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Continuous Multi-Task Bayesian Optimisation with Correlation
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Abstract

This paper considers the problem of simultaneously identifying the optima for a (continuous or

discrete) set of correlated tasks, where the performance of a particular input parameter on a par-

ticular task can only be estimated from (potentially noisy) samples. This has many applications, for

example, identifying a stochastic algorithm’s optimal parameter settings for various tasks described

by continuous feature values. We adapt the framework of Bayesian Optimisation to this problem.

We propose a general multi-task optimisation framework and two myopic sampling procedures that

determine task and parameter values for sampling, in order to efficiently find the best parameter

setting for all tasks simultaneously. We show experimentally that our methods are much more

efficient than collecting information randomly, and also more efficient than two other Bayesian

multi-task optimisation algorithms from the literature.

Keywords: Heuristics, Parameter tuning, Multi-task optimisation, Global optimisation

1. Introduction

Optimisation is the task of finding the input of a function that maximises the output. We

consider the problem where one is given multiple optimisation problems on the same domain where

the optima of one problem can teach us about the optima of another. Given a set of tasks that can

be described by continuous features, and a tool with continuous parameters to be tuned, we would

like to identify the unique optimal parameter setting for each task. We can perform experiments

to collect information, i.e., run the tool with a specific parameter setting on a specific task, and

obtain a sample of a noisy performance measurement. Given a finite budget, the goal is to decide
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which sequence of experiments to perform that would allow us to construct the best mapping from

task features to optimal parameter settings.

This general problem occurs in many applications, including

• Tuning of Optimisation Algorithms. Many optimisation algorithms have parameters that

need to be tuned specific to the problem instance at hand. It is thus desirable to construct

a mapping that suggests the best parameter setting depending on features of the problem

instance. In the machine learning community, training of deep neural networks requires

setting the learning rate for gradient descent depending on the dataset and model. In the

meta-learning community, much work has been done on deriving a mapping from problem

features to best algorithm parameters based on a given set of performance data (e.g. Smith-

Miles, 2008). Our method can be used to decide which experiments should be conducted to

identify the best mapping given a budget of experiments.

• Dose-Finding Clinical Trials. The dosage and the compound mixture of a drug may have

a strong impact on a drug’s effect, and different patients react differently to the drug. Our

method can be used to design more efficient clinical trials to identify the best dosage or

compound mixture for each patient, based on patient characteristics such as age or biomarker

response. A related application has been considered by Krause and Ong (2011).

• Online Advertising. In online advertisement, it is easy to deploy several different advertise-

ments and advertisement formats (banner, video, etc.) simultaneously, and pick for each

viewer the advertisement that one believes results in the highest return (in terms of click-

through rate or money spent). Often, some information is available on the viewers, such as

search terms, websites visited or order history. Our method could be used to identify which

advertisement would be most effective for each viewer, based on some viewer characteristics.

• Online Operating Policies. A complex system may best be operated in different ways depend-

ing on the context such as environmental conditions. For example, a factory may be using

dispatching rules for real-time scheduling, and the dispatching rules have some parameters

whose optimal setting depends on shop floor conditions such as utilisation level or product

mix. Heger et al. (2016) use a large number of experiments to derive a policy for setting

dispatching rule parameters depending on shop floor conditions. Our method can be used
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to identify suitable experiments that will allow constructing an appropriate mapping more

efficiently.

In this paper we propose two myopic sequential sampling methods for collecting performance

measurements of task-parameter pairs such that one can construct a mapping that maximises the

total expected performance across all tasks. Our method uses Gaussian Processes to model the

unknown function from task features and parameters to performance, and thus exploits covariance

in the space of tasks and parameters. It iteratively suggests the next sample where it suspects the

highest immediate information gain. We demonstrate empirically that our methods outperform

two state-of-the-art Bayesian multi-task optimisation algorithms from the literature. Furthermore,

to the best of our knowledge, we are also the first to explicitly consider two different ways for a

decision maker to pick a solution: the solution with the best sampled performance, and the solution

with the best predicted (but not necessarily sampled) performance.

The paper is structured as follows. In Section 2 we provide an overview of similar problems and

solutions considered in the literature. In Section 3 we provide the general problem framework, and

then describe the Gaussian Process model and our two new sampling procedures in Section 4. A

benchmark algorithm is described in Section 5. In Section 6 we empirically evaluate our methods

on three synthetic benchmarks and we conclude in Section 7 with a summary and some ideas for

future work.

2. Literature Review

In this paper, we look at continuous multi-task Bayesian Optimisation, where the goal is to

simultaneously identify the global optimum for each task when there is a continuous distribution

of correlated tasks.

When trying to find the global optimum of an expensive to evaluate function without infor-

mation on the gradient, Bayesian Optimisation based on Gaussian Processes, or Kriging models,

have gained much attention. These methods build a surrogate model of the objective function

based on a few initial samples and then use an acquisition function (sometimes called infill crite-

rion) to iteratively decide where to sample next to improve the model and find better solutions.

The most popular Bayesian Optimisation algorithm is probably the Efficient Global Optimisation
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(EGO) algorithm of Jones et al. (1998) that combines a Gaussian Process to interpolate an expen-

sive function and an expected improvement criterion for deciding where to sample next. The SKO

algorithm (Huang et al., 2006b) extends the EGO algorithm by proposing an acquisition function

that also accounts for noise in function evaluations. Especially in the area of multi-armed bandits,

UCB-type algorithms are often used (Srinivas et al., 2010).

The Knowledge Gradient for Correlated Beliefs (Frazier et al., 2009) is a myopic sampling policy

that aims to maximise the new predicted performance after one sample. It can be applied when

using a Gaussian Process with a discretised input, has a theoretical basis in dynamic programming

and provides myopic and asymptotic guarantees. The Knowledge Gradient policy for Continuous

Parameters (Scott et al., 2011) generalises the EGO algorithm to noisy functions. Perhaps the

most interesting difference between the Knowledge Gradient policy and previous policies is that

the Knowledge Gradient accounts for covariance when judging the value of a sample, i.e., the

expected improvement takes into account the possibility that as a result of the new sample, the

predicted performance at other previously sampled points may change. Other popular Bayesian

optimisation variants that take into account covariance include Stepwise Uncertainty Reduction

(Villemonteix et al., 2009; Chevalier et al., 2014), Predictive Entropy Search (Hernandez-Lobato

et al., 2014), and the Integrated Expected Conditional Improvement (IECI) (Gramacy and Lee,

2011). An extensive overview and empirical comparison of various infill criteria on a range of noisy

problems has been provided by Picheny et al. (2013b).

