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a b s t r a c t 

This paper aims at modelling stress-affected chemical reactions in spherical particles by 

adopting the chemo-mechanical framework based on the chemical affinity tensor and com- 

bining it with the finite-strain non-linear viscoelastic constitutive model. The model is ap- 

plied to the chemical reaction between lithium (Li) ions and silicon (Si), which has been 

considered as promising successor to graphite for use as active material in lithium-ion 

battery (LIB) anodes. However, during charging of LIBs, Si enters into the chemical reac- 

tion with Li ions, causing large volumetric expansion of Si particles, which leads to the 

emergence of mechanical stresses, which, in turn, can affect the kinetics of the chemical 

reaction even up to the reaction arrest. In this paper, the propagation of the reaction front 

separating the chemically transformed and the untransformed phases is modelled, and the 

coupled stress-diffusion-reaction problem is solved using the finite element approach. The 

model predicts the retardation and the locking of the chemical reaction in Si depending 

on the values of the chemical energy parameter, which corresponds to experimental ob- 

servations. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. 
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1. Introduction 

In recent years, special attention has been paid to the enhancement of the capacity of lithium-ion batteries by investi-

gating the applicability of various active materials, such as silicon, that can accommodate larger amount of lithium atoms

than commonly used graphite. The main challenge for the application of Si as a novel anode active material is its large volu-

metric expansion of up to 300% in the charged state ( McDowell, Lee, Nix, & Cui, 2013 ), which leads to the emergence of the

mechanical stress and the degradation/failure of the anode during charge/discharge cycling. Various Si nano-structures such

as nanowires, spherical particles embedded into a graphite matrix, porous Si–C composites and special coatings applied to

Si particles have been proposed to solve this problem ( Lukatskaya, Dunn, & Gogotsi, 2016; Luo, Wu, Luo, Huang, & Dravid,
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2014; Magasinski et al., 2010 ). However, at the moment, there are no straightforward solutions to this problem and deeper

understanding of the chemical reaction with Li ions and interaction of Si particles with the surrounding material is required.

From the physical point of view, there is a difference between the mechanism of reaction between Li and graphite and

between Li and Si — in the case of graphite, the mechanism is based on the intercalation into the host lattice, while in the

case of Si, it is the formation of new chemical compounds (“alloying”) ( McDowell, Lee, Nix et al., 2013 ). Thus, the reaction

between Li ions and Si can be understood as a chemical transformation. Term “lithiation” of a material is often used in

literature to refer to the chemical reaction of the material with Li ions. Therefore, in this paper, the reaction between Li ions

and Si is also referred to as the lithiation of Si. 

During the initial lithiation (i.e. upon the first cycle) of either crystalline or amorphous Si nano-particles, the existence if

two distinct phases, the untransformed and the transformed Si, is observed, while the chemical reaction is localised at the

reaction front of nanometre thickness that separates unlithiated and lithiated Si ( Cubuk & Kaxiras, 2014; van Havenbergh,

Turner, Marx, & van Tendeloo, 2016; Jia & Li, 2015; McDowell, Lee, Harris et al., 2013; McDowell et al., 2012; Yang et al.,

2012 ). This process is referred to as “the two-phase lithiation” in literature. It should be also mentioned that a process, with

a smooth change of Li concentration within Si particle (i.e. without a reaction front), was observed upon the subsequent

lithiation–delithiation cycles ( McDowell, Lee, Harris et al., 2013 ), which was referred to as “one-phase lithiation”. In the case

the two-phase process, the lithiation rate is limited by the rate of the chemical reaction taking place at the reaction front.

Two modelling concepts of the reaction localisation exist. One type of models deals with a smooth spatial distribution of

the lithium concentration and a transition layer with a rapidly changing concentration that connects concentration-poor and

concentration-rich phases. For example, in Chen et al. (2014) , a phase-field model was proposed and applied to the case of

a single spherical Si particle, and lithiation-induced stresses were analysed. Another type of models considers a chemical

reaction front as a sharp interface, e.g. Cui, Gao, and Qu (2013) and Jia and Li (2015) . In the present paper a sharp reaction

front is considered. 

The volumetric expansion of Si particles during lithiation leads to mechanical stresses, which influence the kinetics of

the reaction between Si and Li. Therefore, from the mechanical perspective, there has been an extensive research focus on

modelling of stresses produced by the lithiation, e.g. Dimitrijevic, Aifantis, and Hackl (2012) . But the influence of stresses

on the lithiation kinetics still remains unclear and must be captured to model the battery charging process accurately. Since

Li is delivered to the reaction front by diffusion, stresses may affect the lithiation process via the diffusion flux rate and

via the lithiation reaction rate. It should be noted that coupling of stresses, diffusion and chemical reaction has been also

intensively discussed in the context of Si oxidation, which is a transformation process of a solid body that is similar to

lithiation. In a number of papers, the well-known Deal-Grove model of oxidation ( Deal & Grove, 1965 ) has been modified

by considering the classical diffusion equation with the stress-dependent diffusion coefficient and the stress-dependent re-

action rate parameter. The choice of stress characteristics (the first invariant, the normal stresses, or the intensity of shear

stresses), which affect the reaction and the diffusion parameters, was made intuitively by using the notion of the activa-

tion volume, e.g. Kao, McVittie, Nix, and Saraswat (1988) , Sutardja and Oldham (1989) and Rafferty (1990) . Additionally, a

concentration-dependent volumetric expansion was introduced, which led to the total stress-diffusion coupling, e.g. Rao and

Hughes (20 0 0) and Rao, Hughes, and Garikipati (20 0 0) . A reaction-controlled diffusion model for the lithiation process of a

spherical Si particle, in which the reaction front kinetics was modelled as a pressure-dependent process, was proposed in

Zhang, Lee, Lee, Cui, and Linder (2015) . The influence of stresses on diffusion via additional terms in the diffusion equation

in various chemo-mechanical processes has been also considered, e.g. Knyazeva (2003) and Toribio, Kharin, Lorenzo, and

Vergara (2011) . 

Another group of models includes the influence of stresses on the diffusion flux and the chemical reaction rate via a

scalar chemical potential, which depends on the concentration and the stresses, and gradient of which governs the flux of

the reactant, e.g. Loeffel and Anand (2011) , Bower and Guduru (2012) ; Bower, Guduru, and Sethuraman (2011) , Cui, Gao, and

Qu (2012) , Brassart and Suo (2012, 2013) , Levitas and Attariani (2013, 2014) , Bower, Guduru, and Chason (2015) and Dal and

Miehe (2015) . For example, in Dal and Miehe (2015) , a stress-diffusion model was presented, in which the isotropic volu-

metric expansion depends linearly on the concentration of Li, while the diffusion is driven by the spatial gradient of the

chemical potential, which is the function of the concentration and the pressure. In Cui et al. (2013) , previously developed

stress-diffusion model, in which a stress-dependent chemical potential was proposed and applied to the problem of lithia-

tion of a spherical Si particle ( Cui et al., 2012 ), was extended to the problem with a chemical reaction as a kinetics governing

process. It should also be mentioned that the velocity of the reaction front can be controlled by the reaction rate at the re-

action front rather than by the diffusivity of the reactant (see e.g. Jia & Li, 2015 and reference therein), which is Li ions in

the case of lithiation. 

The coupled stress-diffusion-reaction models were also extended to describe additional physical effects, such as damage

of Si particles upon lithiation. For example, in Zhang, Krischok, and Linder (2016) , the approach of Zhang et al. (2015) was

extended and the effective damage field was introduced. In Klinsmann, Rosato, Kamlah, and McMeeking (2016a,b) , a coupled

stress-diffusion model was used to study a crack growth during the lithiation process. 

In the present paper, the thermodynamically consistent approach to mechanochemistry of reaction fronts based on the

notion of the chemical potential is further developed. In the last decades of the twentieth century it became clear that

chemical potentials are tensorial quantities in the case of solid phase transformations, which are related to the Eshelby

energy-momentum tensors (see e.g. Grinfeld, 1991 and Abeyaratne & Knowles, 2006 and references therein). This can be

explained by the fact that the phase equilibrium takes place at a surface element oriented with respect to the axis of the
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stress tensor. The tensorial nature of the chemical potential, in turn, leads to the tensorial nature of the chemical affinity, for

which chemical reactions are to be considered at an oriented element of a surface that passes through a point, as opposed

to a reaction just at a point. The tensorial nature of the chemical affinity was also pointed out in Rusanov (20 05, 20 06) . The

detailed derivation of the expression of the chemical affinity tensor in the case of large deformations, made for materials

of arbitrary rheology with the use of the mass, the linear momentum, and the energy balance equations and the entropy

inequality, can be found in Freidin (2015) and Freidin, Vilchevskaya, and Korolev (2014) . 

