and 200 nm thermal oxide 

on both sides were purchased from Si-Mat (Germany). Cleaning of the substrate, to 

remove any contaminants, consisted on soaking the wafer in acetone, followed by 

isopropanol (IPA) and then flushing with deionized (DI) water. Finally, the wafer was 

dried in nitrogen and baked at 125 °C for 3 minutes.  

2. DEPOSITION OF THE REFLECTOR LAYERS. A total of three layers of Mo and three 

layers of SiO2 were alternately sputtered on the silicon substrate using a high target 

utilisation sputtering (HiTUS S500) system. As the system can accommodate several 

targets at a time, deposition of the reflector layers can be performed without breaking 

the vacuum in the system or removing the sample, resulting in better adhesion between 

the layers. 
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3. DEPOSITION AND PATTERNING OF BOTTOM ELECTRODE. The bottom electrode (200 

nm Al or 100/10 nm Au/Cr) was deposited on top of the acoustic mirror layers and 

patterned using a standard lift-off photolithography process. The aluminium layer was 

deposited using sputtering while the chrome/gold layers were thermally evaporated.  

4. DEPOSITION OF PIEZOELECTRIC LAYER. The ZnO layer was reactively sputtered at 

room temperature from a zinc target using an Ar/O2 mixture in the HiTUS system [2]. 

This results in high quality ZnO films with excellent c-axis orientation, smooth surface 

and low stress [3] to obtain high quality resonators.   

5. DEPOSITION AND PATTERNING OF TOP ELECTRODE. The top electrode is patterned in 

a second lift-off process in a similar way as the bottom electrode using the same 

materials, thicknesses and deposition methods.  

6. PATTERNING OF PIEZOELECTRIC LAYER. In order to provide electrical contact to the 

bottom electrode, the ZnO film was patterned and via holes etched through it in a wet 

etching process using a 2% glacial acetic acid and phosphoric acid solution at room 

temperature with at etching rate of ~1.2 µm/min.  

7. DEPOSITION OF PASSIVATION LAYER. To protect devices from environmental factors 

and scratching during the dicing process, a passivation layer (photoresist) was 

deposited over the entire wafer.  This passivation needed to be completely removed 

before characterisation of the devices. 

8. WAFER DICING. Processed wafers were diced using a mechanical saw. With this 

process, thinner and cleaner separation lines were achieved.  
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Figure 4.2 Three mask fabrication process used in the fabrication of the designed SMR 

devices. 
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Sputtering targets used in the HiTUS system are 4-inch in diameter and 6 mm thick. 

For the photolithography processes, an EVG620 Mask aligner was used. Lithography 

processes are accomplished using a thin photoresist (AZ5214E with ~1.6 µm 

thickness). The deposition parameters of the materials used in the fabrication of the 

SMRs are summarised in Table 4.3.  

Table 4.3 Deposition and etching parameters of SMR materials. 

PARAMETER ZnO Mo SiO2 

DEPOSITION 

METHOD 

RF reactive 

sputtering (HiTUS) 

RF sputtering 

(HiTUS system) 

RF reactive 

sputtering (HiTUS) 

TARGET 

Zn 99.999%  

(Kurt J. Lesker 

Ltd) 

Mo 99.999% 

(Pi-Kem Ltd) 

Si 99.999% 

(Testbourne Ltd) 

BASE PRESSURE 

(mbar) ×106 
< 2 < 2 < 2 

LAUNCH POWER 

(W)  
1000 1500 1000 

TARGET POWER 

(W) 
800 1300 800 

Ar FLOW RATE 

(sccm) 
55 60 55 

O2 FLOW RATE 

(sccm) 
41 0 8 

DEPOSITION 

RATE (nm/min) 
19 29 ~23 

ETCHING 

METHOD 
Wet etching - - 

ETCHANT 

H3PO4 and glacial 

acetic solution at 

2% volume 

- - 

ETCHING RATE 

(nm/min) 

 

~1200 - - 

*Aluminium electrodes were deposited using DC magnetron sputtering from an Al target with 

99.99% purity. A base pressure of 1 x10-5 mbar is used. Ar flow rate is set to 31 sccm and a 

sputtering pressure of 3 × 10-3 mbar is used.  

Two batches of SMR devices were produced in the period of July – December 

2014 with a total of 12 wafers fabricated, each containing about 2500 individual SMRs 

and approximately 100 samples of each SMR design. 
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The first batch consisted of a total of 8 wafers: four wafers of the 1.5 GHz 

design (two wafers with Al electrodes and two with Au/Cr electrodes) and four wafers 

of the 870 MHz design (again, two with Al electrodes and two with Au/Cr electrodes).  

    

 

 
(b) 

 

(a) (c) 

Figure 4.3 (a) Photograph of a patterned 4” SMR wafer, (b) die with four devices and (c) top 

view of single SMR with Al electrodes. 

To ease handling of the devices, the first batch of wafers were diced into groups 

of 4 devices (arrays of 2 × 2), obtaining a total of ~700 square dies of 3 mm, each array 

containing devices of the exact same SMR design. Problems were experienced during 

the dicing process of the 870 MHz wafers as devices were delaminating. This was 

attributed to the poor adhesion of the thick layers of the SMR structure, required for 

the designed frequency. To tackle this issue, two of the 870 MHz wafers were coated 

with the thick photoresist (instead of the thin one used previously) obtaining better 

results. An example of fabricated devices is shown in Figure 4.3. 
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 FABRICATION OUTPUT 

Thicknesses of the deposited reflector layers were estimated from SEM images 

of the cross section of the acoustic mirrors. The ZnO layer and electrodes were 

measured with a stylus profiler (Ambios XP-100). The thicknesses of the reflector 

layers (summarised in Figure 4.4) varied by up to 19% compared with the designed 

values. However, they were within an acceptable range due to the broad bandwidth of 

the reflector. 

 

LAYER 870 MHz 1.5 GHz 

SiO2 1.39 (-0.26)  0.95 (-0.05)  

Mo 1.87 (+0.05)  1.07 (+0.02) 

ZnO (Al) 2.96 (-0.39) 1.49 (-0.36) 

ZnO (Au) 2.55 (-0.30) 1.12 (-0.23) 

(variation from design) µm 
 

(a)  

 

LAYER 870 MHz  1.5 GHz  

SiO2 1.52 (-0.13) 0.97 (-0.03) 

Mo 1.75 (-0.07) 1.02 (-0.03) 

ZnO (Al) 3.12 (-0.23) 2.19 (+0.34) 

ZnO (Au) 3.92 (+1.07) 1.59 (+0.24) 

(variation from design) µm 
 

(b) 

Figure 4.4 SEM image of deposited reflector layers and measured thicknesses for devices of 

(a) the first batch and (b) the second batch.  

The thickness of the piezoelectric layer is more critical. Small variations of the 

designed thickness (±5%) significantly shift the resonant frequency of the devices. 

Given the measured thicknesses (variation of up to 13% for the Al 870 MHz design), 

the resonant frequencies of the fabricated devices were expected to differ from the 

designed values.  
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The second batch of devices consisted of 4 wafers (one wafer of each frequency 

design and electrode materials). Substantial improvements were made in the 

fabrication procedure as listed below: 

▪ To improve uniformity of the layers, wafers were sputtered one by one in the 

HiTUS system (as opposed to the first batch were two wafers were sputtered at a 

time).  

▪ Sputtering times were increased, as it was observed that the ZnO and Mo 

deposition rates decreased to 15 nm/min and 24 nm/min, respectively which 

explains the thinner layers obtained in the previous batch. 

▪ Thick photoresist coating was used in all four wafers to prevent delamination of 

the devices during dicing, particularly for the 870 MHz design. 

▪ The seed layer of chrome was increased to a thickness of 18 nm to improve 

adhesion of the gold electrode. Gold electrodes from the 1st batch were found to 

be peeling off during wire bonding. 

▪ Wafers were diced in individual SMR devices with resulting SMR dies of 

dimension 1.5 mm×1.5 mm, avoiding crosstalk between devices and significantly 

reducing the overall size of the chip. 

Although targeted thicknesses were not achieved in this second run (thickness error of 

up to 7% for Al devices), they are closer to the designed values (compared to the first 

batch). Thus, resonant frequencies are expected to be close to the design values. 

Moreover, higher quality and uniformity of the deposited piezoelectric film is expected 

across the wafer (not characterised) thanks to the improvements in the fabrication 

procedure. New 1D simulations were performed to evaluate these variations in the 

resonant frequency. Results are presented and compared to the experimental 

measurements in the following section. 

4.3 ELECTRICAL CHARACTERISATION OF FABRICATED DEVICES 

Scattering parameters of fabricated SMRs were measured using a vector network 

analyser (Agilent E5071B). A full 2-port calibration was performed prior the 



 

Chapter 4. Fabrication and Characterisation of Solidly Mounted Resonators 148 

 

 

measurements to account for any system errors including coaxial cables and 

connectors. Figure 4.5 shows a comparison between the designed, predicted and 

measured S11 magnitudes of MBL003 devices from the first batch. 

 

  

  

Figure 4.5 S11 parameter for 1st batch designs: (a) 870 MHz, Al electrodes; (b) 870 MHz, 

Au electrodes; (c) 1.5 GHz, Al electrodes; (d) 1.5 GHz, Au electrodes. 

Series resonant frequencies at 970 MHz, 940 MHz, 1.7 GHz and 1.72 GHz 

were measured for the SMR designs at 870 MHz (Al), 870 MHz (Au/Cr), 1.5 GHz 

(Al) and 1.5 GHz (Au/Cr), respectively. As expected, a shift in the designed 

frequencies is observed due to manufacturing tolerances. The 1D model was 

considered sufficient to perform this comparison being the resonant frequency the 

property of interest. The S11 magnitude, however, is much smaller and wider for the 

measured response attributed to material properties, i.e. surface roughness of the 

layers. Devices from the second batch resonated at 900 MHz, 740 MHz, 1.2 GHz and 

1.4 GHz, respectively with series resonant frequencies closer to the designed values.  
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Devices from the first and second batch had comparable electrical 

performance. For the 870 MHz design with aluminium electrodes, series and parallel 

frequencies were measured at 972 MHz and 992 MHz, respectively with extracted 

quality factor Qs = 140 and electromechanical coupling coefficient of 4.13% for the 

first batch.  Devices of the second batch resonated at 900 MHz (series) and 912 MHz 

(parallel) with a quality factor of 170 and effective electromechanical coupling 

coefficient of 2.6%.  

 

 

 

Figure 4.6 Scattering parameters of devices from the second batch (a) 900 MHz Al 

electrodes and (b) devices with different sensing area dimension. 

SMR devices with square active area ranging from 125 µm to 250 µm were designed 

and fabricated (refer to section 3.4). The S21 parameters of these devices are shown in 

Figure 4.6b. As the active area of the device increases, the resonator static capacitance 

increases as per equation (3.12) leading to an increase of S21 values.  

Although devices from the first and second batch exhibited similar 

performance, devices from the second batch (1.5 × 1.5 mm) were preferred for the 

experimental work (presented in the following sections), due to their compact size 

(which allowed the necessary interface circuitry to be smaller). In particular, the 900 

MHz device with aluminium electrodes (MBL003) was used, unless otherwise stated. 

These devices were further characterised, to study the frequency dependency on 
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ambient effects (variations of temperature and humidity), as presented in the next 

section. 

4.4 AMBIENT EFFECTS 

Characterisation of the SMR devices was carried out to evaluate the effects of 

environmental variations (temperature and humidity) on their frequency response. 

Devices were first tested in single ended output to observe their temperature 

dependence and later tested in differential output to demonstrate a method of 

correcting for ambient variations.  

 TEMPERATURE EFFECTS 

To characterise temperature dependency of the SMRs, the resonant frequencies of the 

devices were measured over a wide range of temperatures (30°C – 90°C), and the 

corresponding TCFs were extracted for the series and parallel resonant frequencies.  

 The SMR was placed inside a universal heating oven (UNP 200, Memmert 

GmbH) where it was exposed to controlled temperatures (30°C – 90°C).  A 

temperature and humidity sensor (BME280, Bosch) was placed near the device. Series 

and parallel resonant frequencies were monitored with the VNA, controlled via serial 

communication. A LabVIEW virtual instrument was developed to control the network 

analyser, and to log these data together with the temperature sensor readings. Obtained 

results are shown in Figure 4.7a. 

Both series and parallel resonant frequencies decreased with temperature rise. 

The extracted TCFs are -55 ppm/°C and -49 ppm/°C for the series and parallel resonant 

frequency, respectively. Experimental results agree with simulations performed in 

section 3.3.4 where the parallel TCF was lower than that for the series frequency. 

However, measured TCFs are slightly higher (+38%) compared to the simulations. 

This can be due to the parasitics induced by the measurement setup (bond wires and 

coaxial cables). 
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Figure 4.7 (a) Comparison between experimental and simulated (FEM model) temperature 

coefficients of the series and parallel frequencies. (b) Comparison of experimental TCFs of 

the series, parallel and oscillation frequency of fabricated SMRs.  

The TCF of the SMR provides a good insight into the temperature stability of 

the device itself. For sensing applications, however, it is more useful to analyse the 

temperature coefficient of oscillation frequency (TCFosc) of the integrated system [4]. 

In addition to the resonator itself, the oscillation frequency is also controlled by 

temperature dependant components in the circuitry (transistors, capacitors) and 

parasitics in the system arising from wire-bonding and interconnections [5, 6]. Careful 

design of the integrated system (SMR and readout circuitry) can result in low TCFs 

values. Design considerations for such a system have been proposed in [5]. 

Temperature dependence of the readout circuitry (oscillator and mixing circuit 

are presented in section 6.5) was characterised as above. The temperature sensor 

(BME280) was located near the sensing system, and the overall temperature of the 

oven (30L volume) was recorded, together with the sensing system output signal. 

To test the TCF of an individual SMR with associated circuitry, an external RF 

signal (Agilent 8648C) was fed to the LO input of the mixer and used as an 

environmentally isolated reference signal. The second signal originated from the SMR 
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wire-bonded onto the Pierce oscillator. In this way, any frequency changes measured 

are only due to temperature dependency of the SMR and circuit with no contributions 

of any other effects. Results are presented in Figure 4.8 for two different SMRs. 

 

Figure 4.8 Oscillator temperature stability and temperature compensation technique.  

TCFosc of -110.8 ppm/°C and -76.4 ppm/°C were measured for two devices. It 

was found that identical devices from the same batch have different TCFs due to 

fabrication tolerances. Particularly, devices located close to each other within the 

wafer had similar TCFs. A comparison of extracted TCFs is shown in Figure 4.7b. 

The measured TCFosc of the integrated system was rather high to be used in 

sensing applications unless a temperature compensation method was used. Although 

the TCF of the SMR itself can be improved through the addition of SiO2 layers (section 

3.1.4), other methods can be applied for the integrated system. Zhang et al. [7] 

proposed a supply voltage tuning technique in which the oscillator voltage is adjusted 

to compensate for temperature effects. Vilander [8] proposed the use of an integrated 

heating element, to compensate for temperature and improve device oscillator 

accuracy.  In this work, a dual configuration method will be used for the suppression 

of ambient effects in which one device is used as the reference and another one as the 

sensing element [9].  
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Temperature characterisation of the complete sensing system (working in dual 

configuration) was performed. The result is shown in Figure 4.8 labelled as “Mixed 

signal”.  This is the typical single differential output obtained from the readout 

circuitry. The TCFosc of the sensing system is considerably smaller at -24 ppm/°C. 

However, this is still a high value for sensing applications, were the frequency shift 

caused by the physical parameter being measured can be smaller than the temperature 

effects. The measured TCFosc corresponds to the difference between the individual 

TCFosc of the SMR devices used. When using SMRs with similar TCFs, temperate 

effects are practically eliminated with TCFosc < -2 ppm/°C. Therefore, this method 

relies on both reference and sensing devices to have very similar TCFs, which should 

be considered prior performing experimental measurements.  

To avoid damaging the electronic components, the sensor system was tested 

up to a temperature of 90°C. The SMR device together with the readout circuitry were 

able to work reliably up to this temperature. While the SMR device was tested at 150°C 

and found to resonate, the electronic components were not exposed to high 

temperatures beyond their specified maximum limits (industry standard 125°C).  

 HUMIDITY EFFECTS 

To characterise the humidity dependence of the SMR devices, they were exposed to 

conditions in the range of 15 to 60 %RH. For these experiments, the response of a 

single ended SMR device was tested (using an Agilent frequency generator as a stable 

reference signal), as described previously for the temperature characterisation. To 

isolate the effects of humidity variance, the SMR sensor was tested in a constant 

temperature environment. Humidity levels and temperature inside the oven were 

monitored with the BME280 sensor. The time response is shown in Figure 4.9. A linear 

fit was applied to the data to remove the offset due to temperature drift caused by the 

injection of humidity vapour. 

When exposed to a humid environment, water molecules are absorbed on the 

surface of the ZnO film [10, 11] causing an increase in the density of the layer. This 

in turn results in a decrease of the resonant frequency of the SMR. Sealed packages 

can be used to isolate the SMR and avoid this effect (e.g. for other applications such 
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as accelerometers, filters). However, for gas sensing, the sensor needs to be exposed 

to the sample.  

 

Figure 4.9 SMR dependence of humidity (15%RH to 60%RH). 

It is usually reported that the principal cause of the change in frequency of ZnO 

based FBARs is due to water molecules being absorbed in the ZnO layer [12, 13]. The 

change in frequency is likely to be a combination of the mass loading caused by the 

water molecules being absorbed into the ZnO film and the change in density of the 

sample air (at a constant temperature, humid air is less dense as water molecules, with 

a lower molar mass, replace the dry air molecules [14, 15]). This additional cause is 

not usually reported in the literature, and thus needs to be investigated further. A 

humidity dependence of approximately 580 Hz/%RH was found for the experiment in 

Figure 4.9, which is comparable to a value of ~289 Hz/%RH for a 701 MHz device 

reported by Ashley et al. [16].  

4.5 CONCLUSIONS 

The solidly mounted resonators were fabricated at the designed frequencies of 

870 MHz and 1.5 GHz. Fabrication was performed using standard microfabrication 

technologies in a 3-mask photolithography process, with piezoelectric ZnO and Al and 

Au/Cr electrodes. Two batches of devices were fabricated with a total of 12 wafers 

processed. Individual dies were obtained with a small footprint of 1.5 mm × 1.5 mm.  
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The devices were characterised using a network analyser to obtain the 

scattering parameters. A large variance (up to +24 %) was found in the layer 

thicknesses of the first batch (compared to the design parameters), which in turn caused 

a large variance of the resonant frequency of the devices. Fabrication tolerance was 

improved for the second batch of devices, with thickness variance of ~ 15%. SMR 

devices from the second batch (resonance at 900 MHz) exhibited a typical quality 

factor of 170 and electromechanical coupling coefficient of 2.6%.  

The devices were characterised to ambient effects, both with and without 

interface circuitry. Temperature was varied between 30 and 90 °C and humidity was 

varied between 15 to 60 % RH. A network analyser was used to monitor the series and 

parallel frequencies of the device. TCF values were measured as -55 ppm/°C 

and -49 ppm/°C for series and parallel resonance, respectively. When used in a single 

ended output, with associated electronics, the SMRs were found to be very susceptible 

to changes in temperature and humidity. The TCF and humidity dependence were 

measured as -110 ppm/°C and ~580 Hz/%RH, respectively. Using a differential 

configuration demonstrated that the effects of temperature and humidity variance were 

significantly reduced. Temperature and humidity effects can be further reduced, by 

using signal processing techniques (environmental parameters can be measured using 

dedicated sensors).  

In the next chapter, these sensors are used for applications of particle sensing. 

A particle sensing unit is developed using the dual configuration technique, which 

reduces the effect of the temperature and humidity variation when the devices are used 

outside of a controlled environment. These devices were used in the development of a 

prototype air quality monitor and they formed the basis for the development of a 

CMOS compatible device. 
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PARTICLE SENSING WITH 

SOLIDLY MOUNTED 

RESONATORS 

5.1 INTRODUCTION 

The design, modelling, fabrication and characterisation of solidly mounted resonators 

for air quality monitoring was reported in Chapters 3 and 4. This chapter investigates 

the use of these devices for particle sensing in air. Finite element analyses (COMSOL 

Multiphysics) were performed using a three-dimensional model to evaluate the 

suitability of these devices for the detection of micro-sized particles (<10 µm).  

Preliminary characterisation was performed with the SMR devices (resonant 

frequency ~900 MHz); fine particles of known size and composition (PTFE 1 µm and 

talcum powder 7 µm) were deposited on the active area of devices, connected to a 

network analyser. 
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The development of a portable particle sensing unit based on the SMR devices 

is described. The sensing unit is tested in a dual mode configuration. Experimental 

characterisation of the particle sensor unit is reported, with experiments performed in 

a particle sensing chamber at the University of Warwick, UK and inside an 

environmental chamber at VITO, Belgium.  

Development of a virtual impactor (to separate the PM2.5 from larger particles) 

is presented. The impactor was designed to be integrated as part of a hybrid particle 

microsensor system using an ASIC chip.  

5.2 PARTICLE - SURFACE INTERACTION 

For particle sensing applications, it is important to understand the effect of discrete 

masses on the surface of SMR resonators compared to homogenous masses. The 

frequency response of acoustic resonators is dependent on the strength of the 

interaction between the particle and the sensor surface (the top electrode). 

Sauerbrey’s equation (2.6) describes the effect of mass loading on the resonant 

frequency of a QCM device. However, this relationship only applies to a homogenous 

thin rigid film firmly attached to the surface of the resonator. Dybwad developed a 

one-dimensional mechanical model of a solid particle in contact with a quartz 

resonator [1]. The model demonstrated that a particle attached to the surface forms a 

coupled oscillator system resonating at a new frequency. A strong particle binding to 

the surface will cause a decrease in the resonant frequency of the system leading to 

Sauerbrey’s equation, this is termed inertial loading. A weak particle-surface coupling 

is called elastic loading. In this situation, the resonant frequency of the system 

increases, proportional to the stiffness of the binding.  

Dybwad’s findings were supported by Johannsmann who expanded the one 

dimensional model and developed mathematical equations to explain the phenomena 

[2, 3]. As the coupling strength of the particle-surface interaction is directly related to 

the particle size, a negative frequency shift can be observed when the particles are 

small enough and rigidly attached to the surface. On the other hand, positive frequency 

shifts are predicted for larger particles due to an increase of the effective stiffness of 

the composite resonator. The same behaviour was observed in other experimental 
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studies with a solid particle in contact with a thickness shear mode (TSM) sensor in 

air and colloidal objects on the surface of a QCM in liquid phase media [4]. 

The following section investigates the mass loading of small particles on a 

SMR through FEM. There are a limited number of experimental studies in the 

literature on the contact mechanics of the particle surface interactions with acoustic 

resonators. Furthermore, these studies are usually performed with commercial QCM 

resonators, with no comprehensive reports or analysis with SMR devices.  

Johannsmann calculated a cut-off particle size of 60 µm, between particles categorised 

as large or small; large particles exhibited elastic loading while small particles were 

noted to bind strongly to the surface of the resonators. As the particles used in this 

work were in the range of 1-10 µm, it was assumed the particles would interact with a 

strong binding to the surface of the device.  

5.3 FINITE ELEMENT MODELLING ON PARTICLE SENSING  

The frequency response of the SMRs was simulated pre- and post-deposition of fine 

particles using FEM.  The 3D model was introduced in section 3.2.2, and further 

details can be found in Appendix B.   

The fine particles (<10 µm) were modelled as cubic geometries instead of 

spheres, to ensure the good binding to the surface of the electrode was represented in 

the model. This follows the assumption that particles with small diameter are strongly 

bound to the surface of the device. A decrease in the resonant frequency of the device 

is expected when particles are loaded. Figure 5.1 shows the meshed model with PM2.5 

loaded onto the sensing area of the SMR device. The series resonant frequency of the 

unloaded resonator was evaluated at 875.12 MHz. The resonant frequency was again 

evaluated after the deposition of a number of particles (incrementally deposited from 

2 to 10) and the frequency shifts computed. 
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Figure 5.1 (a) Geometry of the developed finite element model (quarter structure) and (b) the 

fine particles deposited on the sensing area. 

 The developed model suffered from two limitations: (1) the capabilities of the 

workstation limited the total number of simulated particles and (2) the particles could 

only be deposited on the simulated quadrant of the complete geometry. A maximum 

of 10 particles were added onto the surface of the resonator model as the simulations 

became extremely time consuming after this point (>96 hours). It would be preferable 

to simulate the entire geometry of the SMR (requiring a dedicated high-performance 

workstation), as when only a quadrant was simulated, in effect, the particles were only 

placed on one corner of the sensing area. Although these limitations are clear, the 

model was suitable to perform a comprehensive analysis of the capabilities of the SMR 

devices, including an investigation into the effect of varying the location of the 

particles on the surface of the SMR and the sensitivity to particles (PM2.5 and PM10) 

depending on the resonant frequency (870 MHz and 1.5 GHz).  

The variation of the frequency response of the devices to different particle 

locations was analysed. Three different arrangements of particles were simulated with 

up to ten particles deposited randomly in the central area of the quadrant as shown in 

Figure 5.2a. It was observed that the different particles arrangements on the top surface 

produced different frequency shifts with variations within ±5%. Figure 5.2b and c 

show the computed frequency shifts for PM2.5 and PM10, respectively for the 

870 MHz device. Higher variation was observed when PM2.5 particles were deposited 

compared to the PM10 as shown in Figure 5.2d and e.  
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Campanella et al. similarly reported a large variation in frequency shifts caused 

by the placement of a mass at the centre, lateral and diagonal locations on a FBAR. 

Their experimental work demonstrated sensitivity dependence of the resonator to the 

position of the localised mass [5].  

 

Figure 5.2 Dependence of the sensitivity of the SMRs to three patterns of deposited particles: 

(a) Particle arrangements; (b) and (c) frequency shifts for PM2.5 and PM10, respectively; (d) 

and (e) variance between arrangements. 

The computed frequency shifts from the three patterns were averaged and these 

values were used to estimate the sensitivity of the SMRs. Figure 5.3 summarises the 

estimated sensitivity of the modelled devices when detecting PM2.5 and PM10.  

The mass sensitivity of the 870 MHz SMR with Al electrodes was found to be 

slightly higher than the devices with Au/Cr electrodes when detecting both PM2.5 and 

PM10 (+24% and +14%, respectively).  Similarly, the 1.5 GHz SMR with Al 

electrodes produced a 22% higher response for PM2.5 and +20% for PM10 compared 

to the one with Au/Cr electrodes. The greater sensitivity of the SMRs with Al top 

electrode could be attributed to the lower mass of the electrode compared to that of the 

Au/Cr electrode, as suggested by Gabl [6].  
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Figure 5.3 Estimated sensitivity of the designed SMRs to the deposition of fine particles 

obtained from the simulation results.  

Sauerbrey’s equation (2.6) states the frequency shift of an acoustic resonator 

for a given mass is directly proportional to the resonant frequency of the device. This 

relationship can be observed for the detection of PM2.5. However, for the detection of 

PM10 the inverse phenomenon was observed.  

These results suggest that the magnitude of the frequency shift is related to the 

fraction of the particle detected on the surface of the device, as proposed in previous 

works [7, 8]. The 870 MHz device with a wavelength of ~7.3 µm would detect a bigger 

fraction of the PM10 particle compared to the 1.5 GHz device with a wavelength of 

~4.22 µm. Hence, a higher frequency shift is observed with the 870 MHz device when 

detecting the larger particles. SMR devices with tailored resonant frequencies may be 

used for the monitoring of airborne particles with different size distribution. In the next 

section, experiments are performed to verify these observations from the simulations.   

5.4 CHARACTERISATION OF SMRS TO THE DEPOSITION OF PARTICLES 

Initial characterisation was performed with the first batch of SMR devices to the 

deposition of micro-sized particles (1 µm and 7 µm). The batch included devices 

designed to operate at 870 MHz and 1.5 GHz but the fabricated devices were found to 

resonate at 970 MHz and 1.7 GHz, respectively. The 970 MHz SMRs (Al electrodes) 

were selected from this batch for initial characterisation. From the analysis of the FEM 

results above, the 1.5 GHz SMRs offered far greater sensitivity to PM2.5, compared 

to the 870 MHz SMRs, but very limited sensitivity to PM10.  In order to test the device 
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to 1 µm and 7 µm diameter particles, the 970 MHz devices were preferred to obtain 

reliable and reproducible results.  

A photograph of the experimental setup is shown in Figure 5.4. A micrometre 

wire (25 µm thick) attached to a three-axes linear stage was used to manually deposit 

particles of known size and composition (PTFE 1 µm and talcum powder 7 µm) on 

top of the active area of the device. Throughout the experiment, the device was kept 

inside a temperature controlled chamber, to remove the effect of environmental 

temperature variance. A digital microscope (AnMo Electronics, Taiwan) was used to 

magnify the apparatus. The micrometre wire with particles on the tip is placed directly 

above the sensing area and lowered down onto the device, where particles attached to 

the wire are deposited on the surface of the sensor.  

 

Figure 5.4 Experimental setup for SMR characterisation for particle deposition. 

 The frequency response of the SMR device was monitored with the Vector 

Network Analyser (VNA) E5071B (Agilent Technologies). A LabVIEW virtual 

instrument was developed to control the VNA, which allowed continuous monitoring 

and logging of the series and parallel resonant frequencies of the device.  

The number of particles deposited onto the surface of the SMR devices was 

observed using an optical microscope (100x magnification), which is not shown in the 

photograph of the experimental setup. A digital camera connected to the lens of the 

microscope was used to photograph the sensing area of the SMR devices. Figure 5.5 
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shows these photographs, taken before deposition, after deposition of a low number of 

particles and after deposition of a large number of particles.    

 

(a) 

 

(b) 

Figure 5.5 Photographs of the SMR surface before and after the deposition of (a) PTFE 1 

µm particles and (b) talcum powder (7 µm). 

Four depositions of 1 µm particles were made onto the surface of a single SMR. 

After each deposition, the frequency shift from the baseline value was recorded and a 

photograph of the surface was taken under the microscope.  Image processing was 

used to approximate the total mass on the surface of the sensing area of the sensors. 

This total mass together with the recorded frequency shifts were used to calculate the 

sensitivity of the device. Figure 5.6 shows the calculated mass load onto the surface of 

the SMR after each deposition and the corresponding frequency shift. A linear 

relationship was noted between the frequency shift and total mass of the particles. The 

device demonstrated a sensitivity of ~90 kHz/ng and a minimum detectable mass of 

0.72 ng (lower masses were not tested).  
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Figure 5.6 Relationship between total mass of the particles (PTFE 1 µm) on the surface of 

the SMR and measured frequency shifts.  

The experiment was repeated with particles of 7 µm diameter, using a clean 

SMR surface. In a similar manner, particles were deposited four times onto the surface 

of the device. Experiments were repeated three times. One representative result is 

shown in Figure 5.7. No experiments demonstrated a clear relationship between the 

loaded mass and the frequency shift. Positive and negative frequency shifts occurred 

during the experiments with no evident pattern.  

 

Figure 5.7 Total mass of 7 µm talcum particles loaded onto the surface of the SMR with 

corresponding frequency shifts.  

As discussed in section 5.2, a decrease in resonant frequency would be 

expected for an increase of mass loading on the sensor. When a positive frequency 

shift is measured, for example in Figure 5.7, this demonstrates a weak interaction has 

occurred between the particles and the surface which increases the stiffness of the 
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resonator. In this manner, the shift in resonant frequency is proportional to the stiffness 

of the contact and is independent of the mass of the particles [2].   

