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Abstract

There are many sources of waveforms or signals existing around us. They

can be natural phenomena such as sound, light and invisible like elec-

tromagnetic fields, voltage, etc. Getting an insight into these waveforms

helps explain the mysteries surrounding our world and the signal spec-

tral analysis (i.e. the Fourier transform) is one of the most significant

approaches to analyze a signal. Nevertheless, Fourier analysis cannot

provide a time-dependent spectrum description for spectrum-varying

signals-non-stationary signal. In these cases, time-frequency distribu-

tions are employed instead of the traditional Fourier transform. There

have been a variety of methods proposed to obtain the time-frequency

representations (TFRs) such as the spectrogram or the Wigner-Ville dis-

tribution. The time-frequency distributions (TFDs), indeed, offer us a

better signal interpretation in a two-dimensional time-frequency plane,

which the Fourier transform fails to give. Nevertheless, in the case of

incomplete data, the time-frequency displays are obscured by artifacts,

and become highly noisy. Therefore, signal time-frequency features are

hardly extracted, and cannot be used for further data processing. In this

thesis, we propose two methods to deal with compressed observations.

The first one applies compressive sensing with a novel chirp dictionary.

This method assumes any windowed signal can be approximated by a

sum of chirps, and then performs sparse reconstruction from windowed

data in the time domain. A few improvements in computational com-

plexity are also included. In the second method, fixed kernel as well as

adaptive optimal kernels are used. This work is also based on the as-

sumption that any windowed signal can be approximately represented by

a sum of chirps. Since any chirp ’s auto-terms only occupy a certain area

in the ambiguity domain, the kernel can be designed in a way to remove



the other regions where auto-terms do not reside. In this manner, not

only cross-terms but also missing samples’ artifact are mitigated signifi-

cantly. The two proposed approaches bring about a better performance

in the time-frequency signature estimations of the signals, which are sim-

ulated with both synthetic and real signals. Notice that in this thesis, we

only consider the non-stationary signals with frequency changing slowly

with time. It is because the signals with rapidly varying frequency are

not sparse in time-frequency domain and then the compressive sensing

techniques or sparse reconstructions could not be applied. Also, the

data with random missing samples are obtained by randomly choosing

the samples’ positions and replacing these samples with zeros.



Contents

Declaration ii

Dedication iv

Acknowledgement v

Abstract vi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Challenges and Approaches to Obtain Reliable TFDs with Com-

pressed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Outline and Contribution . . . . . . . . . . . . . . . . . . . . . 8

2 Conventional Time-Frequency Analysis 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Instantaneous Frequency Analysis . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Hilbert-Huang transform . . . . . . . . . . . . . . . . . . . . . 14

2.3 Quadratic Time-Frequency (TF) Analysis . . . . . . . . . . . . . . . 16

2.3.1 Short-time Fourier transform and spectrogram . . . . . . . . . 16

2.3.2 Wigner-Ville distribution . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 The Cohen’s class . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



3 Sparse Time-Frequency Distribution Fundamentals 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Motivation for Compressive Sensing . . . . . . . . . . . . . . . . . . . 32

3.3 Compressive Sensing Overview . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Sparsity, compressibility and norms [1] . . . . . . . . . . . . . 33

3.3.2 Compressive sensing problem in a nutshell [1] . . . . . . . . . 34

3.3.3 Conditions for reliable recovery . . . . . . . . . . . . . . . . . 36

3.3.4 CS algorithms and orthogonal matching pursuit OMP . . . . . 37

3.4 Motivation for Applying CS in TFD . . . . . . . . . . . . . . . . . . . 39

3.4.1 Sparsity property of non-stationary signals . . . . . . . . . . . 41

3.4.2 Missing data effects . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Literature Review of Sparse-Aware TFDs . . . . . . . . . . . . . . . . 48

3.5.1 Sparse kernel design [2] . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 TF estimation using a sinusoidal dictionary[3] . . . . . . . . . 51

3.5.3 Sparse reconstruction using multiple measurement vector [4] . 55

3.5.4 Parametric sparse recovery . . . . . . . . . . . . . . . . . . . . 57

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Sparse Reconstruction of Time-Frequency Signature using The Chirp

Dictionary 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.4 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Chirp Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Signal modelling . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Non-stationary signal approximation with chirps . . . . . . . . 66

4.3 FRFT Based Chirp Dictionary Approach . . . . . . . . . . . . . . . . 68

4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Chirp Dictionary and Sinusoid Dictionary Comparison . . . . . . . . 78

4.5 Restricted Isometric Property (RIP) Analysis of The Chirp Dictionary 81

ix



4.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Effect of averaging in TFRs obtained by the chirp dictionary

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.2 Comparisons between the chirp and the sinusoid dictionary

approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.3 Comparisons between the chirp dictionary approach and the

DCFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.4 Comparisons among the two chirp dictionary approaches, the

sinusoidal dictionary and the DCFT . . . . . . . . . . . . . . 89

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Simplified Chirp Dictionary 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.3 Chapter contribution . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.4 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Calculation Load in The Full Chirp Dictionary Approach . . . . . . . 100

5.3 Simplify The Full Chirp Dictionary by Estimating The Chirp-Rate in

The IAF Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Simplified chirp dictionary approach . . . . . . . . . . . . . . 105

5.3.3 Restricted isometry properties (RIP) analysis of the chirp dic-

tionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Simplify The Full Chirp Dictionary using The Fractional Fourier

Transform (FRFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1 Chirp rate and initial frequency estimation of chirps using

FRFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.2 Sparse reconstruction of non-stationary time frequency signa-

ture based on the FRFT . . . . . . . . . . . . . . . . . . . . . 120

5.4.3 Restricted isometry properties (RIP) analysis of the simplified

chirp dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . 122

x



5.4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Reduced Interference Chirp-based Time-Frequency Distribution for

Limited Data 129

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.4 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Conventional Reduced Interference Kernels . . . . . . . . . . . . . . . 133

6.3 The Effect of Missing Samples on The Ambiguity Domain . . . . . . 138

6.4 RID Chirp-Based Kernel Design . . . . . . . . . . . . . . . . . . . . . 141

6.4.1 Properties of chirps in the ambiguity domain . . . . . . . . . . 141

6.4.2 Kernel design for chirp signals . . . . . . . . . . . . . . . . . . 145

6.4.3 Windowed chirp-based kernel . . . . . . . . . . . . . . . . . . 147

6.4.4 Chirp-based adaptive optimal kernel . . . . . . . . . . . . . . 148

6.5 Fast Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.1 STAF computation . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.2 TFR time-slice computation . . . . . . . . . . . . . . . . . . . 153

6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Conclusions and Future Work 164

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A 168

A.1 Digital Computation of The Fractional Fourier Transform (FRFT) . . 168

A.1.1 Compactness in the time domain, frequency domain and Wigner

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.1.2 Effect of chirp multiplication and convolution on compact signals170

A.1.3 Methods of computing the continuous Fractional Fourier Trans-

form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xi



A.1.4 Digital computation of the fractional Fourier transform . . . . 172

A.2 Relationship between FRFT and WVD . . . . . . . . . . . . . . . . . 174

xii



List of Acronyms

EM Electromagnetic
LOS Light of sight
FM Frequency modulated
ECG Electrocardiograph
ALCM Rotating air-launched cruise missile
STFT Short-time Fourier transform
WVD Wigner-Ville distribution
TFD Time-frequency distribution
TF Time-frequency
CS Compressive sensing
DTFT Discrete time Fourier transform
DFT Discrete Fourier transform
DCT Discrete Cosine transform
FRFT Fractional Fourier transform
EMD Empirical mode decomposition
IMP Intrinsic mode function
SNR Signal to noise ratio
IAF Instantaneous autocorrelation function
AF Ambiguity function
FT Fourier transform
RIP Restricted isometry property
OMP Orthogonal matching pursuit
POMP Prune orthogonal matching pursuit
MMV Multiple measurement vector
IF Instantaneous frequency
RID Reduced interference distribution
RGK Radially-Gaussian kernel
AOK Adaptive optimal kernel
STAF Short-time ambiguity function
SMV Single measurement vector
TFSR Time-frequency signal representation
QTFD Quadratic time-frequency distribution
2D Two-dimensional



List of Symbols

t Continuous time variable
n Discrete time variable
f Continuous frequency variable
k Discrete frequency
fR Received frequency
fTX Transmit frequency
fD Doppler frequency
v Radial velocity
c Light propagation speed
H{...} Hilbert transform
z(t) Analytic signal
ω Continuous angular frequency
ω′ Continuous angular Doppler frequency
F Fourier transform
F−1 Inverse Fourier transform
F−1

2D Two-dimensional inverse Fourier transform
⊗ Convolution
W Wigner Ville distribution
s(n) or s(t) Signal
S Fourier transform of signal s
τ Continuous lag variable
b Discrete lag variable
p Discrete Doppler variable
SNR Signal to noise ratio
N Signal length
D(n, k) Cohen’s class distribution
C(p, b) Kernel function
IAF Instantaneous autocorrelation function
‖...‖0 Norm 0
‖...‖1 Norm 1
‖...‖2 Norm 2 or Euclidean norm
supp(x) Support of x
E Number of signal components
R A set of real number



C A set of complex number
M Number of measurements
Ψ Basic dictionary
Φ Measurement matrix
v Noise vector
S A set of observed time instants
|S| Cardinality of the observed time instants set S
m(n) Observation data
M(n) Observation mask
miss(n) Missing data
Miss(n) Missing data mask
S(n) Full data mask
S(k) Discrete Fourier transform of s(n)
NM Position of measurements
AF (p, b) Discrete ambiguity function
TF (n, k) Time-frequency distribution
Fs Sampling frequency
Fmax Maximum frequency
m The window index
Sm The signal vector
Nw The window length
Tw The window time
ε The noise level
Fe(t) The continuous-time instantaneous frequency
T Total observation interval
α Chirp-rate
β Initial frequency
x Continuous fractional variable
u Discrete fractional variable
φ Angle rotation
(Fs)(x) or Sφ(x) Fractional Fourier transform operator associated with angle φ
sl Scale parameter
a The order of the FRFT
x0, x1 The scale coordinates for time and frequency
µ The time-bandwidth product
∆t Time interval
∆f Frequency bandwidth
∆x Scaled variable interval
Q Dimension of the dictionary
ξ Concentration level
Rss(b, n) Instantaneous ambiguity function



η The shift between consecutive windows
h(n) Window function
Ψc Compact dictionary
σ Standard deviation of the Gaussian kernel
vo Kernel volume
δf Frequency resolution
δt Time resolution
δb Lag resolution
r Continuous radius variable
q Discrete aspect angle
g Discrete radius variable



Chapter 1

Introduction

1.1 Motivation

There are many sources of waveforms or signals existing around us. They can be

natural phenomena such as sound, light and electromagnetic fields, etc. Getting an

insight into these waveforms helps us understand the mysteries of our world.

Signal spectral analysis (i.e., the Fourier transform) is one of the most important

approaches. The mathematics behind it was invented by Fourier and the Fourier

distribution is one of the great innovations of mathematics and science [5]. It helped

Fraunhofer to find out and catalogue spectral lines, serving as a finger print of sub-

stance composition at element and molecule level in Bunsen-Kirchhoff ’s work. It

is applied largely in radar, for example, detecting direction and velocity of moving

objects by measuring the Doppler shift. We know that a radar transmits an elec-

tromagnetic (EM) signal to an object and receives a returned wave from it. If the

target is moving, the received frequency will be shifted from the original frequency,

and this is known as the Doppler effect [6, 7]. The backscatter frequency is expressed

as:

fR = fTX + fD = fTX − fTX
2v

c
,

where fR, fTX , fD are the received frequency, transmitted frequency and Doppler

shift, v is the radial velocity of the target along the light of sight (LOS) of the

radar and c is the propagation speed of EM waves. The object velocity v is defined

to be negative if it moves towards the radar and positive if it moves away from

the radar. So if the target moves toward the observer, the received frequency is

1



increased compared with that of the transmitted wave. This explains why a light

source moving toward an observer appears bluer and while moving away the the

observer, the light becomes more red. By measuring the frequency of the reflected

signal, both direction and speed of the object are determined.

It can be seen that the Fourier transform plays a very important role in signal

processing. Nevertheless, Fourier analysis cannot provide time-dependent spectrum

description. It can display all spectral components contained in the data, but it

cannot show when they are actually present. For example, while musical notes

are written to indicate the changing of frequency with time, from the lowest one,

called the fundamental, to the overtones, frequency analysis cannot facilitate such

interpretation. The magnitude spectrum many exhibit hundreds of peaks in the

audible frequency range, and the relative heights of those peaks may tell us about

the tonality of the music, but not the timing of the notes. In order to get both

temporal and spectral information, joint time-frequency (TF) analysis has been

proposed, where signals are expanded in two dimensions, i.e., time and frequency.

Non-stationary signals, like music, sinusoidal frequency modulated (FM) signals,

chirp signals and micro-Doppler radar returns, etc., can reveal their properties via

the TF distribution (TFD). TF analysis has many applications. Recently, there has

been a huge interest in using radar to detect human activity “through the wall” by

analyzing the micro-Doppler frequency from the radar returns. This technique has

been used in disaster aid, medical care, and defence. The micro-Doppler estimation

also helps us to determine the kinematic properties of an object. For example,

measurements of the surface vibration of the vehicle could assist us in detecting the

type of vehicle, such as a tank with a gas turbine engine or a bus with a diesel engine

[5]. So, we can say the micro-Doppler can serve as the movement’s signature.

The following are two examples to illustrate the advantages that time-frequency

analysis brings about over the separate time and frequency displays. In the first

one, electrocardiograph (ECG) data is used. The data is obtained from the MIMIC

II database [8]. The heart beat is a very essential heath description. Analyzing

and classifying ECG in the time-frequency domain gives an accuracy up to 99%,

which outperforms normal spectral analysis [9]. Three different ECG segments are

displayed in Fig. 1.1-1.3. These ECGs are abnormal due to action artifacts and

the differences in waveforms can be seen in Fig. 1.1. However, it is hard to extract

2



Figure 1.1: Three ECG waveforms in the time domain.

Figure 1.2: Spectral analysis of the three ECG waveforms in Fig. 1.1.

3



Figure 1.3: TF analysis of the three ECG waveforms in Fig. 1.1.

the features of each ECG to implement classification. The frequency domain does

not reveal the signal signature as clearly as in the joint time-frequency domain.

So Fig. 1.3 obviously displays that the first signal is composed of high frequency

content as well as background components at strong magnitude. The peak frequency

of the third waveform is the lowest. In the second example, the micro-Doppler

frequency is discussed. It is defined as the backscattered spectral shift due to micro

motion, i.e., oscillatory motion of an object or structural components of the object

in addition to the bulk motion. The source of micro-motions may be a rotating

propeller of a fixed-wing aircraft, a rotating antenna, a walking person with swinging

arms and legs, etc. [5]. This frequency modulation on the carrier frequency of a

radar transmitted signal can be deployed as a target signature for identification,

classification and recognition. Fig. 1.4-1.6 show the temporal, frequency and time-

frequency analysis of a signal reflected from a rotating air-launched cruise missile

(ALCM) provided in the simulation software in [10]. The radar transmits 8192

pulses with a pulse repetition interval of 67µs during a period of 0.55 seconds to

cover the total target’s rotation angle of 3600. The micro-Doppler features of the

4



Figure 1.4: Time domain reflected ALCM signal.

Figure 1.5: Spectral analysis of reflected ALCM signal.
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Figure 1.6: The micro-Doppler signature of a simulated rotating ALCM (1: Head

tip, 2: Head joint, 3: Wing joint, 4: Engine intake, 5: Tail fin, tail plane, 6: tail

tip).

rotating ALCM are revealed more clearly in the joint time-frequency analysis. It

can be seen from Fig. 1.6 that the Doppler shift from the wing-joint is almost zero

as it locates at the middle of the ALCM and thus the distance between it and the

radar is nearly unchanged. In contrast, the tail and its structures have a Doppler

shift in the form of a sinusoid due to a dramatical change in distance when the

ALCM rotates. As a result, this causes large micro-Doppler shift. The magnitude

of the frequencies displayed in the Fig. 1.6 is determined by the angular velocities.

They are maximum when the missile is at a 900 or 2700 aspect to the radar.

1.2 Literature Overview

In 1948, Dennis Gabor, a Hungarian Nobel laureate, proposed the first algorithm on

TF analysis of an arbitrary signal [11]. He basically applies a short Gaussian window

on the signal, and implements the Fourier transform to ascertain the frequency

components in the signal segment. The Gaussian window is used because it obtains

the minimum product of time and frequency resolution.

6



The spectrogram is a widely used method to display the time-varying spectral

density of non-stationary signals. The spectrogram is calculated by using the short-

time Fourier transform (STFT) and then the absolute magnitude is squared to

obtain the energy representation [5]. The STFT performs the Fourier transform on

a short-time window rather than taking a Fourier transform on the whole signal. The

resolution of the STFT depends on the window size. There is a trade-off between

the time and the frequency resolution. The larger the window length, the better

the frequency resolution, but the poorer the time resolution becomes. The Gabor

transform indeed belongs to the STFT with the Gaussian window.

Later on, a better TF resolution method is proposed, i.e., the Wigner-Ville dis-

tribution (WVD). It is basically the Fourier transform of the signal bilinear product

over a lag variable. Its drawback is that if the signal contains more than one com-

ponent, its WVD will contain cross-terms that occur halfway between each pair of

auto-terms. The magnitude of this interference could be twice as large as the auto-

terms. To mitigate the cross-terms, filtered WVDs have been suggested. They apply

kernels to reduce large interferences at the expense of slightly reduced TF resolu-

tion. There are many kernels such as Choi-Williams, Margrnau-Hill, Born-Jordan,

etc. They all belong to the Cohen’s class.

Other high-resolution TFDs are the adaptive Gabor representation and the TFD

series [12]. They decompose a signal into a family of basis functions, such as the

Gabor function, which is well localized in both the time and frequency domains and

is adaptive to match the local behaviour of the analyzed signal.

1.3 Challenges and Approaches to Obtain Reli-

able TFDs with Compressed Data

It can be seen that TF analysis offers us better signal representations, and it can

be deployed in many applications from military to medical, disaster aid, etc. Never-

theless, in the case of incomplete data, the time-frequency displays are obscured by

artifacts, becoming highly noisy. Therefore, signal TF features are hardly extracted,

and cannot be used for the further steps of data processing. The TF representa-

tions of both ECG signals and the micro-Doppler shift from the ALCM with 50%
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Figure 1.7: Time-frequency analysis of an ECG signal with 50% data missing.

data missing are plotted in Fig. 1.7 and Fig. 1.8. We can observe that the

missing data effects are extremely severe. Noise-like effect clutters all the space,

and eclipses desired information. In modern life where big data is processed every-

day, signals could be partially cut to reduce the burden on hardware and to save

time. Signals can also be degraded by excessive noise, which can be filtered out.

Thus, time-frequency analysis approaches which are robust to missing samples are

of significance. This thesis introduces two approaches which can combat missing

data. The first one applies a sparse reconstruction with a novel chirp dictionary.

The second method introduces new fixed and adaptive kernels which can effectively

mitigate the cross-terms as well as the missing data’s artifacts.

1.4 Thesis Outline and Contribution

This PhD thesis describes the research carried out on the reconstruction of a TF

signatures of non-stationary signals, such as micro-Doppler radar returns and ECG,

etc., especially when the signals are incomplete or randomly sampled. Missing data
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Figure 1.8: The micro-Doppler signature of a simulated rotating ALCM with 50%

data missing.

causes artifacts spreading all over the ambiguity and TF domain, which clutter

the signal components and hide the pertinent signal structure including the instan-

taneous frequencies. Traditional methods like STFT, WVD and Cohen’s reduced

interference class all fail to give accurate TF estimations of the signal. This thesis

introduces two methods which ensure good instantaneous frequency approximation

even in the case of compressed observations. The first method applies compres-

sive sensing with a novel chirp dictionary. A few improvements in computational

complexity are also included. Notice that in this part, we only consider the non-

stationary signals with frequency changing slowly with time. It is because the signals

with rapidly varying frequency are not sparse in time-frequency domain and then

the compressive sensing techniques or sparse reconstructions could not be applied.

In the second method, fixed as well as adaptive optimal reduced interference ker-

nels are used. Different from conventional kernels, our proposed kernel can partially

combat missing sample effects. Throughout this thesis, we extensively use the con-

cepts in conventional methods such as STFT, ambiguity domain and WVD. Hence,

for that reason, the next chapter is devoted to traditional TF techniques, where

all important concepts are explained. Chapter 3 considers the effects of missing
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data and compressive sensing basics. Chapter 4 is devoted to the chirp dictionary

approach, where we introduce two different ways to build the atom set, discussing

the signal model as well as solving the sparse problem for TF signature estimation.

Chapter 5 considers two methods for reducing the complexity of the chirp dictio-

nary approach. The fixed and signal adaptive reduced interference kernel designs

are included in chapter 6. Chapter 7 concludes the thesis and gives further research

directions.

Chapter 2: Conventional Time-Frequency Analysis

Time-frequency distributions (TFDs) concern the analysis and processing of sig-

nals with time-varying frequency content or non-stationary signals. Such signals

are best represented by TFDs because they show how the energy of the signal is

distributed over the two-dimensional time-frequency space instead of only one (time

or frequency). This chapter presents the key concepts of conventional TFDs such

as the Hilbert transform, the short time Fourier transform, the Wigner Ville distri-

bution, the fixed reduced interference kernels which belong to Cohen’s class and the

adaptive radial Gaussian kernel.

Chapter 3: Sparse Time-Frequency Distribution Fundamentals

As most non-stationary signals are sparse in TF domain, compressive sensing (CS)

has been applied in TFDs to give better TF estimations with full and incomplete

data. These methods are called spare TFDs. In this chapter, we will study closely

the motivation for using CS (especially using CS in TFDs), the fundamentals of CS

techniques and some recent TFDs approaches using CS.

Chapter 4: Sparse Reconstruction of Time-Frequency Signature using

Chirp Dictionary

This chapter includes our proposed sparse TFD. This method performs sparse re-

construction from windowed data in the time domain with a novel chirp dictionary.

In many situations, the non-stationary signal frequency law is more properly ap-

proximated by piece-wise second order polynomials than fixed frequency sinusoids.

Therefore, the chirp dictionary, instead of the sinusoidal dictionary, is better suited
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for sparse reconstruction problems dealing with FM signals. The chirp dictionary

is built in two ways. The first includes all possible chirps which can appear in any

signal segment. The second is also composed of all chirps, but they are formed from

sinusoids which are rotated in all eligible angles by the fractional Fourier trans-

form. Although the dictionary construction procedure is different, the two ways

actually lead to the same results. The purpose of presenting the second method is

to introduce an alternative way to build the chirp dictionary. Its theory is also the

foundation for other applications in the following chapters.

The work of this chapter has led to the publication of two articles in international

conferences.

• Nguyen, Yen TH, et al. “Local sparse reconstructions of doppler frequency

using chirp atoms.” Radar Conference, 2015 IEEE. IEEE, 2015.

• Nguyen, Yen TH, et al. “Time-frequency signature sparse reconstruction using

chirp dictionary.” Compressive Sensing IV. Vol. 9484. Society of Photo-optical

Instrumentation Engineers, 2015.