The use of multi-task Gaussian Process for optimisation is widely used in multi-fidelity optimi-

sation. One exploits information from a secondary low fidelity model that can be sampled more

cheaply in order to optimise an expensive high fidelity model, and multitask learning/co-kriging

can be used to integrate information from several models. Forrester et al. (2007) provide a con-

cise example and Huang et al. (2006a) extend the SKO algorithm to multi-fidelity setting where

a fidelity level and input parameters are to be selected for each sample. Swersky et al. (2013) use

an acquisition function based on entropy search whilst accounting for the cost of a new sample

and Poloczek et al. (2017) propose a similar model with the Knowledge Gradient used to measure

improvement in the high fidelity model. Picheny et al. (2013a) considers an interesting case where

the precision of an evaluation can be chosen, at the expense of higher computational cost for higher

precision.
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A few papers extend the idea of Bayesian Optimisation to the case where several related op-

timisation problems have to be solved sequentially. Morales-Enciso and Branke (2015) consider

the optimisation of a changing objective function with EGO, and propose three different ways to

re-use information gathered on previous objective functions to speed up optimisation of the current

objective function: using the old posterior mean as the new prior mean, treating old samples as

noisy, and treating time as an extra input dimension to the learnt function. The latter idea is also

used by Poloczek et al. (2016) to warm-start Bayesian Optimisation, however with the Knowledge

Gradient as the acquisition function for the current optimisation task. A similar problem has been

much studied in the field of Contextual multi-armed bandits, an extension of the multi-armed ban-

dit problem where the best arm depends on a context that is randomly changing with time. Such

models are often viewed as idealised models for reinforcement learning where one must learn the

optimal action for every state. In such a case, sampling policies must aim to maximise cumulative

reward, see Zhou (2015) for a survey. Krause and Ong (2011) use Gaussian Processes with inputs

that are both decision variables and context variables and propose an upper confidence bound

acquisition function to find the best arm for each context.

Related to contextual multi-armed bandits is the field of contextual policy search, which tries

to identify the best parameters of a lower level policy depending on the context, see Deisenroth

et al. (2013) for a survey. Most papers in this area assume the context is a consequence of previous

actions, however Metzen (2015) considers a setting where the context is free to be chosen by the

learner during optimisation, and the goal is to find parameters for a policy to optimise rewards

over all contexts in which the policy will be used. For this closely related problem, Metzen (2015)

proposes an adaptation of entropy search that also exploits the correlation between contexts, and

applies it to a robotic control task.

The specific goal we consider in this work is to identify the best solution for multiple optimisation

problems simultaneously. Different from the approaches to contextual multi-armed bandits and

most reinforcement learning applications, the “context” (or state or optimisation problem) is not

changing externally, but is within the control of the experimenter during sampling. An example

would be when tuning an algorithm for different problem instances, it is up to the experimenter

to decide which algorithm parameters to test on which problem instance. Pearce and Branke

(2016) consider the problem of learning the best of a finite set of tools for each of a finite set of
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tasks, with correlation across tasks but independence between tools. They provide an acquisition

function that accounts for the effect a new sample will have on the performance prediction of all

the tasks. Hu and Ludkovski (2015) considered the same problem with continuous tasks. They

use independent Gaussian Processes to approximate each tool’s performance over the task space

and propose an acquisition function based on the expectation of the maxima of all functions,

however do not account for correlation across task space. Bardenet et al. (2013) consider the

problem of finding the best hyper-parameters for training deep belief networks where the best

parameter settings vary with features of the dataset. They use a Gaussian Process from the joint

space (dataset features, algorithm parameters) to algorithm performance. For data acquisition,

the proposed SCoT algorithm visits the datasets in turn and samples the hyper-parameter setting

that maximises EGO expected improvement on that dataset. Finally, Ginsbourger et al. (2014)

solve the same problem of optimising parameters conditional on a task for a range of tasks. When

estimating the improvement resulting from sampling a particular parameter on a particular task,

they use an EGO-like approach and consider the improvement that this point may have over the

current best predicted parameter on the same task. Since this algorithm is closely related to our

methods, it will be described in more detail in Section 5, and is used as benchmark in our empirical

comparison in Section 6

Given the success of multi-fidelity methods and contextual optimisation methods, when doing

multi-task optimisation, exploiting covariance across tasks can provide significant performance

gains. Unlike multi-fidelity models that aim to optimise a single expensive function, or contextual

multi-armed bandit problems or time dependent problems, we consider the problem of directly

optimising multiple tasks simultaneously, where there is a distribution of tasks. To the best of our

knowledge, our approach is the first that accounts for covariance across tasks when deciding where

to allocate the next sample and works on continuous domains. We look at a generalised multi-task

simultaneous optimisation problem and propose two novel acquisition functions that myopically

aim to maximise the predicted improvement at the next step.

3. Problem Formulation

We assume that there exists a (discrete or continuous) set of tasks described by DX features,

x ∈ X, and the tasks are distributed according to a known density P[x]. There is a tool with
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DA tuneable parameters a ∈ A. Executing the tool with parameters a on a task with features

x yields a performance measurement Yx,a = θ(x, a) + ε where θ : X × A → R is a deterministic

latent function from (task, parameter) to expected performance and ε is independent and identically

distributed observation noise ε ∼ N(0, σ2ε ). Our aim is to find a mapping S : X → A from a given

task to the optimal parameter setting for this task that approximates the true optimal mapping

S∗(x) = argmax
a

θ(x, a) with incomplete information. The quality of our derived mapping S(x) at

the end of sampling is the corresponding true expected performance over all tasks:∫
x∈X

θ(x, S(x))P[x]dx. (1)

We assume we have a fixed budget of N samples (tests of a parameter setting on a task), and that

we can sample iteratively, i.e., we can select the task x and the parameter setting a from which to

sample performance Yx,a based on the information collected so far.

Given this formulation, if x is constant, the problem reduces to a single global optimisation over

A. However, because there is a range of x, one must find the global optimal maxa θ(x, a) for each

x. Examples of benchmark functions used later can be seen in Figure ??.

Our formulation also accounts for task distribution because in practice, under a constrained

budget, finding the optimal parameters for tasks with unusual outlying features (low P[x]) is less

useful than finding the optimal parameters for common tasks (high P[x]). We use the notation of

P[x] to describe task density, however we do not assume x is random but simply that the density

is normalised to integrate to 1. Note that one may want to weight the tasks such that some types

of tasks have higher priority than others. In this framework, P[x] can be used to describe task

importance as well as or instead of task distribution. Note that if the set of tasks is finite, the

integral in Equation 1 is replaced with a summation and P[x] is a probability mass function.

In the clinical trials dose finding example given earlier, xmay be a patient’s cancer cell biomarker

measurements, P[x] would be the patient population distribution across biomarker space X, and

a would be the quantities of compounds to use in a treatment. θ(x, a) would be the expected

measured outcome of the treatment such as average reduction in tumour size. A clinician would

then like to find the compound mixture a for each patient x that maximises the expected tumour

reduction θ(x, a) across all patients P[x]. The clinician can then create a mapping from a given

patient x to the optimal compounds a = S(x).

In the earlier example of tuning an optimisation algorithm, x would be the features of a problem
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instance, P[x] would be the distribution of problem instances one expects to encounter across feature

space X, and a would be the parameters of the optimisation algorithm. θ(x, a) would be a measured

performance metric of the algorithm when run with parameters a on problem instance x. For a

given problem instance x, a user would like to know the best parameters a = S(x) in order to

maximise the expected performance θ(x, a).

