Original citation:

Auel, Asher, Boehning, Christian and Pirutka, Alena (2018) Stable rationality of quadric and cubic surface bundle fourfolds. European Journal of Mathematics . doi:10.1007/s40879-018-0233-1

Permanent WRAP URL:

http://wrap.warwick.ac.uk/99882

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

"The final publication is available at Springer via:
https://doi.org/10.1007/s40879-018-0233-1

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

STABLE RATIONALITY OF QUADRIC AND CUBIC SURFACE BUNDLE FOURFOLDS

ASHER AUEL, CHRISTIAN BÖHNING, AND ALENA PIRUTKA

Abstract

We study the stable rationality problem for quadric and cubic surface bundles over surfaces from the point of view of the specialization method for the Chow group of 0 -cycles. Our main result is that a very general hypersurface X of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ is not stably rational. Via projections onto the two factors, $X \rightarrow \mathbb{P}^{2}$ is a cubic surface bundle and $X \rightarrow \mathbb{P}^{3}$ is a conic bundle, and we analyze the stable rationality problem from both these points of view. Also, we introduce, for any $n \geq 4$, new quadric surface bundle fourfolds $X_{n} \rightarrow \mathbb{P}^{2}$ with discriminant curve $D_{n} \subset \mathbb{P}^{2}$ of degree $2 n$, such that X_{n} has nontrivial unramified Brauer group and admits a universally CH_{0}-trivial resolution.

1. Introduction

An integral variety X over a field k is stably rational if $X \times \mathbb{P}^{m}$ is rational, for some m. In recent years, failure of stable rationality has been established for many classes of smooth rationally connected projective complex varieties, see, for instance $[1,3,4,7,15,16,23,24,25,26,27,29,31,32,33,37,36,39,40]$. These results were obtained by the specialization method, introduced by Voisin [40] and developed in [16]. In many applications, one uses this method in the following form.
Theorem ([40, Theorem 2.1], [16, Théorème 2.3]). Let k be an algebraically closed field, let B be a quasi-projective integral scheme over k and let $\mathcal{X} \rightarrow B$ be a generically smooth projective morphism with positive dimensional fibers. Assume there is a point $b_{0} \in B(k)$ such that the fiber $Y=\mathcal{X}_{b_{0}}$ is an integral variety satisfying the following properties:
(R) Y admits a universally CH_{0}-trivial resolution $\widetilde{Y} \rightarrow Y$ of singularities,
(O) \widetilde{Y} is not universally CH_{0}-trivial, e.g., the function field $k(Y)$ admits a nontrivial étale unramified invariant such as $H_{\mathrm{nr}}^{2}(k(Y) / k, \mathbb{Q} / \mathbb{Z}(1))$.
Then, for a very general point $b \in B(k)$, the fiber \mathcal{X}_{b} is not stably rational.
Here, Y is a particular instance of a "reference variety," a convenient notion that we adopt in this article, see Definition 1. In our applications, we will also make use of reference varieties that are reducible, see Proposition 2.

Recall, from [2], [16], that a proper variety X over k is universally CH_{0}-trivial if for every field extension k^{\prime} / k, the degree homomorphism on the Chow group of 0 -cycles $\mathrm{CH}_{0}\left(X_{k^{\prime}}\right) \rightarrow \mathbb{Z}$ is an isomorphism. A proper morphism $f: \widetilde{X} \rightarrow X$ of k varieties is universally CH_{0}-trivial if for every field extension k^{\prime} / k, the push-forward
homomorphism $f_{*}: \mathrm{CH}_{0}\left(\widetilde{X}_{k^{\prime}}\right) \rightarrow \mathrm{CH}_{0}\left(X_{k^{\prime}}\right)$ is an isomorphism. Then a universally CH_{0}-trivial resolution of X is a proper birational universally CH_{0}-trivial morphism $f: \widetilde{X} \rightarrow X$ with \widetilde{X} smooth.

In [24], the specialization method was applied to show that a very general hypersurface of bidegree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ is not stably rational over \mathbb{C}, utilizing the following reference variety:

$$
\begin{equation*}
Y: y z s^{2}+x z t^{2}+x y u^{2}+\left(x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z\right) v^{2}=0 . \tag{1.1}
\end{equation*}
$$

Such hypersurfaces have the structure of a quadric surface bundle over \mathbb{P}^{2}, by projection to the first factor, which inform the shape of the equation for the reference variety Y as in [34]. In [24], it was also shown that the locus, in the Hilbert scheme of all hypersurfaces of bidegree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$, where the quadric bundle admits a rational section, is dense (for the complex topology). This provided a first example showing that rationality is not a deformation invariant for smooth projective complex varieties. A detailed analysis of this same reference variety, from the point of view of the conic bundle structure obtained by projection onto the second factor, is made in [3].

Recently, Schreieder [37] developed a refinement of the specialization method, relaxing the condition that the reference variety admits a universally CH_{0}-trivial resolution. This helped establish the failure of stable rationality for many families of quadric bundles [37], and in particular a large class of quadric surface bundles over \mathbb{P}^{2} of graded free type [36].

In two different directions, recent results of Ahmadinezhad and Okada [1] and of Krylov and Okada [29] imply the failure of stable rationality for many families of conic and del Pezzo surface bundles over projective space, including a very general hypersurface of bidegree $(2, d)$ and $(e, 3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ for $d \geq 4$ and $e \geq 3$. In this work, the specialization method is also used, where the reference varieties constructed have global differential forms in characteristic p, following the method of Kollár [28] developed by Totaro [39].

The goal of this note is threefold. First, we complete the stable rationality analysis for hypersurfaces of bidegree $(2, d)$ and $(e, 3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$.
Theorem 1. The very general hypersurface of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ over \mathbb{C} is not stably rational.

We also produce loci of bidegree $(2,3)$ hypersurfaces in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ that are rational, giving another example of a family of smooth rationally connected fourfolds with some fibers rational but most not stably rational, see Remark 4.

We provide two different proofs of Theorem 1. Our first proof, in $\S 2$, uses a method, going back to Totaro [39] for hypersurfaces in projective space, for reducing the case of hypersurfaces of bidegree $(2, d+1)$ in $\mathbb{P}^{n} \times \mathbb{P}^{m}$ to those of bidegree $(2, d)$, by constructing reference varieties that are reducible, see also [7]. This method only works in general when $m=2$, but with some additional geometric construction relying heavily on the analysis in [3], we are able to handle the case $m=3$. We remark that hypersurfaces of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ have the structure of a conic bundle over \mathbb{P}^{3} by projection onto the second factor, and a cubic surface bundle
over \mathbb{P}^{2} by projection onto the first factor. For our second proof, in $\S 5$, we construct a new reference hypersurface of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ such that the associated cubic surface bundle is generically smooth, as opposed to our first construction.

Our second goal, in $\S 3$, is to more generally study the Brauer groups of cubic surface bundles over a rational surface (see $\S 3$ for a definition), with an aim toward investigating properties of the discriminant curve (which arises from the work of Salmon [35], Clebsch [11], [10], and clarified by Edge [19]) and the ramification profile, in the spirit of the quadric surface bundle case in [34]. This analysis provides an example of a smooth cubic surface X over $K=\mathbb{C}(x, y)$ such that the cokernel of the natural map $\operatorname{Br}(K) \rightarrow \operatorname{Br}(X)$ contains a nontrivial 2-torsion Brauer class that is unramified on any fourfold model of X, see Remark 14.

Finally, our third goal, in $\S 4$, is to provide a new family of reference fourfolds $X_{n} \rightarrow \mathbb{P}^{2}$, whose generic fiber is a diagonal quadric, and whose discriminant curve of degree $2 n \geq 8$ consists of an ($n-1$)-gon of double lines with an inscribed conic. These are a generalization of (1.1) (which occurs as X_{4}). The varieties in this family have nontrivial unramified Brauer group by an application of the general formula in [34]. Just as for the family of reference varieties constructed by Schreieder [36], the morphism $X_{n} \rightarrow \mathbb{P}^{2}$ need not be flat; on the other hand, we prove that each reference variety in our family admits a CH_{0}-universally trivial resolution. As a corollary, we obtain particular cases of [36, Corollary 2] using the specialization method, see §4.2.

Acknowledgements. The authors would like to thank the organizers of the Simons Foundation conference on Birational Geometry held in New York City, August 2125, 2017, as well as the Laboratory of Mirror Symmetry and Automorphic forms, HSE, Moscow, where some of this work was accomplished. The first author was partially supported by NSA Young Investigator Grant H98230-16-1-0321. The third author was partially supported by NSF grant DMS-1601680 and by the Laboratory of Mirror Symmetry NRU HSE, RF Government grant, ag. no. 14.641.31.0001. The authors would like to thank Jean-Louis Colliot-Thélène, Bjorn Poonen, Stefan Schreieder, Yuri Tschinkel, and the anonymous referee for helpful comments.

2. Hypersurfaces of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$

In this section we study hypersurfaces X of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$, which are Fano fourfolds of index 1 and Picard rank 2. Via projection onto the two factors, $X \rightarrow \mathbb{P}^{2}$ is a cubic surface bundle (its fibers are cubic surfaces in \mathbb{P}^{3}) and $X \rightarrow \mathbb{P}^{3}$ is a conic bundle. We point out that of the recent results [1], [7], [29], [36], [37] on stable rationality relevant to this case (e.g., for conic bundles and del Pezzo bundles), none actually cover the particular case of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$.

Definition 1. We call a proper variety Y over an algebraically closed field k a reference variety if for any discrete valuation ring A, with residue field k and fraction field K with choice of algebraic closure \bar{K}, and for any scheme \mathcal{X} flat and proper over A with special fiber Y and smooth connected geometric generic fiber \bar{X}, the \bar{K}-scheme \bar{X} is not universally CH_{0}-trivial.

For example, if Y is integral and satisfies conditions (R) and (O) from §1, then Y is a reference variety by [16]. More generally, examples of reducible reference varieties were utilized in [39]. We recall sufficient conditions for a reducible variety to be a reference variety.

Proposition 2. Let Y be a proper scheme with two irreducible components Y_{1} and Y_{2} over an algebraically closed field k such that $Y_{1} \cap Y_{2}$ is irreducible. If $Y_{1} \cap Y_{2}$ is universally CH_{0}-trivial and Y_{1} admits a universally CH_{0}-trivial resolution $f: Y_{1}^{\prime} \rightarrow Y_{1}$ such that Y_{1}^{\prime} is not universally CH_{0}-trivial, then Y is a reference variety.

Proof. Let $U_{i}=Y_{i} \backslash\left(Y_{1} \cap Y_{2}\right)$. Since $Y_{1} \cap Y_{2}$ is universally CH_{0}-trivial and Y_{1} is not universally CH_{0}-trivial, there exists a field extension l / k such that in the localization exact sequence over l

$$
\mathrm{CH}_{0}\left(\left(Y_{1} \cap Y_{2}\right)_{l}\right) \rightarrow \mathrm{CH}_{0}\left(Y_{1, l}\right) \xrightarrow{\iota} \mathrm{CH}_{0}\left(U_{1, l}\right) \rightarrow 0
$$

the first map is not surjective. Hence, there is a non-trivial 0 -cycle $\xi \in \mathrm{CH}_{0}\left(U_{1, l}\right)$. Since k is algebraically closed, $U_{1}(k) \neq \varnothing$, thus we can also assume ξ has degree 0 .

We can furthermore assume that ξ is supported on the smooth locus of U_{1}. Indeed, let $V \subset U_{1}$ be a smooth open subscheme such that f induces an isomorphism $f^{-1}(V) \xrightarrow{\hookrightarrow} V$, and consider the following commutative diagram

The left vertical map is an isomorphism and the horizontal maps are surjective. We deduce that ξ comes from a non-trivial element $\xi^{\prime} \in \mathrm{CH}_{0}\left(f^{-1}\left(U_{1, l}\right)\right)$. Since $f^{-1}\left(U_{1, l}\right)$ is smooth, by a moving lemma for 0 -cycles [13, p. 599], we can assume that ξ^{\prime} is supported on the open subscheme $f^{-1}\left(V_{l}\right)$ and, hence, that ξ is supported on V_{l}.

By construction, the image of ξ in $\mathrm{CH}_{0}\left(Y_{l}\right)$ is nonzero. In fact, this follows from the commutative diagram

where the horizontal sequences are the localization exact sequences, the leftmost vertical map is an isomorphism, the middle vertical map is induced by the inclusion $Y_{1} \rightarrow Y$, and the rightmost vertical map is injective.

By the argument above, we can also assume that ξ is supported on the smooth locus of Y_{l}. Then [39, Lemma 2.4] shows that Y is a reference variety.

We remark that there is a version of Proposition 2 with Y having multiple irreducible components whose intersections have multiple components. In what follows, though, we only use the case $Y_{1} \cap Y_{2}$ irreducible.