Chapter 5: Simplified Chirp Dictionary

The chirp dictionary approach has been proven to provide more reliable TF estima-

tion compared with the sinusoid atom method. The chirp approach, nevertheless,

deploys a very large dimension measurement dictionary. Since there are two param-

eters to be estimated (i.e. the chirp rate and the initial frequency), the dictionary

dimension can be equal to the square of the dimension when using the sinusoid

atom. This very large atom set leads to a much heavier computation burden and

a longer calculation time. Therefore, in order to obtain good TF estimation at low

computational complexity, chirp dictionary simplification methods are needed. In

this chapter, we introduce two approaches which reduce the chirp dictionary dimen-

sion and give a low calculation load. In the first approach, we estimate the chirp

rate through the DTFT of the bilinear product at a certain time lag. The initial

frequency is solved in the time domain, with a lower dimensional dictionary than

the computationally complex full chirp atom. In the second approach, the fractional

Fourier transform (FRFT) is used to obtain an initial frequency for each chirp-rate.
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This leads to a much simplified chirp atom set. The work of this chapter has led to

the publication of two articles in international conferences.

• Nguyen, Yen TH, Des McLernon, and Mounir Ghogho. “Simplified chirp

dictionary for time-frequency signature sparse reconstruction of radar returns.”

Compressed Sensing Theory and its Applications to Radar, Sonar and Remote

Sensing (CoSeRa), 2016 4th International Workshop on. IEEE, 2016.

• Nguyen, Yen TH, et al. “Sparse reconstruction of time-frequency representa-

tion using the fractional Fourier transform.” Recent Advances in Signal Pro-

cessing, Telecommunications and Computing (SigTelCom), International Con-

ference on. IEEE, 2017.

Chapter 6: Reduced Interference Chirp-based Time-Frequency Distribu-

tion for Limited Data

In this chapter, we introduce novel fixed and signal-dependent kernels in the am-

biguity domain, which can efficiently remove cross-term interference and partially

combat missing sample effects without using compressive sensing techniques. These

kernels are applied on windowed signals to facilitate online implementation, or pro-

cessing long signals. According to [13, 14], any non-stationary signal segment can be

approximated by a sum of chirps. Additionally, the chirps’ auto-terms always reside

in only half of ambiguity domain and do not cover the Doppler axis. By removing

the areas where the auto-terms do not lie, part of interference and artifacts are mit-

igated. Moreover, the analysis of the artifacts’ distribution shows that the artifact

always appear along the Doppler axis. By removing the region along the Doppler

axis, our chirp-based kernels give good TFRs in the case of incomplete data.

The technical contributions of this chapter has been written into a journal paper

and is waiting for submission.
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Chapter 2

Conventional Time-Frequency

Analysis

2.1 Introduction

Time-frequency distribution (TFD) concerns the analysis and processing of signals

with time-varying frequency content, or non-stationary signals. Such signals are

best represented by TFDs because they show how the energy of the signals is dis-

tributed over the two-dimensional time-frequency space instead of only one (time or

frequency). This chapter presents the key concepts of conventional TFDs such as

the Hilbert transform, the short time Fourier transform, the Wigner Ville distribu-

tion, the fixed reduced interference kernels which belong to Cohen’s class and the

adaptive radial Gaussian kernel.

2.2 Instantaneous Frequency Analysis

2.2.1 Hilbert transform

For a real signal s(t), the analytic signal or its associated complex signal z(t) is

defined by [5]:

z(t) = s(t) + jH {s(t)} = a(t) exp(jϕ(t)), (2.1)
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where a(t) and ϕ(t) are the time-varying amplitude and phase of the analytic signal,

and H{.} is the Hilbert transform of the signal, which is expressed as:

H {s(t)} =
1

π

∫ ∞
−∞

s(τ)

t− τ
dτ. (2.2)

The Fourier transform of the analytic signal is single-sided, with a unique phase

function. Since the instantaneous frequency is the time derivative of phase function,

it is also unique, and is expressed by:

f(t) =
1

2π

d

dt
ϕ(t). (2.3)

In the case of a discrete signal s(n) (n = 1, 2, ..., N), the analytic signal, the Hilbert

transform and instantaneous frequency are defined as follows:

z(n) = s(n) + jH {s(n)} = a(n) exp(jϕ(n)),

H {s(n)} =
1

π

∞∑
b=−∞

s(n)

n− b
,

f(n) =
1

2π

1

2∆t
[ϕ(n+ 1)− ϕ(n− 1)],

(2.4)

where ∆t is the sample interval. It is a pretty simple way to get the time-frequency

analysis of the signal. However, the instantaneous frequency only gives one fre-

quency value a time, and so, this method is only suitable for a mono-component

signal, not for a multicomponent signal. The method is simulated with a single

sinusoidal frequency modulated (FM) signal and a combination of a linear chirp and

a sinusoidal FM. The sampling frequency is 256Hz. The approach performs well

only in the former case as shown in Fig. 2.1.

2.2.2 Hilbert-Huang transform

In order to distinguish frequency distributions of a multiple-component signal, Huang

et al. [15] introduced the concept of empirical mode decomposition (EMD) to sepa-

rate a multi-component signal into many single component signals, which are called

intrinsic mode functions (IMFs). The Hilbert transform is then applied for each IMF

to obtain the TF analysis. Given the signal s(t), the EMD algorithm is summarized

as follows:

14



(a) (b)

Figure 2.1: Hilbert Huang spectrum for signal composed of (a) One component,

and (b)Two components.

1. Identify all extrema (minima and maxima) of the signal s(t).

2. Deduce an upper and a lower envelope by interpolation (for example linear or

cubic splines).

• Subtract the mean envelope from the signal.

• Iterate until number of extrema=number of zeros ±1.

3. Subtract the so-obtained IMF from the signal.

4. Iterate on the residual.

This method is model-free and fully data driven. As it is based on sifting, it is

vulnerable to noise, and it requires oversampling for getting accurate interpolation.

Moreover, the EMD method produces oscillatory or poorly-defined Hilbert-spectra,

often with notable mode mixing. Importantly, this approach lacks a general math-

ematical theory [16]. Later, Olhede and Walden introduced a wavelet packet-based

decomposition as a replacement for the EMD in preprocessing the multi-component
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Figure 2.2: Multi-component signal.

signals. For a multi-component signal in Fig. 2.2, the signal decomposition is shown

in Fig. 2.3, and the time-frequency analysis is displayed in Fig. 2.4. The second

example illustrates how EMD works in the case where noise is present. A sinusoid

signal which is contaminated by Gaussian noise with SNR = 5dB is used here. It is

expected to get only one IMF, but we obtain more than that. The obtained IMFs

are cluttered with noise, ans so the signal cannot be seen by the Hilbert transform.

The simulation results are shown in Fig. 2.5 and Fig. 2.6.

2.3 Quadratic Time-Frequency (TF) Analysis

2.3.1 Short-time Fourier transform and spectrogram

We all know that the Fourier transform only offers all the frequency content inside

the considered duration, and does not reveal when the frequency actually appears. In

order to obtain both temporal and spectral information, the straightforward solution

is to break up the signal into small time segments and perform the Fourier transform

each time segment to ascertain the frequencies that existed in that segment. The

totality of such spectra indicates how the spectrum is varying with time [5]. However,
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Figure 2.3: EMD decomposition of the multi-component signal in Fig. 2.2.

Figure 2.4: Time-frequency representation and IMFs for the signal in Fig. 2.2.
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Figure 2.5: EMD decomposition of a sinusoid signal in the presence of noise.
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Figure 2.6: The TFD and the corresponding IMFs in the TF domain of the noisy

sinusoidal signal.
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Figure 2.7: Time-frequency representation: (a) Spectrogram with small window

length Nw = 20; (b) Spectrogram with large window length Nw = 100; (c) Ideal

time-frequency distribution.

the method confronts the trade-off between time and frequency resolution. We

cannot achieve finer and finer time localization because short signal duration means

large bandwidth, and the spectra of such short duration signals have very little to

do with the properties of the original signal. The short-time Fourier transform of

signal s(t) is expressed as:

St(ω) =
1√
2π

∫
s(τ)h(τ − t)e−jωτdτ, (2.5)

where h(t) is a window function, centered at t. The energy desity spectrum at time

t is as follows:

PSP (t, ω) = |St(ω)|2 =

∣∣∣∣ 1

2π

∫
s(τ)h(τ − t)e−jωτdτ

∣∣∣∣2 . (2.6)

For different times, different sprectra are obtained. When all spectra assemble to-

gether, we get the TF distribution, or spectrogram. The drawback of the spec-

trogram is illustrated with a signal composed of a sinusoidal FM and a chirp, and

sampling frequency Fs = 256 Hz. The results are given in Fig. 2.7.

2.3.2 Wigner-Ville distribution

The Wigner distribution is the prototype of a distribution which is qualitatively

differently from the spectrogram. The discovery of its strength and shortcomings
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has become a major issue in the development of the field. The Wigner distribution

in terms of the signal s(t) or its Fourier transform, S(ω), is [5],

W (t, ω) =
1

2π

∫ ∞
−∞

s∗(t− 1

2
τ)s(t+

1

2
τ)e−jτωdτ

=
1

2π

∫ ∞
−∞

S∗(ω +
1

2
θ)S(ω − 1

2
θ)e−jtφdθ,

(2.7)

where ω = 2πf is angular frequency, τ is time lag, θ is frequency shift and ∗ denotes

the complex conjugate operation. The Wigner distribution is bilinear in term of the

signal because the signal s(t) enters twice in its calculation. (2.7) can be written as

the Fourier transform over the lag variable of the signal bilinear product,

W (t, ω) = Fτ→ω
{
s∗(t− 1

2
τ)s(t+

1

2
τ)

}
=

1

2π
[2S∗(2ω) exp(jωt)]⊗ω [2S(2ω) exp(jωt)]

=
2

π
[S∗(2ω) exp(jωt)]⊗ω [S(2ω) exp(jωt)] ,

(2.8)

where ⊗ω and F denotes convolution in the frequency plane and the Fourier trans-

form, respectively. Equation (2.8) is based on the following Fourier transform prop-

erties [17],

F [s(aτ)] =
1

a
S(ω/a)

F [s(τ − τ0)] = S(ω) exp(−jωτ0)

F [s∗(τ)] = S∗(−ω)

F [s(−τ)] = S∗(ω).

(2.9)

The use of ±τ/2 in (2.7, 2.8) ensures that the frequency content is correctly posi-

tioned. Consider a monochromatic signal to see how the signal is distributed in the

Wigner-Ville domain,

s(t) = cos(ω0t)

S(ω) = πδ(ω ± ω0).
(2.10)
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Figure 2.8: WVD of a monochromatic signal

Since s(t)⊗Kδ(t− t0) = Ks(t− t0), (2.8) is expressed as:

W (t, ω) = 2π [δ(2ω + ω0) + δ(2ω − ω0)] exp(jωt)⊗ω
[δ(2ω + ω0) + δ(2ω − ω0)] exp(jωt)

= 2π
[
exp(−j ω0

2
t) + exp(j

ω0

2
t)
]
⊗ω
[
exp(−j ω0

2
t) + exp(j

ω0

2
t)
]

= 2π [exp(−jω0t)δ(ω − ω0) + exp(jω0t)δ(ω + ω0) + 2δ(ω)]

(2.11)

The last expression shows energy contained at ω = 0, which does not correspond

to the actual signal. They are called cross-terms due to the bilinear product. For

illustration, supposing ω0 = 0.1Fs (Fs is sampling frequency), the WVD is portrayed

in Fig. 2.8. It can be observed that besides the two expected signal components,

there is energy located in the centre at ω = 0. The cross-term is a major drawback

of the WVD. It appears when the input signal is multi-component, cluttering the

time-frequency signal representation. This could, in turn, lead to a misinterpretation

of local signal power concentrations and a misreading of the signal time-frequency

signature, including the instantaneous frequency. To have a better understanding

about the cross-terms, we consider a signal composing of two components,

s(t) = s1(t) + s2(t). (2.12)
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Substituting this into the definition in (2.7), we have:

W (t, ω) =
1

2π

∫ ∞
−∞

(
s∗1(t− 1

2
τ) + s∗2(t− 1

2
τ)

)(
s1(t+

1

2
τ) + s2(t+

1

2
τ)

)
e−jτωdτ

= W11(t, ω) +W22(t, ω) +W12(t, ω) +W21(t, ω),

(2.13)

where

W12(t, ω) =
1

2π

∫ ∞
−∞

s∗1(t− 1

2
τ)s2(t+

1

2
τ)e−jτωdτ. (2.14)

This is called the cross Wigner distribution. As W12(t, ω) = W2,1(t, ω), hence

W (t, ω) = W11(t, ω) +W22(t, ω) + 2<(W12(t, ω)). (2.15)

It can be seen that the Wigner distribution of the sum of two signals is not the sum

of the Wigner distribution of each signal but has an additional term 2<(W12(t, ω)).

This term is called a cross-term or interference, which gives the artifact in the time-

frequency domain.

In the case of a discrete signal s(n) (n = 1, 2, ..., N), the Wigner distribution is

defined as follows:

W (k, n) =
N−1∑
b=−N

s(n+
1

2
b)s∗(n− 1

2
b) exp(−j2πkb), (2.16)

where n and k denote discrete time and frequency and b is the discrete time-lag

(b = −N/2,−N/2 + 1, ..., N/2 − 1 if N is even). However, it is impossible to

calculate W (k, n) if using (2.16) because s(n+ 1
2
b) (b odd) does not exist. Thus, the

equation is altered as follows:

W (k, n) =

N/2−1∑
b=−N/2

s(n+ b)s∗(n− b) exp(−j2πkb). (2.17)

The bilinear product of the signal, s(n + b)s∗(n − b), is called the instantaneous

autocorrelation function (IAF). It is a joint time and lag domain. If N (N even) is

length of signal s(n), then the values of lag b are in the range of [−N/2, N/2 − 1].

For each value of b, n needs to satisfy:

0 ≤ n+ b ≤ N

0 ≤ n− b ≤ N
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or |b| ≤ n ≤ N−|b|. According to (2.17), the Wigner distribution is thus simply the

Fourier transform of the IAF over the lag variable. The Fourier transform of the IAF

over the time variable is called the ambiguity function (AF), which we will consider

in the next section. The IAF of the cosine signal with frequency ω0 is displayed in

Fig. 2.9(a), and is expressed as,

IAF = cos[ω0(n+ b)] cos[ω0(n− b)]

=
1

2
[exp(jω0(n+ b)) + exp(−jω0(n+ b))]

1

2
[exp(jω0(n− b)) + exp(−jω0(n− b))]

=
1

4
[exp(j2ω0b) + exp(−j2ω0b) + exp(j2ω0n) + exp(−j2ω0n)] .

It can be seen that the larger the absolute value of lag, then the value range of time

(a) (b)

Figure 2.9: (a) The IAF of a cosine; (b) Spectrum of a time slice in IAF domain.

is smaller, and with a certain time slice, the IAF contains two sinusoids at ±2ω0

and a constant as illustrated in Fig. 2.9(b).

2.3.3 The Cohen’s class

The spectrogram and Wigner-Ville Distribution are members of the general class of

time-frequency representations known as Cohen’s class. In the most general form, a
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time-frequency representation in Cohen’s class, D(n, k) with kernel function C(p, b)

can be represented by [5]:

D(n, k) =

N/2−1∑
p=−N/2

N/2−1∑
b=−N/2

AFs(p, b)C(p, b)e−j2πpne−j2πkb, (2.18)

where n and k are discrete time and frequency values and p and b are the discrete

Doppler shift and time lag. AF (p, b) is the ambiguity function (AF) of the signal,

expressed as follows:

AFs(p, b) =
N−1∑
n=0

s(n+ b)s∗(n− b)e−j2πnp/N . (2.19)

It is obvious that the ambiguity function is the Fourier transform over the time

variable of the signal bilinear product, or the IAF, and the Cohen TF representation

is simply the two-dimensional Fourier transform of the multiplication of the signal

AF and the kernel in the ambiguity domain over Doppler and lag variables. We

can also say that the AF is the inner product between the analyzed signal and the

time-frequency shifted signal (Tp,bs)(n) = s(n− b)e−j2πpn/N [2]. It is expressed as,

A(p, b) = 〈s, Tp,bs〉

Therefore, the AF can be viewed as a TF correlation function, and have properties

such as Hermitian symmetry, and the fact that its modulus is maximum at the

origin. In the case of multiple signals, the total AF consists of auto-components

neighbouring the origin of the plane and cross terms mostly locate some distance

from the origin which directly depends on the TF separation between the signal

components. To mitigate this interference and preserve the auto components, kernel

functions are deployed. They are usually in the form of a two-dimensional low-pass

filter as the auto-terms locate near the origin. Some well-known kernels includes

Choi-Williams [18], Margenau-Hill [19] and Born-Jordan [19]. They are expressed

in Table 2.1. To illustrate the four domains (time, ambiguity, instantaneous auto-

correlation, TF) and Cohen’s class TFR, we use a signal composed of two crossing

linear chirps written as,

s(n) = exp

{
j2π

[
(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]}
exp

{
j2π

[
(0.4Fs)

n

Fs
− (0.3Fs)

n2

2F 2
s

]}
,

(2.20)
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Table 2.1: Examples of kernels

Distribution Kernel φ(p, b)φ(p, b)φ(p, b)

Choi-Williams exp(−p2b2

2σ2 )

Margenau-Hill cos(pb/2)

Born-Jordan sinc(pb/2)

where Fs = 128 is sampling frequency. The four domains are shown in Fig. 2.10.

(a) (b)

(c) (d)

Figure 2.10: The signal in (2.20) in (a) The time domain; (b) The ambiguity domain;

(c) The instantaneous auto-correlation domain; (d) The time-frequency domain.
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The cross-terms are clearly present in the ambiguity domain due to the bilinear

product of the multicomponent signal. This results in interference in the TF plane.

The three aforementioned kernels are shown in Fig. 2.11. The Choi-Williams kernel

uses σ = 10. The ambiguity domain after applying the kernel, and the resulting TF

(a) (b)

(c)

Figure 2.11: (a) Choi-Williams kernel; (b) Margenau-Hill kernel; (c) Born-Jordan

kernel.

distribution are shown in Fig. 2.12.

For this signal, the Choi-Williams kernel is ineffective as only a small amount of

the cross-terms are suppressed at the expense of omitting some parts of auto-terms.

27



(a) (b)

(c) (d)

Figure 2.12: Ambiguity function with: (a) No kernel ; (b) Choi-Williams kernel;

(c) Margenau-Hill kernel; (d) Born-Jordan kernel.

The other kernels are better, but also cannot eliminate the interference. The TF

distributions are shown in Fig. 2.13.

The Wigner distribution is a member in the Cohen’s class. The relation between

the WVD and the Cohen’s class can be written as:

D(n, k) =
1

4π2

∑
u

∑
v

C̄(u− n, v − k)W (u, v), (2.21)

where C̄(n, k) is the two-dimensional Fourier transform of the kernel C(p, b). Thus,
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(a) (b)

(c) (d)

Figure 2.13: TF distribution when applying: (a) No kernel (WVD); (b) Choi-

Williams kernel; (c) Margenau-Hill kernel; (d) Born-Jordan kernel.

Cohen’s TFD is WVD if C̄(n, k) = δ(n)δ(k) or C(p, b) = 1. It can be seen there is

no filtering effect in the WVD. The spectrogram also belongs to the Cohen’s class.

It is obvious if we rewrite (2.6),

PSP (n, k) =

∣∣∣∣∣ 1

2π

∑
b

s(b)h(b− n)e−j2πkb

∣∣∣∣∣
2

=
∑
u

∑
v

Wh(u− n, v − k)W (n, k).

(2.22)
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Figure 2.14: The four domains.

So, the spectrogram is also Cohen’s TFD with kernel C(n, k) = Wh(n, k). The

above conversion is based on the unitary property, which is written as:∣∣∣∣∫ s(t)x∗(t)dt

∣∣∣∣ =

∫ ∫
Ws(t, ω)W ∗

x (t, ω)dtdω.

To summarize, the Cohen’s class is built up from the relationship among four

domains (time, time-frequency, time-lag, lag-Doppler). The relation is shown in

Fig. 2.14. In general, the Cohen’s class employs the signal-independent kernel, which

cannot eliminate all interference and also simultaneously keep the desired terms. So,

later researchers have suggested many improved methods, which are called adaptive

kernels or signal-dependent kernels. The signal-dependent radially Gaussian kernel

is the most well-known method in this category [20]. The filtered the ambiguity

domain and the resulted TF signature are shown in Fig. 2.15. This algorithm

almost removes all the interference, obtaining the best performance compared to

the other mentioned kernels.

2.4 Conclusion

This chapter has provided the basic of TFDs. All these conventional TFD ap-

proaches have their own strengths and weaknesses. The Hilbert transform is the
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(a) (b)

Figure 2.15: Signal-dependent radially Gaussian kernel: (a)Filtered ambiguity do-

main; (b)TF representation.

most simple method to detect the signal’s instantaneous frequency. But it can only

achieve the correct estimation if the signal has only one component. The Hilbert-

Huang transform can detect the time-frequency signature of a multicomponent sig-

nal, but it is vulnerable to noise. Quadratic TFDs including the short-time Fourier

transform (or spectrogram) and the Wigner-Ville distribution can be applied to a

wide range of signals, and give pretty good results. However, the former method

suffers from the trade-off between the time and the frequency resolutions. The lat-

ter witnesses cross-terms, which clutter the ambiguity and TF domain and hide

the desired signal structures. By applying some kernels, which belong to Cohen’s

class or optimal masks, the TF signature estimations get improved. However, these

methods are not designed to deal with missing samples, which can frequently occur

due to noise, fading, or intentionally under-sampling. Thus, other methods which

are robust with incomplete data are now needed.
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Chapter 3

Sparse Time-Frequency

Distribution Fundamentals

3.1 Introduction

As we know, TFD is the most efficient way to process a non-stationary signal as

it reveals the signal’s signatures in such a vivid manner. We have discussed con-

ventional TFD methods such as the spectrogram, the WVD and the Cohen’s class

approaches. Each method has its own weaknesses, and all of them give noisy TFRs

in the presence of missing data. The fact that most non-stationary signals are sparse

in the TF domain enables compressive sensing (CS) to be applied in TFD, which

we call sparse TFD. The CS allows reconstruction of the entire signal from its small

randomly chosen set of measurements. Therefore, with CS techniques, we can ob-

tain reliable TFRs even in the case of missing data. In this chapter, we will study

closely the motivation of using CS, especially using CS in TFDs, the fundamentals

of CS techniques and some recent TFD approaches using CS.

3.2 Motivation for Compressive Sensing

Now as we are entering the era of big data, the resolution or typical number of sam-

ples in a certain signal (image, video, etc.) get larger. Denote N as the necessary

samples. The continuing growth of N places a burden on every stage of the data pro-

cessing pipeline from acquisition, storage to analysis. In order to control and reduce
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the cost for collecting and processing high-dimensional data, it is essential to exploit

models that could encapsulate prior information regarding the signal’s interest [1].

Based on the fact that N -sample signals actually have far fewer then N degree of

freedom, called E(E � N), there have been many dimensionality reduction tech-

niques suggested. They include data compression, feature extraction and parameter

estimation. Nevertheless, these approaches require N samples of signals to be col-

lected before we can identify and exploit its intrinsic low-dimensional structure. So,

even if these signals have E degrees of freedom, we cannot exploit this information,

transform coefficients for example, until N samples are obtained. It means that the

sensing processing for many signals may be unnecessarily wasteful. And after all,

sensing high-bandwidth and high-resolution signals can require expensive hardware

and consume valuable power, etc. Therefore, it raises a question of whether it is

possible to incorporate the dimensionality reduction in the sensing process itself. It

means that we deliberately measure fewer samples with the expectation that the

missing samples can later be reconstructed from the recorded ones. This is also

the central idea that underlies compressive sensing (CS), taking a small number M

of linear measurements of a signal (slightly more than E, but far fewer than N),

and from these measurements reconstruct the complete set of all N samples that a

conventional sensor would have recorded.