Up to now, the approach based on the chemical affinity tensor was applied to a number of boundary value problems for

elastic solids undergoing chemical reactions only in the case of infinitesimally small strains ( Freidin, Korolev, Aleshchenko, &

Vilchevskaya, 2016; Freidin, Morozov, Petrenko, & Vilchevskaya, 2016; Freidin et al., 2014 ). However, modelling of problems

such as lithiation of Si particles requires capturing large non-linear viscoelastic deformations. Therefore, the aim of this

paper is to study the kinetics of the reaction front governed by the chemical affinity tensor in the case of large deformations

and non-linear viscoelastic constitutive material model of the reaction product and to apply the proposed model for the

simulation of the stress-affected kinetics of the two-phase lithiation of spherical Si particles. 

The paper is organised as follows: a brief summary of the framework and the concept of chemical affinity tensor is

given first in Section 2 , along with the formulation of a general quasi-static problem involving the mechanical, the diffusion,

and the chemical reaction parts. This is followed by the problem formulation for the case of the two-phase lithiation in Si

particles in the framework of finite elastic and non-linear viscoelastic deformations and also by some details of the finite

element solution process ( Section 3 ). Results of finite element simulations are discussed in Section 4 . 

2. Summary of the approach based on the chemical affinity tensor 

2.1. Chemical thermodynamics background 

In classical chemical thermodynamics, the chemical affinity A appears in the expression for the entropy production P [ S ]

as a multiplier of the reaction rate ω: 

P [ S ] = T −1 Aω, (1) 

where T is temperature, e.g. Prigogine and Defay (1954) . The chemical affinity is expressed via the combination of the

chemical potentials of the reaction constituents. For example, for the reaction 

n −B − + n ∗B ∗ → n + B + (2) 

the chemical affinity is as follows 

A = n −M −μ− + n ∗M ∗μ∗ − n + M + μ+ , (3) 

where μ−, μ∗, and μ+ are the chemical potentials of the constituents per unit of mass; M −, M ∗, and M + are the molar

masses of the constituents; n −, n ∗, and n + are the stoichiometric coefficients. 

Since the chemical affinity acts as a thermodynamic force, the reaction rate is a function of the affinity: 

ω = ω(A ) . (4) 

In the case of the chemical reaction between gaseous or liquid constituents, the following kinetic equation for the depen-

dence of the reaction rate on the affinity was proposed ( Glansdorff & Prigogine, 1971 ): 

ω = ω f 

(
1 − exp 

(
− A 

R g T 

))
, (5) 

where ω f is the so-called partial reaction rate, which is proportional to the concentrations of reacting constituents, R g is the

universal gas constant. Therefore, the influence of external actions on the chemical reaction rate can be considered as the

influence on the chemical affinity. 

2.2. Chemical affinity tensor 

Only essential summary of the theory that is used in this paper is given below, the detailed explanation is provided in

Freidin (2015) , Freidin et al. (2014) , Freidin, Morozov et al. (2016) and Freidin, Korolev et al. (2016) . A chemical reaction

between a solid and a diffusive constituents is considered, where B −, B ∗, and B + are the chemical formulae of an initial

solid constituent (untransformed), a diffusive constituent (reactant) and a transformed solid constituent, respectively; n −,

n ∗, and n + are corresponding stoichiometric coefficients. Reactant B ∗ diffuses through the transformed material B + and the 

reaction is localised at an infinitely thin reaction front, which separates the transformed and the untransformed materials.

The reactant is entirely consumed at the reaction front. 

In the case of a chemical reaction between a solid and a gaseous constituents, the entropy production due to the chemical

reaction that is localised at an oriented surface takes the form 

P [ S ] = T −1 A NN ω N , (6) 
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where A NN = N · A · N is the normal component of chemical affinity tensor A (see Freidin, 2013; Freidin, 2015 and

Freidin et al. (2014) for the derivation of the tensor); N is the normal to the image of the surface element in the refer-

ence configuration of one of the solid constituents (the reference configuration of the constituent B − is used below); ω N

is the reaction rate at the surface element with normal N . It should be noted that ω N is the rate of the reaction per unit

surface, while ω in (1), (5) is the reaction rate per unit volume. 

The expression for tensor A is similar to the expression for the scalar chemical affinity, (3) , however the scalar chemical

potentials are replaced with the chemical potential tensors, μ− and μ+ , that are equal to the Eshelby energy-momentum

tensors, divided by the reference mass densities. Thus, the chemical affinity tensor in a quasi-static approach is given by 

A = n −M −μ− + n ∗M ∗μ∗I − n + M + μ+ , (7)

μ− = f −I − 1 

ρ−
F T − · P −, μ+ = f + I − 1 

ρ+ 
F T + · P + , (8)

where F − and F + are the deformation gradients of constituents B − and B + , respectively; P − and P + are the first Piola-

Kirchhoff stress tensors of constituents B − and B + , respectively, f − and f + are the mass densities of the Helmholtz free

energies of constituents B − and B + , respectively; ρ− and ρ+ are the mass densities of constituents B − and B + , respectively.

The deformation gradients, the first Piola-Kirchhoff stress tensors and the mass densities of the constituents B − and B + in

(8) are defined in with respect to the reference configurations of B − and B + , respectively. However, term ρ−1 
+ F + T · P + does

not change when all the values are recalculated with respect to the reference configuration of B −. Likewise, term ρ−1 
− F −T · P −

does not change when all the values are recalculated with respect to the reference configuration of B + . Thus, the choice of

the reference configuration does not affect the chemical potential tensors which characterise the thermodynamic state of

the material (see e.g. Freidin et al., 2014 ). 

Taking A NN instead of A in Eq. (5) with the partial reaction rate between gaseous and solid constituents equal to ω f =
k ∗c where k ∗ is the kinetic coefficient, c is the molar concentration of the diffusive reactant (concentration of the solid

constituent is taken equal to 1 in this case), gives the following kinetic equation: 

ω N = k ∗c 

(
1 − exp 

(
−A NN 

R g T 

))
. (9)

The mass balance at the propagating reaction front results in the expression for the normal component of the reaction front

velocity with respect to the reference configuration of constituent B −: 

V = 

n −M −
ρ−

ω N = 

n −M −
ρ−

k ∗c 

(
1 − exp 

(
−A NN 

R g T 

))
. (10)

The chemical potential of the diffusive constituent is taken in a form: 

M ∗μ∗ = η∗ + R g T ln 

c 

c ∗
(11)

where c is the concentration of the reactant B ∗ taken per unit volume of the reference configuration of B −; c ∗ is some

reference molar concentration; η∗ is a reference chemical potential of B ∗ (the so-called “chemical energy”). 

For materials B − and B + , it is assumed that the Helmholtz free energy can be represented as the sum of the chemical

energy (the free energy volume density of the solid constituent in a stress-free state) and the strain energy: 

ρ− f − = η− + W −, ρ+ f + = η+ + W + , (12)

where W −, W + are the strain energy densities of B −, B + , respectively, and η−, η+ are the chemical energies of B −, B + ,
respectively, defined per unit volumes of the reference configurations of B − and B + . 

If the contribution of the pressure, produced by the diffusive constituent B ∗, to the linear momentum balance equation at

the reaction front is neglected in comparison with stresses in solid constituents, then the normal component of the chemical

affinity tensor can be represented 

1 as Freidin (2013, 2015) ; Freidin et al. (2014) 

A NN = 

n −M −
ρ−

(
γ + W − − g 3 W + + P − : � F � ) + n ∗R g T ln 

c 

c ∗
, (13)

where γ is the temperature-dependent combination of the chemical energies of the constituents, 

γ = η− + 

ρ−
n −M −

n ∗η∗ − g 3 η+ , (14)

g 3 is the volumetric expansion ratio due to the chemical transformation, the double square brackets denote the jump of the

variable at the reaction front: 

� F � = F 0 + − F −, (15)
1 Here, following Freidin et al. (2014) , strain energy density W + of material B + is taken per unit volume of the stress-free chemically transformed 

material; however, in Eq. (13) , the consistency is maintained, since g 3 W + is the strain energy density of material B + recalculated per unit volume of the 

reference configuration of B − . 
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where deformation gradient F 0 + is the deformation gradient of material B + with respect to the reference configuration of

B −. It is related to F + via the chemical deformation gradient, F g , 

F 0 + = F + · F g . (16) 

In this paper, notation A : B = A i j B i j is used for the convolution. From the mass balance and the reaction formula it follows

that the volumetric expansion ratio due to the chemical transformation can be calculated as 

g 3 = det F g = 

n + M + 
ρ+ 

ρ−
n −M −

. (17) 

Further the chemical deformation gradient is assumed to be isotropic: 

F g = g I . (18) 

2.3. General problem formulation 

The general problem formulation is split into three parts: the mechanical, the diffusion, and the chemical reaction parts.