Particles of different sizes and shapes experience different interactions with the 

sensor surface (contact area). The SEM images in Figure 5.8 show the irregular shapes 

of typical PTFE particles (<1 µm) and talcum powder (mean size of 12 µm) [9, 10]. 

The angular shape of the talcum powder mean that the particles have more corners. 

These sharp edges increase the possibility that the particles will make discrete points 

of contact with the surface. This is particularly visible in Figure 5.8b where talcum 

powder particles are angular and flaky, making poor contact to the surface. 

Conversely, the PTFE particles in Figure 5.8a are more rounded but not spherical. The 

irregularity of the talcum particles can explain the different results obtained during the 

experiments shown above, where both positive and negative shifts were obtained due 

to unpredictable shape of the particles deposited on the surface.  

 

Figure 5.8 SEM photographs of typical (a) PTFE micro-sized particles and (b) talcum 

powder (50 µm scalebar). Photographs from [9, 10].  

The experiments in this section demonstrated the 970 MHz was suitable for 

PM2.5 particle sensing. Excellent results were found with the 1 µm particles, although 

inconclusive data was obtained for the larger particles (7 µm). For this work, in terms 

of air quality monitoring, small particles <2.5 µm are of particular interest due to their 

associated health risks. The larger diameter particles do not pose significant danger 

when inhaled compared to the smaller particles, thus PM2.5 is the focus of this work.  
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 Following the characterisation of the SMR, a particle sensor unit was 

constructed based on the 970 MHz SMR device. The development of this sensing unit 

is discussed in the next section.  

5.5 DISCRETE PARTICLE SENSING UNIT 

A particle sensing unit was developed to operate in dual mode configuration with two 

970 MHz SMR devices. In this section, the development of the electronic interface 

circuity and readout system is described.  The completed sensing unit represents the 

basis towards a portable, real-time and low-power particle sensor based on solidly 

mounted resonators. 

 OVERALL DESCRIPTION OF THE SYSTEM 

The block diagram in Figure 5.9 shows an overview of the developed particle sensor. 

The system operates in dual mode configuration for the suppression of common 

environmental effects, with one SMR working as a reference channel and the second 

as a sensing channel.  

 

Figure 5.9 Overall outline of the discrete particle sensor based on SMRs. 

The 970 MHz SMR devices were driven by Colpitts type oscillators. The 

output signals of the oscillators are sent to an interface mixer board comprising of an 

RF mixer, a low pass filter and a comparator, as shown by the block diagram in Figure 

5.9. The high frequency signals of the oscillators are mixed in a heterodyne process 

and the mixer output is filtered (10 MHz low pass filter) to obtain a differential 

frequency output. A comparator is used to turn the sinusoidal signal into a low 
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frequency square wave (<10 MHz) which can be measured using a microcontroller at 

high resolution (1 Hz).  

The output frequency data are logged to a PC via USB serial communication 

using National Instruments LabVIEW virtual instrumentation. An exploded view of 

the particle sensing unit is shown in Figure 5.10. Each component of the diagram is 

discussed in detail in the following subsections.  

 

Figure 5.10 Overall structure of the developed particle sensing unit showing the three main 

parts forming the particle sensor. 

 READOUT CIRCUITRY 

VNAs can provide useful information on the electrical performance of SMRs (as 

presented in Chapter 4). However, due to their high cost and physically large size, they 

are only suitable for performing device characterisation and in-lab measurements, such 

as those described in section 5.4. To develop a portable, low-cost and low-power 

system for use in real-time air quality monitoring applications, an electronic readout 

circuit is necessary. This section describes the development of a discrete system 

comprising of Colpitts oscillators (to drive the SMRs) and mixer circuitry.  
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5.5.2.1 DISCRETE COLPITTS OSCILLATOR  

To drive the SMR devices, a Colpitts type oscillator was designed by Mr Sanju 

Thomas, research assitant at the University of Warwick (UK). For the oscillator 

design, an equivalent MBVD model was used. The circuit was designed in parallel 

with the fabrication of the SMR devices. To obtain the equivalent MBVD model, the 

COMSOL modelling data presented in section 3.3.3 was employed, together with 

performance characteristics measured from an available FBAR device (740 MHz),  

 The designed Colpitts oscillator circuit is depicted in Figure 5.11a. The SMR 

device operates in a one port configuration with one terminal grounded. A low noise 

silicon transistor BFR92P (Infineon Technologies) provides the gain stage in the 

oscillator loop. An oscillator based on a RF transistor was selected due to its desirable 

performance (significantly reduced parasitic capacitances) and lower cost compared 

to an op-amp based solution. Further details on the Colpitts oscillator design are 

reported by Thomas et al. [11]. The measured output spectrum of the SMR-Colpitts 

oscillator used in the particle sensing unit is shown in Figure 5.11b. The oscillator 

demonstrated satisfactory performance, although poor frequency stability was 

observed. Furthermore, operating the Colpitts circuit at higher frequencies 

(>600 MHz) can lead to reduced performance, due to the build-up of parasitic 

impedance, which can cause the oscillator to become damped.  

The SMRs were wire-bonded onto a 16 pin leadless chip carrier (LCC) package 

(0.25 inch square, LCC01627 Spectrum Semiconductors, USA) to be interfaced to the 

oscillator boards. The reference SMR was covered with a small and thin cap fabricated 

using a Perfactory® III Mini SXGA+ (EnvisionTech, Germany) rapid prototyping 

machine via microstereolithography (MSL). This cap prevented particles from falling 

onto the surface of the reference device while still being exposed to the same ambient 

conditions.  
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(a) (b) 

Figure 5.11 (a) Schematic diagram of the Colpitts Oscillator circuit to drive the SMR 

devices and (b) Output spectrum of the SMR-Colpitts oscillator [11].  

5.5.2.2  MIXING CIRCUIT 

A separate interface board was designed to mix the SMR signals, based on a basic 

circuit schematic provided by Mr Sanju Thomas, University of Warwick (UK). The 

implementation of the circuit is shown in Figure 5.12. The mixer board consisted of a 

double balanced RF signal mixer HMC207AS8 (Hittite Microwave Corporation), a 

RF low pass filter SCLF-10 (Mini-circuits®) and a comparator ADCMP600 (Analog 

Devices).  

 

Figure 5.12 Basic mixer circuitry schematic design. 

The reference and sensing oscillator frequencies are mixed using a heterodyne 

down-conversion technique. The low pass filter (cut-off frequency of 10 MHz) was 
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used to output only the differential frequency. In this way, the mixer circuit helps 

reduce both the effects of common mode variations and the output frequency signal 

range (to the kHz range). The comparator converts this differential output into a square 

signal with a voltage level of 3.3 V (the maximum tolerated voltage for the 

microcontroller input pin).  

The low current consumption of the circuitry (300 mA) allowed the boards to 

be powered from a single 5 V USB port. A micro USB connection is included in the 

mixer board, so the oscillator circuitry can be tested independently, without a 

microcontroller. In the assembled sensor unit, the mixer board is powered from the 

5 V rail on the microcontroller, which is powered from a USB connection to a PC.  

A dual linear voltage regulator MIC5212 (Micrel®) was used to generate 2.5 V 

for the SMR-Colpitts oscillators and 3.3 V for the comparator. The shape of the board 

was designed to be integrated with the selected microcontroller (Teensy 3.1, PJRC) 

and to accommodate two SMR oscillator boards.  

The mixer board was designed as a four-layer PCB with separate ground and 

power planes. RF cross-talk was reduced and impedance mismatching minimised 

through careful layout design. The characteristic impedance of the PCB tracks was set 

to 50 Ω. The length of the RF tracks was kept as short as possible to minimise current 

flow and loop area with multiple vias connected to ground in close proximity to the 

signal tracks. MMCX RF connectors (50 Ω impedance) were used to connect to the 

oscillator board signals ensuring several ground connections were made.  

The majority of the components were placed on the top layer of the PCB with 

only the low pass filter placed on the bottom layer. Vias carrying the RF signals were 

avoided where possible. The mixer and oscillator boards were designed using Altium 

Designer (15.0) and manufactured by Eurocircuits (Belgium).  

 DATA ACQUISITION 

Professional acquisition systems, such as National Instruments data acquisition (DAQ) 

cards, can be used to record the sensor response in a laboratory setting. These costly 

systems offer high resolution measurements (16-bit) and convenient companion 
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software. During the first stages in the development of the particle sensor, a DAQ 

board PCI-6602 (National Instruments) was used to acquire data output of the unit for 

initial testing. However, portable air quality monitoring systems need to be low power, 

low-cost and physically small. Microcontrollers offer an affordable solution for these 

requirements and are ideal for recording sensor data and transmitting it to a central 

database. 

 For the development of the particle sensing unit, a low-cost microcontroller 

Teensy 3.1 was selected to count the frequency of the output square wave signal [12]. 

The compact size of this microcontroller (17.8 mm × 35.6 mm) enabled it be integrated 

within the acoustic sensor system as shown in Figure 5.13. The Teensy board offers a 

simple access to a powerful microprocessor, without unnecessary and bulky 

components or interfaces (e.g. additional USB ports, power connectors or switches). 

The Teensy 3.1 microcontroller has excellent data acquisition properties, with a built-

in high quality (16 bit) analogue to digital converter and a 72 MHz Coretx-M4 

processor. A dedicated pin is available to measure a high frequency input (~65 MHz).  

 

Figure 5.13 Low-cost microcontroller was integrated within the particle sensor for data 

acquisition and interfaced to the PC via USB serial communication. 

A software library was used to perform the frequency counting on the Teensy 

microcontroller. In brief, the dedicated frequency input pin is connected to a timer in 

the microprocessor. A short period of data is captured (of precisely 100 ms) and 

analysed using the software library. The frequency of the signal is calculated, in real-

time on the microcontroller, by counting the number of cycles found in this captured 
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data. The dedicated interrupt time on the microcontroller enables frequency 

measurement to within ± 1 Hz (with an input signal measured in the MHz range).  

To visualise the sensor response (i.e. a change in output frequency), the 

microcontroller was linked to a computer via a USB serial connection. The frequency 

data transmitted from the microcontroller was recorded and plotted in real time with a 

virtual instrument developed using National Instruments LabVIEW software. A screen 

print of the front panel user interface is shown in Figure 5.14. The software was 

designed to enable real-time visualisation and storage of the response data from 

multiple particle sensors simultaneously.   

 

Figure 5.14 Screen shot of developed LabVIEW front panel showing frequency response 

data of one particle sensor unit acquired using the microcontroller.  

 EXPERIMENTAL SETUP 

The assembled particle sensing unit (shown in Figure 5.15) was enclosed in an 

acrylic housing to protect the electronic circuitry. Overall dimensions of the enclosed 

unit are 49 mm × 44 mm × 34 mm. However, the sensing unit itself is smaller with 

overall dimensions of 41 mm × 36 mm × 25 mm. An alternative case, fabricated using 

3D printing technology can be fabricated to minimise the footprint of the enclosed 

sensing unit and allow easy access to the USB port.  
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(a) (b) 

Figure 5.15 Photograph of (a) the discrete particle sensing unit and (b) enclosed unit. 

Preliminary testing of the sensing unit was performed at the Microsensors and 

Bioelectronics Laboratory within a particle testing chamber (experimental setup 

shown in Figure 5.16).  The test particles are deposited onto a conveyer belt driven by 

a DC motor with adjustable speed and direction. A Venturi tube is located above the 

belt system. Particles are drawn into the chamber by the Venturi tube connected to the 

compressed air supply. Residual particles are collected in a tray located underneath the 

belt system. For the safe disposal of the particles, the air exhaust of the chamber 

connects to a vacuum pump that empties the remaining particles. 

The sensing unit was placed inside the chamber (5.625 L) together with 

reference particle monitors, namely the DC1700 air quality monitor (Dylos 

Corporation, USA) and the DN7C3CA006 Dust sensor (Sharp Corporation, Japan).  

These are affordable instruments based on optical principles (<$200).  The Dylos 

instrument has a serial output which allows data to be logged on a computer (using 

provided data logging software). It takes one measurement per minute and can classify 

PM2.5 and PM10 particles. 
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Figure 5.16 Photograph of the experimental setup used for particle testing. 

The Sharp dust sensor was interfaced to an electronic circuit and 

microcontroller (Teensy 3.2) for data acquisition. A dedicated LabVIEW virtual 

instrument was developed for the real-time monitoring and data logging of the three 

signals measured from the sensing unit and reference instruments (Figure 5.17). Data 

was logged at 1 Hz for the Dylos and at 10 Hz for the Sharp and SMR sensor.  

 

Figure 5.17 Data acquisition software and instrumentation used within the testing setup. 
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A stabilisation period of 45 minutes was allowed prior to the injection of any 

test particles.  PTFE 1 µm particles were then injected into the chamber for 10 seconds 

using the Venturi system. Response data from the devices were logged for a further 

period of 65 minutes to allow the outputs to stabilise, as shown in Figure 5.18. The 

raw data recorded by the Dylos monitor is given in units of particles/ft3; for useful 

comparison, the data was converted into units of µg/m3.  

 

Figure 5.18 Time response of SMR based particle sensor unit to PTFE 1 µm particles 

compared to commercial optical devices (Sharp corporation and Dylos monitor). 

A fast response was produced from the reference sensors following the 

injection of the test particles. The response from the SMR sensor was slower compared 

to the commercial optical sensors. The commercial devices both use an active 

sampling technique (fans draw air into the instruments) as opposed to the passive 

method (gravitational sedimentation) used in the SMR.  

The SMR sensor had a response time t10 (time to reach 10% of the final value) 

of 43 seconds and t90 (time to reach 90% of the final value) of 207 seconds. By 

comparison the Sharp sensor had a t10 of 100 seconds and t90 of 116 seconds, assuming 

a maximum output of 5 V. The output from the Sharp sensor was saturated by the 

particle density in the chamber. The slow logging frequency (1 sample/minute) of the 



 

Chapter 5. Particle Sensing with Solidly Mounted Resonators 178 

 

 

Dylos sensor prevented the response time calculation. The peak value is recorded on 

the third data point after the injection.  

Momentarily after the injection of the test particles, the air in the chamber has 

a very high density of particles. As the particles settle on the base of the chamber, the 

density of particles in the air decreases. The SMR sensor does not recover to its 

baseline resonant frequency as particles accumulate on the surface during the 

experiment (no method is employed to remove the particles). A frequency shift of 

~13 kHz was measured for a particle concentration of 422 µg/m3 (recorded by the 

Dylos). The temperature inside the chamber increased during the experiment, which 

caused the SMR sensor output to drift by ~2 kHz over the 115 minute experiment.  

A photograph of the surface of the sensing SMR is shown in Figure 5.19, taken 

using an optical microscope after the experiment. Several large clumps of particles are 

visible, as well as hundreds of individual particles.  Due to their size and mass the large 

clumps become deposited quickly causing the initial response of the SMR sensor. The 

individual particles take a longer period of time to deposit. The final recorded 

frequency shift reflects the total mass of particles on the sensor surface.  

 

Figure 5.19 Particles deposited on the sensing area of the SMR, view at 20× magnification. 

The commercial devices sample air from inside the chamber. Both devices 

produced a large response immediately following the injection of the particles. As the 

particles settle, the amount suspended in the air decreases, which causes a reduction in 
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the values recorded by the commercial devices. Towards the end of the experiment, 

the output values from the commercial instruments return close to their baseline 

values.  The devices do not recover completely to their initial readings, as a low 

number of particles remain in the air. 

The developed particle sensor unit relies on gravitational sedimentation of 

particles to deposit on the sensor surface. Large particles (>30 µm) will settle in a few 

seconds in the chamber shown above (with the particle injection point at only 15 cm 

above the particle sensor). Smaller sized particles (<10 µm) can stay in the air for 

longer periods of time (several minutes) and UFPs are unlikely to deposit due to their 

insignificant gravitational forces. Although the gravitational collection method used 

with this sensor is not optimal, it provides a good approach for characterisation 

purposes with valuable information obtained from the characterisation of this first 

prototype.  

To calculate the sensitivity of the sensor unit, the device was exposed to 

different concentrations of 1 µm PTFE particles. Figure 5.20 shows the frequency shift 

of the SMR after each injection together with the corresponding particle concentrations 

measured by the Dylos monitor. A linear fit was applied to the data and the sensitivity 

was calculated as 27.5 Hz per µg/m3. The SMR produced a linear response to the 

concentrations over the tested particle concentration range.  A good R2 value of 0.9686 

(R is coefficient of correlation) was obtained.  

 

Figure 5.20 Frequency shift of the SMR sensor unit following the exposure to particle 

concentrations in the range of 400 to 1720 µg/m3. 
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Further characterisation of the developed particle sensor was performed at 

VITO NV, Belgium as part of the European Commission 7th Framework Programme, 

Project entitled “Multi-sensor Platform for Smart Building Management”. VITO is a 

leading research organisation with expertise in air quality monitoring and particulate 

matter measurements. Several sensing units were constructed and tested before being 

sent to the facilities at VITO were the particle testing was performed3 inside an 

environmental chamber with aerosol particles of known size and composition. A block 

diagram of the experimental setup at VITO is depicted in Figure 5.21. 

 

Figure 5.21 Schematic of the experimental setup performed in the environmental chamber. 

A large test chamber with internal volume of 720 L (shown in Figure 5.22a) 

was used to test the SMR based particle sensors. A commercial quartz crystal 

microbalance (Vitrolcell® Systems, Germany) was placed adjacent to the SMR 

research sensors together with two commercial optical based particle counters: the 

Dylos optical sensor, used in preliminary laboratory testing, and a second instrument 

(Grimm Technologies Inc., USA). The experimental setup is shown in Figure 5.22b. 

Real-time PM concentration readings from all the instruments were logged to 

dedicated computers. The environmental conditions inside the chamber (temperature 

and humidity) were monitored, with typical values of 24 °C and 22 %RH, respectively 

and variations within 1°C and 1 %RH. 

                                                 
3 Experiments were conducted by Mr Sanju Thomas from the University of Warwick (UK); and Dr Jan 

Theunis and Dr Jan Peters from VITO (Belgium).  
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(a) (b) 

Figure 5.22 (a) Measurement chamber and logging equipment; (b) SMR based units and 

commercial instruments inside the chamber, located together in one corner. Temperature and 

humidity is monitored in the chamber.  

A dust generator (TOPAS®) was used to generate the test particles, which were 

then injected into the test chamber using a suction pump. Arizona test dust (Powder 

Technology Inc., USA) was the target aerosol used in the experiments (nominal 

particle diameter of 0-3 µm). The median particle size distribution (d50) of these 

particles was 0.927 µm. Only 10% of the particles tested were found to be below 

0.712 µm (d10); the remaining 90 % (d90) of the particles were found to be below a 

diameter of 1.526 µm.  

The free-settling velocity of Arizona dust particles was estimated from the 

Stokes’ law, assuming spherical particles at ~180 µm/s for particles of 1.5 µm in size 

and ~80 µm/s for finer particles (1 µm diameter) [13].  In this experimental setup, it is 

therefore very unlikely that particles below 1 µm in size were detected given the large 

size of the chamber. Only the bigger particles were fall onto the resonator.  

A number of experiments were performed, with particles injected into the 

chamber for a range of times (varying from 2 s up to 10 min). The commercial optical 

devices provided measurements of the particle concentration in the testing chamber in 

units of µg/m3. The reference Grimm monitor measured concentrations as low as 

20 µg/m3 and as high as 30,000 µg/m3 (naturally, the highest concentrations were 

obtained with the longer injection periods).  
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For acoustic devices, the magnitude of the frequency shift is related to the 

number of particles which settle on the sensors of the surface (a greater number of 

particles is expected on the surface of the device when a greater amount is injected). 

A frequency shift is only shown when the particles have settled on the surface of the 

device, thus a slower response is likely from devices which do not use an active 

sampling method. 

During the experiments, no facilities were available to photograph or view the 

particles deposited onto the surface of the acoustic devices. The mass of the particles 

on the sensor surface could not be determined. Therefore, the sensitivity of the SMR 

devices was estimated in terms of frequency shift per µg/m3 with particle mass 

concentration inferred from the optical reference instruments.  

To ensure the ambient temperature inside the environmental chamber remained 

constant, the chamber was sealed using a rubber gasket. Sealing the chamber was also 

important to prevent the deposition of any foreign matter onto the sensors and to avoid 

air movement effects disrupting the particle deposition process. The cap used to cover 

the reference SMR device is semipermeable and thus sufficient time (of at least 

2 hours) was left for stabilisation of the system to ensure that both the reference and 

sensing devices were exposed to the same environmental conditions. The differential 

mode operation of the SMR sensor helped to eliminate any gradual changes in 

temperature or humidity.  

The injection of the test particles into the environmental chamber caused a 

change in the oscillating frequency of the SMR based sensor, when the system was 

exposed to a predefined amount of dust concentration. The additional mass on the 

surface of the sensor (i.e. the nanoparticles) decreased the resonant frequency of the 

SMR device. A typical response of the sensor is shown in Figure 5.23. For a particle 

concentration of ~60 mg/m3 recorded by the Grimm 1.107 monitor (Grimm 

technologies), a frequency shift of ~315 kHz was observed for the SMR based sensor 

exposed to Arizona dust.  

The SMR sensor system demonstrated a response to the Arizona dust after a 

period of ~2 min after the dust was injected into the chamber. As the deposition method 

was based on the sedimentation of the particles, a delay (in the range of minutes) was 
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expected until the first particles deposit on the device. The commercial QCM device, 

which works on the same principle as the SMR demonstrates a similar delay before a 

response is produced for the injection of the dust particles. The mass of the particles 

on the sensor surfaces of both the SMR and QCM based devices caused a decrease in 

their respective resonant frequencies. An advantage of the SMR system, operating at 

high frequency, is greater mass sensitivity compared to the commercial QCM sensor 

(which operates at a lower frequency of 5 MHz). The mass sensitivity demonstrated 

by the SMR sensor is orders of magnitude higher than the QCM device (kHz range 

compared to low Hz range, respectively), as shown in Figure 5.23.  

 

Figure 5.23  Response of the particle sensors to an injection of Arizona dust particles. 

Frequency response of the SMR and QCM compared to the reference commercial OPC. 

To calculate the sensitivity of the SMR particle sensor, the frequency response 

of the device was measured to various levels of dust concentrations. A linear 

relationship was found, as shown in Figure 5.24, between the SMR frequency shift and 

particle concentration.  An R2 value of 0.9812 was calculated demonstrating the linear 

fit is a good approximation of the SMR output. Considering the set of experiments 

shown, a sensitivity of 4.6 Hz per µg/m3 was calculated. The limit of detection was 

noted as ~ 20 µg/m3 for the SMR based particle sensor. As the layers of particles start 

to build up on the sensor surface, it is expected that the sensor will saturate. However, 

no saturation was observed up to a particle concentration of 60,000 µg/m3 in this work. 
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Figure 5.24 Linear response of SMR sensor to dust concentration in the range of 20 to 

25,000 µg/m3. 

The particle sensing unit relied upon gravitational sedimentation for the 

particles to deposit on the surface of the SMR sensors. The experimental results 

demonstrated that this passive sampling method did not provide an effective means of 

determining the particle concentration inside a chamber. A far greater sensitivity was 

achieved in the experiment performed in the small chamber (27.5 Hz per µg/m3), 

shown in Figure 5.20, compared to the sensitivity calculated from the Figure 5.24 

(4.6 Hz per µg/m3, performed in the large chamber at VITO).  

A possible cause of the lower sensitivity is uneven particle distribution in the 

larger chamber. The commercial optical sensors use fans to sample air from across the 

chamber. The SMR sensor can only sample the concentration of particles that are 

immediately above the unit (which deposit onto the sensor surface). Therefore, the 

SMR sensor was vulnerable to uneven particle distribution, as only a tiny area of the 

large chamber is sampled and the sensors were located in one corner. In the small 

chamber the SMR unit was placed in the centre of the chamber, at a suitable distance 

from the particle inlet so that the volume above the sensing surface would contain a 

uniform distribution of particles.  

In real field conditions, the sensing unit would not be selective to the target 

PM2.5. Particles of any size (i.e. of greater diameter) could become deposited on the 

surface of the device and produce a false response. The sensing unit had a slow 
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response time (order of several minutes) due to the slow settling velocity of the micro-

sized particles. Thus, the system is not suitable for real-time monitoring. The following 

section presents the design of a virtual impactor to overcome the sampling issues found 

with this first prototype unit.  

5.6 VIRTUAL IMPACTOR FOR PORTABLE PARTICLE SENSOR SYSTEM 

To address the limitations of the first unit, a second particle sensing system was 

developed, incorporating a custom virtual impactor for particle sampling and 

separation. The system was further miniaturised by the use of an ASIC chip, which 

replaced the discrete oscillator boards and mixer circuitry from the previous design. 

The ASIC interfaced two SMR devices and performed the necessary signal processing 

to produce a signal suitable for acquisition with a microcontroller.  

 OVERALL OUTLINE 

The particle sensing system was comprised of two main parts, a hybrid electronic 

system for signal processing and a virtual impactor for selective particle sampling. A 

block diagram for the operation of the system is shown in Figure 5.25. The top part of 

the diagram shows how air is drawn through the system using a low-power miniature 

fan and then desired particles are separated using a virtual impactor. The lower part of 

the diagram shows the electronic operation of the system (discussed in section 5.6.2). 

The hybrid electronic system consisted of three components: an ASIC chip, a 

reference SMR device (not exposed to the particles) and a sensing SMR device (to 

detect PM2.5).  The ASIC chip reduced the discrete components required in the 

system, thereby reducing the power consumption of the setup and the overall size of 

the interface PCB.  The ASIC and SMRs were wire-bonded to the interface PCB, 

which provided a test bench for the integrated system to characterise the devices and 

the substrate for the virtual impactor to be integrated. Control circuitry for the sampling 

mini fan was also included in the PCB design. A drawing of the complete 

implementation of the system is shown in Figure 5.26. 
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Figure 5.25 Block diagram to show operation of particle sensing system.  

 

Figure 5.26 Exploded drawing of particle sensing system with overall dimensions of 22 mm 

× 22 mm.  
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The virtual impactor was designed for a cut-off particle diameter of 2.5 µm. A 

miniature blower was used to continuously draw samples of air through the virtual 

impactor. A blower was selected to miniaturise the system and to reduce the power 

consumption compared to an alternative pump. Thus, a compact, lightweight but 

robust system could be obtained. The impactor separated the particles according to 

their aerodynamic diameter, with the PM2.5 directed towards the surface of the sensing 

SMR device and larger diameter particles ejected back to the ambient air.  

 HYBRID ELECTRONIC SYSTEM 

The ASIC was developed to replace the majority of the discrete circuitry needed in the 

previous system, to enable the particle sensing unit to be compact and portable. The 

chip was designed and simulated using Cadence spectreRF (2013) by Mr Sanju 

Thomas, University of Warwick (UK). It was fabricated at AMS (Austria) using a 

0.35 µm CMOS process.  

A block diagram of the internal circuitry of the chip is shown in Figure 5.27. 

A low-power Pierce oscillator configuration was selected for use in the ASIC. This 

oscillator design replaced the Colpitts oscillator used in the discrete oscillator circuitry, 

to give the advantages of self-biasing, current-reuse and low power consumption [14]. 

A Gilbert Cell active mixer was used in the ASIC to provide high conversion gain and 

efficient frequency translation. The signals from the oscillator circuitry are converted 

from single to doubled-ended form, suitable for the Gilbert cell mixer.  

A balun (balanced-to-unbalanced) converter translates the doubled-ended 

output signal from the Gilbert mixer to a single-ended signal, for further signal 

processing. A low-pass filter is used to remove harmonics at high frequencies above 

the fundamental mixer output. Finally, the signal is passed through a comparator, to 

produce a form suitable for reading with a microcontroller.  
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Figure 5.27 Block diagram of ASIC showing internal operation. Circuitry in the ASIC is 

highlighted.  

The interface PCB (designed by Mr Rhys Jones, PhD student at University of 

Warwick) was developed to test the SMR sensors with the ASIC chip to exposure of 

PM2.5. This interface PCB was integrated with the designed virtual impactor and 

provided a square wave output from the ASIC ready to be acquired by the 

microcontroller. A photograph of the ASIC and SMR devices wire-bonded onto the 

PCB is shown in Figure 5.28. The ASIC chip measures an area of 1.65 × 1.55 mm2, 

including input and output pads.  

 

  
(a) (b) 

Figure 5.28 Photograph of (a) the ASIC chip and (b) the SMR wire-bonded to the interface 

PCB.  
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   VIRTUAL IMPACTOR DESIGN 

An air sampling system comprising of a virtual impactor and a miniature blower was 

incorporated into the sensing unit for the separation and collection of airborne particles 

according to their aerodynamic size. The use of a virtual impactor allows particles of 

the desired size to be directed towards the surface of the sensor. The blower draws 

samples of air through the impactor, where the particle separation takes place. A 

diagram of a virtual impactor depicting the air flow distribution and design dimensions 

is shown in Figure 5.29. 

 

Figure 5.29 Diagram of rectangular nozzle virtual impactor. 

The sample air, with total flow rate 𝑄, is drawn through the acceleration nozzle 

of the virtual impactor of width 𝑊 and length 𝑇. This sample air containing large and 

small particles flows in three separate trajectories. A minor portion of the total flow 

(~10%) continues straight towards the collection probe carrying the larger particles 

(with aerodynamic diameter greater than the design cut-off size) due to their large 

inertia. The smaller particles (with low inertia and particle size below the design cut-

off diameter) follow the two major flow channels (of width 𝑆), normal to the 

acceleration nozzle and away from the collection probe with a total of ~90% of the 

inlet flow.   
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The Stokes’ number, 𝑆𝑡50, defined as the ratio of the particle stopping distance 

to the half width of the impactor nozzle [15] and the Reynolds number, 𝑅𝑒, are the two 

main parameters in the design of the virtual impactor, both of them dimensionless. For 

a rectangular nozzle impactor, these two parameters are given as [16]: 

 

𝑆𝑡50 =
𝜌𝑝𝑄𝐶𝑑2

50

9𝜇ℎ𝑊2
 (5.1)  

𝑅𝑒 =  
2𝜌𝑄

𝜇ℎ
 (5.2)  

 

where 𝜌𝑝 and 𝑑50 are the particle density and cut-off diameter (aerodynamic diameter 

of a particle with collection efficiency of 50 %), respectively. 𝑄 is the total flow rate 

at the acceleration nozzle, 𝜌 and 𝜇 are the air density and dynamic viscosity, 𝑊 and ℎ 

are the width of the acceleration nozzle and height of the channel, respectively. 𝐶 is 

the Cunningham slip correction factor given as: 

 

𝐶 = 1 +
2

𝑃𝑑50
(6.32 + 2.01 ∙ 𝑒−0.1095𝑃𝑑50) (5.3)  

 

where 𝑃 is the absolute pressure in cmHg. The collection efficiency, 𝜂, of a virtual 

impactor measures the ratio between the number of particles collected from the minor 

channel, 𝑁𝑚, to the total number of particles entering the inlet flow, 𝑁𝑖𝑛. It can be 

expressed as: 

𝜂 =
𝑁𝑖𝑛 − 𝑁𝑚

𝑁𝑖𝑛
 ×  100 (5.4)  

A laminar flow is required to minimize particle losses through the impactor 

channels. Sharp curves of collection efficiency are obtained with laminar flows 

(Reynold’s number between 500 and 3000) [16, 17]. Following these criteria, the 

width of the acceleration nozzle and height of the rectangular channel were obtained 

for a Stokes’ number of 0.23 [17].  