Usually, non-stationary signals are locally sparse in TF domain. It means that

most of the transform coefficients are small and only a few (say, E) are large. There-

fore, we can apply CS to obtain the TFD especially in the case of incomplete data.

3.3 Compressive Sensing Overview

3.3.1 Sparsity, compressibility and norms [1]

A real- or complex-valued length N vector x is said to be E sparse if it contains

only E non-zero entries. Or we can say its l0 norm is E, i.e., ‖x‖0 = E. Often we

deal with approximations to sparse signals, called compressible signals. We refer to

the set of positions of the non-zero entries of x as the support of x and denote this

by supp(x). For any x, |supp(x)| = ‖x‖0.
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For any vector x ∈ RN or CN , we let xE denote the nearest E-sparse vector

to x. This can be obtained simply by keeping the E entries of x with the largest

magnitude and setting all remaining entries to 0. If the distance from x to xE is

small (but not necessary zero), x is said to be compressible. The CS technique is

used to find the sparsest solution that is close to the signal. Because the l0 norm does

not meet the formal mathematical definition of a norm, we express the CS problem

in l1 and l2 norm instead. The l1 norm measures the absolute sum of entries of x:

‖x‖1 =
N∑
n=1

|xn|, (3.1)

while the l2 norm measures the sum of the squared magnitudes of the entries of x:

‖x‖2 =

√√√√ N∑
n=1

|xn|2. (3.2)

The l1 norm has a special connection to sparsity: it tends to be small for sparse

signals. For two vector with the same l2 norm, the one with fewer non-zero entries

will generally have the smaller l1 norm. Therefore, we can find the sparsest solution

by searching for the solution with smallest l1 norm.

3.3.2 Compressive sensing problem in a nutshell [1]

Let f denote a desired collection of N samples of a signal. For convenience, we

arrange these samples into a vector f , f ∈ RN or CN ; in cases where these are

samples of an image or other multidimensional signal, the pixel values can be stacked

into the vector f using any ordering rule. Sometimes, the signal vector f may itself

be sparse or compressible. It means it may contain just a few significant entries,

or most of their entries are zero or nearly zero. For example, an astronomical

image could have only a few pixels illuminated by stars [21]. However, the sparse

structure of a signal is commonly revealed only when that signal is transformed into

an appropriate domain. For instance, if a signal f is composed of a few harmonic

tones, then the vector containing the discrete Fourier transform (DFT) coefficients

of f or the discrete cosine transform (DCT) coefficients of f will be sparse. Denote
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Ψ as a NxN real- or complex-valued basis matrix and denote x, x ∈ RN or CN as

the sparse coefficient vector, then f is expressed as:

f = Ψx (3.3)

In case that f is already sparse, Ψ is identity matrix.

A typical CS problem looks like this: we do not attempt to record the N entries

in f directly. Instead we record a smaller number M(M � N) of linear measure-

ments of f ; suppose these are arranged into an Mx1 vector we call y. Notice that

linear measurements are the result of linear operations on the signal: filtering, mod-

ulation, sampling, etc. Since these measurements are linear, we can represent the

measurement vector y in the presence of noise as:

y = Φf + v = ΦΨx + v = Ax + v, (3.4)

where Φ is an MxN matrix we refer to as the measurement matrix and v ∈ RN

or CN is a vector of measurement noise. These vectors and matrices can be real-

or complex-valued. Because we are interested in scenarios where the number of

measurements M is smaller then the number of samples N , the vector y is often

said to contain compressive measurements of f , and the problem in (3.4) is under-

determined, which has an infinite number of candidate solutions. CS is proposed to

obtain the closest estimation to f .

Typically in CS, Φ is designed with some element of randomness. In some cases,

it can be appropriate to collect just a random set, say, 10% of the pixel in an

image. In this case, Φ is a binary matrix containing a single randomly positioned

1 in each row. In other cases, it can be appropriate to collect a random set of

frequency domain measurements of a signal, for example by recording 10% of the

Fourier transform of f . In this case, Φ contains a random set of M rows of the

NxN discrete Fourier transform (DFT) matrix. In other cases, every measurement

in y might be a random linear combination of all of the entries in f . In this case,

Φ might be populated with independent and identically distributed (i.i.d) Gaussian

or Rademacher (±1) random variables.

Most CS recovery algorithms can be interpreted as solving for a sparse vector

x̂ that satisfies y ≈ Ax̂ as closely as possible. Once the sparse coefficient vector
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has been estimated, one can synthesize a signal estimate via multiplication by Ψ,

f̂ = Ψx̂.

The solution is often expressed as:

x̂ = min
x
‖x‖1, s.t. ‖y −Ax̂‖2 ≤ ε, (3.5)

where ε is a small predefined parameter. The techniques for recovering f from

y and Φ can be interpreted as searching among the candidate solutions to the

equation y = Φf for the one that best matches the low-dimensional model. In

the case of a sparse signal model, which is by far the most commonly used model

in CS, one might look for the sparsest candidate solution in some known basis.

There are a variety of algorithms available for searching for this sparsest candidate

solution; some involve convex optimization, while the others involve iterative greedy

methods. Under certain assumptions on the random measurement protocol, an

E-sparse signal f can be recovered from a number of measurements M which is

proportional to E log(N/E). Thus the number of measurements can be significantly

smaller than N and only greater than the information level E by a logarithmic

factor; this logarithmic factor is the price one pays for not knowing the locations

of sparse coefficient in advance. Remarkably, in the absence of noise and assuming

f is exactly sparse, the recovery is exact. In the presence of noise or assuming f is

nearly sparse, the recovery is provably robust.

3.3.3 Conditions for reliable recovery

Matrices that satisfy a condition known as the restricted isometry property (RIP)

can be proved to allow the recovery of sparse signals via efficient algorithms. The

matrix A = ΦΨ is said to satisfy the RIP of order E if there exists a constant

δE ∈ (0, 1) such that:

(1− δE)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δE)‖x‖2
2, (3.6)

holds for all coefficient vectors x with ‖x‖0 ≤ E. The parameter δE is known as

the isometry constant of order E. The RIP is essentially a requirement that in

the matrix A any sub-matrix containing E columns will be approximate isometric

(its E columns will be approximately orthonormal). However, it has been shown
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that checking the RIP holds for a given matrix with a specified isometry constant is

NP-hard in general [1]. Fortunately, this property can be guaranteed to hold with

very high probability under suitable conditions. For example, let Ψ be an arbitrary

fixed N xN dictionary in RN or CN , and Φ be a M xN matrix populated with i.i.d.

sub-Gaussian entries having mean zero and variance 1/M . If

M ≥ C1

(
E log

N

E
+ log

1

ρ

)
, (3.7)

then with probability at least 1− ρ, A will satisfy the RIP of order E with isometry

constant δE. Typically, C1 = 1/δE.

3.3.4 CS algorithms and orthogonal matching pursuit OMP

As discussed above, there are various algorithms for searching the sparsest candidate

solutions: some relate to convex optimization, others involve the iterative greedy

methods. Here, we introduce a popular greedy method, orthogonal matching pursuit

(OMP) which is usually employed in sparse TF reconstruction due to its simplicity.

We now address the problem about how to recover a signal f from a vector y,

y = Φf + v. Assumed that f is E-sparse or compressible in some orthonormal basis

Ψ. Thus, we can write:

y = Φf + v = ΦΨx + v = Ax + v, (3.8)

where

y is vector of length M ,

A = ΦΨ is a MxN matrix,

x is a E-sparse or compressible vector of length N , and

v is a noise vector of length M .

Orthogonal matching pursuit (OMP) is a greedy algorithm for CS recovery [22,

23, 24, 25]. The intuition behind OMP is roughly as follows. Since x has only E

non-zero components, the data vector y is a linear combination of E columns from

the measurement matrix A. In the language of sparse approximation, we say that

y has an E-term representation over the dictionary A. To identify the signal x,

we need to determine which column of A participates in data vector y. The idea

behind this algorithm is to pick columns in a greedy fashion. At each iterations,
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we choose the column of A which is most strongly correlated to the remaining part

of y. Then we subtract off its contribution to y and iterate on the residual. After

E iterations, we will identify the correct set of columns, which also means we will

determine the vector x. Also, OMP can also stop when the residual is less than a

threshold. The threshold is often the noise level, which can be determined by SNR

as following:

ANoise =
ASignal

(SNR
20

)10
, (3.9)

where ANoise and ASignal are the norm 2 of the noise and the signal. The algorithm

is summarized as follows:

INPUT:

• An [M xN ] measurement matrix A

• An [M x 1] data vector y

• Sparsity level E of unknown signal x [N x 1]

OUTPUT:

• An estimate x̂

• A vector Λ containing the index of E non-zero elements of x

PROCEDURE:

1. Call Ai, Λi the matrix and the index set of the chosen columns from

measurement matrix A after ith iteration. Denote aj(j = 1, 2, ..., N) as a

column of matrix A. Initialize the residual r0 = y, A0 = ∅, Λ0 = ∅, and

the iteration counter i = 1 (i ≤ E).

2. Find the index λi by λi = arg maxj=1,2,...,N | < ri−1, aj > |.

3. Λi = Λi−1 ∪ λi, Ai = [Ai−1, aλi ].

4. Solve the least squares problem to obtain a new signal estimate, zi =

arg minz ‖Aiz− y‖2.

5. Calculate new approximation of the data yi, and new residual ri:

yi = Aizi, ri = y − yi.
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6. Increment i, and return to step 2 if i < E (or when ‖r‖2 is less than a

predefined threshold).

7. Column vector x has non-zero elements at index listed in Λ, and their

non-zero values are shown in vector z.

Our example used to illustrate the OMP method is from [26]. The basic Ψ is the

discrete cosine transform (DCT). The signal generated by the “A” key on a touch-

tone telephone is the sum of two sinusoids with different integer frequencies,

f(t) = sin(2π 697 t) + sin(2π 1633 t).

If we sample this tone for 1/8 of a second at sampling rate Fs = 40000 Hz, the result

is a column vector f of length N = 5000. Call x is the coefficient vector obtained

by taking the inverse DCT transform of f . The signal can be expressed as:

f = Ψx, (3.10)

where Ψ is an NxN DCT matrix. The signal f and coefficient vector x are plotted in

Fig. 3.1(a). We randomly pick M = bN/10c samples from f to get the measurement

vector y. We construct a matrix A by extracting M rows from the DCT matrix Ψ

[NxN ] in the same rule with which we get y. We can write:

y = ΦΨx = Ax, (3.11)

where Φ [MxN ] is a binary matrix containing a single randomly positioned 1 in

each row. The simulation result is shown in figure 3.1.

3.4 Motivation for Applying CS in TFD

A large number of signals that appear in real applications (array signal processing,

indoor and synthetic aperture radar imaging, communications, remote sensing, and

biomedical and multimedia applications) are sparse in the TF domain. In general,

a signal that is E-sparse in a specific domain can be completely characterized by M

measurements (M > E) and CS techniques, although the total number of samples

required by the Shanon-Nyquist theorem is far above M . Therefore, most non-

stationary signals can be recovered by a small number of samples. The questions
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(a)

(b)

Figure 3.1: (a) Signal and inverse DCT coefficients obtained from the full signal f ;

(b) Recovered x̂, and f̂ by OMP.
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are why we only have a few samples and what happens if we apply conventional TFD

like the spectrogram and the WVD, not using CS techniques in the case of incomplete

data. As discussed above, missing entries may appear because we deliberately under-

sample to reduce the burden on the data processing pipeline from acquisition, storage

and analysis. They also occur due to the removal of “unwanted components” such

as clutter and noise. In both scenarios, the missing samples produce noise-like effect,

which significantly degrades signal representation in the TF domain if we use the

traditional TFD methods. Thus, a sparsity-aware TFD approach is of significance

in TF analysis for non-stationary signals.

3.4.1 Sparsity property of non-stationary signals

An ideal TF representation of a single frequency modulated (FM) signal in Fig.

3.2(a) shows [27]:

• Sparsity in the two-dimensional (2D) TF domain by the virtue of perfect power

localization of FM signals, making it appear as a wavy line in a plane populated

by zero values. As such, for a single FM component, the joint-variable TF

representation is N -sparse.

• Local frequency sparsity, or the number of non-zero entries on a time-slice for

a single FM component, is one.

• Local time sparsity, or the number of non-zero entries on a frequency-slice for

a single FM component, is slightly more than one.

The above three cases are depicted in Fig. 3.2(a) using a sinusoid FM signal as

an example. For multi-component signals, where each component is defined by a

frequency law, there would be more non-zeros entries, which results in a reduction

in sparsity when compared with mono-component signals. This is also illustrated

in Fig. 3.2(b). With non-ideal representation, the time and frequency points are

replaced by short windows and narrow-band filters as shown in Fig. 3.3. However,

in general, non-stationary representations in the TF domain are populated by zero

values. Thus, we can say that non-stationary signals are sparse locally and globally

in the TF domain.
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(a) (b)

Figure 3.2: Ideal TFDs for (a) A mono-component signal; (b) A multi-component

signal.

(a) (b)

Figure 3.3: Spectrogram for the given (a) Mono-component signal; (b) Multi-

component signal in Fig. 3.2.

3.4.2 Missing data effects

We know that missing samples generally cause artifacts in both the TF domain and

the ambiguity domain. So, why do these noise-like effects appear? As discussed
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above, TFD can be calculated as the Fourier transform of the instantaneous auto-

correlation function (IAF) over the lag variable, and the AF is the Fourier transform

of the IAF over the time variable. Also, the TFD can be obtained by taking the

two-dimensional Fourier transform of the AF. So, we can say the Fourier transform

of incomplete data might be the reason. So, in this part, we will discuss two issues:

• Missing samples in time lend themselves to missing entries in the instantaneous

autocorrelation domain.

• Analysis of missing samples in the Fourier transform domain.

IAF with missing samples in time [28]

Missing samples in time generate noise-like artifacts in the ambiguity and the time-

frequency domains, but only cause missing entries in autocorrelation domain. This

part discusses how these missing points are distributed in the instantaneous auto-

correlation domain and the maximum number of missing points presented in a time

slice or at a specific time lag.

Consider the above discrete signal s(n), n = 1, 2, ..., N . The IAF of s(n) is as

follows:

IAF (n, b) = s(n+ b)s∗(n− b), (3.12)

where b is lag variable, −N/2� b� N/2− 1. The IAF is affected by the window

effect due to zero-padding. The length of each time slice in IAF depends on lag b

and is express as:

W (b) = N − 2|b|. (3.13)

With higher values of |b|, number of entries gets smaller. And this figure gets

smaller if we have missing samples. Denote m(n), miss(n) and Nmiss (0 ≤ Nmiss <

N) as observation data, missing data and number of missing samples, respectively.

So, m(n) can be expressed by the product of s(n) and an observation mask, M(n):

m(n) = s(n)M(n), (3.14)

where

M(n) =

{
1, ifn ∈ S,
0, ifn /∈ S,

(3.15)
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where S ⊂ {1, ..., N} is the set of observed time instants and its cardinality is

|S| = N −Nmiss. Similarly, miss(n) is written as the product of the full signal s(n)

and the missing data mask Miss(n):

miss(n) = s(n)Miss(n), (3.16)

where

Miss(n) = S(n)−M(n) with S(n) = 1, ∀n ∈ {1, ..., N}. (3.17)

To facilitate the analysis, we express the missing data mask as:

Miss(n) =
∑
ni /∈S

δ(n− ni). (3.18)

To examine the effect of missing samples, we look at the difference in the IAF

between missing data case compared with complete data case,

IAFD(n, b) = IAFSS(n, b)− IAFMM(n, b)

= IAFSS(n, b)− (IAFSS(n, b) + IAFMissMiss(n, b)− IAFSMiss(n, b)− IAFMissS(n, b))

= IAFSMiss(n, b) + IAFMissS(n, b)− IAFMissMiss(n, b).

(3.19)

From the definitions, we obtain:

IAFMissMiss(n, b) =
∑
ni /∈S

δ(n− ni + b)
∑
nj /∈S

δ(n− nj − b)

=
∑
ni /∈S

δ(n− ni, b) +
∑

ni,nj /∈S,
ni−nj>0,even

δ

(
n− ni + nj

2
, b± ni − nj

2

)

=
∑
ni /∈S

δ(n− ni, b) +
∑
ni /∈S

δ (b− (ni − n), b− (n− ni)) .

(3.20)

The first term in the righ-hand side includes the entries in the time axis (b = 0),

and the second term represents entries off the time axis due to missing samples.

These entries are actually the intersections of lines b = ni − n and b = n− ni with

ni /∈ S. Similarly, the cross-terms IAFMissS(n, b) and IAFSMiss(n, b) are obtained
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as follows:

IAFMissS =
∑
ni /∈S

N∑
j=1

δ(n− nj, b− (ni − n))

IAFSMiss =
∑
ni /∈S

N∑
j=1

δ(n− nj, b− (n− ni)).

(3.21)

We can interpret that the IAFMissS and IAFSMiss are straight lines across all values

of n ∈ [1, N ], where b satisfies b = ni − n and b = n− ni. We can see the non-zero

entries of IAFMissMiss(n, b) are located at the intersection of the two IAF cross-

terms.

Because off time-axis entries of IAFMissMiss are intersections of two IAF cross-

terms, the maximum number of missing entries in a time slice at specific b is ex-

pressed as:

ÑmissIAF = 2|b|+ 2Nmiss. (3.22)

For illustration, four IAF masks are shown in Fig. 3.4 with Nmiss = 5.

Analysis of missing samples in the Fourier transform domain [29]

As we said above, the ambiguity and the TF domain of incomplete signals are filled

with noise-like effects, which can severely influence the true TF signature. The

underlying reasons are:

• While the Fourier transform (FT) of the full sinusoidal signal is sparse, the

FT of a randomly chosen set of samples is not sparse. In other words, missing

samples in the time domain will cause a noisy spectral representation.

• Missing samples in time lend themselves to missing entries in IAF.

• The TFD and the AF are obtained by taking the Fourier transform of IAF

over lag and time variables.

In short, we can say that the FT of incomplete data leads to the artifacts witnessed

in the TF and the ambiguity domains. By analyzing the statistical properties of the

Fourier coefficients, we can characterize the variance of the noise-like effect and also
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(a) (b)

(c) (d)

Figure 3.4: Mask IAF with 5 missing samples in time domain (a) IAFMissMiss; (b)

IAFSMiss; (c) IAFMissS; (d) IAFD.

its relation to the number of missing data values. Observe a signal consisting of E

sinusoid components in the form:

s(n) =
E∑
i=1

aie
j2πkin/N . (3.23)
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where ai and ki denote amplitudes and frequencies of the ith signal components,

respectively. The DFT of such signal can be written as:

S(k) = N
N∑
n=1

E∑
i=1

aie
−j2π(k−ki)n/N . (3.24)

In a compressive sensing scenario we are dealing with just a small subset of samples

from s(n) taken at the random positions defined by the following set:

NNNM = {n1, n2, ..., NM} ⊂ N = {1, 2, ..., N}. (3.25)

Therefore, NNNM represents the positions of measurements. Following the definition of

the DFT in (3.24), let us observe the product of samples and Fourier basis functions

of the full and incomplete signal:

s† =

{
s†(n) =

E∑
i=1

aie
−j2π(k−ki)n/N , n = 1, 2, ..., N

}
(3.26)

y =

{
y(nm) =

E∑
i=1

aie
−j2π(k−ki)nm/N , nm ∈ NM

}
(3.27)

Let start with the simplest case that signal is composed of one component ki = k1,

and assume a1 = 1. The set of samples given by (3.26) and (3.27) become:

s†(n) = e−j2π(k−k1)n/N , n ∈ N

y(nm) = e−j2π(k−k1)nm/N , nm ∈ NM .
(3.28)

Considering s†(n), we have:

N∑
n=1

e−j2π(k−k1)n/N =
1− (e−j2π(k−k1)/N)N

1− e−j2π(k−k1)/N
=

{
N, if k = k1,

0, if k 6= k1.
(3.29)

The incomplete signal is different. When k = k1, y(n1) + y(n2) + ... + y(nM) = M

and when k 6= k1, y(n1) + y(n2) + ... + y(nM) 6= 0. The variance of noise-like effect

appearing in the FT of incomplete data can be calculated as follows:

σ2(Yk 6=k1) = E {[y(1) + ...+ y(M)][y(1) + ...+ y(M)]∗}

= ME {y(n)y∗(n)}+M(M − 1)E {y(n)y∗(m)}n6=m

= M +M(M − 1)
−1

N − 1

= M
N −M
N − 1

.

(3.30)
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The detailed derivation of variance can be found in [29]. Thus, in the case of a

sparse E-component signal, the variance of noise-like effect that appears in the

spectral domain as a consequence of missing data is:

σ2(Yk 6=ki) = M
N −M
N − 1

E∑
i=1

a2
i . (3.31)

The variance of noise-like effect produced in the spectral domain depends on the

number of missing samples (N −M). It can be seen that if M = N , the variance

of the noise-like effect becomes zero. However, for M � N , we have N−M
N−1

→ 1,

or σ2(Yk 6=ki) ≈ M
∑E

i=1 a
2
i . We can say for low value of M , the noise-like effect

level exceeds the values of some (or all) signal components. Thus, when too many

samples are missing, the TFD cannot be reconstructed accurately. For illustration,

we use a linear chirp signal, and the effects of missing data us on the TF domain

and the AF domain are shown in Fig. 3.5 and Fig. 3.6.

3.5 Literature Review of Sparse-Aware TFDs

In general, we have two approaches in applying CS in the TFDs. They are para-

metric and non-parametric methods. The former is used when the signal format

is known before hand. It gives fast and accurate results. In the case that the sig-

nals are unknown, a non-parametric method is deployed. In this part, we introduce

both approaches. The first three techniques are non-parametric and the last one is

parametric.

3.5.1 Sparse kernel design [2]

The general form of Cohen’s class has been expressed in (2.18) and rewritten as

follows:

D(n, k) =

N/2−1∑
p=−N/2

N/2−1∑
b=−N/2

AFs(p, b)C(p, b)e−j2πpne−j2πkb

= F2D {AFs(p, b)C(p, b)} .

(3.32)

Or we can say that the filtered AF is the result of the inverse two-dimensional FT

of D(n, k):

AFs(p, b)C(p, b) = F−1
2D{D(n, k)}. (3.33)
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(a) (b)

(c) (d)

Figure 3.5: A full-data linear chirp in (a) Time domain; (b) IAF ; (c) AF ; (d) TFD.
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(a) (b)

(c) (d)

Figure 3.6: A 50% incomplete linear chirp signal in (a) Time domain; (b) IAF ; (c)

AF ; (d) TFD.
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As most signals appearing in a real application, their TF representations contain a

small number of non-zero values and thus TFD can be accurately recovered with

incomplete measurements by compressive sensing. As we know, in the ambiguity

domain, auto-terms mostly locate near the center, cross-terms often stay far away

from the origin. By only taking measurements around the origin of the ambiguity

plane not the total plane, the cross-terms can be attenuated. And compressive sens-

ing helps obtain an improved TFD with few observations of the ambiguity domain

near the origin. The l1 problem is formed as follows. Observation vector y is ob-

tained by a small number of measurements taken from specific ambiguity region ΩΩΩ

around the origin of the ambiguity domain AF ∈ C(NxN). (3.33) can be written

in vector form as:

y = F−1
2D(Ω)TF, (3.34)

where TF ∈ C(N2x1). The system defined by (3.34) is under-determined, and can

have infinite solutions. According to the theory, the TFD with the smallest num-

ber of non-zero coefficients can be obtained as a solution of l0-norm minimization.