These parts are presented below. 

The problem is assumed to be quasistatic. Thus, the equilibrium equation 

∇ · σ = 0 , (19) 

where σ is the Cauchy stress tensor, is to be satisfied within domains υ− and υ+ , which are occupied by materials B − and

B + , respectively, with the boundary conditions at the outer surface of the body, and with the displacement and the traction

continuity conditions at the reaction front (the contribution of the pressure, which is produced by the diffusive constituent,

to stresses is neglected). Operator ∇ is defined with respect to the current configuration; however, when Eq. (19) is solved

numerically, it is rewritten with respect to the reference configuration. The constitutive relations can be arbitrary. In this

paper, the non-linear viscoelastic material behaviour is considered ( Section 3.2 ). 

The reaction front moves due to the consumption of the reactant B ∗, which diffuses through the transformed material

B + from the outer surface of υ+ to the reaction front. In the case of finite strains, it is convenient to project the diffusion

flux onto the reference configuration of one of the solid constituents, i.e. to consider the Lagrangian diffusion ( Freidin, 2015;

Wilmanski, 1998 ). In this paper, the diffusion is projected onto the reference configuration of material B −. It is assumed that

the diffusion process happens on a much faster time scale than the chemical reaction. This assumption is also motivated by

the choice of the parameters that are used in the calculations, as discussed at the end of Section 3.5 . Hence, the stationary

diffusion equation is considered, 

�0 c = 0 , (20) 

with boundary conditions 

D N · ∇ 0 c + n ∗V 

ρ−
n −M −

= 0 , (21) 

at the reaction front mapped onto the reference configuration of B −, 

D N · ∇ 0 c + α( c − c ∗) = 0 , (22) 

at the outer surface of υ+ mapped onto the reference configuration of B −, were D is the diffusion coefficient of the reactant

B ∗ through B + ; α is the surface mass transfer coefficient; c ∗ is the solubility of B ∗ in material B + . Operators ∇ 0 and �0 are

defined with respect to the reference configuration of B −. 

When A NN = 0 , the chemical equilibrium takes place and, thus, the reaction front does not move. Therefore, equilibrium

concentration c eq can be introduced ( Freidin et al., 2014 ), such that at a given stress-strain state 

A NN | c= c eq 
= 0 . (23) 

Quantity A NN is a function of the reactant concentration c , according to Eq. (13) , and due to the solid skeleton approach,

the concentration affects A NN only through the chemical potential of the diffusive constituent. In this case, the normal

component of the chemical affinity tensor can be rewritten in terms of the equilibrium concentration, which depends on

the stresses and the strains, and actual concentration c at the reaction front: 

A NN = n ∗M ∗( μ∗( c ) − μ∗( c eq ) ) . (24) 

If the chemical potential of the diffusive constituent is given by the expression (11) , then, according to (10) , the normal

component of the reaction front velocity becomes the function of the equilibrium concentration and the current concentra-

tion at the reaction front ( Freidin, Korolev et al., 2016 ): 

V = 

n −M −
ρ−

k ∗c 

(
1 −

(
c eq 

c 

)n ∗)
. (25) 
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After substituting Eq. (25) into Eq. (21) , the boundary condition for the diffusion equation at the image of the reaction front

is reformulated in terms of c and c eq : 

D N · ∇ 0 c + n ∗k ∗c 

(
1 −

(
c eq 

c 

)n ∗)
= 0 . (26)

In the case of n ∗ = 1 , which is considered further, the velocity expression and the boundary condition for the diffusion

equation become 

V = 

n −M −
ρ−

k ∗( c − c eq ) , (27)

D N · ∇ 0 c + k ∗( c − c eq ) = 0 . (28)

Eq. (25) or, in the case of n ∗ = 1 , Eq. (27) is the differential equation for the unknown time-dependent position of the

reaction front. The velocity on the left-hand side of the equation contains time derivatives of the geometrical parameters

of the front position. The right-hand side contains the current concentration, c , and the equilibrium concentration, c eq , at

the reaction front. The current concentration is determined by the stationary diffusion Eq. (20) with one of the boundary

conditions enforced at the reaction front, (26) or (28) , and containing the equilibrium concentration, c eq . The equilibrium

concentration is, in turn, determined by stresses and strains at the reaction front according to Eq. (23) . Stresses and strains

are, in turn, determined by the mechanical equilibrium Eq. (19) in domains υ− and υ+ , which are separated by the reaction

front. 

In the case of elastic constituents, stresses and strains are uniquely determined by the front position. If the front has a

simple geometry (e.g. flat or spherical front) and can be described by a number of geometrical parameters, the equations

can be solved independently, thus, the problem can be solved step by step. First, stresses and strains are to be found from

the equilibrium Eq. (19) as the functions of the geometrical parameters, which characterise the front position. Then, stresses

and strains are to be substituted into the expression for A NN . Afterwards, Eq. (23) is to be solved for c eq , and the dependence

of c eq on the geometrical parameters of the front position is to be found. Then, the current concentration at the reaction

front is to be found from the diffusion problem with boundary condition (26) or (28) as the function of the geometrical

parameters of the reaction front. When both concentrations are found, the kinetic equation takes a form of a differential

equation that relates the time derivatives of the front geometrical parameters and the parameters themselves. Integration of

the equation gives the time evolution of the front. Such step-by-step solution was realised analytically for simple problems

in Freidin, Morozov et al. (2016) ; Freidin et al. (2014) . 

In the case of a viscoelastic constituents, stresses and strains depend not only on the position of the front but also

on time through the history of the front propagation. The problem of finding the stress-strain state and the front velocity

cannot be split even in simple cases, as it can be done in the case of elasticity. The reason for this is that in the case of

viscoelasticity, the constitutive equations contain internal variables, such as the viscous deformation, which are determined

by a time-dependent differential equation. Since the current concentration, c , is found from the diffusion equation with the

boundary condition on the moving reaction front, the spatial distribution of the concentration also depends on the history

of the process. Thus, to describe the front propagation, the coupled stress-diffusion-reaction problem has to be solved. 

3. Problem formulation 

In this section, the general problem is reformulated for the two-phase lithiation of spherical particles upon the first lithia-

tion cycle. Specific 3D constitutive equations for solid constituents are presented first. Afterwards, the problem is formulated

in spherical coordinates. Finally, some aspects of the finite element solution procedure of the problem are highlighted. 

3.1. Geometrical model of a spherical Si particle undergoing two-phase lithiation 

An idealised spherical Si particle is used to represent a typical Si particle utilised in Li-ion battery anodes. Since, in

many cases, amorphous Si (a-Si) is used as the active material in battery electrodes ( McDowell, Lee, Harris et al., 2013 ), the

present paper is focused on the case of a-Si, 2 which transforms into a-Li 3.75 Si. The particle has an initial external radius of

R 0 . Insertion of Li ions into a-Si upon the very first lithiation cycle is assumed to follow the chemical formula: 

n −Si + n ∗Li → Li n ∗ Si n − (29)

where n ∗/n − ranges from 2.5 to 3.75 ( Wang et al., 2013 ). In the calculations of this paper, the normalised stoichiometric

coefficients are used: n − = 4 / 15 , n ∗ = 1 , n + = 1 / 15 . 

The lithiation process is localised at the reaction front and leads to the formation of a circular layer that underwent a

chemical transformation ( Fig. 1 ). The outer layer, which is referred to as the shell, is the lithiated Si, while the inner part,
2 There is a difference between the lithiation of the crystalline and the amorphous Si — in the case of crystalline Si (c-Si), the lithiation rate depends 

on the orientation of the crystallographic plane on which the reaction takes place ( Jung, Lee, Yeo, Lee, & Han, 2015 ). When c-Si reacts with Li, at first 

amorphous Li 3.75 Si (a-Li 3.75 Si) is formed, which at room temperature crystallises into Li 15 Si 4 ( McDowell, Lee, Nix et al., 2013 ) that is the highest achievable 

capacity at ambient temperature ( Obrovac & Krause, 2007 ). Also, the spherical symmetry assumption cannot be used when the c-Si particle is modelled, 

since the material is anisotropic. 
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Fig. 1. The geometry of a spherical Si particle undergoing a lithiation process, in which the reaction front is present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which is referred to as the core, is a-Si. The two phases are separated by spherical chemical reaction front Γ of radius R Γ .