The width of the major channels (also known as the jet to plane distance) was 

set to a minimum of 1.5 times the width of the acceleration nozzle. The ratio between 
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these two dimensions can strongly affect the collection efficiency of the impactor with 

a minimum recommended ratio of 1.5 for rectangular nozzles [16]. Finally, the length 

of the minor channel was chosen to achieve the desired flow rate distribution, with a 

total length of 150 mm.   

A rectangular nozzle virtual impactor was designed for a cut-off particle 

diameter of 2.5 µm and particle density of 1000 kg/m3. The impactor will direct 

particles with aerodynamic diameter below 2.5 µm towards the surface of the SMR 

device for the detection of PM2.5.  A total flow rate of 1.17 l/min is provided by a mini 

blower (Sunon, Taiwan) with a low power consumption of 280 mW and compact size 

(9 mm×9 mm×3 mm). Final design parameters of the impactor are summarised in 

Table 5.1. 

Table 5.1 Design parameters for the virtual impactor for integration with the portable 

particle sensor. 

PARAMETER FINAL DESIGN 

Flow rate (𝑄) 1.17 l/min 

Cut off diameter (𝑑50) 2.5 µm 

Particle density (𝑑𝑝) 1000 kg/m3 

Stokes number (𝑆𝑡50) 0.23 

Air density (𝜌) 1.225 kg/m3 

Air viscosity (𝜇) 1.98 ×10-5 Pa∙s 

Width of acceleration 

nozzle (𝑊) 
1.5 mm 

Length of acceleration 

nozzle (𝑇) 
2.25 mm 

Height of channel (ℎ) 1.5 mm 

Jet to plane distance (𝑆) 2.25 mm 

Reynolds number (𝑅𝑒) 1600 

Footprint (mm2) 4.84 

 

The designed virtual impactor was simulated by means of computational fluid 

dynamics (CFD) using the flow simulation toolbox and particle trace study in 

SOLIDWORKS 2015. A drawing of the final impactor design (to be integrated with 

the sensing unit) is shown in Figure 5.30.  
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Figure 5.30 (a) Solidworks drawing for simulation of the virtual impactor the SMR based 

and (b) flow simulation of the structure. 

The air flow distribution through the impactor and the separation of particles 

was analysed. Particles with a range of sizes (0.1 µm to 15 µm) were simulated at the 

inlet flow. Particles were defined considering their aerodynamic diameter (spherical 

particles with nominal density of 1000 kg/m3). Computed particle trajectories were 

analysed and functionality of the impactor design was tested. The simulations results 

are presented in Figure 5.31.  

The flow distribution ratio (minor and major channels) met the design criteria 

of 10% and 90%, respectively. The number of particles at the outlets of the minor and 

major flow was computed and the collection efficiency was calculated as shown in  

Figure 5.32. The majority of particles with aerodynamic diameter above 10 µm follow 

the minor channel flow, while most of the particles below the cut-off diameter are 

collected at the outlet of the major channels. The data were fitted using a sigmoidal 

function, from which a cut-off diameter of 2.5 µm was observed. 
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Flow distribution (velocity) 10 µm particle  7 µm particle  

   

5 µm particle PM2.5  0.5 µm particle  

Figure 5.31 Virtual Impactor simulation results: distribution and particle trajectories. 

 

 

Figure 5.32 Simulated collection efficiency of the designed virtual impactor. 
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Design of the virtual impactor was optimised to avoid particle clogging in the 

channels. The channels were designed to have smooth corners and minimum 90° 

bends. After prolonged used in a high-density particle environment it is likely that high 

volume of particles will accumulate on the walls of the channels and clog the impactor. 

This is especially likely if great quantities of large diameter particles (>30 µm) are 

present in the environment. If the device is to be used in such environments it would 

be beneficial to used cascaded virtual impactors. In this way, larger diameter particles 

could be separated during a first stage impactor (with wider channels which are 

unlikely to clog).  

5.6.3.1 MANUFACTURE OF THE VIRTUAL IMPACTOR 

The virtual impactor was manufactured using a 3D printer (Formlabs Form 2), which 

offered flexible designs and rapid prototyping. 3D printing the part allowed the virtual 

impactor design to be optimised and iterative improvements were made during its 

design cycle. The total cost of the materials used in the 3D printing method is too 

expensive for bulk manufacturing although it was affordable (€1.5) compared to the 

alternative subtractive manufacturing using other materials such as aluminium or 

polyacetal.  

The Formlabs resin used to print the virtual impactor was chosen for its 

excellent resolution and perfectly smooth finish. The ‘clear’ resin was used for 

prototyping, to produce near optically transparent parts. This enabled the internal 

features of the impactor to be inspected. Therefore, the channels inside the impactor 

could be checked for particle clogging or manufacturing defects after each experiment. 

The material has excellent tensile strength (65 MPa) and reasonable elongation at 

failure (6.2 %, after curing). The manufactured parts are not brittle and offer a durable 

but smooth finish. The part was able to withstand thorough laboratory testing without 

the need to be housed in a protective case. Furthermore, the resin is compatible with 

the excellent 25 µm resolution possible with the Formlabs Form 2 printer so accurate 

designs could be obtained.  A photograph of the 3D printed impactor and its integration 

with the hybrid electronics and SMRs are shown in Figure 5.33. 
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Figure 5.33 Photograph of the (a) 3D-printed virtual impactor with miniature blower, and 

(b) Virtual impactor integrated with the hybrid electronics.  

5.6.3.2 CHARACTERISATION OF THE VIRTUAL IMPACTOR 

Characterisation of the virtual impactor was performed inside the particle testing 

chamber described in section 5.5.4. Glass particles with diameters ranging between 

0.5 and 10 µm (Sigma Aldrich) were continuously injected into the chamber for a 

period of 5 minutes. The integrated mini blower was operated for a total time of 10 

minutes to draw a continuous sample of air into the virtual impactor. Polished silicon 

dies (3×5 mm) were placed at the outlets of the minor and major channels of the virtual 

impactor to collect the particles. Photographs of the particles collected at each of the 

channels are shown in  Figure 5.34. 

  

(a) (b) 

Figure 5.34 Photograph of particles collected at the outlets of the (a) major channel and (b) 

minor channel of the virtual impactor. 
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Particles collected from the major flow were counted and measured using 

image processing. The size distribution is shown in Figure 5.35, where the particles 

are categorised by diameter (<2.5, 2.5 to 5, 5 to 10 and >10 µm). For the experiment 

shown in Figure 5.34, 45.6 % of the particles had a diameter of less than 2.5 µm. This 

compares favourably with the simulated results shown in Figure 5.32 (virtual impactor 

designed with 50% cut-off at 2.5 µm particle size). The virtual impactor successfully 

removed the majority of particles with large diameters (only 12.5 % of the collected 

particulate matter was categorised as >10 µm diameter).   

 

Figure 5.35 Size distribution of particles collected from the major channel. 

The functionality of the virtual impactor has been verified through a series of 

experiments, including large and small particles (range 0.5 to 10 µm). The impactor is 

ready for integration with the ASIC. The final design, discussed above, meets the 

agreed criteria in terms of physical size, fixing locations and air flow speed. The latest 

available revision of the ASIC interface PCB was characterised using a frequency 

spectrum analyser, but demonstrated poor performance for the application of particle 

sensing. Therefore, it was not possible to test the virtual impactor with the entire 

sensing system.   
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5.7 CONCLUSIONS 

The concept of particle detection using SMR devices was initially simulated using 

FEM. A 3D COMSOL model was developed to test the frequency shifts produced by 

particles becoming deposited on the surface of the resonators. The effect on the 

frequency shift of the arrangement of particles on the sensor surface was tested. Three 

different patterns were trialled. A 5% variation in frequency shifts was recorded 

between the particle arrangement experiments.  

The design of resonators at 870 MHz and 1.5 GHz was detailed in Chapter 3. 

In this chapter, simulations were performed to characterise the mass sensitivity of the 

devices to PM2.5 and PM10. Sauerbrey’s equation states the mass sensitivity of a 

resonator is proportional to the resonant frequency. The results from simulations of 

PM2.5 deposited on the SMRs, followed the relationship from this equation. A higher 

sensitivity was found for the 1.5 GHz device compared to the 870 MHz resonator 

(800 kHz/ng and 120 kHz/ng, respectively). However, the opposite effect was 

observed for the detection of PM10. These findings can be explained if the magnitude 

of the frequency shift is related to the fraction of the particle detected on the surface 

of the device (considering the wavelength of the resonator), rather than the size of the 

particle itself.  

 To verify the theoretical modelling, experiments were performed with 1 µm 

and 7 µm particles with the fabricated SMRs. A thin wire was used to deposit the 

particles onto the surface of the SMR. The frequency shift was measured using a 

network analyser and the total mass deposited on the sensor was estimated from 

photographs taken after the deposition. For the 1 µm particles, a range of masses was 

tried from 0.72 ng to 8.43 ng. The SMR was successfully able to detect the lowest 

mass, which produced a negative frequency shift of 66 kHz. A linear relationship was 

found between the total mass loading and the frequency shift with a sensitivity of 90 

kHz/ng was calculated.  

The same methodology was used to deposit 7 µm particles onto the surface of 

a second 970 MHz SMR. The total masses tested ranged from 25 ng to 65 ng. For these 

experiments, there was no clear relationship between the mass loading and the 
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frequency shift. Positive and negative frequency shifts were observed with no 

correlation with mass loading. These results suggest a weak particle-surface 

interaction occurs, which increases the stiffness of the resonator and thus causes an 

increase in the resonant frequency. This was attributed to the angular shape of the 

talcum powder particles. Further investigation is required to confirm the source of this 

frequency behaviour.  

A discrete particle sensing unit based on the 970 MHz SMR devices was 

developed, which comprises of Colpitts oscillators and mixer circuitry. The sensing 

unit operates in dual mode configuration to reduce common environmental effects. 

Colpitts type oscillators were used to drive the SMRs and a separate interface board 

used to mix the sensing and reference oscillator signals.  

The output frequency from the sensor unit is counted (resolution 1 Hz) using a 

low-cost, compact microcontroller (Teensy 3.1, PJRC). The discrete SMR based 

particle sensor is a portable, compact (41 mm × 36 mm × 25 mm) and low-power 

(300 mA) unit. It is powered from a single 5V USB port to a PC which also enables 

serial communication with the microcontroller. Measurement data is visualised and 

logged in real time with a virtual instrument developed in LabVIEW software.  

Initial testing of the sensing unit was performed within a small chamber 

(5.625 L) where the sensing unit was placed in the centre together with two reference 

optical-based instruments. PTFE 1 µm particles were injected with concentrations 

ranging between 420 and 1720 µg/m3. The frequency shifts caused by the deposition 

of the particles onto the SMR were recorded through a dedicated LabVIEW virtual 

instrument. A linear fit was applied to the frequency shift data and a sensitivity of 

27.5 Hz per µg/m3 was calculated.  

Further characterisation was performed in a larger chamber (720 L) at VITO. 

Three reference sensors (two optical based, one QCM) were placed in the chamber, 

with the SMR sensor unit. Arizona dust particles (nominal diameters of 0-3 µm) were 

injected into the chamber for periods of between 2 s and 10 minutes. Particle 

concentrations in the range of 1,100 to 27,000 µg/m3 were created (measured using a 

reference optical sensor). The limit of detection of the SMR sensor was ~20 µg/m3. A 

sensitivity of 4.6 Hz per µg/m3 was found.   
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The SMR sensor unit demonstrated a lower sensitivity to particle 

concentrations in the larger chamber. The unit did not use an active sampling method 

to collect particles on the sensor surface, but only sampled the particles that were 

deposited through gravitational sedimentation. In the larger chamber, it is assumed the 

lower sensitivities were caused by an uneven distribution of particles, as the sensor 

systems were located in one corner of the volume. This problem was not apparent in 

the smaller chamber, as the unit was placed in the centre of the chamber, at a suitable 

distance from the particle inlet.  

During the testing phase, the sensing surface of the SMR devices had to be 

cleaned in-between experiments. Sensor life-time is a main consideration for air 

quality monitoring, where low maintenance is desired. Although a saturation point of 

the device was not found, up to a maximum concentration tested of 60,000 µg/m3, it is 

expected that as the particles accumulate over time, the sensor will become saturated 

(long-term assessment of the unit was not performed). Thus, a method of self-cleaning 

the sensor surface is necessary, for the implementation of the SMR device in a particle 

monitor.  

The experiments inside the environmental chamber revealed an active 

sampling system was required to produce real-time measurements. A new system was 

proposed to actively sample the air and separate the particulate matter of interest 

(PM2.5). A mini blower draws samples of air (1.17 L/min) through a virtual impactor 

which has a cut-off particle diameter of 2.5 µm (i.e. a collection efficiency of 50 %). 

Particles <2.5 µm are directed towards the sensor surface (major channel). Large 

particles are exhausted through the minor channel. The physical size of the system was 

reduced through the use of an ASIC that replaced the discrete circuitry.   

The virtual impactor was rapid prototyped using the Formlabs Form 2 printer, 

based on the results from simulations performed in Solidworks. The overall 

dimensions of the final impactor were 22 mm×22 mm×13 mm. Characterisation of the 

impactor was performed using the small chamber (5625 cm3). Glass particles (diameter 

0.5 -10 µm) were injected for a period of 5 minutes. Particles at the outlets of the 

impactor were collected and image processing used to determine their size and 

quantity. The performance of the manufactured virtual impactor was similar to the 
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predicted theoretical results; 45.6 % of the particles collected in the major channel 

were <2.5 µm diameter. The test results proved the virtual impactor is ready for 

inclusion in a portable air quality monitor. However, characterisation of the complete 

system (hybrid system and impactor) was not possible due to the poor performance of 

the electronic circuitry (ASIC internal mixer saturated from oscillator signal).  

The next chapter continues the characterisation of the SMR devices to another 

application of air quality monitoring, i.e. the detection of volatile organic compounds. 

To this aim, the SMRs are polymer coated to target specific VOCs of interest to air 

quality control.  
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VOC DETECTION WITH 

SOLIDLY MOUNTED 

RESONATORS 

6.1 INTRODUCTION 

Experiments reported in Chapter 5 demonstrated the fabricated SMR devices were able 

to detect fine particles (PM2.5). This chapter reports on the use of the SMR devices 

for another application of air quality monitoring, i.e. the detection of volatile organic 

compounds. Acoustic wave devices can be used as chemical sensors by applying 

selective coatings to their sensing areas (e.g. monolayer coating, carbon nanotubes or 

polymer films).  

Appropriate selection of the polymer films is important to ensure good sensitivity 

and selectivity to the target vapours, such as toluene and acetone. An investigation into 
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polymer-vapour interactions was performed using linear solvation energy 

relationships. The strength of this interaction is described by the partition coefficients.  

Following the selection of the polymers, finite element analysis was performed 

using a 2D model. This model investigated the changes in resonant frequency of the 

SMR devices caused by the absorption of the vapour in the polymer film. The effect 

of the polymer thickness on the sensitivity was studied.  

A drop-coating system was developed to apply thin polymer films to the 

sensors. Different thickness coatings were trialled to investigate the relation between 

the polymer thickness and sensor response. Experiments were performed with PDMS 

and PEG polymer coated SMR devices, to toluene and acetone vapours, results were 

analysed and presented in this chapter. 

Readout circuitry was developed for the characterisation of these devices. The 

SMR devices were driven with a Pierce oscillator. The PCBs developed previously 

(Chapter 5) were redesigned to be used with the VOC experimental setup. A test 

station was developed to expose the SMR devices to low ppm concentrations of VOC 

vapours (in dry and humid conditions). The test station used mass flow controllers and 

cylinders of VOCs to generate precise mixtures of VOC concentrations. A sensor 

chamber was designed and fabricated for the test station to house four differential pairs 

of the SMR devices.  

6.2 POLYMER COATINGS 

The use of acoustic devices for chemical vapour sensing is accomplished by applying 

selective coatings onto the surface of the device, which absorb the vapour molecules 

from the gas phase. A diagram of the SMR is shown in Figure 6.1, including the 

polymer coating and vapour molecules. The schematic shows a representation of the 

process of the gas molecules absorbing into the coating.  
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Figure 6.1 Schematic of polymer coated SMR for VOC detection. 

The absorption of vapour molecules into the polymer layer causes a change in 

mass which in turn results in a frequency shift of the resonator. The absorption of the 

vapour molecules into the polymer coating is a reversible process: when the polymer 

coated device is exposed to a clean sample of gas, the vapour molecules desorb, 

allowing the sensor to recover its baseline [1].  This is a desirable characteristic for 

their use in air quality monitoring applications as the device can be capable of 

continuous and real time monitoring [2]. 

For the detection of organic vapours, soft and rubbery polymers are commonly 

used to improve sensor sensitivity and response times [3].  The high permeability, low 

density and low crystallinity of these polymers allows fast vapour absorption and 

diffusion.  

Polymers with increasing polar properties are often glassy in nature (with low 

permeability), so they are not preferred as selective coatings. However, the sensitivity 

of the polymer films is not determined from their properties alone but from the 

interaction between the vapour and the polymer. Therefore, appropriate selection of 

the polymer coating is necessary to ensure good sensitivity and selectivity to the target 

vapour.  
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The strength of the interaction between the polymer and vapour molecules can 

be described by the vapour-polymer partition coefficient, 𝐾𝑝, shown in equation (6.1), 

which relates the concentration of vapour molecules absorbed in the polymer film, 𝐶𝑝, 

to the concentration of the sampled vapour in the gas phase, 𝐶𝑣 [4].  

𝐾𝑝 =
𝐶𝑝

𝐶𝑣
 (6.1)  

The partition coefficient is therefore only a function of the polymer and vapour 

properties.  The larger the partition coefficient values, the stronger the vapour sorption 

and thus the higher the frequency shift, ∆𝑓, of the resonator due to vapour sorption [5].  

∆𝑓 ∝  𝐾𝑝𝐶𝑣 (6.2)  

 Linear Solvation Energy Relationships (LSER) can be used to describe the 

vapour-polymer interaction and estimate the partition coefficient values.  For the 

sorption of a vapour into the polymer a solvation equation is expressed by the LSER 

as [5]: 

𝑙𝑜𝑔 𝐾𝑝 = 𝑐 + 𝑟𝑅2 + 𝑠𝜋2
𝐻 + 𝑎𝛼2

𝐻 + 𝑏𝛽2
𝐻 + 𝑙 𝑙𝑜𝑔 𝐿16 (6.3)  

 

where the solvation parameters of the vapour 𝑅2, 𝜋2
𝐻, 𝛼2

𝐻, 𝛽2
𝐻

 and 𝑙𝑜𝑔 𝐿16, that 

characterise the solubility properties of the vapour, are related to the coefficients 

𝑐, 𝑟, 𝑠, 𝑎, 𝑏 and 𝑙 of the polymer. These parameters are defined in Table 6.1. 

Table 6.1 Solute and polymer parameters in the solvation equation (6.3). 

SOLUTE VAPOUR PARAMETERS POLYMER SOLUBILITY PARAMETERS 

𝑅2 Excess molar refraction 𝑐 Constant resulting from regression. 

𝜋2
𝐻 Dipolarity 𝑟 Polarisability 

𝛼2
𝐻 Hydrogen-bond acidity 𝑠 Dipolarity 

𝛽2
𝐻

 Hydrogen-bond basicity 𝑎 Hydrogen-bond basicity 

𝑙𝑜𝑔 𝐿16 
L16 is the gas-liquid partition 

coefficient for n-hexadecane. 

𝑏 Hydrogen-bond acidity 

𝑙 Solvation cavity effects and dispersion 
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Solute vapour parameters of the VOCs of interest in this work are listed in 

Table 6.2. LSER solvation parameters for a wide range of polymers were collected 

from published articles (experimental data obtained from gas-liquid chromatography) 

[4, 6-9] and the partition coefficients were computed for each polymer-vapour pair as 

defined by equation (6.3). 

Table 6.2 Solvation parameters at 298 K of target solutes [10]. 

SOLUTE R2 𝝅𝟐
𝑯 𝜶𝟐

𝑯 𝜷𝟐
𝑯

 𝒍𝒐𝒈 𝑳𝟏𝟔 

Acetone 0.179 0.7 0.04 0.49 1.696 

Acetaldehyde 0.208 0.67 0.0 0.45 1.230 

Ammonia 0.139 0.35 0.14 0.62 0.68 

Benzene 0.61 0.52 0 0.14 2.786 

Ethanol 0.246 0.42 0.37 0.48 1.485 

Formaldehyde 0.22 0.70 0.0 0.33 0.73 

Toluene 0.601 0.52 0.0 0.14 3.325 

n-octane 0.0 0.0 0.0 0.0 3.68 

 

Figure 6.2 shows the computed partition coefficients for selected polymer-

vapour pairs. The complete dataset of partition coefficients can be found in 

Appendix D for a wide range of polymer-vapour pairs.  

 

 

Figure 6.2 Polymer-vapour partition coefficients of selected pairs. 
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Partition coefficients values, 𝐾𝑝, of selected vapour-polymer pairs are 

summarised in Table 6.3. Solvation parameters for PEUT were not available to 

calculate the partition coefficients of the vapour-pairs. However, high partition 

coefficients, 𝐾𝑝, of 850 and 1610 have been reported for PEUT to n-octane and 

toluene, respectively [11].  

Table 6.3 Partition coefficients of selected analytes and vapours. 

VOC PDMS PECH PEG PEUT PIB SXFA 

Acetone 67.8 166.9 30.5 - 16.3 3948 

Acetaldehyde 24.5 50.5 13.4 - 5.2 1078 

Ammonia 10.4 11 4.4 - 1.16 1968 

Benzene 410.1 371.8 62.9 - 164.1 377 

Ethanol 82.7 117.2 46.5 - 8.85 2734 

Formaldehyde 9.2 17.9 8.3 - 1.64 149.8 

Toluene 1164.5 1039.5 117.4 1610 583.2 930 

n-octane 1867 201.5 21 850 963 371.2 

 

Polymer coatings for target vapours in this work (toluene and acetone) were 

selected not only based on the partition coefficient values but also on their availability 

(only commercially available polymers were used), price, polymer solubility in 

common solvents and cross-sensitivity between the vapours of interest. Based on these 

criteria the selected polymer coatings in this work are shown in Table 6.4.  

Table 6.4 Polymer coatings chosen for the detection of VOCs and their densities. 

POLYMER ACRONYM DENSITY SUPPLIER 

Poly(dimethyl-siloxane) PDMS 0.965 g/cm3 Sigma Aldrich Ltd., UK 

Polyethylene glycol PEG 1.13 g/cm3 Sigma Aldrich Ltd., UK 

 

In the following section, the absorption of toluene into different polymer 

coatings (PDMS, SXFA, PIB and PMA) is investigated and its effects on the resonant 

frequency are analysed using a FEM model developed in COMSOL.  A model of the 

PEG coated SMR device was not developed as the material parameters of this polymer 

were not disclosed. 
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6.3 FINITE ELEMENT MODELLING ON VOC ABSORPTION  

The change in the resonant frequency of a SMR due to the absorption of vapour 

molecules into a polymer coating was simulated in COMSOL. A thin layer was added 

on top of the 2D SMR model (described in Chapter 3) to simulate the polymer film. 

The absorption of the analyte in the polymer film was represented as an increase in the 

density of the polymer given by 

𝜌𝑉𝑂𝐶/𝑝𝑜𝑙𝑦𝑚𝑒𝑟 = 𝐾𝑝 ∙ 𝑀 ∙ 𝑐 (6.4)  

where 𝐾𝑝 is the partition coefficient of the polymer-vapour pair given in Table 6.3, 𝑀 

is the vapour molar mass and  𝑐  is the VOC concentration in air given by 𝑐 =

(𝑐0𝑃)/(𝑅𝑇). This equation converts the volumetric VOC concentration 𝑐0 (in units of 

parts per million) to the amount of VOC (in units of moles/m3) using the ideal gas law, 

considering the pressure 𝑃, temperature 𝑇 and the universal gas constant 𝑅. The 

simulation parameters were defined as ambient temperature (25°C) and atmospheric 

pressure (101 kPa). 

The simulations performed in this section focus on four polymer coatings for 

comparison (PDMS, SXFA, PIB and PMA). The first simulations performed 

investigated the effect of the thickness of the polymer film on the magnitude of the 

frequency shift of the SMR device. For these simulations, the polymer thickness was 

varied from 50 nm to 500 nm while the target analyte remained fixed (toluene vapour). 

The simulations were repeated for toluene vapour concentrations from 5 to 100 ppm 

(maximum safe exposure limit concentration). The results for the PDMS coating are 

summarised in Figure 6.3a. 

The sensitivity of the SMR sensor (with polymer film) is determined by 

considering the gradient of the frequency shift versus analyte concentration 

relationship. The sensitivity for the four polymer coatings was calculated for each of 

the polymer thicknesses, as shown in  Figure 6.3b (toluene vapour).  
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(a) (b) 

Figure 6.3 (a) Frequency shift of PDMS coated SMR to toluene, (b) Relationship between 

sensitivity and polymer thickness for four polymer coatings to the exposure of toluene. 

A linear relationship between frequency shift and VOC concentration was 

observed, irrespective of polymer thickness. The sensitivity of the device 

exponentially increased with the polymer thickness. The frequency shift of the sensor 

is directly proportional to the partition coefficient. The PDMS polymer has the highest 

partition coefficient (1164.5, shown in Table 6.3) to toluene and offers the highest 

sensitivity to the toluene vapour. The PMA has the lowest partition coefficient to 

toluene (76.2), and thus is less sensitive to the tested vapour.  

Thicker coatings offer higher sensitivities, but at the expense of higher 

electrical insertion losses and slower response times. The gain of the oscillator 

circuitry must exceed the insertion loss of the device for oscillations to occur. 

However, these simulations were not used to predict the increase in insertion loss of 

the device, caused by a thicker polymer coating (coatings over 500 nm were considered 

beyond the maximum viable thickness).  Furthermore, thinner coatings are often 

preferred due to the trade-off between sensitivity and response time, although it was 

not possible to consider the response time in the simulations. 

A comparison between the sensitivity of a 900 MHz and a 1.4 GHz SMR 

device was also performed. Figure 6.4 shows the simulated frequency shifts of PDMS 

coated SMR devices (100 nm) due to the exposure to toluene. The device working at 

a higher frequency exhibited greater sensitivity at -48.7 Hz/ppm compared 
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to -23.45 Hz/ppm of the 900 MHz device. This behaviour was expected, as per 

equation (2.7). Simulations were not used to predict if the devices would be able to 

continue resonating at high loading with the finite gain available from a real circuit.  

There is a trade-off between the sensitivity and film thickness in high frequency 

SMR devices. For a given thickness of the coating, the attenuation due to the polymer 

film is greater at higher frequencies. High sensitivities are not necessarily obtainable 

at high frequencies because thinner coatings are needed to prevent the attenuation of 

the device [3].   

 

Figure 6.4 Simulated PDMS coated SMR devices. 

Deposition of uniform and thin coatings is challenging. The polymer must be deposited 

in a very localized area (200×200 µm2) to avoid damaging other components. A 

deposition apparatus capable of creating nm-thick coatings was not readily available. 

The next section details the development of two alternative techniques that were used 

to deposit coatings as thin as 70 nm.  

6.4 DEPOSITION OF THIN POLYMER FILMS 

 POLYMER COATING APPARATUS 

In this work, two main coating methods were employed to apply the polymer 

films on the surface of the resonator, namely spray coating and drop coating. Initially 
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a spray coating system was implemented. Later, a drop coating system was developed 

which allowed efficient use of polymers (for example, if only a limited quantity was 

available) and accurate positioning of the polymer coating over the sensing area. 

A schematic of the developed spray coating system in shown in Figure 6.5a. 

The system consisted of a single action airbrush (Iwata HP-SAR) which used 

compressed air, as a carrier gas, to continuously spray the polymer solution onto a 

rotating disk (10 cm diameter) driven by a DC motor. An opening in the disk 

(1 cm diameter) allowed the polymer solution to pass through to reach the SMR 

located beneath the plate. The SMR was covered with a 3D printed mechanical mask 

(shown in Figure 6.5b) to expose only the active area of the resonator. The SMR was 

placed (in the mask) at a distance of ~10 cm beneath the airbrush nozzle.  

  

Figure 6.5 (a) Drawing of the spray coating system for deposition of thin coatings; 

(b) drawing of the 3D printed mechanical mask. 

During initial trials, the frequency response of the SMR was monitored during the 

polymer coating procedure (using the spectrum analyser, with the SMR on an interface 

board). This procedure required a special mechanical mask that was difficult to 

position over the interface PCB. Once the deposition parameters were established 

(distance between sensor and nozzle, speed of the disk, spraying time) the devices were 

firstly coated using the mask shown Figure 6.5b and then bonded to the circuitry. 



 

Chapter 6. VOC detection with Solidly Mounted Resonators 213 

 

 

A LabVIEW control interface was developed to control the air dispersion (i.e. 

spraying time), using a solenoid actuator. The interface also allowed the user to adjust 

the speed and direction of the disc by using a microcontroller (Teensy 3.1, PJRC) and 

additional circuitry. In this way, small amounts of polymer droplets could be delivered 

to the targeted area for a set period.  The automatic, precise and rapid dispersion 

method allowed thin and uniform layers to be created. Typically, a spraying time of 

30 s produced coatings with thicknesses of ~150 nm. A photograph of the assembled 

spray coating system is shown in Figure 6.6a. 

   

(a) (b) (c) 

Figure 6.6 Polymer coating deposition methods used (a) spray coating, (b) drop coating 

system, (c) enlarged view of the device undergoing coating procedure. 

Even though thin and uniform layers could be achieved with the spray coating 

system, accurate positioning of the device was difficult due to the small sensing area 

of the SMR. Furthermore, wasted polymer solution (i.e. solution not sprayed onto the 

surface of the device) could not be reused. A drop coating system (Figure 6.6b) based 

on deposition using a manual micro syringe injector (World Precision Instruments 

Ltd.) was developed. The system offered the advantages of accurate and localized 

deposition of the polymer solution, with the device interfaced to the circuitry, 

achievement of uniform films and the efficient use of the polymer solution. Thus, the 

system was suitable for monitoring the resonant frequency while applying the polymer 

solutions. 
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A micro syringe (10 µL volume) with a small needle internal diameter of 100 

µm (gauge 33) was placed in the precision microinjector holder. The micro syringe 

was capable of delivering low volumes (~1.6 nanolitres) of the polymer solution. Two 

digital microscopes (AnMo Electronics, Taiwan/Andostar, China) were used to 

provide a magnified view of the apparatus and help with the 3D positioning of the 

needle exactly over the centre of the SMR device (Figure 6.6c). Typical images 

observed from these microscopes are shown in Figure 6.7 below. 

 

Figure 6.7 Screenshot of monitoring microscopes during SMR drop coating procedure: 

photographs shows side view (left) and top view (right) of the device with the deposition 

needle above the sensing area.  

Similar polymer thicknesses could be achieved with both deposition 

techniques. However, due to the ease of use (accurate positioning of the sensor) and 

achievement of slightly more uniform layers, the drop-coating method was preferred. 