However, in practice we may use the near optimal solutions based on the l1 norm

minimization:

ˆTF = min ‖TF‖1 subject to y = F−1
2D(Ω)TF (3.35)

OMP or Lasso is used to solve l1 problem. An example is presented to illustrate the

above theory. Two crossing chirps are used for illustration. The result is displayed

in Fig. 3.7.

3.5.2 TF estimation using a sinusoidal dictionary[3]

Consider an arbitrary continuous-time non-stationary signal sc(t), which consists of

E components:

sc(t) =
E∑
i=1

Ai(t) exp(jωi(t)t+ vc(t)), 0 ≤ t ≤ T (3.36)

where Ai(t) and ωi(t) are the time-varying positive amplitude and phase of the ith

component, and vc(t) is an additive white noise, and T is total observation time.
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Figure 3.7: TFD obtained by the WVD and the sparse kernel method.

To avoid aliasing, the continuous-time signal is first passed through a low-pass

filter to remove out-of-band noise and then sampled with the rate Fs ≥ 2Fmax. The

discrete-time signal is:

s(n) =
E∑
i=1

Ai(nTs) exp(jωnTs) + v(nTs)

n = 0, 1, ..., N − 1,

(3.37)

where Ts = 1/Fs is the sampling period, s(n) and v(n) are the discrete versions of

sc(t) and vc(t), and N = bT/Tsc.
The proposed approach builds on estimation of the local frequency contents,

which are referred to the middle point of the sliding window, as expressed (3.38)

and in Fig. 3.8.

sm(n) ≈
E∑
i=1

Ci,m exp(j2πki,mnTs) + vm(n) n = 0, 1, ..., Nw − 1, (3.38)

where m is window index, Ci,m is the complex amplitude of ith component in mth

window and Nw is window length.

In vector form, the signal over the mth window can be expressed as:

Sm = ΨXm + Vm, (3.39)
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Figure 3.8: TF estimation based on the sinusoid dictionary principle

where Sm = [sm(0), ..., sm(Nw − 1)]T , Vm = [vm(0), ..., vm(Nw − 1)]T , Xm is a E-

sparse amplitude vector of length Fs, and the dictionary matrix Ψ, is defined as:

Ψ = [ψψψ1,ψψψ2, ...,ψψψFs ]

ψψψi = exp(j2πkinTs)

ki = 0, 1, ..., Fs − 1

n = 0, 1, ..., Nw − 1.

(3.40)

Since E � Nw � Fs, Xm in (3.39) can be solved as a compressive sensing problem,

expressed as:

X̂m = arg min ‖Xm‖1 s.t. ‖Sm −ΨXm‖2
2 ≤ ε, (3.41)

where ε is noise level. The problem in (3.41) is solved by convex optimization

or iterative greedy search for example OMP (Orthogonal matching pursuit). For

illustration, we use a multi-component signal expressed as follows:

s(n) = exp

{
j(0.15Fs) cos(2π

n

Fs
+ π) + j2π(0.25Fs)

n

Fs

}
+ exp

{
j2π

[
(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]}
.

(3.42)

The signal is randomly shortened by 50%. The incomplete signal, and its TFDs

obtained by spectrogram, WVD, and the sinusoidal dictionary method are depicted

in Fig. 3.9. The sinusoidal dictionary method provides enhanced TFD compared

with the spectrogram and the WVD, in which cross-terms and artifacts due to

missing data are removed.

53



(a) (b)

(c) (d)

Figure 3.9: A multi-component signal with 50% data missing: (a) Time domain

signal; (b) The spectrogram; (c) The WVD; (d) The TFD obtained by CS method

with the sinusoidal dictionary.
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3.5.3 Sparse reconstruction using multiple measurement vec-

tor [4]

This method performs sparse reconstruction of TFD from random time-domain sam-

ples using windows, reminiscent of the multiple window spectrogram. The recon-

struction corresponding to different windows can be averaged to provide an improved

TFD over a single window-based reconstruction. The overlapping nature of the dif-

ferent window reconstructions amounts to a common sparse support property and

inspires the use of multiple measurement vector (MMV) techniques within the CS

paradigm. This enables achieving enhanced signal localization in the TF domain

over a single measurement vector (SMV). The MMV problem is solved using the

complex multitask Bayesian compressive sensing method, or Block OMP.

The general form of Cohen’s class of a signal s(n) can be expressed as:

D(n, k) =
∑
p

∑
b

∑
u

C(p, b)s(u+ b)s∗(u− b)ej2π(pu−kb−pn), (3.43)

where C(p, b) is a kernel in the ambiguity domain, and b is time lag variable. Call

C̄(n, b) the Fourier transform of C(p, b) with respect to p, or the kernel in instanta-

neous autocorrelation domain. It is expressed as:

C̄(n, b) =
∑
p

C(p, b)e−j2πpn (3.44)

Called C̄45 is the 45-degree-rotated kernel from C̄(n, b) for all values n, b. Eigen

decomposition C̄45, we have:

C̄45 =

rankC̄45∑
r=1

λrere
H
r . (3.45)

The TFD D(n, k) can be re-written as:

D(n, k) =

rankC̄45∑
r=1

λr

∣∣∣∣∣
N−1∑
i=0

s(n+ i)e∗r(i)e
−j2πki

∣∣∣∣∣
2

, (3.46)

where e∗r(i) is the ith element of e∗r. As such, the TFD is obtained by the weighted

sum of the spectrogram. For each signal segment, sparse reconstruction and the
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sinusoidal matrix are used to estimate the frequency component at the instant cor-

responding to the middle point of the segment, which is similar to TF estimation

using the sinusoidal dictionary mentioned above. However, here multiple windows

are used, and the final estimation is the weighted sum of all resulted calculated TF.

The result is proved to be better than using a single window. To illustrate, C(p, b)

is chosen as Choi-William kernel,

C(p, b) = e−p
2b2/σ

With σ = 100, the time and frequency smoothing Hanning windows’ length are 15

and 123, the eigen-decomposition of the rotated kernel is shown in Fig. 3.10, which

reveals the eigenvalues decay very fast and those after the 6th term are negligible.

The six eigenvectors corresponded to the six largest eigenvalues are shown in Fig.

Figure 3.10: The first 6 dominant eigenvalues of the rotated C(p, b).

3.11. The simulated input signal is expressed below:

x(n) = exp

[
j2π

(
(0.25Fs)

n2

2
+ (0.2Fs)n

)]
+ exp [j2π(0.1Fs)t]

n = 0, 1, ..., Fs − 1; Fs = 128.

TFDs of signal with 75% data missing are shown in Fig. 3.12 and Fig. 3.13. The

result obtained by sparse reconstruction with MMV is superior than one from sparse

reconstruction with a single window.
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Figure 3.11: The 6 dominant eigenvectors of the rotated C(p, b).

3.5.4 Parametric sparse recovery

The parametric approach for sparse-aware TF analysis was first proposed in [30],

and then in [31] with pruned orthogonal matching pursuit (POMP). This method

focuses on separation of multiple sinusoid FM micro-Doppler components and the

estimation of their parameters, such as the Doppler repetition period, the Doppler

amplitude and the initial phase. This method is used in the case that all radar

reflections are from the same rotation, vibrating, or oscillating targets. The radar

echo from a coning target is given by,

y(n) =
E∑
i=1

ai exp{j 4π

λ
di sin(ωn+ θi)} n = n1, n2, ..., nM (3.47)

where ω refers to the rotation angular velocity of the target, ai is the complex

reflectivity of the i-th scatter, λ is the radar wavelength, di is dependent on the

spatial position of the i-th scatter, θi is the initial phase which also depends on the

spatial position.

To discretise the MD signal, di and θi are uniformly divided into I, and thus J

discrete values, i.e., di ∈ {d1, d2, ..., dI}and θi ∈ {θ1, θ2, ..., θj, ..., θJ}, and thus we

57



(a) (b)

(c) (d)

(e) (f)

Figure 3.12: TFDs with a single window being: (a) Eigenvector 1; (b) Eigenvector

2; (c) Eigenvector 3; (d) Eigenvector 4; (e) Eigenvector 5; (f) Eigenvector 6.
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Figure 3.13: TFD obtained by MMV.

obtain matrix [I x J ]. The received signal in (3.47) is rewritten as:

Y = A(ω)X. (3.48)

where Y = [y(n1), y(n2), ..., y(nM)]T , A(ω) ∈ CM x(IJ), and its element is:

A(ω)m,i+(j−1)I = exp{j 4π

λ
di sin(ωnm + θj)}. (3.49)

X ∈ C(IJ) x 1 is a E-sparse vector, and its non-zero element Xi+(j−1)I = ai if and

only if di = di, θj = θi (E < M < IJ). Thus, the MD separation becomes sparse

recovery problem. For each value of ω, (3.48) is solved, using OMP:

{ω,X} = arg min ‖X‖0 subject to Y = A(ω)X. (3.50)

The correct value of ω is estimated by choosing most sparse X. The estimation is

based on (3.51). The value of ω with smallest SX(ω) is chosen, where:

SX(ω) = −
IJ∑
n=1

|Xω(n)|2∑IJ
n=1 |Xω(n)|2

log
|Xω(n)|2∑IJ
n=1 |Xω(n)|2

. (3.51)

The simulation result with parameters mentioned in [30] is shown in Figure 3.14.

In [31], prune orthogonal matching pursuit (POMP) is proposed to replace OMP

in [30] in order to avoid unnecessary computation with wrong candidate values of

ω, thus reduce the computation load of the approach proposed in [30]. The result

obtained is similar (Fig. 3.14) with less time for computation.
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Table 3.1: The signal’s parameters for the simulation of the parametric sparse re-

covery.

Received signal ai exp j 4π
λ
di sin(2πfmDn+ θi) n = n1, n2, ..., nM

λ 0.008

fmD 2

Number of samples per second Fs 200

Number of samples M 200

di 0.015 and 0.003

φk 1 [rad] and 3 [rad]

(a) (b)

Figure 3.14: (a) Estimated parameters; (b) Sinusoid TF signature of the two signals

using the estimated parameters.

3.6 Conclusion

The fact that most of non-stationary signals are sparse in the TF domain has invited

CS to play an important part in TFDs. CS techniques, or sparse TFDs, enable re-

construction of the entire signal from a small randomly chosen set of measurements.

Thus, they can provide reliable TF estimation even in the case of missing and ran-
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domly sampled data. This chapter has presented the key concepts of CS as well as

the recovery condition and a popular approach to solve the CS problem, the OMP.

Missing data effects are also included that underline the significance of CS in recov-

ering the signal TF signature. Some recent sparse approaches are represented and

are illustrated by simulations with synthetic signals.
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Chapter 4

Sparse Reconstruction of

Time-Frequency Signature using

The Chirp Dictionary

4.1 Introduction

4.1.1 Motivation

Non-stationary signals arise in a broad class of active sensing modalities, includ-

ing sonar, radar, and ultrasound. They are the preferred type of smart jamming

and also characterize many passive sensing problems, such as speech and elec-

tromyographic recordings [32, 33, 34, 35]. In particular, non-stationarity under-

lines Doppler and micro Doppler signals which represent radar returns from moving

targets [36, 37, 38, 39]. Time-frequency signal representations (TFSRs) reveal the

signal local structure which changes with time. Therefore, they enable separations

of non-stationary signals that are mixed in both time and frequency domains, where

traditional approaches fail to capture or distinguish between individual signal com-

ponents. TFSRs are commonly obtained using linear basis signal decomposition

[40], [41], and quadratic TF distributions (QTFDs), generally referred to as Cohen’s

class [5], [42]. The latter have their roots in the nonparametric WVD.

QTFDs are defined by two-dimensional (2D) kernels which convolve the WVD for

interference reduction. The reduced interference distribution (RID) kernels act on
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preserving the true signal power terms, referred to as auto-terms, and eliminating, or

at least considerably attenuating, the undesired cross-terms. Cross-terms represent

false power concentrations and are generated from the data bilinear lag products

underlying QTFDs. It has been analytically shown that missing and randomly

sampled non-stationary signals give rise to artifacts in both the TF domain and

the ambiguity domain [1, 28, 43]. These artifacts clutter the signal components

and hide pertinent signal structure, including the instantaneous frequencies. Efforts

and attempts to use traditional RID kernels to reduce the type of clutter induced

by missing samples along with mitigations of signal cross-terms have proved both

unsuccessful and ineffective.

In compressive sensing (CS), a sparse representation of a signal is projected onto

a much lower dimensional measurement space. This leads, in general, to decreasing

the data acquisition requirements from a time, logistic and hardware complexity

perspectives. It is then possible to record a small number of linear measurements of

a signal and then reconstruct the complete set of all samples. The required number

of observations is slightly more than the signal sparsity level but much less than

the signal dimension. Although applied in many applications, little consideration

has been given to CS and sparse reconstructions of non-stationary signals. Owing

to their instantaneous narrow band characteristics, the signatures of a large class

of non-stationary signals occupy small regions in the TF domain. This property

casts these signals as sparse in the joint-variable representations and has recently

invited sparse signal reconstruction and compressive sensing techniques to play an

important and fundamental role in TF signal analysis and processing, especially

when we have incomplete data [2, 3, 44].

4.1.2 Related work

For most single and multicomponent FM signals, local reconstruction of TF signa-

tures from few random observations is deemed to outperform global signal recon-

structions, which deals with a much broader signal bandwidth, i.e., lower sparsity.

One of the most straightforward sparse reconstructions of local signal frequency

characteristics is achieved by applying a sliding window, reminiscent of the STFT

[3], [27]. Using a partial Fourier basis, one can proceed to apply greedy algorithms
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or convex optimization techniques to find the sparsest frequency content that de-

scribe the observations within the time window. This approach involves a sinusoidal

dictionary that relates the windowed compressed observations to their local sparse

frequencies. The method, however, suffers from the trade-off between necessary

measurements for accurate recovery and sparsity when considering the window size,

and also the picket-fence effect when there is a non-integer period in the analyzed

data segments. Thus, another measurement basis is required to obtain more stable

and reliable results. In this chapter, we introduce a sparse TF estimation based on

a novel chirp dictionary, which provides better performance when compared with

the Fourier basis.

4.1.3 Contribution

In many situations, the non-stationary signal frequency law is more properly ap-

proximated by piece-wise second-order polynomials rather than fixed frequency si-

nusoids. In this case, a chirp dictionary, in lieu of a sinusoidal dictionary, is better

suited for sparse reconstruction problems when dealing with FM signals. Further,

compared to reconstruction techniques using parameterized atoms [31], which also

directly operate on the data, the proposed chirp dictionary does not assume any

specific signal structure and, as such, is able to maintain its desirable performance

for a wide class of non-stationary signals. In this chapter, we introduce a sparse

TFD method using the chirp dictionary. The chirp dictionary is built in two ways.

The first includes all possible chirps which can appear in any signal segment. The

second is also composed of all chirps, but they are formed from sinusoids which are

rotated in all eligible angles by the fractional Fourier transform. Although the dic-

tionary construction procedure is different, the two ways actually lead to the same

results. The purpose of presenting the second method is to introduce an alternative

way to build the chirp dictionary. Also, its theory is also the foundation for other

applications in the following chapters. Several simulations with synthetic and real

signal are presented to prove the method’s efficiency over the sinusoidal dictionary

approach and the discrete chirp Fourier transform (DCFT).
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4.1.4 Chapter outline

Section 4.2 discusses the first chirp dictionary approach. The range of chirp rate α

and initial frequency β, the chirp dictionary as well as the instantaneous frequency

estimation by solving the sparse problem are presented in this section. The second

way to form a chirp dictionary is introduced in section 4.3. The fractional Fourier

transform (FRFT), the key technique, is represented in detail. The value range of

the FRFT angle and the frequency of the harmonic signal in the fractional domain

will be discussed here. Section 4.4 compares the chirp dictionary and the sinusoidal

dictionary approaches to underline the advantages obtained by the chirp atom ap-

proach. Section 4.5 focuses on the RIP associated with the chirp dictionary and

provides the lower bound on the number of observations for exact recovery. Section

4.6 includes simulation results. The conclusions are given in section 4.7.

4.2 Chirp Dictionary

4.2.1 Signal modelling

Consider an arbitrary continuous-time non-stationary signal sc(t), which consists of

E components:

sc(t) =
E∑
e=1

Ae(t) exp (jφe(t)) + vc(t), 0 ≤ t < T, (4.1)

where Ae(t) and φe(t) are the time-varying positive amplitude and phase of the eth

component, vc(t) is an additive white noise and T is the total observation interval.

It is assumed that the phase time-variations are much faster than those of the

amplitudes. The continuous-time instantaneous frequency (IF) of the eth component

is defined as:

Fe(t) =
1

2π

dφe(t)

dt
. (4.2)

We assume that it is known a priori that the absolute IFs do not exceed Fmax i.e.

|Fe(t)| ≤ Fmax. We also assume that the IFs do not vary abruptly but rather vary

smoothly over time, which is a reasonable assumption in many applications including

radar.
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To avoid aliasing, the continuous-time signal is first passed through a low-pass

filter to remove out-of-band energy, and then sampled with a rate Fs ≥ 2Fmax. The

discrete-time signal is:

s(n) =
E∑
e=1

Ae(nTs) exp(jφenTs) + v(n),

n = 0, 2, ..., N − 1,

(4.3)

where Ts = 1/Fs is the sampling period, and s(n) and v(n) are the discrete-time

versions of sc(t) and vc(t), and N = bT/Tsc.

4.2.2 Non-stationary signal approximation with chirps

The proposed approach builds on the local approximation of each signal component

as a chirp. That is, by dividing the observation time interval into (possibly over-

lapping) time windows of a chosen duration, Tw, the discrete-time signal over each

window is approximated by:

sm(n) ≈
E∑
e=1

Ce,m exp

{
j2π

[
αe,m

n2

2F 2
s

+ βe,m
n

Fs

]}
+ vm(n), 0 ≤ n < Nw − 1.

(4.4)

where m is the window index, Ce,m, αe,m and βe,m are the complex amplitudes,

the chirp rate, and the initial frequency of the eth component/chirp over the mth

window, sm(n) = s(mς + n) and vm(n) = v(mς + n), with ς being the shift between

two consecutive windows in terms of number of samples, and Nw = bTw/Tsc.
Since |Fe(n)| ≤ Fmax, the initial frequency |β| ≤ Fmax, and frequency change in

a period of Tw cannot exceed Fmax, thus the chirp rate α has a range value:

α ∈ [−FmaxFs/Nw, FmaxFs/Nw] . (4.5)

The parameter space of interest is (see Fig. 4.1):

Ω = {(α, β) such that

|α| ≤ FmaxFs/Nw, |β| ≤ Fmax and |αTw + β| ≤ Fmax}.
(4.6)

The discrete dictionary, to be used in CS, is designed by uniformly sampling the

66



Figure 4.1: 2D space Ω for α, β.

2D parameter space Ω. Let I denote the total number of chirp rate values in the

discrete dictionary. For the ith chirp rate value in the dictionary, which we denote as

α̃i, let β̃i,j denote the corresponding possible values for the initial frequency, where

j = 1, ..., Ji. Since the shape of the parameter space Ω is not rectangular, the Ji’s

values are not all equal.

By performing a sparse component analysis within each window, we can track

the time-variations of the chirp parameters of each component (i.e. chirp rate, initial

frequency and complex amplitude), thus estimating arbitrary IFs.

In vector form, the signal over the mth window in (4.4) can be expressed as:

Sm = ΨXm + Vm (4.7)

where Sm = [sm(0), ..., sm(Nw − 1)]T , Vm = [vm(0), ...vm(Nw − 1)]T , Xm is a E-

sparse amplitude vector of length
∑I

i=1 Ji, and the dictionary matrix, Ψ, is defined

as:

Ψ = [Ψ1,Ψ2, ...,ΨI ]

Ψi = [ψψψi,1,ψψψi,2, ...,ψψψi,Ji ]

ψψψi,j|n = exp

(
j2π(α̃i

n2

2F 2
s

+ β̃i,j
n

Fs
)

)
i = 1, 2, ..., I; j = 1, 2, ..., Ji; n = 0, 1, ..., Nw − 1.

(4.8)

Since E < Nw �
∑I

i=1 Ji, solving for Xm in equation (4.7) becomes a sparse recovery
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(or CS) problem, which can be solved by:

X̂m = arg min ‖Xm‖1 s.t. ‖Sm −ΨXm‖2
2 ≤ ε. (4.9)

where ε is the noise level. The solution for (4.9) can be obtained by a greedy algo-

rithm such as the Orthogonal Matching Pursuit (OMP) or the linear programming

[24, 45]. The proposed method is basically using the chirp dictionary, and selecting

the atoms which best match the local structure of the signal, which is similar to the

matching pursuit algorithm. However, sparse reconstruction considers the sparsity

level of the signal, as well as minimum observations required for exact recovery.

In addition to employing different dictionaries, the process of obtaining the final

signal TF signatures is also different for sinusoidal and chirp atoms. In the case of

sinusoidal atoms, or dictionary, the sparse reconstruction algorithm, whether it is

OMP or convex optimization, returns the local frequency content, which is referred

to the center point of the sliding window, similar to the generation of the spectro-

grams. On the other hand, for the case of chirp dictionary, the chirp parameters

returned by the sparse reconstructions describe the segment of the data captured by

the window and, as such, represent the local signal behaviour over the entire window

extent, and not only the center point. Since overlapping windows generate overlap-

ping chirps, some averaging process is in order and must be performed to render

unique answers at each time sample. In essence, for every TF point (t, f), we sum

all the magnitudes of the reconstructed chirps provided by all corresponding sliding

windows which include the time sample, t. In so doing, any chirp anomaly will be

de-emphasized, whereas accurate frequency representations of the underlying signal

will be strengthened. All TF points having a summed magnitude smaller than a

certain threshold are ignored and so will not be considered further.

4.3 FRFT Based Chirp Dictionary Approach

4.3.1 Background

FRFT

Time and frequency represent two fundamental physical variables of signal analysis

and processing. The Fourier transform (FT), which provides a mapping between
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time and frequency domains of a signal, has been used extensively in signal pro-

cessing applications. The FT of a continuous time domain signal s(t) is defined as:

(Fs)(f) = S(f) =

∫
s(t)e−j2πftdt, (4.10)

where F denotes Fourier transform, t and f are continuous time and frequency

variables. The FT can be considered as a reformation of the time domain signal s(t)

with respect to the frequency variable f . Thus FT helps to reveal the frequency

content of the signal s(t). As time and frequency form the orthogonal coordinates

of the TF plane, the FT of a time-domain signal can be viewed as a π/2-radian

counter-clock rotation of the signal plane.

