

Boyer, S; Lopes, S; Prasetyo, D; Hustedt, J; Sarady, AS; Doum, D; Yean, S; Peng, B; Bunleng, S; Leang, R; Fontenille, D; Hii, J (2018) Resistance of Aedes aegypti (Diptera: Culicidae) Populations to Deltamethrin, Permethrin, and Temephos in Cambodia. Asia-Pacific journal of public health / Asia-Pacific Academic Consortium for Public Health. p. 1010539517753876. ISSN 1010-5395 DOI: https://doi.org/10.1177/1010539517753876

Downloaded from: http://researchonline.lshtm.ac.uk/4646994/

DOI: 10.1177/1010539517753876

Usage Guidelines

 $Please \ refer \ to \ usage \ guidelines \ at \ http://researchonline.lshtm.ac.uk/policies.html \ or \ alternatively \ contact \ researchonline@lshtm.ac.uk.$ 

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

## Asia Pacific Journal of Public Health

### Resistance of Aedes aegypti (Diptera: Culicidae) populations to deltamethrin, permethrin and temephos in Cambodia

| Journal:         | Asia Pacific Journal of Public Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID    | APJPH-17-Jul-425.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manuscript Type: | Original Manuscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Keywords:        | Aedes aegypti, Cambodia, insecticide, mosquito, resistance, vector control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Abstract:        | Dengue fever is a major public health concern, including 185,000 annual cases in Cambodia. Aedes aegypti is the primary vector for dengue transmission and is targeted with insecticide treatments. This study characterized the insecticide resistance status of Ae. aegypti from rural and urban locations. The susceptibility to temephos, permethrin and deltamethrin of Ae. aegypti was evaluated in accordance with WHO instructions. All the field populations showed lower mortality rate to temephos compared to the sensitive strain with Resistance Ratio 50 (RR50) varying from 3.3 to 33.78 and RR90 from 4.2 to 47 compared to the sensitive strain, demonstrating a generalized resistance of larvae to the temephos in Cambodia. Ae. aegypti adult populations were highly resistant to permethrin regardless of province or rural/urban classification with an average mortality of 0.02%. Seven of the eight field populations showed resistance to deltamethrin. These results are alarming for dengue vector control, as widespread resistance may compromise the entomological impact of larval control operations. Innovative vector control tools are needed to replace ineffective pesticides in Cambodia. |
|                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

SCHOLARONE<sup>™</sup> Manuscripts

# Resistance of *Aedes aegypti* (Diptera: Culicidae) populations to deltamethrin, permethrin and temephos in Cambodia.

3 Abstract.

Dengue fever is a major public health concern, including 185,000 annual cases in Cambodia. Aedes aegypti is the primary vector for dengue transmission and is targeted with insecticide treatments. This study characterized the insecticide resistance status of Ae. aegypti from rural and urban locations. The susceptibility to temephos, permethrin and deltamethrin of Ae. aegypti was evaluated in accordance with WHO instructions. All the field populations showed lower mortality rate to temphos compared to the sensitive strain with Resistance Ratio 50 (RR50) varying from 3.3 to 33.78 and RR90 from 4.2 to 47 compared to the sensitive strain, demonstrating a generalized resistance of larvae to the temephos in Cambodia. Ae. aegypti adult populations were highly resistant to permethrin regardless of province or rural/urban classification with an average mortality of 0.02%. Seven of the eight field populations showed resistance to deltamethrin. These results are alarming for dengue vector control, as widespread resistance may compromise the entomological impact of larval control operations. Innovative vector control tools are needed to replace ineffective pesticides in Cambodia. **Keywords.** Aedes aegypti; Cambodia; insecticide; mosquito; resistance; vector control.

#### 17 Introduction

Dengue fever is a major public health concern, with estimates of 400 million cases every year in urban, suburban and rural tropical areas.<sup>1</sup> In Cambodia, around 185,000 cases are estimated annually.<sup>2</sup> The primary vector for dengue transmission is Aedes aegypti which favors environments where water storage is abundant and solid waste disposal is deficient.<sup>3</sup> As Ae. aegypti is implicated in the transmission of arboviruses such as Zika, Chikungunya and Yellow fever<sup>4</sup>, vector control strategies that target Ae. aegypti populations may have an major public health impact. Many insecticides have been used in order to control Ae. aegypti populations, but little information exists on the susceptibility of Cambodian populations to the most commonly used insecticides. As early as 1955, DDT residual spray was used in the first malaria eradication pilot in Snuol district<sup>5</sup>. DDT was again used in public health programs targeting malaria and dengue in urban and rural areas and at UNHCR refugee camps along the Cambodia-Thailand border from 1981 to 1987, after which it was no longer imported<sup>6</sup>. Pyrethroids, particularly permethrin and deltamethrin, were introduced to Cambodia in the late 1980s and 2000 for the control of malaria (impregnation of bednets) and dengue (thermal fogging and ULV sprays), respectively<sup>6</sup>. Since 1992, Temephos has been imported with roughly 200 tons per year used mainly for larval control of dengue vectors<sup>6</sup>. In 1966, Mouchet and Chastel showed total susceptibility of Ae. aegypti to DDT, fenthion, malathion and diazinon insecticides, but observed resistance to dieldrin and gamma HCH<sup>7</sup>. More recently, *Ae. aegypti* resistance to temephos was also investigated during two field studies in Cambodia<sup>8</sup>. The resistance pattern and future of temephos is 

increasingly important as this larvicide has been the main dengue control strategy used by National
 Dengue Control Program (NDCP) for more than 20 years and for biannual larvicide campaigns since
 2001<sup>3,6</sup>.

Using the WHO diagnostic dose (0.02mg/L), the Phnom Penh population tested in 2001 was found to be
resistant to temephos, while Kampong Cham population was still susceptible. More recently, among
seven *Ae. aegypti* populations, six were found to be resistant to temephos with mortality ranging from
11.02% up to 88.62% at the WHO diagnostic concentration (To Setha, Pers. Comm.). While it seems clear
that that temephos resistance among *Ae. aegypti* populations has increased over time in Cambodia, the
patterns between rural and urban areas are as delineated.

While pyrethroid and organophosphate insecticides are used in the national malaria and dengue control programs, significant use of insecticides (including larvicides, repellents, space sprays, treated materials and coils) at home and in the private sector results in unquantifiable use of insecticides. Coupled with the lack of information on adult resistance status in Cambodia and long-term usage of space spraying by pest control companies and public health authorities, the need for characterizing the susceptibility of Ae. aegypti to pyrethroids is urgent. This study aims to characterize the insecticide resistance status for immature and adult stages of Ae. aegypti collected from rural and urban Cambodian environment. Eight field populations were tested using WHO test procedures against the most commonly used insecticides in Cambodia which include temephos (for immature stages) and deltamethrin/permethrin (for adult stages).

55 Material and Methods

#### 56 Mosquito collection

Four different geographical areas in Cambodia were selected for field sample collections (Phnom Penh,
Kampong Cham, Battambang and Siem Reap). Two urban villages and two rural villages were selected as
collection points within each village. Villages were selected by NDCP according to geographical
representation, dengue incidence and recent use of temephos (within the previous two years)
(Supplementary File 1). Twenty five households were randomly selected within each village and all

http://mc.manuscriptcentral.com/apjph

Asia Pacific Journal of Public Health

| 1        |
|----------|
| 2        |
| 3        |
| 4        |
| 4<br>5   |
|          |
| 6        |
| 7        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
|          |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
|          |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
|          |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
|          |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
| 49<br>50 |
| 50<br>51 |
|          |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
| 59       |
|          |
| 60       |

| 62 | containers were inspected for larvae and pupae using direct pipetting for small containers and sweep                   |
|----|------------------------------------------------------------------------------------------------------------------------|
| 63 | net method for large containers <sup>9</sup> . Collected larvae/pupae were pooled by location (rural/urban) in each    |
| 64 | province and transported to an insectary.                                                                              |
| 65 | Larvae and pupae were reared in standard conditions (temperature: 28 $\pm$ 1 $^{\circ}$ C; relative humidity: 75 $\pm$ |
| 66 | 25%; photoperiod: 12 hours day/night) in 24.8 x 19.7 x 3.8 cm standard white plastic larval tray                       |
| 67 | containing 2 liters of purified water and fed with half a teaspoon of grounded fish food daily until adult             |
| 68 | emergence. Adult Aedes were separated from other species by direct aspiration and each population                      |
| 69 | was separated by location (total of 8 populations from 4 Provinces).                                                   |
| 70 | For both larvae and adults assays, a USDA reference susceptible strain <sup>10</sup> was used as positive and          |
| 71 | negative control with water and ethanol in plastic beakers.                                                            |
| 72 | Rearing of F1 larvae for testing                                                                                       |
| 73 | Adult Aedes mosquitos from parental generations were reared at standard conditions and fed with 10%                    |
| 74 | sucrose solution. All populations were also provided with lab reared mice for blood meal once every                    |
| 75 | three days for 3-4 hours. Eggs from the F1 generation were collected on white filter paper and placed                  |
| 76 | inside black plastic cups. Eggs were dried and stored in envelops and later sent to the laboratory. F1                 |
| 77 | eggs were immersed in water according to assay needs for testing procedures and larvae were reared as                  |
| 78 | previously described.                                                                                                  |
| 79 | <u>Ae. aegypti larval bioassays</u>                                                                                    |
| 80 | In accordance with WHO instructions <sup>11</sup> , late third instar larvae of F1 generation were used for            |
| 81 | determining the resistance of mosquito larvae to temephos.                                                             |
| 82 | Temephos (Sigma, Pestanal analytical grade, 250 mg) was diluted in ethanol to produce a stock solution                 |
| 83 | of 1000 mg/L. The main stock solution was diluted into several working concentrations better suited for                |
|    |                                                                                                                        |

| 1<br>2                           |    |
|----------------------------------|----|
| 3<br>∡                           | 8  |
| 5<br>6                           | 8  |
| 7<br>8                           | ٤  |
| 5<br>6<br>7<br>8<br>9<br>10      | 8  |
| 11<br>12<br>13                   | 8  |
| 12<br>13<br>14<br>15<br>16<br>17 | 8  |
| 16<br>17                         | ç  |
| 18<br>19<br>20                   | ç  |
| 20<br>21<br>22<br>23             |    |
| 24                               | ç  |
| 25<br>26                         | ç  |
| 27<br>28                         | ç  |
| 29<br>30                         | ç  |
| 31<br>32<br>33                   | ç  |
| 34<br>35                         | ç  |
| 36<br>37                         | ç  |
| 38<br>39<br>40                   | ç  |
| 41<br>42                         | 10 |
| 43<br>44                         | 10 |
| 45<br>46<br>47                   | 10 |
| 47<br>48<br>49                   | 10 |
| 50<br>51                         | 10 |
| 52<br>53                         | 10 |
| 54<br>55                         | 10 |
| 56<br>57                         |    |
| 58<br>59                         |    |
| 60                               |    |

| 84  | testing. All solutions were stored in glass bottles and labeled accordingly. To obtain each of these                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 85  | concentrations the adequate volume of temephos was pipetted from stock solutions, adding the                                     |
| 86  | remaining amount of solution with ethanol into each beaker containing 99 ml of water. Four replicates                            |
| 87  | were used for every concentration, and each replicate consists of 25 larvae.                                                     |
| 88  | Six temephos concentrations (0.2, 0.05, 0.03, 0.02, 0.01, 0.004 mg/L) were used to determine Lethal                              |
| 89  | Concentration (LC) 50/95 (e.g. the necessary concentrations needed to kill 50%/95% of mosquito                                   |
| 90  | larvae). Resistance ratios (RR50 and RR95) were calculated dividing LC <sub>50</sub> and LC <sub>95</sub> rates from Ae. aegypti |
| 91  | field populations by the $LC_{50}$ and $LC_{90}$ rates of the USDA susceptible strain.                                           |
| 92  | <u>Ae. aegypti adult bioassays</u>                                                                                               |
| 93  | Insecticide resistance screening for adult mosquitos was conducted using the WHO tube assay <sup>11</sup> . Two                  |
| 94  | synthetic pyrethroids; permethrin and deltamethrin, at diagnostic concentrations appropriate for Aedes                           |
| 95  | mosquitoes were used. WHO tube kit and impregnated permethrin (0.25%), deltamethrin (0.03%) and                                  |
| 96  | piperonyl butoxide for synergist assay (PBO 4%) papers were obtained from Vector Control Research                                |
| 97  | Unit at the University of Science, Penang, Malaysia. Diagnostic and synergist concentrations were                                |
| 98  | chosen following WHO recommendations <sup>11</sup> .                                                                             |
| 99  | For this bioassay, each tested population used four tubes containing Permethrin (0.25%), four tubes                              |
| 100 | containing deltamethrin (0.03%), and four control tubes containing silicone oil paper. Twenty-five adults                        |
| 101 | at least 3 days old and non-blood fed female mosquitoes were introduced into each tube lined with                                |
| 102 | untreated paper (holding tube) for 60 minutes. Mosquitoes were then transferred into the exposure                                |
| 103 | tube and exposed to impregnated paper for 60 minutes. Mosquito Knock Down (KD) was measured at                                   |
| 104 | the end of the exposure, after which mosquitoes were transferred back to the tube without insecticide.                           |
| 105 | Mortality was counted at the end of a 24 hours period and the resistance status was interpreted                                  |
| 106 | according to the WHO protocol.                                                                                                   |