The reaction front moves towards the centre of the particle during lithiation, i.e. R Γ decreases. The external surface of the

particle is considered to be traction-free. 

3.2. Constitutive behaviour of the material 

Two constitutive models have to be specified — the models for the behaviour of the transformed and the untransformed

materials. 

The spherical core of the particle consists of the untransformed material, B −, and is subjected to a volumetric deforma-

tion. It is modelled as a non-linear elastic material under the deformation gradient F −, which is isotropic, i.e. F − = ( J −) 1 / 3 I ,

where J − = det F −. The following form of the strain energy density for this material is assumed: 

W − = K −( J − − 1 − ln J −) , (30) 

where K − is the bulk modulus. 

The Kirchhoff stress tensor is obtained from the expression: 

τ− = 

∂W −
∂ F −

· F −T . (31) 

Then the Cauchy stress tensor: 

σ− = 

1 

J −
τ− = K −

(
1 − 1 

J −

)
I . (32) 

The transformed material, B + , is modelled as the finite-strain non-linear viscoelastic solid. Within the adopted frame-

work, a solid skeleton assumption is made for the diffusion — the diffusion of B ∗ through B + does not lead to any additional

deformations of B + . This allows focusing on stresses produced by the chemical reaction only, since the chemical reaction be-

comes the only source of the deformation. It should be noted that since the derivation of the chemical affinity tensor does

not rely on the form of the constitutive laws, it is possible to introduce additional concentration-dependent deformation

gradient (similar to temperature-dependent thermal expansion deformation gradient) into the multiplicative decomposition 

of the total deformation gradient. This will allow to take into account the volume change associated with the diffusing Li

atoms. 

For the formulation of the constitutive equations of the transformed material B + , it is natural to start with the stress-free

configuration. Thus, deformation gradient F + , which characterises the deformation with respect to the reference (stress-free)

configuration of B + , is introduced. In addition to this, deformation gradient F 0 + is defined with respect to the stress-free con-

figuration of B −, as was introduced in Eq. (16) . The constitutive model is similar to the standard linear solid model. However,

the compressible neo-Hookean springs are used instead of the linear springs and the non-linear stress-dependent viscosity

is used instead of the linear viscosity ( Fig. 2 a). The spring with the deformation gradient F e is connected sequentially with

the dashpot, which represents the deformation gradient F p . 

The dependence of the viscosity on the stress is chosen such that the material demonstrates the behaviour that is very

similar to the elasto-plastic behaviour (as illustrated in stress-strain diagrams in Fig. 2 b). This motivates notation F p with

subscript “p”, which is usually used for plastic deformations, and F p is further referred to as the plastic deformation gradient.

The reason for adopting such model is twofold. First of all, such viscoelastic framework with highly non-linear viscosity

(according to the power law or the Eyring-like relation) is one of the standard ways of modelling many materials, from

metals (e.g. Maresca, Kouznetsova, & Geers, 2016 ) to polymers (e.g. Klompen, Engels, Govaert, & Meijer, 2005 ), and allows

describing both short-term and long-term (i.e. creep or relaxation) behaviour. Secondly, when such a model is used for

lithiated Si, the available experimental data for this material allows estimating the viscosity parameter directly (see the end

of the subsection and Section 3.5 ). 

A parallel spring represents the deformation gradient F + such that 

F + = F e · F p . (33) 

Isochoric Finger tensors B̄ e and B̄ + are then given by 

B̄ e = ( J e ) 
− 2 

3 F e · F e 
T , J e = det F e . (34) 
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Fig. 2. The schematic representation of the constitutive material model (a), and the stress-strain behaviour of the model that is used for the transformed 

material (lithiated Si) under uniaxial tension at various true strain rates, under uniaxial repeated loading, and under uniaxial cyclic deformation (b). The 

parameters of the model are given in Table 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B̄ + = ( J e ) 
− 2 

3 F + · F + T , (35)

where the bar denotes that a tensor is isochoric. The strain energy density of the material B + is defined as 3 : 

W + = W s + W h , W s = K + ( J e − 1 − ln J e ) + 

G s 

2 

(
tr 

(
B̄ e 

)
− 3 

)
, W h = 

G h 

2 

(
tr 

(
B̄ + 

)
− 3 

)
, (36)

where K + is the bulk modulus, G h is the hardening modulus, and the total shear modulus of material B + is G + = G s + G h . In

Eq. (36) , the strain energy density W + is divided into two parts, W s and W h , which correspond to strain energy densities of

two different springs in the rheological model. 

The Kirchhoff stress tensor is derived from the expression for the strain energy density ( Geers, 2004 ): 

τ+ = 

∂W + 
∂ F e 

· F e 
T . (37)

where W + depends on F e through both B̄ e and B̄ + , while the dependence of B̄ + on F e at given F p follows from (35) and

(33) . It can be shown that representation (37) is mathematically equivalent to 

τ+ = 

∂W s 

∂ F e 
· F e 

T + 

∂W h 

∂ F + 
· F + T , (38)

which means that the Kirchhoff stress tensor can also be calculated as the sum of the stresses acting in the springs, which,

in turn, are calculated through the derivatives of the strain energy densities of the springs with respect to the corresponding

deformation gradients F e and F + . 
Eqs. (36) and (37) lead to the expression for the Cauchy stress tensor, which is split into the hydrostatic stress, σv , the

deviatoric stress that is driving the plastic deformation, σd 
s , and the deviatoric stress that governs the hardening behaviour,

σd 
h 

: 

σ+ = 

1 

J e 
τ+ = σv + σd 

s + σd 
h , (39)

σv = K + 
(

1 − 1 

J e 

)
I , (40)

σd 
s = G s 

1 

J e 
B̄ 

d 

e , B̄ 

d 

e = B̄ e − 1 

3 

tr 
(
B̄ e 

)
I , (41)

σd 
h = G h 

1 

J e 
B̄ 

d 

+ , B̄ 

d 

+ = B̄ + − 1 

3 

tr 
(
B̄ + 

)
I . (42)
3 Various strain energy densities for the compressible neo-Hookean material exist ( Horgan & Saccomandi, 2004 ). Here the following form of the neo- 

Hookean strain energy density is used ( Horgan & Saccomandi, 2004; Ogden, 1972 ): 

W = K ( J − 1 − ln J ) + 

G 

2 

(
tr 

(
J −

2 
3 F · F T 

)
− 3 

)
, J = det F , 

which consists of the volumetric and deviatoric parts. Since rheological model, which is considered in this paper, contains two springs, additional deviatoric 

contribution appears in W + . 
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The constitutive model is completed by specifying the evolution law for the plastic strains (the flow relationship): 

D p = 

σd 
s 

2 η
, (43) 

where η is the viscosity. The rate of deformation tensor D p is defined as 

D p = 

1 

2 

(
L p + L p 

T 
)
, L p = F e · d F p 

d t 
· F −1 

p · F −1 
e . (44) 

Moreover, the plastic deformation is assumed to be isochoric ( det F p = 1 ) and spin-free ( L p − L p 
T = 0 ). 

It can be shown that constitutive Eqs. (39) –(42) with the flow law (43) satisfy the Clausius–Duhem inequality. It should

be noted that this may be not true for such a model in the case of a different flow relationship ( Palmov, 1997; 20 0 0 ). It can

also be shown that objectivity is satisfied for the total Cauchy stress, the deviatoric driving stress and the plastic strain rate.

The power law is adopted for the viscosity: 

η = τ0 σ0 

(
σ0 

σ̄s 

)q 

, σ̄s = 

√ 

3 

2 

σd 
s : σd 

s , (45) 

where σ̄s is the equivalent deviatoric driving stress, τ 0 , σ 0 , and q are material constants. Parameter σ 0 is introduced just to

avoid using dimensional units in power q , and σ0 = 1 GPa is taken in the numerical simulations. 

As mentioned above, the highly non-linear stress-dependent viscosity leads to the material behaviour that is naturally to

call a rate-dependent elasto-plastic behaviour, as illustrated in Fig. 2 b. According to Eq. (45) , the plastic part of the consti-

tutive model is controlled by two parameters: q and τ 0 , both of which influence the value of the yield stress. Parameter q

controls the dependence of the yield stress on the strain rate (for power law (45) , the dependence of the yield stress on the

strain rate is linear in the log-log scale) and can be measured ( Section 3.5 ). Thus, if q is measured and the yield stress at a

specific strain rate is measured, τ 0 can be fitted. 