Following this interpretation, the fractional Fourier transform (FRFT) was de-

veloped as a generalization of the FT through an angle parameter φ [46, 47, 48]. For

each value of angle φ, the corresponding FRFT rotates the time domain counter-

clockwise by an angle of φ. Thus, for φ = 0, the FRFT is the identity transform,

which is the time representation of the signal. For φ = π/2, it becomes FT. For

other value of φ, the FRFT provides a representation of the signal with respect to

a fractional variable, say x, of a fractional domain, between the time and frequency

domains. Denote (x, y) the axes of the new reference plane, then the FRFT is illus-

trated in Fig. 4.2, from which we can see the (x, y) axes are the (t, f) axes rotated

counter-clockwise by an angle φ. The FRFT of a time domain signal s(t) is defined

as:

(Fφs)(x) = Sφ(x) =
√

1− j cot(φ)ejπx
2 cot(φ)

∫
s(t)ejπt

2 cot(φ)e−j2πtx csc(φ)dt, φ 6= lπ

s(x), φ = 2lπ

s(−x), φ = (2l + 1)π,

(4.11)

where Fφ is the FRFT operator associated with angle φ, Sφ(x) denotes the fractional

Fourier transformed signal, l is an integer, t is time and x is the fractional variable.

Based on (4.11), the FRFT can also be interpreted as a signal expansion onto a

linear FM (chirp) function having a chirp rate of cot(φ).
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Figure 4.2: Counter-clockwise rotation of the TF plane (t, f), forming a new refer-

ence plane (x, y).

FRFT of a windowed signal

According to the discrete FRFT calculation method in Appendix A, all the co-

ordinates appearing in the definition of the FRFT, Wigner distribution, etc., are

all dimensionless quantities. Assume that the signal is approximately confined to

the time interval [0,∆t] and its frequency representation is confined to the interval

[−∆f/2,∆f/2]. To obtain dimensionless quantities, we introduce a scale parameter

sl =
√

∆t/∆f . Denote a the order of the FRFT, φ = aπ
2
. So, if a = 0, the FRFT is

equivalent to the identity transform. If a = 1, the FRFT is the Fourier transform.

The scaled coordinates for time and frequency are x0 and x1, respectively, which are

expressed below:

x0 = t/sl

x1 = fsl.
(4.12)

Thus, the length of both intervals for x0 and x1 are confined to ∆x which is equal

to
√

∆t∆f . In the newly defined coordinates, the signal can be represented in both

domains with number of samples µ = ∆x2 and samples spaced 1/∆x. Denote µ

as the time-bandwidth product, µ = ∆f∆t. We have two examples to clarify the

scaled coordinates. For a signal of length 1 second or ∆f = Fs Hz and ∆t = 1

second, the time-bandwidth product is µ = Fs and the interval length for x0 ad x1
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is ∆x =
√
Fs. The signal in the time and frequency domains will have Fs samples

with sampling space of (1/
√
Fs). For a windowed signal of length Nw/Fs seconds

(Nw ≤ Fs), ∆f = Fs but ∆t = Nw/Fs ≤ 1. The time-bandwidth product is µ = Nw,

and the interval length for x0 and x1 is ∆x =
√
Nw. The signal will have Nw samples

in both time and frequency domain with sampling space of (1/
√
Nw). Let (xa, ya+1),

or (x, y) in general, be the new coordinate of (x0, x1) after performing the FRFT

with φ = aπ
2
. The new dimensionless coordinates for the fractional domain as well

as the Wigner distribution are plotted in Fig. 4.3.

Figure 4.3: Dimensionless coordinates for the fractional domain.

To calculate the FRFT for a windowed signal, a similar method (described in

Appendix A) is used. However, we have to notice that the FRFT angle φ because this

angle changes with window length, Nw. A chirp with a chirp rate of α = 0.2Fs and

an initial frequency of β = 0.2Fs is used for illustration. We apply the FRFT with

an angle φ = tan−1(α/Fs) onto the signal in two cases: Nw = Fs and Nw = Fs/2.

Our purpose is to rotate the chirp signal into a sinusoid. The result is shown in Fig.

4.4. Fig. 4.4 shows that with the same FRFT angle, the result is not the same for

different window lengths. Fig. 4.5 gives an explanation for this phenomenon. In

Fig. 4.5, it is assumed that ξ = Fs/Nw, thus the scale becomes sl =
√

∆t
∆f

=
√

1
ξFs

.

A windowed signal of any length is confined to ∆x =
√
Nw. According to Fig. 4.5,
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(a) (b)

(c)

Figure 4.4: (a) WVD of the signal (α = 0.2Fs, β = 0.2Fs, N = Fs); (b) WVD of

the FRFT of the signal in (a) with φ = tan−1(α/Fs); (c) WVD of the FRFT of the

windowed signal of (a), the window length is of Nw = Fs/2, and φ = tan−1(α/Fs).
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Figure 4.5: Geometric explanation for changing the FRFT angle with respect to

window length.

the FRFT angle is obtained by:

tanφ =
α
√

1
ξFs

∆x
=
α
√

1
ξFs√
Nw

=
α

Fs
. (4.13)

Now, (4.13) shows that the FRFT calculation method considers all windowed signals

with different window lengths Nw(Nw ≤ Fs) similar to the signal of length one

second. However, the amount of frequency change in this interval is α/ξ, not α.

The accurate the FRFT angle thus will be:

tanφ =

α
ξ

√
1
ξFs√
Nw

=
α

ξFs
=
Nwα

F 2
s

. (4.14)

The relation between the FRFT angle and the window length can also be explained

in time-frequency coordinates as in Fig. 4.6. According to Fig. 4.6, the FRFT angle

φ is obtained by:

tanφ =
α/δf

1/δt

=
αNw

F 2
s

,

(4.15)

where δf = Fs/Nw is the frequency resolution and δt = 1/Fs is the time resolution.
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Figure 4.6: Geometric explanation for changing the FRFT angle with respect to

window length.

Relation between a chirp and a sinusoid

From Fig. 4.7, any chirp in time domain is a sinusoid in the fractional domain. In

particular, a chirp with a chirp rate of α and a sinusoid in the fractional domain

are related by the FRFT with an angle φ = − tan−1 Nwα
F 2
s

. In this part, we will find

the sinusoidal frequency in the fractional domain in relation to the chirp rate α and

initial frequency β of the chirp in the time domain.

According to [49], the discrete FRFT rotates the TF plane (x0, x1) around a

point C, defined by the intersection of the zero-frequency axis with half of the total

duration of the time domain signal. With the new dimensionless coordinates, the

relation is plotted in Fig. 4.7. Call d the sinusoidal frequency in the (x, y) domain,

and then d is expressed as follows:

d = cos(φ)

(
β

√
1

ξFs
+

∆x

2
tanφ

)
= cos(φ)

(
β

√
Nw

Fs
+

√
Nw

2
tanφ

)
=
√
Nw cos(φ)

(
β

Fs
+

tanφ

2

)
.

(4.16)

So, in short, any sinusoid with frequency of d =
√
Nw cos(φ)

(
β
Fs

+ tanφ
2

)
in any
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Figure 4.7: Geometric schematic for calculating the sinusoidal frequency in the

fractional domain.

fractional domain (x, y) could become a chirp with chirp rate α and initial frequency

β by a FRFT with angle φ = − arctan αNw
F 2
s

.

Simplified calculation technique for the FRFT

The discrete FRFT calculation is presented in Appendix A. Although fast compu-

tation of the FRFT of a signal takes not much longer when compared to the Fourier

transform. Still, it involves three steps: x2 Shannon interpolation, convolution and

then decimation, which makes it more complex than the Fourier transform. In this

part, we introduce a simple method for the discrete FRFT calculation.

According to [50], the windowed Fourier transform of the FRFT of a signal

corresponds to the short-time Fourier transform of the signal itself, with the window

being the fractional Fourier transform of the initial one.

(Fφism)(u) = DFT−1
{

DFT[Fφism(n)]
}

= DFT−1
{

DFT
[
sm(n)(Fφhm(n))

]}
= sm(n)(Fφhm(n)),

(4.17)

where sm(n) is the mth windowed signal, hm(n) is the window for the signal sm(n)

and u is the discrete variable for x in the fractional plane. So if we ascertain the

window type, we can build a dictionary of FRFT of the window with different values
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of FRFT angle. The FRFT of any signal is thus simply obtained by projecting the

signal onto the dictionary.

4.3.2 Problem formulation

Similarly, in part 4.2.1, the mth signal segment of s(n) is written as:

sm(n) ≈
E∑
e=1

Ae,m exp

{
j2π

[
αe,m

n2

2F 2
s

+ βe,m
n

Fs

]}
+ v(n), (4.18)

where 0 ≤ n ≤ Nw− 1, Ae,m, αe,m and βe,m are respectively the complex amplitude,

the chirp rate and the initial frequency of the eth chirp over the mth window.

The windowed signal in (4.18) can be interpreted as a sum of harmonic signals

rotated by certain angles. Thus, (4.18) can be rewritten as,

sm(n) ≈
E∑
e=1

Ae,mFφe,m
[
exp(j2πde,m

n

Fs
)

]
+ v(n), (4.19)

where de,m is the frequency value of a sinusoid in the fractional plane which corre-

sponds to the eth chirp in the mth window (see Fig. 4.7). From part (4.3.1), we

have:

de,m =
√
Nw cos(φe,m)

(
βe,m
Fs

+
tanφ

2

)
(4.20)

and

φe,m = arctan
αe,mNw

F 2
s

. (4.21)

From (4.6) and (4.21), the FRFT angle φ in general has to be in the range:

tan−1

(
−αmaxNw

F 2
s

)
≤ φ ≤ tan−1

(
αmaxNw

F 2
s

)
↔ tan−1

(
−1

2

)
≤ φ ≤ tan−1

(
1

2

)
.

(4.22)

From (4.6), we can say the parameter space of interest is:

Ω = (φ, d) such that



|φ| ≤ tan−1
(

1
2

)
,

d =
√
Nw cos(φ)

(
β
Fs

+ tanφ
2

)
,

−Fmax ≤ β ≤ Fmax − |α|Tw α ≥ 0,

−Fmax + |α|Tw ≤ β ≤ Fmax α < 0,

α = F 2
s

Nw
tanφ.

(4.23)
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Because |α|Tw = Fs tanφ, (4.23) is equivalent with:

Ω = (φ, d) such that


|φ| ≤ tan−1

(
1
2

)
,

d =
√
Nw cos(φ)

(
β
Fs

+ tanφ
2

)
,

−Fmax ≤ β ≤ Fmax − Fs| tanφ|, φ ≥ 0

−Fmax + Fs| tanφ| ≤ β ≤ Fmax, φ < 0.

(4.24)

The discrete dictionary, to be used in CS, is designed by uniformly sampling the

2D parameter space Ω. Let I and J denote the total number of FRFT angle

values and the total number of sinusoidal frequencies in the discrete dictionary.

For the ith FRFT angle in the dictionary, which we denote as φ̃i, let d̃i,j denote the

corresponding possible values for the sinusoid frequency, where j = 1, ..., Ji. The

2D space of d and φ is illustrated in Fig. 4.8. We can see that the range of fractional

frequency d is largest when φ = 0, and it is smallest when φ = ±1/2. Although

the region of interest of d and φ is different from that of β and α (see Fig. 4.1),

the dictionary content is similar because any chirp in TF domain can be expressed

by a sinusoid in fractional domain with a certain rotation angle. By performing a

Figure 4.8: 2D space Ω for d and φ.

sparse component analysis within each window, we can track the time variations of

the chirp parameters of each component, thus estimating arbitrary IFs.

In vector form, the signal over the mth window in (4.19) can be expressed as:

Sm = ΨXm + Vm, (4.25)
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where Sm = [sm(0), ..., sm(Nw − 1)]T , Vm = [vm(0), ..., vm(Nw − 1)]T . The FRFT

dictionary Ψ is expressed as follows:

Ψ = [Ψ1,Ψ2, ...,ΨI ]

Ψi = [ψψψi,1,ψψψi,2, ...,ψψψi,J ]

ψψψi,j|n = Fφ̃i(exp(j2πd̃j
n

Fs
))

i = 1, ..., I, j = 1, ..., J, n = 1, ..., Nw.

(4.26)

Since E < Nw �
∑I

i=1 J , then solving for Xm in (4.25) becomes a sparse recovery

(or CS) problem, which can be solved by:

X̂m = arg min ‖Xm‖1 s.t. ‖Sm −ΨXm‖2
2 ≤ ε (4.27)

where ε is the noise level. The solution for (4.27) can be obtained by greedy algo-

rithms such as the OMP or the linear programming [24, 45].

4.4 Chirp Dictionary and Sinusoid Dictionary Com-

parison

The sinusoid dictionary has been examined in the sparse signal reconstruction [3, 27].

Its drawback lies in the adverse window length and sparsity interlocking, namely, the

longer the window, the lower sparsity of the local TF signature due to inclusion of a

larger signal bandwidth. In the case of missing samples, longer windows are required

to obtain a sufficient number of observations for stable recovery. This trade-off be-

tween sparsity and the required number of observations renders the sinusoidal dictio-

nary ineffective for non-stationary signal reconstruction. The chirp dictionary does

not suffer from this trade-off, or at least is less sensitive to it. When using the chirp

dictionary, the sparsity of a signal segment depends only on the number of chirps

contained in that window. It is illustrated in Fig. 4.9. In Fig. 4.9(a), the sparsity

is defined by local frequency sparsity (local frequency sparsity = Local frequency band
Frequency grid

).

Thus, the longer window can result in the larger local bandwidth and reduction in

sparsity. However, in Fig. 4.9(b) the sparsity is 1. Therefore, the chirp dictionary

method has an advantage over the sinusoidal one when long window is necessary.
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(a) (b)

Figure 4.9: Sparsity of a windowed signal when using: (a) Sinusoidal dictionary; (b)

Chirp dictionary.

The chirp dictionary approach, however, may give an inaccurate TF signal re-

construction due to violation of the chirp piece-wise approximation of the signal TF

signature when applying long windows. This problem is mitigated by applying an

averaging over consecutive windows. The reconstructed values at each TF point cor-

responding to an overlapping window are added and a threshold is applied to remove

small values. An accurate IF estimate would, therefore, benefit from persistent high

values for a given TF point across neighbouring windows. In other words, accu-

mulation of values at (ni, fi) strengthens the fi estimate, whereas non-accumulative

values are deemphasized.

Another advantage of the chirp dictionary approach over the sinusoid counterpart

is that it is less sensitive to the picket fence effect. This phenomenon is illustrated

and explained in Fig. 4.10 and Fig. 4.11. When the sinusoid dictionary is used

and the signal frequency is 102.4 Hz, 102.5 Hz, 102.7 Hz, OMP selects either the

atom of 102 Hz, or 103 Hz (see Fig. 4.10). Due to the low correlation between the

signal and the chosen atom, large residual values are evident, and further iterations

are executed, resulting in frequency content at false locations. The chirp dictionary

addresses this inaccuracy (see Fig. 4.11). With the inclusion of the factor α, atoms

with better matching with the signal are selected, which leads to a smaller residue,
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Figure 4.10: Expanded DFT.

80



Figure 4.11: Local TF signature.

forcing the OMP to a halt. If further iterations continue, the result would be

insignificant, close to noise floor.

The picket fence effect can be reduced by increasing the resolution or num-

ber of DFT points. However, an integer number of periods in the data segment

being analyzed is never guaranteed. Moreover, as the radar return is typically a

non-stationary signal with changing frequency over time, the picket fence effect is

inevitable. Therefore, the chirp dictionary approach would outperform its sinusoidal

counterpart most of the time.

4.5 Restricted Isometric Property (RIP) Analysis

of The Chirp Dictionary

In this section, we examine the RIP associated with the chirp dictionary used in

the previous section. Similar to the work in [51], we consider the bounds on the

eigenvalues of the outer product of the dictionary matrix. We show that these

bounds compete with those of Gaussian random dictionaries and as such lead to

the same conditions on sparsity and compressed observations. The analysis follows

closely that of [51] but differs in the final results due to differences in dictionary

structure. Let Q =
∑I

i=1 Ji and Q = {1, ..., Q}. The structure of matrix Ψ is

described in (4.8).
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A matrix Ψ is said to satisfy the RIP of order E if there exists a δE ∈ (0, 1) such

that:

(1− δE)‖xΓ‖2
2 ≤ ‖ΨΓxΓ‖2

2 ≤ (1 + δE)‖xΓ‖2
2, (4.28)

where xΓ is the vector obtained by retaining only the entries in x corresponding to

the columns’ indices in Γ. Because ΨH
Γ ΨΓ is a Hermitian matrix, (4.28) is equiva-

lently given by:

1− δE ≤
‖ΨΓxΓ‖2

2

‖xΓ‖2
2

≤ 1 + δE

⇐⇒ 1− δE ≤
〈
ΨH

Γ ΨΓxΓ,xΓ

〉
‖xΓ‖2

2

≤ 1 + δE

⇐⇒ 1− δE ≤
〈λxΓ,xΓ〉
‖xΓ‖2

2

≤ 1 + δE

⇐⇒ 1− δE ≤ λmin ≤ λmax ≤ 1 + δE,

(4.29)

where λmax, λmin are the maximum and minimum eigenvalues of ΨH
Γ ΨΓ. In order

for the chirp dictionary to satisfy the RIP, the Grammian matrix ΨH
Γ ΨΓ has all of

its eigenvalues in (0, 2). Since the chirp dictionary Ψ is deterministic, the above

requires checking all
(
Q
E

)
possible Γ, which can be a computationally formidable

problem. According to [52], a Gaussian random matrix G ∈ CNwxQ with entries

of zero mean and variance 1/Nw can satisfy δE < 1 with a number of measure-

ments O(E log(Q/E)). Therefore, we will compare the bounds on the eigenvalues of

ΨH
Γ ΨΓ with those of GH

Γ GΓ. In the simulations, Nw = 50, Q = 16512 and 100000

random realizations of subset Γ are used to estimate the eigenvalue statistics. The

simulations are repeated for different cardinalities of subset Γ. Fig. 4.12 shows the

bounds (sample mean + 3 STD for the maximum eigenvalue and sample mean -3

STD for the minimum eigenvalue) for both the chirp and the Gaussian dictionaries.

Fig. 4.12 shows that the bounds for the two dictionaries are very close to each

other. This implies that Ψ can also satisfy condition δE < 1 with high probability

if the minimum number of observations is O(E log(Q/E)).

4.6 Simulation

This section evaluates the performance of sparse reconstruction of the signal TF

signature using a chirp dictionary, especially in the case of missing samples. We

82



Figure 4.12: Eigenvalue bounds of ΨH
Γ ΨΓ and GH

Γ GΓ.

compare the proposed approaches with sinusoid atoms, and the discrete chirp Fourier

transform (DCFT). The DCFT is formed by projecting the signal onto the chirp

dictionary. But it does not calculate the rest for the next projection like OMP. Thus,

IF estimates from the first iteration of OMP are the same as those provided by the

location of highest value in the DCFT. However, sparsity is not known a-priori, and it

is usually larger than one; thus many iterations are needed in the implementation,

which represents an advantage of the chirp dictionary over the DCFT. The two

chirp dictionary approaches are proved to give a similar performance. To access the

accuracy of sparse reconstruction algorithms, concentration level (ζ) is deployed.

This is the ratio of the sum of the pixel magnitudes in the TF domain along the

ground-truth (i.e., the actual IF) and the rest of the TF values. The higher ζ, the

more accurate is the result. This is illustrated in Fig. 4.13.

In the following examples, the signals are sampled at the Nyquist rate with a

sampling frequency Fs = 256Hz and the total signal length is N = 256. The data is

then randomly under-sampled to create the incomplete data to be processed. The

input signal is corrupted by white Gaussian noise, and the signal-to-noise ratio is

SNR = 30 dB. A rectangular window is applied. The resulting image is normalized

and transfered to the energy version for display. As we have discussed in section

4.5, the chirp dictionary can satisfy the RIP condition if the minimum number of

observation is E log(Q/E). In this simulation part, we assume E = 5, but the
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Figure 4.13: Illustration of the concentration level ζ.

maximum actual signal components in the simulation is 3. Thus we need at least 30

measurements per window to obtain reliable results. Depending on the signal type,

different window length is chosen. The average window length is 70, and we often

cut 50% of data, which gives us around 35 samples per window. If we cut more

samples, inaccurate estimations can happen.

4.6.1 Effect of averaging in TFRs obtained by the chirp dic-

tionary approach

The first example illustrates the TF signature obtained by chirp atoms in the two

cases with and without using the averaging method. The input signal is expressed

as:

s(n) = exp

{
j

[
(0.15Fs) cos(2π

n

Fs
+ π) + 2π(0.25Fs)

n

Fs

]}
+ exp

{
j2π

[
(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]}
+ v(n),

(4.30)

where n = 0, 1, ..., N−1. We randomly discard 50% of the data. The window length

is set to Nw = 50. The simulation results are shown in Fig. 4.14. The combination

84



(a) (b)

Figure 4.14: Local reconstruction of a two-component signal in (4.30) obtained by:

(a) Chirp atoms without averaging; (b) Chirp atoms, using averaging.

of the chirp dictionary and the averaging method provides more accurate local signal

frequency structure with ζ = 31.6678, compared with ζ = 9.0554 without averaging.

So, from now on, we apply averaging on TFRs obtained by the chirp atom method.

4.6.2 Comparisons between the chirp and the sinusoid dic-

tionary approaches

Relationship between the sparsity and the window length

In this example, the signal consists of two closely-parallel chirps. Its discrete-time

version is expressed as:

s(n) = exp

{
j2π[(0.1Fs)

n

N
+ (0.3Fs)

n2

2N2
]

}
+ exp

{
j2π[(0.13Fs)

n

N
+ (0.3Fs)

n2

2N2
]

}
+ v(n)

(4.31)

where n = 0, 1, ..., N − 1. To capture enough data to resolve the two chirps, the

window size is set to a large value, Nw = 90. The sparsity level is assumed to be

E = 5. The result in Fig. 4.15(a) shows the failure of local reconstruction using the

sinusoidal dictionary due to lack of sparsity in frequency with ζ = 3.5. In contrast,
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when the chirp dictionary is used, the sparsity remains constant, irrespective of the

window size Nw. The two chirps are clearly resolved as evident from Fig. 4.15(b).

The concentration level is ζ =∞.

(a) (b)

Figure 4.15: Local reconstruction of a two-component signal in (4.31) when 50 %

of data is missing using (a) Chirp atoms; (b) Sinusoid atoms.

Picket fence effect

In the next example, we show that the chirp approach outperforms its sinusoidal

dictionary counterpart even for sinusoid signals. For off-bin-center sine waves and

∆f = 1Hz, the chirp approach obtains more accurate IF estimates, as it can alle-

viate the picket fence effect. The simulated signal is described in Table. 4.1. The

window length is Nw = 50, and a rectangular window is deployed for both dictionary

approaches. 50% of the signal is randomly shorted. When a full data is available,

no noise, and the signals’ periods are both integer, both methods provide perfect

frequency localization with ζ = ∞, as illustrated in Fig. 4.16(a,b). The chirp

dictionary shows clear advantage over its sinusoidal counterpart with added noise

and data missing. The corresponding performance measurements are ζ = 180 and

ζ = 41, respectively, and the results are shown in Fig. 4.16(c,d). With a non-integer

period signal, the sinusoid dictionary method significantly suffers, showing a noisy
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Table 4.1: Signal s(n)

Signal s(n) f1 f2

exp
{
j2π

[
f1

n
Fs

+ f2
n
Fs

]}
100 25

exp
{
j2π

[
f1

n
Fs

+ f2
n
Fs

]}
102.4 25.6

time-frequency signature as depicted in Fig. 4.16(f) in contrast with the result of

the chirp dictionary shown in Fig. 4.16(e). The values of ζ of chirp and sinusoid

dictionary approaches are ζ = 143 and ζ = 5, respectively. Higher resolution or

smaller frequency grid helps mitigate the picket fence effect. With ∆f = 0.5 Hz,

the same signal expressed in Table. 4.1, SNR = 30dB, and 50% data missing, the

concentration level is ζ = 28 compared with ζ = 5 when ∆f = 1 Hz. The result

is shown in Fig. 4.17. As the signal frequency value is unlikely to fall exactly in a

frequency bin, the chirp dictionary provides more reliable IF estimations.