Asia Pacific Journal of Public Health

Page 6 of 40

| 1<br>2         |     |                                                                                                                             |
|----------------|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 107 | Insecticide-synergist assay using piperonyl butoxide (PBO) was conducted to measure the effect of pre-                      |
| 5<br>6         | 108 | exposure to a synergist on the expression of insecticide resistance. Adult Aedes were pre-exposed to this                   |
| 7<br>8<br>9    | 109 | synergist for one hour before exposure to insecticide. KD and mortality were recorded the same way as                       |
| 9<br>10<br>11  | 110 | standard tests.                                                                                                             |
| 12<br>13<br>14 | 111 | Data management and statistical analysis                                                                                    |
| 15<br>16       | 112 | Knock down and mortality were registered at 1 hour and 24 hours post-exposure respectively. RRs for                         |
| 17<br>18<br>19 | 113 | larvae and adult mosquitos were calculated by dividing the average mortality found in each field                            |
| 20<br>21       | 114 | population by the mortality obtained with the USDA susceptible reference strain.                                            |
| 22<br>23<br>24 | 115 | For larvae results, LC50 and LC90 were obtained by plotting the mortality using log probit analysis.                        |
| 25<br>26<br>27 | 116 | Statistical analysis (ANOVA and mean comparison) were completed to compare the mortality of adults                          |
| 28<br>29       | 117 | to permethrin and deltamethrin with or without the use of PBO. Graphs and data analysis were done                           |
| 30<br>31       | 118 | with R software <sup>12</sup> .                                                                                             |
| 32<br>33<br>34 | 119 | with R software <sup>12</sup> . Results Larval bioassays                                                                    |
| 35<br>36<br>37 | 120 | Larval bioassays                                                                                                            |
| 38<br>39<br>40 | 121 | The overall bioassay results for larvae are presented in Table 1. The highest LC50 and LC90 values were                     |
| 41<br>42       | 122 | obtained with Battambang urban populations (LC $_{50}$ =0.125 $\pm$ 0.004 mg/L and LC $_{90}$ = 0.221 $\pm$ 0.008 mg/L) and |
| 43<br>44       | 123 | Kampong Cham (Table 1). Phnom Penh and Siem Reap, the $LC_{50}$ and $LC_{90}$ were lowest with $LC_{50}$ values             |
| 45<br>46<br>47 | 124 | comprised between 0.012 mg/L (Siem Reap rural) and 0.020 mg/L (Phnom Penh rural).                                           |
| 48<br>49<br>50 | 125 | The RR for urban and rural populations of Siem Reap and Phnom Penh provinces were mostly above the                          |
| 51<br>52       | 126 | threshold which is defined as a resistant population with RR $\ge$ 5. RR values of Kampong Cham and                         |
| 53<br>54       | 127 | Battambang urban and rural populations were two and nine-fold higher than the threshold, respectively.                      |
| 55<br>56<br>57 | 128 | While these results may be linked to the continued distribution of temephos and consequent exposure                         |
| 58<br>59<br>60 |     | http://mc.manuscriptcentral.com/apjph                                                                                       |
| nu             |     | http://incinanascripteentrai.com/apjpin                                                                                     |

| 2              |     |
|----------------|-----|
| 2<br>3<br>4    | 129 |
| 5<br>6         | 130 |
| 7<br>8         | 131 |
| 9<br>10<br>11  | 132 |
| 12             |     |
| 13<br>14       | 133 |
| 15<br>16       | 134 |
| 17<br>18       | 135 |
| 19<br>20       | 136 |
| 21<br>22<br>23 | 137 |
| 24<br>25<br>26 | 138 |
| 27<br>28       | 139 |
| 29<br>30       | 140 |
| 31<br>32<br>33 | 141 |
| 34<br>35       | 142 |
| 36<br>37       | 143 |
| 38<br>39       | 144 |
| 40<br>41<br>42 | 145 |
| 43<br>44       | 146 |
| 45<br>46       | 147 |
| 47<br>48       | 148 |
| 49<br>50       | 149 |
| 51<br>52<br>53 |     |
| 53<br>54<br>55 | 150 |
| 55<br>56<br>57 | 151 |
| 58             |     |
| 59<br>60       |     |

of populations to this chemical, it is of great concern that 2 out of 4 populations in these two provinces
registered RRs twice as high as the defined resistance threshold (Kampong Cham Rural, RR=13.0;
Battambang rural, RR=11.2) and one registered a RR 6 times higher than the defined threshold
(Battambang urban, RR=33.6).
Higher lethal doses (LC<sub>50</sub> or LC<sub>90</sub>) are needed to kill *Ae. aegypti* larvae from Battambang and Kampong
Cham populations as depicted on the four mortality curves on the right side of the graph compared to
Siem Reap and Phnom Penh populations (Figure 1). Lastly all the field populations showed higher
mortality curve patterns compared to the sensitive strain over a range of concentrations (Figure 1).
<u>Adult bioassays</u>

138Results showed a very high level of resistance to permethrin regardless of province or rural/urban139classification (Figure 2; Supplementary File 2). The average mortality to permethrin at the WHO140diagnostic dose is  $2.22\% \pm 0.02$  for all the populations. While all populations showed resistance to141permethrin, six of the eight populations showed no mortality to permethrin at all. The additional two142Kampong Cham populations had 1.1% and 3.9% of mortality. Adult bioassays showed a significant143difference in mortality to permethrin depending on the population and the presence of PBO (F=3.35;144df=8; p=0.003), particularly a significant increase in mortality from 1.1% to 18.6% in rural population145from Kampong Cham province (Supplementary File 2).

Seven of the eight field populations had a percentage below 90% of mortality due to deltamethrin,
meaning that these populations are resistant. The average mortality of *Ae. aegypti* populations from
Phnom Penh and Siem Reap provinces ranged between 4.0% and 8.3% only. A significant difference in
mortality to deltamethrin among the five highest mortality populations (>52%) tested were observed in
the presence of PBO (F=7.20; *df*=8; *p*<0.0001).</li>

5 151 Discussion

#### 152 <u>Resistance to temephos: implications for public health</u>

Observed Ae. aegypti resistance to temephos is consistent with a recent study where 6 of 7 populations showed similar resistance in Cambodia (To Setha, pers. comm.). The RR50 range of the 8 populations to temephos between 3.8 and 33.6 reflects the intensity of insecticide control. In Thailand, despite mosquito resistance to deltamethrin and permethrin, temephos is still an effective insecticide to control Ae. aegypti larvae<sup>13</sup>. On the basis of data showing temephos resistance in Phnom Penh over 17 years<sup>8</sup>, a review of prevention and control strategies should be conducted and highlight the effects of reliance on a single method of control (e.g. high levels of temephos use in Cambodia<sup>14</sup> may compromise the entomological impact of larval control operations).

Bacillus thuringiensis var. israelensis (Bti) was tested with success in 2005 around Phnom Penh<sup>15</sup>. A new Bti strain AM65-52 was tested in 2016 against Ae. aegypti field population from Kandal province that was resistant to temephos. Results showed a reduction in the number of pupae over 13 weeks, with an average 70% reduction during the 8 first weeks<sup>16</sup>. The use of the *Poecilia reticulate* (guppy) fish to control Aedes populations in water storage was tested in 2008 and after one year a 79% reduction in Aedes larvae in community was observed with a presence of guppies in only 57% of the containers<sup>17</sup>. In 2008, a new formulation of pyriproxifen was tested in water containers against Ae. aegypti in Phum Thmei near Phnom Penh<sup>18</sup>. The study identified an inhibition of adult emergence in treated jars reaching 90% for 20 weeks, and remaining above 80% until the end of the study (34 weeks). In Kampong Cham Province in 2008 water jars were covered with LLIN Permanet 2.0 (insecticide = deltamethrin) without significant reductions in mosquitoes<sup>17</sup>, possibly explained by the strong resistance to delamethrin that we observed in Ae. aegypti adults. A large-scale randomized trial comparing guppy and COMBI (Communication for Behavioural Impact) in Kampong Cham showed 92.5 % reduction in larval-positive containers and 76%-88% coverage with guppies after one year. A recently completed cluster randomized control trial showed that an integrated vector management approach using guppy fish

| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>4<br>35<br>36<br>37<br>38<br>9<br>10 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4                                                                                                                                                                                                                       |  |
| 5                                                                                                                                                                                                                       |  |
| 7                                                                                                                                                                                                                       |  |
| 8                                                                                                                                                                                                                       |  |
| 9                                                                                                                                                                                                                       |  |
| 10                                                                                                                                                                                                                      |  |
| 11                                                                                                                                                                                                                      |  |
| 12                                                                                                                                                                                                                      |  |
| 13<br>14                                                                                                                                                                                                                |  |
| 15                                                                                                                                                                                                                      |  |
| 16                                                                                                                                                                                                                      |  |
| 17                                                                                                                                                                                                                      |  |
| 18                                                                                                                                                                                                                      |  |
| 19                                                                                                                                                                                                                      |  |
| 20                                                                                                                                                                                                                      |  |
| 21                                                                                                                                                                                                                      |  |
| 22                                                                                                                                                                                                                      |  |
| 24                                                                                                                                                                                                                      |  |
| 25                                                                                                                                                                                                                      |  |
| 26                                                                                                                                                                                                                      |  |
| 27                                                                                                                                                                                                                      |  |
| 28                                                                                                                                                                                                                      |  |
| 29                                                                                                                                                                                                                      |  |
| 30                                                                                                                                                                                                                      |  |
| 32                                                                                                                                                                                                                      |  |
| 33                                                                                                                                                                                                                      |  |
| 34                                                                                                                                                                                                                      |  |
| 35                                                                                                                                                                                                                      |  |
| 36                                                                                                                                                                                                                      |  |
| 3/<br>20                                                                                                                                                                                                                |  |
| 30<br>39                                                                                                                                                                                                                |  |
| 40                                                                                                                                                                                                                      |  |
| 41                                                                                                                                                                                                                      |  |
| 42                                                                                                                                                                                                                      |  |
| 43                                                                                                                                                                                                                      |  |
| 44                                                                                                                                                                                                                      |  |
| 45<br>46                                                                                                                                                                                                                |  |
| 40<br>47                                                                                                                                                                                                                |  |
| 48                                                                                                                                                                                                                      |  |
| 49                                                                                                                                                                                                                      |  |
| 50                                                                                                                                                                                                                      |  |
| 51                                                                                                                                                                                                                      |  |
| 52                                                                                                                                                                                                                      |  |
| 53<br>54                                                                                                                                                                                                                |  |
| 54<br>55                                                                                                                                                                                                                |  |
| 56                                                                                                                                                                                                                      |  |
| 57                                                                                                                                                                                                                      |  |
| 58                                                                                                                                                                                                                      |  |
| 59                                                                                                                                                                                                                      |  |

60

(*Poecilia reticulata*), a new slow release pyriproxyfen matrix (Sumilarv<sup>®</sup> 2MR), and community
 engagement through a clear Community for Behavioral Impact (COMBI) strategy reduced indoor adult
 density roughly 50% as compared to the control arm<sup>19</sup>. All of these methods focused on key containers,

179 especially water cement jars that produced approximately 95% of *Ae. aegypti* larvae and pupae<sup>9</sup> and

180 should be considered in Cambodia as a cost-effective replacement of temephos.

#### 181 <u>Resistance to permethrin but susceptible to deltamethrin</u>

Ae. aegypti deltamethrin-resistant populations have been described in different countries in Asia<sup>20</sup>, Latin
 America<sup>21</sup>, Africa<sup>22</sup>, Oceania<sup>23</sup>, and the Caribbean<sup>24</sup>. In our study, Aedes aegypti populations were either
 totally resistant to deltamethrin (with two populations exhibiting zero mortality) or had tolerance
 patterns. Recently, the same pattern was observed in Thailand where Ae. aegypti F1 females were
 susceptible to deltamethrin, but resistant to permethrin<sup>13</sup>. A substantial geographic variation exist to
 pyrethroid resistance, with lower adult resistance levels in Asia, Africa and the USA. However there is
 250-fold resistance to deltamethrin in Thailand<sup>25</sup>.

189 In this study, an extremely strong resistance to permethrin was observed both with/without PBO which seems to indicate that the resistance is already fixed. Comparatively, the result with deltamethrin and 190 191 deltamethrin + PBO suggest the involvement of detoxifying enzymes. However, generally multiple 192 resistance between pyrethroids are possible and it can be expected that there is a kdr mutation for 193 resistance in both insecticides. As the mechanisms of resistance between permethrin and DDT are expected to be the same, via a kdr mutation<sup>26</sup>, the already existing DDT-resistance<sup>7</sup> may explain the 194 195 current fixed resistance observed with permethrin. There are several kdr mutations common in Aedes species that synergize with each other when they are associated<sup>27</sup>. Heterozygous V1016G, and F1534F 196 and F1534C mutants were found in Thailand<sup>28</sup>, and the same mutation was also described southern 197 China with V1016G mutants<sup>29</sup>. There is substantial variation in kdr in the Southeast Asian region that has 198

| 3<br>4         |  |
|----------------|--|
| 5<br>6         |  |
| /<br>8<br>9    |  |
| 10<br>11       |  |
| 12<br>13       |  |
| 14<br>15       |  |
| 16<br>17<br>18 |  |
| 19<br>20       |  |
| 21<br>22       |  |
| 23<br>24       |  |
| 25<br>26<br>27 |  |
| 28<br>29       |  |
| 30<br>31       |  |
| 32<br>33<br>34 |  |
| 35<br>36       |  |
| 37<br>38       |  |
| 39<br>40<br>41 |  |
| 41<br>42<br>43 |  |
| 44<br>45       |  |
| 46<br>47       |  |
| 48<br>49<br>50 |  |
| 51<br>52       |  |
| 53<br>54       |  |
| 55<br>56<br>57 |  |
| 58<br>59       |  |
| 60             |  |

| 199 | effects on resistance (arising from different combinations of three mutations - S989P, V1016G and                 |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 200 | F1534C - in Ae. aegypti). Although there are other mutations detected in Ae. aegypti they do not appear           |
| 201 | to have effect on resistance based on current evidence. For example, combinations of F1534, C1534C,               |
| 202 | V1016G, S989P <sup>29</sup> are present in Cambodia and may act together with metabolic resistance. The           |
| 203 | resistance patterns to deltamethrin and permethrin in the Cambodian villages fit with the variation in            |
| 204 | frequencies of the three mutations and especially in low 989/1016 but high 1534 in permethrin (but not            |
| 205 | deltamethrin) resistant locations, but higher 989/1016 in Phnom Penh and Siem Reap (perhaps in                    |
| 206 | combination with 1534).                                                                                           |
| 207 | Our results question the resistance mechanisms. Indeed, the absence of correlation between                        |
| 208 | permethrin and deltamethrin may involve different effects induced by type I Pyrethroid (permethrin)               |
| 209 | and a pseudo pyrethroid (nonester pyrethroid; deltamethrin), and so different resistance mechanisms <sup>30</sup> |
| 210 | Limitations and conclusion                                                                                        |
| 211 | We acknowledge the lack of baseline data on temephos distribution in the villages sampled. While                  |
| 212 | temephos distribution has been acknowledged as the main outbreak response tool in Cambodia <sup>3</sup> , the     |
| 213 | timing and concentrations used in the villages sampled in this study were not discriminated. Hence, we            |
| 214 | cannot fully characterize the existing pre-conditions of each village in terms of previous larviciding            |
| 215 | activities, but temephos distribution is organized annually at a national and province scales. Likewise,          |
| 216 | pyrethroid based interventions like thermal fogging, long lasting insecticide nets (LLIN) usage and               |
| 217 | pyrethroid based aerosol spray use was not characterized during field collection, limiting the possibility        |
| 218 | to ascertain potential drivers for the resistance patterns registered.                                            |
| 219 | Nevertheless, our results and those of neighboring countries are alarming. From a regional point of               |
| 220 | view, it seems essential to rapidly change control methods and replace temephos with another larvicide            |
| 221 | that remains to be determined. Finally, and perhaps most worrying, it seems that in the event of an               |
|     |                                                                                                                   |