3.3. Equations for stresses and strains 

In this section, general 3D equilibrium and constitutive equations from Section 2.3 are simplified and rewritten in the

spherical coordinates, taking the advantage of the spherical symmetry of the problem. The coordinates of a material point

in the reference and the current configurations are denoted as ( R, Θ, Φ) and ( r , θ , φ), respectively. 

In the case of a spherical symmetry, the base vectors of the spherical coordinate system in the reference and the current

configurations coincide: 

e R = e r , e Θ = e θ , e Φ = e φ. (46) 

Variable r is a function of R and is split into two parts: 

r = 

{
r −( R ) , R < R Γ , 

r + ( R ) , R > R Γ , 
(47) 

Thus, the total deformation gradients of the transformed and the untransformed materials and the plastic deformation are

given by 

F − = 

d r −
d R 

e R e R + 

r −
R 

( I − e R e R ) , F 0 + = 

d r + 
d R 

e R e R + 

r + 
R 

( I − e R e R ) , (48) 

F p = λp e R e R + 

1 √ 

λp 

( I − e R e R ) , (49) 

where λp is the plastic stretch ratio. 

The equilibrium Eq. (19) , becomes 

d σR 

d R 

+ 

2 

R 

( σR − σΘ ) = 0 , (50) 

where σΘ = σΦ is used and ∇ is rewritten with respect to the reference configuration ( ∇ = F −T · ∇ 0 ). Here the Cauchy

stress components σ R and σΘ are treated as functions of R , as this is convenient for the numerical scheme. Moreover,

subscripts R and Θ are used because of (46) . 

The computational domain of the particle is divided into the core and the shell by the chemical reaction front, the

position of which is denoted as R Γ . The boundary and the interface conditions take the following form: 

r | R =0 = 0 , (51) 

� r� | R = R = 0 (the displacement continuity condition), (52) 

Γ
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� σR � | R = R Γ = 0 (the traction continuity condition), (53)

σR | R = R 0 = 0 (the stress-free boundary condition). (54)

The constitutive equations of the untransformed material under the hydrostatic stress state, (30) and (32) , become 

W − = K −

(
r 3 

R 

3 
− 1 − ln 

r 3 

R 

3 

)
, σR − = σΘ− = K −

(
1 − R 

3 

r 3 

)
. (55)

Substitution of (48) and (49) into the constitutive equations of the transformed material, (36), (39) –(43), (45) results in:

W + = K + 
(
χ

ζ
− 1 − ln 

χ

ζ

)
+ 

G s 

2 

(
1 

λ2 
p 

χ4 / 3 + 2 λp χ
−2 / 3 − 3 

)
+ 

G h 

2 

(
χ4 / 3 + 2 χ−2 / 3 − 3 

)
, (56)

ζ = 

g 3 R 

3 

r 3 
, χ = 

d r 

d R 

R 

r 
, (57)

σR + = σv R + σ d 
s R + σ d 

h R , σΘ+ = σv Θ + σ d 
s Θ + σ d 

h Θ, (58)

where 

σv R = σv Θ = K + 

(
1 − ζ

χ

)
, σ d 

s R = 

2 

3 

G s 
ζ

χ

(
1 

λ2 
p 

χ4 / 3 − λp χ
−2 / 3 

)
, σ d 

s Θ = −1 

3 

G s 
ζ

χ

(
1 

λ2 
p 

χ4 / 3 − λp χ
−2 / 3 

)
, (59)

σ d 
h R = 

2 

3 

G h 

ζ

χ

(
χ4 / 3 − χ−2 / 3 

)
, σ d 

h Θ = −1 

3 

G h 

ζ

χ

(
χ4 / 3 − χ−2 / 3 

)
, (60)

and 

1 

λp 

d λp 

d t 
= 

1 

3 η
σ ∗

s = 

1 

3 τ0 

σ ∗
s 

σ0 

( | σ ∗
s | 

σ0 

)q 

, σ ∗
s = σ d 

s R − σ d 
s Θ. (61)

Due to the spherical symmetry, the equivalent deviatoric driving stress defined in (45) becomes σ̄s = 

∣∣σ d 
s R 

− σ d 
s Θ

∣∣, while

Eq. (43) transforms into (61) . Thus, σ ∗
s is introduced that satisfies σ̄s = | σ ∗

s | . It should be noted that σ ∗
s can be positive and

negative and can be referred to as the signed equivalent deviatoric driving stress. This stress is used further, instead of σ̄s ,

as it contains the information on the sign of the time derivative of λp , such that λp increases for positive σ ∗
s and decreases

for negative σ ∗
s . 

3.4. Kinetic equation for the spherical reaction front 

The position of the reaction front in the spherical coordinates is determined by integrating the stress-dependent velocity,

which is defined as 

V = −d R Γ

d t 
. (62)

Since only the forward reaction is considered in the present paper, the reaction front velocity is always non-negative. For

the spherical symmetry, Eq. (20) with boundary conditions (28) and (22) can be easily solved, and the concentration at the

reaction front can be obtained. Afterwards, this concentration can be substituted into Eq. (25) , which results in Freidin, Mo-

rozov et al. (2016) 

V = ( c ∗ − c eq ) 
n −M −
ρ−

1 

1 

k ∗
+ 

( 1 − ξ ) 
2 

α
+ 

ξ ( 1 − ξ ) 

D 0 

, ξ = 

R 0 − R Γ

R 0 

, D 0 = 

D 

R 0 

, (63)

where ξ ∈ [0; 1] and the equilibrium concentration is obtained by equating the normal component of the chemical affinity

tensor to zero (i.e. by solving (13) and (24) with respect to c eq and using n ∗ = 1 ): 

c eq = c ∗ exp 

(
− 1 

R g T 

n −M −
ρ−

(
γ + W − − g 3 W + + P − : � F � )

)
. (64)

It should be noted that in the case of a spherical symmetry, 

P − : � F � = 

r 2 

R 

2 
σR 

� 

d r 

d R 

� 

, (65)

where all quantities are taken at the reaction front, R = R Γ . It should be noted that, due to the hydrostatic state of the core,

at the reaction front, σ = −p, where p is pressure acting in the core. 
R 
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Table 1 

The material parameters that were used in the simulations. 

parameter E − [GPa] ν−[ −] K + [GPa] E + [GPa] G h [GPa] q [ −] τ 0 [ns] 

value 80 0.22 28.5 41 0.5 24 2 

parameter σ 0 [GPa] g [ −] M −[ g/mol ] ρ−[g/cm 

3 ] n −[ −] n ∗[ −] n + [ −] 

value 1 
3 
√ 

4 28.0855 2.285 4/15 1 1/15 

parameter D [m 

2 /s] R 0 [nm] α [nm/s] c ∗[mol/cm 

3 ] k ∗ [nm/s] γ [J/mm 

3 ] T [K] 

value 10 −12 500 20 0 0 0.053 86 5 293 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Model parameters 

In this section, the model parameters that were used to simulate the lithiation of the spherical Si particle are sum-

marised. Two different materials are involved in modelling: the untransformed material, i.e. the pure amorphous Si, and the

transformed material, which is assumed to be Li 3.75 Si, and which is formed at room temperature ( McDowell, Lee, Nix et al.,

2013; Obrovac & Krause, 2007 ). The full list of parameters is provided in Table 1 . 

The untransformed material deforms only volumetrically, therefore, according to the accepted constitutive model, it can-

not deform plastically. Thus, it is characterised only by the bulk modulus, which was calculated from the Young’s modulus

E − and the Poisson’s ratio ν−, which are taken from ( Freund & Suresh, 2009 ), using the relation, K − = E −/ ( 3 − 6 ν−) . 

The Yong’s modulus E + and the power law parameter q are taken from Berla, Lee, Cui, and Nix (2015) where the me-

chanical behaviour of the amorphous lithiated silicon was studied experimentally by nanoindentation, the Young’s modulus

was measured, and the viscoplastic behaviour was described by the power law relation 

4 Also, in Berla et al. (2015) , the

yield stress of a-Li 3.75 Si was measured to be σy = 0 . 43 GPa at the true strain rate of ˙ ε = 0 . 05 s −1 . Similar values of the yield

stress were reported in Chon, Sethuraman, McCormick, Srinivasan, and Guduru (2011) (thin film curvature measurement)

and ( Fan et al., 2013 ) (molecular dynamics). Based on this, the reference relaxation time for the transformed material, τ 0 ,

was fitted under the uniaxial compression. Parameter σ 0 is introduced only to preserve the correct units for τ 0 , which is

evident from Eq. (61) . 