We briefly mention two conditions ensuring that a proper variety Y is universally CH_{0}-trivial. First, Y is universally CH_{0}-trivial if there exists a proper surjective morphism $Y^{\prime} \rightarrow Y$ with Y^{\prime} universally CH_{0}-trivial and such that for any field extension k^{\prime} / k and any scheme theoretic point $y \in Y_{k^{\prime}}$, the fiber Y_{y}^{\prime} has a 0 -cycle of degree 1. Second, Y is universally CH_{0}-trivial if it admits a universally CH_{0}-trivial resolution by a universally CH_{0}-trivial variety.

For hypersurfaces, a lemma implied by Proposition 2 was utilized by Totaro to arrive at an inductive procedure for investigating the stable rationality of a smooth hypersurface W of degree $2 n+1$ in projective space by degenerating W to the union of a smooth hypersurface of degree $2 n$ and a hyperplane. In [7, §4], a similar inductive procedure is used, degenerating a hypersurface of bidegree $(2, n+1)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ to the union of hypersurfaces of bidegree $(2, n)$ and $(0,1)$. In this later case, the intersection of hypersurfaces of bidegree $(2, n)$ and $(0,1)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ can be chosen to be smooth and has the structure of a conic bundle over \mathbb{P}^{1}, hence is rational and thus universally CH_{0}-trivial. However, attempting this for a hypersurface of bidegree $(2, n+1)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ is more subtle. One can still degenerate to the union of hypersurfaces of bidegree $(2, n)$ and $(0,1)$, but now the intersection of these components has the structure of a conic bundle over \mathbb{P}^{2}, which can certainly fail to be universally CH_{0}-trivial, cf. [23], [7]. We shall overcome this problem for hypersurfaces of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ by using the explicit geometry of the conic bundle structure on the reference variety (1.1) studied in [3].

In our construction, we start with the reference variety (1.1), a singular hypersurface Y_{1} of bidegree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$. We recall from $[3, \S 3]$ that projection to \mathbb{P}^{3} gives the structure of a conic bundle $Y_{1} \rightarrow \mathbb{P}^{3}$ defined by the 3×3 matrix

$$
\left(\begin{array}{ccc}
v^{2} & u^{2}-v^{2} & t^{2}-v^{2} \tag{2.1}\\
u^{2}-v^{2} & v^{2} & s^{2}-v^{2} \\
t^{2}-v^{2} & s^{2}-v^{2} & v^{2}
\end{array}\right)
$$

of homogeneous quadratic forms on \mathbb{P}^{3}. The discriminant of this conic bundle is the sextic surface $D \subset \mathbb{P}^{3}$ defined by

$$
4 v^{6}-4\left(s^{2}+t^{2}+u^{2}\right) v^{4}+\left(s^{2}+t^{2}+u^{2}\right)^{2} v^{2}-2 s^{2} t^{2} u^{2}=0
$$

which has two irreducible cubic surface components $D_{ \pm}$, defined by

$$
2 v^{3}-v\left(s^{2}+t^{2}+u^{2}\right) \pm \sqrt{2} s t u=0
$$

Each component $D_{ \pm}$is a tetrahedral Goursat surface [22], hence up to projective equivalence, is isomorphic to the Cayley nodal cubic surface. The intersection $D_{+} \cap D_{-}$is an arrangement of a triangle of lines and three conics, see [3, Figure 1]. A Cayley cubic surface contains 4 ordinary double points and 9 lines: 6 of the lines form the edges of a tetrahedron whose vertices are the 4 singular points, while the remaining 3 lines form a triangle not meeting the singular points. In our case, $D_{+} \cap D_{-}$does not contain the ordinary double points of either component, hence contains this later triangle of lines, which is thus common to both Cayley cubic surfaces D_{+}and D_{-}.

Our aim is then to choose an appropriate hyperplane $H \subset \mathbb{P}^{3}$ such that the configuration $Y_{1} \cup\left(\mathbb{P}^{2} \times H\right)$, thought of as a union of hypersurfaces of bidegree $(2,2)$ and $(0,1)$, is a reference variety for hypersurfaces of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$. Since Y_{1} admits a universally CH_{0}-trivial resolution that is not universally CH_{0}-trivial by [24] or [3], then by Proposition 2 we only need to verify, for our choice of $H \subset \mathbb{P}^{3}$, that $Y_{1} \cap\left(\mathbb{P}^{2} \times H\right)$ admits a universally CH_{0}-trivial resolution by a smooth variety that is universally CH_{0}-trivial.

We remark that $Y_{1} \cap\left(\mathbb{P}^{2} \times H\right)=\left.Y_{1}\right|_{H} \rightarrow H$ is simply the restriction of the conic bundle $Y_{1} \rightarrow \mathbb{P}^{3}$ to $\mathbb{P}^{2}=H \subset \mathbb{P}^{3}$, whose discriminant divisor is now $D \cap H \subset H$. In particular, $\left.Y_{1}\right|_{H} \subset \mathbb{P}^{2} \times H=\mathbb{P}^{2} \times \mathbb{P}^{2}$ is a hypersurface of bidegree $(2,2)$. By [7], the very general such hypersurface is not universally CH_{0}-trivial, so we would expect that for a very general choice of $H \subset \mathbb{P}^{3}$, the variety $\left.Y_{1}\right|_{H}$ would not be universally CH_{0}-trivial. Indeed, in our case, we can verify this explicitly. Let $\alpha \in H^{2}\left(\mathbb{C}\left(\mathbb{P}^{3}\right), \mathbb{Z} / 2\right)$ be the Brauer class corresponding to the generic fiber of the conic bundle $Y_{1} \rightarrow \mathbb{P}^{3}$ and let $\gamma_{ \pm} \in H^{1}\left(\mathbb{C}\left(D_{ \pm}\right), \mathbb{Z} / 2\right)$ be its residue class on the component $D_{ \pm}$of the discriminant. By the analysis in [3, §3], we know that $\gamma_{ \pm}$ is étale away from the 4 singular points of $D_{ \pm}$. The residues of the conic bundle $\left.Y_{1}\right|_{H} \rightarrow H$ on the components of its discriminant $D \cap H=\left(D_{+} \cap H\right) \cup\left(D_{-} \cap H\right)$ are simply the restrictions of $\gamma_{ \pm}$. A general hypersurface $H \subset \mathbb{P}^{3}$ will cut D in the union of two smooth elliptic curves $E_{+} \cup E_{-}$meeting transversally and the restriction of $\gamma_{ \pm}$to $E_{ \pm}$are étale and would be nontrivial by a suitable version of the Lefschetz hyperplane theorem. Hence, by a formula due to Colliot-Thélène (cf. [34]), the unramified Brauer group of $\left.Y_{1}\right|_{H}$ would have nontrivial 2-torsion, and since it only has isolated nodes, it admits a universally CH_{0}-trivial resolution by a smooth projective variety that would not be universally CH_{0}-trivial. In conclusion, we need to choose the hyperplane $H \subset \mathbb{P}^{3}$ in a special way.

We choose the plane $H \subset \mathbb{P}^{3}$ to be the unique plane spanned by the triangle of lines contained in $D_{+} \cap D_{-}$. Then from the explicit representation (2.1) of Y_{1} as a conic bundle, $H=\{v=0\}$ and we have that $Y_{0}=\left.Y_{1}\right|_{H} \rightarrow H$ is the hypersurface of bidegree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\begin{equation*}
x y u^{2}+x z t^{2}+y z s^{2}=0 \tag{2.2}
\end{equation*}
$$

where $(x: y: z)$ and $(u: t: s)$ are sets of homogeneous coordinates on \mathbb{P}^{2}. Given the above discussion, Theorem 1 will follow from the following.

Proposition 3. The hypersurface Y_{0} of bidegree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by (2.2) is a singular projective rational variety admitting a universally CH_{0}-trivial resolution.

We remark that since Y_{0} is rational, any smooth proper variety birational to Y_{0} will be CH_{0}-universally trivial, cf. [2, $\left.\S 1.2\right]$. Hence to apply Proposition 2, we only need to verify that Y_{0} admits a universally CH_{0}-trivial resolution.

Proof of Proposition 3. The singular locus $Y_{0}^{\text {sing }}$ of Y_{0} is the union of three curves:

$$
\begin{align*}
& C_{x} \quad: \quad x=s=0, u^{2} y+t^{2} z=0 \\
& C_{y}: y=t=0, u^{2} x+s^{2} z=0 \tag{2.3}\\
& C_{z}: \quad z=u=0, t^{2} x+s^{2} y=0 .
\end{align*}
$$

The intersection of $Y_{0}^{\text {sing }}$ with the chart $z \neq 0$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ is contained in the affine chart $\mathbb{A}^{4} \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ with coordinates (x, y, s, t), defined by $z=1, u=1$. Hence it is enough to construct a resolution for the restriction U of Y_{0} to this affine chart:

$$
U: x y+x t^{2}+y s^{2}=0
$$

By making the change of variables $y_{1}=y+t^{2}$ and $x_{1}=x+s^{2}$ we obtain the equation:

$$
U: x_{1} y_{1}-s^{2} t^{2}=0
$$

The singular locus of U is thus the union of two curves:

$$
\begin{array}{ll}
B_{s} & : x_{1}=y_{1}=s=0 \\
B_{t} & : \\
x_{1}=y_{1}=t=0
\end{array}
$$

Let $\widetilde{U} \rightarrow U$ be the composition of the blow up along B_{s} and then the blow up along the strict transform of B_{t}. We claim that \widetilde{U} is smooth and that the map $\widetilde{U} \rightarrow U$ is universally CH_{0}-trivial. To check this, we use the local blow up calculations below. Note that we need to discuss only two charts in each case, using symmetry between x_{1} and y_{1}, and x_{2} and y_{2}, with the notations below.

1) First blow up U along B_{s} :

- In the chart defined by $y_{1}=x_{1} y_{2}, s=x_{1} s_{2}$, the equation of the blow up is $y_{2}-t^{2} s_{2}^{2}=0$, and the exceptional divisor is $x_{1}=0, y_{2}-t^{2} s_{2}^{2}=0$.
- In the chart defined by $x_{1}=s x_{2}, y_{1}=s y_{2}$, the equation of the blow up is $x_{2} y_{2}-t^{2}=0$ and the the exceptional divisor is $s=0, x_{2} y_{2}-t^{2}=0$.

2) Second blow up the proper transform B_{t}^{\prime} of B_{t} :

$$
B_{t}^{\prime}: x_{2}=y_{2}=t=0 .
$$

- In the chart defined by $y_{2}=x_{2} y_{3}, t=x_{2} t_{3}$, the equation of the blow up is $y_{3}-t_{3}^{2}=0$, the exceptional divisor is $x_{2}=0, y_{3}-t_{3}^{2}=0$.
- In the chart defined by $x_{2}=t x_{3}, y_{2}=t y_{3}$, the equation of the blow up is $x_{3} y_{3}-1=0$, the exceptional divisor is $t=0, x_{3} y_{3}-1=0$.
We see immediately that \widetilde{U} is smooth, and that the resolution $\widetilde{U} \rightarrow U$ has schemetheoretic fibers that are either smooth rational conics or chains of lines, hence these fibers are universally CH_{0}-trivial. We conclude, using [16, Proposition 1.8], that $\widetilde{U} \rightarrow U$ is a universally CH_{0}-trivial resolution.

Now we verify the rationality of Y_{0}. As a divisor of bidegree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$, the variety Y_{0} admits a conic bundle structure for each of the projections to \mathbb{P}^{2}. From the explicit representation (2.1), we see that under the projection to the \mathbb{P}^{2} with
homogeneous coordinates $(u: t: s)$, the conic bundle $Y_{0} \rightarrow \mathbb{P}^{2}$ is defined by the matrix of homogeneous forms:

$$
\left(\begin{array}{ccc}
0 & u^{2} & t^{2} \tag{2.4}\\
u^{2} & 0 & s^{2} \\
t^{2} & s^{2} & 0
\end{array}\right)
$$

Since the quadratic form is clearly isotropic over the generic point of the base \mathbb{P}^{2} (as its symmetric matrix has a diagonal zero entry), the generic fiber of Y_{0} is rational over a rational base, hence Y_{0} is rational.

We can also analyze the singularities of Y_{0} from the point of view of the conic bundle structure $Y_{0} \rightarrow \mathbb{P}^{2}$ considered in (2.4). Note that the discriminant is the double triangle $(u t s)^{2}$ in \mathbb{P}^{2} and the conic fibers have constant rank 2 along the discriminant. The singular locus of Y_{0} consists of a rational curve above each line of the double triangle forming the discriminant. We now describe the analytic local normal forms for such a conic bundle.

Let k be an algebraically closed field of characteristic $\neq 2$. Considering a point on only one of the double lines, we have the following. Any conic over a complete 2 -dimensional regular local ring $k[[u, t]]$ degenerating to conics of rank 2 over u^{2} can be brought to the normal form

$$
x^{2}+y^{2}+u^{2} z^{2}=0
$$

In this case, the singular locus is the rational curve $x=y=u=0$ lying over $u=0$ in the base. Simply blowing up this curve is a universally CH_{0}-trivial resolution.