| 2                    |     |                                                                                                             |
|----------------------|-----|-------------------------------------------------------------------------------------------------------------|
| 3<br>4               | 222 | epidemic the adulticides used in the Southeast Asia region are no longer effective. We must quickly find    |
| 5<br>6<br>7          | 223 | an alternative.                                                                                             |
| 8<br>9               | 224 | References                                                                                                  |
| 10<br>11<br>12       | 225 | 1. Guzman A, Istúriz RE. Update on the global spread of dengue. Int J Antimicrob Agents. 2010;36:S40-2.     |
| 13<br>14             | 226 | doi: 10.1016/j.ijantimicag.2010.06.018.                                                                     |
| 15<br>16             | 227 | 2. Shepard DS, Undurraga EA, Halasa YA. Economic and Disease Burden of Dengue in Southeast Asia.            |
| 17<br>18<br>19       | 228 | PLoS Negl Trop Dis. 2013;7:e2055. doi: 10.4269/ajtmh.14-0139.                                               |
| 20<br>21             | 229 | 3. Huy R, Buchy P, Conan A et al. National dengue surveillance in Cambodia 1980–2008: epidemiological       |
| 22<br>23             | 230 | and virological trends and the impact of vector control. Bull WHO. 2010;88:650–657.                         |
| 24<br>25             | 231 | http://www.who.int/bulletin/volumes/88/9/09-073908/en/. Accessed September 9,2017.                          |
| 26<br>27<br>28       | 232 | 4. Christophers S. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. |
| 28<br>29<br>30       | 233 | Cambridge at the University Press, New York, USA; 1960. doi: 10.1126/science.133.3463.1473-a                |
| 31<br>32             | 234 | 5. Brown A. Personal experiences in the malaria eradication campaign 1955-1962. J Roy Soc Med.              |
| 33<br>34             | 235 | 2002;95:154-156. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279490/pdf/0950154.pdf.                      |
| 35<br>36             | 236 | Accessed September 9,2017.                                                                                  |
| 37<br>38<br>39       | 237 | 6. Ministry of Environment of Cambodia. National Profile on chemicals management in Cambodia.               |
| 40<br>41             | 238 | Enabling Activities for Development of a National Plan for Implementation of the Stockholm                  |
| 42<br>43             | 239 | Convention, Phnom penh, Cambodia. 2004.                                                                     |
| 44<br>45             | 240 | http://www.un.org/esa/dsd/dsd_aofw_ni/ni_pdfs/NationalReports/cambodia/Full_Report.pdf.                     |
| 46<br>47<br>48       | 241 | Accessed September 9, 2017.                                                                                 |
| 48<br>49<br>50       | 242 | 7. Mouchet J, Chastel C. La résistance aux insecticides chez Aedes aegypti L. et Aedes albopictus a         |
| 51<br>52             | 243 | Phnom-Penh (Cambodge). <i>Med Trop</i> . 1966;26:505-515. <u>http://horizon.documentation.ird.fr/exl-</u>   |
| 53<br>54<br>55<br>56 | 244 | doc/pleins textes/pleins textes 5/b fdi 08-09/11102.pdf. Accessed September 9, 2017.                        |
| 57<br>58<br>59<br>60 |     | http://mc.manuscriptcentral.com/apjph                                                                       |

Asia Pacific Journal of Public Health

1

Page 12 of 40

| 2              |     |                                                                                                                         |
|----------------|-----|-------------------------------------------------------------------------------------------------------------------------|
| 3<br>4         | 245 | 8. Polson KA, Curtis C, Chang MS, Olson JG, Chantha N, Rawlins SC. Susceptibility of two Cambodian                      |
| 5<br>6         | 246 | population of Aedes aegypti mosquito larvae to temephos during 2001. Dengue Bull. 2001;25:79-83.                        |
| 7<br>8         | 247 | http://apps.who.int/iris/bitstream/10665/163688/1/dbv25p79.pdf. Accessed September 9, 2017.                             |
| 9<br>10<br>11  | 248 | 9. Seng CM, Setha T, Nealon J, Socheat D. Pupal sampling for Aedes aegypti (L.) surveillance and                        |
| 12<br>13       | 249 | potential stratification of dengue high-risk areas in Cambodia. Trop Med Int Health. 2009;14:1233-                      |
| 14<br>15       | 250 | 1240. doi: 10.1111/j.1365-3156.2009.02368.x.                                                                            |
| 16<br>17       | 251 | 10. Kuno G. Early history of laboratory breeding of <i>Aedes aegypti</i> (Diptera: Culicidae) focusing on               |
| 18<br>19<br>20 | 252 | the origins and use of selected strains. J Med Entomol. 2010;47:957-971. doi: 10.1603/ME10152                           |
| 20<br>21<br>22 | 253 | 11. World Health Organization. <i>Monitoring and managing insecticide resistance in Aedes mosquito</i>                  |
| 23<br>24       | 254 | populations. Interim guidance for entomologists. WHO, Geneva, Switzerland; 2016.                                        |
| 25<br>26       | 255 | http://apps.who.int/iris/bitstream/10665/204588/2/WHO_ZIKV_VC_16.1_eng.pdf. Accessed                                    |
| 27<br>28<br>29 | 256 | September 9, 2017.                                                                                                      |
| 29<br>30<br>31 | 257 | 12. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for                        |
| 32<br>33       | 258 | Statistical. Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u> . Accessed September 9,                  |
| 34<br>35       | 259 | 2017.                                                                                                                   |
| 36<br>37<br>28 | 260 | 13. Thongwat D, Bunchu N. Susceptibility to temephos, permethrin and deltamethrin of <i>Aedes</i>                       |
| 38<br>39<br>40 | 261 | aegypti (Diptera: Culicidae) from Muang district, Phitsanulok Province, Thailand. Asian Pacific J Trop                  |
| 41<br>42       | 262 | Med. 2015;8:14-18. doi: 10.1016/S1995-7645(14)60180-2.                                                                  |
| 43<br>44       | 263 | 14. Khun S, Manderson LH. Abate distribution and dengue control in rural Cambodia. Acta Trop.                           |
| 45<br>46<br>47 | 264 | 2007;101:139-146. doi: 10.1016/j.actatropica.2007.01.002.                                                               |
| 47<br>48<br>49 | 265 | 15. Setha T, Chantha N, Socheat D. Efficacy of <i>Bacillus thuringiensis israelensis</i> , VectoBac <sup>®</sup> WG and |
| 50<br>51       | 266 | DT, formulations against dengue mosquito vectors in cement potable water jars in Cambodia.                              |
| 52<br>53       | 267 | Southeast Asian J Trop Med Public Health. 2007;38:261.                                                                  |
| 54<br>55       | 268 | http://www.tm.mahidol.ac.th/seameo/2007_38_2/08-3794.pdf. Accessed September 9, 2017.                                   |
| 56<br>57<br>58 |     |                                                                                                                         |
| 59<br>60       |     | http://mc.manuscriptcentral.com/apjph                                                                                   |

| 1<br>2               |     |                                                                                                                 |
|----------------------|-----|-----------------------------------------------------------------------------------------------------------------|
| 3<br>4               | 269 | 16. Setha T, Chantha N, Benjamin S, Socheat D. Bacterial Larvicide, <i>Bacillus thuringiensis israelensis</i>   |
| 5<br>6               | 270 | Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti                 |
| 7<br>8               | 271 | (L.) Population Density and Disease Transmission in Cambodia. PLoS Negl Trop Dis.                               |
| 9<br>10<br>11        | 272 | 2016;10:e0004973. doi: 10.1371/journal.pntd.0004973.                                                            |
| 12<br>13             | 273 | 17. Seng CM, Setha T, Nealon J, Socheat D, Chantha N, Nathan MB. Community-based use of the                     |
| 14<br>15             | 274 | larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water               |
| 16<br>17             | 275 | storage containers in rural Cambodia. J Vect Ecol. 2008;33:139-144.                                             |
| 18<br>19<br>20       | 276 | http://www.sove.org/SOVE%20folder/journal/2008%20June/16-Seng%20et%20al%2007-92.pdf.                            |
| 20<br>21<br>22       | 277 | Accessed September 9, 2017.                                                                                     |
| 23<br>24             | 278 | 18. Seng CM, Setha T, Nealon J, Chantha N, Socheat D, Nathan MB. The effect of long-lasting                     |
| 25<br>26             | 279 | insecticidal water container covers on field populations of Aedes aegypti (L.) mosquitoes in                    |
| 27<br>28<br>20       | 280 | Cambodia. J Vect Ecol. 2008;33:333-341. doi: 10.3376/1081-1710-33.2.333.                                        |
| 29<br>30<br>31       | 281 | 19. Hustedt J, Doum D, Keo V et al. Determining the efficacy of guppies and pyriproxyfen (Sumilarv®             |
| 32<br>33             | 282 | 2MR) combined with community engagement on dengue vectors in Cambodia: study protocol for a                     |
| 34<br>35             | 283 | randomized controlled trial 2016. Trials. 2017;18:367. doi: 10.1186/s13063-017-2105-2.                          |
| 36<br>37<br>38       | 284 | 20. Somboon P, Prapanthadara LA, Suwonkerd W. Insecticide susceptibility tests of <i>Anopheles</i>              |
| 38<br>39<br>40       | 285 | minimus sl, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand.                   |
| 41<br>42             | 286 | 2003;34:87-93. http://imsear.li.mahidol.ac.th/bitstream/123456789/35445/2/87.pdf. Accessed                      |
| 43<br>44             | 287 | September 9, 2017.                                                                                              |
| 45<br>46             | 288 | 21. Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance                       |
| 47<br>48<br>49       | 289 | mechanisms in Aedes aegypti from some Latin American countries. J Am Mosq Control Assoc.                        |
| 50<br>51             | 290 | 2007;23:420-429.                                                                                                |
| 52<br>53             | 291 | 22. Kamgang B, Marcombe S, Chandre F et al. Insecticide susceptibility of <i>Aedes aegypti</i> and <i>Aedes</i> |
| 54<br>55<br>56<br>57 | 292 | albopictus in Central Africa. Parasit Vectors. 2011;4:79. doi: 10.2987/5588.1.                                  |
| 58<br>59<br>60       |     | http://mc.manuscriptcentral.com/apjph                                                                           |

Asia Pacific Journal of Public Health

- 293 23. Dusfour I, Zorrilla P, Guidez A et al. Deltamethrin Resistance Mechanisms in Aedes aegypti
- 294 Populations from Three French Overseas Territories Worldwide. *PLoS Negl Trop Dis*.
- 295 2015;9:e0004226. doi: 10.1371/journal.pntd.0004226.

1 2 3

4 5

6 7

8 9

11

18

20

29

38

47

60

- 10 296 24. Marcombe S, Mathieu RB, Pocquet N et al. Insecticide Resistance in the Dengue Vector Aedes
- 12 297 *aegypti* from Martinique: Distribution, Mechanisms and Relations with Environmental Factors. *PLoS* 13
- 14
  298 ONE. 2012;7:e30989. doi: 10.1371/journal.pone.0030989.
- 16
   17 299 25. Faucon F, Dusfour I, Gaude T et al. Identifying genomic changes associated with insecticide
- 19 300 resistance in the dengue mosquito *Aedes aegypti* by deep targeted sequencing. *Genome Res.*
- 21 301 2015;25:1347-1359. doi: 10.1101/gr.189225.115.
- 23<br/>2430226.Prapanthadara LA, Promtet N, Koottathep S et al. Mechanisms of DDT and permethrin
- resistance in *Aedes aegypti* from Chiang Mai, Thailand. *Dengue Bull*. 2002;26:185-189.
- 27
   28 304 <u>http://apps.who.int/iris/bitstream/10665/163771/1/dbv26p185.pdf</u>. Accessed September 9, 2017.
- 30 305 27. Kawada H, Oo SZM, Thaung S et al. Co-occurrence of point mutations in the voltage-gated 31
- 32 306 sodium channel of pyrethroid-resistant *Aedes aegypti* populations in Myanmar. *PLoS Negl Trop Dis*.
- 34
   307
   2014;8:e3032. doi: 10.1371/journal.pntd.0003032.
- 36 37 308 28. Stenhouse SA, Plernsub S, Yanola J et al. Detection of the V1016G mutation in the voltage-gated
- 39 309 sodium channel gene of *Aedes aegypti* (Diptera: Culicidae) by allele-specific PCR assay, and its 40
- 41 310 distribution and effect on deltamethrin resistance in Thailand. *Parasit Vectors*. 2013;6:253. doi:
- <sup>43</sup> 311 10.1186/1756-3305-6-253.
- 45
   46 312 29. Li CX, Kaufman PE, Xue RD et al. Relationship between insecticide resistance and *kdr* mutations
- 48 313 in the dengue vector *Aedes aegypti* in Southern China. *Parasit Vectors*. 2015;8:325. doi: 49
- 50 314 10.1186/s13071-015-0933-z. 51

http://mc.manuscriptcentral.com/apjph

| 1<br>2                                                                                                                                                                                                                                        |     |                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------|
| 3<br>4                                                                                                                                                                                                                                        | 315 | 30. Miarinjara A, Boyer S. Current Perspectives on Plague Vector Control in Madagascar:               |
| 5<br>6                                                                                                                                                                                                                                        | 316 | Susceptibility Status of Xenopsylla cheopis to 12 Insecticides. PLOS Negl Trop Dis. 2016;10:e0004414. |
| 7<br>8                                                                                                                                                                                                                                        | 317 | doi: 10.1371/journal.pntd.0004414.                                                                    |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>5<br>46 |     |                                                                                                       |
| 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57                                                                                                                                                                                |     |                                                                                                       |
| 58<br>59<br>60                                                                                                                                                                                                                                |     | http://mc.manuscriptcentral.com/apjph                                                                 |

Table 1. Mean Lethal Concentration (LC) 50 and LC90 (± SE) of 8 *Aedes aegypti* larval populations with
 temephos in Cambodia. RR50 and RR90 represent the resistance ratio of the field populations compared
 to the USDA susceptible reference strain. <sup>a</sup> USDA strain: LC50 = 0.0037 ± 0.00008 mg/L ; LC90= 0.0047 ±

322 0.0001mg/L

| Environment | Populations <sup>a</sup> | LC50 (SE)         | RR50 | LC90 (SE)      | RR90 |
|-------------|--------------------------|-------------------|------|----------------|------|
|             | Phnom Penh               | 0.020<br>(0.0006) | 5.4  | 0.028 (0.0008) | 6.0  |
|             | Siem Reap                | 0.014<br>(0.0008) | 3.8  | 0.020 (0.0008) | 4.2  |
| Urban       | Kampong Cham             | 0.031<br>(0.0012) | 8.4  | 0.052 (0.0025) | 11.1 |
|             | Battambang               | 0.125 (0.0044)    | 33.8 | 0.221 (0.0082) | 47.0 |
|             | Phnom Penh               | 0.014<br>(0.0007) | 3.8  | 0.031 (0.0011) | 6.6  |
| Durrel      | Siem Reap                | 0.012<br>(0.0006) | 3.3  | 0.021 (0.0010) | 4.4  |
| Rural       | Kampong Cham             | 0.048<br>(0.0015) | 13.0 | 0.066 (0.0029) | 14.0 |
|             | Battambang               | 0.041<br>(0.0015) | 11.1 | 0.064 (0.0031) | 13.6 |

CZ.