Using this framework, we consider two ways to derive a mapping S(x). In general, for a risk

neutral decision maker, S(x) would return the solution with the best predicted performance based

on the samples collected and the derived performance prediction model µ(x, a), such a mapping is

given by

S1(x) = argmax
a

µ(x, a). (2)

As a special case of the above framework, when the task distribution is discrete, the sampling

budget is greater than the number of tasks, and there is no observation noise (σε = 0), one may

also consider a risk averse decision maker. In this paper, we define such a decision maker as one that

only selects parameters a for a task xi from parameters that have been measured, i.e., of which the

performance is known with certainty. If the set of sampled parameters is denoted AN = {a1, ..., aN}

and the subset corresponding to task xi is denoted ANi = {an|xn = xi, n ∈ {1, ..., N}}, a mapping

for such a decision maker is then given by

S2(xi) = argmax
a∈AN

i

θ(xi, a). (3)

where we have noted that the true objective function is known for past evaluated points {y1, ..., yn} =

{θ(x1, a1), ..., θ(xn, an)} as there is no observation noise.

4. Myopic Sampling Methods

We propose to use a Gaussian Process regression model to predict the underlying latent function

θ(x, a) based on the n data points collected so far (x1, a1, y1), ..., (xn, an, yn). Gaussian Process

regression, also known as kriging, has been used successfully for Bayesian Optimisation due to

its simplicity and the possibility to derive closed form solutions for the posterior distribution over

possible function values. Given closed form posterior distributions, calculating expected incremental

improvements in various metrics given a sample can also be done analytically.
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Figure 1: Given functions of multiple inputs, we aim to find the optimum of some inputs conditioned on the remaining

inputs. In 2D, for each point along the horizontal axis we aim to find the optimal value along the vertical axis as

shown by the thick blue lines.

For a given input (x, a), Gaussian Process regression treats the value of the unknown latent

function θ(x, a) as a Gaussian random variable whose mean and variance are determined by the

expected similarity between the response at the given input and the responses for evaluated inputs.

Similarity between responses is determined by the kernel function and encodes properties such as

smoothness.

For this section we shall use the notation x̃ = (x, a) ∈ X ×A and write functions of both input

variables as µn(x, a) = µn(x̃). We define the set of sampled task features values {x1, ..., xn} = Xn,

parameters {a1, ..., an} = An, the set of input pairs {(x1, a1), ..., (xn, an)} = X̃n and column vector

of responses (y1, ..., yn) = Y n. We define the sequence of filtrations, Fn, as sigma algebras generated

by the data collected up to time n, Fn = σ{(x1, a1, y1), . . . , (xn, an, yn)}. Given prior mean and

covariance functions µ0(x, a), k0((x, a), (x′, a′)), one may use the Matrix Inversion Lemma (Hager,

1989) to condition the prior functions yielding the posterior mean and covariance functions as

follows (Rasmussen and Williams, 2004),

E [θ(x, a)|Fn] = µn(x̃) = µ0(x̃) + k0(x̃, X̃n)(Kn + σ2ε I)−1(Y n − µ0(X̃n)) (4)

Cov[θ(x, a), θ(x′, a′)|Fn] = kn(x̃, x̃′) = k0(x̃, x̃′)− k0(x̃, X̃n)(Kn + σ2ε I)−1k0(X̃n, x̃′) (5)

where Kn
ij = k0((xi, ai), (xj , aj)) is the n × n matrix composed of the prior covariance function

evaluated for all the sampled input points X̃n. We have written k0(x̃, X̃n) to denote the 1 × n

matrix of prior covariance between x̃ and all points in X̃n and likewise k0(X̃n, x̃′) is the n × 1

matrix.
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As mentioned in Section 3, there are at least two choices of the derived mapping S(x) that are

not clearly distinguished in the current literature. The EGO and SKO algorithms were implicitly

designed on the basis that the input corresponding to best sampled point will be returned to the

user at the end of sampling, which corresponds to the mapping S2(x) from Equation 3. For the

EGO algorithm, samples are allocated to maximise the expected improvement (EI) of the largest

sampled value

EI(a) = E
[
max{y1, ..., yn, yn+1}|Fn, an+1 = a

]
−max{y1, . . . , yn} (6)

= µn(a)Φ

(
ȳ − µn(a)

δn(a)

)
− δn(a)φ

(
ȳ − µn(a)

δn(a)

)
(7)

where Φ(z) and φ(z) are standard normal cumulative and density functions, ȳ = max{y1, ..., yn} is

the current best sampled function value and δn(a) =
√
kn(a, a) is the posterior standard deviation.

In the multi-task setting however, S2(x) and EGO can only be used if the task distribution

is discrete and the sampling budget is greater than the number of tasks, therefore cannot be

used in the continuous task case (infinite tasks) or whenever the tasks outnumber the sampling

budget. Using a regression model, such as Gaussian Process Regression, one is able to predict

the performance of any point, and a risk-neutral decision maker is more likely to choose the point

with the best predicted (but not necessarily sampled) performance. This is the assumption used by

Frazier et al. (2009) in their paper on Knowledge Gradient for Correlated Normal Beliefs, although

that algorithm was not designed specifically for continuous optimisation. In our case of multi-task

optimisation, we would choose the mapping S1(x) as given by Equation 2, which is defined for any

sampled or unsampled task and thus applicable also if the task distribution is continuous. Our

methods below will mainly target the mapping S1, but we will also propose a new way to deal with

S2 in Section 4.3

In order to allocate samples to maximise improvement, we require an estimate of the current

performance upon which we must improve, and we note that as with constructing the mapping, it

is not possible to use the highest sampled point as this does not exist for all tasks. Instead we use

the model’s prediction of expected performance. Given the mapping S1(x), the current predicted

performance on a task x is µn(x, S1(x)) = maxa µ
n(x, a) and so the total predicted performance

after n samples across the task distribution is given by

Pn =

∫
x∈X

µn(x, S1(x))P[x] dx =

∫
x∈X

max
a

µn(x, a)P[x] dx

10



that is the same as Equation 1 with the true function, θ(x, a), replaced by the prediction µn(x, a).

Given a measure of performance, we intend to derive myopic sampling policies that maximise

the incremental gain, Pn+1−Pn. Therefore we require an updating formula for the predicted perfor-

mance after the next sample E
[
Pn+1|Fn, x̃n+1

]
which requires the new posterior mean µn+1(x, a).

Equation 4 gives the update to the prior mean and covariance functions from 0 samples to n > 0

samples. Since the equations derive from a conjugate prior we may use Bayesian updating, a simple

change of indices from 0 and n to n and n+ 1 yields the single step update to the posterior mean

µn+1(x̃) = µn(x̃) +
kn(x̃, x̃n+1) (yn+1 − µn(x̃n+1))

kn(x̃n+1, x̃n+1) + σ2ε

which requires knowing yn+1. Before measuring the new response value yn+1, the posterior predic-

tive distribution of yn+1 conditioned on Fn is given by the uncertainty in θ(x̃n+1) and the noise,