The bulk modulus K + was taken from Zeng et al. (2013) , where it was obtained by in-situ X-ray diffraction on the

crystalline Li 15 Si 4 that was subjected to a hydrostatic pressure. The hardening modulus, G h , was fitted based on the MD

results of Fan et al. (2013) , such that σ ≈ 0.9 GPa is achieved at ε = 0 . 35 (same loading conditions as for fitting of τ 0 

were used). It should be noted that the total shear modulus, G + = G h + G s , is calculated from E + and K + using the relation,

G + = 3 K + E + / ( 9 K + − E + ) . In Fig. 2 b, the simulation of the stress-strain behaviour of the transformed material is shown, using

parameters from Table 1 and the constitutive model presented above. It should be noted that the authors did not find

any experimental or MD simulation data on unloading and cyclic loading of lithiated Si. The unloading and cyclic curves

in Fig. 2 b are shown to demonstrate the behaviour of the constitutive model, parameters of which were estimated using

multiple sources. The Bauschinger effect in the current constitutive model results from the connection of elastic and viscous

elements, as shown in Fig. 2 a. 

The chemical expansion factor g was calculated in Cubuk and Kaxiras (2014) using Density Functional Theory (DFT).

The diffusion coefficient of Li in lithiated Si was taken from Johari, Qi, and Shenoy (2011) , where it was extrapolated from

high-temperature ab initio molecular dynamics simulations. The density of Si was taken from Custer et al. (1994) . 

The solubility of the reactant in the transformed material is defined as the maximum achievable concentration of the re-

actant (Li) in the transformed material (Li 3.75 Si). As mentioned above, Li atoms that belong to the transformed material are

not taken into account for the diffusion process. Maximum saturation of Li in Si is achieved for Li 4.4 Si ( McDowell, Lee, Har-

ris et al., 2013 ), hence, with the approach taken in this paper, there are x � = 4 . 4 − 3 . 75 = 0 . 65 free Li atoms (which are

taken into account for the diffusion process) per each Si atom within the transformed material. Although the existence of

bonded/unbonded atoms is not confirmed by experiments, such assumption is used in other papers on Si lithiation, e.g.

Drozdov (2014) . Hence the solubility in the chemically transformed configuration is given by 

c g ∗ = 

N ∗
N A υ

= x �
N + 

N A υ
= x �

ρ+ 
M + 

= x �
ρ−
M −

n + 
n −

1 

g 3 
, (66) 

where N ∗ is the number of free Li atoms, N + is the number of Si atoms in the transformed material, N A is the Avogadro

constant and υ is the volume of the transformed material in the chemically transformed configuration. The solubility with

respect to the reference configuration of B − is calculated in the following way: 

c ∗ = g 3 c g ∗ = x �
ρ−
M −

n + 
n −

. (67) 

In Liu et al. (2011) , the propagation of the reaction front along the length of thin Si nanowires was investigated. The

average approximate propagation speed of 15 nm/s was selected from the results presented in Liu et al. (2011) . In the 1D
4 Due to different definitions, the value of the power law parameter q , which is used in the present paper, is smaller by one than the value reported in 

Berla et al. (2015) . 
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case, the stationary diffusion problem (with c = c ∗ boundary condition at the edge of the nanowire, which is in contact with

the Li plate) can be solved analytically, and the following concentration at the reaction front x Γ can be found: 

c | x = x Γ = 

D 

D + n ∗k ∗( L − x Γ ) 
c ∗, (68)

where D � n ∗k ∗( L − x Γ ) can be used. This leads to the following reaction front velocity for the 1D case: 

V ≈ n −M −
ρ−

k ∗c ∗, (69)

from which k ∗ was estimated. 

From Table 1 it can be seen that the characteristic speed of the diffusion of Li ions through the lithiated shell, which

is proportional to D/R 0 = 2 · 10 3 nm/s, is much larger than the reaction rate, which is determined by the reaction rate

parameter k ∗. In this case, the diffusion process reaches the stationary regime much faster than the time scale of the reaction

rate. This motivates the consideration of the stationary diffusion (see also Yang et al., 2012 ). 

3.6. Numerical aspects 

Stress equilibrium Eq. (50) , with the boundary conditions (51) and (54) is solved numerically with respect to the un-

known variable r , which is a function of known variable R . 

Variable R is meshed with the fixed spatial step �R = R 0 /N, resulting in N + 1 nodes. The finite element method is used,

hence the following system of non-linear equations (with respect to the unknown nodal values of r , which are denoted here

as r i ) is constructed: 

−
∫ R 0 

0 

σR 
d φi 

d R 

d R + 

∫ R 0 

0 

2 

R 

( σR − σΘ ) φi d R = 0 , i = 1 , . . . , N, (70)

˜ r = 

N ∑ 

i =1 

r i φi , φi 

(
R j 

)
= 

{
1 , j = i, 
0 , j 	 = i, 

R j = j�R, (71)

where φi are continuous and φi ( R ), R ∈ 

[
R j−1 ; R j 

]
are linear ∀ i , j . Function ˜ r ( R ) is the finite element approximation of the

exact solution of the differential Eq. (50) . Stresses σ R and σΘ are functions of ˜ r , d ̃ r / d R and λp . The integrals in the system

of Eq. (70) are approximated by the midpoint rule within each element, which means that stresses as well as λp are defined

at the integration point in the middle of the element. 

The plastic flow Eq. (61) , is discretised using the following implicit scheme: 

λp , j = λp , j−1 exp 

(
1 

3 η j 

σ ∗
s , j �t 

)
, (72)

where j and j − 1 indicate that a quantity belongs to the current and the previous time step, respectively. To solve

Eq. (72) with respect to λp, j at each integration point, Matlab’s fzero function is used. However, since Eq. (72) is highly

non-linear, the convergence with respect to the initial guess is improved by replacing the original equation with a linear

equation in a region far from the root of the original equation, while keeping the function continuously differentiable ev-

erywhere. 

Within the numerical scheme, which is used in this paper, the position of the reaction front can only take the nodal

values of R . The movement of the reaction front is modelled as the change of the position of the front by �R each time step

�t . Since the spatial step is fixed, the time step becomes an additional unknown. Therefore, additional equation �R = V �t

is required, the implicit form of which is used in the framework, i.e. V is calculated for the current position of the reaction

front R i , while �t is the time required for the reaction front to move from the previous position R i −1 to the current position

R i . Since the reaction front can only be located at the node, each element can either belong to the core or to the shell.

The material parameters of the transformed and the untransformed materials are used to calculate the element stresses

corresponding to the shell and the core, respectively. The strain energies and the stretch ratios to the left and to the right

of the reaction front are required to calculate V and are taken at the integration points of the elements, which share the

reaction front node. The radial stress at the reaction front is calculated as an average of the radial stresses at the integration

points of these elements. 

Within this approach, the interface conditions (52) and (53) are fulfilled automatically. Resulting system of N + 1 non-

linear equations is solved using the standard Newton–Raphson method with respect to unknowns r i ( i = 1 , . . . , N) and �t

each time step. 

The convergence of the scheme was tested using the parameters given in Table 1 . The movement of the reaction front

from the edge of the particle up to R Γ = 0 . 5 R 0 was modelled and the nodal solution at R Γ = 0 . 5 R 0 was considered for the

error analysis. The convergence rate, which is calculated as 

log 2 

(
ˆ r N − ˆ r 2 N 
ˆ r 2 N − ˆ r 4 N 

)
, 
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Fig. 3. The profiles of the radial stress (a), the hoop stress (b) and the plastic radial strain (c) within the particle at different positions of the reaction front. 

The region where εp at R Γ = 0 . 85 R 0 reaches the maximum value is magnified (d) and the corresponding and the signed equivalent deviatoric driving stress 

is shown (e). The vertical lines indicate different positions of the reaction front. The magnified region is indicated with the grey arrow. Curves εp and σ ∗
s 

do not reach R Γ exactly, as discussed in Section 3.6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ˆ r kN are nodal solutions on different grids that are taken at coinciding grid points, was found to be 1.028 (nodal

average value) for N = 320 . In the presented numerical scheme, the convergence is limited by the first-order method that is

used for the integration of the plastic flow and the velocity equations. The results, which are presented in Section 4 , were

calculated for the case of N = 1280 . 

The results corresponding to a small V were not calculated due to a numerical limitation. In this case, �t becomes large

(since �R is fixed) and the Jacobian matrix in the Newton–Raphson procedure becomes ill-conditioned which affects the

convergence of the Newton–Raphson procedure. Hence, the calculated dependence V = V ( R Γ ) does not reach zero exactly. 