Supplementary File 2. Percentage of mortality (± SE) of 8 Aedes aegypti adult populations to

Deltamethrin and Permetrhin. In bold are represented the significant differences of mortality between

bioassays with and without PBO.

|                         | Withou       | Without PBO |                           | With PBO                |  |
|-------------------------|--------------|-------------|---------------------------|-------------------------|--|
| Ae. aegypti populations | Deltamethrin | Permethrin  | Deltamethrin; p-<br>value | Permethrin; p-<br>value |  |
| Battambang rural        | 88.0 (5.1)   | 0.0 (0.0)   | 97.8 (2.6); 0.014         | 3.3 (6.5); 0.355        |  |
| Battambang urban        | 59.6 (3.7)   | 0.0 (0.0)   | 80.6 (9.2); 0.006         | 1.2 (2.4); 0.355        |  |
| Kampong Cham rural      | 70.0 (8.9)   | 1.1 (2.2)   | 71.8 (15.6); 0.844        | 18.6 (4.4); 0.000       |  |
| Kampong Cham urban      | 90.8 (2.3)   | 3.9 (5.4)   | 98.8 (2.4); 0.003         | 7.5 (3.4); 0.300        |  |
| Phnom Penh rural        | 7.1 (2.1)    | 0.0 (0.0)   | 9.9 (7.6); 0.509          | 0.0 (0.0); -            |  |
| Phnom Penh urban        | 8.3 (9.0)    | 0.0 (0.0)   | 7.3 (7.1); 0.867          | 0.0 (0.0); -            |  |
| Siem Reap rural         | 6.3 (5.6)    | 0.0 (0.0)   | 52.3 (12.6); 0.0006       | 0.0 (0.0); -            |  |
| Siem Reap urban         | 4.0 (3.1)    | 0.0 (0.0)   | 24.6 (16.8); 0.047        | 0.0 (0.0); -            |  |
| USDA Sensitive Strain   | 100 (0.0)    | 100 (0.0)   | 100 (0.0); -              | 89.4 (21.2); 0.35       |  |
|                         |              |             |                           |                         |  |
|                         |              |             |                           |                         |  |

http://mc.manuscriptcentral.com/apjph

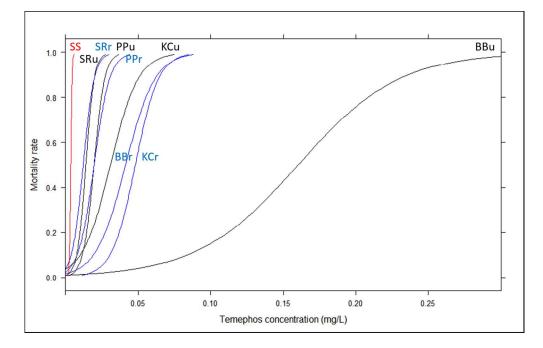
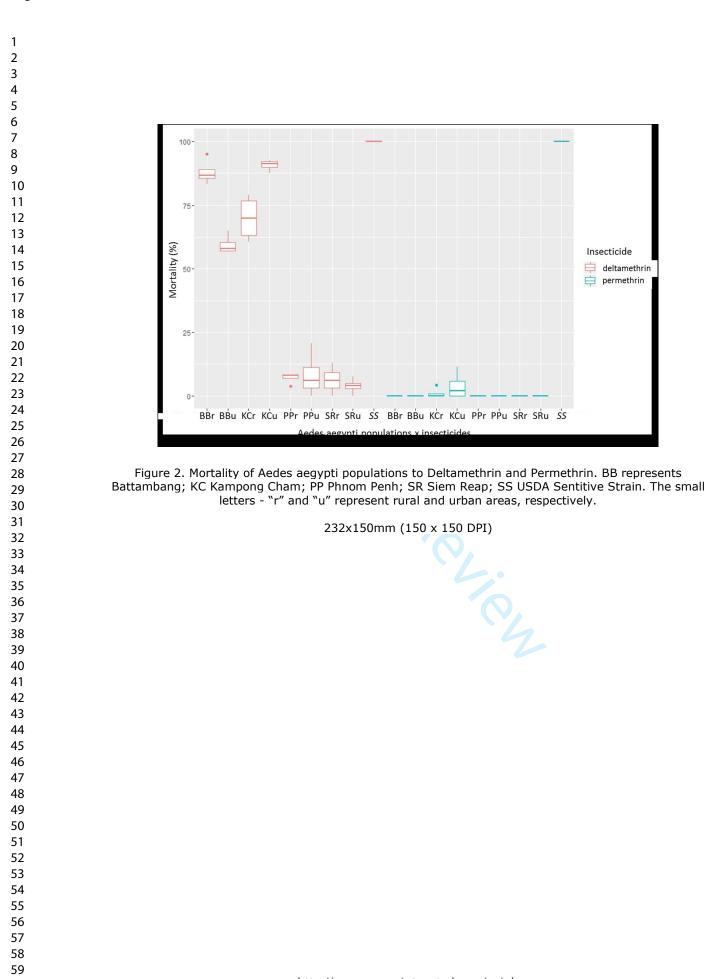
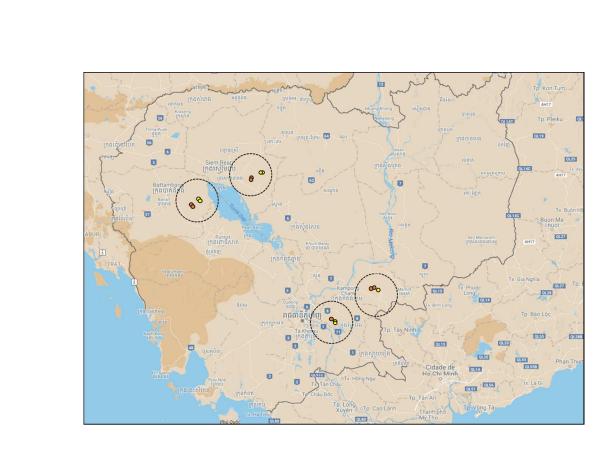



Figure 1. Mortality rate of Aedes aegypti larvae to tempehos in the 4 provinces. The 4 urban populations are represented in black, the rural populations in blue. The red line is the Sensitive strain (SS). BB Battambang, KC Kampong Chan, SR Siem Reap, PP Phnom Penh. The small letters - "r" and "u" represent rural and urban areas, respectively.

228x147mm (150 x 150 DPI)

Aedes acounti nonulations x insecticides


232x150mm (150 x 150 DPI)


CZICZ

Insecticide

🛱 deltamethrin

😑 permethrin





210x148mm (150 x 150 DPI)

L'EZ

Figure 1. Mortality rate of Aedes aegypti larvae to tempehos in the 4 provinces. The 4 urban populations are represented in black, the rural populations in blue. The red line is the Sensitive strain (SS). BB Battambang, KC Kampong Chan, SR Siem Reap, PP Phnom Penh. The small letters - "r" and "u" represent rural and urban areas, respectively.

Figure 2. Mortality of Aedes aegypti populations to Deltamethrin (0.03%) and Permethrin (0.25%) following recommended WHO diagnostic doses. BB represents Battambang; KC Kampong Cham; PP Phnom Penh; SR Siem Reap; SS USDA Sensitive Strain. The small letters - "r" and "u" represent rural and urban areas, respectively.

Supplementary File 1. Location of collection sites in the 4 different provinces in Cambodia: Battambang, Siem Reap, Kampong Cham and Phnom Penh. The orange and yellow circles represent field collections in rural and urban areas, respectively.

| 5                          |    |                                                                                                          |
|----------------------------|----|----------------------------------------------------------------------------------------------------------|
| 6                          |    |                                                                                                          |
| 7                          |    |                                                                                                          |
| 8<br>9                     | 1  | Resistance of Aedes aegypti (Diptera: Culicidae) populations to deltamethrin, permethrin                 |
| 10<br>11                   | 2  | and temephos in Cambodia.                                                                                |
| 12<br>13<br>14             | 3  | Abstract.                                                                                                |
| 15<br>16                   | 4  | Dengue fever is a major public health concern, including 185,000 annual cases in Cambodia. Aedes         |
| 17                         | 5  | aegypti is the primary vector for dengue transmission and is targeted with insecticide treatments. This  |
| 18<br>19                   | 6  | study characterized the insecticide resistance status of Ae. aegypti from rural and urban locations. The |
| 20<br>21                   | 7  | susceptibility to temephos, permethrin and deltamethrin of Ae. aegypti was evaluated in accordance       |
| 22<br>23                   | 8  | with WHO instructions. All the field populations showed lower mortality rate to temephos compared to     |
| 24<br>25                   | 9  | the sensitive strainsstrain with Resistance Ratio 50 (RR50) varying from 3.3 to 33.78 and RR90 from 4.2  |
| 26                         | 10 | to 47 compared to the sensitive strain, demonstrating a generalized resistance of larvae to the          |
| 27<br>28                   | 11 | temephos in Cambodia. Ae. aegypti adult populations were highly resistant to permethrin regardless of    |
| 29<br>30                   | 12 | province or rural/urban classification with an average mortality of 0.02%. Seven of the eight field      |
| 31<br>32                   | 13 | populations showed resistance to deltamethrin. These results are alarming for dengue vector control, as  |
| 33<br>34                   | 14 | widespread resistance may compromise the entomological impact of larval control operations.              |
| 35                         | 15 | Innovative vector control tools are needed to replace ineffective pesticides in Cambodia.                |
| 36<br>37<br>38<br>39<br>40 | 16 | Keywords. Aedes aegypti; Cambodia; insecticide; mosquito; resistance; vector control.                    |
| 40<br>41                   |    |                                                                                                          |
| 42                         |    |                                                                                                          |
| 43                         |    |                                                                                                          |
| 44                         |    |                                                                                                          |
| 45                         |    |                                                                                                          |
| 46                         |    |                                                                                                          |
| 47                         |    |                                                                                                          |
| 48                         |    |                                                                                                          |
| 49                         |    |                                                                                                          |
| 50                         |    |                                                                                                          |
| 51                         |    |                                                                                                          |
| 52                         |    |                                                                                                          |
| 53                         |    |                                                                                                          |
| 54                         |    |                                                                                                          |
| 55                         |    |                                                                                                          |
| 56                         |    |                                                                                                          |
| 57                         |    |                                                                                                          |
| 58                         |    |                                                                                                          |
| 59                         |    |                                                                                                          |
| 60                         |    | http://mc.manuscriptcentral.com/apjph                                                                    |

| 1        |     |                                                                                                                             |
|----------|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 2        |     |                                                                                                                             |
| 3        |     |                                                                                                                             |
| 4        |     |                                                                                                                             |
| 5        |     |                                                                                                                             |
| 6<br>7   |     |                                                                                                                             |
| 8        |     |                                                                                                                             |
| 9        | 17  | Introduction                                                                                                                |
| 10       |     |                                                                                                                             |
| 11       | 18  | Dengue fever is a major public health concern, with estimates of 400 million cases every year in urban,                     |
| 12       |     |                                                                                                                             |
| 13       | 19  | suburban and rural tropical areas. <sup>1</sup> In Cambodia, around 185,000 cases are estimated annually. <sup>2</sup> The  |
| 14       | • • |                                                                                                                             |
| 15       | 20  | primary vector for dengue transmission is Aedes aegypti thatwhich favors environments where water                           |
| 16       | 21  | storage is abundant and solid waste disposal is deficient. <sup>3</sup> As <i>Ae. aegypti</i> is implicated in the          |
| 17       |     |                                                                                                                             |
| 18       | 22  | transmission of arboviruses such as Zika, Chikungunya and Yellow fever <sup>4</sup> , vector control strategies that        |
| 19       |     |                                                                                                                             |
| 20       | 23  | target Ae. aegypti populations may have an major public health impact. Many insecticides have been                          |
| 21       | 24  | used in order to control Ae. aegypti populations, but little information exists on the susceptibility of                    |
| 22       | 24  | used in order to control Ac. acgypti populations, but nete information exists on the susceptionity of                       |
| 23       | 25  | Cambodian populations to the most commonly used insecticides.                                                               |
| 24       |     |                                                                                                                             |
| 25<br>26 | 26  | As early as 1955, DDT residual spray was used in the first malaria eradication pilot in Snuol district <sup>5</sup>         |
| 26<br>27 | 20  | The carry as 1999, but restaudi spray was ased in the mist matural cradication prior in shaor district                      |
| 27<br>28 | 27  | followed by. DDT was again used in public health programs targeting malaria and dengue in urban and                         |
| 20<br>29 |     |                                                                                                                             |
| 30       | 28  | rural areas and at UNHCR refugee camps along the Cambodia-Thailand border duringfrom 1981 to 1987,                          |
| 31       | 29  | after which <b>DDT</b> it was no longer imported <sup>6</sup> . Pyrethroids, particularly permethrin and deltamethrin, were |
| 32       | 29  | arter which born was no longer imported . Fyrethrolds, particularly permething and deitamething, were                       |
| 33       | 30  | introduced to Cambodia in the late 1980s and 2000, for the control of malaria (impregnation of bednets)                     |
| 34       |     |                                                                                                                             |
| 35       | 31  | and dengue (thermal fogging and ULV sprays), respectively <sup>6</sup> . <u>Since 1992,</u> Temephos <del>washas been</del> |
| 36       | 22  |                                                                                                                             |
| 37       | 32  | imported from 1992 to present with roughly 200 tons per year used mainly for larval control of dengue                       |
| 38       | 33  | vectors <sup>6</sup> . In 1966, Mouchet and Chastel showed total susceptibility of <i>Ae. aegypti</i> to DDT, fenthion,     |
| 39       |     | ,                                                                                                                           |
| 40       | 34  | malathion and diazinon insecticides, but observed resistance to dieldrin and gamma HCH <sup>7</sup> . More                  |
| 41       |     |                                                                                                                             |
| 42       | 35  | recently, Ae. aegypti resistance to temephos was also investigated during two field studies in                              |
| 43       | 36  | Cambodia <sup>8</sup> . The resistance pattern and future of temephos is increasingly important as this larvicide has       |
| 44       | 50  |                                                                                                                             |
| 45       | 37  | been the main dengue control strategy used by National Dengue Control Program (NDCP) for more than                          |
| 46       |     |                                                                                                                             |
| 47       | 38  | 20 years and for biannual larvicide campaigns since 2001 <sup>3,6</sup> .                                                   |
| 48<br>40 |     |                                                                                                                             |
| 49       |     |                                                                                                                             |

| 3        |  |
|----------|--|
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| -        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
|          |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
|          |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
|          |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
|          |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 50<br>57 |  |
|          |  |
| 58       |  |
| 50       |  |