ε, therefore

yn+1 ∼ N(µn(x̃n+1), kn(x̃n+1, x̃n+1) + σ2ε ),

and the above equation may be factorised as follows

µn+1(x̃) = µn(x̃) + σ̃n(x̃; x̃n+1) Zn+1 (8)

where Zn+1 is the stochastic z-score of the new response value on the prior predictive distribution

and is given by

Zn+1 =
yn+1 − µn(x̃n+1)√
kn(x̃n+1, x̃n+1) + σ2ε

which is a standard normal random variable Zn+1 ∼ N(0, 1) when conditioned on Fn. The re-

maining term σ̃n(x̃; x̃n+1) which is given by

σ̃n(x̃; x̃n+1) =
kn(x̃, x̃n+1)√

kn(x̃n+1, x̃n+1) + σ2ε

may be seen as a deterministic function of x̃ parametrised by x̃n+1 that is the additive update to

the posterior mean caused by the new sample at x̃n+1 and scaled by the stochastic Zn+1. With a

predictive distribution of the posterior mean after a new sample we can express the expectation,

over Zn+1 ∼ N(0, 1), of the performance prediction after the next sample as

E
[
Pn+1|Fn, x̃n+1

]
=

∫
x∈X

E
[
max
a
{µn(x, a) + σ̃n((x, a); x̃n+1)Zn+1}

]
P[x] dx. (9)
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Finally, we may write the incremental gain, or expected improvement, the difference in predicted

performance between consecutive samples as follows

I(x̃) = E
[
Pn+1 − Pn|Fn, x̃n+1 = x̃

]
=

∫
x′∈X

E
[
max
a′
{µn(x′, a′) + σ̃n((x′, a′); x̃)Zn+1} −max

a′
µn(x′, a′)

]
P[x′] dx′. (10)

The above expression can be evaluated exactly when X and A are finite sets. However, when X

and A are infinite continuous sets, there is no solution for the expectation over Zn+1 of the max

function, nor is it possible to integrate across tasks for arbitrary P[x]. Next, we propose the CLEVI

and REVI sampling policies based on approximations to Equation 10.

4.1. CLEVI Sampling Policy

We aim to allocate samples in order to maximise I(x̃), the expected improvement in predicted

performance calculated across all tasks, however this integral must be approximated. The Convo-

lutional Local Expected Value of Improvement (CLEVI) policy makes two assumptions in order to

evaluate the integral. Firstly, for each x, the maximisation over continuous A may be approximated

by a maximisation over a finite set AD, and secondly, the improvement at unsampled tasks may

be approximated by the improvement at the sampled task and the covariance across tasks. By

replacing the maximisation over A with a maximisation over AD, with nA = |AD|, the expectation

in the integrand of I(x̃) may be written as:

E
[
max{µn(x′, AD) + σ̃n((x′, AD); (x, a))Zn+1} −maxµn(x′, AD)

]
(11)

where µn(x,AD) = (µn(x, a1), µ
n(x, a2), . . . ) ∈ RnA is the vector of means and similarly for

σ̃n((x,AD); (x, a)). Gathering terms, Equation 11 is thus of the form

E [max{µ1 + σ1Z, . . . , µnA + σnAZ}] (12)

which is the normal expectation of the maximum of linear functions. This expectation can be

cheaply evaluated using Algorithm 1 in Knowledge Gradient for Correlated Normal Beliefs (Fra-

zier et al., 2009) reproduced here in Algorithm 1. To summarise briefly, which of the linear

functions is the largest varies with Z, finding the highest function for each Z and calculating

the intersections can be done in O(nAlog(nA)) time. Once the piece-wise linear ”ceiling” over
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all the linear functions is known, the expectation over Z is a sum of expectations of each lin-

ear piece, a sum of means of truncated normal distributions. Graphically, the maximal a of

µn+1(x, a) = µn(x, a) + σ̃n((x, a); x̃n+1) Z moves away from the maximal a of µn(x, a) as Z moves

away from 0 and Algorithm 1 calculates the expectation of the height of the new maxima over

the normally distributed scale Z. Further information can be found in Frazier et al. (2009). For

convenience, we define the function KG : RnA ×RnA → R that takes a vector of means (intercepts)

and a vector of additive updates (gradients) and returns the expectation as given by Algorithm 1.

Given this function we may write the integral as

I(x̃) ≈
∫
X
KG

(
µn(x′, AD), σ̃n((x′, AD); (x, a))

)
P[x′]dx′. (13)

The second assumption we make is that the expected improvement at an unsampled task x′ 6= x

may be approximated by the improvement at the sampled task and the covariance between tasks:

KG
(
µn(x′, AD), σ̃n((x′, AD); (x, a))

)
≈ KG

(
µn(x,AD), σ̃n((x,AD); (x, a))

)
kX(x, x′) (14)

where kX(x, x′) comes from the Gaussian Process model and we assume that the kernel is factoris-

able k0((x, a), (x′, a′)) = σ20kX(x, x′)kA(a, a′) which is true for the Matern and exponential classes

of kernels. This assumption means that the KG function need only be called once. Plugging both

of these assumptions into Equation 10 and rearranging yields the following formula

I(x̃) ≈ KG
(
µn(x,AD), σ̃n((x,AD); (x, a))

) ∫
X
kX(x, x′)P[x′]dx′. (15)

where the integral of the right hand side is the convolution between the task covariance and the

underlying task distribution which may be found analytically in special cases such as a Gaussian

kernel and either a uniform distribution, a triangular distribution, Gaussian distribution or even

sums of these distributions by the linearity of the convolution operator. If no analytical expression

can be found, then Monte-Carlo integration may be used replacing the true distribution with a

kernel density estimate from samples of P [x] where the kernel is the same kX(x, x′) as the Gaussian

process. Given these two assumptions, the CLEVI acquisition function may be written as

CLEVI(x, a) = KG
(
µn(x,AD), σ̃n((x,AD); (x, a))

)
P̃ [x] (16)

where P̃ [x] is simply the task distribution with the convolution applied. New samples are allocated

to the (x, a) that maximise this CLEVI acquisition function. The CLEVI sampling policy treats
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Figure 2: In all plots, black solid line: the task distribution P [x], blue dotted line: transformed task distribution

P̃ [x] with a Gaussian with length scale lX = 10. Using the transformed P̃[x] instead of P[x] down weighs sampling at

sharp boundaries as shown in the left plot, and up weighs sampling between clusters as shown in the right plot.

each task as a single global optimisation and applies the Knowledge Gradient Policy to evaluate

the value of a new sample on that task alone. However this improvement is weighted by P̃[x] which

gives the task a relative importance. If the untransformed P[x] were used instead, the policy may

allocate samples to where the single point task density, P[x], is high. However this may not be

ideal in certain cases. For example, given a uniform task distribution and a squared exponential

kernel, allocating a sample to the boundary of the task space will only affect other tasks that are

near the boundary, whereas a sample allocated to a task that is slightly away from the boundary

will influence tasks on the boundary and also deeper tasks. Further examples are given in Figure 2.

Next we discuss the choice of discretisation AD. For single-task optimisation, the Knowledge

Gradient for Continuous Parameters (Scott et al., 2011) also calculates an estimate of the expected

improvement by discretising over the decision variable, A. They propose to discretise A using

past evaluated points and the current point AD = An ∪ {an+1} therefore nA = n + 1. This has

the advantage that points will cluster around the global maxima, and if there is no observation

noise the output of Algorithm 1 reduces to the popular EI function as used in the EGO algorithm.

However, we would like to use the same set of points AD for every task value x ∈ X for which the

optimal a may be different. Therefore we use a uniform latin hypercube instead of past observations

specifically in order to avoid clustering. We use the same AD for all tasks so that the CLEVI function

is a smooth deterministic function that is easily optimised and like the Knowledge Gradient policy,

the derivative of CLEV I(x, a) with respect to (x, a) can be derived in closed form and used with

multiple starts in gradient ascent optimisers. When choosing nA, it is necessary to have enough

reference points in order to estimate changes in the peak posterior mean for any given task xn+1.
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Since the total n samples are spread out over all X×A and only a subset of samples influence task

xn+1, by setting nA = n+ 1, the n+ 1 reference points, which are confined to xn+1 × A, are thus

denser on the task than the relevant samples and therefore are sufficient to capture changes in the

posterior mean across the range of tasks.