Now considering a point on the intersection of two of the double lines, we have the following. Any conic over a complete 2 -dimensional regular local ring $k[[u, t]]$ degenerating to conics of rank 2 over $(u v)^{2}=0$ can be brought to the normal form

$$
x^{2}+y^{2}+u^{2} v^{2} z^{2}=0
$$

In this case, the singular locus is the union of rational curves $x=y=u=0$ and $x=y=v=0$ lying over $u v=0$ in the base. Blowing up one of these rational curves, and then blowing up the strict transform of the other yields a universally CH_{0}-trivial resolution whose fiber above the generic point of either $u=0$ or $v=0$ is a \mathbb{P}^{1} (over the function field of a curve over k) and above the intersection point is a chain of three smooth rational curves.

Finally, we combine all this together to give our first proof of Theorem 1.
Proof of Theorem 1. Let Y_{1} be the reference variety (1.1) for hypersurfaces of bidegree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$. The discriminant of the conic bundle $Y_{1} \rightarrow \mathbb{P}^{3}$ defined by projection to the second factor is the union of two Cayley cubic surfaces meeting along a triangle of lines and a configuration of three smooth conics. Let $H \subset \mathbb{P}^{3}$ be the unique hyperplane through this triangle of lines. Then $Y_{2}=\mathbb{P}^{2} \times H$ is a hypersurface of bidegree $(0,1)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$. Consider the reducible projective variety $Y=Y_{1} \cup Y_{2}$, which is a hypersurface of bidegree (2,3) in $\mathbb{P}^{2} \times \mathbb{P}^{3}$. Then $Y_{0}=Y_{1} \cap Y_{2}$ is the irreducible projective variety with equation (2.2), which by Proposition 3, admits a universally CH_{0}-trivial resolution $\widetilde{Y}_{0} \rightarrow Y_{0}$ with \widetilde{Y}_{0} smooth and rational,
hence in particular, Y_{0} is universally CH_{0}-trivial. Thus by an application of Proposition 3, we have that Y is a reference variety for hypersurfaces of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$. By the specialization method [40], [16], the very general hypersurface of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ is not universally CH_{0}-trivial, and in particular, is not stably rational.

Remark 4. We remark that in the Hilbert scheme of all hypersurfaces of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$, there is a nonempty closed subvariety whose general element Y is rational. Indeed, any bidegree $(2,3)$ hypersurface Y in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ of the form

$$
A s v+B s u+C t v+D t u=0,
$$

where A, B, C, D are general homogeneous forms of bidegree $(2,1)$ on $\mathbb{P}^{2} \times \mathbb{P}^{3}$, is smooth and the generic fiber of the associated cubic surface bundle $Y \rightarrow \mathbb{P}^{2}$ contains the disjoint lines $\{s=t=0\}$ and $\{u=v=0\}$, hence is a rational cubic surface over $k\left(\mathbb{P}^{2}\right)$, hence Y is a rational variety. This provides a simple and geometrically appealing family of smooth projective rationally connected fourfolds whose very general fiber is not stably rational but where some fibers are rational, cf. [24].

3. Remarks on the Brauer group of cubic surface bundles

In this section, we study the unramified Brauer group of a cubic surface bundle (defined below) over a rational surface. Cubic surface bundles naturally arise in the study of hypersurfaces of bidegree $(e, 3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$, via projection onto the first factor.

Let S be a smooth projective rational surface over an algebraically closed field k of characteristic not dividing 6 and let $K=k(S)$. By a cubic surface bundle over S, we mean a flat projective morphism $\pi: X \rightarrow S$ arising from a relative cubic hypersurface $X \subset \mathbb{P}(\mathscr{E})$ defined by the vanishing of a global section of $S^{3}\left(\mathscr{E}^{\vee}\right) \otimes \mathscr{L}$ for some vector bundle \mathscr{E} of rank 4 and some line bundle \mathscr{L} on S. We will usually assume that the generic fiber X_{K} is a smooth cubic surface over K.

The locus in S over which the fibers are singular is a divisor that carries a canonical scheme structure called the discriminant divisor $\Delta \subset S$ of the cubic surface bundle. This divisor can be constructed using invariant theory as follows.

Consider the Hilbert scheme

$$
\mathcal{H}=\mathbb{P}\left(H^{0}\left(\mathbb{P}^{3}, \mathscr{O}(3)\right)\right)=\mathbb{P}^{19}
$$

of cubic surfaces in \mathbb{P}^{3} over k and the action of SL_{4} on \mathcal{H} by change of variables. Salmon [35], and independently Clebsch [11], [10], found that the ring of invariants of cubic forms in four variables is generated by fundamental invariants A, B, C, D, E in degrees $8,16,24,32,40$, and 100 where the square of the invariant of degree 100 is a polynomial in the remaining invariants. This implies that the associated GIT quotient is isomorphic to a weighted projective space

$$
\mathbb{P}\left(H^{0}\left(\mathbb{P}^{3}, \mathscr{O}(3)\right)\right) / / \mathrm{SL}_{4} \cong \mathbb{P}(8,16,24,32,40) \cong \mathbb{P}(1,2,3,4,5)
$$

Salmon found a formula for the discriminant in terms of the fundamental invariants, though his formula contained an error. This error had been repeated throughout
the 19th and 20th century until it was corrected by Edge [19]

$$
\Delta=\left(A^{2}-64 B\right)^{2}-2^{11}(8 D+A C)
$$

For further modern study of the fundamental invariants and the discriminant of a cubic surface, see [5], [18, §10.4], [20, §2].

The formula for the discriminant Δ in terms of the monomials of a generic cubic surface defines an integral hypersurface of degree 32 in \mathcal{H}. Given a quadric surface bundle $\pi: X \rightarrow S$, with $X \subset \mathbb{P}(\mathscr{E})$ for a rank 4 vector bundle \mathscr{E} on S, and a Zariski open $U \subset S$ over which \mathscr{E} is trivial, the restricted cubic surface bundle $\left.\pi\right|_{U}:\left.X\right|_{U} \rightarrow U$ is defined by the restriction of the universal cubic hypersurface on \mathcal{H} via a classifying map $U \rightarrow \mathcal{H}$. Then the locus of points in U over which the fibers of $\left.\pi\right|_{U}$ are singular is contained in the divisor $\left.\Delta\right|_{U} \subset U$. By choosing a Zariski open cover of S trivializing \mathscr{E}, we can glue these divisors to yield the discriminant divisor $\Delta \subset S$ of the cubic surface bundle $\pi: X \rightarrow S$.

In the rest of the section, we make a series of remarks about the second unramified cohomology group $H_{\mathrm{nr}}^{2}(k(X) / k, \mathbb{Q} / \mathbb{Z}(1))$ of the total space of a cubic surface bundle $\pi: X \rightarrow S$, or what is the same, the Brauer group of a smooth proper model of X. We will often call this group the unramified Brauer group $\operatorname{Br}_{\mathrm{nr}}(k(X) / k)$.

We have $\operatorname{Br}_{\mathrm{nr}}(k(X) / k) \subset \operatorname{Br}_{\mathrm{nr}}(k(X) / K)=\operatorname{Br}\left(X_{K}\right)$, where the second equality holds by purity (cf. [12, §2.2.2]) because the generic fiber X_{K} is a smooth projective cubic surface over K. Part of the sequence of low degree terms of the Leray spectral sequence for the étale sheaf \mathbb{G}_{m} associated to the structural morphism $X_{K} \rightarrow \operatorname{Spec}(K)$ is

$$
\begin{equation*}
\operatorname{Pic}(X) \rightarrow H^{0}\left(K, \operatorname{Pic}\left(X_{K^{s}}\right)\right) \rightarrow \operatorname{Br}(K) \rightarrow \operatorname{Br}\left(X_{K}\right) \rightarrow H^{1}\left(K, \operatorname{Pic}\left(X_{K^{s}}\right)\right) \rightarrow H^{3}\left(K, \mathbb{G}_{\mathrm{m}}\right) \tag{3.1}
\end{equation*}
$$

where here K^{s} is a separable closure of K and $\operatorname{Br}\left(X_{K}\right)=\operatorname{ker}\left(\operatorname{Br}\left(X_{K}\right) \rightarrow \operatorname{Br}\left(X_{K^{s}}\right)\right)$, because X_{K} is rational over K^{s}, see [17]. Hence the cokernel of $\operatorname{Br}(K) \rightarrow \operatorname{Br}\left(X_{K}\right)$ is isomorphic to a subgroup of $H^{1}\left(K, \operatorname{Pic}\left(X_{K^{s}}\right)\right)$. In fact, Swinnerton-Dyer [38] has computed the possible nontrivial values for $H^{1}\left(K, \operatorname{Pic}\left(X_{K^{s}}\right)\right)$ when X_{K} is a smooth cubic surface: they are $\mathbb{Z} / 2, \mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 3$, and $\mathbb{Z} / 3 \times \mathbb{Z} / 3$. As a corollary, we arrive at the following.

Proposition 5. Let X_{K} be a smooth cubic surface over a field K. Then the cokernel of the map $\operatorname{Br}(K) \rightarrow \operatorname{Br}\left(X_{K}\right)$ is killed by 6 .

We remark that there is a general method to obtain bounds on the torsion exponent of the Brauer group of a smooth proper variety V over a field K from torsion exponent bounds on the Chow group $A_{0}(V)$ of 0 -cycles of degree 0 . By a generalization of an argument of Merkurjev, see [2, Theorem 1.4], if $A_{0}(V)$ is universally N-torsion (this is related to the torsion order of V, cf. [9]) then the cokernel of the map $\operatorname{Br}(K) \rightarrow \operatorname{Br}(V)$ is killed by $N \cdot I(V)$, where $I(V)$ is the index of V, the minimal degree of a 0 -cycle. If V is a smooth projective cubic surface over a field K, the Chow group $A_{0}(V)$ of 0 -cycles of degree 0 is universally 6 torsion by an argument going back to Roitman, see [9, Proposition 4.1]. The index of a cubic hypersurface always divides 3 , as one can see by cutting with a line. Thus, in the case of cubic
surfaces, the Galois cohomology computations of Swinnerton-Dyer achieve a better bound than that which can be obtained by the method involving 0 -cycles.

Given a smooth cubic surface V over a field K, we can also bound the kernel of the map $\operatorname{Br}(K) \rightarrow \operatorname{Br}(V)$, otherwise known as the relative Brauer group $\operatorname{Br}(V / K)$. The following is well known.

Proposition 6. Let V be a smooth proper K-variety. Then the kernel of the map $\mathrm{Br}(K) \rightarrow \mathrm{Br}(V)$ is killed by the index $I(V)$.

Proof. Let $x \in V$ be a closed point with residue field L / K. We recall the existence of a corestriction homomorphism $\operatorname{cor}_{L / K}: \operatorname{Br}(L) \rightarrow \operatorname{Br}(K)$ with the property that the composition $\operatorname{Br}(K) \rightarrow \operatorname{Br}(L) \rightarrow \operatorname{Br}(K)$ is multiplication by the degree $[L: K]$. The algebra-theoretic norm (determinant of the left-regular representation) yields a norm homomorphism $n_{L / K}: R_{L / K} \mathbb{G}_{\mathrm{m}} \rightarrow \mathbb{G}_{\mathrm{m}}$ of group schemes over K. The corestriction homomorphism is then the composition

$$
\operatorname{Br}(L)=H^{2}\left(L, \mathbb{G}_{\mathrm{m}}\right)=H^{2}\left(K, R_{L / K} \mathbb{G}_{\mathrm{m}}\right) \xrightarrow{H^{2}\left(n_{L / K}\right)} H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right)=\operatorname{Br}(K) .
$$

When L / K is separable, this coincides with the classical corestriction map on Galois cohomology; when L / K is purely inseparable, this is simply multiplication by the degree. Then define a map $\operatorname{Br}(V) \rightarrow \operatorname{Br}(L) \rightarrow \operatorname{Br}(K)$ by restriction to the point $x \in V$ followed by corestriction. This map has the property that the composition $\operatorname{Br}(K) \rightarrow \operatorname{Br}(V) \rightarrow \operatorname{Br}(K)$ is multiplication by the degree of the point x. In particular, the kernel of the map $\operatorname{Br}(K) \rightarrow \operatorname{Br}(V)$ is killed by the degree of x. Since the index $I(V)$ agrees with the greatest common divisor of the degrees of closed points, we arrive at the claim.

We remark that given a 0 -cycle $z=\sum_{i} a_{i} z_{i}$ of minimal degree $I(V)$, we can define (in analogy with the proof of $\operatorname{Proposition~6)~a~map~} \operatorname{Br}(V) \rightarrow \operatorname{Br}(K)$ by the formula $\alpha \mapsto \sum_{i} a_{i} \operatorname{cor}_{K\left(z_{i}\right) / K}\left(\left.\alpha\right|_{z_{i}}\right)$, where $\left.\alpha\right|_{z_{i}}$ is the restriction of the Brauer class to the closed point z_{i}. This map has the property that the composition of maps $\operatorname{Br}(K) \rightarrow \operatorname{Br}(V) \rightarrow \operatorname{Br}(K)$ is multiplication by the index $I(V)$. Finally, we remark that in the proof of Proposition 6, we could have used the classical corestriction from Galois cohomology; indeed, answering a question of Lang and Tate from the late 1960s, it is a result of Gabber, Liu, and Lorenzini [21] that there always exists a 0 -cycle of minimal degree on a smooth proper variety V whose support is on points with separable residue fields.