60

1 2

| 39 | Using the WHO diagnostic dose (0.02mg/L), the Phnom Penh population tested in 2001 was found to be                    |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 40 | resistant to temephos <del>(LC50=0.02mg/l and LC95=0.03mg/L),</del> while Kampong Cham population was still           |
| 41 | susceptible <del>(LC50=0.009mg/l and LC95=0.015mg/L).</del> More recently, among seven Ae. aegypti                    |
| 42 | populations, six were found to be resistant to temephos with mortality ranging from 11.02% up to                      |
| 43 | 88.62% at the WHO diagnostic concentration (To Setha, Pers. Comm.). While it seems clear that that                    |
| 44 | temephos resistance among Ae. aegypti populations has increased over last yearstime in Cambodia, the                  |
| 45 | patterns between rural and urban areas are not clearas delineated.                                                    |
| 46 | While pyrethroid and organophosphate insecticides are used in the national malaria and dengue control                 |
| 47 | programs, significant use of insecticides (including larvicides, repellents, space sprays, treated materials          |
| 48 | and coils) at home and in the private sector results in unquantifiable use of insecticides. Coupled with              |
| 49 | the lack of information of on adult resistance status in Cambodia and long-term usage of space spraying               |
| 50 | by pest control companies and public health outbreak response, it is timely to characterizeauthorities,               |
| 51 | the need for characterizing the susceptibility of <i>Ae. aegypti</i> to pyrethroïdspyrethroids is urgent. This        |
| 52 | study aims to characterize the insecticide resistance status for immature and adult stages of Ae. aegypti             |
| 53 | collected from rural and urban Cambodian environment. Using WHO test procedures, 8 Eight field                        |
| 54 | populations were tested withusing WHO test procedures against the most commonly used insecticides                     |
| 55 | in Cambodia: <u>which include</u> temephos (for immature stages <del>),) and</del> deltamethrin and / permethrin (for |
| 56 | adult stages).                                                                                                        |
| 57 | Material and Methods                                                                                                  |
| 58 | Mosquito collection <del>.</del>                                                                                      |
| 59 | Four different geographical areas in Cambodia were selected for field sample collections÷_(Phnom Penh,                |
| 60 | Kampong Cham, Battambang and Siem Reap <del>. Within each Province, two ). Two urban</del> villages <del>in an</del>  |

urban setting and two rural villages were selected as collection point.points within each village. Villages

| 2              |    |                                                                                                                       |
|----------------|----|-----------------------------------------------------------------------------------------------------------------------|
| 4              |    |                                                                                                                       |
| 5              |    |                                                                                                                       |
| 6              |    |                                                                                                                       |
| 7<br>8         |    |                                                                                                                       |
| 8<br>9         | 62 | were selected by Cambodian National Center for Entomology, Parasitology, and Malaria Control                          |
| 10<br>11       | 63 | (CNM) <u>NDCP</u> according to geographical representation, dengue incidence and history of recent use of             |
| 12<br>13       | 64 | temephos ( <u>within the previous two years</u> ) (Supplementary File 1).                                             |
| 14<br>15       | 65 | In each village, 25 Twenty five households were randomly selected within each village and all containers              |
| 16<br>17       | 66 | were inspected for larvae and pupae, using direct pipetting for small containers and sweep net method                 |
| 18<br>19       | 67 | for large containers <sup>9</sup> . Collected larvae/pupae were pooled by location (rural/urban) in each province and |
| 20             | 68 | transported to an insectary.                                                                                          |
| 21<br>22<br>22 | 69 | Larvae and pupae were reared in standard conditions (temperature: $28\pm1^\circ$ C; relative humidity: 75 $\pm$       |
| 23<br>24<br>25 | 70 | 25%; photoperiod: 12 hours day/night) in 24.8 x 19.7 x 3.8 cm standard white plastic larval tray                      |
| 25<br>26       | 71 | containing 2 liters of purified water and fed with half a teaspoon of grounded fish food daily until adult            |
| 27<br>28       | 72 | emergence. Adult Aedes were separated from other species by direct aspiration and each population                     |
| 29<br>30       | 73 | was separated by location (total of 8 populations from 4 Provinces).                                                  |
| 31<br>32       | 74 | For both larvae and adults assays, a USDA reference susceptible strain <sup>10</sup> was used as positive and         |
| 33<br>34       | 75 | negative control with water and ethanol in plastic beakers. LC50 and LC90 results obtained were used to               |
| 35<br>36       | 76 | calculate Resistance Ratios (RR).                                                                                     |
| 37<br>38       | 77 | Rearing of F1 larvae for testing.                                                                                     |
| 39<br>40       | 78 | Adult Aedes mosquitomosquitos from parental generationgenerations were reared at standard                             |
| 41<br>42       | 79 | conditions and fed with 10% sucrose solution. All populations were also provided with lab reared mice                 |
| 43<br>44       | 80 | for blood meal once in every three days for 3-4 hours. Eggs of from the F1 generation were collected on               |
| 45<br>46       | 81 | white filter paper and placed inside black plastic cups. Eggs were dried and stored in envelops and later             |
| 47<br>48       | 82 | sent to the laboratory. F1 eggs were later immersed in water according to assay needs for testing                     |
| 49             | 83 | procedures and larvae were reared as previously described.                                                            |
| 50<br>51       |    |                                                                                                                       |
| 52             |    |                                                                                                                       |
| 53             |    |                                                                                                                       |
| <b>F</b> 4     |    |                                                                                                                       |

| ð  |    | ı.            |
|----|----|---------------|
| 9  | 84 | <u>Ae</u>     |
| 10 |    |               |
| 11 | 85 | In            |
| 12 |    | ı .           |
| 13 | 86 | de            |
| 14 | 07 | di.           |
| 15 | 87 | dis           |
| 16 |    |               |
| 17 | 88 | Те            |
| 18 | ~~ |               |
| 19 | 89 | of            |
| 20 | 90 | be            |
| 21 | 50 | DC            |
| 22 | 91 | lab           |
| 23 |    |               |
| 24 | 92 | co            |
| 25 |    |               |
| 26 | 93 | ₩e            |
| 27 | 94 |               |
| 28 | 94 | <del>co</del> |
| 29 | 95 | ml            |
| 30 | 20 |               |
| 31 | 96 | lar           |

#### e. aegypti larval bioassays<del>.</del>

| 85  | In accordance with WHO instructions <sup>11</sup> , late third instar larvae of F1 generation were used for                      |                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 86  | determining the resistance of mosquito larvae to temephosLarvae showing any abnormalities were                                   |                             |
| 87  | discarded before the experiment.                                                                                                 |                             |
| 88  | Temephos (Sigma, Pestanal analytical grade, 250 mg) was diluted in ethanol to produce a stock solution                           |                             |
| 89  | of 1000 mg/L. The main stock solution was diluted into other solutions several working concentrations                            |                             |
| 90  | better suited for testing <del>, denominated as stock solutions.</del> All solutions were stored in glass bottles and            |                             |
| 91  | labeled accordingly. <del>To determine Lethal Concentrations 50 and 90 (LC 50, LC 90), six temephos</del>                        |                             |
| 92  | concentrations were used: 0.2, 0.05, 0.03, 0.02, 0.01, 0.004 mg/L. To obtain each of this concentration,                         |                             |
| 93  | we pipetted these concentrations the adequate volume of temephos was pipetted from stock solutions,                              |                             |
| 94  | completingadding the remaining valueamount of solution with ethanol into each beaker containing 99                               |                             |
| 95  | ml of water. Four replicates were used for every concentration, and each replicate consist <u>consists</u> of 25                 |                             |
| 96  | larvae.                                                                                                                          |                             |
| 97  | Six temephos concentrations (0.2, 0.05, 0.03, 0.02, 0.01, 0.004 mg/L) were used to determine Lethal                              |                             |
| 98  | Concentration (LC) 50/95 (e.g. the necessary concentrations needed to kill 50%/95% of mosquito                                   |                             |
| 99  | larvae). Resistance ratios (RR50 and RR95) were calculated dividing LC <sub>50</sub> and LC <sub>95</sub> rates from Ae. aegypti |                             |
| 100 | field populations by the $LC_{50}$ and $LC_{90}$ rates of the USDA susceptible strain.                                           |                             |
| 101 | <u>Ae. Ae. aegypti adult bioassays.</u>                                                                                          | <b>Formatted:</b> Underline |
| 102 | <u>aegypti adult bioassays</u>                                                                                                   |                             |
| 103 | Insecticide resistance screening for adult mosquitomosquitos was conducted using the WHO tube                                    |                             |
| 104 | assay <sup>11</sup> . Two synthetic pyrethroids; permethrin and deltamethrin, at diagnostic concentrations                       |                             |
| 105 | appropriate for Aedes mosquitoes were used. WHO tube kit and impregnated permethrin (0.25%),                                     |                             |
|     |                                                                                                                                  |                             |
|     |                                                                                                                                  |                             |
|     |                                                                                                                                  |                             |
|     |                                                                                                                                  |                             |
|     |                                                                                                                                  |                             |

deltamethrin (0.03%) and piperonyl butoxide for synergist assay (PBO 4%) papers were obtained from

Vector Control Research Unit (VCRU) inat the University of Science (USM),, Penang, Malaysia. Diagnostic

| 2              |     |
|----------------|-----|
| 3              |     |
| 4<br>5         |     |
| 6              |     |
| 7              |     |
| 8              | 106 |
| 9<br>10        |     |
| 11             | 107 |
| 12<br>13       | 108 |
| 14<br>15       | 109 |
| 16<br>17       | 110 |
| 18<br>19       | 111 |
| 20             | 112 |
| 21<br>22       | 113 |
| 23<br>24       | 114 |
| 25<br>26       | 115 |
| 27<br>28       | 116 |
| 29<br>30       | 117 |
| 31             | 118 |
| 32<br>33       | 119 |
| 34<br>35       | 120 |
| 36<br>37       | 121 |
| 38<br>39<br>40 | 122 |
| 41<br>42       | 123 |
| 43             | 124 |
| 44<br>45       | 125 |
| 46<br>47       | 126 |
| 48             |     |
| 49<br>50       |     |
| 50<br>51       |     |
| 52             |     |
| 53             |     |
| 54             |     |
| 55<br>56       |     |
| 56<br>57       |     |
| 58             |     |
| 59             |     |

| and synergist concentrations were chosen following WHO recommendations <sup>11</sup> .                                                 |                                                |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| For this bioassay, each tested population <del>use<u>used</u> four tubes <u>contained</u>containing</del> Permethrin (0.25%),          |                                                |
| four tubes <del>contained<u>containing</u> deltamethrin (0.03%), and four control tubes <del>contained<u>containing</u></del></del>    |                                                |
| silicone oil paper. Twenty-five <del>adult with<u>a</u>dults</del> at least 3 days old and non-blood fed female mosquitoes             |                                                |
| were introduced into each tube lined with untreated paper (holding tube) for 60 minminutes.                                            |                                                |
| Mosquitoes were then transferred into the exposure tube and exposed to impregnated paper for 60                                        |                                                |
| min-minutes. Mosquito Knock Down (KD) mosquito were counted was measured at the end of the                                             |                                                |
| exposure, after which mosquitoes were transferred back to the tube without insecticide. Mortality was                                  |                                                |
| counted at the end of <u>a</u> 24 hours period and the resistance status was interpreted according to the WHO                          | <b>Formatted:</b> Font: +Body (Calibri), 11 pt |
| protocol.                                                                                                                              |                                                |
| Insecticide-synergist assay using piperonyl butoxide (PBO) was conducted to measure the effect of pre-                                 |                                                |
| exposure to a synergist on the expression of insecticide resistance. Adult Aedes were pre-exposed to                                   |                                                |
| this synergist for one hour before exposure to insecticide. KD and mortality were recorded the same                                    |                                                |
| way as standard tests.                                                                                                                 |                                                |
| Data Management and statistical analysis.                                                                                              |                                                |
| Knock down and mortality were registered at <a href="https://www.and-24h24">https://www.and-24h24</a> hours postexposure respectively. |                                                |
| RRs for larvae and adults mosquitoadult mosquitos were calculated by dividing the average mortality                                    |                                                |
| found in each field <del>populationspopulation</del> by the mortality obtained with the USDA susceptible                               |                                                |
| reference strain.                                                                                                                      |                                                |
|                                                                                                                                        |                                                |
|                                                                                                                                        |                                                |
|                                                                                                                                        |                                                |
|                                                                                                                                        |                                                |
|                                                                                                                                        |                                                |
|                                                                                                                                        |                                                |

http://mc.manuscriptcentral.com/apjph

For larvae results, LC50 and LC90 were obtained by plotting the mortality using log probit analysis. LC50 and LC90 results obtained from field populations were then divided by results obtained in USDA strain to obtain RRs for each field population. Statistical analysis (ANOVA thenand mean comparison) were realized completed to compare the mortality of adults to permethrin and deltamethrin with or without the use of PBO. Graphs and data analysis were done with R software<sup>12</sup>. Results Larval bioassays The overall bioassay results for larvae are presented in Table 1. The highest LC50 and LC90 values were obtained with Battambang urban populations with  $(LC_{50}=0.125\pm0.004 \text{ mg/L} \text{ and } LC_{90}=0.221\pm0.008 \text{ mg/L})$ followed by ) and Kampong Cham (Table 1). These two outlying provinces are distant from big urban centers and have experienced large outbreaks and significant outbreak responses. Hence, in Phnom Penh and Siem Reap, the  $LC_{50}$  and  $LC_{90}$  were lowest with  $LC_{50}$  values comprised between 0.012 mg/L (Siem Reap rural) and 0.020 mg/L (Phnom Penh rural). The RR for urban and rural populations of Siem Reap and Phnom Penh provinces were mainlymostly above the threshold which is defined as a resistant population with  $RR \ge 5$ . RR values of Kampong Cham and Battambang urban and rural populations were two and nine-fold higher than the threshold, respectively. While these results may be linked to the continued distribution of temephos and consequent exposure of populations to this chemical, it is of great concern that 2 out of 4 populations in these two provinces registered RRs twice as high as the defined resistance threshold (Kampong Cham Rural, RR=13.0; Battambang rural, RR=11.2) and one registered a RR 6 times higher than the defined threshold (Battambang urban, RR=33.6). 