A single evaluation of the EGO expected improvement (EI) function requires evaluating both

the posterior mean O(n) and covariance O(n2). Evaluating the CLEVI function requires evaluating

the posterior mean and covariance nA times, and one call to the KG function which has complexity

O(nAlog(nA)), thus the complexity of one CLEVI call is O(nAn
2+nAlog(nA)), strictly greater than

one EI call. In this problem formulation, the expected improvement can only be measured using

the posterior mean which is changed by the sample, therefore requiring extra calls to the posterior

covariance. This complexity may be easily reduced by assuming that points in AD that have low

correlation with an+1 will have zero posterior correlation, reducing computation with little loss of

efficiency. This ”zeroing” of posterior covariance is discussed in Section 4.4.

The CLEVI sampling policy is readily adapted to the case where the set of tasks is finite and

each task has an associated probability. The convolution is simply a summation, and the CLEVI

function can be optimised over A for each task individually. Likewise, if A is finite, one may set

AD = A, and continuously optimise over x. In the special case where there are finite tasks, finite

parameters and only correlation across tasks, the KG function reduces to the EI function and the

CLEVI policy is equivalent to the NEVI policy of Pearce and Branke (2016).

4.2. REVI Sampling Policy

The Regional Expected Value of Improvement policy (REVI) improves upon the CLEVI policy

by not making the second assumption and instead accounting for improvement of similar tasks

by evaluation rather than approximation, however this requires greater computation. Equation 9

gives the expected improvement across the entire distribution of tasks P[x]. However this cannot

be evaluated exactly if X and A are continuous sets, therefore we must approximate the expression

by discretising over X and A. By discretising over A as described above in the CLEVI policy, for

a given x the expectation over yn+1 and Zn+1 can be computed exactly using the KG function.

We discretise over X by replacing it with a finite set XMC of nX task feature values distributed

according to P[x]. We replace a calculation of the expected improvement over the whole distribution

of X with the expected improvement over nX randomly generated tasks XMC , thus converting the
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continuous integral into a Monte-Carlo integral. We define the Monte-Carlo estimate of Equation

10 as Î(x, a) ≈ I(x, a) given by

Î(x, a) =
1

nX

∑
xi∈XMC

E
[

max
aj∈AD

{µn(xi, aj) + σ̃n((xi, aj); (x, a))Zn+1} − max
aj∈AD

µn(xi, aj)

]
(17)

that tends to the true value I(x, a) as nX and nA tend to infinity. In the summation in Equation

17, each term is the expectation over the maximum of linear functions of Zn+1, therefore each term

may be calculated using the KG function and the summation yields the REVI acquisition function

REV I(x, a) =
1

nX

∑
xi∈XMC

KG
(
µn(xi, AD), σ̃n((xi, AD); (x, a))

)
. (18)

The above Monte-Carlo integral does not usually include the proposed sample task xn+1, because

xn+1 is not a sample from P[x]. It may be included by adding CLEV I(x, a) such that REVI is a

mix of two estimates of I(x̃) although we do not consider such approximations here. The (task,

parameter) pair that maximises the REVI function is chosen for sampling. At each time step, the

random sets XMC and AD are generated and held constant until the next time step when they

are regenerated. Jittering the discretisation in both domains ensures the learnt mapping does not

overfit to one particular discretisation and in the long term the learnt mapping converges to the

true optimal mapping. We discuss more efficient choice of nX and XMC in Section 4.4.

One call to REVI requires the computation of Î(xn+1, an+1) which can be decomposed. There

are nXnA fixed points in the discretisation. For nX(nA − 1) of the points that do not vary with

(x, a)n+1, the posterior means and final two terms of the posterior covariance can be precomputed

and stored between REVI calls. Therefore, only the first two terms of the matrix multiplication

for the posterior covariance are necessary, resulting in an O(nXnAn) computation per call. The

remaining posterior means and covariances for the nX points corresponding to (XMC , a
n+1) must be

computed resulting in a cost of O(nXn
2) and the KG function must be called nX times. Overall, one

call to REVI requires O(nXn
2+nXnAn+nXnAlog(nA)). Assuming nA = n and in our experiments

we set nX = 4
√
n, each REVI call has leading order complexity O(n2.5) which is greater than one

call to EI, O(n2), however less than the O(n3) required to fit a Gaussian Process. Much of the

computation may be reduced by assuming points in the discretisation that are uncorrelated with

the new sample may be set to 0 which is discussed in Section 4.4.
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Algorithm 1 The KG Function The following algorithm takes a vector of intercepts and gra-

dients finds the piece-wise linear epigraph, or ”ceiling”, of all the overlapping linear functions and

calculates the expectation over a normally distributed input Z. Z̃ is the vector of Z values at the

vertices of the epigraph, I is the vector of indices of the corresponding linear functions that are

part of the epigraph. The algorithm starts with an epigraph of two lines with the lowest gradients,

and at each step adds a steeper line and updates the epigraph. All vector indices to start from 1.

Require: µ, σ ∈ RnA

Remove dominated pairs from µ and σ

Sort the elements of µ and σ in order of increasing σ

Initialize µ← µ−max{µ}, I ← [1, 2], Z̃ ← [−∞, µ1−µ2σ2−σ1 ]

for i = 3 to |µ| do

(1) j ← last(I), z ← µi−µj
σj−σi

if z < last(Z̃) then Delete last element of I and last element of Z̃, return to (1)

Add i to end of I and z to end of Z̃

end for

Z̃ ← [Z̃,∞]

return
length(I)∑
i=1

µIi(Φ(Z̃i+1)− Φ(Z̃i)) + σIi(φ(Z̃i)− φ(Z̃i+1))
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Figure 3: Each line represents the posterior mean at a given point after a new sample yn+1 with z-score given

by Z. Algorithm 1 removes the dominated functions (dotted), finds the epigraph (highlighted), and calculates the

expectation of the epigraph over Z ∼ N(0, 1).

4.3. CLEVI and REVI Sampling Policy for Discrete Task Distributions

Adapting the CLEVI policy to discrete tasks or discrete parameters is easily done as explained

in Section 4.1. Adapting the REVI policy when the set X is finite and P[x] is a probability mass
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function, the expected improvement over all tasks can be computed and weighted according to the

relative probabilities of each task, the new acquisition function becomes

REVID(xj , a) =
∑
xi∈X

P[xi]KG
(
µn(xi, AD), σ̃n((xi, AD), (xj , a))

)
(19)

which is equivalent to taking the limit limnx→∞REVI(xj , a). As the sample size grows, the ratios of

tasks in the Monte-Carlo approximation Î(xj , a) tend to the true probabilities. If we further assume

that the parameter space is discrete with no correlation between parameters, the KG function

reduces to the EI function and REVID(x, a) is equivalent to the REVI acquisition function of

Pearce and Branke (2016) which is proven myopically and asymptotically optimal in this special

case.