Note that since a smooth cubic surface always has index dividing 3 (by cutting with a line), we see that the relative Brauer group $\operatorname{Br}(V / K)$ is always killed by 3 .

We remark that the relative Brauer group of a smooth cubic surface can be nontrivial. Indeed, if V admits a Galois invariant set of 6 non-intersecting exceptional curves, then V is the blow up of a Severi-Brauer surface along an effective 0 -cycle of degree 6. If this Severi-Brauer surface is associated to a nontrivial Brauer class $\alpha \in \operatorname{Br}(K)[3]$ then the relative Brauer group $\operatorname{Br}(V / K)$ is generated by α. In general, for a smooth cubic surface V over K, by (3.1), the relative Brauer group $\operatorname{Br}(V / K)$ is isomorphic to $H^{0}\left(K, \operatorname{Pic}\left(V_{K^{s}}\right)\right) / \operatorname{Pic}(V)$, hence is a finite abelian group killed by 3.

We also remark that the bound in Proposition 6 is not sharp in general. Indeed, let Q be a smooth projective quadric surface with nontrivial discriminant (i.e., Picard rank 1) and no rational point over a field K of characteristic not 2. Then $I(Q)=2$ yet the map $\operatorname{Br}(K) \rightarrow \operatorname{Br}(Q)$ is injective, cf. [2, Theorem 3.1].

Now we will study the subgroup $\operatorname{im}\left(\operatorname{Br}(K) \rightarrow \operatorname{Br}(k(X)) \cap \operatorname{Br}_{\mathrm{nr}}(k(X) / k)\right.$, where $\pi: X \rightarrow S$ is the total space of a cubic surface bundle over k, using a method going back to Colliot-Thélène and Ojanguren [14].

Let $H_{\mathrm{nr}}^{2}\left(k(X) / X, \mu_{\ell}\right)$ denote all those classes in $H^{2}\left(k(X), \mu_{\ell}\right)$ that are unramified with respect to divisorial valuations corresponding to prime divisors (integral threefolds) on X. Let $H_{\mathrm{nr}}^{2}\left(k(X) / K, \mu_{\ell}\right)$ be the subset of those classes in $H^{2}\left(k(X), \mu_{\ell}\right)$ that are unramified with respect to divisorial valuations that are trivial on K, hence correspond to prime divisors of X dominating the base S. Let ℓ be a prime different from the characteristic.

Lemma 7. Let $X \rightarrow S$ be a flat projective morphism of integral varieties over an algebraically closed field k with S a smooth projective rational surface with function field K. Let ℓ be a prime number different from the characteristic of k. Then the following diagram with exact rows is commutative:

$$
\begin{array}{r}
0 \longrightarrow H_{\mathrm{nr}}^{2}\left(k(X) / X, \mu_{\ell}\right) \longrightarrow H_{\mathrm{nr}}^{2}\left(k(X) / K, \mu_{\ell}\right) \xrightarrow{\oplus \partial_{T}^{2}} \bigoplus_{T \in X_{S}^{(1)}} H^{1}(k(T), \mathbb{Z} / \ell) \tag{3.2}\\
0=H_{\mathrm{nr}}^{2}\left(K / k, \mu_{\ell}\right) \longrightarrow H^{2}\left(K, \mu_{\ell}\right) \xrightarrow{\oplus \partial_{C}^{2}} \bigoplus_{C \in S^{(1)}} H^{1}(k(C), \mathbb{Z} / \ell)
\end{array}
$$

where $X_{S}^{(1)}$ is the set of all prime divisors in X that do not dominate the base S, and $S^{(1)}$ is the set of all prime divisors (i.e., integral curves) in S. The maps ∂_{T}^{2} and ∂_{C}^{2} are the residue maps. The map ι is the usual restriction map in Galois cohomology associated to the field extension $k(X) / K$. When $\left.X\right|_{C}$ is generically reduced over C and $\left.T \subset X\right|_{C}$ is a component (resp. when T is the reduced subscheme of a component of $\left.X\right|_{C}$), the map τ is the usual restriction map in Galois cohomology for the field extensions $k(T) / k(C)$ (resp. multiplied by the multiplicity).

Proof. The upper row is exact by definition. The bottom row coincides with the usual Bloch-Ogus complex for degree 2 étale cohomology associated to S. The i th cohomology group of this complex is computed by the Zariski cohomology $H^{i}\left(S, \mathscr{H}^{2}\right)$ of the sheaf \mathscr{H}^{i}, which is the sheafification of the Zariski presheaf $U \mapsto H_{\text {ett }}^{2}\left(U, \mu_{\ell}\right)$, see [6, Theorem 6.1]. In particular, the lower row is exact in the first two places because $H^{0}\left(S, \mathscr{H}^{2}\right)=\operatorname{Br}(S)[\ell]=0$ and $H^{1}\left(S, \mathscr{H}^{2}\right) \subset H_{\text {ett }}^{3}(S, \mathbb{Z} / \ell)=0$ since S is a smooth projective rational surface, where the later inclusion arises from the sequence of low terms associated to the Bloch-Ogus spectral sequence $H^{i}\left(S, \mathscr{H}^{j}\right) \Longrightarrow H_{\text {et }}^{i+j}\left(S, \mu_{\ell}\right)$. For the commutativity of the right square see [14, p. 143].

If we want to understand classes $\xi \in H^{2}\left(K, \mu_{\ell}\right)$ such that $\iota(\xi) \in H_{\mathrm{nr}}^{2}\left(k(X) / X, \mu_{\ell}\right)$, then $\partial_{T}^{2} \iota(\xi)=0$ for all T as in the diagram. By the commutativity of the central square in the diagram (3.2), we see that then $\tau\left(\partial_{C}^{2} \xi\right)=0$ for all integral curves C
in S. Thus we are interested in the kernel $\operatorname{ker}(\tau)$, which we call \mathcal{K}_{ℓ}. Clearly, \mathcal{K}_{ℓ} is the direct sum of the kernels of all restriction maps $\tau: H^{1}(k(C), \mathbb{Z} / \ell) \rightarrow H^{1}(k(T), \mathbb{Z} / \ell)$. The following well known lemma becomes relevant (see [30, §3.2.2, Corollary 2.14(d)]).
Lemma 8. Let κ be a field and let ℓ be a prime number. Let Z be an integral κ-variety with function field F. Let l be the separable closure of κ inside F, i.e., the field extension of κ determined by the finite Galois set of irreducible components of $Z \times{ }_{\kappa} \kappa^{s}$. Then the kernel of the restriction map $H^{1}(\kappa, \mathbb{Z} / \ell) \rightarrow H^{1}(F, \mathbb{Z} / \ell)$ coincides with the kernel of the restriction map $H^{1}(\kappa, \mathbb{Z} / \ell) \rightarrow H^{1}(l, \mathbb{Z} / \ell)$. In particular, if Z is geometrically integral, then the restriction map $H^{1}(\kappa, \mathbb{Z} / \ell) \rightarrow H^{1}(F, \mathbb{Z} / \ell)$ is injective.

Recall that since the generic fiber X_{K} of the cubic surface fibration $\pi: X \rightarrow S$ is smooth, the locus in S over which the fibers become singular is the support of a divisor, the discriminant divisor $\Delta \subset S$. Thus if C is not contained in the discriminant divisor, then $T=\left.X\right|_{C} \rightarrow C$ is a generically smooth cubic surface fibration (in particular, there is a unique codimension 1 point of X above the generic point of C), and Lemma 8 implies that τ is injective on the part of the direct sum corresponding to $T \rightarrow C$. Hence, we are only interested in components of the discriminant divisor $\Delta=\cup \Delta_{i}$. However, for a general cubic surface fibration, we expect that the generic fiber above a reduced component of the discriminant has only isolated singularities, in particular is integral.

Let C be a component of the discriminant. When T is the reduced subscheme of a component of $\left.X\right|_{C}$ with multiplicity $e>1$, then the map τ in diagram (3.2) will be zero if ℓ divides e. Now assume that the generic fiber of $\left.X\right|_{C} \rightarrow C$ is reduced and admits an irreducible component that is not geometrically integral. Considering the possible degenerations of a cubic surface in \mathbb{P}^{3}, we see that the only possible cases are when the geometric generic fiber above C is a union of three planes or a union of a plane and an irreducible quadric. In the first case, the finite Galois set of connected components of the geometric generic fiber of $\left.X\right|_{C} \rightarrow C$ is isomorphic to the spectrum of an étale $k(C)$-algebra of degree 3 .
Lemma 9. Let κ be a field and l / κ a finite separable extension of degree $n=2,3$. Let ℓ be a prime number and write $\mathcal{K}_{\ell}=\operatorname{ker}\left(H^{1}(\kappa, \mathbb{Z} / \ell) \rightarrow H^{1}(l, \mathbb{Z} / \ell)\right)$. Then $\mathcal{K}_{\ell}=0$ whenever $\ell \neq n$ or when $\ell=n=3$ and l / κ is not Galois. Otherwise, when $n=\ell$ and l / κ is cyclic, then \mathcal{K}_{ℓ} is generated by the class $[l / \kappa] \in H^{1}(\kappa, \mathbb{Z} / \ell)$.
Proof. If l / κ is a G-Galois extension of fields, then the exact sequence of low degree terms of the Hochschild-Serre spectral sequence implies that the kernel of the restriction map $H^{1}(\kappa, \mathbb{Z} / \ell) \rightarrow H^{1}(l, \mathbb{Z} / \ell)$ is isomorphic to the group cohomology $H^{1}(G, \mathbb{Z} / \ell)$. When $n=\ell$ and l / κ is cyclic, this shows that the kernel of restriction is cyclic of order ℓ, and since we already know that the class $[l / \kappa]$ becomes trivial, it is a generator.

Now consider the case when l / κ is cubic and not Galois, in which case the normal closure N / κ of l / κ is an S_{3}-Galois extension. Hence the kernel of the composition of restriction maps $H^{1}(\kappa, \mathbb{Z} / \ell) \rightarrow H^{1}(l, \mathbb{Z} / \ell) \rightarrow H^{1}(N, \mathbb{Z} / \ell)$ is isomorphic to the group cohomology $H^{1}\left(S_{3}, \mathbb{Z} / \ell\right)$, which has order 2 when $\ell=2$ and is trivial for all
primes $\ell \neq 2$. In the case $\ell=2$, we know that N / l is degree 2 so that the kernel of the restriction map $H^{1}(l, \mathbb{Z} / 2) \rightarrow H^{1}(N, \mathbb{Z} / 2)$ already has order 2. Hence the map $H^{1}(\kappa, \mathbb{Z} / 2) \rightarrow H^{1}(l, \mathbb{Z} / 2)$ is injective.

We combine these considerations to arrive at a sufficient condition for the triviality of $\operatorname{im}(\operatorname{Br}(K) \rightarrow \operatorname{Br}(k(X))) \cap \operatorname{Br}_{\mathrm{nr}}(k(X) / k)$.

Theorem 10. Let $\pi: X \rightarrow S$ be a flat cubic surface bundle over a smooth projective connected rational surface S over an algebraically closed field k of characteristic not dividing 6. Assume that the fibers of π over all generic points of irreducible curves $C \subset S$ are reduced. Then $\operatorname{im}\left(\operatorname{Br}(K)[2] \rightarrow \operatorname{Br}(k(X)) \cap \operatorname{Br}_{\mathrm{nr}}(k(X) / k)\right.$ is trivial.

If we furthermore assume that the fibers of π over all generic points of irreducible curves $C \subset S$ are never geometrically the union of three planes permuted cyclically by Galois, then $\operatorname{im}\left(\operatorname{Br}(K)[3] \rightarrow \operatorname{Br}(k(X)) \cap \operatorname{Br}_{\mathrm{nr}}(k(X) / k)\right.$ is trivial.

Proof. Let $\alpha \in \operatorname{Br}(K)$ be a nontrivial element, then there is an irreducible curve $C \subset S$ such that the residue of α at C is nontrivial. We argue that there is always an irreducible component $\left.T \subset X\right|_{C}$ of the fiber of π above C such that the map $\tau: H^{1}(k(C), \mathbb{Z} / \ell) \rightarrow H^{1}(k(T), \mathbb{Z} / \ell)$, for either $\ell=2$ in the first case or $\ell=3$ in the second case, is injective. Hence $\iota(\alpha)$ will have a nontrivial residue at a valuation of $k(X)$ centered on $k(T)$, so $\iota(\alpha)$ is not in $\operatorname{Br}_{\mathrm{nr}}(k(X) / k)$. Indeed, if the generic fiber of $\left.X\right|_{C} \rightarrow C$ is geometrically irreducible, the injectivity follows from Lemma 8; if this generic fiber is not geometrically irreducible, then by the discussion above, there are only the following possible cases. Either the generic fiber of $\left.X\right|_{C} \rightarrow C$ has an irreducible component that is a plane; in this case, we take T equal to this component and again apply Lemma 8. Or, the generic fiber of $\left.X\right|_{C} \rightarrow C$ is irreducible and is geometrically the union of three planes; then by assumption, we are in the situation of Lemmas 8 and 9 , and we can take $T=\left.X\right|_{C}$.