| 2<br>3         |     |                                                                                                                                      |
|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| 4              |     |                                                                                                                                      |
| 5              |     |                                                                                                                                      |
| 6<br>7         |     |                                                                                                                                      |
| ,<br>8<br>9    | 150 | Higher lethal doses (LC <sub>50</sub> or LC <sub>90</sub> ) are needed to kill <i>Ae. aegypti</i> larvae from Battambang and Kampong |
| 10<br>11       | 151 | Cham populations as depicted on the four mortality curves on the right side of the graph compared to                                 |
| 12<br>13       | 152 | Siem Reap and Phnom Penh populations (Figure 1). Lastly all the field populations showed higher                                      |
| 14<br>15       | 153 | mortality curve patterns compared to the sensitive strain over a range of concentrations (Figure 1).                                 |
| 16<br>17       | 154 | Adult bioassays.                                                                                                                     |
| 18<br>19       | 155 | Results showed a very high level of resistance to permethrin regardless of province or rural/urban                                   |
| 20<br>21       | 156 | classification (Figure 2; Supplementary File 2). The average mortality to permethrin at the WHO                                      |
| 22<br>23       | 157 | diagnostic dose is $\frac{2.22\% \pm 0.002\% \pm 0.0002}{2}$ for all the populations. All the While all populations showed           |
| 24<br>25       | 158 | resistance to permethrin: six of the eight populations showed no mortality to permethrin while the 2at                               |
| 26             | 159 | all. The additional two Kampong Cham populations had 1.1% and 3.9% of mortality. Adult bioassays                                     |
| 27<br>28       | 160 | showed a significant difference in mortality to permethrin depending on the population and the                                       |
| 29<br>30       | 161 | presence of PBO (F=3.35; <i>df</i> =8; <i>p</i> =0.003), particularly a significant increase in mortality from 1.1% to               |
| 31<br>32       | 162 | 18.6% in rural population from Kampong Cham province (Supplementary File 2).                                                         |
| 33<br>34       | 163 | With deltamethrin, sevenSeven of the eight field populations havehad a mortality percentage below                                    |
| 35<br>36       | 164 | 90% of mortality due to deltamethrin, meaning that these populations are resistant to deltamethrin. The                              |
| 37<br>38       | 165 | average mortality of Ae. aegypti populations from Phnom Penh and Siem Reap provinces ranged                                          |
| 39<br>40       | 166 | between 4.0% and 8.3%_only. A significant difference in mortality to deltamethrin among the five                                     |
| 41             | 167 | highest mortality populations (>52%) tested were observed in the presence of PBO (F=7.20; <i>df</i> =8;                              |
| 42<br>43       | 168 | <i>p</i> <0.0001).                                                                                                                   |
| 44<br>45       | 169 | Discussion                                                                                                                           |
| 46<br>47<br>48 | 170 | Resistance to temephos: implicationimplications for Public Healthpublic health                                                       |
| 49<br>50       | ļ   |                                                                                                                                      |
| 50<br>51       |     |                                                                                                                                      |
| 52             |     |                                                                                                                                      |
| 53             |     |                                                                                                                                      |
| 54<br>55       |     |                                                                                                                                      |
| 55<br>56       |     |                                                                                                                                      |
| 57             |     |                                                                                                                                      |
| 58             |     |                                                                                                                                      |
| 59<br>60       |     | http://mc.manuscriptcentral.com/apjph                                                                                                |
| 00             |     |                                                                                                                                      |

| 171 | Observed Ae. aegypti resistance to temephos is fully consistent with a recent analysis amongstudy                                         |       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 172 | where 6 of 7 populations showingshowed similar resistance in Cambodia (To Setha, pers. comm <del>.): the</del>                            |       |
| 173 | RR (at LC50).). The RR50 range of the 8 populations to temephos between 3.8 and 33.6 reflects the                                         |       |
| 174 | intensity of insecticide control. In Thailand, despite mosquito resistance to deltamethrin and                                            |       |
| 175 | permethrin, temephos is still an effective insecticide to control Ae. aegypti larvae <sup>13</sup> On the basis of data                   |       |
| 176 | showing -temephos resistance in Phnom Penh <del>since<u>over</u> 17 years<sup>8</sup>, <del>we suggest</del> a review of prevention</del> |       |
| 177 | and control strategies <del>, should be conducted</del> and highlight the <u>effects of</u> reliance <del>of</del> on a single method of  |       |
| 178 | control <del>; i. (</del> e <u>g. high levels of</u> temephos <del>which is the most widely used larvicide to control use in</del>        |       |
| 179 | <u>Cambodia<sup>14</sup> <math>A = a = a = gypti^{14}</math></u> may compromise the entomological impact of larval control operations.    | Forma |
| 180 | Bacillus thuringiensis var. israelensis (Bti) was tested with success in 2005 around Phnom Penh <sup>15</sup> . In                        |       |
| 181 | 2016, a <u>A</u> new <i>Bti</i> strain AM65-52 was tested in 2016 against Kandal Ae. aegypti field population from                        |       |
| 182 | Kandal province that was resistant to temephos, with . Results showed a reduction in the number of                                        |       |
| 183 | pupae over 13 weeks, with an average 70% reduction during 13 the 8 first weeks <sup>16</sup> . The use of the                             |       |
| 184 | Poecilia reticulate (guppy) fish to control Aedes populations in water storage was tested in 2008 and                                     |       |
| 185 | after one year, a 79% reduction of a fin Aedes larvae in community was observed with a presence of                                        |       |
| 186 | guppies in <u>only</u> 57% of the containers <sup>17</sup> . In 2008, a new formulation of pyriproxifen was tested in water               |       |
| 187 | containers against <i>Ae. aegypti</i> in Phum Thmei near Phnom Penh <sup>18</sup> . <del>Their main result was<u>The study</u></del>      |       |
| 188 | identified an inhibition of adult emergence in treated jars reaching 90% for 20 weeks, and remaining                                      |       |
| 189 | above 80% until the end of the study (34 weeks). In <del>2008, in </del> Kampong Cham <del>province</del> Province in                     |       |
| 190 | Cambodia,2008 water jars were covered with LLIN Permanet 2.0 (insecticide = deltamethrin) without                                         |       |
| 191 | significant reduction <sup>17</sup> reductions in mosquitoes <sup>17</sup> , possibly explained by the strong resistance to               |       |
| 192 | delamethrin that we observed in Ae. aegypti adults. A large-scale randomized trial comparing guppy and                                    |       |
| 193 | COMBI (Communication for Behavioural Impact) in Kampong Cham showed 92.5 % reduction in larval-                                           |       |
| 194 | positive containers and 76%-88% coverage with guppies after one year. A recently completed cluster                                        |       |
|     |                                                                                                                                           |       |
|     |                                                                                                                                           |       |
|     |                                                                                                                                           |       |
|     |                                                                                                                                           |       |

Formatted: Underline

| 1<br>2         |     |                                                                                                                                                      |                         |
|----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 3<br>4         |     |                                                                                                                                                      |                         |
| 4<br>5         |     |                                                                                                                                                      |                         |
| 6              |     |                                                                                                                                                      |                         |
| 7              |     |                                                                                                                                                      |                         |
| 8<br>9         | 195 | randomized control trial showed that an integrated vector management approach using guppy fish                                                       |                         |
| 10<br>11       | 196 | (Poecilia reticulata), a new slow release pyriproxyfen matrix (Sumilarv® 2MR), and community                                                         |                         |
| 12<br>13       | 197 | engagement through a clear Community for Behavioral Impact (COMBI) strategy reduced indoor adult                                                     |                         |
| 14<br>15       | 198 | density <del>by 83% (pre-versus post-intervention) or 44% (intervention versus control arms)<sup>19</sup>.roughly 50%</del>                          |                         |
| 16             | 199 | as compared to the control arm <sup>19</sup> . All of these methods focused on key containers, especially water                                      |                         |
| 17<br>18       | 200 | cement jars that produced approximately 95% of Ae. aegypti larvae and pupae <sup>9</sup> and should be                                               |                         |
| 19<br>20       | 201 | considered in Cambodia as a cost-effective replacement of temephos.                                                                                  |                         |
| 21<br>22<br>22 | 202 | Resistance to permethrin but susceptible to deltamethrin                                                                                             |                         |
| 23<br>24       | 203 | Resistance of Ae. aegypti to deltamethrin has public health implications. Aedes aegypti compare                                                      |                         |
| 25<br>26       | 204 | favorably deltamethrin-resistant populations have been described in different countries in Asia <sup>20</sup> , Latin                                |                         |
| 27<br>28       | 205 | America <sup>21</sup> , Africa <sup>22</sup> , Oceania <sup>23</sup> , Caraibes <sup>24</sup> . Surprisingly, we did not observe the same pattern of |                         |
| 29<br>30       | 206 | resistance with permethrin.and the Caribbean <sup>24</sup> .In our study, Aedes aegypti populations were either                                      |                         |
| 31<br>32       | 207 | totally resistant <u>to deltamethrin (</u> with two populations exhibiting zero mortality <sub>7</sub> ) or <del>with<u>had</u> tolerance</del>      |                         |
| 33             | 208 | patterns, Recently, the same pattern was observed in Thailand: where Ae. aegypti F1 females were                                                     | Formatted: Font: Italic |
| 34<br>35       | 209 | susceptible to deltamethrin, but resistant to permethrin <sup>13</sup> . In a recent review (Smith et al. 2016), there                               |                         |
| 36<br>37       | 210 | isA substantial geographic variation exist to pyrethroid resistance, with lower adult resistance levels in                                           |                         |
| 38<br>39       | 211 | Asia, Africa and the USA <del>(based on both RRs and % mortality values), although. However</del> there is 250-                                      |                         |
| 40<br>41       | 212 | fold resistance to deltamethrin in Thailand <sup>25</sup> .                                                                                          |                         |
| 42<br>43       | 213 | In this study, an extremely strong resistance to permethrin was observed both with/without PBO                                                       |                         |
| 44<br>45       | 214 | experiment that which seems to indicate that the resistance is already fixed. Comparatively, the                                                     |                         |
| 46<br>47       | 215 | resultsresult with deltamethrin and deltamethrin + PBO suggest the involvement of detoxifying                                                        |                         |
| 48             | 216 | enzymes. But <u>However</u> , generally <del>,</del> multiple resistance between pyrethroids are possible <del>, and we could</del>                  |                         |
| 49<br>50       | 217 | expect the intervention of the and it can be expected that there is a kdr mutation for resistance in both                                            |                         |
| 51             |     |                                                                                                                                                      |                         |
| 52<br>53       |     |                                                                                                                                                      |                         |
| 55             |     |                                                                                                                                                      |                         |
| 55             |     |                                                                                                                                                      |                         |
| 56             |     |                                                                                                                                                      |                         |
| 57<br>58       |     |                                                                                                                                                      |                         |
| 20             |     |                                                                                                                                                      |                         |

| 218 | insecticides. As the mechanisms of resistance between permethrin and DDT are expected to be the                                                                 |                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 219 | same, via a kdr mutation <sup>26</sup> , the already existing DDT-resistance <sup>7</sup> , may explain the current fixed resistance                            |                      |
| 220 | observed with permethrin. There are several <i>kdr</i> mutations common in <i>Aedes</i> species that synergize                                                  |                      |
| 221 | with each other when they are associated <sup>27</sup> . According to the point mutations the resistant phenotype                                               |                      |
| 222 | could not be the same according to the pyrethroids. Heterozygous V1016G, and F1534F and F1534C                                                                  |                      |
| 223 | mutants were findfound in Thailand <sup>28</sup> , and the same mutation werewas also described in South                                                        |                      |
| 224 | ofsouthern China with also-V1016G mutants <sup>29</sup> . Whilst there There is substantial variation in kdr in the                                             | <b>Formatted:</b> Fo |
| 225 | Southeast Asian region, that has effects on resistance (arising from different combinations of three                                                            |                      |
| 226 | mutations <del>: _</del> S989P, V1016G and F1534C <u>-</u> in <i>Ae. aegypti<mark>;). Although</mark> there are other <del>few</del>mutations</i>               |                      |
| 227 | detected in Ae. aegypti but they do not appear to have effect on resistance based on current evidence.                                                          |                      |
| 228 | For example- <u>, combinations of</u> F1534- <del>and/or</del> , C1534C- <del>and / or</del> , V1016G- <del>and / or</del> , S989P <sup>29</sup> are present in |                      |
| 229 | Cambodia <del>,</del> and <del>actingmay act</del> together with metabolic resistance. The resistance patterns to                                               |                      |
| 230 | deltamethrin and permethrin in the Cambodian villages would-fit with the variation in frequencies of the                                                        |                      |
| 231 | three mutations and especially in low 989/1016 but high 1534 in permethrin (but not deltamethrin)                                                               |                      |
| 232 | resistant locations <u>,</u> but higher 989/1016 in Phnom <del>PengPenh</del> and Siem Reap <del>, <u>(</u>perhaps in combination</del>                         |                      |
| 233 | with 1534 <del>, though they tend to occur on alternate chromosomes so co-occurrence is uncommon,</del>                                                         |                      |
| 234 | although this has certainly been observed. These will be key mutations to screen, perhaps with a little                                                         |                      |
| 235 | sequencing to check whether others are found - the Ae. aegypti sodium channel is full of non-                                                                   |                      |
| 236 | synonymous mutations – which is very strongly resistance associated, and resistance links are yet to be                                                         |                      |
| 237 | established. <u>).</u>                                                                                                                                          |                      |
| 238 | Our results question the resistance mechanisms <del>, and even if classically expressed, the multiple</del>                                                     |                      |
| 239 | resistance is considered as evident when talking about pyrethroids, it shouldn't or requires a different                                                        |                      |
| 240 | explanation Indeed, for instance, the absence of correlation between permethrin and deltamethrin                                                                |                      |
|     |                                                                                                                                                                 |                      |
|     |                                                                                                                                                                 |                      |
|     |                                                                                                                                                                 |                      |
|     |                                                                                                                                                                 |                      |
|     |                                                                                                                                                                 |                      |