In the case of a risk averse decision maker who only chooses from sampled points when selecting

parameters for a given task, it is important to ensure that good solutions for each task are actually

sampled. As discussed in Section 3, the mapping for such a decision maker is defined as

S2(xi) = argmax
a∈AN

i

µN (xi, a)

where ANi = {an|xn = xi, n ∈ {1, ..., N}} is the subset of a values that have been measured on task

xi and we have utilised that yn = µN (xn, an). The REVI and CLEVI policies aim to maximise the

peak posterior mean for each xi, which can result in some tasks not being sampled. For example, if

two tasks are very similar, it is only necessary to sample one of them to learn about both. However,

for such an unsampled task, the decision maker would be restricted to select the best of the few

randomly generated initial samples, and the overall performance of CLEVI and REVI is possibly

rather poor when using S2(xi).

In order to gain the performance advantages of using the posterior mean while only select-

ing parameters from sampled points, we propose here to sample according to REVI and CLEVI,

however allocate the final nX samples of the budget according to the EGO algorithm. Since we

have nX tasks, we sequentially allocate one sample to each task, and determine the parameter to

sample by maximising the expected improvement of the next sample. The procedure is outlined in

Algorithm 2.

As we show in the next section, maximising the posterior mean before applying EGO for

the final samples is superior when compared to using EGO for all samples. We apply EGO

18



Algorithm 2 Risk averse REVI

Initialise n0 samples using Latin Hypercube Design

update functions µn0 , kn0

for n = n0 + 1 to N − nX do

(x, a)n+1 ← argmax REV ID(x, a)

yn+1 ← θ(xn+1, an+1)

update functions µn+1, kn+1

end for

i← 1

for n = N − nX to N do

an+1 ← argmax EGO(xi, a)

yn+1 ← θ(xi, a
n+1)

update functions µn+1, kn+1

i← i+ 1

end for

return S1(xi) = argmax
a∈AN

i

µN (xi, a)

for the last samples, instead of pure exploitation, because this is more efficient due to Jensen’s

inequality. Maximising the peak of the new dataset yields better samples than sampling the

point with highest expectation E
[
max{y1, ..., yn+1}

]
= E

[
max{y1, ..., µn(x, a) +

√
kn(x̃, x̃)Z}

]
>

max{y1, ..., yn,maxa µ
n(xi, a)}.

4.4. Efficient Monte Carlo Integration

Many previous works have looked at performing Monte-Carlo integration over Gaussian pro-

cesses when calculating expected improvement. The Integrated Expected Conditional Improvement

infill criteria of Gramacy and Lee (2011) Monte-Carlo integrates over a Gaussian process with a

proposal distribution g(x) that allocates samples to where the improvement in the model is con-

sidered greatest and is therefore most informative. For REVI we desire the XMC to be distributed

where the change in the Gaussian process is greatest, and importance sampling distributed ac-

cording to the task kernel g(x|xn+1) ∼ kX(x, xn+1) seems a natural choice. However, we found

that this resulted in REVI(x,a) becoming rough and not easily optimised since the XMC points
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move with xn+1 and also the precomputing of means described above cannot be done since XMC

is not constant. Instead, we propose to set XMC ∼ P[x] but filter the points such that tasks with

little correlation with the sampled tasks are excluded. Essentially, this is importance sampling

with g(x|xn+1) ∼ P[x]1kX(x,xn+1)>δ. The choice of nX must be large enough so that Î(x, a) is

not dominated by a single term but multiple terms and not so large that Î(x, a) is estimated to

unnecessarily high accuracy at great computational cost. Therefore nX should be determined by

meeting a minimum density requirement dependent on the Gaussian process kernel so that there

are multiple correlating tasks with the sampled task.

For regions in X̃ that are not highly correlated with the new sample point, {x̃ ∈ X̃, k0(x̃, x̃n+1) <

δ}, we propose to make the approximation σ̃n(x̃; x̃n+1) ≈ 0. By enforcing sparsity on the vector

of additive updates results in two computational speed-ups. Firstly, we may avoid the costly

matrix multiplication involved in computing σ̃n(x̃; x̃n+1) for reference points that are largely un-

affected by the sample. Secondly, for a given task xi and set AD, the vector of changes is given

by σ̃n((xi, AD); (x, a)n+1) and will become sparse. When taking the max of linear functions with

equal gradients, only the function with the highest intercept needs to be considered. Likewise, if

multiple elements of σ̃n((xi, AD); (x, a)n+1) are zero, then all but the highest can be removed in the

KG(µ, σ̃) function before the sorting step and the for-loop of Algorithm 1 which will be applied

to much shorter vectors. An example is given in Figure 3. For tasks that are uncorrelated with

the sample task, the corresponding elements in the summation in Î(x, a) will be zero and only

the large dominant terms will be calculated. Stationary kernels have intrinsic length scales and

so we ”sparsify” reference points that are beyond r = 3 length scales, i.e., where the Mahanalobis

distance
√

(x̃− x̃n+1)D(x̃− x̃n+1) > 3 with D being a diagonal matrix of the square inverse of the

GP length scales.

5. Comparison with the Profile Expected Improvement Algorithm

The Profile Expected Improvement (PEI) algorithm of Ginsbourger et al. (2014) considers

almost the exact same problem we consider here, with the added assumptions that the task dis-

tribution is uniform. The algorithm they propose is a modification of the EGO algorithm where a

sample maximises the expected improvement over a target value for the given task,

PEI(x, a) = E
[
max{yn+1 − T (x), 0}

]
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where the new sample is given by the Gaussian Process, yn+1 ∼ N(µn(x, a), kn((x, a), (x, a)). The

target of improvement is given by the peak posterior mean, however capped by the highest value

of the data seen so far T (x) = min{maxa µ
n(x, a),maxY n}. We now show that this is a slightly

modified simplification of the CLEVI algorithm. If we take the CLEVI acquisition function, firstly

assume that the task distribution is uniform and the convolution is not applied so that the P[x]

term can be discarded as constant. Secondly, set the sparsity approximation such that all points

have zero additive update except for the sampled point, σ̃n((x,AD \ {a}); (x, a)) = 0. Thirdly,

by assuming no noise in function observations the posterior standard error and the update to the

mean at the sampled point are equal σ̃n((x, a); (x, a)) =
√
kn((x, a), (x, a)). Finally, if we augment

the set AD with the highest mean of the current task, argmaxaµ
n(x, a) ∈ AD, the CLEVI function

simplifies to

CLEV I ′(x, a) = E
[
max{µn(x, a) +

√
kn((x, a), (x, a))Z,max

a
µn(x, a)}

]
−max

a
µn(x, a)(20)

= E
[
max{yn+1 − T (x), 0}

]
(21)

where yn+1 = µn(x, a)+
√
kn((x, a), (x, a))Z and the target level is given by T (x) = maxa µ

n(x, a).

The only differences between the PEI acquisition function and the CLEVI function for a uni-

form task distribution without convolution, zero noise and maximum sparsity, is the addition of

argmaxaµ
n(x, a) to the set AD and the capping of the target value T (x). By augmenting the set

AD, this has the advantage that the target level for improvement is more accurately measured. This

requires an extra optimisation for each call to PEI in order to find the optimal a for the current

task, though in our benchmarks we found this to be negligible. Another consequence of this opti-

misation is that the PEI(x, a) acquisition function is no longer differentiable with respect to (x, a)

since dT (x)/dx is not analytically tractable and therefore PEI cannot be optimised by gradient

descent with multiple starts which may cause excess evaluation in high dimensions, although this

also may easily be remedied by taking the max over AD instead of A as with CLEVI and REVI.