For an application of Theorem 10, see Remark 14.

4. Quadric surface bundles with polygonal discriminant

In this section, we construct new reference quadric surface bundle fourfolds.
4.1. Polygonal discriminant. Let $C \subset \mathbb{P}^{2}$ be a conic and for $m \geq 3$ let P_{m} be a regular m-gon on lines in \mathbb{P}^{2}, such that C is inscribed in P_{m}, all defined over an algebraically closed field k of characteristic zero. Let $L_{1}, \ldots, L_{m} \subset \mathbb{P}^{2}$ be the lines corresponding to the sides of the m-gon and let $\ell_{1}, \ldots, \ell_{m}$ be linear forms defining these lines. To make the notations consistent with [24, 25], we assume that the conic C is defined by the vanishing of

$$
F(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z
$$

where $(x: y: z)$ are homogeneous coordinates on \mathbb{P}^{2}. Let a, b, c, d be arbitrary products of some of the linear forms $\ell_{1}, \ldots, \ell_{m}$, or constant, satisfying the following
conditions:

$$
\begin{equation*}
a b c d=\left(\ell_{1} \cdots \ell_{m}\right)^{2} \tag{4.1}
\end{equation*}
$$

the degrees of a, b, c, d are either all even or all odd, a, b, c, d are square free and mutually distinct, at most one of a, b, c is constant.

Write $d_{0}, d_{1}, d_{2}, d_{3}$ for the degrees of $a, b, c, d F$, respectively, and write $d_{i}=2 d_{i}^{\prime}+e$ where e is either 0 or 1 . Letting

$$
\mathscr{E}=\mathscr{O}_{\mathbb{P}^{2}}\left(-d_{0}^{\prime}\right) \oplus \mathscr{O}_{\mathbb{P}^{2}}\left(-d_{1}^{\prime}\right) \oplus \mathscr{O}_{\mathbb{P}^{2}}\left(-d_{2}^{\prime}\right) \oplus \mathscr{O}_{\mathbb{P}^{2}}\left(-d_{3}^{\prime}\right)
$$

we define a quadratic form $q: \mathscr{E} \rightarrow \mathscr{O}_{\mathbb{P}^{2}}(e)$ by

$$
\begin{equation*}
q=a s^{2}+b t^{2}+c u^{2}+d F v^{2} \tag{4.2}
\end{equation*}
$$

on a local section (s, t, u, v) of \mathscr{E}. Viewing q as a global section of $S^{2}\left(\mathscr{E}^{\vee}\right) \otimes \mathscr{O}_{\mathbb{P}^{2}}(e)$, its vanishing defines a subvariety $X_{n} \subset \mathbb{P}(\mathscr{E})$, where we write $n=m+1$. The restriction $X_{n} \rightarrow \mathbb{P}^{2}$ of the projective bundle projection is then a quadric surface bundle over \mathbb{P}^{2} in a weak sense (i.e., no flatness condition is assumed, see $[36,37]$). The discriminant of $X_{n} \rightarrow \mathbb{P}^{2}$ is then a curve of degree $2 n$, the union of a double regular $(n-1)$-gon and a smooth inscribed conic.

While the quadric surface bundle fourfolds X_{n} are not smooth, in $\S 6$ we verify that they admit universally CH_{0}-trivial resolutions.
4.2. Second unramified cohomology group. In this section, we show that the quadric bundle fourfolds constructed in $\S 4.1$ have nontrivial unramified Brauer group, which together with the fact that they admit universally CH_{0}-trivial resolutions (see Theorem 16), completes the proof that they are reference varieties.

Theorem 11. Let X_{n} be defined as in (4.2). Then

$$
H_{\mathrm{nr}}^{2}\left(k\left(X_{n}\right) / k, \mathbb{Z} / 2\right) \neq 0 .
$$

Proof. We apply [34, Theorem 3.17]. The generic fiber of the quadric bundle X_{n} is given by a diagonal quadratic form $q \simeq\langle a, b, c, d F\rangle$. The Clifford invariant of q is given by (a dehomogenization)

$$
\alpha=c(q)=(a, b)+(c, d F)+(a b, c d F)
$$

over $k\left(\mathbb{P}^{2}\right)$. From the construction, since the conic C is tangent to the lines L_{1}, \ldots, L_{m}, we deduce that the residue $\partial_{C}^{2}(\alpha)$ at the generic point of C is trivial. Hence the ramification divisor ram α is supported on the union of lines $L_{1} \cup \cdots \cup L_{m}$, which is a simple normal crossings divisor. Hence loc. cit. applies and we deduce that $H_{\mathrm{nr}}^{2}\left(k\left(X_{n}\right) / k, \mathbb{Z} / 2\right) \neq 0$. More precisely, the image α^{\prime} of α in $H^{2}\left(k\left(X_{n}\right), \mathbb{Z} / 2\right)$ is a nontrivial element of the group $H_{\mathrm{nr}}^{2}\left(k\left(X_{n}\right) / k, \mathbb{Z} / 2\right)$: with the notations in [34, Theorem 3.17], we have $T=\operatorname{ram} \alpha$, and the diagonal class $(1, \ldots, 1)$, corresponding to the set of residues of α^{\prime} gives an element of the group H.

Finally, we mention that the reference varieties X_{n} can be used to obtain the following special case of a result of Schreieder [36, Corollary 2] via the specialization method. Consider a tuple $\left(d_{0}, d_{1}, d_{2}, d_{3}\right)$ of degrees, all of the same parity, and a symmetric 4×4 matrix $A=\left(a_{i j}\right)$ consisting of homogeneous forms $a_{i j}$ on \mathbb{P}^{2} of degree $\left(d_{i}+d_{j}\right) / 2$. Fixing $e \in \mathbb{Z}$ of the same parity as the degrees, write $d_{i}=2 d_{i}^{\prime}+e$, and let $\mathscr{E}=\bigoplus_{i=0}^{3} \mathscr{O}_{\mathbb{P}^{2}}\left(-d_{i}^{\prime}\right)$. Then as before, A defines a quadratic form $q: \mathscr{E} \rightarrow \mathscr{O}_{\mathbb{P}^{2}}(e)$ and thus a (weak) quadric surface bundle $X \rightarrow \mathbb{P}^{2}$, which is called of graded-free type $\left(d_{0}, d_{1}, d_{2}, d_{3}\right)$. As explained in [37, Section 3.5], if X is smooth, its deformation type only depends on the tuple $\left(d_{0}, d_{1}, d_{2}, d_{3}\right)$. For a fixed $n \geq 4$, the construction in $\S 4.1$ produces a reference variety that is a weak quadric surface bundle $X_{n} \rightarrow \mathbb{P}^{2}$ of any graded-free type $\left(d_{0}, d_{1}, d_{2}, d_{3}\right)$ with $d_{0}+d_{1}+d_{2}+d_{3}=2 n$, at most one of the d_{i} allowed to be zero, and the following additional restrictions: $d_{i} \leq n-1$ for $i=0,1,2$, and $2 \leq d_{3} \leq n+1$. The specialization method then shows that the very general quadric surface bundle fourfold of any such graded-free type is not stably rational. Schreieder [36, Corollary 2] obtains this result with the additional restrictions on the individual degrees removed. On the other hand, the reference varieties constructed here may be of independent interest in other applications.

5. A cubic surface bundle with nontrivial unramified Brauer group

In this section, we construct an irreducible reference hypersurface Y of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ over an algebraically closed field k of characteristic zero, thereby giving another proof of Theorem 1. As a consequence, we also arrive at an explicit example of a smooth cubic surface X over $K=k\left(\mathbb{P}^{2}\right)$ such that the cokernel of the map $\operatorname{Br}(K) \rightarrow \operatorname{Br}(X)$ contains a nontrivial 2-torsion class that is unramified on a fourfold model of X over k.

Consider the following varieties:

- The weak quadric surface bundle $V \rightarrow \mathbb{P}^{2}$ of graded-free type $(3,3,1,3)$ with polygonal discriminant defined by

$$
\begin{equation*}
u(u-v)(t-v) x^{2}+u(u-v) t y^{2}+t w^{2}+(t-v) F(u, t, v) z^{2}=0 \tag{5.1}
\end{equation*}
$$

where \mathbb{P}^{2} has homogeneous coordinates $(u: v: t)$. Here, the polygon is the square whose sides are defined by the four linear forms $\ell_{1}=u, \ell_{2}=u-v$, $\ell_{3}=t$, and $\ell_{4}=t-v$ and where the inscribed conic is defined by the form

$$
F(u, t, v)=4 u^{2}+4 t^{2}+v^{2}-4 u v-4 t v .
$$

- The hypersurface Y of bidegree $(2,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{3}$ defined by

$$
\begin{equation*}
u(u-v)(t-v) x^{2}+u(u-v) t y^{2}+t w^{2} z^{2}+(t-v) F(u, t, v) z^{2}=0 . \tag{5.2}
\end{equation*}
$$

where here, \mathbb{P}^{2} has homogeneous coordinates $(x: y: z)$ and \mathbb{P}^{3} has homogeneous coordinates $(u: t: v: w)$.
Note that V is birational to Y since the open subset of V defined by $z=1, u=1$ and the open subset of Y defined by $z=1, u=1$ are given by the same affine equation in the variables v, t, w, x, y.

We need the following technical result, which will be proved in §5.1.

Proposition 12. Let V and Y be defined as in (5.1) and (5.2), respectively. Then there is a proper birational morphism $\pi: Y^{\prime} \rightarrow Y$ such that:
a) the rational map $Y \rightarrow V$ extends to a morphism $f: Y^{\prime} \rightarrow V$;
b) the maps π and f are universally CH_{0}-trivial.

With this result, we are ready to give our second proof of Theorem 1.
Proof of Theorem 1. By the specialization method [40, 16], it is enough to insure that Y is a reference variety, i.e., that the conditions (O) and (R) as in the introduction are satisfied for Y. Since Y is birational to V, we have by Theorem 11 that $H_{\mathrm{nr}}^{2}(k(Y) / k, \mathbb{Z} / 2)=H_{\mathrm{nr}}^{2}(k(V) / k, \mathbb{Z} / 2) \neq 0$. Let Y^{\prime} be as in Proposition 12. By Theorem 16 below, there exists a CH_{0}-trivial resolution $\widetilde{V} \rightarrow V$. Let $\widetilde{Y} \rightarrow Y^{\prime}$ be a resolution such that the rational map $Y^{\prime} \rightarrow \widetilde{V}$ extends to a morphism $\widetilde{Y} \rightarrow \widetilde{V}$. Since \widetilde{Y} and \widetilde{V} are smooth, the map $\widetilde{Y} \rightarrow \widetilde{V}$ is universally CH_{0}-trivial. This follows from weak factorization and the fact that the blow up of a smooth variety along a smooth center is a universally CH_{0}-trivial morphism. We then have the following diagram

where we know that all the maps, except possibly $\widetilde{Y} \rightarrow Y^{\prime}$, are universally $\mathrm{CH}_{0^{-}}$ trivial. From this diagram, we see that the map $\widetilde{Y} \rightarrow Y^{\prime}$ is universally CH_{0}-trivial, hence the composition $\widetilde{Y} \rightarrow Y^{\prime} \rightarrow Y$ is a universally CH_{0}-trivial resolution. Finally, Y is a reference variety.
Remark 13. Note that if ϕ is the composition $\phi: Y \rightarrow V \rightarrow \mathbb{P}^{2}$ and $U \subset Y$ is an open where ϕ is defined, then the generic fiber of the map $\phi: U \rightarrow \mathbb{P}^{2}$ is not proper, so that we could not directly apply [36, Theorem 9].

Remark 14. A nice feature of the reference variety Y is that the cubic surface bundle $Y \rightarrow \mathbb{P}^{2}$ has as generic fiber $X=Y_{K}$ an explicit example of a smooth cubic surface over $K=k\left(\mathbb{P}^{2}\right)$ with a nontrivial element $\alpha \in \operatorname{Br}(X)[2] \neq 0$ that is not contained in the image of the map $\operatorname{Br}(K) \rightarrow \operatorname{Br}(X)$ and $\alpha \in \operatorname{Br}_{\mathrm{nr}}(k(X) / k)$ is globally unramified on the function field of the fourfold Y. The fact that α is unramified follows from Theorem 11. To prove that α is nonconstant, we explicitly compute that the discriminant of the cubic surface fibration $Y \rightarrow \mathbb{P}^{2}$ is the union of the line $\{x=0\}$ with multiplicity 4 , the line $\{y=0\}$ with multiplicity 4 , the line $\{z=0\}$ with multiplicity 30 , the pair of conjugate lines $\left\{x^{2}+z^{2}=0\right\}$ with multiplicity 6 , the smooth conic $\left\{x^{2}-y^{2}+z^{2}=0\right\}$ with multiplicity 4 , and the integral sextic defined by

$$
x^{6}+3 x^{4} y^{2}+3 x^{2} y^{4}+y^{6}+x^{4} z^{2}-8 y^{4} z^{2}+16 y^{2} z^{4}+20 x^{2} y^{2} z^{2}=0 .
$$

For example, one could use Magma's ClebschSalmonInvariants command [8]. Then, over each component besides $\{z=0\}$, one can check that the generic fiber is geometrically integral, while over the component $\{z=0\}$, the fiber is the union of three planes defined over the residue field of the line $\{z=0\}$, hence Theorem 10 applies and no constant Brauer class is unramified on X.
5.1. Birational transformation. In this section, we prove Proposition 12. We have the following natural rational map $Y \rightarrow V$

$$
\begin{equation*}
(u: v: t: w, x: y: z) \mapsto(u: v: t, x: y: w z: z) . \tag{5.3}
\end{equation*}
$$

This map is not defined on the locus $u=v=t=0$; on the complement of this locus it is not an isomorphism along $z=0$.