Figure 6.8 shows photographs of coated SMRs (PDMS layer), using these two 

different coating methods. The drop coating method allow for the device to be mounted 

on an interface board (wire bonds shown in photograph) and therefore its resonant 

frequency and attenuation can be monitored during the coating process.  
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Figure 6.8 Photographs of polymer coated SMR devices using (a) drop coating and (b) spray 

coating method. 

 PREPARATION OF POLYMER SOLUTIONS 

The preparation of the PDMS solution started by mixing uncured PDMS with the 

curing agent in a 10:1 ratio by weight (Sylgard 184 Elastomer kit). This mixture (1.5g 

of PDMS and 0.15 g of curing agent) was then diluted in an organic solvent (hexane) 

in an initial 10:1 solution (15 g of hexane).  This base solution was further diluted with 

the same solvent to obtain a solution at 3.5% weight by weight (w/w) of the original 

polymer loading. In the case of PEG, the flakes were dissolved in ethanol at 5% w/w 

solution. The polymer mixtures were solvated at room temperature on a magnetic 

stirring plate for a minimum of 24 hours. Table 6.5 summarises the recipes used for 

the preparation of the polymer solutions in this work. 

Table 6.5 Polymer and solvent mixing ratios.  

POLYMER SOLVENT RATIO 

PDMS, 600 µL  Hexane, 30 mL 3.5% w/w 

PEG, 1.25 g Ethanol, 30 mL 5% w/w 

 

In initial trials, a PDMS/toluene solution was also prepared. However, the 

solvent in the hexane based solution was found to evaporate faster (during the polymer 
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coating procedure) and thus was preferred over toluene. Furthermore, the use of 

hexane prevented any remaining toluene solvent from interfering during the detection 

of the target vapour (in this case also toluene). The mixing ratios given in Table 6.5 

were found to produce suitable solutions for deposition onto the devices. The viscosity 

of the solution was controlled, thus allowing the solution to be ejected from the 

spraying system or needle (without clogging) but with a sufficient quantity of polymer 

so a layer could be deposited. 

After the deposition of the polymer coatings, the devices were baked a 

minimum of 12 hours at the temperature of 100 °C, to evaporate any remaining solvent. 

After baking, devices were left to stabilise at room temperature for a period of at least 

10 hours. The next section details the procedure followed in this work to measure the 

thickness of the applied polymer films.  

 THICKNESS MEASUREMENT OF POLYMER FILMS 

For the experimental results shown in this work (section 6.7), the polymer coatings 

were applied using the drop coating method, previously described. The sensitivity of 

the 900 MHz SMRs was approximated from equation (2.7) as 𝑆𝑚= 548 Hz∙cm2/ng and 

the thickness of the deposited polymer film, 𝑑𝑓𝑖𝑙𝑚, was estimated from the Sauerbrey 

equation (2.6) by: 

𝑑𝑓𝑖𝑙𝑚 =
∆𝑓

𝜌𝑆𝑚
 (6.5)  

where ∆𝑓 is the change in resonant frequency due to deposition of the polymer film 

and 𝜌 is the density of the polymer given in Table 6.4.  

The SMR oscillation frequency was monitored during the coating process 

(details of the driving circuitry are presented in section 6.5). A spectrum analyser 

(Tektronix MDO3012) was interfaced to a LabVIEW virtual instrument for the real-

time acquisition of the data. In this way, the frequency shift caused by the addition of 

the polymer film was monitored. Using equation (6.5), expected frequency shifts were 

calculated for the target thicknesses of 100 nm and 150 nm for the selected polymers 

(PDMS and PEG), as summarised in Table 6.6. According to the target thickness, a 
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small amount of polymer solution was dropped onto the sensing area to achieve a 

frequency shift close to the estimated values.  

As the drop of polymer solution contacted the SMR surface, the oscillator 

signal attenuated completely (with no trackable resonant frequency) due to the 

damping caused by the liquid solution in the propagating longitudinal waves. Once the 

solvent evaporated (<5 seconds), the resonator recovered and the resonant signal could 

be again tracked to determine the thickness of the polymer film. 

Table 6.6  Estimated and measured thickness of the applied polymer coatings. 

POLYMER 

TARGET 

THICKNESS 

(nm) 

ESTIMATED 

FREQUENCY SHIFT 

(MHz) 

MEASURED 

THICKNESS 

(nm) 

MEASURED 

FREQUENCY SHIFT 

(MHZ) 

PDMS 
100 5.28 70 ±5 4.2 

150 7.93 110 ±5 6.9 

PEG 150 9.28 120 ±5 8.5  

 

The deposited polymer films were measured using an optical profiler 

(ContourGT-K, Bruker). Initially a stylus profiler (XP-100, AMBiOS technology) was 

used to measure the film thickness. This method did not produce satisfactory results, 

as the polymer film was disturbed when the profiler stylus made contact with the 

surface, as a result of the softness of the coatings (typical Young’s modulus values 

<10 MPa). The optical profiler non-contact method was preferred, as the polymer 

coating was not damaged during the measurement, thus allowing accurate profiling. 

Figure 6.9a shows an example profile of the SMR device shown previously in Figure 

6.8a. The polymer coating can be seen as the highest layer in the centre of the device.  

  

Figure 6.9 (a) 3D scanning profile of PDMS coated SMR device and (b) cross section height 

curve of the polymer surface . 



 

Chapter 6. VOC detection with Solidly Mounted Resonators 218 

 

 

 A 3D scanning profile was performed before and after the polymer coating. 

The height of the sensing area relative to the baseline surface was measured each time. 

The thickness of the polymer coating was calculated as the difference in height 

between each measurement. The baseline was chosen as a reference area of the device 

which would not be covered with any polymer. For the devices shown, the thickness 

of the polymer was calculated as 180 nm ±5%.  

For the polymer solution to be deposited on the surface of the device, a drop is 

formed on the tip of the nozzle which is then deposited when it contacts the surface.      

Although localized coatings can be easily achieved with this method, accurate 

reproducibility of the applied film thickness is not possible due to the variable volumes 

of solution needed for the droplet to form.  

Application of the polymer films on the SMR surface caused a decrease on the 

quality factor of the device and the consequent attenuation of the sensor response 

signal. However, this deterioration in quality factor (measured after temperature 

treatment of the films) was small for the polymer films deposited (oscillator signal was 

attenuated <2 dB). For a polymer thickness of ~300 nm, the SMR device became 

extremely attenuated, making it impossible to track the oscillator signal.  

 In the next section, development of the interface circuitry is presented. The 

interface circuitry comprises of an oscillator driving circuit and mixer circuitry. The 

oscillator circuit was used to track the SMR response during the polymer deposition 

procedure presented in this section.  

6.5 INTERFACE CIRCUITRY 

In Chapter 5, a Colpitts oscillator circuit was described (section 5.5.2.1) and used for 

the development of a particle sensing unit based on the SMRs. Adequate performance 

was observed when the SMRs were tested with the interface circuitry. However, in 

this section the development of a Pierce oscillator is described, which offers improved 

performance at high frequencies (>600 MHz) in terms of frequency stability and gain 

(to match the resonator losses).  
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 For the design of the SMR-Pierce oscillator, the lumped elements of an 

equivalent MBVD model (described in section 3.2.3) were extracted for the 900 MHz 

SMR device with aluminium electrodes. The electrical characterisation data 

(S-parameters) of the fabricated devices were used to obtain this equivalent model, 

shown in Figure 6.10. 

  

Figure 6.10 Equivalent MBVD model of the SMRs resonating at 900 MHz. 

The MBVD model is formed by the motional arm (𝑅𝑚, 𝐿𝑚 and 𝐶𝑚) 

representing the electro-acoustic interaction of the resonator. 𝑅𝑜 and 𝐶𝑜 form the static 

arm, representing the acoustic losses (related to the piezoelectric layer) and the 

electrical plate capacitance, respectively. The series resonance of the circuit is 

determined by the inductance and capacitance of the motional arm; whereas the 

parallel resonance is set by the motional inductance and the static parallel capacitance. 

The resistor, 𝑅𝑠,  models the electrical Ohmic losses due to the electrodes.   

A transistor-based Pierce oscillator (discussed in Chapter 2) was designed in 

this work as shown in Figure 6.11. The SMR symbol represents the equivalent MBVD 

model as shown above.  A low noise silicon RF transistor (BFR92, Infineon 

technologies) provides the gain in the oscillator loop with bias provided by resistors 

R1 and R2. The feedback network is formed by capacitors C1, C2 and the SMR device, 

which determines the oscillator frequency.  
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Figure 6.11 Schematic diagram of Pierce oscillator circuit. 

For sustained oscillations to occur, the Barkhausen criterion must be met. 

Figure 6.11b shows the simulated loop gain and phase shift of the oscillator. As seen 

from this plot, at a frequency close to 900 MHz, the loop gain is greater than one, while 

the phase shift equals zero, satisfying both criteria. The output spectrum of the 

oscillator is shown in Figure 6.11c, showing a fundamental resonant frequency at 

900.6 MHz and the harmonic signals (e.g. the first and second harmonics at 1.801 GHz 

and 2.702 GHz).  

 

 

Figure 6.12 (a) Simulated loop gain and phase shift and (b) output spectrum of the Pierce 

oscillator circuit. 
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The Pierce oscillator circuit was implemented in a 4-layer PCB (overall size of 

20 × 16 mm). The SMR was directly wire bonded onto the populated board to avoid 

parasitics (as opposed to using a package). RF capable components were used in the 

design, to ensure the circuit functioned at the resonant frequency of the SMR. Two 

connectors were needed on the board (power supply and signal output). Both of these 

connectors were located on the top of the PCB, to allow the SMR board to be stacked 

on top of a mixer PCB in a differential configuration. 

To perform the VOC measurements, two SMRs are used in a dual 

configuration (similar to that described for particle sensing in Chapter 5), where one 

bare device serves as a reference channel and the polymer-coated SMR as the sensing 

channel. The dual setup reduces the effects of temperature and humidity variation. 

Therefore, in addition to the oscillator boards, a mixer board was designed (modified 

layout compared to previous circuit) to suit the VOC experimental setup, where the 

sensors must be contained within a small chamber.   

The output signals of the oscillator board were visualised with an RF spectrum 

analyser (Tektronix MDO3012) and oscilloscope (Tektronix DPO5204B). The output 

spectrum is shown in Figure 6.13a (0.5 to 3 GHz spectrum shows harmonics of the 

fundamental resonant frequency). Figure 6.13b shows the fundamental resonant 

frequency (901 MHz). A time series plot of the output signal is shown in Figure 6.13c 

(amplitude 2.8 V). 
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Figure 6.13 Measured output signals of the interface circuitry: (a) Broad output spectrum of 

SMR-Pierce oscillator, (b) Output spectrum of fundamental frequency, (c) Time series 

sinusoidal signal and (d) Final comparator output to measure the SMR sensor response. 
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 The mixer circuit processes the two signals from the SMR devices and outputs 

a sinusoidal differential signal. The mixer output is transformed into a square wave 

signal (shown in Figure 6.13d) via a comparator, which can then be acquired using a 

microcontroller. The system has a low power consumption (total 210 mW, each SMR 

board 90 mW and 30 mW for the mixer board) when powered at 3.3 V. Photographs 

of the completed PCBs for the Pierce oscillator and mixer circuitry are shown in Figure 

6.14. The circuit diagrams for the implementation of these boards are presented in 

Appendix E. Two of the oscillator boards (reference and signal) are plugged onto the 

mixer board in a stacked configuration.  

 

Figure 6.14 Pierce oscillator and mixer PCBs designed for the VOC experimental setup.  

 DATA ACQUISITION 

The differential output signal of the sensor system (square wave at frequencies <20 

MHz) was acquired using a microcontroller (Teensy 3.2, PJRC). Microcontroller 

software was developed to measure the frequency of the square wave (maximum 

frequency 75 MHz), with the output printed via a serial connection. The frequency 

measurements were performed at 10 Hz resolution. Details on the data acquisition have 

been previously presented in section 5.5.3. The output signal of the interface circuitry 

was connected to the microcontroller input pin using a micro coaxial RF cable. 

A LabVIEW virtual interface was created to acquire the signal from the 

microcontroller and save the data to a measurement file. The measurement data was 

saved to a National Instruments *.TDMS (technical data management streaming) file 
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format, which allows high speed streaming, necessary to store the large amounts of 

data generated during the VOC experiments.  

To characterise the SMR sensors to low ppm concentrations of VOCs, a test 

rig is needed. The next section describes the development of a test rig and the 

development of a sensor chamber, which is used to expose the SMRs to vapours. The 

chamber was designed around the dimensions of the interface PCBs, to allow a total 

of 4 pairs of sensors to be tested simultaneously.     

6.6 AUTOMATED VOC TEST STATION 

An automated VOC test station was developed to characterise the SMR devices to the 

exposure of target analyte vapours (toluene and acetone).  The VOC station is capable 

of delivering a wide range of VOC mixtures at controlled concentrations and 

atmospheric conditions (i.e. temperature, humidity and flow rate) to replicate 

environmental conditions.   

 The test station developed in this work is a major redesign of an existing Flow 

Injection Analysis (FIA) station [12].  The station developed in this work comprises 

of state-of-the-art equipment and features three substantial improvements: (1) the 

system can deliver concentrations in the low parts per billion (ppb) levels, (2) devices 

can be tested to the exposure of vapour mixtures in different ratios (up to two VOCs 

can be delivered into a chamber simultaneously) and (3) a zero-air generator is used 

for air supply (instead of synthetic air from gas cylinders), with the advantages of 

constant air purity and uninterrupted supply. The system reduces health risks as 

handling of pure analytes in liquid form is no longer necessary (VOC mixtures in air 

are stored in pressurised cylinders).  

 OVERALL STRUCTURE 

The VOC test station was designed to be fully computer controlled (hardware and data 

acquisition automatically controlled).  This allowed the user to perform tests over long 

periods of time with repeatability and minimal user interaction. A block diagram of 

the developed VOC test system is shown in Figure 6.15. The test station consists of 
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three main parts: the hardware, the valve control circuitry and the control software.  

Details on these components are presented in the following sections. 

 

Figure 6.15 General overview of the VOC test station. 

 HARDWARE 

The hardware comprises all physical elements and mechanical parts used to build the 

VOC station such as mass flow controllers (MFCs), valves, pipe work, mixing 

chamber, heating units, etc. A schematic layout of this part of the system is shown in 

Figure 6.16.  

Test vapours are supplied from pressurised gas cylinders (BOC Ltd.) with 

premixed concentrations (ppm levels) of desired compounds diluted in synthetic air. 

Pressure from these cylinders is controlled by double stage regulators. When further 

diluted with air supplied by the zero-air generator (Parker Balston®), the system can 

deliver concentrations in the low parts per billion (ppb) levels. These elements are 

situated in a storage room adjacent to the gas testing room, where the VOC test station 

is located, and connected to the lines via stainless steel tubing across the ceiling. The 

cylinders are kept in cylinder cabinets which are connected to a ventilation system. If 

any part of the test station was to fail, the cylinders can be turned off remotely without 

entering the gas testing room.  
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Figure 6.16 Schematic of the hardware used in the VOC test station. 

 The system consists of two VOC lines, each one controlled by a separate MFC 

(Alicat Scientific, USA). In this way, the system can deliver vapour mixtures in 

specific ratios as required. A third MFC is used to control the air bubbled (using a 

sinter) through a Dreschel bottle containing water (‘the bubbler’), to introduce 

humidity in the system. A dedicated commercial sensor (Rotronic AG, UK) is used to 

verify the temperature and humidity conditions. An additional MFC controls the dry 

air line which is used to further dilute the vapour concentration.  

A mixing chamber, located within a heating unit (IKA Ltd., Germany), is used 

to combine all four lines and ensure that no condensation forms when the gases are 

mixed [12]. The outlet from the mixing chamber is delivered to the inlet of the sensor 

chamber.  

Solenoid valves (Bürkert Ltd., Germany) are used to electrically open/close the 

lines as needed to create the required gas mixtures. Stainless steel tubing (1/8” OD, 

0.028 in wall) and compression fittings (Swagelok, USA) were used to connect the 

components throughout the system. A 3D rendered view of the assembled VOC test 

station is shown in Figure 6.17. Details on the hardware components used are given in 

Appendix F. 
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Figure 6.17 Assembly of the VOC test station. 

The sensor chamber was designed to fit within the second heating unit with 

dimensions of 15 cm × 9.5 cm. The chamber is heated to keep the sensors at a constant 

temperature and maintain a positive temperature gradient through the system (to 

prevent condensation). A low flow rate is preferred to ensure the flow through the 

system is laminar. The vapour enters the chamber through a single inlet and is evenly 

distributed to the eight sensors. The vapour mixture leaves the chamber via a single 

outlet, which is connected to the exhaust. A mass flow meter (Alicat Scientific, USA) 

is used to monitor any leakage in the system.   

The sensor chamber is formed from three separate plates that stack together (as 

shown in Figure 6.18), similar to previously designed chambers [12, 13]. The bottom 

plate features a heat exchanger for the sample analyte to reach the temperature of the 

sensors. The middle plate provides the dead space volume (3.5 mL) in which the 

devices are exposed to the vapour, which is injected through eight aperture holes (1 

mm diameter), located immediately below the devices. An exhaust hole is located at 

the centre of the dead space through which the sample vapour is evacuated. The top 

plate was designed to accommodate up to eight oscillator boards (described in section 

6.5). To prevent leakage, the boards were glued in place. A total of 4 differential 

sensors could be tested at a time. 
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Raised lips around the channels were implemented in the bottom plate to 

minimise leaks when the chamber was assembled. These lips slot in the matching 

grooves created in the underside of the middle plate (not visible in figure). 

Additionally, O-rings seals were included at the bottom and top plates. The three plates 

are held together by 20 screws.  

 

Figure 6.18 Sensor chamber for SMRs. 

 VALVE CONTROL CIRCUITRY 

A National Instruments data acquisition board (NI USB-6009) was used to generate 

the digital signals that activate the solenoid valves and to acquire analogue signals 

from the temperature and humidity sensor (Rotronic AG, UK).  

An interface circuit between the control software and the hardware was 

required to drive the solenoid valves. The DAQ board does not provide sufficient 

current to operate the valves directly. This interface circuit is shown in Figure 6.19a 

for a single valve. An optocoupler is used to electrically isolate the DAQ board from 
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the solenoids to avoid damage to the electronics or valves from contact bouncing. Each 

digital signal generated from the DAQ drives the corresponding switching MOSFET 

driving the valve with a 12 V power supply.  

A photograph of the printed circuit board fabricated in-house is shown in 

Figure 6.19b implemented for a total of 7 valves used in the system.  

 

 

(a) (b) 

Figure 6.19 Solenoid valve interface electronics. 

The MFCs are connected to a Multi-Drop box (Alicat BB9-USB) that carries 

both power and communication signals to all the MFCs and the mass flow meter 

simultaneously. The box is connected to the desktop computer via a USB port. No 

additional interface circuitry was required for the mass flow controllers. The 

manufacturer provides instrument drivers (compatible with the control software, 

LabVIEWTM) that allow writing and reading the flow set point for each of the 

instruments.  

 CONTROL SOFTWARE 

Operation of the VOC station is completely automated. A virtual instrument, 

developed in LabVIEWTM 2015, allows the control of the rig using a desktop 

computer.  This virtual instrument comprises a block diagram (the graphical 

programming code) and the front panel (the user interface). 

The front panel (Figure 6.20) is the main virtual interface the user interacts 

with to control the hardware of the VOC station. This front panel is user-friendly, 
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providing a graphical representation of the rig that allow the user to monitor the 

process at all times and ensure the system is working as desired. 

The MFCs and the mass flow meter in this representation show an indicator 

which displays the real-time flow rate values, read from the hardware. Temperature 

and humidity data are displayed as numerical indicators and shown in plots for easy 

reference. These data together with the flow rates read from the mass flow instruments 

can be saved to a file, if required.  

Automatic and manual operation can be selected. When using the automatic 

mode, tests can be performed over long periods of time. A file containing the input test 

data (required VOC concentration and exposure times) is uploaded to the program. 

The system converts the user input data to mass flow rates (VOC and air lines).  The 

system steps through each row of data. It generates the desired concentrations for a 

specified time and controls the position of the solenoid valves as required. In manual 

mode, the flow rates of the MFCs and the position of the valves are controlled solely 

by the user. This mode is normally used to test the system for leaks or to quickly 

observe the response of the sensors. The block diagram and further details on the 

virtual instrument, including operating instructions, are presented in Appendix G. 
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Figure 6.20 Front panel to control the VOC test station. To create a user-friendly interface 

the panel depicts an overview of the system.  
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6.7 EXPERIMENTAL SETUP AND RESULTS 

The VOC test station was constructed, according to the layout designs shown 

previously. A photograph of the completed system is shown in Figure 6.21. The 

computer controlling the testing station (not visible in the photograph) is located above 

the VOC test chamber. 

 

Figure 6.21 Photograph of the automated VOC test station showing the MFCs and 

temperature controlled chamber. 

Two channels on the VOC test station are dedicated to specific VOCs (toluene 

and acetone). A separate line is used for each compound to avoid cross-contamination. 

The lines can be cleared using zero air, to allow other VOCs to be tested. The test 

station allows the VOCs to be diluted in zero air (a mixture of dry and humid as 

required). The following maximum concentrations were possible for each of the VOCs 

(i.e. the cylinder concentration, with no dilution): toluene 100 ppm and acetone 200 

ppm. Each MFC allows a maximum flow rate of 500 SCCM, and permits flow rates 

as low as 2.5 SCCM, i.e. this defines the minimum possible concentrations that can be 

generated with the test station, according to the maximum concentration of the 

cylinder. The minimum possible VOC concentrations are 0.5 and 1.0 ppm for toluene 

and acetone, respectively.  
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The VOC sensor chamber is shown in Figure 6.22, showing four pairs of SMR 

sensors, each consisting of a sensing and reference oscillator board. The chamber is 

positioned inside a Dri-block heater to maintain a constant temperature. The mixer 

boards are visible in the photograph. These boards are powered with a 3.3 V supply 

and each of them provide one differential sensor output to the microcontroller.  

 

Figure 6.22 Photograph of the testing chamber containing four pairs of sensors. System 

includes 8 SMR boards connected to four mixer boards.  

As discussed in Chapter 1, benzene is the only VOC with a regulated exposure limit 

in the EU, and thus it is of great interest for air quality monitoring. However, these 

strict regulations (maximum exposure limit set at 1 ppm) and the stringent health and 

safety requirements for the University of Warwick entailed the VOC was too 

hazardous for testing to be performed in the laboratory.   

Toluene and acetone are also of high interest to air quality monitoring as they 

are the two vapours most commonly found in the background air as discussed in 

section 1.2.2. The safe exposure limits for these vapours are set at 50 ppm and 500 ppm 

for the long-term exposure (8-hr reference period) and 100 ppm and 1500 ppm for 

short-term exposure (15-minute reference period), respectively. These exposure limits 

are orders of magnitude higher than for benzene, and thus experiments could be 

realised in a controlled environment.   
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For the experiments presented in the following sections, the SMR sensors were 

exposed to toluene and acetone at maximum concentrations of 100 ppm and 200 ppm, 

respectively.  

 TOLUENE DETECTION 

The polymer coated SMR sensors (PDMS and PEG) were left to stabilise (in zero air) 

for a period of at least 24 hours prior to the start of the experiments. The sensors were 

exposed to pulses of toluene concentrations in the range of 5 ppm to 100 ppm. 

Typically sensors are exposed to a high concentration of VOC and then stepped down 

to low concentrations, before returning to high concentrations). The absorption of 

toluene in the polymer coating produced a change in mass, which caused a negative 

change in resonant frequency of the sensing device. In between the toluene pulses, the 

chamber was flushed with the baseline gas (zero air) for a period of 10 minutes. The 

baseline period allowed the vapour molecules to desorb from the polymer coating on 

the SMR sensor.  

A constant flow rate of 200 SCCM was used throughout the VOC pulses and 

stabilisation periods (flow rate maintained regardless of gas concentration). The 

chamber was kept at a constant temperature of 35 °C, using the Dri-block heater, 

discussed previously. An example transient response from a 180 nm PDMS coated 

SMR sensor is shown in Figure 6.23a, where the device was exposed to toluene in the 

range of 100 to 25 ppm. Figure 6.23b shows a second transient response from these 

devices, where the SMR sensors were exposed to lower concentrations of toluene in 

the range of 25 to 5 ppm.  
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Figure 6.23 Transient response of PDMS coated SMR sensor (180 nm coating) at 35 °C. 

Toluene concentrations varied from (a) 25 ppm to 100 ppm and (b) 5 ppm to 25 ppm with 

constant flow rate of 200 sccm. 

A typical experiment had a duration of 150 mins. Over the course of an 

experiment, the differential sensor output typically drifted ~5 kHz. The dual 

configuration used prevented larger drifts due to thermal variations. However, drift, 

caused by the instability of the oscillator circuits was apparent on the output from the 

dual configuration. Each resonator in a pair exhibited a different level of instability, 

thus the drift cannot be eliminated entirely through use of a dual sensor system.  

The drift present in the raw sensor data was removed using signal processing, 

after the experiment data was captured. In the processed data, spikes are visible when 

the VOC concentration is changed. These effects were due to the flow rate changing 

inside the chamber, while switching from zero air to VOC mixture and vice versa. The 

MFCs and valve configuration in the test station allowed very fast switching between 

a VOC and zero air (<2 s), although a spike in flow rate was still apparent (~10 % flow 

variation during the short switching period). This change in flow caused a 

corresponding change in pressure, which is not normally experienced in the application 

of air quality monitoring.  
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The thickness of the coating on the sensing SMR device has an effect on the 

response of the sensor (e.g. sensitivity, response time, etc.), when exposed to a VOC. 

To investigate this effect, two different PDMS coating thicknesses were trialled (70 

nm and 180 nm). Figure 6.24 shows the measured frequency shifts for toluene 

concentrations in the range of 5 ppm to 100 ppm.   

Linear fits were applied to the data (shown in the same figure), with R2 values 

of 0.9939 and 0.9961 for the 70 nm and 180 nm PDMS coated sensors, respectively. 

Thus, these fits demonstrate the strong linearity of the SMR response. The sensitivities 

of these devices were measured as approximately -25 Hz/ppm and -60 Hz/ppm, 

respectively. Both devices demonstrate favourable sensitivities compared to values 

previously reported (7.29 Hz/ppm) [14]. 

 

Figure 6.24 Frequency shift of PDMS coated SMR sensors to the exposure of toluene (5 to 

100 ppm). Linear fit shows sensitivities of devices.  

The sensitivities obtained from these experiments were similar to those 

obtained from the finite element simulations. From the simulation data, sensitivities of 

-17.5 Hz/ppm and -45 Hz/ppm were calculated for a 70 nm and 180 nm PDMS 

coatings, respectively. The simulated values are lower than those found from 

experimental data (errors of 7.5 Hz/ppm and 15 Hz/ppm, for the 70 nm and 180 nm 

coatings, respectively). The simulations assume a uniform coating over the sensing 

area of the SMR, thus variations in the surface of the deposited polymer coatings 
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caused a higher sensitivity, through stronger interactions with the vapour molecules 

(higher specific surface area).  

Two short (240 s) periods of the sensor time series response are shown in 

Figure 6.25. These periods show the response and recovery of two SMR sensors coated 

with PDMS (two thicknesses of 70 nm and 180nm) to 100 ppm of toluene vapour. The 

frequency response data was normalised (from 0 to 1) to account for the difference in 

sensitivities between the thicknesses of the coatings. For the 70nm PDMS coated 

device the response and recovery times (time to reach 67% of the final frequency shift) 

were measured as 68 s and 50 s, respectively. For the 180 nm coating, a response time 

of 87 s and a recovery time of 93 s were measured.  

 

Figure 6.25 Time series sensor response and recovery times, when exposed to toluene 

vapour at 100 ppm for PDMS coated SMRs (70 nm and 180 nm).   

The sensor response data shown in Figure 6.24 and Figure 6.25 demonstrate 

the variation in sensor response caused by the thickness of the polymer coating. A 

trade-off between sensitivity and response time is visible, where a thicker coating 

enables higher sensitivity, but at the expense of response time. For the example PDMS 

coating shown, the thicker coating (180 nm compared to 70 nm) caused the following 

parameters to increase: sensitivity (by a factor of 2.4), the response time (average +28 

%) and the recovery time (average +86 %).  
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In addition to a PDMS coated SMR, it is proposed that a PEG coated SMR 

sensor is needed, for the detection of acetone, in an air quality monitoring system. The 

PEG coating was chosen for its good sensitivity to acetone, and for low sensitivity to 

toluene (partition coefficients ratio of 3.8). Experiments were performed using a PEG 

coated SMR sensor (differential configuration, as previously discussed) with toluene 

vapour to investigate the cross-sensitivity of the device.  

A time series response of a PEG coated SMR (120 nm film) is presented in 

Figure 6.26 for the detection of toluene concentrations between 25 ppm and 100 ppm. 

The sensitivity observed by the PEG coated SMR device (6 Hz/ppm) is approximately 

4 times lower than the PDMS coated SMR (120 nm PEG coating compared to 70 nm 

PDMS).  This response confirms the low sensitivity to toluene, shown previously by 

the partition coefficients calculated in Table 6.3. The partition coefficient for the 

PDMS-toluene pair is ~10 times higher than that for PEG-toluene pair. 

 

Figure 6.26 Transient response of PEG coated SMR (120 nm thick) at 35°C. Toluene 

concentration varied from 25 ppm to 100 ppm. 

In both cases, the SMR sensors demonstrated good repeatability. Comparable results 

were obtained for three repetitions of the experiments. The sensors also exhibited good 

reversibility (the absorption/desorption of the vapour molecules) when going from low 

to high concentrations of toluene and vice versa. The frequency shifts observed for 

each of the concentrations are summarised in Figure 6.27 for the PDMS and PEG 

coating with similar thickness.   
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Figure 6.27 Comparison of SMR frequency shifts for the PDMS and PEG coated devices 

(exposure to between 25 and 100 ppm toluene).  

The PDMS coated SMR system was capable of detecting toluene 

concentrations as low as 5 ppm, which is well below the maximum safe exposure limit 

(50 ppm short term exposure). The sensitivity of the 180 nm coated device (60 

Hz/ppm) and low noise level of the sensing system (25 Hz) demonstrate the potential 

for a limit of detection in the low ppm range (for example, 1 ppm). The VOC test 

station, in its current form, was not able to generate toluene vapours of <5 ppm 

concentrations (i.e. 1 ppm could not be generated without a cylinder containing a lower 

concentration toluene mixture).  

 ACETONE DETECTION 

A SMR sensor coated with a PEG layer (120 nm thick) was previously trialled to ppm-

level toluene concentrations. The coating was selected as it offered lower sensitivity 

to toluene compared to alternative polymers and reasonable sensitivity to acetone. To 

investigate the sensitivity of the PEG sensor to acetone, the system was tested to 

vapour concentrations in the range of 50 ppm to 200 ppm, as shown in Figure 6.28. 

The sensor was capable of detecting 50 ppm of acetone vapour (10 times lower 

than the maximum safe exposure limit, 500 ppm). The sensitivity of the device was 

~3.5 Hz/ppm. Thinner sensor coatings need to be tested to improve the performance 

of the device. Wang and Chen reported sensitivities between 300-700 Hz/ppm based 
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on a 2.5 GHz SMR, with PMMA coatings between 20-80 nm thickness [15] with 

concentrations tested between 0.1 and 1%.  