4.6.3 Comparisons between the chirp dictionary approach

and the DCFT

This simulation compares the accuracy of a local TF signature when the chirp dic-

tionary and DCFT are used. Two input signals s1(n) and s2(n) are employed,

s1(n) = exp

{
j2π

[
(0.4Fs)

n

N
− (0.3Fs)

n2

2N2

]}
+ v(n)

s2(n) = exp
{
j
[
(0.15Fs) cos(2π

n

N
) + 2π(0.25Fs)

n

N

]}
+ exp

{
j
[
(0.15Fs) cos(2π

n

N
+ π) + 2π(0.25Fs)

n

N

]}
+ exp

{
j2π

[
(0.25Fs)

n

N

]}
+ v(n),

(4.32)

where n = 0, 1, ..., N−1. The window size is Nw = 50 and a rectangular window and

averaging method are utilized in both methods. The results are shown in Fig. 4.18.

When the input signal is a mono-component s1(n) and assuming that the signal
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Sparse reconstruction of bin-center sine waves (Table 4.1) using chirp

and sinusoid dictionary approaches, ∆f = 1Hz: (a,b) Full data of integer period

signal; (c,d) Integer period signal with 50 % samples missing; (e,f) Non-integer

period signal with 50 % samples missing.
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Figure 4.17: Sparse reconstruction of off-bin-center waves using sinusoid dictionary,

and ∆f = 0.5 Hz.

sparsity is known, then the concentration levels of the two approach become ζ =∞.

The chirp approach provides better TF signature in the case of a multi-component

input s2(n) with ζ = 62, compared with ζ = 1.5 resulting from the DCFT.

4.6.4 Comparisons among the two chirp dictionary approaches,

the sinusoidal dictionary and the DCFT

The first example displays the performance of the four methods when 50% data are

missing randomly. The window length is set to Nw = 50. The signal is expressed

as:

s(n) = exp

{
j2π[(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]

}
+

exp

{
j2π[(0.1Fs)

n

Fs
]

}
+ v(n),

(4.33)

with n = 0, 1, ..., N − 1. The result is shown in Fig. 4.19.

It can be seen that the two chirp approaches give pretty similar TF estimations,

with the concentration level being around 35. They successfully resolve the TF

signature under noise and incomplete data. Fig. 4.19(a) shows the failure of local

reconstruction using the sinusoid dictionary due to lack of sparsity in frequency and

the picket fence effect. The concentration level is ζ = 1.73. The DCFT gives a

little bit better result with ζ = 2.87. Notice that when DCFT is applied, in some
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(a) (b)

(c) (d)

Figure 4.18: TFRs of s1(n) and s2(n) in (4.32) with: (a)(c) DCFT; (b)(d) Chirp

atoms.
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(a) (b)

(c) (d)

Figure 4.19: TFR of signal in (4.33) with 50% data missing, Nw = 50 obtained by:

(a) Sinusoidal dictionary; (b) DCFT; (c) Chirp dictionary; (d) FRFT based chirp

dictionary.
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windowed segments, only one component is detected. It is because the signal is only

projected onto the dictionary one time, and only the component with the highest

coefficient is chosen.

The third example displays a signal composed of three components, expressed

as follows:

s(n) = exp

{
j(0.15Fs) cos(2π

n

Fs
+ π) + j2π(0.25Fs)

n

Fs

}
+ exp

{
j(0.15Fs) cos(2π

n

Fs
) + j2π(0.25Fs)

n

Fs

}
+ exp

{
j2π[(0.25Fs)

n

Fs
]

}
+ v(n),

(4.34)

where n = 0, 1, ..., N − 1. Similarly, 50% data is randomly removed. The window

length is Nw = 50. The results are shown in Fig. 4.20. Similar to other examples, the

sinusoidal dictionary method fails to give an accurate TF estimation with ζ = 1.658.

This example also shows the advantage of the chirp approach over the DCFT when

there are multiple components. They obtain a ζ of approximately 19, compared

with ζ = 1.619 for the DCFT.

The last simulation uses the data from human gait radar returns. The data has

20000 samples, which is first sampled at a Nyquist rate Fs = 1000Hz, and then

randomly thinned by discarding 50% of data samples. The window length is set to

Nw = 128. A rectangular window is applied for the discrete chirp transform and

the chirp dictionary, whereas a Hanning window is used for the approach of sinusoid

atoms. The result in Fig. 4.21 shows that the chirp dictionary obtains the best

results representing the torso and limb’s micro-Doppler.

4.7 Conclusion

The accurate piece-wise chirp approximations to the TF signature of many Doppler

and micro-Doppler signals motivate the use of the chirp dictionary for sparse recon-

struction of the signal’s local frequency structure under full and incomplete data.

This chapter has presented two approaches to build the chirp dictionary. The first

one simply includes all chirps with possible values of chirp rate and initial frequency.

92



(a) (b)

(c) (d)

Figure 4.20: TFR of signal in (4.34) with 50% data missing, Nw = 50 obtained by:

(a) Sinusoidal dictionary; (b) DCFT; (c) Chirp dictionary; (d) FRFT based chirp

dictionary.
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(a) (b)

(c) (d)

Figure 4.21: Local reconstruction of a real signal returned from a human with

one arm when 50% data is missing: (a) Sinusoid dictionary; (b) Discrete Chirp

transform; (c) Chirp dictionary; (d) FRFT based Chirp dictionary.
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The second one is also composed of all possible chirps which are formed from sinu-

soids in the fractional domain with all eligible values of FRFT angles. The chirp

dictionary formed by each way are shown similar performances. We have exam-

ined the chirp and sinusoidal dictionary performance over synthetic and real data

in the case of incomplete observations. Although both methods are based on the

reconstruction of data within short overlapping time intervals defined by a sliding

window, the chirp dictionary outperforms the sinusoidal dictionary. The chirp dic-

tionary approach can relax the drawbacks of its sinusoid counterpart, which are the

picket fence effect, and converse requests on the number of measurements for ex-

act recovery, and sparsity. Therefore, it provides more accurate approximations to

the TF signature of non-stationary signals. In comparison with the discrete chirp

Fourier transform, the chirp dictionary method also provides superior performance

when the input is a multiple-component signal.
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Chapter 5

Simplified Chirp Dictionary

5.1 Introduction

5.1.1 Motivation

Non-stationary signals are typically deployed to characterize speech, biomedical sig-

nals, sonar and radar returns (to name but a few) [32, 34, 35]. These signals’ fre-

quency can be constant, or linear/non-linear functions of time. In radar applications,

they are commonly referred to as Doppler and micro-Doppler signals [36, 53, 54, 55].

Being able to analyze these Doppler and micro-Doppler frequencies correctly is ex-

tremely critical in the radar field [33, 37, 56, 57, 58]. For example, we can measure

the velocity and direction of a bulk motion or the vibration of targets’ structures by

examining the frequency shifts or frequency modulations on the reflected signals.

There have been numerous methods of TFD analysis proposed. The short-time

Fourier transform is the simplest linear TF signal representation [5, 47]. The TF

estimation is obtained by computing the Fourier transform over a sliding window in

time. The square modulus of the short-time Fourier transform is the spectrogram.

The major drawback of the spectrogram is that its efficiency depends on the em-

ployed window size and shape. Improvement in resolution can be achieved by using

WVD, which is obtained by calculating the Fourier transform of the bilinear product

of the signal. WVD is ideal for a chirp because its bilinear product is a sinusoid.

However, in the case of multiple-component signals, WVD suffers from cross-terms

appearing between different components. In order to suppress the cross-terms in
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the WVD, a class of reduced interference distribution, which belongs to Cohen’s

class, has been used. The TFD can also be obtained by the use of matching pursuit

algorithm [40, 41]. This technique decomposes any signal into a linear expansion

of waveforms that are selected from a redundant dictionary of functions. These

waveforms are chosen in order to best match the signal structures. These methods,

however, are not designed for compressed data. Thus, they deliver unreliable TFDs

in the case of missing data.

The exponential growth of data demands new ways of collecting, representing

and analyzing samples. In recent years, compressive sensing (CS), which helps deal

with few observations, has attracted widespread interest. Incomplete samples, or

random sampling in the field of radar can frequently happen due to range ambi-

guity, discarding noisy measurements, hardware simplification, sampling frequency

limitations, or co-existence of various wireless services with active or passive sensing

models[1, 59, 60]. Thus, a TFD which is robust with missing data is of significance.

Consider the following linear model,

s = Ψx, (5.1)

where Ψ maps the Nyquistly sampled data given by vector x into compressed mea-

surements expressed by vector s. Since (5.1) is an under-determined problem, addi-

tional information is necessary for finding a solution. The extra condition to obtain

an accurate answer for (5.1) is that x is sparse. Fortunately, non-stationary signals

are sparse in TF domain as seen in Fig. 5.1. Thus, CS has been used for obtaining

good estimation of a signal’s instantaneous frequency in the case of incomplete data

[2, 3, 27, 28, 44].

5.1.2 Related work

Several approaches have been proposed to achieve sparse TFRs [2, 27, 28, 30, 31,

44, 61, 62, 63, 64, 65, 66, 67]. Generally, we can divide them into two categories:

parametric and non-parametric methods. The former [30, 31] requires knowledge

of the signal’s structure. It only works well when there is a good match between

the assumed and the actual signal characteristics. Non-parametric methods can be

applied to any signal’s structures. The work in [2] is an example. The compressed
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(a) (b)

Figure 5.1: Ideal TFDs for: (a) Single-component signal; (b) Multiple-component

signal.

measurements are defined in the ambiguity domain through the application of an

appropriate mask. This approach does not consider the case of random or missing

samples in time. Due to incomplete data, the signal ambiguity domain is contami-

nated by noise-like artifacts. Thus, any mask in this domain becomes unreliable.

To obtain reliable TFRs in the case of incomple data, a straightforward method

is sparse reconstruction from windowed data in the time domain, deploying a partial

Fourier basis [3]. This is similar to the spectrogram but compressive techniques are

used and thus better results are attained. However, this method suffers from the

trade-off between necessary measurements for accurate recovery and sparsity when

considering the window size, and also the picket fence effect when there is a non-

integer period in the analyzed data segments. Thus, another measurement basis is

required to obtain more stable and reliable results.

In many situations, the frequency law of non-stationary signal segments can be

represented as a weighted sum of piece-wise linear chirps, in which most of the

parameter coefficients are zero. In this respect, they are sparse in the joint time-

frequency domain. Thus, the segments’ time-frequency signature can be recovered

by sparse reconstruction with the measurement dictionary being chirp atoms [13,

68]. Greedy algorithms or convex optimization techniques are used to obtain the
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sparsest chirp combination that best describes the windowed signals. Compared

with the sinusoidal dictionary method, a better performance is obtained under both

full and limited data because signals are more sparse in this representation, and

longer windows can be employed without sensible reduction in sparsity. It is also

not susceptible to the picket fence effect.

The chirp approach, nevertheless, deploys a very large dimension measurement

dictionary. Since there are two parameters to be estimated (i.e. the chirp rate and

the initial frequency), the dictionary dimension can be equal to the square of the

dimension when using the sinusoid atom. This very large atom set leads to a much

heavier computation burden and a longer calculation time. Therefore, in order

to obtain good TF estimation at low computational complexity, chirp dictionary

simplification methods are needed.

5.1.3 Chapter contribution

In this chapter, we introduce two approaches which reduce the chirp dictionary

dimension, thus lower the calculation load. In the first approach, we estimate the

chirp rate through the DTFT of the bilinear product at a certain time lag. The

initial frequency is solved in the time domain, with a lower dimensional dictionary

than the computationally complex of the full chirp atom. This approach allows us

to obtain a good estimation of the TF features of incomplete and full-data signals

at lower computational complexity. In the second approach, the fractional Fourier

transform (FRFT) is used to obtain an initial frequency for each chirp-rate. This

leads to a much simpler chirp atom set. As the FRFT can be executed with similar

computational complexity as the Fourier transform, the advantage of this approach

is that we get a good performance but with an improved computational efficiency.

5.1.4 Chapter outline

The paper is organized as follows. Section 5.2 discusses the computational require-

ment of the full chirp dictionary approach. The first simplified chirp atom method

is then introduced in section 5.3. This part discusses CS and calculating the IAF for

the whole signal and for the windowed signal. The algorithm which gives estimation

of chirp rate in IAF and builds the compact chirp dictionary is introduced after
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that. Next, we focus on the RIP associated with the simplified chirp dictionary and

provide a lower bound on the number of observations for exact recovery. Simula-

tions with synthetic and real signals will end this section. Section 5.4 talks about

the second method for simplifying the chirp dictionary. It starts with the concept of

the FRFT, which is followed by a description of the simplified chirp dictionary using

the FRFT. The RIP associated with the simplified chirp atom using the FRFT is

also considered. The section ends with a simulation involving multiple signals. The

conclusions are given in section 5.5.

5.2 Calculation Load in The Full Chirp Dictio-

nary Approach

In the full chirp dictionary approach, a discrete signal segment of length Nw is

approximated as a sum of E (E ≥ 1) chirps. This means that we have to estimate

the chirp rates (α) and the initial frequencies (β) of the E chirps in each data

segment. This task is carried out by CS techniques with a full chirp atom ΨF . The

parameter space of interest is [68], [13]:

Ω = {(α, β) such that

|α| ≤ FmaxFs/Nw and |αNw/Fs + β| ≤ Fmax},
(5.2)

where Fmax is the maximum frequency of the signal and Fs = 2Fmax is the sampling

frequency.

Now (5.2) can be rewritten as:

Ω = {(α, β) such that

|α| ≤ FmaxFs/Nw

− Fmax ≤ β ≤ Fmax − |α|Tw if α ≥ 0

− Fmax + |α|Tw ≤ β ≤ Fmax if α < 0

}.

(5.3)

From (5.3), we can see that range of the values for initial frequency β changes with

the value of chirp rate α. The matrix ΨF is designed by uniformly sampling the

2D parameter space Ω. Let I denote the total number of chirp rate values in the
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discrete dictionary ΨF . For the ith chirp rate value in the dictionary, which we

denote as α̃i, let β̃i,j denote the corresponding possible values for initial frequency,

where j = 1, 2, ..., Ji. Note that the “˜” refers to “dictionary values”. The full chirp

dictionary ΨF is defined as [68], [13]:

ΨF = [Ψ1,Ψ2, ...,ΨI ]

Ψi = [ψψψi,1,ψψψi,2, ...,ψψψi,Ji ]

ψψψi,j|n = exp

(
j2π(α̃i

n2

2F 2
s

+ β̃i,j
n

Fs
)

)
i = 1, ..., I, j = 1, ..., Ji, n = 0, 1, ..., Nw − 1.

(5.4)

From (5.4), it can be seen that for each value of αi, there are Ji columns in the

dictionary corresponding to Ji values of initial frequency.

Assume that the number of chirp rate values is I = Fs + 1 (including ‘0’ value)

and initial frequency resolution is ∆β̃ = 1. Now (5.3) shows the α̃ ranges inside

[−FmaxFs/Nw : FmaxFs/Nw], or [−Fmax/Tw : Fmax/Tw] (Nw = TsFs). We uniformly

divide this range into I = Fs + 1 discrete values of α̃. The chirp rate resolution

becomes ∆α̃ = 1/Tw. The discrete parameter space used in the chirp dictionary

becomes:

Ω = {(α̃, β̃) such that

− Fmax

Tw
≤ α̃ ≤ −Fmax

Tw
+ Fs∆α̃

− Fmax ≤ β̃ ≤ bFmax − |α|Twc if α ≥ 0

b−Fmax + |α|Twc ≤ β̃ ≤ Fmax if α < 0

}.

(5.5)

As ∆β̃ = 1, for each value of α̃, there are bFs−|α̃|Tw+1c values of β̃. The dimension
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of the chirp dictionary Q is expressed as:

Q = b
−Fmax

Tw
+Fs∆α̃∑

α̃=−Fmax
Tw

(Fs − Tw|α̃|+ 1)c

= bFs(Fs + 1) + (Fs + 1)− Tw
Fs∑
a=0

∣∣∣∣−Fmax

Tw
+ a∆α̃

∣∣∣∣c
= bFs(Fs + 1) + (Fs + 1)− Tw

Fmax∑
a=1

|a∆α̃|c

= bFs(Fs + 1) + (Fs + 1)− 2Tw

(Fs/2)∑
a=1

a∆α̃c

= bFs(Fs + 1) + (Fs + 1)− 2
Fmax(Fmax + 1)

2
c

= b(Fs + 1)2 − Fs
2

(
Fs
2

+ 1)c

= b3
4

(Fs + 1)2 +
1

4
c

= b3
4
I2 +

1

4
c,

(5.6)

where b . c is the “floor operator”. As the dictionary dimension is b3
4
I2 + 1

4
c, in each

segment, Eb3
4
I2 + 1

4
c projections are implemented. Furthermore, as sliding windows

are used, the chirp method faces a large computational burden, O
(
E(3

4
I2 + 1

4
)
)
.

With the same manner of operation, the sinusoidal dictionary method only requires

O(EI) projections (E times of DFT) in each windowed signal, which gives it a big

advantage over its chirp counterpart when large amounts of data are concerned.

5.3 Simplify The Full Chirp Dictionary by Esti-

mating The Chirp-Rate in The IAF Domain

5.3.1 Background

This approach reduces the dictionary dimension by estimating the chirp-rate of a

chirp component in the signal segment first. The chirp-rate is approximated in IAF

domain. Then, the dictionary is built with only the estimated value of the chirp-rate
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and the corresponding values of initial frequency. Compressive sensing techniques

are used to find the chirp components in the windowed signal. Therefore, this

part will give an background about compressive sensing, some chirp-rate estimation

methods and the IAF of a windowed signal.

Compressive sensing and sparse reconstruction

For a brief review of the principle underlying CS, consider a signal vector x ∈ CQ,

which is E sparse (E � Q). Only M(E < M � Q) linear measurements of x are

recorded, which means:

y = Ψx + εεε, (5.7)

where y ∈ CM is measurement vector, Ψ ∈ CMxQ is a known dictionary matrix , εεε

is Gaussian noise vector.

Since Ψ is a ‘fat’ matrix, solving x given y is ill posed with an infinite number

of solutions. However, because x is sparse, it can be uniquely recovered with a high

probability by l1 convex optimization or iterative greedy algorithms such as OMP

provided that the matrix Ψ satisfies certain restricted isometry properties and the

dimension M of measurement vector y is at least of the order of E log(Q/E) [69].

The l1 optimization is as follows [45].

min
x

‖x‖1

subject to ‖y −Ψx‖2
2 ≤ ε0,

(5.8)

where ‖‖1 denotes l1 norm, ‖‖2 denotes Euclidean l2 norm, ε0 is a regularizer.

Chirp-rate estimation methods

One of the accurate chirp-rate estimation is based on the fractional Fourier transform

[70, 71, 72]. In the fractional domain, there is an optimum transform angle associated

with the chirp rate, which concentrates the energy and keeps the signal compact.

At this angle, the signal is transformed to an impulse with a maximum magnitude.

Therefore, searching for the maximum magnitude in the FrFT domains allows us

to estimate the chirp rate. An improved technique to obtain fast and accurate in

noisy environment is proposed in [73], which utilizes the fractional Fourier transform

and the golden section search algorithm (GSS). Using the GSS accelerates the search
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process by computing the fractional Fourier transform at only certain limited angles.

Error tolerance of the algorithm determines accuracy of the result.

Another method to estimate the local chirp-rate is based on STFT of a signal

segment using a differentiable analysis window [74]. It differentiates the STFT over

time, and rewrites the results in two parts. The chirp-rate then can be expressed by

these two parts. It is called one partial derivative estimation. To get more accurate

result, it also proposes two partial derivative estimator.

In this chapter, we introduce a method which estimates the chirp-rate of a chirp

component in a windowed signal in IAF domain.

IAF of a windowed signal

Consider a discrete signal s(n), n = 0, 1, ..., N − 1. Let N = bT/Tsc, with T and Ts

being total observation time and sampling period, respectively. The IAF of s(n) is

defined as:

Rss(b, n) = s(n+ b)s∗(n− b), (5.9)

where b is the time lag, b = b−N/2c...bN/2−1c. As 0 ≤ n±b ≤ N−1, for a certain

value of time lag, the range of value for time n is:

|b| ≤ n ≤ N − 1− |b|. (5.10)

With a signal consisting of two parallel chirps and sampling frequency Fs = 128, its

IAF is shown in Fig. 5.2.

IAF of a windowed signal of length Nw

The IAF of a windowed signal can be obtained by calculating (5.9) with N = Nw.

If we need the IAF of every sliding window, this is quite time-consuming. The much

simpler way to obtain the IAF of all windowed signals is through extraction from

the IAF of the full data. Call sm(n) the mth windowed signal of s(n). The range

of n is n1 ≤ n|sm ≤ n1 + Nw − 1, where n1 and Nw are the starting point of the

signal segment and the window length, respectively. Parameters n1, Nw and b need

to satisfy the following conditions:
0 ≤ n1 ≤ N − 1−Nw

1 ≤ Nw ≤ N

b−Nw/2c ≤ b ≤ bNw/2− 1c.
(5.11)
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Figure 5.2: IAF of two parallel chirps.

As n1 ≤ n± b ≤ n1 +Nw − 1, a possible value for time n is:

|b|+ n1 ≤ n ≤ n1 +Nw − 1− |b|. (5.12)

(5.11) and (5.12) show that the range of time lag b and time n when calculating

the IAF of a segment reside in those when calculating the IAF of the whole signal.

Thus, IAF Rsmsm(b, n) of a windowed signal sm(n) is simply a part of the IAF of

the whole signal Rss(b, n). This is illustrated in Fig. 5.3 with the signal used in Fig.

5.2.

5.3.2 Simplified chirp dictionary approach

Chirp rate estimation

Consider an arbitrary continuous signal sc(t), which consists of E ≥ 1 components:

sc(t) =
E∑
e=1

Ae(t) exp(jφe(t)) + vc(t), (5.13)

where 0 ≤ t ≤ T , Ae(t) and φe(t) are the time-varying amplitude and phase of the

eth component, and vc(t) is white Gaussian noise. Sampling the continuous signal

at the Nyquist rate Fs = 2Fmax, where Fmax is the maximum frequency of the signal
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(a) (b)

(c)

Figure 5.3: IAF of: (a) A windowed signal Nw = 32, n1 = 0; (b) A windowed signal

Nw = 64, n1 = 0; (c) Three windowed signals (Nw = 64, n1 = 0), (Nw = 64, n1 = 32),

(Nw = 64, n1 = 64) of the signal used in Fig. 5.2.
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sc(t), we have:

s(n) =
E∑
e=1

Ae(nTs) exp(jφe(nTs)) + v(nTs), (5.14)

where n = 0, 1, ..., bT/Tsc, and Ts = 1/Fs.