Secondly, by assuming maximum sparsity, the effect one sample has on other predictions and on

the target level itself is neglected and sampling is less efficient as we show in Section 6, particularly

when there are long length scales in the Gaussian Process. The advantage of maximum sparsity

however is that there are fewer posterior covariance calls which are each O(n2). Although the

PEI algorithm was not designed with noisy problems in mind, the authors note that the Gaussian

Process model may easily be adapted to account for noise and the acquisition function itself is
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still applicable. In our benchmarks we find that when the assumptions are satisfied, negligible

observation noise, uniform task distribution and unaffected target level, the performances of PEI,

CLEVI and REVI are similar. However, on more varied scenarios PEI performs significantly worse

than CLEVI and furthermore REVI significantly outperforms both. In our numerical experiments

with non-uniform task distribution we modify the PEI algorithm to account for task density by

weighting the acquisition function according to the point-wise task density,

PEIP[x](x, a) = P[x]E
[
max{yn+1 − T (x), 0}

]
such that high density tasks are given priority when sampling and low density tasks are only

sampled if their improvement over their target level is high enough.

6. Numerical Experiments

We perform numerical experiments on three benchmark problems. In the first benchmark we

use a continuous distribution of tasks and the popular Rosenbrock optimisation benchmark function

comparing our algorithms against PEI and latin hypercube sampling. In the second benchmark

we investigate the effect of dimensionality upon the REVI and CLEVI acquisition functions, we

generate random functions from a Gaussian Process prior with dimensions varying from two to

six, and again compare our algorithms against PEI and uniform sampling. Finally we consider the

discrete task case and compare CLEVI and REVI against the SCoT algorithm (Bardenet et al.,

2013) on risk neutral and risk averse scenarios.

6.1. Rosenbrock Test Function

For the first continuous benchmark problem, we use the Rosenbrock test function scaled such

that it has domain X × A = [0, 100]2 and takes values in the range y ∈ [−45, 0] and we add

noise of variance σε ∈ {0.12, 1.02}. We test two different task distributions, a uniform distribution

P[X] = 1/100 and a triangular distribution P[X] = X ∗ 2 ∗ 10−4. Two noise levels and two task

distributions yield four different experimental setups and for each setup we apply each algorithm

100 times with different initial designs and noise values. For each application, an initial budget of

20 samples is allocated by latin hypercube over the X ×A domain after which a Gaussian Process

with a squared exponential kernel is fitted. The hyper parameters of the Gaussian Process are

estimated via maximum likelihood and updated after every new sample. Samples are sequentially
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added to the initial design according to four algorithms, PEI, CLEVI, REVI and finally LEVI which

is the CLEVI algorithm however without the convolution applied to the task distribution such that

it is simply the integrand of Equation10. Each method is applied until a sampling budget of 80

samples has been exhausted. We also compare against latin hypercube sampling. To measure the

quality of a mapping learnt by each method, for each experiment, a test set of 250 tasks values,

Xtest, are generated from P[x], and the difference in performance between the true optimal a and

the performance of the a value determined by the mapping is averaged over all xi ∈ Xtest

Opportunity Cost =
1

250

∑
xi∈Xtest

max
a

θ(xi, a)− θ(xi, SN (xi))

The resulting average opportunity cost over 100 simulation runs for each algorithm for each budget is

given in Figure 4 as well as one exemplary final sample design from each sampling method. All acqui-

sition functions were maximised using the Nelder-Mead optimisation algorithm with min{2n, 120}

random restarts and all default parameters in R’s ‘optim” function with the exception that the

number of iterations was reduced to 50.

We see that in all cases REVI is the quickest to converge to the true optimal mapping and

the CLEVI/LEVI methods are either similar or slightly worse. PEI frequently converges more

slowly and in experiments not shown here this performance is replicated when using the CLEVI

algorithm with maximum sparsity, therefore it is probably the assumption of a fixed target level

that prevents PEI from converging as quickly. It is proven that in the infinite sample limit the PEI

algorithm will converge, however the finite time behaviour is apparently different. The length scale

in the parameter in the domain A is typically lA ≈ 122 while the largest possible distance between

two points is 100, thus a sample at (x, a)n+1 will affect the model µn+1(xn+1, a) for all a ∈ A.

Therefore, on this test function, the fixed target assumption is violated. The same behaviour was

observed on the Branin-Hoo function that also has a length scale lA > 100 when the domain is

scaled to A = [0, 100]. The increase in noise reduces the speed of convergence, however does not

change the relative ranking of algorithms. Comparing the uniform distribution with the triangular

distribution, we see that the LEVI algorithm performs marginally worse due to its failure to account

for the difference between the mode of the task distribution (which is also a boundary) and the

maximum influence of a sample over the task distribution which is away from the boundary.

In Figure 4, we see the final design of experiments. The PEI algorithm allocates more samples

to the predicted peak of each task however the CLEVI and REVI algorithms allocate samples more
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evenly. REVI and CLEVI aim to maximise the posterior mean of the model and therefore allocate

samples such that the whole model is updated to accurately predict the true peak and samples are

scattered around ±0.1lA of the true peak. This has the advantage that convergence is quicker and

since the samples are more spread out there will be less chance of numerical issues when inverting

the covariance matrix whilst fitting the Gaussian Process. This extra convergence must be traded

off with the extra uncertainty over the predicted peaks and in this problem setting with a risk

neutral decision maker REVI and CLEVI perform as expected. The CLEVI and REVI algorithms

may be easily modified to maximise a lower confidence bound instead of the posterior mean (as

done by Picheny et al. (2013a)) but we do not consider this case in our problem formulation.

6.2. High Dimensional Test Functions

In our second benchmark we generate test functions from a Gaussian Process prior where the

dimension of the task space X varies from one to five dimensions, DX ∈ {1, 2, 3, 5} and we fix

DA = 1. We do this for two reasons. Firstly, we aim to create a scenario where the assumptions

of PEI are met and show that it performs well in this case, that is, where length scales are smaller

than the domain and the target level is not always changed by the new sample. This may be done

by increasing DA or by reducing lA, and to avoid sparsity we chose the latter. Secondly, the REVI

algorithm requires a Monte-Carlo integral which can perform poorly as the number of dimensions

increases. We initialise each sampling procedure with 10(DX + 1) samples in a latin hypercube. In

all experiments, we use a uniform task distribution.

Gaussian Processes are well known to struggle in higher dimensions due to either data sparsity in

high dimensional space or the n3 computational cost or matrix ill-conditioning when data is dense

in high dimensional space. In preliminary experiments, we found that all algorithms performed

equal with latin hypercube sampling for DX = 3, 5 when all length scales were lX = lA = 10. The

initial design was too sparse and the initial samples were allocated to fill empty space and the

advantages of REVI and CLEVI provided no significant benefit over PEI or uniform. To create

a scenario without the data sparsity we increase the length scale with dimension such that the

nearest neighbour in the initial design is approximately 1.3 ∗ L where L is the length scale of the

kernel used for all dimensions. The resulting length scales are 10, 16, 22, 28 and 33 for 1, 2, 3

and 5 dimensions, respectively, where the design space is [0, 100]DX+1 and the process variance

is σ2 = 102. The kernel parameters for generating the functions were also used when fitting the
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Figure 4: In all cases, REVI produces the best mappings for all experiments and budget sizes, CLEVI and PEI

are often equal, however diverge for large budgets where noise variance becomes significant. For the Triangular

distribution, REVI outperforms other methods due to its ability to account for regional effects.