 

 

Figure 6.28 Time series response of PEG coated SMR sensor (120 nm film) at 35°C to the 

exposure of acetone vapour (50 ppm to 200 ppm) 

 

The sensor system exhibited a low level of drift throughout the experiment, for 

example, the second 100 ppm response (~480 Hz) was greater than the first 100 ppm 

response (~360 Hz). A comparison of the PEG coated SMR sensor response to low 

ppm concentrations of acetone and toluene is shown in Figure 6.29 and the sensitivities 

for the PDMS and PEG coated sensors are summarised in Table 6.7. 

 

Figure 6.29 Comparison of SMR frequency shifts for the PEG coated device exposed to 

acetone and toluene vapours. 
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As expected, from the partition coefficients shown in Table 6.3, the sensitivity of the 

PEG coated SMR is higher when detecting a toluene vapour, compared to acetone. 

However, it is a factor of 10 lower, compared to the sensitivity of a PDMS coated 

SMR.   

Table 6.7 Sensitivity of polymer coated SMR devices (900 MHz) for the detection of 

toluene and acetone (in Hz/ppm). 

 TOLUENE ACETONE 

PDMS 70 nm -25  - 

PDMS 180 nm -60 - 

PEG 120 nm -6 -3.5 

 

 HUMIDITY EFFECT 

The experiments were mainly performed in a dry environment (~0 % RH). It is likely 

most air quality monitors will be used in environments with varying RH between 20 

and 80 % (e.g. indoor or outdoor locations). Variations in RH have been reported to 

affect the resonant frequency of polymer-coated acoustic sensors, as the water vapour 

becomes absorbed in the polymer coatings [16]. A differential measurement can help 

reduce the baseline variation, although if a significant amount of water vapour 

becomes absorbed, the sensitivity of the device can be affected.  

The test station allowed humid zero air to be mixed with the VOC vapour and 

dry zero air to create a humid mixture. However, to keep a constant level of humid air 

the maximum concentration of the VOC was limited (i.e. as the VOC was diluted with 

the humid air, it was not possible to test the cylinder concentration of the VOC with 

any level of RH).  An initial experiment was performed in humid conditions at 40 % 

RH, similar to that found in a domestic environment. The time series response is shown 

in Figure 6.30, using the PDMS coated sensor (180 nm). Further experiments were 

desired, but to generate a wider range of concentrations, cylinders with higher 

concentrations of the VOCs are required.   
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Figure 6.30 Transient response of PDMS coated SMR sensor at 35°C and 40% RH to the 

exposure of toluene concentrations (40 ppm to 60 ppm). 

The increase in RH considerably shifted the baseline frequency of the SMR 

sensors (~20 kHz) but had a minimal effect on the sensor performance, in terms of 

response time and recovery. Relative to the experiments performed in dry conditions, 

the recovery time increased by only 2 s (average 95 s) but the response time increased 

by 23 s (average 110 s). However, the sensitivity of the sensor was slightly increased 

to -70 Hz/ppm (compared to -60 Hz/ppm).  

Further work involves testing in humid conditions. The level of humidity 

generated by the test station was not stable, as measured by the commercial 

RH/temperature sensor. This caused the SMR sensor response to be unstable. Sudden 

spikes in RH concentration were visible, caused by water droplets forming in the pipes 

used to connect the mixing chamber to the sensor chamber. The formation of water 

droplets could be prevented by heating the pipes to the same temperature as the mixing 

chamber. Further work involves improving the test station to ensure a continuous 

positive temperature gradient is created from the humidity bottle to the sensor 

chamber.   

The effects of humidity in the sensor response (and in the polymer coating) is 

not greatly reported in the literature. Zellers and Han [16] concluded the properties of 

the polymer coating (i.e. polarity) and the VOC under test have the strongest effect. 

Polar coatings are more prone to water absorption. However, there is not a consistent 

link between a polymer polarity and effects of humidity in the sensor response. Thus, 

the effect needs to be investigated for each specific polymer-vapour combination.  
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6.8 CONCLUSIONS 

A SMR based sensor system was developed, capable of detecting low ppm 

concentrations of toluene (5ppm) and acetone (50 ppm). It is proposed an air quality 

monitor based on these devices can be developed, based on the detection limits of the 

devices (compared to the safe exposure limits for toluene and acetone of 50 ppm and 

500 ppm, respectively).  However, further testing is still required to evaluate the 

performance of the devices in typical environmental conditions of temperature and 

humidity (including variable conditions).   

 The SMR devices (resonating at 900 MHz) were employed along with a thin 

polymer film (<200 nm) to detect the toluene and acetone vapours. To select the 

polymer coatings, an analysis of the partition coefficients (for specific polymer-vapor 

pairs) was performed using linear solvation energy relationships. PDMS and PEG were 

the selected polymers, due to their high partition coefficients and low cross-

sensitivities for the target vapours. 

 To realise the coated SMR devices, a drop coating system was developed. Thin 

polymer films were deposited on the sensing area of the SMRs using this system. The 

system allowed small volumes of polymer solutions to be deposited in a localized area 

of the SMR device (70 nm coatings possible). The sensor system worked in a dual 

configuration with a polymer-coated SMR device as the sensing device and an 

uncoated SMR as the reference channel. Interface circuitry consisted of a Pierce 

oscillator board to drive the resonators and mixing circuitry to output a low frequency 

square output signal (<20 MHz) acquired by a microcontroller at 10 Hz sampling rate. 

Typical power consumption of the sensing system was ~210 mW.  

Testing of vapours at specific low ppm concentration levels was made possible 

through development of a benchtop gas test station.  The automated VOC station was 

designed to expose the sensors to step changes in vapours with long experiments 

possible (minimal user interaction needed).  A gas exposure chamber with very low 

dead space volume (3.5 mL) was designed to accommodate up to eight oscillator 

boards (4 differential sensors). 
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The SMR sensors were mainly tested in dry conditions to the exposure of 

toluene (in the range of 5 ppm to 100 ppm) and acetone (in the range of 50 ppm to 200 

ppm). A trade-off between coating thickness, sensitivity and response time was found 

(thicker coatings offer high sensitives, but slow response times). A 180 nm PDMS 

coated SMR device exhibited a linear response for the detection of toluene vapour, 

with a high sensitivity of -60 Hz/ppm in dry conditions. Response and recovery times 

were calculated as 87s and 93s, respectively. Good repeatability and vapour 

absorption/desorption was observed throughout the experiments.  Thinner coatings (70 

nm PDMS) exhibited a lower sensitivity (-25 Hz/ppm) but faster response and 

recovery times (68s and 50s, respectively). These experimental results confirmed the 

validity of the finite element simulations (sensitivities of -45 Hz/ppm 

and -17.5 Hz/ppm were calculated for PDMS coatings of 70 nm and 180 nm, 

respectively). 

PEG coated SMRs were used to detect acetone vapours (50 to 200 ppm). The 

devices demonstrated a sufficiently low detection limit (50 ppm) to be used for air 

quality monitoring, although the sensitivity (-3.5 Hz/ppm) was lower than that 

previously reported in the literature (300 Hz/ppm).  

The test station was not able to produce stable levels of humidity for the long 

durations of the experiments. Initial experiments were trialled at 40 % RH, with 

toluene vapour (40-60 ppm) and the PDMS coated SMRs. The higher level of humidity 

caused the sensitivity of the sensor to increase slightly (-70 Hz/ppm, 180 nm coated 

device), but the response time increased by 23 s (average 110 s). Further experiments 

are required to investigate the effect of increased humidity levels. Each polymer 

coating and vapour pair is effected in a different manner, and thus must be 

characterised individually.  

In general, the experimental results presented in this chapter show a thermal 

drift (~5 kHz) over the long experiment period (150 min). Although the use of a 

differential configuration helped on reducing the effects of temperature variations, 

temperature compensation methods are required in the implementation of such a 

system in an air quality monitor.  
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The SMR sensors could detect concentration levels below the safe exposure 

limits of toluene and acetone, but their performance can be improved in terms of 

sensitivity, selectivity, response time and circuitry performance (e.g. thermal drift, 

noise level). In the experiments presented in this chapter, the SMR sensors were 

exposed to a single VOC at a time. Polymer-coated SMRs are not selective to a specific 

organic compound but exhibit different sensitivities according to the polymer-vapour 

partition coefficient.  

In a real environment, which could contain multiple VOCs, a single SMR 

sensor cannot identify the range of compounds present. An array of SMR sensors 

coated with a range of polymer films can be used for improved selectivity in order to 

classify the different compounds via pattern recognition using techniques such a 

Principal Component Analysis (PCA). 

In the next chapter, a novel SMR device is proposed to be included in a low-

cost air quality monitor to enhance the sensitivity and selectivity, among other 

improvements, of the SMR sensors.  
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DESIGN OF CMOS BASED 

SOLIDLY MOUNTED 

RESONATOR 

7.1 INTRODUCTION 

Chapters 5 and 6 demonstrated the use of solidly mounted resonators for two air quality 

monitoring applications (particulate matter and VOC detection). The developed 

sensing systems consisted of ZnO based SMR devices fabricated on a silicon substrate 

and interfaced to discrete circuitry in a dual configuration. Results obtained with these 

prototypes demonstrated the suitability of SMR devices in air quality monitoring, but 

three major aspects need to be considered for their implementation: 

(1) To develop a low cost, lightweight and low-power personal air quality monitor, 

the SMR devices must be capable of being manufactured in mass production at a 

low cost, have a small footprint and improved performance, and the circuitry be 

optimised to minimise power consumption. To address this point, the current 
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state-of-the-art in monolithic integration of BAW devices with the CMOS 

circuitry was reviewed in Chapter 2. Current implementations of SMR-IC 

integration suffer from an increased number of required lithography steps, lower 

manufacturing yield and performance. 

(2) A real-time particle sensor based on SMRs requires an active method of cleaning 

the sensing surface after a period of time (currently not possible with the proposed 

approach). In this way, a sensor with a long-life span can be produced. 

(3) A method of increasing the sensitivity and selectivity of the SMR based VOC 

sensor is needed to obtain a highly sensitive sensor with fast response times, 

capable of detecting common organic compounds (within the safe exposure 

limits) found in the ambient air.  

To address the afore-mentioned limitations, the development of a novel CMOS 

based SMR device is presented in this chapter. The SMR sensor advances upon the 

current generation of acoustic devices, through the fabrication of the acoustic mirror 

within a standard CMOS process. It is proposed that the complete electronic resonator 

circuitry can be monolithically integrated into the same CMOS process; thus, a 

complete sensor system can be manufactured with a significant reduction in the 

required post-processing stages.  

The sensor design consists of an integrated heater, an acoustic mirror (formed 

from CMOS layers) and the resonator structure (piezoelectric layer and electrodes). 

The integrated microheater is used to enhance the sensitivity of the SMR sensor 

through the use of a thermal modulation technique (temperature variations of the 

sensing area to target specific analytes).  

The CMOS based SMR design concept, including mapping the heat 

distribution of the integrated heater, was evaluated by means of finite element 

modelling. The device was fabricated and characterised.  Experimental results for the 

detection of fine particles are presented. 
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7.2 STRUCTURE OF NOVEL CMOS BASED SMR 

As discussed in Chapter 2, three of the main problems encountered in the integration 

of SMR devices with the CMOS circuitry can be summarised as follows: 

(1) The total number of photolithography steps, required to fabricate the integrated 

system, is increased (processing steps for the IC add to the processing steps 

required for the SMR device).  

(2) The manufacturing yield of the combined process is lower compared to the yield 

obtained from the individual processes. This is especially the case when 

combining SMR devices with a small footprint (<1 mm2) with larger ICs, which 

can also significantly increase the manufacturing costs. 

(3) The distance between the interconnections of the IC and the SMR device is 

increased due to the total thickness of the deposited layers above the CMOS 

substrate (between 4 µm and up to 10 µm, that form the acoustic mirror layers, 

the electrode and piezoelectric). 

The CMOS based SMR device proposed in this work comprises of three parts: 

(1) a single crystal silicon (SCS) microheater, (2) a CMOS based acoustic mirror and 

(3) the resonator structure. The overall structure of the novel SMR device is shown in 

Figure 7.1. Possible integration of the device with CMOS interface circuitry is depicted 

in the same figure. However, this work only focused on the development of the CMOS 

based SMR device for its future integration with the IC. 

In the proposed device, both the SCS microheater element and the acoustic 

mirror of the SMR are fabricated during the same standard CMOS process (together 

with the IC). Only the resonator structure (electrodes and piezoelectric layer) are 

deposited and patterned in a post-CMOS process. The proposed device advances the 

current state-of-the-art through the fabrication of the acoustic mirror stack (high and 

low acoustic impedance layers) during a standard CMOS fabrication process. The high 

acoustic impedance and low acoustic impedance layers are formed by the metal and 

oxide layers of the selected CMOS process (deposited during the metallization 

process), respectively. 
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Figure 7.1 Structure of the CMOS based solidly mounted resonator device (CMOS acoustic 

mirror) with integrated SCS heater for temperature modulation. Integration with CMOS 

circuitry is shown. Figure is not to scale. 

As opposed to current approaches of SMR fabrication and SMR-IC monolithic 

integration (shown in Figure 7.2) [1-3], only the resonator structure (electrodes and 

piezoelectric layer) need to be deposited in the post-CMOS process.  

  

Figure 7.2 (a) and (b) Current state of art in SMR-CMOS integration compared to (c) the 

proposed novel SMR device with integrated circuitry. 
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Volume manufacturing of SMR devices (e.g. for mobile communications 

applications) is performed at conventional CMOS manufacturing facilities [4], making 

use of existing IC equipment. Non-standard CMOS processes are used to form the 

acoustic mirror (layers of λ/4 thickness). This is only possible for volume 

manufacturing as the process must be tailored to a specific run, i.e. specifications of 

the layers for acoustic mirror must be given, in terms of material and thickness 

(CMOS-compatible materials only).   

For the proposed device, the acoustic mirror is fabricated within a standard 

CMOS process (with defined metallization and layer thicknesses). Using these 

process-defined layers gives place to asymmetric acoustic mirror structures. Compared 

to the configuration in Figure 7.2a and b, the integration proposed in this work has the 

advantages of reduced post-fabrication steps. Only the electrodes and piezoelectric 

layer need to be deposited above the CMOS wafer. The acoustic mirror layers are 

formed by the metal layers and oxide layers of the CMOS process. This not only 

reduces the post-CMOS manufacturing time and costs, but also offers improved 

manufacturing tolerances from batch to batch. 

In the proposed design, the acoustic mirror uses all three metal layers available 

in the selected CMOS process (XI10 1.0 µm SOI CMOS process) and thus the IC must 

be implemented next to the resonator. CMOS processes with at least five metal layers 

would allow the acoustic mirror to be integrated in the layers immediately above the 

circuitry and inside the substrate. This will further reduce the overall size of the 

integrated system as a stacked structure can be obtained.  

Design and finite element simulations of the proposed structure are presented 

in the following sections. Initially the acoustic mirror was simulated alone to evaluate 

the suitable operating frequencies of an SMR fabricated using the selected XI10 1.0 

µm SOI CMOS process. The heater was thoroughly simulated to envisage the heat 

distribution across the device, considering the addition of the acoustic mirror layers on 

top. Finally, the complete device was simulated, including the resonator structure to 

be fabricated during post-processing to validate the operation of this novel sensor.   
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7.3 DESIGN AND MODELLING OF CMOS BASED ACOUSTIC MIRROR 

For the implementation of the proposed structure, a silicon on insulator (SOI) wafer 

was selected. By using this substrate, the area underneath the integrated heater is 

passivated, reducing thermal losses and simplifying the fabrication process [5].  In 

particular, the standard XI10 1.0 µm SOI CMOS process (XFAB, Germany) was used.  

This process allows the use of up to three metal layers with a choice of aluminium or 

tungsten metallization.  

As discussed in Chapter 3, the acoustic mirror in SMR structures is formed by 

alternating layers of low and high acoustic impedance materials, commonly with a λ/4 

thickness. The total number of layers required to obtain a good reflectivity depends on 

the low to high acoustic impedance ratio of the materials chosen (usually at least four 

layers are required with a minimum of 6 usually used). In this work, thicknesses and 

materials of the layers used to form the acoustic mirror are entirely defined by the 

selected CMOS process. For the standard XI10 SOI CMOS process selected, the 

available layers and their thicknesses are summarised in Table 7.1.  

Table 7.1 Typical thicknesses of the standard XFAB XI10 SOI CMOS process for tungsten 

and aluminium metallization. 

LAYER 
TUNGSTEN 

(nm)  

ALUMINIUM 

(nm) 

Passivation (Si3N4) 550 550 

Oxide 3 200 200 

Metal 3 (M3) 500 940 

Oxide 2 900 650 

Metal 2 (M2) 300 650 

Oxide 1 650 650 

Metal 1 (M1) 300 720 

SiO2 2000 2000 

Polysilicon 300 300 

Active Silicon 250 250 

 

Using the standard thicknesses and layers shown above, an asymmetric 

acoustic mirror structure will be obtained (all layers have different thicknesses). 

Asymmetric acoustic mirrors can exhibit reduced transmissivity at specific 
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frequencies. The operating frequencies of a resonator built upon these CMOS based 

acoustic mirror are determined by the transmissivity of the mirror. To obtain high 

quality factors, the resonator must operate at frequencies where the mirror exhibits 

maximum reflectivity. Thus, careful design of the complete structure is required. 

The transmissivity of an acoustic mirror formed by the various combinations 

of these layers was evaluated, for both aluminium and tungsten metallization, using 

the one-dimensional Mason model. The simulated transmissivities are shown in Figure 

7.3. The acoustic impedance ratio of Al and SiO2 is very low at a value of only 1.3 

(refer to section 3.3.2). Therefore, a very poor performance of the reflector stack was 

obtained for the aluminium metallization with a maximum transmissivity of only -10 

dB (as seen from Figure 7.3a). On the other hand, W and SiO2 layers offer a large ratio 

of high to low acoustic impedance (at a value of ~8). The simulated mirror 

transmissivity with W layers is shown in Figure 7.3b. The transmittance of such 

structure is at least three times better than that with Al metallization. Thus, the SOI 1.0 

µm CMOS process with W metallization was chosen to implement the proposed 

CMOS based acoustic mirror. 

 

Figure 7.3 Simulated transmissivity of CMOS acoustic mirror formed by (a) aluminium and 

(b) tungsten metallization of the XI10 process layers.  
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The wave reflection is maximised when all three W metal layers (and oxide 

layers) are used to form the acoustic mirror. The resulting asymmetric acoustic mirror 

structure exhibits excellent performance with high reflectivity and a wide bandwidth 

of transmittance. A transmittance of almost -50 dB is obtained at frequencies between 

2 to 3 GHz, but also good reflectivity is obtained at frequencies between 3.5 and 4 

GHz. A SMR device with resonant frequencies between 2 and 3 GHz (a range 

commonly used for mobile applications) can be obtained using the selected CMOS 

process. Suitable thicknesses of the electrodes and selected piezoelectric material (to 

be deposited in a post-fabrication process) need to be selected according to these 

requirements. 

Following the analysis of the CMOS based acoustic mirror, a 2D finite element 

model (COMSOL Multiphysics v4.2) was used to analyse the frequency response of 

the entire CMOS based SMR device (including the layers of the resonator structure). 

For the development of a complete CMOS based resonator, capable of being fabricated 

entirely in a CMOS foundry, careful selection of the piezoelectric material is needed, 

as well as for the electrodes material as only CMOS compatible materials are suitable.  

In terms of piezoelectric material, AlN is preferred over ZnO or PZT. The latter 

two pose severe contamination problems inside CMOS fabrication facilities, as they 

can degrade the carrier lifetime of the semiconductor devices [6]. This characteristic 

together with the low TCF (-25 ppm/°C), low density (3260 kg/m3) and high thermal 

conductivity (~150 W/m∙K) of AlN, make this piezoelectric material a good candidate 

for the implementation of this CMOS based SMR device. 

Even though AlN was preferred over ZnO for this implementation, simulations 

were performed with both AlN and ZnO using molybdenum as the chosen material for 

the electrodes. Mo offers a good compromise between density, acoustic impedance 

and resistivity. In this work, the piezoelectric layer will be deposited in a post-CMOS 

process (outside CMOS facilities).  Figure 7.4 shows a schematic of the simulated 

structure, with the thicknesses of the layers as summarised in Table 7.1. Simulations 

were performed with a range of thicknesses between 500 nm and 2 µm for the 

piezoelectric layer. Both the bottom and top electrodes were set to a thickness of 200 
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nm. Material properties used within the simulations are those previously summarised 

in section 3.3.1.  

 

Figure 7.4 Schematic cross section view of the complete structure of the CMOS based SMR 

device, showing layer thicknesses and important dimensions. Figure not to scale. 

For the SMR to resonate at frequencies between 2 and 3 GHz (as determined 

by the transmissivity of the CMOS based acoustic mirror), piezoelectric layer 

thicknesses between 600 nm and 1.2 µm are required for ZnO, and between 700 nm 

and 1.6 µm for AlN. The impedance curves obtained from the simulations are shown 

in Figure 7.5 with both devices showing a similar response.   

A resonant frequency of 2.1 GHz was selected for the design of the acoustic 

mirror. Based on simulation results, thicknesses of 1.1 µm and 800 nm were chosen 

for AlN and ZnO respectively. These material thicknesses were chosen as thicker 

layers could cause undue stress on the film, while thinner layer would risk worsening 

the piezoelectric properties of the material. 
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Figure 7.5 Simulated frequency response of the CMOS based SMR device for piezoelectric 

thicknesses ranging from 500 nm to 2 µm for both ZnO and AlN layers. 

7.4 DESIGN AND MODELLING OF INTEGRATED MICROHEATER 

The integration of a heating element in the substrate of a resonator structure (SAW and 

BAW devices) has been proposed by Vilander for temperature compensation purposes 

(i.e. temperature control of the resonator for improved frequency accuracy) [7]. In this 

work, the CMOS based SMR device also includes an integrated microheater. However, 

the microheater is proposed to serve two main purposes within an air quality sensor 

system: (1) sensitivity enhancement through the use of a temperature modulation 

technique (in the case of VOC detection) and (2) cleaning of the sensor surface to 

detach accumulated particles (in the case of particle sensing).  
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The development of a fully CMOS based SMR device requires the integrated 

heater to be CMOS compatible. Traditional materials used in the design of resistive 

heater structures are either not CMOS compatible (i.e. platinum), suffer from high 

chemical reaction at grain boundaries (polysilicon) or suffer from electro-migration at 

high temperatures >400 °C (e.g. Al, Cu) [8-10]. Iwaki et al. proposed SOI based micro 

heaters employing doped single crystal silicon to overcome these limitations (they are 

CMOS compatible and can operate at high temperatures up to 600°C with low power 

consumption, <100 mW) [11].  

An alternative option to implement the heater within the CMOS based SMR is 

the use of tungsten heaters. Tungsten is not prone to electro-migration problems and 

has a good electrical resistivity, which allows its use as both a heater element and 

interconnections in a CMOS based device. They can operate at high temperatures 

(600°C) at very low power consumption (12 mW) and have good stability and 

mechanical strength [12].  In this work, however, a W heater was not implemented 

because all three tungsten layers available within the 1.0 µm SOI CMOS process are 

dedicated to form the acoustic mirror structure. In a CMOS processes featuring more 

than 6 tungsten layers, a metal heater can be embedded underneath the acoustic mirror. 

Therefore, doped single crystal silicon (SCS) was selected to form the 

integrated microheater in this work. It is a CMOS compatible material which, as 

opposed to polysilicon, does not have any grain boundaries. This allows for better 

thermal stability (<1% drift) [5]  and thus it can be operated reliably at high 

temperatures. In particular, the p+ region of the SOI CMOS process was used as the 

resistive heater material because of its high dopant concentration (1020/cm3) and 

consequent low resistivity (1.17 ×10-5 Ω∙m), which allow the heater to operate at low 

voltage levels, compared to the alternative n+ region. Relevant material properties of 

semiconductors in this CMOS process are summarised in Table 7.2.  

Table 7.2 Material properties of semiconductors in the CMOS process [5].  

PROPERTY n+ p+ Polysilicon 

Sheet resistance [Ω] 40 65 30 

Temperature coefficient of 

resistance α1 [1/K] 
1.35 ×10-3 1.51 ×10-3 0.85 ×10-3 

Temperature coefficient of 

resistance α2 [1/K2] 
0.29 ×10-6 0 0.35 ×10-6 
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The power, 𝑃, of a resistive heater, including the tracks, is described by Joule’s law 

as: 

𝑃 = 𝐼2𝑅𝐻 + 𝐼2𝑅𝑇 (7.1)  

where 𝐼 is the electric current, 𝑅𝐻 is the resistance of the heater and 𝑅𝑇 is the resistance 

of the tracks. As electric current passes through the resistive structure, heat is 

generated. The power generated by the heater can be dissipated by conduction through 

the membrane, by convection (proportional to the heated area) and by radiation to the 

surrounding environment. The heat generated in the heater area raises the temperature 

of the membrane while the majority of the heat generated on the resistive tracks is 

dissipated to the substrate.  

The resistivity of silicon heaters is considerably higher compared to that of 

metal heaters (e.g. the resistivity of p+ silicon is 1.17 ×10-5 Ω∙m compared to that of 

tungsten at 5.46 ×10-8 Ω∙m). For silicon heaters, wide tracks are preferred to reduce 

the resistance and thus reduce the power consumption. However, using wide tracks 

will also cause more heat to be dissipated to the substrate. To avoid this problem, two 

design procedures have been previously proposed: the use of sector shape silicon 

tracks and the use of tungsten tracks connected to the silicon heater [11].  

The microheater structure in this work is based on a previous design by Iwaki 

on resistive SOI-CMOS microheaters for gas sensing [5], using sector shape silicon 

tracks. The use of metal tracks was not possible within the current CMOS based SMR 

structure, as all metal layers are used to form the acoustic mirror. The resistive heater 

(p+ silicon, 150 µm diameter) is embedded in a thin membrane of SiO2 (2 µm 

thickness and 600 µm diameter) and located underneath the acoustic mirror structure. 

The first metal layer of the acoustic mirror also acts as a heat spreading plate to 

improve temperature distribution on the sensing area. A cross and top section of view 

of the heater structure is depicted in Figure 7.6. 
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Figure 7.6  Structure of the resistive heater integrated within the CMOS based SMR 

structure with sector shape silicon tracks (∠40°). 

A small heater area of 0.018 mm2 and a membrane to heater ratio of 4 is used 

to reduce convection heat losses. The heater element consists of two resistors 

connected in parallel, each formed by three concentric half rings connected in series. 

A circular structure of the heater and the membrane is used to avoid possible fracture 

due to stress. The tracks are made of the same heater material (p+ silicon) with a sector 
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shape at a 40° angle. Using such sector shape tracks allows the generation of more heat 

in the inner area of the track, efficiently raising the temperature of the heater area.  The 

tracks have metal connections (tungsten interconnections) in the area outside the 

membrane.  

In order to obtain an accurate reading of the temperature of the heater, a four-

probe temperature measurement method is used. This is implemented by using a dual 

metal track configuration (with two wide tracks for current drive and two narrower 

tracks for voltage measurement), as shown in the figure above. Using this four-probe 

configuration, accurate measurements of the heater resistance can be performed [13]. 

The measured resistance of the heater can then be related to heater temperature using 

the temperature dependant expression of the material resistivity:  

𝜌(𝑇) = 𝜌0[1 + 𝛼1(𝑇 − 𝑇0) + 𝛼2(𝑇 − 𝑇0)
2] (7.2)  

where 𝜌(𝑇) is the temperature-dependant electrical resistivity, 𝜌0 is the resistivity at 

the temperature 𝑇0, 𝑇0 is a fixed temperature (commonly room temperature), and 𝛼1 

and  𝛼2 are the temperature coefficients of resistance, given in Table 7.2. 

 3D ELECTRO-THERMAL SIMULATIONS OF THE MICROHEATER 

Three dimensional (3D) electro-thermal FEM simulations of the microheater were 

performed using the Joule heating multiphysics interface in COMSOL v5.2. This 

interface couples the electric currents and heat transfer interfaces to solve for the 

combined effects of resistive heating and heat loss mechanisms in solids. In this way, 

the heat distribution across the CMOS based SMR was evaluated and the power 

consumption together with the thermal power losses in the heater were computed.  

 The mathematical model for heat transfer in solids used in COMSOL solves 

for the heat equation (7.3) 

𝑄 = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
− ∇ ∙ (𝑘∇𝑇) (7.3)  
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where 𝑄 is the heat source (generated from the resistive heating), 𝜌 is the electrical 

resistivity, 𝐶𝑝 is the heat capacity, 𝑘 is the thermal conductivity and 𝑇 is the 

temperature. 

The electrical power supplied to the microheater can be dissipated through the 

heat loss mechanisms of conduction (to the membrane), convection (to surrounding 

air) and radiation. In a steady-state operation (temperature does not change with time), 

the electrical power consumption equals the thermal losses, which can be expressed 

as:   

𝜎(∇𝑉)2 = 𝑃cond + 𝑃conv + 𝑃rad 
(7.4)  

where 𝜎 is the electrical conductivity, 𝑉 is the electric potential applied to the heater 

and 𝑃cond, 𝑃conv and 𝑃rad are the power losses (per unit volume) by conduction, 

convection and radiation, respectively. The electric conductivity (reciprocal to the 

resistivity) is given as temperature-dependant, following equation (7.2): 

𝜎(𝑇) =
1

𝜌0[1 + 𝛼1(𝑇 − 𝑇0) + 𝛼2(𝑇 − 𝑇0)2]
 (7.5)  

The heat loss mechanisms were computed by COMSOL through the following 

equations:  

𝑃cond = −∇ ∙ (𝑘∇𝑇) (7.6)  

𝑃conv = ℎ𝐴(𝑇0 − T) (7.7)  

𝑃rad =  𝜀𝜎𝐵(𝑇4 − 𝑇0
4) (7.8)  

 

where 𝑘 is the material thermal conductivity, ℎ is the heat transfer coefficient 

(10 W/m2K), 𝑇0 is the ambient temperature, 𝜀 is the emissivity constant (set at 0.8 for 

the SiO2 membrane) and 𝜎𝐵 is the Stefan-Boltzmann constant (5.67 ×10-8 W/m2K4).  

Only natural convection is assumed in the model and ambient temperature (298 K) is 

assumed at the outer edges of the membrane and substrate.  Material properties used 

within the simulations are summarised in Table 7.3.  
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Table 7.3 Properties of materials used within the simulations. 

MATERIAL 
DENSITY 

[Kg/m3] 
RESISTIVITY 

[Ω∙m] 

THERMAL 

CONDUCTIVITY 

[W/m∙K] 

HEAT 

CAPACITY 

[J/kg∙K] 

TEMPERATURE 

COEFFICIENT OF 

RESISTANCE 

𝛼1 [1/K] 𝛼2 [1/K2] 

Si 2330 1×10-5 168 678 - - 

p+ Si 2330 1.62×10-5 168 678 1.51×10-3 0 

W 19350 1.2×10-7 177 134 2.05×10-3 3×10-7 

SiO2 2200 - 1.4 730 - - 

Si3N4 3100 - 20 700 - - 

 

Figure 7.7a shows the developed 3D model of the microheater embedded within the 

silicon dioxide layers. A custom mesh with triangular elements was used to reduce the 

number of mesh elements generated in the model. This is possible by using a swept 

mesh function as the model comprises of very thin layers (< 5µm). The resulting mesh 

is shown in Figure 7.7b for the heater area. 