We construct Y^{\prime} as a composition of two blow ups:
a) we consider the blow up $Y_{1} \rightarrow Y$ of the locus $u=v=t=z=0$,
b) we consider the blow up $Y^{\prime} \rightarrow Y_{1}$ of the locus $u_{1}=v_{1}=t_{1}=0$ in the chart corresponding to the exceptional divisor defined by $z=0$ (see below).
5.2. First blow up. We give equations of the blowup in each chart. Note that around the exceptional divisor we always have $w=1$, and $x=1$ or $y=1$.
a) In the chart $v=u v_{1}, t=u t_{1}, z=u z_{1}$, the exceptional divisor is $u=0$, and the blowup is given by

$$
\left(1-v_{1}\right)\left(t_{1}-v_{1}\right) x^{2}+\left(1-v_{1}\right) t_{1} y^{2}+t_{1} w^{2} z_{1}^{2}+\left(t_{1}-v_{1}\right) F\left(1, t_{1}, v_{1}\right) u^{2} z_{1}^{2}=0 .
$$

We extend the map (5.3) to the map $Y_{1} \rightarrow V$ defined by

$$
\begin{equation*}
\left(u, v_{1}, t_{1}, w ; x: y, z_{1}\right) \mapsto\left(1: v_{1}: t_{1}, x: y: w z_{1}: u z_{1}\right), \tag{5.4}
\end{equation*}
$$

which is everywhere defined on this chart. Here, we mean that around the exceptional divisor, we have $w=1$ and $x=1$ or $y=1$. The fibers of this map are either points or an \mathbb{A}^{1} (if $u z_{1}=0$). The fiber of the map $Y_{1} \rightarrow Y$ over the point $\left(0: 0: 0: 1, x_{0}: y_{0}: 0\right)$ is given by

$$
\left(1-v_{1}\right)\left(t_{1}-v_{1}\right) x_{0}^{2}+\left(1-v_{1}\right) t_{1} y_{0}^{2}+t_{1} z_{1}^{2}=0
$$

This defines a (singular) cubic surface. By Lemma 15 below, this cubic surface is universally CH_{0}-trivial. We deduce that the map $Y_{1} \rightarrow Y$ is universally CH_{0}-trivial over this chart.
b) In the chart $u=t u_{1}, v=t v_{1}, z=t z_{1}$, the exceptional divisor is $t=0$, and the blowup is given by

$$
u_{1}\left(u_{1}-v_{1}\right)\left(1-v_{1}\right) x^{2}+u_{1}\left(u_{1}-v_{1}\right) y^{2}+w^{2} z_{1}^{2}+\left(1-v_{1}\right) F\left(u_{1}, 1, v_{1}\right) t^{2} z_{1}^{2}=0 .
$$

Similar as in the previous case, we define the map $Y_{1} \rightarrow V$ by

$$
\begin{equation*}
\left(u_{1}, v_{1}, t, w ; x: y, z_{1}\right) \mapsto\left(u_{1}: v_{1}: 1, x: y: w z_{1}: t z_{1}\right), \tag{5.6}
\end{equation*}
$$

which is everywhere defined on this chart. The fibers of this map are either points or an \mathbb{A}^{1}. On the intersection of the charts, the maps (5.4) and (5.6) coincide. The universal CH_{0}-triviality of the fibers of the map $Y_{1} \rightarrow Y$ follows from Lemma 15.
c) The chart with exceptional divisor $v=0$ is similar.
d) In the chart $u=z u_{1}, v=z v_{1}, t=z t_{1}$, the exceptional divisor is $z=0$, and the blowup is given by
$u_{1}\left(u_{1}-v_{1}\right)\left(t_{1}-v_{1}\right) x^{2}+u_{1}\left(u_{1}-v_{1}\right) t_{1} y^{2}+t_{1} w^{2}+\left(t_{1}-v_{1}\right) F\left(u_{1}, t_{1}, v_{1}\right) z^{2}=0$.
We define the map $Y_{1} \rightarrow V$ by

$$
\begin{equation*}
\left(u_{1}, v_{1}, t_{1}, w ; x: y, z\right) \mapsto\left(u_{1}: v_{1}: t_{1}, x: y: w: z\right), \tag{5.8}
\end{equation*}
$$

which is defined everywhere on this chart, except at the locus $u_{1}=v_{1}=t_{1}=$ 0 . On the domain of definition, the fibers are points or lines. The universal CH_{0}-triviality of the fibers of the map $Y_{1} \rightarrow Y$ follows from Lemma 15.

Lemma 15. Let k be a field, $a, b \in k$, and $S \subset \mathbb{P}_{k}^{3}$ be the cubic surface defined by

$$
\begin{equation*}
a u(u-v)(t-v)+b u(u-v) t+t z^{2}=0 . \tag{5.9}
\end{equation*}
$$

If $a \neq 0$, then S is rational.
(i) If $a \neq 0$ and $(a+b) \neq 0$, then S has three isolated singular points. The blowup $\widetilde{S} \rightarrow S$ at the singular points is smooth and the exceptional divisors are smooth and rational.
(ii) If $a=1, b=-1$, the cubic surface (5.9) has a unique singular point and it has a universally CH_{0}-trivial resolution $\widetilde{S} \rightarrow S$, given by successive blow ups over this point.
(iii) If $a=0, b=1$, the cubic surface (5.9) is a union of a plane $t=0$ and a rational quadric surface $u(u-v)+z^{2}=0$.
Note that in the cases (i) and (ii), since \widetilde{S} is smooth and rational, it is universally CH_{0}-trivial. The lemma implies that the map $\widetilde{S} \rightarrow S$ is universally CH_{0}-trivial, hence S is universally CH_{0}-trivial as well. In part (iii), we have that S is universally CH_{0}-trivial as well from its description.

Proof. The rational parameterization of S is given by projection from the point $z=u=v=0$.

Part (iii) is straightforward. For part (i), by direct computation we obtain the following description of the singular locus:

- $z=u=v=0$;
- $z=0, u=0, a v-(a+b) t=0$;
- $z=0, u-v=0, a v-(a+b) t=0$.

We consider the exceptional divisor of the blowup of the first point. The other cases are similar, up to a linear change of variables. Put $c=a+b$. We write the equation of S, in the open chart $t=1$, as

$$
u(u-v)(c-a v)+z^{2}=0 .
$$

We then have the following charts for the blowup of $u=v=z=0$:

- In the chart $u=z u_{1}, v=z v_{1}$, the blowup $u_{1}\left(u_{1}-v_{1}\right)\left(c-a z v_{1}\right)+1=0$ is smooth, and the exceptional divisor $u_{1}\left(u_{1}-v_{1}\right) c+1=0$ is smooth and rational.
- In the chart $z=u z_{1}, v=u v_{1}$, the blowup $\left(1-v_{1}\right)\left(c-a u v_{1}\right)+z_{1}^{2}=0$ is smooth, and the exceptional divisor $\left(1-v_{1}\right) c+z_{1}^{2}=0$ is smooth and rational.
- In the chart $z=v z_{1}, u=v u_{1}$, the blowup $u_{1}\left(u_{1}-1\right)(c-a v)+z_{1}^{2}=0$ is smooth, and the exceptional divisor $\left(1-u_{1}\right) c+z_{1}^{2}=0$ is smooth and rational.
In the part (ii), the unique singular point of S is given by $z=u=v=0$. We have the same equations as above, with $c=0, a=1$. We have additional double point singularities, in the second and the third chart (for example, the point $z_{1}=u=v_{1}=0$ in the second chart $\left.z_{1}^{2}-u v_{1}\left(1-v_{1}\right)=0\right)$ which are resolved by one single blowup, and then the exceptional divisor is smooth and rational.
5.3. Second blowup. We consider the chart (5.7) and we blow up the locus $u_{1}=$ $v_{1}=t_{1}=0$:
- In the chart $v_{1}=u_{1} v_{2}, t_{1}=u_{1} t_{2}$, the blowup is given by
$u_{1}^{2}\left(1-v_{2}\right)\left(t_{2}-v_{2}\right) x^{2}+u_{1}^{2}\left(1-v_{2}\right) t_{2} y^{2}+t_{2} w^{2}+\left(t_{2}-v_{2}\right) F\left(1, v_{2}, t_{2}\right) u_{1}^{2} z_{1}^{2}=0$.
We consider the map $Y^{\prime} \rightarrow V$ defined by

$$
\begin{equation*}
\left(u_{1}, v_{2}, t_{2}, w ; x: y, z_{1}\right) \mapsto\left(1: v_{2}: t_{2}, u_{1} x: u_{1} y: w: u_{1} z_{1}\right), \tag{5.10}
\end{equation*}
$$

which is everywhere defined $(w \neq 0)$. The fibers of the map are points or affine spaces. The fibers of the blow up $Y^{\prime} \rightarrow Y_{1}$ on this chart are also either points or affine spaces.

- The analysis of the other two charts is similar.

6. Appendix: Analysis of singularities

The main goal of this section is to prove the following result.
Theorem 16. Let X_{n} be as defined in (4.2). Then X_{n} admits a universally CH_{0} trivial resolution $\widetilde{X}_{n} \rightarrow X_{n}$.

The following lemma is known:
Lemma 17. Let X be a proper variety over a field k of characteristic zero. If X admits a universally CH_{0}-trivial resolution $\widetilde{X} \rightarrow X$, then any resolution $X^{\prime} \rightarrow X$ is universally CH_{0}-trivial.

Proof. We note that by resolution of singularities, there is a smooth projective variety \widetilde{X}^{\prime} together with birational morphisms $\widetilde{X}^{\prime} \rightarrow X^{\prime}$ and $\widetilde{X}^{\prime} \rightarrow \widetilde{X}$. Then, it is enough to observe that any birational morphism of smooth projective varieties over k is universally CH_{0}-trivial. For this, we use weak factorization, the fact that a blowup with smooth center is a universally CH_{0}-trivial morphism, and the fact that, by definition, a composition of two universally CH_{0}-trivial maps is universally CH_{0}-trivial.

By [16, Proposition 1.8] we have the following criterion: a proper morphism $\tilde{X} \rightarrow X$ is universally CH_{0}-trivial if for any scheme-theoretic point $P \in X$, the fiber \widetilde{X}_{P} is a universally CH_{0}-trivial variety over the residue field $\kappa(P)$. Using this criterion, in order to prove that a sequence of blowups of a variety X provides a
universally CH_{0}-trivial resolution $f: \widetilde{X} \rightarrow X$, it is enough to work formally locally on X. Indeed, if $\widehat{\mathscr{O}}_{X, P}$ is the completion of the local ring $\mathscr{O}_{X, P}$, the fiber of the induced map $\widetilde{X} \times{ }_{X} \operatorname{Spec} \widehat{\mathscr{O}}_{X, P} \rightarrow \operatorname{Spec} \widehat{\mathscr{O}}_{X, P}$ at the closed point of Spec $\widehat{\mathscr{O}}_{X, P}$ is \widetilde{X}_{P}.

We now analyze different types of singularities that could appear for X_{n}.
6.1. Equations defining singular locus. By symmetry, we may work over an open chart $z \neq 0$ of \mathbb{P}^{2}. Then we have the following equations defining the singular locus:

$$
\begin{align*}
& a s=b t=c u=d F v=0, \tag{6.1}\\
& \frac{\partial a}{\partial x} s^{2}+\frac{\partial b}{\partial x} t^{2}+\frac{\partial c}{\partial x} u^{2}+\frac{\partial d F}{\partial x} v^{2}=0, \frac{\partial a}{\partial y} s^{2}+\frac{\partial b}{\partial y} t^{2}+\frac{\partial c}{\partial y} u^{2}+\frac{\partial d F}{\partial y} v^{2}=0 .
\end{align*}
$$

Note that if $P=((x, y),[s: t: u: v]) \in X_{n}$ satisfies that $(x, y) \notin D:=$ $L_{1} \cup \cdots \cup L_{m} \cup C$, then P is a smooth point. Indeed, we then have $\operatorname{abcdF}(P) \neq 0$ and the conditions above imply that

$$
s=t=u=v=0,
$$

which is not possible since s, t, u, v are projective coordinates.
Also, if $P \in C$, but not on any line L_{1}, \ldots, L_{m}, the conditions (6.1) imply that

$$
s=t=u=0, \quad v=1, \quad F=0, \quad \frac{\partial d F}{\partial x}(P)=\frac{\partial d F}{\partial y}(P)=0,
$$

which is impossible since the conic C is smooth.
Hence we need to analyze the following four types of singularities:

- over the generic point of lines L_{i};
- over the intersection points $L_{i} \cap L_{j}$;
- over the tangency point of C and L_{i};
- over closed points of lines L_{i}, that are not on other lines or on the conic C.