Similar to the full chirp atom approach, in this method, observations inside

a short-time window are also approximated by the sum of piece-wise chirps. So

breaking s(n) into Nw-length blocks {sm(n)}Nw−1
n=0 , the mth block is calculated as:

sm(n− ς(m− 1)) = s(n)h(n− ς(m− 1)), (5.15)

where n = ς(m−1), ς(m−1)+1, ..., ς(m−1)+Nw−1, 1 ≤ ς ≤ Nw is the shift between

two consecutive windows, m = 1, 2, ... is the window index, and h(n) is a rectangular

window which is non-zero only for 0 ≤ n ≤ Nw − 1. Then the chirp-approximated

mth signal segment of s(n) is written as:

sm(n) ≈
E∑
e=1

Ce,m exp

{
j2π

[
αe,m

n2

2F 2
s

+ βe,m
n

Fs

]}

+ vm(n) =
E∑
e=1

se,m + vm(n),

(5.16)

where 0 ≤ n ≤ Nw−1, Ce,m, αe,m and βe,m are respectively the complex amplitude,

the chirp rate, and the initial frequency of the eth chirp over the mth window. Now

se,m is the chirp with parameters specified by Ce,m, αe,m and βe,m. The instantaneous

autocorrelation function (IAF) of sm(n) is expressed as:

Rsmsm(b, n) = sm(n+ b)s∗m(n− b)

=
E∑
e=1

se,m(n+ b)s∗e,m(n− b)

+
E∑

i,j=1
i 6=j

si,m(n+ b)s∗j,m(n− b)

=
E∑
e=1

ATe,m(b,m) +

E(E−1)∑
g=1

CTg,m(b,m),

(5.17)
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where b is time lag, ATe,m and CTg,m contain auto-terms and cross-terms, respec-

tively, and are expressed as:

ATe,m(b, n) = exp

(
j2π

2αe,mb

Fs

n

Fs

)
exp

(
j2π

2βe,mb

Fs

)
CTg,m(b, n) = exp

(
j2π(αi,m − αj,m)

n2

2F 2
s

)
exp

(
j2π

(αi,m + αj,m)b

Fs

n

Fs

)
exp

(
j2π(βi,m − βj,m)

n

Fs

)
exp

{
j2π

[
(αi,m − αj,m)b2

2F 2
s

+
(βi,m + βj,m)b

2F 2
s

]}
,

(5.18)

where i, j ∈ [1, E], i 6= j, g ∈ [1, E(E − 1)]. Let ATe,m(k)|b=b1 , and CTe,m(k)b=b1 be

the DTFT of ATe,m(b, n) and CTg,m(b, n) at b = b1, then:

|ATe,m(k)|b=b1| = δ

(
k − 2αe,m

b1

Fs

)
|CTg,m(k)|b=b1| = W (k) ∗ δ

(
k − b1(αi,m + αj,m)

Fs

)
∗

δ (k − (βi,m − βj,m)) ,

(5.19)

where W (k) is the DTFT of exp
(
j2π(αi,m − αj,m) n2

(2F 2
s )

)
. Now (5.19) shows that

the spectral representation of the auto-terms are delta functions whose locations are

determined by the chirp rates. So if kATe,m corresponds to the frequency location of

the spectrum of the auto-terms then the chirp rates are approximated by:

α̂e,m =
kATe,mFs

2b1

. (5.20)

In addition, (5.19) shows that any cross-term is also a chirp located between two

auto-term components. Notice that we should choose a small value of b1(b1 6= 0) to

get more data in the IAF domain.

Simplified chirp dictionary algorithm

In the vector form, the signal over the mth window in (5.16) can be expressed as:

Sm = ΨcXm + Vm, (5.21)
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where Sm = [sm(0), ..., sm(Nw − 1)]T , Vm = [vm(0), ..., vm(Nw − 1)]T and Xm has

E non-zero components. The compact dictionary matrix, Ψc, is designed for each

signal component inside the windowed data. The chirp rate value in Ψc is estimated

by the algorithm in part 5.3.2, and is denoted as α̂. Let β̃j denote the correspond-

ing possible values for initial frequency, where j = 1, 2, ..., J . The compact chirp

dictionary ΨΨΨc is defined as:

ΨΨΨc = [ψψψ1,ψψψ2, ...,ψψψJ ]

ψψψj|n = exp

(
j2π(α̂

n2

2F 2
s

+ β̃j
n

Fs
)

)
j = 1, ..., J ; n = 0, ..., Nw − 1.

(5.22)

As α̂ has only one value, the compact chirp dictionary only has J columns, where

from Ω in (5.2), J = bFs − |α̂|Tw + 1c. Assume that J = Fs + 1 (|α̂| = 0), then the

dimension of the compact chirp atom now becomes:

dΨc = J = Fs + 1. (5.23)

As the preprocessing takes E times DFT or EFs projection, we can say the number

of calculations when using the simplified chirp dictionary is about O(E(2Fs + 1)).

Since E < Nw � J , then Xm is highly sparse and solving for Xm in equation (5.21)

becomes a sparse recovery (or CS) problem. The algorithm of the simplified chirp

dictionary used in this paper is based on Orthogonal Matching Pursuit and has

following steps:

INPUT:

• Signal s(n) of length N .

• Signal vector S = [s(0), ..., s(N − 1)]T .

• Windowed signal vector Sm = S((m−1)ς+n), 0 ≤ n ≤ Nw−1. Initialize

m = 1.

• Lag value b = b1 (Choose b1 close to 0)

OUTPUT:

• Matrix of selected chirp Φ.
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PROCEDURE:

1. Initialize the residual r0 = Sm, matrix of selected chirps Φi = ∅, and the

iteration counter i = 1.

2. Calculate IAF at b = b1 ( Rriri(b, n)|b=b1).

3. Calculate DTFT of Rriri . Estimate the chirp rate by (5.20) and build the

compact chirp dictionary Ψc by (5.22).

4. Find the index λi, λi = arg maxj=1,...,J | < ri−1,ψψψj > |.

5. Store the selected chirp ψψψλi , Φi = [Φi−1ψλi
].

6. Solve a least square problem to find the residue after subtracting the

chirp

xi = arg min
x
‖Φix− Sm‖2

ri = Sm −Φixi.

7. Increment i, and return to step 2 if i < E or ‖ri‖2 > 0.05‖Sm‖2. The

magnitude of the selected chirps is stored in xi. If i = E or‖ri‖2 ≤
0.05‖Sm‖2, move to the next windowed signal, increment m, and return

to step 1.

There is another way to estimate the initial frequencies after the chirp rates are

verified. According to (5.18), the initial frequencies can be approximated by the

magnitude of the auto-terms’ frequencies. However, this magnitude can be easily

affected by noise, and thus its results are unreliable. The drawback of the simplified

chirp dictionary method is that it does not perform well if too much data (over 50%

of observations) is absent. This is because the missing samples in the IAF at any

time lag can be double the number of missing samples for s(n) in the time domain.

5.3.3 Restricted isometry properties (RIP) analysis of the

chirp dictionary

In this section, we examine the RIP associated with chirp and simplified the chirp

dictionary. Let Ψ ∈ CNwxQ be the chirp dictionary in general. Similar to the work

in [51], we consider the boundaries of the eigenvalues of Grammian matrix. We show
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that these bounds compete with those of the Gaussian random dictionary, and as

such lead to the same conditions on sparsity and compressed observations.

Consider the under-determined problem mentioned in (5.21) with infinite solu-

tions. Denote the set of column indices by Q = {1, ..., Q}. It has been shown in

[45] that if Ψ satisfies a certain RIP, then x can be recovered uniquely using an l1

minimization provided that the number of measurements is O(E log(Q/E)). Given

any set Γ of column indices (Γ ⊂ Q, card(Γ) ≤ E), we denote ΨΓ as the matrix

composed of these columns. A matrix Ψ is said to satisfy the RIP of order E if

there exists a δE ∈ (0, 1) such that:

(1− δE)‖xΓ‖2
2 ≤ ‖ΨΓxΓ‖2

2 ≤ (1 + δE)‖xΓ‖2
2, (5.24)

where xΓ is the vector obtained by retaining only the entries in x corresponding to

the columns’ indices in Γ. Because ΨH
Γ ΨΓ is a Hermitian matrix, (5.24) is rewritten

as:

1− δE ≤ λmin ≤ λmax ≤ 1 + δE (5.25)

In order for the chirp dictionary to satisfy RIP, the Grammian matrix ΨH
Γ ΨΓ must

have all of its eigenvalues in (0, 2). Since the chirp dictionary Ψ is deterministic,

the above condition requires a check of all
(
Q
E

)
possible set Γ, which is a formidable

problem. According to [52], a Gaussian random matrix G ∈ CNwxQ whose column’s

entries have zero mean, and variance 1/Nw can satisfy δE < 1 with a minimum

number of measurements equal to O(E log(Q/E)). Therefore, we will compare the

bounds on the eigenvalue of ΨH
Γ ΨΓ with GH

Γ GΓ.

In the simulation, we consider the simplified chirp dictionary with Nw = 50, Q =

129, and random Gaussian dictionaries with corresponding sizes. For each value

of E(0 ≤ E ≤ 20), 100000 random realisations of subset Γ are used to estimate

the eigenvalue statistic. Figure 5.4 shows the bounds (sample mean + 3 STD for

maximum eigenvalues and sample mean - 3 STD for minimum eigenvalues).

Figure 5.4 shows that the bounds for the simplified chirp dictionary is closer to

1. This implies that Ψ can satisfy condition δK < 1 with high probability if the

minimum observation is O(E log(Q/E)).
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Figure 5.4: Eigenvalue bounds of ΨH
Γ ΨΓ and GH

Γ GΓ.

5.3.4 Simulation results

For illustration purposes, we use 3 examples with four different TFD methods includ-

ing the WVD, the sinusoidal dictionary, the full chirp dictionary and the simplified

chirp dictionary. The WVD represents the quadratic TFD, which is vulnerable to

missing samples and cross-terms and so it is unable to deliver an accurate TF esti-

mation under compressed data. The WVD is simulated in order to compare it with

the CS-related methods. As discussed above, the dictionary Ψ satisfies the RIP

condition if the minimum observation is E log(Q/E). If Fs = 256Hz, and we have

E = 3 components in each windowed signal, then we need at least 30 measurements

for a reliable recovery. If the average window length is around 70, then 50% of data

can obtain good TF estimation by CS technique. However, the chirp rate is esti-

mated in the IAF domain and the missing samples in the IAF domain can double

the missing data in the time domain (see 3.4.2). If 50% data in the time domain is

removed, 75% of data is missing in a time of IAF, which gives unreliable estimation

of the chirp rate. Thus in this simulation part, only 40% of data is removed. Notice

that the RIP condition discussed in 5.3.3 is obtained when there is no noise. If noise

is present, we need more data to recover well the TF signature. Here we cut 40% of

the data (42 samples per window if the window length is 70), and add some noise

with SNR = 20dB. If the signal contains more noise (smaller SNR), the estimation

would not be reliable.
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The signals in three examples are firstly sampled at the Nyquist rate, and then

some samples are randomly removed. The sampling frequency is Fs = 256Hz, the

total signal length is N = 256, and 60% of the data is used to obtain the time

frequency signature of the signal. When computing the TF representation, a rect-

angular window is used for the chirp dictionary, and WVD, whereas the sinusoidal

approach utilizes the Hanning window. A parameter of concentration level ζ is used

to assess the accuracy of the resulting TF representations. So ζ is the ratio of the

sum of pixel magnitudes along the actual instantaneous frequency, with respect to

the rest of the TF values. So, the higher ζ, the better is the TF estimation.

In the first example, the signal consists of two closely-alligned chirps and is

expressed as:

s(n) = exp

{
j2π[(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]

}
+ exp

{
j2π[(0.13Fs)

n

Fs
+ (0.33Fs)

n2

2F 2
s

]

}
+ v(n),

(5.26)

where n = 0, 1, ..., N − 1. To capture enough data to resolve the two close parallel

chirps, the window size is set to a large value, Nw = 100. The WVD suffers cross-

terms and artifacts caused by the missing samples. The concentration level is very

low with ζ = 0.3024. These issues are mitigated when CS related methods are used.

However, Fig. 5.11(b) shows the failure of local reconstruction of the sinusoidal

method due to lack of sparsity when employing a long window. The concentration

level of the resulted TFR is ζ = 2.19. The sparsity, on the other hand, when

chirp methods are in use, only depends on the number of piece-wise chirps inside

the considered segment. Thus the two chirp dictionary methods are less sensitive

to this issue, and the signal is clearly resolved as shown in Fig. 5.5(c) and Fig.

5.5(d). Thus, the TFRs obtained by the two methods have similar concentration

level ζ =∞.

In the second example, we use a three-component FM signal, which is expressed
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(a) (b)

(c) (d)

Figure 5.5: TF (frequency normalized) signature for s(n) in (5.26) with 40% data

missing: (a) WVD; (b) Sinusoidal dictionary; (c) Chirp dictionary; (d) Simplified

chirp dictionary.

as:

s(n) = exp

{
j(0.1Fs) cos(2π

n

Fs
+ π) + j2π(0.2Fs)

n

Fs

}
+ exp

{
j(0.1Fs) cos(2π

n

Fs
+ π) + j2π(0.3Fs)

n

Fs

}
+ exp

{
j2π[(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]

}
+ v(n),

(5.27)
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where n = 0, 1, ..., N − 1. The window length is set to Nw = 70. The results are

given in Fig. 5.6. It is evident in Fig. 5.6(a) that cross-terms and noise-like artifacts

clutter the signal component and hide the pertinent signal structure when the WVD

is employed. The concentration level is ζ = 0.2. The sinusoidal dictionary approach

reveals inaccuracy in the TF signature estimation since besides insufficient sparsity,

it is vulnerable to the picket fence effect [13], resulting in frequency content at false

locations. Its concentration level is ζ = 1.52. The chirp dictionary approach can

address this failure and the instantaneous frequency laws are resolved as seen in

Fig. 5.6(c) and Fig. 5.6(d). The simplified chirp dictionary has some inaccurate

approximation due to limited samples in the instantaneous autocorrelation domain,

but the result is acceptable. The concentration level of the TFR is ζ = 3, which

is lower than the one obtained by the full chirp dictionary ζ = 20. Compared

with its sinusoidal counterpart, it gives a better performance but with a similar

calculation effort. In the third example, we use data from human gait radar returns

obtained at the Radar Imaging Lab of the Center for Advanced Communications at

Villanova University, USA. The data is first uniformly sampled at the Nyquist rate

with Fs = 1000 Hz, and then thinned by randomly removing 40% of samples. The

sparsity level is assumed to be E = 30. The window length is Nw = 128, and we

only use 128 frequency components to display the TF signature in order to zoom in

on the instantaneous frequencies, and so partly mitigate drawbacks of the sinusoidal

dictionary method. The results in Fig. 5.7 show that the simplified chirp dictionary

approach can describe Micro-Doppler TF presentations of the torso and limbs under

compressed observations.

5.4 Simplify The Full Chirp Dictionary using The

Fractional Fourier Transform (FRFT)

5.4.1 Chirp rate and initial frequency estimation of chirps

using FRFT

Consider a discrete single chirp of length T = 1 (second) expressed as:

s(n) = exp

[
j2π

(
α
n2

2F 2
s

+ β
n

Fs

)]
, (5.28)
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(a) (b)

(c) (d)

Figure 5.6: TF signature (frequency normalized) for s(n) in (5.27) when 40 %

samples are missing: (a) WVD; (b) Sinusoidal dictionary; (c) Chirp dictionary;

(d) Simplified chirp dictionary.

where Fs is the sampling frequency, α and β are values of the chirp rate and the

initial frequency, n = 0, 1, ..., bT/Tsc, and Ts = 1/Fs. We aim to use the FRFT

for the α and β estimations. The principle is that we tune the FRFT angle φ.

When φ = φopt, the fractional axis x is matched to the chirp rate of the signal

(see Fig. 5.8), or the chirp becomes a sinusoid in the new plane the (x, y). Denote

d as the sinusoidal frequency in (x, y) domain. The magnitude response (i.e. the
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(a) (b)

(c) (d)

Figure 5.7: TF (frequency normalized) signature of human gait radar return with

40% data missing: (a) WVD; (b)Sinusoidal dictionary; (b) Chirp dictionary; (c)

Simplified chirp dictionary.

absolute value of the FT) of (Fφopts)(x) reaches its maximum at d. Thus, we can

get the estimation of d (see Fig. 5.9 (a)). The relationship between d and the initial

frequency β has been discussed in the subsection 4.3.1. To remind, the relationship
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is portrayed in Fig. 5.8 and expressed as:

d =
√
Nw cos(φ)

(
β

Fs
+

tanφ

2

)
↔ β = Fs

(
d√

Nw cos(φ)
− tanφ

2

)
,

(5.29)

where Nw is the number of samples in a window. So, we can say that the FRFT can

Figure 5.8: Geometric schematic for calculating sinusoidal frequency in the fractional

domain.

help us to estimate the chirp rate and the initial frequency of a chirp, or a signal

composed of chirps. As a windowed non-stationary signal can be approximated as a

sum of different chirps [13, 68], the FRFT can be used to estimate the instantaneous

frequency characteristic of the non-stationary signal segment. However, this method

only works in the case that we have full data and the number of signal components

is a known a-priori. When we only have limited observations, the method is unable

to deliver accurate results because the magnitude responses do not always obtain a

maximum when φ = φopt. Fig. 5.9(b) illustrates this situation for a signal composed

of two chirps whose chirp rate values are −0.3Fs, and 0.2Fs, Fs = 128. The max-

imum values of the magnitude response do not show the optimum FRFT angles.

Thus, it is incapable of estimating the two chirp rate values.

So here we propose using the FRFT to build the chirp dictionary for sparse

reconstruction instead. For each value of chirp rate, the FRFT gives a corresponding
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(a) (b)

Figure 5.9: The maximum values of the magnitude response versus chirp rate values

or the FRFT angle values: (a) Full length signal N=128; (b) Windowed signal of

length Nw = 64, and randomly missing 50% of the data.

initial chirp value. Thus, the chirp dictionary dimension gets smaller, just the

same as that of the sinusoidal dictionary. Moreover, the discrete FRFT algorithm

proposed in [49] has a computational load of O(N logN) for a discrete-time signal

of length N , which is at a similar complexity with the conventional FT. Therefore,

the proposed method is more computationally efficient than the full chirp atom

approach.

Simplified calculation technique for the DFT of the FRFT of a signal

The discrete FRFT calculation is presented in Appendix A. Although fast compu-

tation of the FRFT of a signal takes not much longer when compared to the Fourier

transform. Still, it involves three steps: x2 Shannon interpolation, convolution and

then decimation, which makes it more complex than the Fourier transform. In this

part, we introduce a simple method for the DFT of the discrete FRFT calculation.

According to [50], the windowed Fourier transform of the FRFT of a signal

corresponds to the short-time Fourier transform of the signal itself, with the window

being the fractional Fourier transform of the initial one.

DFT(Fφis) = DFT
[
s(n)(Fφh(n))

]
. (5.30)
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where h(n) is the window for the signal s(n). Now, (5.30) can also be expressed in

matrix format as follows (with k1, ..., kN being values of discrete frequency k in the

frequency plane):
DFT(Fφis)(v1)
DFT(Fφis)(v2)

...
DFT(Fφis)(vN)

 =


exp(−j2πk1

n1

N
)(Fφh(n1))(u1) . . . exp(−j2πk1

nN
N

)(Fφh(nN))(uN)
exp(−j2πk2

n1

N
)(Fφh(n1))(u1) . . . exp(−j2πk2

nN
N

)(Fφh(nN))(uN)
...

exp(−j2πkN n1

N
)(Fφh(n1))(u1) . . . exp(−j2πkN nN

N
)(Fφh(nN))(uN)



s(n1)
s(n2)

...
s(nN)


= ΦT s,

(5.31)

where Φ is called the FRFT matrix, and s is the signal vector, u, v are the discrete

fractional variables which correspond to the continuous ones x, y. v1, ..., vN are

values of v and u1, ..., uN are values of u. With a certain window and a value of the

FRFT angle (or chirp rate), we can get the estimation of d and the chirp rate β by

projecting the signal onto the matrix Φ and finding the frequency corresponding to

the maximum value.

5.4.2 Sparse reconstruction of non-stationary time frequency

signature based on the FRFT

Consider an arbitrary continuous-time, non-stationary signal sc(t), which consists

of E components:

sc(t) =
E∑
e=1

Ae(t) exp (jϕe(t)) + vc(t), 0 ≤ t < T, (5.32)

where Ae(t) and ϕe(t) are the time-varying positive amplitude and phase of the eth

component, vc(t) is an additive white noise, and T is the total observation interval.

The continuous-time instantaneous frequency (IF) of the eth component is defined

as:

Fe(t) =
1

2π

dϕe(t)

dt
. (5.33)
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We assume that it is known a-priori that the absolute IFs do not exceed Fmax i.e.

|Fe(t)| ≤ Fmax, where Fmax is the maximum frequency of the signal sc(t). Sampling

sc(t) at the Nyquist rate Fs(Fs = 2Fmax), then we have:

s(n) =
E∑
e=1

Ae(nTs) exp(jϕenTs) + v(n), (5.34)

where n = 0, 1, ..., bT/Tsc, and Ts = 1/Fs.

Similar to the chirp dictionary method, this approach also approximates the

windowed signal by the sum of piece-wise chirps. The mth signal segment of length

Nw is obtained by:

sm(n− ς(m− 1)) = s(n)h(n− ς(m− 1)), (5.35)

where n = ς(m− 1), ς(m− 1) + 1, ..., ς(m− 1) +Nw − 1, ς(1 ≤ ς ≤ Nw) is the shift

between two consecutive windows, m is the window index, and h(n) is a rectangular

window which is non-zero only for 0 ≤ n ≤ Nw − 1.

Then the chirp-approximated mth signal segment of s(n) is written as:

sm(n) ≈
E∑
e=1

Ae,m exp

{
j2π

[
αe,m

n2

2F 2
s

+ βe,m
n

Fs

]}
+ vm(n),

(5.36)

where 0 ≤ n ≤ Nw− 1, Ae,m, αe,m, βe,m are respectively the complex amplitude, the

chirp rate, and the initial frequency of the eth chirp over the mth window.

Since |Fe(n)| ≤ Fmax, the chirp rate α and the initial frequency β have to satisfy:{
|β| ≤ Fmax,

|α| ≤ FmaxFs/Nw.
(5.37)

In vector form, the signal over the mth window can be expressed as:

Sm = ΨXm + Vm, (5.38)

where Sm = [sm(0), ..., sm(Nw−1)]T , Vm = [vm(0), ..., vm(Nw−1)]T . The dictionary

matrix, Ψ, is designed by uniformly sampling the chirp rate space. Let I denote the

total number of chirp rate values, α̃i is ith chirp rate value in the dictionary, and

β̃i is corresponding initial frequency value for each α̃i in the dictionary. The chirp

atom Ψ = [ψψψ1,ψψψ2, ...,ψψψI ] is obtained by:
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PROCEDURE: For each value of α̃i

1. Calculate the FRFT angle φ̃i = arctan α̃iNw
F 2
s

(see (4.15)).

2. Calculate the magnitude response |FT(Sφ̃i(x))|.

3. Find value of y at which |FT(Sφ̃i(x))| obtains a maximum, or d in short.

4. Calculate the corresponding value of the chirp rate (see (5.29)).

5. ψψψi = exp[j2π(α̃i
n2

2F 2
s

+ β̃i
n
Fs

)].