 

 

Figure 7.7 (a) 3D finite element model of the integrated heater and (b) magnified view of the 

meshed heater area. 

First, an analysis of the embedded heater structure was performed, without the acoustic 

mirror layers deposited (shown in Figure 7.8). Later simulations were performed 

(presented in section 7.4.2) which included all the layers used within the complete 

CMOS based SMR to observe the effects on the heater performance due to the 

additional layers.  
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THICKNESS OF LAYERS 

Silicon Substrate 500 µm 

Heater (p+ Silicon) 250 nm 

SiO2 (BOX) 1 µm 

SiO2  2.8 µm 

Passivation (Si3N4) 550 nm 

  

DIMENSIONS 

Heater Radius 75 µm 

Membrane Radius 300 µm 

Track length 375 µm 

  
 

(a) (b) 

Figure 7.8 (a) Structure of microheater embedded in the silicon dioxide layers and (b) 

summary of thicknesses and dimensions for simulation. 

The simulated temperature distribution over the membrane is shown in Figure 7.9 for 

a maximum temperature of 555 °C. A near uniform temperature distribution is 

observed over the centre area. This temperature uniformity would improve the 

sensitivity and selectivity of the SMR based sensor.  The outer rings forming the heater 

are wider than the inner rings to improve the temperature uniformity, as more heat is 

lost in the outer region through conduction to the membrane [11].  

 

 

Figure 7.9 Temperature distribution of the micro heater (a) 3D view of the entire model and 

(b) Top view of heater and membrane. 
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The temperature profiles along the x and y axes of the heater are shown in 

Figure 7.10a over the membrane area. A more uniform temperature distribution is 

observed along the y axis compared to that of the x-axis. The inclusion of a heat 

spreading plate in the centre area of the heater can improve this temperature 

distribution [11]. However, this area was reserved for the future implementation of a 

temperature diode. Furthermore, the first metal layer of the CMOS acoustic mirror will 

also act as a heat spreading plate, to improve temperature uniformity. Figure 7.10b 

shows the thermal loss contribution of each of the dissipation mechanisms. As 

expected, heat dissipation by conduction to the membrane is the dominant loss 

mechanism, at ~83% of the total power.  Heater resistance of ~1000 Ω is estimated at 

room temperature.  

 

Figure 7.10. (a) Temperature Profile in x-axis and y-axis of the heater along the membrane. 

(b) heat dissipation contributions on the heater. 

The next section presents the thermal simulations of the microheater including 

the CMOS based acoustic mirror. The results are compared to those obtained with the 

configuration presented in this section (temperature distribution over the membrane 

area). 

 CMOS ACOUSTIC MIRROR WITH EMBEDDED MICROHEATER 

In the CMOS based acoustic mirror design, the CMOS metal layers that form the 

acoustic mirror are to be patterned to avoid cross talk and parasitic capacitances 

between devices on the same wafer (especially beneficial in the case of sensor arrays 
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being used). These metal layers were designed to have a circular shape to reduce 

mechanical stress due to sharp corners. An appropriate radius of these metal layers was 

investigated through 3D electro-thermal simulations.  

 

 

THICKNESS OF LAYERS 

Silicon Substrate 500 µm 

Heater (p+ Silicon) 250 nm 

SiO2 (BOX) 1 µm 

Metal 1 (W) 300 nm 

Oxide 1 650 nm 

Metal 2 (W) 300 nm 

Oxide 2 900 nm 

Metal 3 (W) 500 nm 

Oxide 3  200 nm 

Passivation (Si3N4) 550 nm 

  

DIMENSIONS 

Heater Radius 75 µm 

Membrane Radius 300 µm 

Track length 375 µm 

Metal Layer Radius 100 – 250µm 
 

(a) (b) 

Figure 7.11. Schematic of the heater with acoustic mirror used for the simulations. The 

Radius of the metal layers that form the acoustic mirror is varied from 100 µm to 250 µm. 

 

The temperature distribution over the acoustic mirror structure (schematic and 

summary of the layers are given in Figure 7.11) was analysed through the simulations.  

The radius of the metal layers was varied from 100 to 250 µm. The results of these 

simulations are shown in Figure 7.12. All four variations exhibit a circular temperature 

profile. However, the heat is not localized over the central heater area. As the radius 

of the metal layers is increased, the maximum temperature decreases over the acoustic 

mirror.  The maximum temperature over the reflector layers (for a fixed 12 V supply) 

is 387 °C for the configuration with metal layers of 100 µm radius. This maximum 

temperature is 30% lower than the maximum temperature over the membrane (for the 

same voltage supply). For a metal layer radius of 250 µm, the maximum temperature 

is already ~65% lower and the temperature is not localized. 

 



 

Chapter 7. Design of CMOS based Solidly Mounted Resonator 267 

 

 

 

Figure 7.12. Temperature distribution of the heater and acoustic mirror as a function of the 

diameter of the W metal layers that form the acoustic mirror. 

The power consumption and plot of temperature against applied voltage are 

presented in Figure 7.13 for all these four configurations together with the data 

previously obtained only over the membrane structure. Power consumption of the 

CMOS SMR structure and embedded heater (metal layers radius 250 µm) is the highest 

at 75 mW at 150 °C. Higher power consumption values (>120 mW) will be required 

to reach temperature values above 300 °C to heat the sensing area of the SMR device.  
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The configuration with metal layer radius of 100 µm exhibits the lowest power 

consumption. However, an acoustic mirror of this size (100 µm radius) is not large 

enough to form a resonator active area of 200 µm (for particle sensing). Therefore, an 

acoustic mirror layer with radius of 150 µm was selected for the CMOS based SMR 

device (heater to metal layer ratio of 2), as it presents the best compromise between 

power consumption, temperature profile distribution and size for the acoustic 

resonator. For the sensing applications in this work, a maximum temperature of 200 °C 

is required, which can be obtained with the selected configuration (radius of 150 µm) 

at a power consumption of only 40 mW.  

 

Figure 7.13. (a) Temperature vs applied voltage and (b) power consumption of the heater 

and acoustic mirror with different radius for the metal layers. 

 TRANSIENT RESPONSE 

The transient response of the CMOS acoustic mirror with embedded micro heater was 

simulated using the same FEM model in COMSOL. A square voltage signal (12 Vdc) 

at a frequency of 10 Hz was applied. Figure 7.14 shows the transient response of the 

CMOS acoustic mirror with heater for metal layer radius of 150 µm, compared to that 

of the heater (with no additional mirror layers).  The time constant of the microheater 

(i.e. the time required to reach 63% of the final temperature value) was determined 

from simulation results to be 4.3 ms for the heater structure with membrane only 

(maximum temperature of 555 °C). The thermal time constant for the heater embedded 

within the CMOS based acoustic mirror was found to be 1.6 ms for a temperature final 

value of 400 °C. The fast response time of the micro heater can allow its operation in 

pulsed mode to further decrease the average power consumption [12].  
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Figure 7.14. Transient response for the microheater with acoustic mirror (square voltage 

signal of 12 V at a frequency of 10 Hz): (a) Heater Only (b) Metal layer radius = 100 µm. 

 In the next sections, the fabrication of the designed CMOS based SMR device 

is presented. Fabrication is completed in two separate stages: 1) fabrication of the 

CMOS based acoustic mirror and embedded heater (fabricated in the standard XI10 

1.0 µm SOI CMOS process); and (2) post-fabrication steps required to form the 

resonator structure (deposition of the electrodes and piezoelectric material).  

7.5 FABRICATION OF CMOS BASED ACOUSTIC MIRROR AND HEATER 

The CMOS based acoustic mirror was fabricated through the XI10 1.0 µm SOI-CMOS 

process at XFAB, Germany as part of a multi project wafer (MPW) run. Both bulk and 

SOI wafers were requested, where the microheater design was only included in the 

SOI wafers.  

  Fabricated devices were returned from the foundry in May 2017. However, 

only the bulk wafers with CMOS acoustic mirror were received. The SOI wafers 

containing the acoustic mirror and microheater are due in late September 2017 (after 

the completion of this thesis). Post-processing of the received CMOS devices was 

performed and characterisation of the resulting SMR devices was performed as a 

proof-of-concept of both CMOS acoustic mirror design and fabrication.   



 

Chapter 7. Design of CMOS based Solidly Mounted Resonator 270 

 

 

 CMOS LAYOUT DESIGN 

Layout design of the CMOS acoustic mirror and integrated heater was performed using 

the layout editor L-Edit v16.2 (Tanner Tools).  The final layout is shown in Figure 

7.15. The tracks for temperature sensing and current supply are connected to pads of 

150 × 150 µm.  Two additional pads are included in the chip for possible connection 

to the bottom and top electrodes of the SMR during post-fabrication.  

The membrane (600 µm) is outlined. This is the area of the SOI wafer to be 

back etched to release the membrane. This cavity is created on the silicon substrate 

only for thermal purposes (i.e. to reduce dissipation by isolating the heater from the 

substrate and it is not intended for acoustic isolation of the resonator). Devices with 

and without cavities were fabricated to analyse the performance of the CMOS acoustic 

mirror on top of the bulk substrate. To prevent mechanical failure, the metal tracks are 

connected to the silicon heater tracks outside the membrane area (where the 

temperature is close to ambient temperature).  

 

Figure 7.15 Layout of the CMOS based SMR chip drawn in Tanner tools: (a) The entire 

layout and (b) magnified view of the heater area. (Metal 2 and Metal 3 layers are not shown). 
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 FABRICATION PROCESS STEPS 

The processing steps for fabrication of the CMOS acoustic mirror and integrated heater 

follow the fabrication process of the standard XI10 XFAB process. Thus, these two 

elements (acoustic mirror and heater) and the electronics can be fabricated 

simultaneously on the same substrate. These process steps are briefly summarised 

below and depicted in Figure 7.16. The fabrication of the driving electronics is shown 

to depict the simultaneous fabrication of all these elements. However, the IC was not 

realised in this work. The steps outlined below, describe the planned SOI CMOS 

process, whereas in this work only bulk devices were received.  

 The process starts with a 6-inch silicon-on-insulator wafer (1000 µm BOX, 

250 nm active silicon). The active silicon layer is etched to isolate the MOSFETs. This 

same trench etching process is used to pattern the resistive heater. Next, the p-well is 

created by ion implantation in order to form the NMOS structure.  

Ion implantation to dope the drain and source of the MOSFETs (p+ and n+ 

regions) is performed. In this same step, the resistive heater is doped (p+). The next 

step is the metallization process, where the metal and oxide layers of the process are 

deposited. Here the interconnections in the circuitry and to the integrated heater are 

formed and the layers of the acoustic mirror are patterned (circular shape). The final 

step, after the metallization process, is the deposition of a passivation layer (550 nm 

of Si3N4) to protect the devices for further processing (dicing and handling).  

After fabrication of the acoustic mirror and heater in the standard CMOS 

process, the cavity to release the heater membrane is created by a deep reactive ion 

etching (DRIE) process in a post-fabrication step, performed at the same foundry (this 

step is not shown in the schematic).  
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Figure 7.16 Fabrication steps of the SOI-CMOS process to form the acoustic mirror and 

integrated heater. 
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 FABRICATED CMOS DEVICES 

A photograph of a fabricated 6-inch MPW wafer is shown in Figure 7.17. The wafer 

contains a total of 121 different designs, of which only one is the CMOS based SMR 

device designed in this work. The wafer was diced in individual devices with an overall 

chip size of 1.6 mm × 1.6 mm at DISCO HI-TEC (Germany).  

 

Figure 7.17 Fabricated 6-inch bulk CMOS wafer. 

A total of 115 dies for the CMOS based SMRs were obtained from three fabricated 

MPW wafers. Devices with and without membrane were obtained. Figure 7.18 shows 

an optical photograph of the fabricated devices.  

 

Figure 7.18 Top view of fabricated devices in the XFAB process (a) device with membrane 

and (b) device without membrane. 
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Only processed bulk wafers were returned from the foundry, which means that 

the integrated heater was not fabricated in the current batch. Due to a failure in the 

fabrication process (foundry related), the SOI process had to be repeated and thus, only 

the acoustic mirror structure is included in the current chips. The actual structure of 

the fabricated devices is depicted in Figure 7.19. 

 

Figure 7.19 Schematic cross-section of fabricated CMOS based SMR devices in the bulk 

process: device (a) with and (b) without membrane (bulk device). 

7.6 POST-PROCESSING
4 

Fabrication of the acoustic mirror was performed using a standard CMOS process. To 

complete the CMOS based SMR device, post-processing steps are required to form the 

resonator structure on top of this CMOS substrate. The number of post-processing 

steps required here is significantly reduced compared to the current state-of-the-art 

processes for integrated SMRs. Only the piezoelectric layer, bottom and top electrodes 

need to be deposited and patterned. A summary of the layer thicknesses required for 

the resonator is given in Table 7.4, based on the simulations performed in section 7.3. 

Table 7.4 Material thicknesses for bottom, top and piezoelectric layer to be deposited during 

post-processing. 

 MATERIAL THICKNESS 

BOTTOM ELECTRODE 
Ti/Mo 

Cr/Ir 

15nm/200 nm 

15 nm/110 nm 

PIEZOELECTRIC LAYER AlN 1.1 µm 

TOP ELECTRODE Mo 150 nm 

                                                 
4 The work presented in this section was performed in collaboration with the group lead by 

Prof Enrique Iborra, from the Technical University of Madrid.  
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Post-processing of the CMOS substrate was performed at two different 

locations: (1) for ZnO based SMR devices, post-fabrication took place at the Centre 

for Advanced Photonics and Electronics (CAPE), University of Cambridge, UK and 

(2) for AlN based SMR devices, post-processing was performed at the ETSI of 

Telecommunications, Technical University of Madrid, Spain. Here, only the post-

fabrication of AlN based devices is presented. These devices were preferred over the 

ZnO based devices (detailed in Appendix H), due to their CMOS compatibility and 

superior performance.  

 To form the resonator structure, a capacitive coupling method was used. A 

large-area bottom electrode is capacitively coupled to a metallic layer surrounding the 

top electrode. In this way, the bottom electrode can be accessed through the capacitive 

coupling. The surrounding area of the top electrode is large enough that the effects of 

the parasitic capacitance are practically negligible.  

As no opening vias are required through the piezoelectric layer, the post-

fabrication process is further simplified. No etching/patterning of the piezoelectric 

layer is needed, which usually involves wet etching processes that can easily damage 

other layers of the structure if the process is not carefully controlled).  Design of the 

required photomasks to implement this structure and a detailed description of the 

fabrication process are presented in the next sections. 

 POST-CMOS LAYOUT DESIGN 

A total of two photomasks are required to pattern the bottom and top electrodes. The 

masks were designed using the layout editor L-Edit v16.2 (Tanner Tools, EDA). A 

sample mask design is shown in Figure 7.20. The active area of the resonator was 

designed to have a circular shape to fit above the acoustic mirror area (also of circular 

shape, ∅ = 300 µm). Masks were designed with top electrode active area ranging from 

100 to 250 µm in diameter.  

The photomasks were manufactured on a 4×4 inch glass/chrome mask plate 

(0.060” thick) at 256k dpi resolution (JD Photo Tools, UK) and a minimum critical 

dimension of 5 µm. The specifications of the masks (polarity and view side) are 

summarised in Table 7.5. 



 

Chapter 7. Design of CMOS based Solidly Mounted Resonator 276 

 

 

 

Figure 7.20 Designed photomasks for patterning (a) bottom and (b) top electrodes of the 

resonator structure using capacitive coupling. 

Table 7.5 Mask specifications for post-processing of CMOS acoustic mirror substrate. 

MASK POLARITY VIEW SIDE 
TYPE OF 

RESIST 
DESCRIPTION 

Mask 1 (BOT) Clearfield 
Right read 

Chrome down 
Positive 

Patterning of bottom 

electrode.  

Mask 2 (TOP) Clearfield 
Right read 

Chrome down 
Positive 

Patterning of top 

electrode. 

 POST-FABRICATION PROCESS 

Post-fabrication of the CMOS acoustic mirror consisted of a 2-mask photolithography 

process as outlined below and depicted in Figure 7.21. 

1. DEPOSITION AND PATTERNING OF BOTTOM ELECTRODE. The bottom electrode 

materials were deposited directly on top of the CMOS substrate containing the acoustic 

mirror. Two electrode materials were used:  Ti/Mo electrodes and Cr/Ir electrodes, 

where Ti and Cr were used as adhesion layers.  All electrode materials were deposited 

by sputtering. 

Patterning of the bottom electrode was performed by a contact photolithographic 

process using a wet etching process (in the case of Ti/Mo electrodes) or a lift-off 

process (for the case of Cr/Ir electrodes).  
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2. DEPOSITION OF PIEZOELECTRIC LAYER. AlN films were deposited on a custom-made 

ultra-high vacuum sputtering system (MAREA).  The samples were placed into a 

transfer chamber, evacuated to 5 mTorr. Prior to the sputtering process, the Al target 

and the substrate are cleaned with a pure Ar plasma for a total time of 5 min and 3 min 

for the target and substrate, respectively. The films were sputtered at 400°C from an 

Al target (150 mm diameter, 99.999% purity) using an Ar/N2 mixture. A pre-sputtering 

stage is performed for 5 minutes, time after which the RF bias was set to a dc voltage 

of -55 for the deposition of the AlN film.  

3. DEPOSITION AND PATTERNING OF TOP ELECTRODE. The Mo top electrode was 

deposited by sputtering and was patterned in a similar way as the bottom electrode 

(using contact photolithography and a wet etching process).  

The photolithographic process was performed using a MJB4 mask aligner 

(SÜSS MicroTec, Germany). A thin photoresist S1818 (~1.5 µm thick) was used.  The 

deposition parameters of all materials used during post-processing are summarised in 

Table 7.6. 

Table 7.6 Sputtering and etching parameters of materials used during post-processing of the 

CMOS substrate. 

PARAMETER AlN Ti Mo 

DEPOSITION METHOD 
Sputtering 

(MAREA) 

Sputtering 

(Leybold Z550) 

Sputtering 

(Leybold Z550) 

TARGET (PURITY) Al (99.999%) Ti (99.999%) Mo (99.999%) 

BASE PRESSURE [mTorr] 1.6 4 1.5 

TARGET POWER [W] 1200 150 400 

AR FLOW RATE [sccm] 44.5 30 18 

N2 FLOW RATE [sccm] 60  0 0 

SUBSTRATE BIAS [V] -55 - - 

DEPOSITION RATE 

[nm/min] 
~65 ~30 ~110 

ETCHING METHOD - Wet Wet 

ETCHANT - BHF 4:1 Al etchant at RT 

ETCHING RATE [nm/min] - ~120 ~480 

*Ir layers were deposited in a sputtering system (MRC) from a Ir magnetron target (∅=75mm). 

The Cr adhesion film is deposited during the same vacuum cycle. Power is supplied by a DC 

source (150 W), operating at 50 kHz (duty cycle of 72%). Deposition rate was ~20 nm/min.  
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Figure 7.21 Cross and top section representation of the post-processing steps. Device with 

membrane is depicted but devices without membrane were also processed. 
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Both devices with bulk substrate (no etching of the silicon substrate) and 

devices with membrane were successfully processed. Only a small number of devices 

(with membrane) were broken during an initial ultrasonic cleaning process. A 

photograph of a fabricated CMOS based SMR device is shown in Figure 7.22. As 

discussed before, the device comprises of the CMOS fabricated acoustic mirror 

(∅=300 µm) made of W/Oxide layers of the CMOS process. Although the integrated 

silicon heater was not fabricated in this run, performance of this SMR device can be 

characterised, as a proof of concept for the CMOS-fabricated acoustic mirror.  Results 

from this characterisation are discussed in the following section. 

In the presented design, the acoustic mirror layers were patterned for a circular 

area of 300 µm in diameter. As discussed in section 7.4.2, the dimensions of the 

acoustic mirror layers were chosen taking into account the thermal distribution of the 

integrated heater. The electrical extensions of the top electrode, however, were located 

in the area outside the acoustic mirror. This compromise degraded the performance of 

the device compared to SMRs without integrated heaters, which have larger acoustic 

mirrors.   

 

Figure 7.22 Photograph of completed CMOS based SMR device. Acoustic isolation 

provided by the CMOS fabricate acoustic mirror. Device with bulk substrate. 
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7.7 CHARACTERISATION OF CMOS BASED SMR 

After completion of the post-processing steps for a first batch of CMOS based SMR 

devices (with thicknesses as summarised previously in Table 7.4), the devices were 

electrically characterised with a network analyser using GSG RF probes, in a one-port 

configuration. Figure 7.23 shows the measured resonances for a set of completed 

CMOS based SMR devices. Devices with the same deposition parameters and 

materials exhibited very similar responses.  

Figure 7.23 Experimental frequency response of CMOS based SMR devices. (a) Bulk 

substrate (no membrane), (b) devices with membrane. Both (a) and (b) have Ti/Mo 

electrodes. (c) Bulk substrate with Cr/Ir electrodes. AlN thickness for all devices is 1.1 µm. 
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Three very distinctive resonance peaks can be observed for all the devices. The 

Mason’s model was used to find a fit to the measured frequency spectrum and identify 

the source of these resonance modes. The first peak (not an actual resonance) occurs 

at a frequency of ~1 GHz, where the transmissivity of the acoustic mirror structure is 

minimum (shown previously in Figure 7.3b). The second peak, at a frequency of ~2.2 

GHz is the fundamental resonance of the AlN layer. In addition to this fundamental 

resonance, a λ/2 resonance is observed, attributed to the thick SiO2 layer (Oxide 2) 

forming the acoustic mirror structure (third peak at 2.4 GHz), as shown in Figure 7.24. 

 

Figure 7.24  Measured frequency response of CMOS based SMR compared to the simulated 

fit model.  

These experimental measurements and analytical model suggested that the 

expected thicknesses of the reflector layers (formed within the CMOS process) differ 

to the typical values used in the initial simulations. To investigate this phenomenon a 

cross-sectional SEM micrograph of the fabricated acoustic mirror was taken (shown 

in Figure 7.25). The metal and oxide layers of the CMOS process (tungsten 

metallization using all three layers of the process) can be observed. This is the CMOS 

substrate where the acoustic resonator structure (electrodes and piezoelectric layer) 

was deposited. 

Thicknesses of the layers were estimated from the SEM photographs using an 

image processing software. Measured thicknesses of the metal layers lay within the 

tolerance values given by the process specifications. The thickness of all three metal 

layers were within ±5% of the typical values. However, thicknesses of the oxide layers 

fell into the maximum tolerance values, at +25%. 



 

Chapter 7. Design of CMOS based Solidly Mounted Resonator 282 

 

 

 

Figure 7.25 Cross-sectional SEM photographs of the fabricated CMOS acoustic mirror: (a) 

middle section and (b) edge region of the mirror structure. 

Further 1D simulations were performed to simulate the transmittance of an 

acoustic mirror formed by layers of such thicknesses. The resulting transmittance plot 

is shown in Figure 7.26 below and compared to the original simulation data presented 

in Figure 7.3b. (using typical thicknesses of the CMOS process as given in the process 

specifications). A +25% variation in the oxide layers of the process had a significant 

effect on the transmittance of the acoustic mirror. Excellent transmittance of the 

fabricated reflector structure is obtained at frequencies between 1.8 GHz and 2 GHz 

and the best reflectivity is found at 3 GHz (at -43 dB). The bandwidth of transmittance 

in this structure, however, is considerably narrower (200 MHz) compared to the 

original simulation (1 GHz).  

 

Figure 7.26 Simulated transmittance (1D model) of the acoustic mirror formed by the 

CMOS layers. Measured thicknesses of the fabricated devices and typical thicknesses of the 

process were used in the simulation. 
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Taking into account the above findings, a second batch of devices was 

processed (post-CMOS fabrication), to deposit a thicker AlN film (1.8 µm). The 

thicker layer was proposed to obtain a CMOS based SMR device resonating at ~1.9 

GHz (mirror transmittance of -37 dB, and frequency value chosen to avoid interference 

with the 2.4 GHz resonance frequency of the thick SiO2 layer). The typical 

characterisation data for these devices (from a total of 5 data sets) is shown in Figure 

7.27. The frequency response of all five devices shown in the plot was very similar, 

with series and parallel resonant frequencies measured at ~1.889 GHz and ~1.92 GHz, 

respectively.  

 

Figure 7.27 Impedance plot of CMOS based SMR devices (Mo electrodes and 1.8 µm AlN 

piezoelectric layer). Devices do not have a membrane. 

The active resonator area of the fabricated devices shown in the figure above 

was ~ 52,000 µm2. Quality factors in excess of 1500 were measured but typical values 

of ~500 were obtained from these devices, with an effective coupling factor value, 

𝑘𝑒𝑓𝑓
2 , of ~3.8 %. Figure 7.28 shows the measured quality factors at the series and 

parallel frequencies, as well as the effective coupling factor for five different samples. 

The material coupling factor was obtained at 𝑘2=4.2 %.   
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Figure 7.28 Measured quality factors and electromechanical coupling coefficients of the 

SMR devices. 

The high Q factor values obtained from the fabricated devices indicate that the CMOS 

fabricated acoustic mirror is capable of efficiently confining the acoustic energy within 

the resonator structure, with very low energy dissipation into the silicon substrate. For 

the standard CMOS process used in this work (XFAB 1.0 µm process) SMR based 

devices operating at a frequency between 1.9 GHz and 2.3 GHz were obtained. 

Experimental results for particle sensing applications using these fabricated devices 

are presented in the next section. 

7.8 PARTICLE DETECTION 

Characterisation of the CMOS based SMR devices was performed for the detection of 

fine particles (PTFE, 1 µm). The experiments shown in this section should be 

considered as an initial proof of concept to verify the use of the SMRs as particle 

sensors.  

In these experiments, the resonant frequency of the SMR device was tracked 

using the network analyser (E5071B, Agilent Technologies). Particles were manually 

deposited onto the surface of the resonator using a micrometre wire guided by a three-

axes linear stage. A detailed description of the experimental setup has previously been 

presented in section 5.4. The devices were placed in a temperature controlled unit to 

reduce the effects on temperature variations on the response of the device during the 

experiments. The development of a sensing unit employing these sensors would 

require a temperature compensation method to eliminate any temperature effects.   
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Figure 7.29 shows a typical time response as measured using the network 

analyser during the deposition of the PTFE particles. The amount of particles (total 

mass) deposited on the sensing area cannot be accurately controlled using the 

described method but a range of masses were achieved (i.e. 1 ng to 8.5 ng) and the 

frequency shifts for each deposition were recorded. Depositions below 1 ng were not 

possible using this method so the limit of detection of these devices could not be tested.  

  

Figure 7.29 Plot of frequency response of the SMR device when loaded with PTFE 1 µm 

particles (8.5 ng). 

The SMR device was loaded with five different masses of particles. The 

measured frequency shifts are shown in Figure 7.30. The total mass was estimated 

from optical micrographs taken before and after each particle deposition. An example 

of one of these photographs is shown in Figure 7.31. A fit was applied to the data, to 

demonstrate the linear relationship between the mass loading and frequency shift. The 

sensitivity of the device was calculated from the linear fit as 117 kHz/ng. The 

sensitivity recorded with the novel CMOS based SMR is slightly greater than the 90 

kHz/ng sensitivity previously recorded for the 900 MHz SMR (section 5.4). 
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Figure 7.30 Measured frequency shifts for the 2.1 GHz CMOS based SMR device to mass 

loading between 1 ng and 8.5 ng.  

 

  

Figure 7.31 Photograph of particles deposited on the sensing area of the SMR device. 

The experimental results presented above demonstrate this CMOS based SMR device 

is capable of particle detection in a laboratory setting. The device is suitable for use 

for air quality monitoring applications. However, to realise a complete portable, low-

power system the developed device must be coupled to a compact interface board with 

driving circuitry. The final target is to fabricate these devices together with the CMOS 

interface circuitry.  
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7.9 CONCLUSIONS 

In this chapter, a novel SMR device was developed for air quality monitoring 

applications. The device was designed to address previous limitations found in the 

characterisation of the SMR devices, presented in Chapter 5 and Chapter 6. Three main 

advantages were proposed: ability to be fabricated in large volumes at low-cost, 

contain a self-cleaning sensing area (through use of a microheater) and demonstrate 

high sensitivity VOC detection (optimal performance obtained through temperature 

modulation).  

The novel device comprises of three distinct parts: a CMOS integrated 

microheater, a CMOS fabricated acoustic mirror, and a post-CMOS resonator 

structure. The majority of the device (i.e. the acoustic mirror and microheater) can be 

fabricated within a standard XFAB 1.0 µm SOI-CMOS process. The design of the 

CMOS based device was finalised in Spring 2016. Delays beyond the control of this 

project, caused the tape-out of the designs to be postponed until Winter 2016. 

Furthermore, due to a failure at the foundry, during the SOI fabrication run, only bulk 

processed devices were fabricated during this work (i.e. the microheater was not 

included in these devices). However, the concept of the CMOS based acoustic mirror 

was proven in this chapter.   

A standard XFAB 1.0 µm SOI-CMOS process was chosen for the fabrication 

of the CMOS based SMR. Prior to fabrication, simulations were performed to select 

the process metallization (aluminium or tungsten) and the number of metal layers used 

(maximum of three). The tungsten metallization was chosen due to the high impedance 

ratio with the oxide layers (ratio of ~8), which allowed good reflectivity of the mirror 

structure (maximum transmittance of -48 dB). This optimal performance was obtained 

between 2 and 3 GHz.  

The operating frequencies of a resonator built upon this CMOS based acoustic 

mirror are determined by the transmissivity bandwidth of the mirror. To obtain high 

quality factors, the resonator must operate at the suitable frequencies determined by 

the maximum reflectivity of the mirror (i.e. between 2 and 3 GHz). Simulations of the 

SMR device were performed to determine the thickness of the piezoelectric layer. A 



 

Chapter 7. Design of CMOS based Solidly Mounted Resonator 288 

 

 

thickness of 1.1 µm was chosen for AlN, which resonated at a suitable frequency (2.1 

GHz).  

An integrated microheater was designed employing single crystal silicon as the 

resistive material (p+ silicon) to allow good thermal stability. The heater is CMOS 

compatible, and can be fabricated within the selected CMOS process in this work. The 

microheater has a small area of 0.018 mm2 (circular shape with 150 µm diameter), a 

membrane to heater ratio of 4 and uses sector shape silicon tracks (angle of 40°). Using 

this structure allowed the reduction of convection heat losses and generation of the 

heat in the inner area of the track. A four-probe temperature measurement method is 

used with metal tracks connected to the silicon tracks outside the membrane.  

Three-dimensional electrothermal simulations of the integrated heater with the 

CMOS acoustic mirror were performed to optimise the dimension of metal layers 

forming the acoustic mirror. A design trade-off is encountered between the power 

consumption of the heater, temperature profile distribution and dimensions of the 

acoustic mirror. The radius of the metal layers was selected at 150 µm, which offered 

the best compromise between the three parameters. For a maximum temperature of 

200 °C, the chosen heater dimensions offer low power consumption (40 mW). A 

heating time constant of < 2 ms is predicted.  

Fabrication of the designed device was performed in two separate processes: 

(1) the CMOS based acoustic mirror was fabricated at XFAB (Germany) in a MPW 

run and (2) the resonator structure was fabricated in a post-CMOS process. Devices of 

1.6 mm × 1.6mm were obtained from the CMOS bulk wafers, with devices with and 

without membrane. Fabrication of the acoustic mirror through a standard CMOS 

process significantly reduced the number of post-processing steps required (thus 

reducing fabrication time and cost).  