Note that by $[24,25]$, a universally CH_{0}-trivial resolution exists in the following cases:

$$
\begin{align*}
& a=y z, b=x y, c=x z, d=1 ; \\
& a=1, b=x y, c=x z, d=y z . \tag{6.2}
\end{align*}
$$

In the arguments below, up to a linear change of variables x and y, we may assume that $\ell_{i}=x$ and $\ell_{j}=y$.

The analysis below provide the following global description of singularities:
a) the curves $C_{i}(6.4),(6.6)$ over the lines L_{i}, some of these curves are singular at a point $P_{i}(6.12)$ over the tangency point of C and L_{i};
b) singular lines (6.7) and (6.10), over the intersection points of L_{i} and L_{j};
c) the curves $D_{i}(6.14)$ over the tangency points of C et L_{i}.

We consider the map

$$
\begin{equation*}
X_{n}^{\prime} \rightarrow X_{n} \tag{6.3}
\end{equation*}
$$

given by successive blow ups of the singular locus in the following order:

- we blow up lines (6.7);
- we blow up the points P_{i} and then we blow up the exceptional divisors over P_{i},
- we blow up of the proper transform of C_{1}, the proper transform of C_{2}, \ldots and then proper transform of C_{m},
- we blow up successively the proper transforms of lines (6.10),
- finally, we blow up the proper transforms of the curves D_{i}.

We claim that the only singularities of the variety X_{n}^{\prime} are over some intersection points of L_{i} and L_{j}, the blowup \widetilde{X}_{n} of these singularities is smooth, and the resulting map $\widetilde{X}_{n} \rightarrow X_{n}^{\prime} \rightarrow X_{n}$ is a universally CH_{0}-trivial resolution.

6.2. Singularities over lines L_{i}. We have two cases to consider:

a) $\ell_{i}=x$ divides precisely two among the coefficients a, b, c, by symmetry we may assume that $x \mid a, b$, we then write $a=x a_{1}, b=x b_{1}$;
b) x divides d, by symmetry, we may assume that $x \mid a, d$ and we write $d=$ $x d_{1}, a=x a_{1}$.
Then the analysis of the singular locus in each case is as follows:
a) The equations (6.1) imply $u=v=0, a_{1} s^{2}+b_{1} t^{2}=0$. Let λ be the common factor of a_{1} and $b_{1}: \lambda$ is the product of (some of) lines $\ell_{1}, \ldots, \ell_{m}$ and $a_{1}=$ $\lambda a_{2}, b_{1}=\lambda b_{2}$. We obtain a curve $C_{i} \subset X_{n}^{\text {sing }}$ in the singular locus $X_{n}^{\text {sing }}$ of X_{n} :

$$
\begin{equation*}
x=0, u=v=0, a_{2} s^{2}+b_{2} t^{2}=0 \tag{6.4}
\end{equation*}
$$

We claim that the blowup of the curve C_{i} is smooth at any point of the exceptional divisor that is not over a point of C or a point on another line, and that the corresponding fibers are universally CH_{0}-trivial.

For the fibers over a point $P \in X_{n}$ lying over a closed point $Q \in L_{i}$, we work over the local ring $\widehat{\mathcal{O}}_{X_{n}, P}$. Since the residue field of Q is the field of complex numbers, any element of $\widehat{\mathscr{O}}_{\mathbb{P}^{2}, Q}$, which does not vanish at Q, is a square in $\widehat{\mathscr{O}}_{\mathbb{P}^{2}, Q}$, and hence in $\widehat{\mathscr{O}}_{X_{n}, P}$. We then obtain the following formal equation:

$$
\begin{equation*}
x s^{2}+x t^{2}+u^{2}+v^{2}=0, \tag{6.5}
\end{equation*}
$$

the singularity is defined by $u=v=0, x=0, s^{2}+t^{2}=0$. This type of singularity has been already treated in [24] (compare with equations (6.2)), it is resolved with one blow up, and the corresponding fiber is universally CH_{0}-trivial.

For the fiber over the generic point of C_{i}, it is enough to consider the following charts of the blowup:
(a) $a_{2} s^{2}+b_{2} t^{2}=x w, u=x u_{1}, v=x v_{1}$.

The blowup is given by the conditions

$$
\lambda w+c u_{1}^{2}+d F v_{1}^{2}=0, a_{2} s^{2}+b_{2} t^{2}=x w
$$

and the exceptional divisor is defined by

$$
x=0, \lambda w+c u_{1}^{2}+F d v_{1}^{2}=0, a_{2} s^{2}+b_{2} t^{2}=0
$$

This variety is smooth and rational over the generic point of C_{i} since $\frac{b_{2}}{a_{2}}$ is a square at the generic point of C_{i}.
(b) $a_{2} s^{2}+b_{2} t^{2}=u w, x=u x_{1}, v=u v_{1}$.

The blowup is given by the conditions

$$
\lambda x_{1} w+c+d F v_{1}^{2}=0, a_{2} s^{2}+b_{2} t^{2}=u w
$$

it is smooth since a_{2}, b_{2}, λ and c do not vanish at the generic point of L_{i} and $s \neq 0$ or $t \neq 0$. The exceptional divisor is also smooth and rational, defined by $u=0$.
The chart with the exceptional divisor defined by $v=0$ is similar.
(c) $x=\left(a_{2} s^{2}+b_{2} t^{2}\right) x_{1}, u=\left(a_{2} s^{2}+b_{2} t^{2}\right) u_{1}, v=\left(a_{2} s^{2}+b_{2} t^{2}\right) v_{1}$.

The blowup is given by the condition

$$
\lambda x_{1}+c u_{1}^{2}+d F v_{1}^{2}=0,
$$

it is smooth. The exceptional divisor is smooth and rational, defined by

$$
\lambda x_{1}+c u^{2}+d F v^{2}=0, a_{2} s^{2}+b_{2} t^{2}=0 .
$$

b) Similarly as in the previous case, let λ be the common factor of a_{1} and d_{1} and $a_{1}=\lambda a_{2}, d_{1}=\lambda d_{2}$. We obtain the equation of the singular locus:

$$
\begin{equation*}
x=0, t=u=0, a_{2} s^{2}+d_{2} F v^{2}=0 . \tag{6.6}
\end{equation*}
$$

The formal equation at closed points are the same as the equations in the previous case (6.5). For the generic fiber, we consider the following chart of the blowup

$$
a_{2} s^{2}+d_{2} F v^{2}=x w, t=x t_{1}, u=x u_{1} .
$$

The blowup is given by the conditions

$$
\lambda w+b t_{1}^{2}+c u_{1}^{2}=0, a_{2} s^{2}+d_{2} F v^{2}=x w
$$

and the exceptional divisor is defined by

$$
x=0, \lambda w+b t_{1}^{2}+c u_{1}^{2}=0, a_{2} s^{2}+d_{2} F v^{2}=0
$$

This variety is smooth and rational over the generic point of C_{i} since $\frac{d_{2} F}{a_{2}}$ is a square at the generic point of C_{i}.

The analysis of the other charts is similar to the previous case.
6.3. Singularities over intersection points $L_{i} \cap L_{j}$. Let Q be the intersection point of L_{i} and L_{j} and let P be a singular point of X_{n} over Q. We have the following cases to consider:
a) Only two coefficients among a, b, c, d vanish at Q. We then have the following possibilities (up to a symmetry): $x y \mid a, b$ or $x y \mid a, d$ and the corresponding singular lines are given by the (global) conditions

$$
\begin{equation*}
M_{i j}: x=y=u=v=0 \text { or } x=y=t=u=0 . \tag{6.7}
\end{equation*}
$$

Again, working formally locally, we may assume that any function that does not vanish at Q is a square. Hence, in all cases, up to a symmetry, we have the following type of local equation:

$$
x y s^{2}+x y t^{2}+u^{2}+v^{2}=0
$$

and the singularity is given by $x=y=u=v=0$. Also we can change variables $s^{2}+t^{2}=s_{1} t_{1}$ and consider the chart $t_{1}=1$, so that we have the following local equation:

$$
x y s_{1}+u^{2}+v^{2}=0 .
$$

The map $X_{n}^{\prime} \rightarrow X_{n}$, restricted to $\widehat{\mathscr{O}}_{X_{n}, P}$ is the following composition:

- blow up of the line $x=y=u=v=0$;
- blow up of the proper transform of $x=s_{1}=u=v=0$;
- blow up of the proper transform of $y=s_{1}=u=v=0$.

By symmetry between u and v we consider the following charts of the first blow up:
(a) $x=y x_{1}, u=y u_{1}, v=y v_{1}$, the equation of the blowup is $x_{1} s_{1}+u_{1}^{2}+v_{1}^{2}=$ 0 and the exceptional divisor is given by $y=0$. This blow up map is universally CH_{0}-trivial over this chart. Next we blow up the locus $x_{1}=s_{1}=u_{1}=v_{1}=0$, corresponding to the product of a line y and the ordinary double point singularity, hence the second blowup is smooth, the fibers are universally CH_{0}-trivial. By smoothness, the third blow up is universally CH_{0}-trivial over this chart.
(b) $y=x y_{1}, u=x u_{1}, v=x v_{1}$, the equation of the blowup is $y_{1} s_{1}+u_{1}^{2}+v_{1}^{2}=0$ and the exceptional divisor is given by $x=0$. Next we blow up the locus $x=s_{1}=u_{1}=v_{1}=0$. We consider the following charts (again, using symmetry between u_{1} and v_{1}):
(i) $s_{1}=x s_{2}, u_{1}=x u_{2}, v_{2}=x v_{2}$, the equation of the blowup is $y_{1} s_{2}+$ $x\left(u_{2}^{2}+v_{2}^{2}\right)=0$, the exceptional divisor is $x=0$. The fibers of the second blow up are universally CH_{0}-trivial. Next we blow up the locus $y_{1}=s_{2}=u_{2}=v_{2}=0$. The charts corresponding to the exceptional divisors $y_{1}=0$ and $s_{2}=0$ are smooth, and the fibers are universally CH_{0}-trivial:

- $s_{2}=y_{1} s_{3}, u_{2}=y_{1} u_{3}, v_{2}=y_{1} v_{3}$, the blowup is given by $s_{3}+$ $x\left(u_{3}^{2}+v_{3}^{2}\right)=0$;
- $y_{1}=s_{2} y_{3}, u_{2}=s_{2} u_{3}, v_{2}=s_{2} v_{3}$, the blowup is given by $y_{3}+$ $x\left(u_{3}^{2}+v_{3}^{2}\right)=0 ;$
In the chart $y_{1}=u_{2} y_{3}, s_{2}=u_{2} y_{3}, v_{2}=u_{2} v_{3}$ we have the following equation: $y_{3} s_{3}+x\left(1+v_{3}^{2}\right)=0$, the ordinary double singularities $v_{3}= \pm i, x=y_{3}=s_{3}=0$ are resolved after one blowup, and the exceptional divisor is rational.
(ii) $x=s_{1} x_{2}, u_{1}=s_{1} u_{2}, v_{2}=s_{1} v_{2}$, the equation of the blowup is $y_{1}+s_{1}\left(u_{2}^{2}+v_{2}^{2}\right)=0, x=s_{1} x_{2}$, the exceptional divisor is $s_{1}=0$, the fibers are universally CH_{0}-trivial. The blowup is smooth, hence the third blow up is universally CH_{0}-trivial over this chart.
(iii) $x=u_{1} x_{2}, s=u_{1} s_{2}, v_{2}=u_{1} v_{2}$, the equation of the blowup is $y_{1} s_{2}+$ $u_{1}+u_{1} v_{2}^{2}=0, x=u_{1} x_{2}$, the exceptional divisor is given by $u_{1}=0$. Next we blow up $y_{1}=s_{2}=u_{1}=v_{2}=0$. Note that this chart is smooth along this locus, hence the third blow up is universally CH_{0}-trivial in this chart. The remaining singularity $y_{1}=s_{2}=$ $u_{1}=0, v_{2}= \pm i$ is resolved as at the end of the case (i) above.
(c) $x=u x_{1}, y=u y_{1}, v=u v_{1}$, the equation of the blow up is $x_{1} y_{1} s_{1}+1+v_{1}^{2}=$ 0 , it is smooth and the exceptional divisor is given by $u=0$. This blow up map is universally CH_{0}-trivial in this chart. Since the first blow up is smooth over this chart, the second and third blow ups are universally CH_{0}-trivial.
b) Only three coefficients among a, b, c, d vanish at Q. Then, we may assume that $x y|a, x| b, y \mid c$. The case when x or y divides d is similar. The singular locus over $x=y=0$ is given by $t=u=v=0$, hence, it is the point of the intersection of the curves C_{i} and C_{j}. The restriction of the map $X_{n}^{\prime} \rightarrow X_{n}$ to $\widehat{\mathscr{O}}_{X_{n}, P}$ is the composition of the blow up of C_{i} and the proper transform of C_{j}. Note that over the point P we have the following formal equation:

$$
\begin{equation*}
x y s^{2}+x t^{2}+y u^{2}+v^{2}=0 \tag{6.9}
\end{equation*}
$$

The same type of formal equation correspond to the case considered in [24] (compare with equations (6.2)), where it is showed that the two blow ups as above provide a universally CH_{0}-trivial resolution.
c) All coefficients a, b, c, d vanish at Q. We then assume $a=x a_{1}, b=x b_{1}, c=$ $y c_{1}, d=y d_{1}$ and we have the following equation for X_{n}

$$
x a_{1} s^{2}+x b_{1} t^{2}+y c_{1} u^{2}+y d_{1} F v^{2}=0
$$

and the expression of the singular locus

$$
\begin{equation*}
x=y=0, a_{1} s^{2}+b_{1} t^{2}=0, c_{1} u^{2}+d_{1} F v^{2}=0 \tag{6.10}
\end{equation*}
$$

Since $a_{1}, b_{1}, c_{1}, d_{1} F$ evaluated at Q are nontrivial constants, this singular locus is the union of four lines, and the points with coordinates $s=t=0$ or $u=v=0$ correspond to the intersection points of these lines with the curves C_{i} and C_{j}.