Also, in Fig. 3 , it is noticeable that εp and σ ∗
s do not reach R Γ exactly. As was mentioned above, stresses and λp (and

hence εp ) are defined at the integration points and, since there should be a discontinuity at R Γ , which is located at the

node, the curves that correspond to εp and σ ∗
s end at the integration points of the elements to the left and to the right of

the reaction front node. Obviously, the decrease of the mesh size reduces the horizontal gap between the end of the curve

and the line R = R Γ , i.e. in the limit �R → 0 there is only a discontinuity of the first kind at the point R = R Γ . 

4. Results and discussion 

All presented results and figures correspond to the parameters listed in Table 1 . In the case when specific parameters are

varied ( R 0 , α, or γ ), the values are indicated in figures. 

4.1. Stress and strain analysis 

The distributions of the radial and the hoop Cauchy stresses along the radius of the particle are shown in Fig. 3 a, b at

different positions of the reaction front, i.e. at different stages of lithiation. The stresses in the core are homogeneous and

hydrostatic. The dependence of the pressure in the core of the particle on the position of the reaction front is shown in

Fig. 4 a (positive pressure, p , means that the stress is compressive). The highest magnitude of the hoop stress is achieved at

the reaction front for all positions of the front, while the highest magnitude of the radial stress, is initially at the reaction

front and shifts away from the front as the front moves towards the centre of the particle. 

It can be seen that the stress in the core (as well as the radial stress at the reaction front) changes from tension to

compression during the reaction front propagation. Moreover, the hoop stress in a layer adjacent to the edge of the particle

changes from compression to tension. This can be explained as follows. When the chemical reaction starts, the reaction

front is close to the outer edge of the particle, R Γ ≈ R 0 , and the shell produces the tensile stress in the core. Indeed, if

an expanded shell and an unexpanded core are considered separately, then, in order to satisfy the compatibility condition
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Fig. 4. The dependence of the equivalent stress σ VM at the edge of the particle ( R = R 0 ) and dependence of pressure p in the core, which is also equal to 

the radial stress at the reaction front with the minus sign, on the position of the reaction front (a). The region where σ VM reaches the maximum value is 

magnified (b). The dependence of the jump of the radial stretch ratio at the reaction front ( R = R Γ ), which is reduced by the volumetric expansion factor 

of the transformed material, and the dependence of the current particle radius r ( R 0 ), which is normalised by R 0 , on the position of the reaction front (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

at the reaction front, the inner surface of the shell has to be moved towards the centre of the particle, while the outer

surface of the core has to be moved away from the centre. These deformations produce the tensile radial stress. However,

due to the large magnitude of the stresses, the shell undergoes plastic deformation, which results in a stress relaxation

in the shell behind the reaction front and decreases the tensile stress in the core. As the reaction front moves, another

portion of the material undergoes the chemical transformation and, thus, the volumetric expansion. This may be viewed as

a volumetric expansion of a thin layer near the reaction front. This expansion produces the radial compressive stress, which

is superposed with the “previous” radial stress. As a result, starting from some position of the reaction front, the radial

stress at the reaction front (as well as in the core) becomes compressive ( Fig. 3 a), while hoop stress in a layer adjacent to

the edge of the particle becomes tensile ( Fig. 3 b). 

The above reasoning is also confirmed by the distributions of the radial plastic strain, ε p = ln λp , along the radius of

the particle at various positions of the reaction front ( Fig. 3 c). The radial plastic strain rapidly decreases along the radial

coordinate. The radial plastic strain at the edge of the particle ( R = R 0 ) decreases as the reaction front moves towards the

centre of the particle. This happens due to the build up of the tensile hoop stress that drives the increase of the hoop plastic

strain, which is −0 . 5 ln λp , and, thus, the decrease of the radial plastic strain. 

The radial plastic strain, εp , reaches the maximum value in the region close the reaction front, as seen in Fig. 3 c; however,

the magnification shows that there is a small plateau next to the reaction front ( Fig. 3 d). This plateau is the result of the

change of σ ∗
s , which is governing the plastic flow according to Eq. (61) , from a positive value of 0.54 GPa at the reaction

front to a negative value of −0 . 43 GPa at the distance of 0.007 R 0 from the reaction front ( Fig. 3 e). 

Stress σ ∗
s reaches the maximum positive value at the reaction front and produces large plastic deformation, while the

maximum negative σ ∗
s (compressive stress) in the rest of the shell leads to the decreasing εp in time, which is seen in

Fig. 3 c. It should be noted that, as discussed above, εp always decreases for a fixed radial coordinate due to the compressive

stress σ ∗
s . The analysis of stress σ ∗

s shows that the behaviour of the model is indeed very similar to an elasto-plastic model

with hardening, i.e. where the plasticity is modelled by the “slider” element. As seen in Fig. 3 e, stress σ ∗
s has almost constant

value of −0 . 43 GPa within nearly entire shell, which results in the unlocking of the viscous element, i.e. only hardening

spring is active, while the other spring is locked. In the region close to the reaction front, the absolute value of stress σ ∗
s 

is not large enough and the viscous element is locked, i.e. both springs are unlocked and work in parallel. According to

the selected power law, which is given by Eq. (61) , intermediate values of σ ∗
s are not large enough to generate a plastic

flow within the modelling time scale (since the exponent in the power law, q + , is relatively large); therefore, the plastic

deformation within the small region behind the reaction front (region of the intermediate values of σ ∗
s ) is frozen. Obviously,

very similar behaviour will also be observed, if the ideal plastic element (with rate-dependent yield stress) is used instead

of the non-linear viscous element. 

The equivalent stress σVM 

= (1 . 5 σd : σd ) 1 / 2 at the edge of the particle is plotted in Fig. 4 a as a function of the position

of the reaction front. It can be seen that when the position of the reaction front is close to 0.73 R 0 , the equivalent stress is

close to zero. The profile of the equivalent stress is non-monotonic due to the change of the sign of the hoop stress, while

the equivalent stress is always non-negative. As discussed above, there is a small region behind the reaction front with the

frozen plastic deformation. This creates the change in the slope of σ VM 

at the edge of the particle, as illustrated in Fig. 4 b,

as the end of the frozen plastic deformation zone crosses the boundary of the domain. 

The results regarding the total radial strain are not shown in figures; however it is useful to note that the maximum

value of the total radial strain in the shell is achieved at the reaction front. This value is always positive since it includes the

transformation-induced volumetric expansion. When the position of the reaction front approaches the centre of the particle,

the total radial strain is almost constant along the radius, apart from the region neighbouring the reaction front where it

peaks. 

Another quantity that defines the behaviour of the system is the jump of the radial stretch ratio at the reaction front,� λr � = � d r/ d R � . It corresponds to the radial component of the deformation gradient jump, � F � , which is the only non-
R 
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Fig. 5. The dependence of the reaction front velocity, V , on the relative position of the reaction front at various values of the chemical energy parameter, 

γ , at different scales (a), (b), at various values of the surface mass transfer coefficient, α, (c), and at various values of the initial radius of the particle, R 0 , 

(d). The magnified region is highlighted with the grey arrows. 

Fig. 6. The dependence of the actual thickness of the transformed material (thickness in the current configuration), r 0 − r Γ , on time at different values of 

the chemical energy parameter, γ . The thickness is normalised by R 0 . 

 

 

 

 

 

 

 

 

 

 

 

zero component of � F � . The evolution of this quantity is shown in Fig. 4 c. The jump of the stretch ratio changes non-

monotonically with R Γ , with the initial increase and the subsequent decrease. This quantity highly influences the velocity

of the reaction front, as discussed below. The relative size of the particle, r / R 0 at R = R 0 , monotonically increases up to a

value that is close to the expansion ratio g . 

4.2. Reaction front kinetics 

The velocity of the reaction front as a function of the position of the front is plotted in Fig. 5 a for various values of

the chemical energy parameter, γ . The velocity profile is non-monotonic, which results from the interplay between various

terms of the chemical affinity (the details are provided in Section 4.3 ). 

The initial velocity of the reaction front (at R Γ = R 0 ) decreases with the decrease of γ , and the velocity is close to zero

for γ = 4 J/mm 

3 . Therefore, when γ is below a certain threshold value, which can be referred to as a critical value, γ ∗, the

chemical reaction cannot start at the surface of the particle. This is a result of internal stresses that would be produced by

the transformation strain if the reaction started, and this was also shown analytically for the case of elastic small strains

( Freidin, Morozov et al., 2016 ). It should be emphasised that the threshold effect is absent if the contribution of stresses

to the chemical affinity is neglected, i.e. in this case, the reaction proceeds at any γ > 0. The thickness of the shell (the

transformed material) depending on time is plotted in Fig. 6 for various γ . 
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Initially, the velocity increases as the reaction front propagates, then varies slowly, and afterwards the velocity starts

to decrease and practically drops to zero, which means the blocking of the reaction. This velocity drop does not happen

if stresses are neglected in the expression for the chemical affinity (curves marked with “no stresses in A NN ”). Thus, the

blocking effect originates from the competition between the mechanical and the chemical parts of the affinity tensor, and it

can be seen that the reaction retardation starts earlier if the input of the chemical energy, γ , decreases. 