Post-processing steps involved the deposition and patterning of the top and 

bottom electrodes (Mo) and deposition of the piezoelectric layer (AlN). The devices 

employ a capacitive coupling method to access the bottom electrode. A first batch of 

processed CMOS based SMR devices, found to resonate at ~2.2 GHz, revealed that 

the thicknesses of the reflector layers differed from the typical values of the CMOS 

process specifications. Measurements from SEM photographs of these layers 
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confirmed a variation of the thicknesses within ±5% for the metal layers and +25% for 

the oxide layers. A new batch of devices was fabricated considering these variations.  

Fabricated devices (sensing area of ~52,000 µm2) exhibited high quality factors 

of ~500 and 𝑘𝑒𝑓𝑓
2  of ~3.8%, which demonstrated the CMOS acoustic mirror was 

capable of efficiently trapping the acoustic energy of the resonator. The operating 

frequencies of these devices were measured at ~1.9 GHz. Further work is required on 

the optimisation of these devices, e.g. the deposition of higher quality piezoelectric 

films.  

Characterisation of the devices (performed with a network analyser) 

demonstrated they were able to detect 1 µm PTFE particles deposited on the sensing 

area. A sensitivity of 117 kHz/ng was found for total particle mass tested between 1 ng 

and 8.5 ng.  Further work involves developing a prototype PCB, so the sensor can be 

interfaced with a microcontroller. To take advantage of the possible CMOS integration 

of this SMR, the prototype circuit could then be developed into a complete ASIC. The 

characterisation of the SMR is a significant step towards developing a complete 

acoustic sensor system on a single chip.  
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CONCLUSIONS AND 

FURTHER WORK 

8.1 PREFACE 

The main objective of this work was to develop a low-cost, miniature device, capable 

of high volume production and monolithic integration, that could be used as part of a 

portable air quality monitor. Solidly mounted resonators, based on acoustic wave 

technology, were investigated to meet this aim. The project was divided into two main 

parts: modelling, development and testing of SMR devices for the detection of 

particulate matter and volatile organic compounds, and the development of a novel 

CMOS based SMR device with integrated heater to enhance sensor sensitivity and 

selectivity, improve sensor life-time and allow monolithic integration and high-

volume production. 

An analytical model and finite element models (COMSOL Multiphysics) of 

solidly mounted resonators were developed to aid the design of the devices. These 

models were used to simulate the frequency response, the temperature dependency and 
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the sensitivity of the devices for the detection of volatile organic compounds and fine 

particles.  

The designed devices were successfully fabricated and characterised. A 

sensing system employing these devices was developed. The sensing system worked 

in a dual mode configuration. The devices were tested in a laboratory environment to 

the deposition of fine particles (<1 µm) and to the exposure of volatile organic 

compounds (toluene and acetone). The experimental results were found to be similar 

to those produced from the simulations, and demonstrated the high sensitivity of the 

SMR sensors and their suitability as the main sensing element in a portable air quality 

monitoring system.  

In addition, a novel CMOS based SMR with integrated heater was designed. 

The device advanced upon the current generation of SMR devices through the 

inclusion of a CMOS fabricated acoustic mirror and a SOI-CMOS resistive 

microheater. The resonator structure was successfully fabricated in a post-CMOS 

process, to complete the SMR device. The novel device exhibited good electrical 

performance and it was found to be able to detect fine particles. Further work involves 

characterisation of the microheater, which was proposed to enhance the sensitivity and 

selectivity of the VOC sensor system, and the monolithic integration of the device.  

8.2 AIR QUALITY MONITORING 

Human exposure to hazardous air pollutants has been associated with a wide 

range of health problems and linked to an increasing rate of mortality around the world. 

In 2016, it was estimated that around 40,000 deaths per year were caused by the 

exposure to outdoor air pollutants across the UK, with a consequent £20 billion cost 

to individuals and health services [1]. Particulate matter and volatile organic 

compounds contribute to over 20% of the total pollutants present in air and have been 

strongly related to several respiratory and cardiovascular diseases.  

There is a growing awareness of the dangers to health caused by VOCs and 

PM, and their monitoring is becoming increasingly important. Commercial 

instruments for the detection of these pollutants are bulky, expensive and complex. A 

detailed review on the available technologies was provided in Chapter 1. As the 
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population becomes aware of the effects of air pollution, there has been an increased 

demand for low-cost, low-power and portable (or wearable) air quality monitors, 

which are capable of monitoring concentration levels of these pollutants, below their 

safe exposure limits.  

The main aim of this work was to develop a low-cost, miniature device, capable 

of high volume production and monolithic integration, to be used as part of a portable 

air quality monitor, with VOCs and PM as the main target pollutants.   

From the available technologies (reviewed in Chapter 1 and Chapter 2), solidly 

mounted resonators were chosen for use in this work. Compared to commercially 

available particle sensors (optical based) and VOC sensors (PIDs, MOX), they offered 

advantages of high sensitivity, small footprint, long life-time, good power handling 

capability and the possibility of CMOS integration (which allows for improved 

performance, miniaturisation and low power consumption).  

8.3 DESIGN AND MODELLING OF SOLIDLY MOUNTED RESONATORS 

The first step towards the development of a low-cost, monolithically integrated 

sensor involved the design and development of SMR devices suitable for particle 

detection and VOC detection (gravimetric sensing). On the design of a SMR device, 

materials properties and thicknesses of the layers are critical as they directly impact 

the operating frequency and performance of the device.   

In this work, ZnO based devices were designed with an acoustic mirror formed 

by three pairs of alternating layers of Mo/SiO2. ZnO was selected due to its high 

piezoelectric coupling coefficient (8.5 %) and low film stress (when deposited at room 

temperature). Mo/SiO2 layers were selected for their good adhesion and large high to 

low impedance ratio (~5). Al and Au/Cr were used as the material for the electrodes. 

Al offered low density and good conductivity, while Au/Cr offered a high acoustic 

impedance. 

To aid the design procedure, a 1D analytical model, as well as 2D and 3D finite 

element models, were developed. These models were used for the analysis of the 

transmissivity of the acoustic mirror, the frequency response of the devices and their 
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temperature coefficient of frequency. Based on these models, SMR devices were 

designed to resonate at the frequencies of 870 MHz and 1.5 GHz, for which the 

required thicknesses of the materials were extracted. The 1D Mason model aided the 

design of the acoustic mirror. Based on the simulations, a total of 3 pairs of alternating 

layers of Mo and SiO2 were chosen for the acoustic mirror structure with a simulated 

mirror transmissivity of -40 dB at the designed centre frequency of 870 MHz, which 

corresponds to 99.99 % reflection. The temperature dependency of these devices was 

estimated from the 2D FEM simulations at about -35 ppm/°C (temperature-dependant 

material properties were introduced in the model to simulate these temperature 

effects).  

A study on the SMR sensor response (sensitivity to the absorption of vapours 

and the detection of fine particles) was also performed using the FEM models. The 2D 

model was used to simulate the VOC detection capability of the SMR, which required 

the addition of a thin polymer film. For a 70 nm PDMS polymer coating, a sensitivity 

of -17.5 Hz/ppm was estimated (870 MHz device). From the simulation results, it was 

observed that thicker coatings produced larger frequency shifts for a given vapour 

concentration and thus, higher sensitivities were calculated for thicker polymer films. 

These results were compared to the simulations performed for a higher frequency 

device (resonant frequency of 1.4 GHz). The sensitivity of the 1.4 GHz device was 

noted to be twice as high as that of the 870 MHz SMR.  

The sensitivity of the SMR devices with different polymer coatings was also 

studied through the FEM simulations.  Polymer coatings with higher partition 

coefficients to specific vapours were expected to exhibit higher sensitivities. The 

simulations confirmed this behaviour. SMR devices with a PDMS coating were 

estimated to have a higher sensitivity, compared to three other polymers trialled (PMA, 

PIB and SXFA) for the detection of toluene vapours.  

Simulations of particle detection were performed used the developed 3D FEM 

model. This model consisted of only a quarter of the complete SMR structure, to 

reduce computation times (compared to the complete model). Particles were simulated 

on the sensing area of the SMR model, with cubic geometries to ensure good binding 

to the surface. Although the developed model has some limitations (maximum number 
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of particle simulated, only one quadrant of the sensing area simulated), the simulation 

results provided valuable information on the effect of the particles located on the 

sensing area of the SMR devices.  Particles were placed in three different arrangements 

on top of the SMR device, variations in the location of the particles produced 

frequency shifts with variation within ±5%. The sensitivity of the 870 MHz devices 

(Al electrodes) to the detection of PM2.5 particles was estimated at ~120 kHz/ng.   

8.4 FABRICATION AND CHARACTERISATION OF SMRS 

The SMR devices were fabricated using standard microfabrication techniques 

at CAPE, University of Cambridge, UK. Although a 6-mask fabrication process was 

originally proposed (Appendix C), the process was optimised to a 3-mask 

photolithography process. The required photomasks were designed (Tanner Tools, 

EDA) and manufactured in 5” glass/chrome plates.  

The thicknesses of the layers from the fabricated devices were estimated from 

SEM images (reflector layers) or measured with a stylus profiler (ZnO layer). 

Compared to the design parameters, variations (in the range of ± 20%) of the 

thicknesses of the material layers were observed, which caused the discrepancy 

between modelled and measured resonant frequencies. Two batches of SMR devices 

were fabricated, with the second batch featuring improved performance and 

thicknesses closer to the designed values. 

Fabricated SMR devices from the second batch resonated at 900 MHz 

(variation of 3.5% to the designed value). The performance metrics of these devices 

were measured at 𝑄𝑠=170 and 𝑘𝑒𝑓𝑓
2 =2.6 %. The devices had a small footprint of 

1.5 mm × 1.5 mm. These devices (MBL003) were mainly used throughout the 

experimental work.  

The SMRs were characterised to ambient variations before being tested for 

particle detection and sensing of organic compounds. For this characterisation, the 

devices were exposed to controlled temperatures (30° - 90°C) and humidity levels (15-

60 %RH). The response of the SMRs was recorded together with a reference 

temperature and humidity sensor (BME280). TCFs were measured as -55 ppm/°C 
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and -49 ppm/°C for the series and parallel frequencies, respectively and the humidity 

dependence was measured as 580 Hz/%RH. A higher TCF was measured, compared 

to that estimated from the simulation results (-35 ppm/°C), which can be attributed to 

the properties of the deposited materials.  To reduce the effects of ambient variations 

of the sensors, a dual differential mode configuration (with electronic circuity) was 

proposed and tested to the same temperature and humidity conditions. It was observed 

that ambient effects can be significantly reduced, when using a differential 

configuration (TCF <2 ppm/°C), provided that the TCF of the SMR devices are 

comparable. 

8.5 SMRS FOR PARTICLE SENSING 

The SMR devices were characterised for the detection of fine particles 

(<10 µm). Initial characterisation demonstrated the devices were able to detect 

particles <1 µm with a high sensitivity of 90 kHz/ng (minimum trialled mass of 720 pg 

of PTFE particles). The obtained sensitivity was larger by two orders of magnitude, 

compared to reported values in the literature using alternative SAW devices, with 

typical sensitivities <0.9 kHz/ng. [2-4] and other devices such as thin film piezoelectric 

on silicon resonators, with reported sensitivities of 4.2 kHz/ng [5].   

After proving the devices were capable of detecting fine particles, a particle 

sensing unit was developed. The compact sensor system (41 mm × 36 mm × 25 mm) 

consisted of Colpitts oscillators to drive the SMR devices and additional interface 

circuitry to output a low frequency differential signal (<10 MHz) for acquisition with 

a low-power microcontroller. This sensing unit was tested inside a particle chamber 

along with other reference commercial devices (mainly optical based).  

The SMR based particle sensing unit demonstrated a linear response to the 

deposition of fine particles with a calculated sensitivity of 4.6 Hz per µg/m3 and a limit 

of detection of ~20 µg/m3. The performance of the unit met the requirements to detect 

the maximum exposure value of 25 µg/m3 for PM2.5. However, discrepancies in the 

sensitivity were found when testing was performed inside a small (5.625 L) and large 

(720 L) environmental chamber (sensitivity recorded from the small chamber was 6 
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times higher).  This was attributed to the passive sampling method (gravitational 

sedimentation) employed by the sensor system.  

The discrepancy in the sensitivity and the slow response times observed from 

the sensing unit (120 s) demonstrated the need of an active sampling method to 

produce real-time measurements and obtain reproducible results. A virtual impactor 

was designed to address this problem. The impactor actively draws a sample of air and 

separates the particles according to their aerodynamic diameter. Particles <2.5 µm are 

directed towards the sensor surface. The impactor was designed to be integrated with 

a new hybrid system (SMR interfaced to an ASIC chip). Characterisation results of the 

impactor demonstrated it was effective to separate the particles and direct them 

towards the sensor surface. However complete testing of the entire system (hybrid 

system and impactor) was not possible due to the non-optimal performance of the 

ASIC chip (and interface board).  

It is expected that the particles accumulating of the sensor surface will cause 

the SMR device to saturate, although for a maximum particle concertation tested of 

60,000 µg/m3, saturation was not observed. An active method of self-cleaning the 

sensor surface is required to extend the sensor life-time in an air quality monitor.   

8.6 SMRS FOR VOC SENSING 

For the detection of volatile organic compounds, the SMR devices were coated with 

thin polymer films (PEG and PDMS). An investigation of the partition coefficients for 

the polymer-vapour pairs was performed for the target vapours using linear solvation 

energy relationships. PDMS was chosen due to its high affinity to toluene, while PEG 

was chosen for its low-cross-sensitivity to toluene and moderate sensitivity to acetone.  

 To deposit the polymers onto the surface of the SMR devices, a custom drop-

coating system was developed. The system allowed small volumes of the polymer 

solution to be deposited onto the device, thus thin coatings could be created (<100 nm 

possible). A similar differential system to that discussed previously for the particle 

sensing, was used to measure the frequency of the SMR sensor. A gas chamber was 

constructed to house four differential sensor units, and expose the devices to the VOCs.  
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The chamber was located within a fully automated test station, developed to expose 

the differential sensor pairs to low ppm vapour concentrations.  

The SMR sensors successfully detected toluene and acetone vapours in 

concentrations below their safe exposure limits (5 ppm of toluene and 50 ppm of 

acetone). A trade-off between polymer film thickness and sensor response time was 

observed, with thinner coatings exhibiting faster response times but lower sensitivity. 

A 180 nm PDMS coated SMR demonstrated a linear response and a high sensitivity 

of -60 Hz/ppm for toluene detection (in the range of 5 ppm to 100 ppm). 

Although capable of detecting the low ppm concentrations of acetone required 

for air quality monitoring applications (50ppm), the sensitivity of the PEG coated 

sensor (-3.5 Hz/ppm) was low, compared to previous reported studies [6, 7]. The 

sensitivity of these devices need for be further investigated using alternative polymer 

coatings (PMMA, SXFA). An array of different polymer coated SMRs is also 

desirable, to identify the individual vapours within a toluene-acetone mixture. Further 

testing is required to evaluate the performance of the devices with variable 

environmental (temperature and humidity) conditions, where previously experiments 

were realised in dry conditions at a constant temperature of 35°C. 

It was observed that the differential sensor setup still exhibited drift (~5 kHz), 

even after a long period of stabilisation. Thus, further analysis of the stability of the 

sensor circuits is required, before the system can be integrated within an air quality 

monitor. Further improvements in terms of sensitivity, selectivity, response time and 

circuitry performance (e.g. drift, noise level) are needed, but the results obtained from 

these experiments were promising, demonstrating the suitability of these devices for 

their application in air quality monitoring.   

8.7 CMOS BASED SMR 

Based on the results obtained from the characterisation of the SMR devices to particle 

sensing and VOC detection, a novel SMR device was designed to address the 

limitations encountered with these devices. The novel device comprised of three main 

parts: an integrated SOI-CMOS resistive microheater, a CMOS based acoustic mirror 

and a post-CMOS resonator structure. The integrated microheater was designed as the 
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self-cleaning mechanism of the SMR device (for particle sensing) and to enhance the 

sensitivity and selectivity of the sensor to VOCs, through the use of a temperature 

modulation technique. It is proposed, the rates at which individual VOCs are absorbed 

into the polymer coatings vary depending on the temperature of the layer. Therefore, 

the sensitivity of the SMR could be tuned towards a certain VOC if the optimal 

operational temperature was found. This could be extended to modulating between 

several temperatures, allowing optimal sensor detection performance to several VOCs.  

The microheater and the acoustic mirror of the SMR device were both designed 

to be fabricated within a standard XI10 XFAB 1.0 µm SOI-CMOS process. Only the 

resonator structure (piezoelectric layer and electrodes) need to be deposited in the post-

CMOS fabrication steps. The fabrication of the acoustic mirror within the CMOS 

process itself, advanced the current generation of SMR devices. This has the potential 

to enable the SMR device to be monolithically integrated and fabricated in large 

volumes, at low-cost with reduced post-processing steps.  

The concept of the CMOS fabricated acoustic mirror was proven in this work 

with devices fabricated in a bulk CMOS process (XFAB, Germany) and post-

fabrication performed at the Technical University of Madrid, Spain. The fabrication of 

the devices within the designed SOI-CMOS process is still currently being performed 

(a failure at the foundry during the SOI run delayed the fabrication). Thus, 

characterisation of the microheater was not possible. 

The CMOS based acoustic mirror was designed from the metal layers and 

oxide layers of the CMOS process. The thicknesses of these layers are process-defined. 

From a choice of aluminium and tungsten metallization, tungsten was used as it offered 

a larger high to low acoustic impedance ratio (~8), which allowed a maximum 

reflectivity (-48 dB transmittance) of the acoustic mirror at frequencies between 2 and 

3 GHz.  

Only CMOS compatible materials were used in the post-fabrication of the 

CMOS substrate (AlN for the piezoelectric layer and Mo for the electrode). Completed 

CMOS based SMR devices (1.6 mm × 1.6 mm) resonated at ~1.9 GHz and exhibited 

good performance with quality factor values of ~500 and 𝑘𝑒𝑓𝑓
2  of ~3.8%. The high Q 
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values obtained proved the CMOS acoustic mirror was capable of efficiently confining 

the acoustic energy of the resonator.  

The integrated microheater was designed using a p+ silicon region to allow 

good thermal stability. It was designed with a circular shape (𝜙 =150 µm) and sector 

shape silicon tracks (40° angle) connected to metal tracks outside the membrane in a 

four-probe configuration for temperature sensing and current supply [8].  Based on 

simulation results, a trade-off between power consumption of the heater, temperature 

profile distribution and dimension of the metal layers forming the acoustic mirror was 

observed. Metal layers of 150 µm in diameter were found to offer the best compromise 

between these parameters. 3D electro-thermal simulations predicted a low power 

consumption of 40 mW and a heating time constant <2 ms (temperature of 200 °C).  

The suitability of these devices for particle sensing was demonstrated with 

initial characterisation performed with PTFE particles (<1 µm), using a network 

analyser to track the resonant frequency of the devices. A linear response was observed 

for particle masses in the range of 1 ng to 8.5 ng, with a calculated sensitivity of 117 

kHz/ng.  

This experimental proof-of-concept work demonstrated the potential of the 

designed SMR devices to be integrated as the main sensing element in a portable, low-

cost air quality monitor. Furthermore, it is believed that these devices offer the 

potential to impact not only the sensing field but also many consumer electronics 

applications (mobile phones, wearable devices) which extensively use RF filters based 

on BAW devices operating at frequencies around 2-3 GHz. Further work is needed 

involving optimisation of device performance, characterisation of the microheater and 

integration with CMOS circuitry. Details on this further work are presented in section 

8.9. 

8.8 ACHIEVEMENTS 

The aims of this project were previously presented in Chapter 1. Here, the main 

achievements of this work are summarised.  
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▪ The one-dimensional Mason analytical model for an SMR device was 

implemented in a Matlab script to aid the design of the resonators. This model was 

used in the design of the acoustic mirror (simulations of the transmissivity) and to 

predict the frequency response of the devices. 

▪ Finite element models of the SMRs devices were developed. The models were 

used to study temperature dependency, to predict sensitivity to the exposure of 

VOCs and to study frequency response to the deposition of fine particles. 

▪ SMR devices were designed to operate at two different frequencies (870 MHz and 

1.5 GHz) and for operation in a longitudinal mode, suitable for the air quality 

monitoring applications in this work. Designed devices were fabricated and 

characterised.   

▪ The SMR devices were characterised to observe the effect of ambient variations 

(temperature and humidity). A temperature dependency of -55 ppm/°C was 

measured for the devices and humidity dependence was recorded at 580 Hz/%RH. 

▪ Fabricated devices were characterised for the detection of fine particles (<2.5 µm). 

A particle sensing unit was developed (working in a dual mode configuration). 

The sensing unit was characterised in environmental chambers, and demonstrated 

the ability of the SMRs to detect PM2.5 concentrations with a sensitivity of 4.6 Hz 

per µg/m3 and limit of detection of ~20 µg/m3, which is below the safe exposure 

limit established at 25 µg/m3. 

▪ For particle detection, a virtual impactor was designed, fabricated and tested for 

the separation of particles with aerodynamic diameter of 2.5 µm. The impactor 

was designed to fit within the same footprint as a hybrid ASIC-SMR interface 

board. Air was sampled using a low-power miniature blower. 

▪ For VOC detection, custom-made polymer deposition systems were developed. A 

spray coating system and a drop coating system were designed and constructed. 

Thin and uniform polymer coatings were possible with both systems. The SMR 

devices were functionalised with the polymer solutions using the developed 

systems.  

▪ An automated VOC test station was developed, capable of delivering VOC 

mixtures in air at controlled low ppm concentrations (ppb levels also possible). 

The station was assembled using state-of-the-art equipment and a user-friendly 

interface was developed (LabVIEW) to control the testing station. 
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▪ Polymer coated SMR devices were characterised for the detection of two VOCs 

(acetone and toluene) to demonstrate their suitability to detect these organic 

vapours in concentration levels below the safe exposure limits, required for air 

quality monitoring applications. 

▪ A novel CMOS based SMR device with integrated heater was designed. A 3D 

finite element model was developed to perform electro-thermal simulations of the 

microheater. From the simulations, the time constant and maximum temperature 

of the microheater were determined as 4.3 ms and 550 °C, respectively.  

▪ The CMOS acoustic mirror was simulated using the 1D Mason model. The 

maximum reflectivity of the acoustic mirror, formed from the selected CMOS 

process, was determined from the simulations to be approximately -50 dB at 

frequencies between 2 and 3 GHz. This was used to determine the operating 

frequency of the device.  

▪  The CMOS devices were fabricated and post-process steps performed. These 

devices were initially characterised for the detection of fine particles. The 

characterisation demonstrated the potential of this device to be integrated in a low-

cost air quality monitor (reduced post-fabrication steps, enhanced sensitivity and 

a self-cleaning method).  

8.9 FURTHER WORK 

The work completed in this thesis focused on the development of the sensing 

component of a portable air quality monitor. It was demonstrated that the SMR devices 

were able to detect particulate matter and the target VOCs to within the safe exposure 

limits currently enforced, but improvements are needed in terms of selectivity, 

sensitivity, life-time and performance (e.g. stability, TCF) of the sensors. A novel 

SMR device was designed to address these limitations. Further work involves 

characterisation of the novel CMOS based SMRs for VOC detection and their 

monolithic integration with the active CMOS circuitry.  

 HARDWARE 

The integrated heater was proposed for the implementation of a temperature 

modulation technique. The SMR sensors exhibit higher sensitivity to an individual 
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compound at a specific temperature. The heater could be used to adjust the temperature 

of individual device to target a specific analyte. This could be extended to modulating 

the temperature of a device, thereby allowing several VOCs to be targeted.  

The relationship between SMR temperature and sensitivity to a particular VOC 

is not well understood. Initial experiments to characterise the heaters would be 

required. These experiments would allow the heater temperatures to be tuned to 

increase the sensitivity to the VOCs of interest. Additionally, the in-built heater can be 

used to investigate temperature effect on the response and recovery times of the sensor 

and potentially reduce the signal to noise ratio.  

To reach the target of a low-cost device suitable for volume production, the 

SMR and circuitry must be monolithically integrated onto a single substrate. The first 

step towards this monolithic integration requires interfacing the SMR device to an 

ASIC chip. In Chapter 5 a first-generation ASIC chip was interfaced to the SMR 

device, via wire-bonding in a hybrid system. However, initial characterisation found 

the internal mixer was becoming saturated from the oscillator circuit. This caused 

instability, which prevented usable data from being obtained. The problem could not 

be rectified without modification of the ASIC, thus a second generation is being 

redesigned. This new ASIC is being designed based on the equivalent circuit of the 

fabricated CMOS based SMR device (1.9 GHz).  

This first generation of CMOS based SMR did not include features such as a 

diode temperature sensor. Furthermore, a three-metal process was used which 

prevented a metal heater from being used. It is proposed a five-metal layer process 

would allow a metal heater to be included in the design.  

The current work was limited to testing a single organic compound at a time. 

Further work involves developing a system to identify the presence of individual 

VOCs from a mixture of compounds. This can be achieved through using an array of 

CMOS based SMR sensors using different coatings. Different coated devices will 

produce a unique response to a given VOC. These responses can be processed using 

techniques such as principal component analysis (PCA) to recognise patterns of the 

sensor array, which can be used to identify the VOCs present.  
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An array of SMR sensors could be further extended to create the target air 

quality monitor. The unit would include polymer coated SMRs for VOCs and bare 

SMR devices for particle detection, temperature and humidity sensing. This unit will 

help meet the goal of a portable air quality monitor. The miniature footprint of the 

SMR sensors potentially enable an array of sensors in a unit of 5 × 5 mm.  

 EXPERIMENTAL 

Initial testing of the SMR devices was performed in dry conditions at constant 

temperature. Further testing in conditions of various levels of humidity and 

temperature is required, to replicate the environments experienced in real world 

application (e.g. 10 % RH to 90 % RH and 15 °C to 40 °C). This will help to analyse 

the effect of these ambient variations on the sensitivity of the SMR.  

SMR sensor results were presented from devices coated with two different 

polymers. These results were adequate for the detection of toluene and acetone. Further 

characterisation is required to investigate the ability of the SMR sensors to detect other 

VOCs (e.g. benzene, ethyl acetate). The performance of the SMRs could be analysed 

when coated with a wide range of polymer layers, to extend the detectable VOCs with 

the sensor system. Furthermore, other deposition methods (e.g. ink-jet printing) could 

be trialled to enable thinner coatings to be deposited. The thinner coatings would help 

reduce the response time of the SMR devices and enable higher frequency devices to 

be used.  

Further characterisation of the SMR particle sensor is required to analyse the 

performance of the system integrated with the virtual impactor. The SMR particle 

sensor in this work was targeted to detect PM2.5. Further testing of the SMR sensor 

can be performed to analyse the suitability of the device to detect the finest particles 

(<100 nm). The virtual impactor itself can be improved by incorporating a series of 

cascaded impactors to separate particles of different sizes (e.g. differentiate between 

PM10, PM2.5 and UFPs) in a single system. It is proposed the integrated microheater 

on the CMOS based SMR could be used to clean the sensor surface. Without a method 

of cleaning the sensor surface, the sensor can become saturated (when overloaded with 
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particles). The ability of the microheater to clean the surface of the SMR needs to be 

characterised (i.e. when the temperature of the device is increased).  

The SMR devices have not been tested for extended use periods (> 30 hours). 

The longevity of the devices has not been assessed, in terms of sensitivity and 

reliability over time. Experiments need to be performed with devices running for 

periods of several days (or weeks) to assess the sensing performance of the SMRs.  

 SOFTWARE 

As discussed before the integrated heater allows the SMR to be tailored to specific 

VOCs through temperature modulation. Software is required to control and monitor 

the temperature of the heater. Software would allow patterns (temperature steps) to be 

applied, which could be used to investigate the sensitivity and response time of the 

sensor.  

During this work, high level programming languages were used to acquire the 

data from the SMR sensors and to control the VOC test station. This provided a reliable 

but inefficient (i.e. processing and hardware requirements) means to collect sensor 

data. To miniaturise the system for use in a portable air quality monitor, a 

microcontroller could be used to perform the data acquisition and processing functions. 

The inefficient software would need to be rewritten, to be able to function with the 

lower processing power available on a microcontroller. The redeveloped algorithms 

would allow the software to operate in real-time, without any post-processing.  

 To provide an accessible means of monitoring air quality, the sensor data must 

be displayed in an easy to use format. The ubiquitous use of smartphones has enabled 

their use as a platform for connected devices (e.g. smart homes). Due to their small 

size and low power consumption, these SMR devices have the potential to be 

integrated internally into a smartphone or as an add-on module for air quality 

monitoring. This integration would be possible by the development of a 

microcontroller system for communication with a smartphone app for real-time, 

localized air quality monitoring.  
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% University of Warwick - School of Engineering 

% PhD in Engineering - Research project by Farah Helue Villa López 

  

% CMOS COMPATIBLE SOLIDLY MOUNTED RESONATOR FOR AIR QUALITY MONITORING  

  

% ---------------------------------------------------------------------- 

% Matlab code for the implementation of the one-dimensional Mason Model. 

% Simulation of frequency response and acoustic mirror transmittance. 

% Example shown for SMR working at 870 MHz, 3 pairs of Mo/SiO2 for 

% acoustic reflector and Aluminium Electrodes. 