Formatted: Font: Not Italic

| 3  |     |                                                                                                               |
|----|-----|---------------------------------------------------------------------------------------------------------------|
| 4  |     |                                                                                                               |
| 5  |     |                                                                                                               |
| 6  |     |                                                                                                               |
| 7  |     |                                                                                                               |
| 8  |     |                                                                                                               |
| 9  | 241 | may involve different effects induced by type I Pyrethroid (permethrin) and a pseudo pyrethroid               |
| 10 | 242 | (nonester pyrethroid; deltamethrin), and so different resistance mechanisms <sup>30</sup> ,                   |
| 11 | 272 |                                                                                                               |
| 12 |     |                                                                                                               |
| 13 | 243 | Limitations and conclusion                                                                                    |
| 14 |     |                                                                                                               |
| 15 | 244 | We acknowledge the lack of baseline data on temephos distribution in the villages sampled. While              |
| 16 |     |                                                                                                               |
| 17 | 245 | temephos distribution has been acknowledged as the main outbreak response tool in Cambodia <sup>3</sup> , the |
| 18 |     |                                                                                                               |
| 19 | 246 | timing and concentrations used in the villages sampled in this study were not discriminated. Hence, we        |
| 20 |     |                                                                                                               |
| 21 | 247 | cannot fully characterize the existing pre-conditions of each village in terms of previous larviciding        |
| 22 | 248 | activities, but temphas distribution is arganized annually at a national and province scales. Likewise        |
| 23 | 248 | activities, but temephos distribution is organized annually at a national and province scales. Likewise,      |
| 24 | 249 | pyrethroid based interventions like thermal fogging, long lasting insecticide nets (LLIN) usage and           |
| 25 | 243 | byrean old based interventions like thermal logging, bilg lading insecticide nets (EEN/ dodge and             |
| 26 | 250 | pyrethroid based aerosol spray use was not characterized during field collection, limiting the possibility    |
| 27 |     |                                                                                                               |
| 28 | 251 | to ascertain potential drivers for the resistance patterns registered.                                        |
|    |     |                                                                                                               |
| 29 | 252 | Nevertheless our results as well as the results of the neighboring countries are alarming. From a regional    |
| 30 | 252 | Nevertileless our results as well as the results of the neighboring countries are diarming. From a regional   |
| 31 | 253 | point of view, it seems essential to rapidly change control methods based on the use of a larvicide and       |
| 32 |     |                                                                                                               |
| 33 | 254 | to replace the temephos with another larvicide that remains to be determined. Finally, and perhaps            |
| 34 |     |                                                                                                               |
| 35 | 255 | more worrying, it seems that in the event of an epidemic, the adulticides used in the South East Asia         |
| 36 |     |                                                                                                               |
| 37 | 256 | region are no longer effective. We must quickly find an alternative.                                          |
| 38 |     |                                                                                                               |
| 39 | I   |                                                                                                               |
| 40 |     |                                                                                                               |
| 41 |     |                                                                                                               |
| 42 |     |                                                                                                               |
| 43 |     |                                                                                                               |

| 1<br>2   |     |    |                                                                                                          |    |                                                     |  |
|----------|-----|----|----------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------|--|
| 3        |     |    |                                                                                                          |    |                                                     |  |
| 4        |     |    |                                                                                                          |    |                                                     |  |
| 5<br>6   |     |    |                                                                                                          |    |                                                     |  |
| 7        |     |    |                                                                                                          |    |                                                     |  |
| 8        | 257 | Re | ferences                                                                                                 |    |                                                     |  |
| 9<br>10  |     |    |                                                                                                          |    |                                                     |  |
| 11       | 258 | 1. | Guzman A, Istúriz RE. Update on the global spread of dengue. Int J Antimicrob Agents. 2010;36:S40-2.     |    |                                                     |  |
| 12<br>13 | 259 |    | doi: 10.1016/j.ijantimicag.2010.06.018.                                                                  |    |                                                     |  |
| 14<br>15 | 260 | 2. | Shepard DS, Undurraga EA, Halasa YA. Economic and Disease Burden of Dengue in Southeast Asia.            |    |                                                     |  |
| 16<br>17 | 261 |    | PLoS Negl Trop Dis. 2013;7:e2055. doi: 10.4269/ajtmh.14-0139.                                            |    |                                                     |  |
| 18<br>19 | 262 | 3. | Huy R, Buchy P, Conan A et al. National dengue surveillance in Cambodia 1980–2008: epidemiological       |    |                                                     |  |
| 20       | 263 |    | and virological trends and the impact of vector control. Bull WHO. 2010;88:650–657.                      |    |                                                     |  |
| 21<br>22 | 264 |    | http://www.who.int/bulletin/volumes/88/9/09-073908/en/. Accessed September 9,2017.                       |    |                                                     |  |
| 23<br>24 | 265 | 4. | Christophers S. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. |    |                                                     |  |
| 25<br>26 | 266 |    | Cambridge at the University Press, New York, USA; 1960. doi: 10.1126/science.133.3463.1473-a             |    |                                                     |  |
| 27       | 267 | 5. | Brown A. Personal experiences in the malaria eradication campaign 1955-1962. J Roy Soc Med.              |    |                                                     |  |
| 28<br>29 | 268 |    | 2002;95:154-156. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279490/pdf/0950154.pdf.                   |    |                                                     |  |
| 30<br>31 | 269 |    | Accessed September 9,2017.                                                                               |    |                                                     |  |
| 32<br>33 | 270 | 6. | Ministry of Environment of Cambodia. National Profile on chemicals management in Cambodia.               |    |                                                     |  |
| 34<br>35 | 271 |    | Enabling Activities for Development of a National Plan for Implementation of the Stockholm               |    |                                                     |  |
| 36<br>37 | 272 |    | Convention, Phnom penh, Cambodia. 2004.                                                                  |    |                                                     |  |
| 38       | 273 |    | http://www.un.org/esa/dsd/dsd_aofw_ni/ni_pdfs/NationalReports/cambodia/Full_Report.pdf.                  |    |                                                     |  |
| 39<br>40 | 274 |    | Accessed September 9, 2017.                                                                              |    |                                                     |  |
| 41<br>42 | 275 | 7. | Mouchet J, Chastel C. La résistance aux insecticides chez Aedes aegypti L. et Aedes albopictus a         |    |                                                     |  |
| 43<br>44 | 276 |    | Phnom-Penh (Cambodge). Med Trop. 1966;26:505-515. http://horizon.documentation.ird.fr/exl-               | :1 | Formatted: English (U.S.)                           |  |
| 44       | 277 |    | doc/pleins_textes/pleins_textes_5/b_fdi_08-09/11102.pdf, Accessed September 9, 2017,                     |    | Formatted: English (U.S.)                           |  |
| 46<br>47 | 278 | 8. | Polson KA, Curtis C, Chang MS, Olson JG, Chantha N, Rawlins SC. Susceptibility of two Cambodian          |    | Formatted: English (U.S.) Formatted: English (U.S.) |  |
| 48<br>49 | 279 |    | population of Aedes aegypti mosquito larvae to temephos during 2001. Dengue Bull. 2001;25:79-83.         |    |                                                     |  |
| 50       | 280 |    | http://apps.who.int/iris/bitstream/10665/163688/1/dbv25p79.pdf. Accessed September 9, 2017.              |    |                                                     |  |
| 51<br>52 |     |    |                                                                                                          |    |                                                     |  |
| 53       |     |    |                                                                                                          |    |                                                     |  |
| 54<br>57 |     |    |                                                                                                          |    |                                                     |  |
| 55<br>56 |     |    |                                                                                                          |    |                                                     |  |
| 57       |     |    |                                                                                                          |    |                                                     |  |
| 58       |     |    |                                                                                                          |    |                                                     |  |
| 59<br>60 |     |    | http://mc.manuscriptcentral.com/apjph                                                                    |    |                                                     |  |

| 1        |     |                                                                                                               |
|----------|-----|---------------------------------------------------------------------------------------------------------------|
| 2        |     |                                                                                                               |
| 3<br>4   |     |                                                                                                               |
| 5        |     |                                                                                                               |
| 6        |     |                                                                                                               |
| 7        |     |                                                                                                               |
| 8<br>9   | 281 | 9. Seng CM, Setha T, Nealon J, Socheat D. Pupal sampling for Aedes aegypti (L.) surveillance and              |
| 10<br>11 | 282 | potential stratification of dengue high-risk areas in Cambodia. Trop Med Int Health. 2009;14:1233-            |
| 12<br>13 | 283 | 1240. doi: 10.1111/j.1365-3156.2009.02368.x.                                                                  |
| 14<br>15 | 284 | 10. Kuno G. Early history of laboratory breeding of <i>Aedes aegypti</i> (Diptera: Culicidae) focusing on     |
| 16       | 285 | the origins and use of selected strains. J Med Entomol. 2010;47:957-971. doi: 10.1603/ME10152                 |
| 17<br>18 | 286 | 11. World Health Organization. <i>Monitoring and managing insecticide resistance in Aedes mosquito</i>        |
| 19<br>20 | 287 | populations. Interim guidance for entomologists. WHO, Geneva, Switzerland; 2016.                              |
| 21<br>22 | 288 | http://apps.who.int/iris/bitstream/10665/204588/2/WHO_ZIKV_VC_16.1_eng.pdf. Accessed                          |
| 23       | 289 | September 9, 2017.                                                                                            |
| 24<br>25 | 290 | 12. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for              |
| 26<br>27 | 291 | Statistical. Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u> . Accessed September 9,        |
| 28<br>29 | 292 | 2017.                                                                                                         |
| 30       | 293 | 13. Thongwat D, Bunchu N. Susceptibility to temephos, permethrin and deltamethrin of <i>Aedes</i>             |
| 31<br>32 | 294 | aegypti (Diptera: Culicidae) from Muang district, Phitsanulok Province, Thailand. Asian Pacific J Trop        |
| 33<br>34 | 295 | Med. 2015;8:14-18. doi: 10.1016/S1995-7645(14)60180-2.                                                        |
| 35<br>36 | 296 | 14. Khun S, Manderson LH. Abate distribution and dengue control in rural Cambodia. <i>Acta Trop</i> .         |
| 37<br>38 | 297 | 2007;101:139-146. doi: 10.1016/j.actatropica.2007.01.002.                                                     |
| 39       | 298 | 15. Setha T, Chantha N, Socheat D. Efficacy of <i>Bacillus thuringiensis israelensis</i> , VectoBac® WG and   |
| 40<br>41 | 299 | DT, formulations against dengue mosquito vectors in cement potable water jars in Cambodia.                    |
| 42<br>43 | 300 | Southeast Asian J Trop Med Public Health. 2007;38:261.                                                        |
| 44<br>45 | 301 | http://www.tm.mahidol.ac.th/seameo/2007 38 2/08-3794.pdf. Accessed September 9, 2017.                         |
| 46<br>47 | 302 | 16. Setha T, Chantha N, Benjamin S, Socheat D. Bacterial Larvicide, <i>Bacillus thuringiensis israelensis</i> |
| 48       | 303 | Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti               |
| 49<br>50 |     |                                                                                                               |
| 51<br>52 |     |                                                                                                               |
| 53       |     |                                                                                                               |
| 54       |     |                                                                                                               |
| 55<br>56 |     |                                                                                                               |
| 50<br>57 |     |                                                                                                               |
| 58       |     |                                                                                                               |
| 59       |     |                                                                                                               |
| 60       |     | http://mc.manuscriptcentral.com/apjph                                                                         |