The blocking effect can be also explained in terms of the equilibrium concentration of the diffusive constituent. The

front can propagate only if c eq < c ∗, according to Eq. (63) . The equilibrium concentration, in turn, depends on stresses and

strains according to Eq. (64) , while stresses and strains depend on the front position. The direct reaction cannot proceed

if c eq approaches c ∗ as the reaction front approaches a certain position. As this happens, the concentration of the diffusive

component in the shell also approaches c ∗. 

These results qualitatively correspond to the experimental evidence of the influence of stresses on the kinetics of the

reaction between Li and Si. In van Havenbergh et al. (2016) , various coatings were applied to Si particles. Different coatings

provided different mechanical constrains for the Si particle and thereby led to different internal stresses. The final size

of the remaining untransformed Si core varied depending on the coating. Thus, the connection between stresses and the

reaction arrest was experimentally observed. Moreover, in Obrovac and Krause (2007) , it was also observed that the Si

core is maintained during charge/discharge cycling. According to the model proposed in this paper, at γ = 5 J/mm 

3 , the

lithiation time from R Γ = R 0 to R Γ = 0 . 125 R 0 is t = 95 . 51 s. This is quantitatively comparable to the results reported in

McDowell, Lee, Harris et al. (2013) , where particles of radius 285 nm underwent full lithiation in 129 s. 

As seen in Fig. 5 , the dependence of V changes from concave to convex when the reaction is close to being blocked. This is

an indication that the reaction locking is approached asymptotically. It should be noted that, since the transformed material

is viscoelastic, the stresses undergo the relaxation process, which can lead to unblocking of the reaction. However, since

the material has a highly non-linear viscosity resulting in the elasto-plastic behaviour of the material, the stress relaxation

process may require very large time scales and cannot be observed within the time scales of the simulations performed in

this paper. It should be noted that if the transformed material demonstrates linear viscosity, the relaxation time becomes

comparable to the chemical reaction time scale and the stress relaxation near the reaction front plays a significant role. 

The influence of the internal stresses decreases with the increase of γ , although the reaction blocking effect is still

present at the end of the transformation. For example, for γ = 7 J/mm 

3 , the internal stresses do not affect the reaction

rate in the wide range of the reaction front positions. The curve for the dependence of the reaction front velocity on the

front position practically coincides with the curve plotted without taking the stresses into account until the particle is

almost completely transformed. Term exp 

(
−A NN /R g T 

)
in Eq. (10) becomes small at large γ , and the reaction front velocity

becomes almost proportional to the concentration, V ≈ ( n −M −/ρ−) k ∗c ( Figs. 5 a, b). 

From the numerical point of view, when the reaction front velocity drops, longer time steps �t are required for moving

the reaction front by the constant spatial step �R , as is done in the numerical procedure. In this case, the numerical method,

which is used in this paper, looses accuracy due to a coarse discretisation of the equations in time. The case of small reaction

front velocities should be studied separately using the finite element technique with a non-conforming mesh with respect to

the reaction front. In this paper, the simulations were terminated when V reached small values, as explained in Section 3.6 .

The influence of the surface mass transfer coefficient, α, on the velocity profile is shown in Fig. 5 c. From Eq. (63) , it

can be seen that the decrease of parameter α reduces the reaction front velocity. This is an expected result, since the front

velocity should decrease when the diffusive delivery of the constituent B ∗ is delayed. It can also be seen that α affects the

front velocity stronger when ξ � 1, i.e. at the initial stage of the transformation. When ξ → 1, the distance between the outer

surface and the reaction front increases and, therefore, the relative role of the diffusion coefficient D increases, denominator

in Eq. (63) becomes dominated by ξ / D 0 . These qualitative observations are fully confirmed by the dependencies in Fig. 5 c. 

One of the ways of optimising the capacity of lithium-ion batteries is using small Si particles. The dependence of the

reaction front velocity on the front position, for which the initial particle radius, R 0 , was varied, is presented in Fig. 5 d.

From Eq. (63) , it can be seen that the variation of the particle radius is mathematically equivalent to the variation of the

diffusion coefficient, as they both enter the equation for the velocity only via parameter D 0 . It can be seen that the variation

of R 0 in the range of 50–50 0 0 nm ( Fig. 5 d) practically does not affect the reaction front velocity, V , but, therefore, strongly

affects the relative lithiation rate, V / R 0 , which increases with the decrease of R 0 . Note that in the case of nano-size particles,

the surface tension, which is not considered in the paper, may produce additional input into the stresses. 

4.3. Role of various terms of A NN 

Changes in the velocity profile of the reaction front are governed by the normal component of the chemical affinity

tensor. As seen in Fig. 5 a, for γ = 5 J/mm 

3 , the non-monotonic behaviour of the velocity is observed. It follows the A NN

profile, which is illustrated in Fig. 7 a. According to Eq. (13) , A NN is represented by the sum of a number of terms: the

temperature-dependent chemical energies, the term related to the work done by the stresses on the jump of the deformation

gradient at the reaction front, the strain energy densities of the untransformed and the transformed materials, and the term

related to the concentration of the reactant at the reaction front, 

A NN = 

n −M −
ρ−

γ + 

4 ∑ 

k =1 

A 

k 
NN , (73)
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Fig. 7. The dependence of different com ponents of A NN on the position of the reaction front plotted at different magnitudes, γ = 5 J/mm 

3 . All components 

are normalised by R g T . The magnified regions are highlighted with the grey arrows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

1 
NN = 

n −M −
ρ−

P − : � F � , A 

2 
NN = 

n −M −
ρ−

W −, (74) 

A 

3 
NN = −n −M −

ρ−
g 3 W + , A 

4 
NN = n ∗R g T ln 

c 

c ∗
. (75) 

These terms are plotted in Fig. 7 as the functions of the reaction front position, where it can be seen that the increase of

A NN and its subsequent decrease are the result of the specific changes in P − : � F � , which, in turn, result from the spherical

geometry and the non-linear constitutive behaviour of the transformed and the untransformed materials. In the case of

spherical symmetry, this term is given by Eq. (65) , where r / R is close to 1 at the reaction front due to small volumetric

expansion of the core (which is the result of a relatively large bulk modulus of the untransformed material). Therefore,

P − : � F � is mainly determined by the product of the pressure in the core with the minus sign and the jump in the radial

stretch ratio, � λr � , which are illustrated in Fig. 4 . The strain energy terms, W − and W + , at the reaction front, are varying

only slightly with the position of the front and their contribution to A NN remains approximately constant. The term related

to the concentration of the reactant at the reaction front is relatively small, i.e. in this case, A NN is mainly governed by the

mechanical contribution and chemical energies of the constituents. 

5. Conclusions 

In this paper, the problem of stress-affected two-phase lithiation kinetics in Si particles was considered. A coupled

chemo-mechanical model was proposed by combining for the first time the concept of the chemical affinity tensor with

a finite-strain non-linear viscoelastic model. In the proposed model, the diffusion flux does not depend on the stresses and

the concentration of the diffusive constituent does not enter the mechanical constitutive model. However, from the math-

ematical point of view, viscoelastic strains lead to the total stress-diffusion-reaction coupling even in the case of spherical

symmetry, as opposed to the elastic case. The coupled problem was solved using the finite element approach to predict

propagation of the reaction front and the stress-strain state during a two-phase lithiation of the spherical Si particle. 

The stress distribution within the particle and the evolution of stresses during the reaction front propagation were stud-

ied in detail. Similar to the elastic case, the radial and the hoop stress in the transformed material are tensile and compres-

sive, respectively, at the initial stage of lithiation. However, due to the non-linear viscosity of the lithiated Si, which leads to

the behaviour similar to plasticity, the hoop stress in the outer region of the transformed material becomes tensile at later

stages of lithiation. 

The influence of mechanical stresses on the kinetics of the reaction front was shown. At certain values of the chemical

energy parameter, the model captured the reaction blocking effect, which had been observed experimentally. It was also

shown that the relative lithiation rate increases with the decrease of the particle radius. 

The results of the paper may be helpful to design efficient Si particle-based anodes in future Li-ion batteries. The devel-

oped model can be extended to complex anode microstructures, and the research on that is ongoing. 
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