% ---------------------------------------------------------------------- 

  

clear all; 

clc; 

  

% Active area of the Solidly Mounted Resonator 

Area = 200e-6*200e-6;        % Square active area (m^2) 

  

% Angular frequency  

syms ('f') 

omega = 2*pi*f; 

  

% MATERIAL PROPERTIES OF THE SUBSTRATE 

rho_Si = 2330;               % Density of Silicon (kg/m^3) 

v_Si = 8320;                 % Acoustic velocity of Silicon (m/s) 

d_Si = 500e-6;               % Thickness of Silicon substrate (m) 

Z_Si = Area*rho_Si*v_Si; 

k_Si = omega/v_Si; 

theta_Si = k_Si*d_Si; 

  

% MATERIAL PROPERTIES FOR THERMAL OXIDE 

rho_Oxide = 2070;              % Density of silicon dioxide (kg/m^3) 

v_Oxide = 5710;                % Acoustic velocity of silicon dioxide 

(m/s) 

d_Oxide = 200e-9;               % Thickness of the thermal oxide 

Z_Oxide = Area*rho_Oxide*v_Oxide; 

k_Oxide = omega/v_Oxide; 

theta_Oxide = k_Oxide*d_Oxide; 

  

% MATERIAL PROPERTIES OF THE REFLECTOR LAYERS 

  

% High Acoustic Impedance Material (Molybdenum) 

  

rho_Mo = 10200;            % Density of Molybdenum (kg/m^3) 

v_Mo = 6340;               % Acoustic velocity of Molybdenum (m/s) 

d_Mo = 1.82e-6;            % Thickness of the Molybdenum reflector layer  

Z_Mo = Area*rho_Mo*v_Mo;      for 870 MHz SMR Design (m)    

k_Mo = omega/v_Mo; 

theta_Mo = k_Mo*d_Mo; 

  

% Low acoustic impedance material (Silicon dioxide) 

  

rho_SiO2 = 2070;            % Density of silicon dioxide (kg/m^3) 

v_SiO2 = 5710;              % Acoustic velocity of silicon dioxide (m/s) 

d_SiO2 = 1.65e-6;           % Thickness of the silicon dioxide reflector 

Z_SiO2 = Area*rho_SiO2*v_SiO2;  layer for 870 MHz SMR Design (m) 

k_SiO2 = omega/v_SiO2; 

theta_SiO2 = k_SiO2*d_SiO2; 

  

% MATERIAL PROPERTIES OF THE ELECTRODES (Aluminium) 

  

rho_Al = 2700;              % Density of Aluminium (kg/m^3) 

v_Al = 6450;                % Acoustic velocity of Aluminium (m/s) 
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d_Al = 200e-9;              % Thickness of the Aluminium electrode (m) 

Z_Al = Area*rho_Al*v_Al;        

k_Al = omega/v_Al; 

theta_Al = k_Al*d_Al; 

  

% MATERIAL PROPERTIES OF THE PIEZOELECTRIC 

  

rho_ZnO = 5680;             % Density of Zinc Oxide (kg/m^3) 

v_ZnO = 6345;               % Acoustic velocity of Zinc Oxide (m/s) 

d_ZnO = 3.32e-6;            % Thickness of the Zinc oxide layer  

Z_ZnO = Area*rho_ZnO*v_ZnO;  

z_ZnO = rho_ZnO*v_ZnO; 

k_ZnO = omega/v_ZnO; 

phi = (k_ZnO*d_ZnO)/2; 

  

e33 = 1.32;                 % ZnO strain constant (C/m^2) 

Er = 10.2;                  % Relative permittivity of Zinc oxide  

E0 = 8.8541878176e-12;      % Vacuum permittivity (F/m) 

E33 = Er*E0;                % Permittivity of Zinc oxide (F/m) 

c33 = 209.714e09; 

Co = (E33*Area)/d_ZnO; 

k2 = (e33^2/(E33*c33))/(1+(e33^2/(E33*c33))); 

  

% ABCD MATRIX FOR THE LAYERS 

  

% Bottom Electrode 

 

ZT_Al = 1i*Z_Al*tan(theta_Al/2); 

ZS_Al = (-1i*Z_Al)/(sin(theta_Al)); 

M_Al = [1+(ZT_Al/ZS_Al), 2*ZT_Al+((ZT_Al)^2/ZS_Al); 1/ZS_Al, 

1+(ZT_Al/ZS_Al)]; 

  

% Acoustic Mirror 

 

ZT_SiO2 = 1i*Z_SiO2*tan((theta_SiO2)/2); 

ZS_SiO2 = (-1i*Z_SiO2)/(sin(theta_SiO2)); 

M_SiO2 = [1+(ZT_SiO2/ZS_SiO2), 2*ZT_SiO2+((ZT_SiO2)^2/ZS_SiO2); 

1/ZS_SiO2, 1+(ZT_SiO2/ZS_SiO2)]; 

  

ZT_Mo = 1i*Z_Mo*tan((theta_Mo)/2); 

ZS_Mo = (-1i*Z_Mo)/(sin(theta_Mo)); 

M_Mo = [1+(ZT_Mo/ZS_Mo), 2*ZT_Mo+((ZT_Mo)^2/ZS_Mo); 1/ZS_Mo, 

1+(ZT_Mo/ZS_Mo)]; 

  

% Thermal Oxide 

 

ZT_Oxide = 1i*Z_Oxide*tan((theta_Oxide)/2); 

ZS_Oxide = (-1i*Z_Oxide)/(sin(theta_Oxide)); 

M_Oxide = [1+(ZT_Oxide/ZS_Oxide), 2*ZT_Oxide+((ZT_Oxide)^2/ZS_Oxide); 

1/ZS_Oxide, 1+(ZT_Oxide/ZS_Oxide)]; 

  

% Silicon substrate 

 

M_Si = [1,0;1/Z_Si,1]; 

  

% CASCADED MATRIX 

  

M_Cascade = M_Al*M_SiO2*M_Mo*M_SiO2*M_Mo*M_SiO2*M_Mo*M_Oxide*M_Si; 

  

% SIMULATION PARAMETERS 

 

Zo = 50;                % Characteristic Impedance 

fi = 500e6;             % Initial Frequency 
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fs = 1e6;               % Frequency steps 

ff = 2e9;               % Final Frequency 

frequency = fi:fs:ff;   % Frequency range 

  

MA = M_Cascade(1,1); 

MB = M_Cascade(1,2); 

MC = M_Cascade(2,1); 

MD = M_Cascade(2,2); 

  

size = length(frequency); 

  

A = zeros(size,1); 

B = zeros(size,1); 

C = zeros(size,1); 

D = zeros(size,1); 

 

theta_AL = zeros(size,1); 

OMEGA = zeros(size,1); 

PHI = zeros(size,1); 

  

for a=1:size 

     

A(a,1)= subs(MA,'f',frequency(:,a)); 

    B(a,1)= subs(MB,'f',frequency(:,a)); 

    C(a,1)= subs(MC,'f',frequency(:,a)); 

    D(a,1)= subs(MD,'f',frequency(:,a)); 

    theta_AL(a,1) = subs(theta_Al,'f',frequency(:,a)); 

    OMEGA(a,1) = subs(omega,'f',frequency(:,a)); 

    PHI(a,1) = subs(phi,'f',frequency(:,a)); 

 

end 

  

% Impedance at the bottom of the piezoelectric layer 

Z_Bottom = A./C;                 

 

% Impedance at the top of the piezoelectric layer 

Z_Top = 1i*Z_Al.*tan(theta_AL);  

 

% Normalised acoustic impedances at the boundaries of piezoelectric 

layer 

z_Bottom = Z_Bottom/Z_ZnO;       

z_Top = Z_Top/Z_ZnO; 

  

  

Zin = (1./(1i.*OMEGA*Co)).*(1-

(k2.*((tan(PHI))./PHI).*(((z_Bottom+z_Top).*(cos(PHI)).^2+1i.*sin(2*PHI)

)./((z_Bottom+z_Top).*cos(2*PHI)+1i*(z_Bottom.*z_Top+1).*sin(2*PHI))))); 

  

R = (Z_ZnO - Z_Bottom)./(Z_ZnO + Z_Bottom); 

T = 10*log10(1-(abs(R)).^2); 

  

figure(1) 

plot(frequency,T) 

  

figure(2) 

plot(frequency,log10(abs(Zin))) 



 

 

 

APPENDIX B 

 

FINITE ELEMENT MODELLING 

The designed SMRs were evaluated using FEM with COMSOL Multiphysics® 

software version 4.4. The Piezoelectric Devices interface within the Acoustics module 

was used to this aim. A frequency response analysis was performed. The FEM model 

in this work was developed based on a COMSOL model for a thin film BAW 

composite resonator [1]. 

TWO-DIMENSIONAL MODEL 

The 2D model of the SMR was developed using the plane strain assumption, where x, 

y and z are the lateral, vertical and out-of-plane dimension, respectively. The geometry 

of the model was drawn using the CAD tool within the software using blocks for the 

layers. Dimensions of such geometries were set in the parameters section. 
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Mechanical and electrical boundary conditions were applied to the model as 

shown in the figure below.  An electric potential of 1.0 V was applied between the top 

and bottom electrode. To do so, the electric potential condition was applied to the top 

electrode and the ground boundary condition (V = 0) was applied to the bottom 

electrode.  

 

 Figure B.1 Mechanical and electrical boundary conditions for the 2D finite element model.  

The edges of the structure were set to a fixed constraint condition (zero 

displacement in all directions) while all other boundaries were left set to free. In order 

to avoid cavity modes, perfectly matched layers (PMLs) are used at the two sides of 

the geometry. These are artificial absorbing boundaries that account for the absorption 

of the outgoing elastic waves, avoiding the reflection back of the waves at the 

interfaces and contributing to the damping of the structure. Mechanical losses were 

also taken into account in the model by adding the structural and dielectric loss factor 

in the damping loss section of the piezoelectric material.  

Each layer of the model was assigned with the corresponding material from the 

MEMS materials library and material properties were modified if required. The 

properties of these materials are those provided in Chapter 3. The material parameters 

needed in COMSOL® (Young’s modulus, Poisson’s ratio and density) differ to those 
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used for the one-dimensional model (acoustic velocity and density).  However, these 

properties can be related by:   

𝑣 = √
𝑌(1 − 𝜎)

𝜌(1 + 𝜎)(1 − 2𝜎)
  (B.1)  

where 𝑣 is the acoustic velocity for longitudinal waves, 𝑌 is the Young’s modulus, 𝜎 

is the Poisson’s ratio and 𝜌 is the density of the material.  

 For the piezoelectric material, the acoustic velocity for the longitudinal 

acoustic wave propagation can be calculated as [2]:   

𝑣 =
√

𝑐33 +
𝑒2

33
𝜀33

𝜌
  

(B.2)  

where 𝑐33, 𝑒33 and 𝜀33 are the elastic constant, piezoelectric constant and permittivity 

of the piezoelectric material, respectively.  

For meshing of the 2D model, a mapped mesh with several distributions was 

used generating rectangular elements. When modelling a wave propagation problem 

with FEM, especial attention should be given to the mesh of the structure as it must 

provide sufficient resolution to accurately represent the wave. Ten nodes per 

wavelength is used as a rule of thumb for choosing an appropriate mesh [3]; therefore 

the maximum mesh element size was set accordingly. Likewise, meshing of the PMLs 

is important so that the outgoing waves are optimally dampened [4]. A minimum of 8 

elements is recommended for a 2D model.   

 A frequency domain study was performed in order to obtain the plots of 

electrical impedance against frequency of the SMRs. By considering the resonator as 

a parallel plate capacitor, the impedance was obtained by computing the following 

expression:  



 

Appendix B. Finite element modelling  315 

 

 

𝑍 =  
𝑉

𝑗𝜔𝑄
 (B.3)  

where 𝑍 is the electrical impedance, 𝑉 is the voltage applied across the electrodes, 𝜔 

is the angular frequency and 𝑄 is the total charge on the surface of the top electrode.  

𝑄 was obtained by integrating the charge density over the top electrode boundary using 

an integration component coupling. The admittance of the device can be directly 

obtained from the computation if a Terminal boundary condition is used instead. In 

this work, electric voltage was used rather than Terminal as this last one was not 

available within the used licensed module. 

The standing wave amplitude as a function of depth [5] in the SMR was 

obtained by defining a new data set at the middle cross section of the device and 

plotting the y-component of the displacement field against the y-coordinate.  The 

geometry of the 2D model can be simplified by considering only half of the structure 

and adding a symmetry boundary condition at the symmetry plane of the geometry. 

THREE-DIMENSIONAL MODEL 

Computation time for 3D models typically takes considerably longer than 

solving for a 2D model. This is because a greater number of finite elements are created 

for the 3D geometry. If possible, the 3D geometry should be simplified in order to 

speed the computation time and avoid running into computer memory limitations.  

To this aim, the developed 3D model of the SMR consisted of only one quarter 

of the complete structure. This was achieved by taking advantage of the symmetry of 

the device and applying the symmetry condition at the appropriate boundaries as shown 

in Figure B.2. The electrical and mechanical boundary conditions were defined in a 

very similar way as previously explained for the 2D model. 

As the 3D geometry is formed by very thin layers compared to the lateral 

dimensions, triangular elements and a swept mesh function were used for meshing the 

model as this significantly reduces the number of elements generated. A minimum of 



 

Appendix B. Finite element modelling  316 

 

 

5 elements is recommended for meshing the PML in the 3D model. A finer mesh was 

used for the electrodes area as this is where the acoustic wave mainly propagates.  

 

Figure B.2 Section of the structure used for the 3D model of the SMR. 

In order to display the results of the computation for the entire geometry, two 

data sets Mirror 3D where created at the corresponding symmetry planes. Figure B.3 

shows the mechanical deformation distribution at the resonance frequency of 

869 MHz. A uniform distribution of the mechanical displacement can be observed in 

the centre area of the SMR structure where the electrodes are located.  

 

Figure B.3 Mechanical deformation of the fundamental resonant mode in the SMR 

resonating at 869 MHz obtained with the 3D model. 

In the case of the 3D model, a factor of four was considered when computing 

the impedance of the device as only a quarter of the structure was simulated.  
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Table B.1 shows a comparison of the total time required to solve the finite 

element models in COMSOL® and the one-dimensional model implemented in the 

Matlab script for the same number of frequency points. All models were computed 

using a workstation with 128 GB of RAM and 2 processors.                     

Table B.1 Summary on the computation time required to solve the FEM model and the one- 

dimensional Mason model.  

MODEL 
MESH 

ELEMENTS 

FREQUENCY 

POINTS 

COMPUTATION 

TIME 

1D - 500 10 minutes 

2D 6400 500 2 hours 

3D 50600 500 48 hours 

 

Computation times shown above are for a frequency response analysis with no 

parametric solutions. Solving for a parametric sweep such as the one computed to 

evaluate the temperature stability of the devices usually takes about 8 hours using the 

half 2D model. 

Even though the computation of the Mason model in Appendix A is about 12 

times faster than solving the 2D FEM model, this is in fact rather slow. If no symbolic 

variables are used in the script, the computation time of the same problem can be 

resolved in a matter of seconds. 
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APPENDIX C 

 

6-MASK FABRICATION PROCESS 

 

For the fabrication of the SMR devices, described in Chapter 3, an original 6-mask 

fabrication process was developed, for which all six photolithography masks were 

designed and manufactured. This process was optimised to a three-mask process, as 

described in Chapter 3. However, the original 6-mask process can offer the following 

advantages:  

(1) The reflector layers are patterned. Therefore, devices in the same substrate are 

isolated from each other. Performing this step of the process would help avoiding any 

cross talk between devices. This will result particularly advantageous for their use in 

sensing arrays, where the devices share the same substrate.  
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(2) Die separation of the wafer is accomplished by a backside deep reactive ion etching 

(DRIE) process. This process would avoid contamination and possible scratches 

caused when alternative method is used (e.g. saw dicing).  

(3) A mask was included to open windows on the passivation layer to the contact pads 

and the sensing area of the device. In this way, the devices could be passivated 

(protected from contamination) while still be possible to access their connections and 

the sensing area.  

The complete six-mask fabrication process is described below and depicted in Figure 

C.1 and C.2.  

1. SUBSTRATE CLEANING. Double-side polished, 4- inch, 525 µm thick (+/- 25µm), p-

type silicon wafers with crystallographic orientation (100) and 200 nm thermal oxide 

on both sides were purchased from Si-Mat (Germany). Cleaning of the substrate to 

remove any contaminants comprised soaking the wafer in acetone followed by 

isopropanol (IPA) and then flushing with deionized (DI) water. Finally, the wafer is 

dried with nitrogen and baked at 125 °C for 3 minutes.  

2. DEPOSITION OF THE REFLECTOR LAYERS. A total of three layers of Mo and two layers 

of SiO2 are alternately sputtered on the silicon substrate using a high target utilisation 

sputtering (HiTUS S500) system. As the system can accommodate several targets at a 

time, deposition of the reflector layers can be performed without breaking the vacuum 

in the system or removing the sample, resulting in better adhesion between the layers. 

3. PATTERNING OF THE ACOUSTIC MIRROR. The acoustic mirror is patterned in order to 

provide electrical isolation between devices in the same substrate, avoiding crosstalk 

and reducing capacitive coupling [1]. Mo and SiO2 layers are sequentially etched. For 

Mo layers, a dry process is employed with CF4/O2 plasma in reactive ion etching 

(etching rate of ~200 nm/min).  In the case of SiO2 layers a wet etching using BHF is 

utilised at an etching rate of ~900 nm/min. During photoresist stripping ultrasound is 

avoided to prevent delamination thus wafer is soaked in acetone, IPA and DI water. 

For patterning of the reflector layers, a thick photoresist is used (AZ4562 with a 

thickness of ~8 µm). This is a positive photoresist and thus a clearfield mask was 

required. 
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4. SPUTTERING OF TOP SIO2 LAYER OF ACOUSTIC MIRROR. The top SiO2 layer of the 

acoustic mirror is deposited using the HiTUS system after patterning the previous 

reflector layers. This top layer should help encapsulating the reflector stack, preventing 

delamination and isolating the metal layers of the individual devices.  

5. DEPOSITION AND PATTERNING OF BOTTOM ELECTRODE. The bottom electrode 

(200nm Al or 100/10 Au/Cr) is deposited on top of the acoustic mirror and patterned 

using a standard lift-off photolithography process. The aluminium layer is sputtered 

while the chrome/gold layers are thermally evaporated.  

6. DEPOSITION OF PIEZOELECTRIC LAYER. The ZnO layer is reactively sputtered at room 

temperature from a zinc target using an Ar/O2 mixture in the HiTUS system [2] 

resulting in high quality ZnO films with excellent c-axis orientation, smooth surface 

and low stress [3] to obtain high quality resonators.   

7. DEPOSITION AND PATTERNING OF TOP ELECTRODE. The top electrode is patterned in 

a second lift-off process in a similar way as the bottom electrode using the same 

materials, thicknesses and deposition methods.  

8. PATTERNING OF PIEZOELECTRIC LAYER. In order to provide electrical contact to the 

bottom electrode, the ZnO film is patterned and via holes etched through it in a wet 

etching process using a 2% glacial acetic acid and phosphoric acid solution at room 

temperature with at etching rate of ~1.2 µm/min.  

9. DEPOSITION OF PASSIVATION LAYER. In order to protect devices from environmental 

factors and scratching during dicing, a passivation layers is deposited on the top with 

opening windows through it in order to make contact with the electrodes.  

10. WAFER DICING. A backside DRIE process is used to create dicing trenches on the 

wafer. Al2O3 is deposited on the backside to act as a hard mask for this process. The 

alumina is deposited in the HiTUS system with a deposition rate of ~6 nm/min.   
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Figure C.1 Original 6-mask fabrication process flow: (a) Wafer cleaning; (b) to (e) deposition 

and patterning of acoustic mirror; (f) Deposition of encapsulating SiO2 layer; (g) to (j) 

patterning of bottom electrode; (k) deposition of piezoelectric layer; (l) to (o) patterning of top 

electrode. Process continues in Figure . 
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Figure C.2 Continuation of 6-mask fabrication process flow in Figure . (p) to (r) patterning of 

the piezoelectric layer and opening via contact to the bottom electrode; (s) deposition of 

passivation layer; (t) to (v) patterning of passivation layer to open contact windows to the pads 

and the active area; (w) to (z) deep reactive ion etching of the silicon substrate for wafer dicing.  
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Table C.1 summarised the specifications for all six masks, including the 

polarity and view side.  

Table C.1 Specifications of all six photolithography masks for the original fabrication 

process. 

MASK ID POLARITY VIEW SIDE 
TYPE OF 

RESIST 
DESCRIPTION 

MIR Clearfield 
Right Read 

Chrome down 
Positive 

Patterning of the Mo and 

SiO2 layers to define the 

acoustic mirror and 

alternating wet etching of 

Mo/SiO2 

BOT Darkfield 
Right Read 

Chrome down 
Positive 

Patterning of the bottom 

electrode and lift-off process  

TOP Darkfield 
Right Read 

Chrome down 
Positive 

Patterning of the top 

electrode and lift-off process 

PIE Darkfield 
Right Read 

Chrome down 
Negative 

Patterning the piezoelectric 

material and opening via 

access to the bottom 

electrode, etching of the 

piezoelectric layer. 

PAS Darkfield 
Right Read 

Chrome down 
Positive 

Opening Windows on the 

passivation layer to the 

contact pads. (Etching) 

DIC Darkfield 
Right Read 

Chrome up 
Positive 

Backside patterning of the 

dicing marks for the DRIE 

process 

 

[1] Ellael (2002). "Solidly Mounted Multiresonator Bulk Acoustic Wave Filter 

with a patterned acoustic mirror", US Patent. 

[2] García-Gancedo, L., Pedrós, J., Zhu, Z., Flewitt, A. J., Milne, W. I., Luo, J. K. 

and Ford, C. J. B. (2012). "Room-temperature remote-plasma sputtering of c-

axis oriented zinc oxide thin films", Journal of Applied Physics. 112(1):  

014907. 

[3] García-Gancedo, L., Ashley, G. M., Zhao, X. B., Pedrós, J., Flewitt, A. J. and 

Milne, W. I. (2011). "Deposition and characterisation of ultralow-stress ZnO 

thin films for application in FBAR-based gravimetric biosensors ", Int. J. 

Nanomanufacturing. 7(3/4):  371-382. 



 

 

 

 

APPENDIX D 

 

POLYMER-VAPOUR PARTITION 

COEFFICIENTS 

 

 

In Chapter 6, the calculation of polymer-vapour partition coefficients though the use 

of linear solvation energy relationships (LSER) was detailed. LSER solvation 

parameters for a range of polymers were collected from published data  [1-5]. In Table 

D.1 and D.2, a complete list of calculated partition coefficients is presented for VOCs 

of interest in air quality monitoring.  
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APPENDIX F 

 

VOC STATION HARDWARE 

COMPONENTS 

The development of an automated VOC test rig was presented in Chapter 6. The Table 

below details the hardware components used for its development. The symbols 

presented in the first column refer to those used in the schematic diagram of the VOC 

rig, presented in Figure 6.16. 
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SYMBOL PART PHOTOGRAPH SUPPLIER 

 

Compressed 

gas cylinder 

 

BOC Group Limited – Gas 

cylinders usually AK size. 

(Mixture of 200 ppm of acetone 

in air and 100 ppm of toluene in 

air) 

 

Manual 

Valve 
 

Swagelok – Stainless steel 1-

piece 40 series ball valve, 1/8 

inch. 

Part No. SS-2F-05. 

 

Solenoid 

Valve 

 

Bürkert Fluid Control systems – 

Stainless steel, normally closed, 

12 VDC voltage. Type 6012 and 

plug connection type 2506. 

 

Regulator 

with gauge. 
 

BOC Group Limited – HP1700 

Series two stage regulators for 

the VOC lines. 

 

Zero air 

generator 

 

Parker Balston – Model number 

HPZA-3500. 

 

Particulate 

Filter 
 

Swagelok – Stainless steel in-

line particulate filter, 1/8 inch, 

0.5 micron pore size. 

Part No. SS-2F-05 

 

Check valve 

 

Swagelok – Stainless steel 

poppet check valve. Part No. 

SS-2C-1/3. 

 
Bubbler  

250 ml Dreschel bottle 

(Scientific Laboratory Supplies) 

with head and grade 1 sinter.  

https://www.burkert.co.uk/
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Mass flow 

controller 
 

Alicat Scientific – Ranged 2.5 – 

500 sccm.  

Product code MC-500SCCM-

D/5M,5IN 

 

Temperature 

and 

Humidity 

Sensor 
 

Rotronic – Hygroclip 2, HC2-S 

placed inside a in-house made 

stainless steel chamber 

 

Mixing 

chamber and 

block heater 

1.  

IKA Werke GmbH –Single dry 

block heater. Product number 

4025100.  

 In house made mixing chamber 

 

Sensor 

chamber and 

block heater 

2.  

Techne Ltd- dual block Dri-block 

heater DB-2D.  

 

Mass flow 

meter 

 

Alicat Scientific – Ranged 2.5 – 

500 sccm. 

Product code M-500SCCM-

D/5M 

 
T-Junction 

 

Swagelok – Stainless steel Tube 

fitting, Union Tee, 1/8 in Tube 

OD. Part Number: SS-200-3 

 

Stainless 

steel tubing 

 

Swagelok – 316/316L Stainless 

steel seamless tubing, 1/8 in OD 

x 0.028 in wall. Product Number: 

SS-T2-S-028-6ME 



 

 

 

APPENDIX G 

VIRTUAL INSTRUMENTATION 

Virtual instrumentation was developed in LabVIEW v2015 for the automated control 

of the VOC test station and data acquisition. This virtual instrumentation performs 

three main functions: 

(1) HARDWARE CONTROL. Control of the gas flow equipment including the mass flow 

controllers, the mass flow meter and the electronic valves. 

(2) VOC STATION DATA ACQUISITION. Acquisition of the temperature and humidity 

sensor readings within the rig as well as the mass flow values of the mass flow 

controllers (MFCs). The acquired data is shown on screen in real time and can be saved 

to a .tdms file. 

(3) SENSOR DATA ACQUISITION. This virtual instrument (VI) allows real time 

monitoring (on-screen view) of the sensor data which can also be saved for post-

processing analysis. 
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The front panel of the VI for controlling of the VOC station is shown in Figure G.1. 

The station can operate in two modes: manual and automatic. These two modes can be 

selected from the tabs at the left-hand side of the front panel (orange or blue tabs). The 

manual operation tab is currently showed in the figure while the automatic operation 

tab is shown in Figure G.2. 

 

 

Figure G.1 Front panel for controlling VOC test station. 

The manual operation mode allows writing to the mass flow controllers by manually 

entering the desired values and opening/closing the valves as needed. The former is 

achieved by clicking the send button while the latter is accomplished by clicking on 

the corresponding valve graphic indicator.  As the name suggests, this mode is used in 

the case that complete manual operation of the rig is required, and is usually employed 

at the start of each experiment to test any leakage within the system. 
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Figure G.2 Automatic operation mode of the virtual instrument. 

The automatic mode allows complete automated control of the rig, in which 

the user is only required to load a file containing the testing steps. An example of this 

file is shown in Figure G.3. Each line (row) corresponds to one exposure step in which 

the desired concentration of the selected VOC is given along with humidity levels (if 

desired) and the total duration time of the exposure step. The file can be created in 

Microsoft Excel but should be saved and uploaded as a .csv file. In the case of dry air 

needed for the baseline, the values that need to input are all zero such as in the second 

line of the sample file.  
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Figure G.3 Sample of the testing file that should be uploaded. 

Before loading the file, two important actions are required: 

(1) The VOC to be tested needs to be selected the drop-down menu (Acetone 200 ppm 

is selected in the case shown above). The drop-down menu lists the VOC cylinders 

available in the laboratory. If VOC mixtures are used, two or more VOC lines should 

be defined. It is important to select the correct VOCs in the designed lines, as this will 

determine the maximum concentration of the cylinder and the program will perform 

the flow rate calculations based on this. 

(2) The total flow rate should be introduced in the corresponding box, shown to the 

left of the Load file button. This is the total flow rate that will go into the exposure 

chamber and this value is again needed for the calculations of the concentrations.  

Once these two steps have been completed, the Load File button can be pressed 

which will open a dialogue window to browse to the location of the .csv file, previously 

created. Once uploaded, the VI will use this information to calculate the required flow 

rates of each MFC which will be displayed in the table of the front panel.  

To start the VOC test, the start button is pressed. Once done, the flow rates for 

the first step (first row of the table) will be written to the MFCs and will remain during 

the specified time for that step. The elapsed time and remaining time are displayed for 

the current step as well as for the complete experiment. Once the time for the current 

step has elapsed, the calculated mass flow values for the next step will be sent to the 
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MFCs during the specified time and this process will be repeated until the last step is 

completed. A blue contour highlights the current step (row of the table) being 

performed. Once completed, the program will pop up a notification confirming that all 

testing steps were successfully completed.  

In the lower left corner of the front panel, three buttons are available. The 

emergency stop and reset all buttons are used to abort execution of the virtual 

instrument and reset all the equipment to default values, respectively. The third button 

is used to save the station data (mass flow rates, temperature and humidity) to a. tdms 

file. The file path can be selected in the same section. 

Two indicators are used to display temperature and humidity readings from the 

sensor placed after the dry air and wet air lines and two graphs show these readings in 

real time plots for easy visualization. Block diagrams of the main parts of this virtual 

instrument are shown below. 

 

Figure G.4 Part of the block diagram for the automatic mode operation. 
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Figure G.5 Part of the block diagram to write/read values to the mass flow controllers. 

 

Figure G.6 Part of the block diagram for the control of the electronic valves and acquisition 

of temperature and humidity readings. 
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Figure G.7 Part of the block diagram to save the VOC station data (MFCs values, 

temperature and humidity).  

Sensor data acquisition was accomplished by a separate virtual instrument in which 

the data is acquired via serial port communication with the microcontroller 

(Teensy 3.2). The COM port assigned to the microcontroller should be selected in the 

corresponding field.  

The front panel of the acquisition for one sensing signal is shown in Figure 

G.8. Block diagram for this implementation is shown in Figure G.9. The front panel 

consists of a graphical indicator where the sensor readings are plotted in real time at a 

sampling rate of 10 Hz. Interactive buttons are included to clear the chart and auto 

scale the data as required.  As in the previous VI, the sensor data can be saved to a 

separate specified file (.tdms).  

 

Figure G.8 Front panel of virtual instrument used for sensor data acquisition. 
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Figure G.9 Block diagram for sensor data acquisition. 



 

 

 

APPENDIX H 

ZNO BASED CMOS SMR 

DEVICES 

 

In Chapter 7, post-processing of the CMOS fabricated devices was detailed for AlN 

based SMR devices. ZnO based devices were also fabricated. The performance of the 

AlN devices was superior compared to the ZnO devices. The post-fabrication of these 

devices took place at the Centre for Advanced Photonics and Electronics (CAPE), 

University of Cambridge UK in collaboration with Dr Mario De Miguel Ramos and 

Dr Andrew Flewitt. Fabrication and characterisation of these devices is presented in 

this appendix.  

The post-fabrication steps consisted on the deposition of the bottom electrode, 

piezoelectric layer and top electrode. In this first attempt for the post-fabrication 

process, a one-mask photolithography process was used, in which only the top 

electrode was patterned using capacitive coupling to excite the resonator. Only one 
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mask was used to facilitate alignment during the photolithography process. 

Thicknesses and materials used for these layers are summarised in Table H.1 below. 

For these designed layers, the devices are expected to resonate at a frequency of 

~2.1 GHz.  

Table H.1 Layers deposited during the post-processing steps for the CMOS based SMR. 

THICKNESSES 

Bottom Electrode (Mo) 200 nm 

Piezoelectric (ZnO) 800 nm 

Top Electrode (Mo) 200 nm 

 

The molybdenum layers for the electrodes were sputtered from a Mo target (99.95% 

purity) at a deposition rate of 6.5 nm/min. The ZnO piezoelectric layer was deposited 

in the HiTUS system (previously detailed in Chapter 4) with a deposition rate of 

~92.5 nm/min. Patterning of the top electrode was performed in s standard 

photolithography process and the Mo layer was etched with Al etchant at room 

temperature. Photographs of the device before and after completing the post-

processing steps are presented in Figure H.1.  

 

   

(a) (b) 

Figure H.1. Photographs of the top view of the CMOS based SMR devices: (a) Fabricated 

CMOS device before post-processing and (b) ZnO based SMR (after completion of the post-

processing steps). 
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After completion of the post-CMOS fabrication steps, the device was characterised 

using the Network Analyser. The measured impedance for one device is shown in 

Figure H.2 below. Devices were found to resonate at a frequency of ~1.9 GHz 

(suggesting that a thicker layer of ZnO was deposited, compared to the designed 

thickness).  The quality factors of these devices were measured at 126 and 160 for the 

series and parallel frequencies, respectively, and an electromechanical coupling 

coefficient 𝑘𝑒𝑓𝑓
2  of ~4% was found. Even though the performance metrics of these 

devices could be improved, the results obtained from this first batch of ZnO based 

CMOS devices are promising for their implementation in sensing applications.  

  

Figure H.2 Frequency response of the CMOS based SMR with ZnO as the piezoelectric 

layers and Mo electrode 