| 4<br>5                                                                                                                                                                                                                                                                                         |     |                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------|
| 6<br>7                                                                                                                                                                                                                                                                                         |     |                                                                                                                 |
| 8<br>9                                                                                                                                                                                                                                                                                         | 304 | (L.) Population Density and Disease Transmission in Cambodia. PLoS Negl Trop Dis.                               |
| 10<br>11                                                                                                                                                                                                                                                                                       | 305 | 2016;10:e0004973. doi: 10.1371/journal.pntd.0004973.                                                            |
| 12                                                                                                                                                                                                                                                                                             | 306 | 17. Seng CM, Setha T, Nealon J, Socheat D, Chantha N, Nathan MB. Community-based use of the                     |
| 14                                                                                                                                                                                                                                                                                             | 307 | larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water               |
| $\begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 20 \\ 31 \\ 23 \\ 34 \\ 35 \\ 37 \\ 38 \\ 9 \\ 41 \\ 42 \\ 44 \\ 44 \\ 45 \\ 47 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48$                     | 308 | storage containers in rural Cambodia. J Vect Ecol. 2008;33:139-144.                                             |
|                                                                                                                                                                                                                                                                                                | 309 | http://www.sove.org/SOVE%20folder/journal/2008%20June/16-Seng%20et%20al%2007-92.pdf.                            |
|                                                                                                                                                                                                                                                                                                | 310 | Accessed September 9, 2017.                                                                                     |
| 21                                                                                                                                                                                                                                                                                             | 311 | 18. Seng CM, Setha T, Nealon J, Chantha N, Socheat D, Nathan MB. The effect of long-lasting                     |
| 23                                                                                                                                                                                                                                                                                             | 312 | insecticidal water container covers on field populations of Aedes aegypti (L.) mosquitoes in                    |
| <ol> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>30</li> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> </ol> | 313 | Cambodia. J Vect Ecol. 2008;33:333-341. doi: 10.3376/1081-1710-33.2.333.                                        |
|                                                                                                                                                                                                                                                                                                | 314 | 19. Hustedt J, Doum D, Keo V et al. Determining the efficacy of guppies and pyriproxyfen (Sumilarv®             |
|                                                                                                                                                                                                                                                                                                | 315 | 2MR) combined with community engagement on dengue vectors in Cambodia: study protocol for a                     |
| 30                                                                                                                                                                                                                                                                                             | 316 | randomized controlled trial 2016. Trials. 2017;18:367. doi: 10.1186/s13063-017-2105-2.                          |
| 32                                                                                                                                                                                                                                                                                             | 317 | 20. Somboon P, Prapanthadara LA, Suwonkerd W. Insecticide susceptibility tests of Anopheles                     |
|                                                                                                                                                                                                                                                                                                | 318 | minimus sl, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand.                   |
|                                                                                                                                                                                                                                                                                                | 319 | 2003;34:87-93. http://imsear.li.mahidol.ac.th/bitstream/123456789/35445/2/87.pdf. Accessed                      |
|                                                                                                                                                                                                                                                                                                | 320 | September 9, 2017.                                                                                              |
| 39                                                                                                                                                                                                                                                                                             | 321 | 21. Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance                       |
| 41                                                                                                                                                                                                                                                                                             | 322 | mechanisms in Aedes aegypti from some Latin American countries. J Am Mosq Control Assoc.                        |
|                                                                                                                                                                                                                                                                                                | 323 | 2007;23:420-429.                                                                                                |
|                                                                                                                                                                                                                                                                                                | 324 | 22. Kamgang B, Marcombe S, Chandre F et al. Insecticide susceptibility of <i>Aedes aegypti</i> and <i>Aedes</i> |
|                                                                                                                                                                                                                                                                                                | 325 | albopictus in Central Africa. Parasit Vectors. 2011;4:79. doi: 10.2987/5588.1.                                  |
| 48                                                                                                                                                                                                                                                                                             |     |                                                                                                                 |
| 49<br>50                                                                                                                                                                                                                                                                                       |     |                                                                                                                 |
| 51<br>52                                                                                                                                                                                                                                                                                       |     |                                                                                                                 |
| 52<br>53                                                                                                                                                                                                                                                                                       |     |                                                                                                                 |
| 54                                                                                                                                                                                                                                                                                             |     |                                                                                                                 |
| 55                                                                                                                                                                                                                                                                                             |     |                                                                                                                 |
| 56                                                                                                                                                                                                                                                                                             |     |                                                                                                                 |
| 57<br>50                                                                                                                                                                                                                                                                                       |     |                                                                                                                 |
| 58<br>59                                                                                                                                                                                                                                                                                       |     |                                                                                                                 |
| 60                                                                                                                                                                                                                                                                                             |     | http://mc.manuscriptcentral.com/apjph                                                                           |

| 2           |     |                                                                                                           |
|-------------|-----|-----------------------------------------------------------------------------------------------------------|
| 3<br>4      |     |                                                                                                           |
| 5           |     |                                                                                                           |
| 6           |     |                                                                                                           |
| 7<br>8<br>9 | 326 | 23. Dusfour I, Zorrilla P, Guidez A et al. Deltamethrin Resistance Mechanisms in <i>Aedes aegypti</i>     |
| 10<br>11    | 327 | Populations from Three French Overseas Territories Worldwide. PLoS Negl Trop Dis.                         |
| 12          | 328 | 2015;9:e0004226. doi: 10.1371/journal.pntd.0004226.                                                       |
| 13<br>14    | 329 | 24. Marcombe S, Mathieu RB, Pocquet N et al. Insecticide Resistance in the Dengue Vector <i>Aedes</i>     |
| 15<br>16    | 330 | aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental Factors. PLoS          |
| 17<br>18    | 331 | ONE. 2012;7:e30989. doi: 10.1371/journal.pone.0030989.                                                    |
| 19<br>20    | 332 | 25. Faucon F, Dusfour I, Gaude T et al. Identifying genomic changes associated with insecticide           |
| 21<br>22    | 333 | resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res.                  |
| 23          | 334 | 2015;25:1347-1359. doi: 10.1101/gr.189225.115.                                                            |
| 24<br>25    | 335 | 26. Prapanthadara LA, Promtet N, Koottathep S et al. Mechanisms of DDT and permethrin                     |
| 26<br>27    | 336 | resistance in Aedes aegypti from Chiang Mai, Thailand. Dengue Bull. 2002;26:185-189.                      |
| 28<br>29    | 337 | http://apps.who.int/iris/bitstream/10665/163771/1/dbv26p185.pdf. Accessed September 9, 2017.              |
| 30<br>31    | 338 | 27. Kawada H, Oo SZM, Thaung S et al. Co-occurrence of point mutations in the voltage-gated               |
| 32          | 339 | sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar. PLoS Negl Trop Dis.          |
| 33<br>34    | 340 | 2014;8:e3032. doi: 10.1371/journal.pntd.0003032.                                                          |
| 35<br>36    | 341 | 28. Stenhouse SA, Plernsub S, Yanola J et al. Detection of the V1016G mutation in the voltage-gated       |
| 37<br>38    | 342 | sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its           |
| 39<br>40    | 343 | distribution and effect on deltamethrin resistance in Thailand. Parasit Vectors. 2013;6:253. doi:         |
| 41<br>42    | 344 | 10.1186/1756-3305-6-253.                                                                                  |
| 43          | 345 | 29. Li CX, Kaufman PE, Xue RD et al. Relationship between insecticide resistance and <i>kdr</i> mutations |
| 44<br>45    | 346 | in the dengue vector Aedes aegypti in Southern China. Parasit Vectors. 2015;8:325. doi:                   |
| 46<br>47    | 347 | 10.1186/s13071-015-0933-z.                                                                                |
| 48          |     |                                                                                                           |
| 49<br>50    |     |                                                                                                           |
| 50<br>51    |     |                                                                                                           |
| 52          |     |                                                                                                           |
| 53          |     |                                                                                                           |
| 54          |     |                                                                                                           |
| 55          |     |                                                                                                           |
| 56          |     |                                                                                                           |
| 57          |     |                                                                                                           |
| 58          |     |                                                                                                           |
| 59          |     |                                                                                                           |
| 60          |     | http://mc.manuscriptcentral.com/apjph                                                                     |

| 3<br>4      |     |                                                                                                       |
|-------------|-----|-------------------------------------------------------------------------------------------------------|
| 5           |     |                                                                                                       |
| 6<br>7      |     |                                                                                                       |
| ,<br>8<br>9 | 348 | 30. Miarinjara A, Boyer S. Current Perspectives on Plague Vector Control in Madagascar:               |
| 10          | 349 | Susceptibility Status of Xenopsylla cheopis to 12 Insecticides. PLOS Negl Trop Dis. 2016;10:e0004414. |
| 11<br>12    | 350 | doi: 10.1371/journal.pntd.0004414.                                                                    |
| 13<br>14    |     |                                                                                                       |
| 15          | 351 |                                                                                                       |
| 16<br>17    |     |                                                                                                       |
| 18          |     |                                                                                                       |
| 19<br>20    |     |                                                                                                       |
| 21          |     |                                                                                                       |
| 22<br>23    |     |                                                                                                       |
| 24<br>25    |     |                                                                                                       |
| 25<br>26    |     |                                                                                                       |
| 27<br>28    |     |                                                                                                       |
| 29          |     |                                                                                                       |
| 30<br>31    |     |                                                                                                       |
| 32          |     |                                                                                                       |
| 33<br>34    |     |                                                                                                       |
| 35<br>36    |     |                                                                                                       |
| 37          |     |                                                                                                       |
| 38<br>39    |     |                                                                                                       |
| 40          |     |                                                                                                       |
| 41<br>42    |     |                                                                                                       |
| 43          |     |                                                                                                       |
| 44<br>45    |     |                                                                                                       |
| 46<br>47    |     |                                                                                                       |
| 48          |     |                                                                                                       |
| 49<br>50    |     |                                                                                                       |
| 51          |     |                                                                                                       |
| 52<br>53    |     |                                                                                                       |
| 54<br>55    |     |                                                                                                       |
| 56          |     |                                                                                                       |
| 57<br>58    |     |                                                                                                       |
| 59          |     |                                                                                                       |
| 60          |     | http://mc.manuscriptcentral.com/apjph                                                                 |

Table 1. Mean Lethal Concentration (LC) 50 (LC50) and LC90 (± SE) of 8 Aedes aegypti larval populations with temephos in Cambodia. RR50 and RR90 represent the resistance ratio of the field populations compared to the USDA susceptible reference strain. <sup>a</sup> USDA strain: LC50 =  $0.0037 \pm 0.00008$  mg/L; LC90= 0.0047 ± 0.0001mg/L 

|    | Environment | Populations <sup>a</sup> | LC50 (SE)         | RR50         | LC90 (SE)      | RR90         |
|----|-------------|--------------------------|-------------------|--------------|----------------|--------------|
|    |             | Phnom Penh               | 0.020 (0.0006)    | 5.4          | 0.028 (0.0008) | 6 <u>.0</u>  |
|    |             | Siem Reap                | 0.014<br>(0.0008) | 3.8          | 0.020 (0.0008) | 4.2          |
|    | Urban       | Kampong Cham             | 0.031<br>(0.0012) | 8.4          | 0.052 (0.0025) | 11.1         |
|    |             | Battambang               | 0.125<br>(0.0044) | 33.8         | 0.221 (0.0082) | 47 <u>.0</u> |
|    |             | Phnom Penh               | 0.014<br>(0.0007) | 3.8          | 0.031 (0.0011) | 6.6          |
|    | Rural       | Siem Reap                | 0.012<br>(0.0006) | 3.3          | 0.021 (0.0010) | 4.4          |
| I  |             | Kampong Cham             | 0.048<br>(0.0015) | 13 <u>.0</u> | 0.066 (0.0029) | 14 <u>.0</u> |
| _  |             | Battambang               | 0.041<br>(0.0015) | 11.1         | 0.064 (0.0031) | 13.6         |
| 56 |             |                          |                   |              |                |              |
|    |             |                          |                   |              |                |              |
|    |             |                          |                   |              |                |              |
|    |             |                          |                   |              |                |              |
|    |             |                          |                   |              |                |              |

http://mc.manuscriptcentral.com/apjph

Supplementary File 2. Percentage of mortality (± SE) of 8 Aedes aegypti adult populations to

Deltamethrin and Permetrhin. In bold are represented the significant differences of mortality between

bioassays realized with and without PBO.

|                         | Without PBO  |            | <b>.</b>                                    | With PBO                           |                                           |              | Inserted Cells                         |
|-------------------------|--------------|------------|---------------------------------------------|------------------------------------|-------------------------------------------|--------------|----------------------------------------|
| Ae. aegypti populations | Deltamethrin | Permethrin | Deltamethrin <u>; p-</u><br><u>value</u>    | <b>.</b> _                         | Permethrin <u>; j</u><br><u>value</u>     | <u>)-</u>    | Inserted Cells                         |
| Battambang rural        | 88.0 (5.1)   | 0.0 (0.0)  | 97.8 (2.6 <mark><del>)); 0.014</del></mark> |                                    | 3.3 (6.5 <mark>-); 0.3</mark>             | 5 <u>5</u>   | -                                      |
| Battambang urban        | 59.6 (3.7)   | 0.0 (0.0)  | 80.6 (9.2 <mark>)); 0.006</mark>            |                                    | 1.2 (2.4 <mark><del>)</del>); 0.3</mark>  | <u>55</u>    |                                        |
| Kampong Cham rural      | 70.0 (8.9)   | 1.1 (2.2)  | 71.8 (15.6 <mark>-)); 0.844</mark>          |                                    | 18.6 (4.4 <mark><del>)); 0.0</del></mark> | <u>)03</u>   |                                        |
| Kampong Cham urban      | 90.8 (2.3)   | 3.9 (5.4)  | 98.8 (2.4 <mark><del>)); 0.003</del></mark> |                                    | 7.5 (3.4 <mark>-); 0.3</mark>             | <u>)0</u>    |                                        |
| Phnom Penh rural        | 7.1 (2.1)    | 0.0 (0.0)  | 9.9 (7.6 <del>)<u>); 0.509</u></del>        | <del>0.0</del><br><del>(0.0)</del> | <u>0.0 (0.0); -</u>                       |              | Inserted Cells                         |
| Phnom Penh urban        | 8.3 (9.0)    | 0.0 (0.0)  | 7.3 (7.1 <del>)<u>); 0.867</u></del>        | <del>0.0</del><br><del>(0.0)</del> | <u>0.0 (0.0); -</u>                       |              |                                        |
| Siem Reap rural         | 6.3 (5.6)    | 0.0 (0.0)  | 52.3 (12.6 <del>));</del><br><u>0.0006</u>  | <del>0.0</del><br><del>(0.0)</del> | <u>0.0 (0.0); -</u>                       |              |                                        |
| Siem Reap urban         | 4.0 (3.1)    | 0.0 (0.0)  | 24.6 (16.8 <del><u>)</u>; 0.047</del>       | <del>0.0</del><br><del>(0.0)</del> | <u>0.0 (0.0); -</u>                       |              |                                        |
| USDA Sensitive Strain   | 100 (0.0)    | 100 (0.0)  | 100 (0.0 <del>)<u>);</u> -</del>            | <b>.</b> _                         | 89.4 (21.2 <mark>-); 0.</mark>            | <u>355</u> - | Inserted Cells                         |
|                         |              |            |                                             |                                    | <b>*</b> -                                |              | Formatted: Line spacing: Multiple 1.08 |
|                         |              |            |                                             |                                    |                                           |              |                                        |