Gaussian Process, therefore the only difference between experiments is the acquisition functions.

We apply all the same algorithms as from the previous benchmark, however the optimiser has more

restarts min{(3 +DX)n, 90 + 30DX} and for REVI we set nX = (3 +DX)
√
n to be consistent with
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the previous experiment. All function evaluations have a noise added, ε ∼ N(0, 1).

For the lowest dimensional case we see that all algorithms perform equally. We see that as

dimensions increases, the methods that neglect covarying tasks, PEI and LEVI, get worse, and

when DX = 5, they do not significantly differ from latin hypercube sampling. Likewise, the REVI

and CLEVI algorithms do not suffer as much with increasing dimension. The tasks are uniformly

distributed in a hypercube, samples on the boundary of the hypercube have fewer neighbouring

tasks which may be improved by the sample. As the number of dimensions increases, there are

more edges, vertices and boundaries to avoid, and with increasing length scale the boundary affects

more space within the hypercube. The REVI function measures the improvement at tasks, and at

boundaries there are fewer tasks and thus smaller improvement in the mapping. Consequently, such

areas are less favourable to sample. For CLEVI, by taking the convolution of the task distribution,

the sharp boundaries in the true task distribution are rounded and reduced and CLEVI also tends

to sample away from boundaries.

6.3. Finite Tasks

In our third benchmark, we compare the discrete task versions of CLEVI and REVI against

the Surrogate based Collaborative Tuning algorithm, (SCoT) proposed by Bardenet et al. (2013).

The SCoT algorithm tackles the complex problem of predicting good hyper parameters for ma-

chine learning algorithms based on the features of the dataset to which the algorithm is applied.

Therefore, X is the space of dataset features, A is the hyper parameters of a machine learning

optimisation algorithm and θ(x, a) is the test set accuracy of the trained algorithm with the given

parameters on the given dataset. The proposed algorithm fits a Gaussian Process to predict the

test accuracy of new algorithm parameters on a new dataset and sequentially executes a parameter

setting on a dataset in order to learn the optimal parameter setting for all datasets. Samples are

allocated to tasks xi in a round robin fashion and the parameter setting a is determined by max-

imising the expected improvement of a new test accuracy measurement over the current best test

accuracy measurement for the current task, that is by the EGO algorithm. Therefore the SCoT

algorithm is equivalent to repeated application of the second stage of Algorithm 2. The authors

note that the framework can accommodate any acquisition function and we apply the Knowledge

Gradient acquisition function to find the optimal parameter for each task with the task deter-

mined by round robin allocation. Therefore this algorithm is equivalent to the CLEVI algorithm
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without the approximation to account for the influence on other tasks and where the task sam-

pling sequence is predetermined. We also again compare with random allocation. We generate

random test functions as with the DX = DA = 1 case described above, however when sampling

and measuring opportunity cost, task values are restricted to a finite set of randomly generated

numbers X = XMC = Xtest ∈ R20 that are distributed according to x1, ..., x10 ∼ N(20, 102) and

x11, ..., x20 ∼ N(50, 52). We measure the opportunity cost using the two mappings discussed in

Section 3: the risk neutral mapping, executing the best predicted parameter for each task, and the

risk averse mapping, executing the best evaluated parameter for each task.
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Figure 5: (a) one test function realisation, (b) one example task covariance matrix, (c) and (d) opportunity cost for

a risk neutral/averse user averaged over 200 test function realisations.

As can be seen in Figure 5, in the risk neutral case, REVI and CLEVI perform best for all

budget sizes. Replacing EGO with Knowledge Gradient in the SCoT algorithm did not yield much

improvement suggesting that forcing the task allocation to be round robin accounts for most of

the performance difference between CLEVI and SCoT. The REVI and CLEVI algorithms without

the risk averse modification perform worse than both variations of SCoT and are not shown on the

plot. However, with the risk averse modification, there is a very large improvement and therefore

optimising the posterior mean before optimising the sample values yields a great benefit. In general,

the risk averse opportunity cost is higher than the risk neutral, demonstrating the price a risk averse

user must pay. In both cases, REVI and CLEVI do not differ significantly, suggesting a small

number of positively correlated tasks in low dimensions do not benefit from the added accuracy of

REVI, although further investigation is required.
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7. Conclusion and Future Work

We have considered the problem of simultaneously identifying the optimal parameters for a set

of tasks with correlation across tasks and where the performance of a particular parameter on a

particular task has to be inferred from (potentially noisy) samples. To this end, we provide a general

problem formulation, and propose two myopic information collection policies, CLEVI and REVI,

that both aim to approximate the overall improvement across all tasks. CLEVI aims to maximise

the expected improvement at the sampled task, weighted according to the regional influence the

sample is expected to have, whereas REVI more accurately takes into account the regional influence,

the information gain for other tasks due to the correlation structure. As expected, while CLEVI is

computationally cheaper, REVI performs better, and both methods have equal leading order worst

case complexity. We show that an alternative algorithm developed for the same problem, Profile

Expected Improvement, that we consider state of the art from the literature, is a special case of

our CLEVI algorithm and under certain conditions its performance is comparable. However, in

almost all cases CLEVI and REVI converge toward the true optimal mapping much faster. Further

empirical tests show that on discrete task sets, CLEVI and REVI also significantly outperform the

SCoT algorithm, another algorithm from the literature, by a wide margin.

Furthermore, we have pointed out that the problem can be considered with two possible goals:

Identifying a mapping that predicts the best parameter setting for any given task, and identifying

a mapping that selects the best sampled parameter setting for each task. The latter is sensible in

particular for a risk averse decision maker under a deterministic setting with a small number of

tasks. We demonstrate that for such a setting, one should still collect information based on REVI,

but switch to SCoT for selecting the last sample for each task.

There are several possible avenues for future work. In this work we have not considered model

mismatch, real-world applications essentially always have model mismatch and this can affect the

relative performance of Bayesian Optimisation algorithms as demonstated by Schulz et al. (2016).

The REVI algorithm in particular maximally exploits covariance across tasks and decision variables

and will likely suffer the most from inaccurately estimated covariance structure. Therefore the ques-

tion remains, can exploiting poorly estimated covariance (REVI) be worse than ignoring only task

covariance (CLEVI) or ignoring all covariance (PEI, SCoT)? To this end the proposed algorithms

should be applied to various real world problems, including those applications mentioned in the
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introduction, to reveal any application specific flaws or benefits. An extension to batch parallel

sampling should be straightforward and speed up optimisation in practice. The distinction between

searching for the solution with the best estimated performance, and searching for the solution with

the best sampled performance, applies to all types of problems where Bayesian Optimisation is

used, and should be examined also in other contexts. Finally, one might consider other notions of

risk aversion, such as lower confidence bound, instead of the single extreme case we consider.
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