We now describe the the formal equation. Changing variables, we may replace $a_{1} s^{2}+b_{1} t^{2}$ by $s_{1} t_{1}$ and $c_{1} u^{2}+d_{1} F t^{2}$ by $u_{1} v_{1}$, and, by symmetry, we may consider the affine chart $t_{1}=1$. We then have the following formal equation

$$
\begin{equation*}
x s_{1}+y u_{1} v_{1}=0 \tag{6.11}
\end{equation*}
$$

The singular locus is the union of two lines $x=y=s_{1}=u_{1}=0$ et $x=y=$ $s_{1}=v_{1}=0$. The restriction of the map $\widetilde{X}_{n} \rightarrow X_{n}$ is as follows:
(a) blow up of the locus $x=s_{1}=u_{1}=v_{1}=0$ (we separate two lines);
(b) blow up of the strict transform of the lines $x=y=s_{1}=u_{1}=0$ and $x=y=s_{1}=v_{1}=0$.
(Note that only one of the blowups of C_{i} and C_{j} is not an isomorphism for the case $t_{1}=1$ we consider). By symmetry, we have the following charts of the first blowup to consider:
(a) $s=x s_{2}, u=x u_{2}, v=x v_{2}$, the equation of the blowup is $s_{2}+y u_{2} v_{2}=0$, which is smooth, the exceptional divisor is $x=0$, it is smooth and rational; by smoothness, the second blowup is universally CH_{0}-trivial over this chart;
(b) $s=u_{1} s_{2}, x=u_{1} x_{2}, v=u_{1} v_{2}$, the equation of the blowup is $x_{2} s_{2}+$ $y v_{2}=0$, the exceptional divisor is rational, given by $u_{1}=0$; the singular locus $x_{2}=s_{2}=y=v_{2}=0$ is resolved by the second blowup, and the exceptional divisor is rational.
From the equations above, the fibers of the map $X_{n}^{\prime} \rightarrow X_{n}$ at P are universally CH_{0}-trivial over this chart.
6.4. Singularities over the tangency point of C and L_{i}. Assume C is tangent to L_{i} at the point Q. We have the following cases:
a) d vanishes at Q. By symmetry, we assume $x \mid a$ and write $a=x a_{1}, d=x d_{1}$.

Then the conditions (6.1) imply

$$
t=u=0, a_{1} s^{2}+d_{1} F(Q) v^{2}=0
$$

hence we obtain a point

$$
\begin{equation*}
P_{i}: s=t=u=x=y-1=0 \tag{6.12}
\end{equation*}
$$

on the curve C_{i} in the case (6.6). The local form is as follows:

$$
\begin{equation*}
x s^{2}+t^{2}+u^{2}+x F v^{2}=0, \text { singular locus: } s=t=u=x=y-1=0 \tag{6.13}
\end{equation*}
$$

This is the same type of formal equation as for the quadric bundle we considered in [25] (see equations (6.2)), by loc. cit., the map (6.3) provide a universally CH_{0}-trivial resolution: we blow up successively the point P_{i}, then the exceptional divisor of the blowup and the proper transform of C_{i}.
b) d does not vanish at Q. We may then assume $a=x a_{1}, b=x b_{1}$, so that the conditions (6.1) imply

$$
\begin{equation*}
D_{i}: u=0, a_{1} s^{2}+b_{1} t^{2}+d \frac{\partial F}{\partial x}(Q) v^{2}=0 \tag{6.14}
\end{equation*}
$$

Arguing as in the previous cases, we obtain the following formal local form of the singular locus:

$$
\begin{equation*}
x s^{2}+x t^{2}+u^{2}+F v^{2}=0, \text { singular locus: } u=0, s^{2}+t^{2}+\frac{\partial F}{\partial x}(Q) v^{2}=0 \tag{6.15}
\end{equation*}
$$

This is the same type of formal equation as for the quadric bundle we considered in [24] (see equations (6.2)), by loc. cit., the map (6.3) provide a universally CH_{0}-trivial resolution.
This finishes the proof of Theorem 16.

References

[1] Hamid Ahmadinezhad and Takuzo Okada. Stable rationality of higher dimensional conic bundles, 2016. arXiv:1612.04206. 1, 2, 3
[2] Asher Auel, Jean-Louis Colliot-Thélène, and R. Parimala. Universal unramified cohomology of cubic fourfolds containing a plane. In A. Auel, B. Hassett, A. Várilly-Alvarado, and B. Viray, editors, Brauer Groups and Obstruction Problems: Moduli Spaces and Arithmetic, volume 320 of Progress in Mathematics, pages 29-56. Birkhäuser Basel, 2017. 1, 6, 10, 12
[3] Asher Auel, Alena Pirutka, Christian Böhning, and Hans-Christian von Bothmer. Conic bundles with nontrivial unramified brauer group over threefolds. arXiv:1610.04995, 2016. 1, 2, 5, 6
[4] Arnaud Beauville. A very general sextic double solid is not stably rational. Bull. Lond. Math. Soc., 48(2):321-324, 2016. 1
[5] N. Beklemishev. Invariants of cubic forms of four variables. Vestnik Moskov. Univ., Ser. I Mat. Mekh., 1982(2):42-49, 1982. English translation: Moscow Univ. Bull. 37, 1982, 54-62. 10
[6] Spencer Bloch and Arthur Ogus. Gersten's conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4), 7:181-201, 1974. 12
[7] Christian Böhning and Hans-Christian von Bothmer. On stable rationality of some conic bundles and moduli spaces of Prym curves. Comm. Math. Helvetici, to appear, 2016. arXiv:1605.03029. 1, 2, 3, 5, 6
[8] Wieb Bosma, John Cannon, and Catherine Playoust. Magma algebra system, the user language. J. Symbolic Comput., (24(3-4)):235-265, 1997. 18
[9] Andre Chatzistamatiou and Marc Levine. Torsion orders of complete intersections. Algebra Number Theory, 11(8):1779-1835, 2017. 10
[10] Alfred Clebsch. Ueber eine Transformation der homogenen Functionen dritter Ordnung mit vier Veränderlichen. J. reine angew. Math., 1861(58):109-126, 1861. 3, 9
[11] Alfred Clebsch. Zur Theorie der algebraischer Flächen. J. reine angew. Math., 1861(58):93-108, 1861. 3, 9
[12] Jean-Louis Colliot-Thélène. Birational invariants, purity and the Gersten conjecture. In K theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), volume 58 of Proc. Sympos. Pure Math., pages 1-64. Amer. Math. Soc., Providence, RI, 1995. 10
[13] Jean-Louis Colliot-Thélène. Un théorème de finitude pour le groupe de Chow des zéro-cycles d'un groupe algébrique linéaire sur un corps p-adique. Invent. math., 159(3):589-606, 2005. 4
[14] Jean-Louis Colliot-Thélène and Manuel Ojanguren. Variétés unirationnelles non rationnelles: au-delà de l'exemple d'Artin et Mumford. Invent. math., 97:141-158, 1989. 12
[15] Jean-Louis Colliot-Thélène and Alena Pirutka. Cyclic covers that are not stably rational. Izv. Ross. Akad. Nauk Ser. Mat., 80(4):35-48, 2016. In Russian. 1
[16] Jean-Louis Colliot-Thélène and Alena Pirutka. Hypersurfaces quartiques de dimension 3 : non rationalité stable. Ann. Sci. Éc. Norm. Supér. (4), 49(2):371-397, 2016. 1, 4, 7, 9, 17, 20
[17] Kevin R. Coombes. Every rational surface is separably split. Comment. Math. Helv., 63(2):305311, 1988. 10
[18] Igor Dolgachev. Lectures on Invariant Theory. London Mathematical Society Lecture Note Series. Cambridge University Press, 2003. 10
[19] William L. Edge. The discriminant of a cubic surface. Proc. R. Ir. Acad., Sect. A, 80:75-78, 1980. 3, 10
[20] Andreas-Stephan Elsenhans and Jörg Jahnel. The discriminant of a cubic surface. Geometriae Dedicata, 159(1):29-40, 2012. 10
[21] Ofer Gabber, Qing Liu, and Dino Lorenzini. The index of an algebraic variety. Invent. math., 192(3):567-626, 2013. 11
[22] Édouard Goursat. Étude des surfaces qui admettent tous les plans de symétrie d'un polyèdre régulier. Ann. Sci. École Norm. Sup. (3), 4:159-200, 1887. 5
[23] Brendan Hassett, Andrew Kresch, and Yuri Tschinkel. Stable rationality and conic bundles. Math. Ann., 365(3-4):1201-1217, 2016. 1, 5
[24] Brendan Hassett, Alena Pirutka, and Yuri Tschinkel. Stable rationality of quadric surface bundles over surfaces. arXiv:1603.09262, 2016. 1, 2, 6, 9, 14, 21, 22, 25, 26
[25] Brendan Hassett, Alena Pirutka, and Yuri Tschinkel. A very general quartic double fourfold is not stably rational. arXiv:1605.03220, 2016. 1, 14, 21, 26
[26] Brendan Hassett, Alena Pirutka, and Yuri Tschinkel. Intersections of three quadrics in \mathbb{P}^{7}. arXiv:1706.01371, 2017. 1
[27] Brendan Hassett and Yuri Tschinkel. On stable rationality of Fano threefolds and del Pezzo fibrations, 2016. arXiv:1601.07074, to appear in J. reine angew. Math. 1
[28] János Kollár. Nonrational hypersurfaces. J. Amer. Math. Soc., 8(1):241-249, 1995. 2
[29] Igor Krylov and Takuzo Okada. Stable rationality of del Pezzo fibrations of low degree over projective spaces. arXiv:1701.08372, 2017. 1, 2, 3
[30] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications. 13
[31] Takuzo Okada. Stable rationality of cyclic covers of projective spaces, 2016. arXiv:1604.08417. 1
[32] Takuzo Okada. Smooth weighted hypersurfaces that are not stably rational. arXiv:1709.07748, 2017. 1
[33] Takuzo Okada. Stable rationality of index one Fano hypersurfaces containing a linear space. arXiv:1709.07757, 2017. 1
[34] Alena Pirutka. Varieties that are not stably rational, zero-cycles and unramified cohomology, 2016. arXiv:1603.09261. 2, 3, 6, 15
[35] George Salmon. On quaternary cubics. Phil. Trans. R. Soc. Lond., 150:229-239, 1860. 3, 9
[36] Stefan Schreieder. Quadric surface bundles over surfaces and stable rationality. arXiv:1706.01358, to appear in Algebra Number Theory. 1, 2, 3, 15, 16, 17
[37] Stefan Schreieder. On the rationality problem for quadric bundles. arXiv:1706.01356, 2017. 1, $2,3,15,16$
[38] Sir Peter Swinnerton-Dyer. The brauer group of cubic surfaces. Mathematical Proceedings of the Cambridge Philosophical Society, 113(3):449-460, 1993. 10
[39] Burt Totaro. Hypersurfaces that are not stably rational. J. Amer. Math. Soc., 29:883-891, 2016. 1, 2, 4
[40] Claire Voisin. Unirational threefolds with no universal codimension 2 cycle. Invent. math., 201(1):207-237, 2015. 1, 9, 17

Asher Auel, Department of Mathematics, Yale University, New Haven, Connecticut 06511, United States

E-mail address: asher.auel@yale.edu
Christian Böhning, Mathematics Institute, University of Warwick, Coventry CV4 7AL, England

E-mail address: C.Boehning@warwick.ac.uk
Alena Pirutka, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
National Research University Higher School of Economics, Russian Federation
E-mail address: pirutka@cims.nyu.edu