Since E < Nw � I, Xm is highly sparse and solving for Xm in equation (5.38)

becomes a sparse recovery (or CS) problem, which can be solved by:

X̂m = arg min ‖Xm‖1 s.t. ‖Sm −ΨXm‖2
2,≤ ε (5.39)

where ε is the noise level. The solution for (5.39) can be obtained by a greedy

algorithm such as Orthogonal Matching Pursuit (OMP) or linear programming.

With the simplified calculation technique for the DFT of the FRFT of the signal,

we only calculate the FRFT of the window (Gaussian window for example) with

all values of the FRFT angle at one time. If we have (Fs + 1) values of the FRFT

angle, the calculation load approximates to performing the DFT (Fs + 1) times.

The simplified chirp dictionary is formed by projecting the signal onto the FRFT

dictionary Φ, with the calculation load being (Fs+1) times that of the DFT, or (Fs+

1)2 projections. After we have the simplified chirp dictionary, the computational

complexity is the same as the sinusoidal dictionary approach. As we have to form a

new dictionary for each window signal, the computational load is O(EI+I2), which

is much less than that of the full chirp dictionary, (O(E(3
4
I2 + 1

4
))), especially when

we have many components in the windowed signal.

5.4.3 Restricted isometry properties (RIP) analysis of the

simplified chirp dictionary

Similar to the section 5.3.3, we examine the RIP associated with the simplified

chirp dictionary using the FRFT. In Fig. 5.10, we compare the boundaries of the

eigenvalues of the inner product of the simplified chirp matrix with those of the

Gaussian random dictionary. As these bounds compete with those of the Gaussian
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matrix and the Gaussian matrix satisfies the RIP with minimum O(E log(d/E))

number of measurements, the simplified chirp dictionary matrix using the FRFT

also satisfies the RIP with the same condition.

Figure 5.10: Eigenvalue bounds of ΨH
Γ ΨΓ and GH

Γ GΓ where Ψ is the simplified

chirp dictionary using the FRFT, and G is the Gaussian random matrix.

5.4.4 Simulation

This section evaluates the performance of the FRFT based chirp dictionary in sparse

reconstruction of non-stationary signals. We compare the proposed method with the

full chirp dictionary, the sinusoidal dictionary and the FRFT approaches. In the

FRFT approach, in each window, we only calculate the magnitude response of the

FRFT for angles φ̃i, and choose the values of φ̃i or α̃i which have the largest mag-

nitude responses. In the following examples, signals are sampled at the Nyquist

rate and then 50% of samples are randomly removed. The sampling frequency is

Fs = 256, the total signal length is N = 256. The observations are corrupted by

white Gaussian noise, and the signal to noise ratio is set to SNR = 20dB. A rect-

angular window of length Nw = 64 is applied. The resulting images are normalized

and transferred to energy versions for display. Similar to chapter 4, the concentra-

tion level ζ is used to assess the accuracy of the resulting TF representations. And

the higher ζ, the better is the TF estimation. We assume that signals have E = 5

components.
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In the first sample, the signal consists of two crossing chirps, which is expressed

as:

s(n) = exp

{
j2π[(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]

}
+

exp

{
j2π[(0.4Fs)

n

Fs
− 0.3Fs

n2

2F 2
s

]

}
+ v(n),

(5.40)

with n = 0, 1, ..., N−1. The results are shown in Fig. 5.11. The chirp dictionary and

the FRFT based chirp dictionary provide perfect frequency localization with ζ =∞.

The FRFT is unable to recover the TF representation of the whole signal because

of missing data and noise, although one signal component is accurately displayed

with ζ = 3000. The sinusoidal method reveals inaccuracies in the TF signature

estimation with ζ = 3 since besides insufficient sparsity, it is also vulnerable to the

picket fence effect [13, 68], resulting in frequency content at false locations.

Similar results are obtained in the next example where we use a signal composed

of three components expressed as:

s(n) = exp

{
j(0.1Fs) cos(2π

n

Fs
+ π) + j2π(0.2Fs)

n

Fs

}
+ exp

{
j(0.1Fs) cos(2π

n

Fs
+ π) + j2π(0.3Fs)

n

Fs

}
+ exp

{
j2π[(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]

}
+ v(n),

(5.41)

with n = 0, 1, ..., N − 1. The TF signature approximations of the four methods are

displayed in Fig. 5.12. The FRFT based chirp dictionary and the normal chirp

dictionary have pretty similar concentration levels of ζ = 20, whereas the sinusoidal

dictionary and the FRFT have lower concentration levels with ζ = 3 and ζ = 8,

respectively.

The last example uses data from human gait radar returns obtained at the Radar

Imaging Lab of the Center for Advanced Communication at Villnova University,

USA. The data is first uniformly sampled at the Nyquist rate with Fs = 1000Hz,

and then thinned by randomly removing 50% of the samples. The sparsity level

is assumed to be E = 30. The window length is Nw = 128. The TF signature

estimation is obtained by the FRFT based chirp dictionary, full-chirp and sinusoidal

dictionary. The results in Fig. 5.13 shows that the FRFT based chirp dictionary can
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(a) (b)

(c) (d)

Figure 5.11: TF (frequency normalized) signature for s(n) in (5.40) with 50% data

missing: (a) FRFT based chirp dictionary; (b) Sinusoidal dictionary; (c) Chirp

dictionary; (d) FRFT.

be used to describe the micro-Doppler TF presentations of torso and limbs under

compressed observations.
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(a) (b)

(c) (d)

Figure 5.12: TF (frequency normalized) signature for s(n) in (5.41) with 50% data

missing: (a) FRFT based chirp dictionary; (b) Sinusoidal dictionary; (c) Chirp

dictionary; (d) FRFT.

5.5 Conclusion

The accurate piece-wise chirp approximations to the time-frequency signature of

many Doppler and micro-Doppler signals motivate the use of a chirp dictionary for

sparse reconstruction of the signals’ local frequency structure under full and incom-

plete data. Compared with the sinusoidal dictionary method, the chirp dictionary

approach can relax the converse request on the number of necessary observations
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(a) (b)

(c) (d)

Figure 5.13: TF (frequency normalized) signature for s(n) in (5.41):(a) FRFT based

chirp dictionary with full data; (b) FRFT based chirp dictionary with 50% data

missing; (c) Sinusoidal dictionary with 50% data missing; (d) Chirp dictionary with

50% data missing.

for exact solution and sparsity, and it can address the picket fence effect. Thus, the

chirp atom gives (in general) a better performance. The simplified chirp dictionary

is proposed in order to reduce the calculation burden. In summary, the dictionary

is built for each window signal. In the first approach, the chirp rate of a chirp com-

ponent inside the segment is estimated before building the dictionary. The second
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method deploys the FRFT to find a corresponding initial value for each chirp rate

value. Thanks to these two methods, the dictionary dimension gets as small as the

sinusoidal atom set with better TF estimations.
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Chapter 6

Reduced Interference Chirp-based

Time-Frequency Distribution for

Limited Data

6.1 Introduction

6.1.1 Motivation

Joint time-frequency distributions (TFDs) is a powerful tool to analyze non-stationary

signals like radar returns from static or moving object, ECG, etc., [9, 36, 39, 75, 76,

77]. These non-stationary signals arise in many different applications,thus no single

time-frequency (TF) estimation approach can be ideal in all cases.

The short-time Fourier transform (STFT) is the most widely used and simplest

method for studying non-stationary signals [5, 78]. The major limitation is the trade-

off between time and frequency resolution. The Wigner-Ville distribution (WVD)

achieves better resolution, but due to the bilinear product, the WVD experiences

cross-terms between different components as well as those between the same com-

ponent. In order to eliminate (or at least attenuate) the cross-terms in the WVD,

a class of reduced interference distributions (RIDs) has been defined which belongs

to the general Cohen’s class. As auto-terms generally are located near the origin

in ambiguity domain, the RID utilizes kernels, which are two-dimensional low-pass

filters, to reduce the undesired cross-terms, while still preserving the true signal
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power terms. Traditionally, fixed kernels are used, for example Choi-Williams or

Born Jordan kernels [18]. However, these fixed masks do not always work effectively

because there are signals with their cross-terms residing near the origin, for example,

a signal composed of multiple crossing chirps. In this case, these Cohen RID kernels

let part of the cross-terms through, thus hiding the signals’ TF signatures.

As the distribution of cross- and auto-components in the ambiguity domain actu-

ally depends upon the analyzed data, signal-dependent kernels have been proposed

to guarantee a good performance for a large class of signals. The radially-Gaussian

kernel (RGK) is an outstanding example in this category. It actually solves an

optimization problem based on two performance criteria in order to achieve an op-

timal kernel [20]. The first requirement constrains the kernel to be a low-pass filter,

and the second one limits the area of the kernel to a kernel volume so that the

cross-components can be suppressed. It is very important to choose a proper value

for the kernel volume because it controls the trade-off between cross-term suppres-

sion and auto-term smearing. The principle of this method is that we keep the

magnitude of the kernel in the ambiguity domain large wherever that of the ambi-

guity function of the signal is large, regardless of whether the peaks correspond to

auto- or cross-components. There is also a modified version of this approach, called

the adaptive optimal-kernel (AOK), which allows on-line implementation [79]. This

method employs a time-localized short-time ambiguity function (STAF), and the ra-

dially Gaussian kernel optimization procedure to obtain the optimal kernel. The TF

slice at the middle of the duration is obtained by implementing the two-dimensional

Fourier transform of the STAF-kernel product. In general, these signal-dependent

kernels algorithms construct a mask that automatically matches with the signal’s

auto-terms, and so they largely remove the cross-terms and perform well with many

types of signals. However, these methods are vulnerable with incomplete signals.

Missing samples introduce noise-like artifacts in the whole ambiguity domain. They

distort the signals’ auto-terms, and thus misguide the RGK or AOK to capture

the wrong regions in the ambiguity domain. Therefore, the optimization process

becomes unreliable. Thus, we need other TF estimation methods that can deliver

accurate results even in the case of missing data.
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6.1.2 Related work

There have been a lot of TFDs proposed which can give good results in the case of

incomplete data. Most of them are based on compressive sensing (CS) techniques. In

recent year, CS has attracted considerable attention in many areas of the discipline

by suggesting that it is possible to record a small number of linear measurements

of a signal and then reconstruct the complete set of all samples if the signal itself is

sparse. The required number of observations is slightly more than the signal sparsity

level but less than the signal dimension. As non-stationary signals generally exhibit

small occupancy in the TF domain, with small number of samples either in the time

domain or in the ambiguity or in the instantaneous autocorrelation domains, TF

signatures can be recovered with high accuracy with compressive sensing techniques.

The first TFD approach is to perform sparse reconstruction from windowed data in

the time domain. The measurement dictionary can be sinusoids or chirps [3, 13,

14, 27]. The second approach, within the Cohen’s class, deploys a low-pass filter

to mitigate the cross-components, but with sparsity in the TF domain, it yields

robustness to missing data [2, 28, 64, 67, 80, 81].

In the latter category, there are some methods which modify the signal-dependent

kernel AOK to get the sparsest TFRs. In [67], the author uses multiple sensors

instead of one sensor. The auto-terms TFDs are real and also positive for meaningful

TF points where the signal energy is concentrated. On the other hand, the values

and signs of the cross-terms between different signal components depend on the

relative phase between the contributing signals. This phase changes across the

antenna array due to respective propagation delays. As such, the simple averaging

of TFDs over different antennas does not favour the cross-terms and enhances the

auto-terms. Meanwhile, the missing data samples yield artifacts that are randomly

spread over the entire ambiguity domain. When different sampling patterns are

adopted in each sensor, then, averaging the AF over all sensors effectively reduces the

contributions of the artifacts induced from missing samples. Thus, the optimization

of kernel parameters is proposed using the AF averaging over all sensors instead of

the AF obtained in each individual sensor. The TFD can be computed as the two-

dimensional Fourier transform of the kernelled and averaged AF. Alternatively, we

can also obtain the TFD through a sparse reconstruction from the same kernelled

and averaged AF. This method, however, requires more sensors, and thus need more
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computational load. In [64, 81, 82], the authors introduce a modified AOK, which

is robust to cross-terms and missing samples. Beside constructing a kernel which

best matches with the signal’s auto-terms, the method considers sparsity in the TF

domain as an optimization object. Although it performs well, the computational

complexity is high.

6.1.3 Contribution

In this chapter, we introduce novel fixed and signal-dependent kernels in the am-

biguity domain, which can efficiently remove cross-term interference and partially

combat missing sample effects without using compressive sensing techniques. These

kernels are applied on windowed signals to facilitate online implementation, or pro-

cessing long signals. According to [13, 14], any non-stationary signal segment can be

approximated by a sum of chirps. Additionally, chirps’ auto-terms always reside in

only half of the ambiguity domain which do not cover the Doppler axis. By remov-

ing the areas where auto-terms do not lie in, part of interference and artifacts are

mitigated. Moreover, the analysis of artifacts distributions shows that the artifacts

always appear along the Doppler axis. By removing the region along the Doppler

axis, our chirp-based kernels give satisfactory TFRs in the case of incomplete data.

6.1.4 Chapter outline

So this paper is organized as follows. Section 6.2 presents a review of reduced inter-

ference distributions including the fixed and adaptive kernels. Section 6.3 includes

discussions about missing sample effects on the ambiguity domain, and the unsuit-

ability of using traditional RIDs for incomplete data. Section 6.4 introduces the

fixed and adaptive chirp-based kernels. These proposed kernels are based on the

chirp property in the ambiguity domain, which is also expressed here. Section 6.5.1

gives some details about fast implementation, which helps save the computational

load. Section 6.6 shows simulation results. Finally, conclusions are given in section

6.7.
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6.2 Conventional Reduced Interference Kernels

One of the major drawbacks of the WVD is the cross-terms located between signal

components, which can obscure desired signal TF information. Thus, RIDs have

been defined in order to suppress the cross-terms as well as preserve the auto-terms

[5, 42]. For a complex-valued signal sampled with period T , i.e., s(n) = s(nT ), the

RID D(n, k) is obtained by the two-dimensional Fourier transform of the product

of the AF A(n, k) and the kernel function C(p, b) as follows:

D(n, k) =

N/2−1∑
p=−N/2

N/2−1∑
b=−N/2

C(p, b)A(p, b)ej(−bk−pn)2π/N , (6.1)

where

A(p, b) =
N−1∑
n=0

s(n+ b)s∗(n− b)e−j2πpn/N , (6.2)

where n, k are discrete time and frequency variables, n = 0, 1, 2, ..., N − 1, k =

0, 1, 2, ..., N − 1 and p and b denote the frequency shift (Doppler frequency) and

time lag. The data bilinear product in (6.2) is the instantaneous autocorrelation

function (IAF). As such, the AF is the Fourier transform of the IAF over the time

variable.

Rss(n, b) = s(n+ b)s∗(n− b). (6.3)

In the ambiguity domain, most of the desired auto-terms are located at and around

the origin, whereas the cross-terms reside at distant positions. The kernel function

acts as a low-pass filter in the ambiguity domain and places different weights on the

ambiguity samples. As the result, the auto-terms are retained while the cross-terms

are substantially removed.

Existing TF kernels can be divided into two forms: signal-independent and

signal-dependent. The former includes Choi-Williams kernel [18], Margenau-Hill

kernel [19], Rihaczek kernel [83] and Born-Jordan kernel [84], etc. The kernel func-

tions in the ambiguity domain of the aforementioned kernels are written in Table.

6.1 and plotted in Fig. 6.1.

To maintain most of the desirable properties of the WVD, the kernel is required

to satisfy the marginal properties and realness. The former requires the kernel to

be unity along lag and Doppler axis (p = 0 and b = 0). The latter is acquired
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(a) (b)

(c) (d)

Figure 6.1: (a) Choi-Williams kernel; (b) Margenau-Hill kernel; (c) Rihaczek kernel;

(d) Born-Jordan kernel.
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Table 6.1: Some signal-dependent distributions and their kernels

Distribution Kernel C(p, b)C(p, b)C(p, b)

Choi-Williams exp(−p2b2/σ)

Margenau-Hill cos(pb/2)

Rihaczek exp(jpb/2)

Born-Jordan sinc(1
2
pb)

if C(p, b) = C∗(−p,−b). The major drawback of the signal-independent signal is

that they have the fixed shapes in the ambiguity domain. The fixed shapes result

in inflexibility for a large class of signals. For example, the cross-terms of a signal

composed of two crossing chirps reside near the origin, while there are some auto-

terms locating far away from the center. With its low-pass property, the signal-

dependent kernel does not perform efficiently for this signal. To illustrate, the four

kernels in Table. 6.1 are used, then the resulting TFRs of the crossing-chirp signal

are contaminated shown in Fig. 6.2.

Signal-dependent or adaptive kernels tune their representation to each signal to

offer good performance for a large class of signals [20]. A natural approach to tune

is via optimization; this requires an objective function or performance measure to

express what “we want to see” and a class of representations to choose from. There

are two broad categories: adaptive TFRs based on the linear short time Fourier

transform, and those based on the quadratic WD. In an adaptive quadratic TFR,

we adapt the form of the kernel to match the shape of the signal’s components in

the ambiguity domain. In particular, we want the kernel to be close to 1 in the

vicinity of the signal’s auto-component, and close to 0 in the vicinity of the cross-

components. The most well-known example is the radially-Gaussian kernel (RGK).

Its objective is to maximize the energy in the ambiguity domain in order to suppress

the cross-terms and to pass the auto-terms with as little distortion as possible. The
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(a) (b)

(c) (d)

Figure 6.2: RIDs of a signal composed of two crossing chirps obtained by: (a) Choi-

Williams distribution; (b) Margenau-Hill distribution; (c) Rihaczek distribution; (d)

Born-Jordan distribution.
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(a) (b)

Figure 6.3: (a) The RGK with vo = 3; (b) The resulting TFR for a signal composed

of two crossing chirps.

RGK is adapted to a signal by solving the following optimization problem:

max
σ(q),∀r,∀q

∑
r

∑
q

r |Ass(r, q)C(r, q)|2

subject to C(r, q) = e
− r2

2σ2(q)

N−1∑
q=0

σ2(q) ≤ vo,

(6.4)

where σ is the standard deviation of the Gaussian kernel. The first condition in

(6.4) forces the kernel to have low-pass filter characteristics, which lends itself to

cross-term reduction. The second condition limits the area of the kernel to the kernel

volume “vo”. Cross-term suppression and auto-term preservation trade-off depends

on the choice of “vo”. The optimization problem is performed in polar coordinate

in terms of the radius r and the aspect angle q. RGK has proved superior to

data-independent kernels. A simulation is carried out with the above crossing-chirp

signal. The results in Fig. 6.3 show that the RGK kernel has covered most of the

auto-terms and eliminates most of the cross-terms.

While RGK generally performs well, it is block-oriented technique that calcu-

lates only one kernel for an entire signal. For analyzing signals with characteristics

that change over time, and for real-time, online operation, or for very long signals,
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adaptive signal-dependent kernels are required. To track the local signal character-

istics over time, the kernel optimization procedure needs to consider the local signal

characteristics. With STAF, we can apply RGK into a windowed signal centered at

n0 to produce the AOK for the signal segment. The frequency slice at time n0 is

obtained by the two-dimensional Fourier transform of the product of the obtained

AOK and the STAF. Since the algorithm alters the kernel at each time to achieve

optimal local performance, better tracking of signal changes results.

The traditional signal-independent and signal-dependent kernels work properly

when we have full data. In the case of random or missing samples, these distributions

give undesirable TFRs. The signal-independent kernels with fixed shapes in the

ambiguity domain can efficiently suppress the cross-terms which often locate far

from the origin, but not the noise-like artifacts caused by missing samples which

spread over the entire ambiguity domain. The dependent-signal kernels also perform

inappropriately in the presence of missing data because their artifacts can fool the

AOK and RGK into capturing the wrong areas of the AF.

There have been many methods proposed to confront missing sample effects.

They mostly use compressive sensing techniques to obtain TFRs which are robust

to missing data [2, 3, 4, 13, 13, 27, 28, 82, 85, 86, 87, 87, 88, 89].

In this chapter, we propose a novel method which works efficiently in case of com-

pressed data without using CS techniques. Based on the windowed non-stationary

signal properties in the ambiguity domain and the artifacts’ distribution, our method

designs a fixed kernel and an adaptive kernel for each short-time signal in the am-

biguity domain.

6.3 The Effect of Missing Samples on The Ambi-

guity Domain

In this section, we analyze the effect of missing samples on the ambiguity function

[81]. Signal with missing samples can be represented as a modulated version of the

original signal x(n),

s(n) = x(n)ϕp(n), (6.5)
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where ϕp(n) is the sampling pattern in time and can be represented as the sum

of impulses at random positions np, i.e., ϕp(n) =
∑

np
δ(n − np). These impulses

determine the positions of available samples. The corresponding pattern of missing

samples ϕmiss(n) at positions nmiss is given by,

ϕmiss(n) =
∑
nmiss

δ(n− nmiss) = 1− ϕp(n). (6.6)

Thus, the signal can be represented by missing samples as follows:

s(n) = x(n)(1− ϕmiss(n)) = x(n)

(
1−

∑
nmiss

δ(n− nmiss)

)
. (6.7)

The ambiguity function of s(n) becomes:

As(p, b)

=

N/2−1∑
n=−N/2

x(n+ b)(1− ϕmiss(n+ b))x∗(n− b)(1− ϕmiss(n− b))e−j2πnp/N

=

N/2−1∑
n=−N/2

Rxx(n, b)(1− ϕmiss(n+ b))(1− ϕmiss(n− b))e−j2πnp/N

=

N/2−1∑
n=−N/2

Rxx(n, b)e
−j2πnp/N −

N/2−1∑
n=−N/2

Rxx(n, b)ϕmiss(n− b)e−j2πnp/N

−
N/2−1∑
n=−N/2

Rxx(n, b)ϕmiss(n+ b)e−j2πnp/N

+

N/2−1∑
n=−N/2

Rxx(n, b)ϕmiss(n+ b)ϕmiss(n− b)e−j2πnp/N

= Ax(p, b) + V1(p, b) + V2(p, b) + V3(p, b) = Ax(p, b) + ∆(p, b).

(6.8)

Rxx(n, b) and Ax(p, b) denote the IAF and AF of the original signal x(n). Thus, the

ambiguity function of the compressed observations can be represented as the sum

of the AF of the full data Ax(p, b) and the three artifacts caused by the missing

samples.

From (6.8),we can define the ideal kernel, Cs(p, b), for incomplete data s(n) as

follows:

As(p, b)Cs(p, b) = Ax(p, b)Cx(p, b), (6.9)
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where Cx(p, b) is a desirable RID kernel, which performs well on the full signal,

appropriately suppressing the cross-terms and preserve the auto-terms. From (6.8)

and (6.9), we obtain:

Cs(p, b) = Ax(p, b)Cx(p, b)/As(p, b)

=
Ax(p, b)Cx(p, b

Ax(p, b) + ∆(p, b)

=
Cx(p, b)

1 + ∆(p,b)
Ax(p,b)

.

(6.10)

(6.10) implies that the ideal kernel is a signal-dependent kernel, and it is complex

which, therefore, violates the realness property of the traditionally used kernels.

By further developing each of the three artifacts’ terms, we obtain the following

expressions:

V1(p, b) = −
N/2−1∑
n=−N/2

x(n+ b)x∗(n− b)
∑
nmiss

δ(n− b− nmiss)e−j2πnp/N

= −
∑
nmiss

x(2b+ nmiss)x
∗(nmiss)e

−j2π(b+nmiss)p/N .

(6.11)

V2(p, b) = −
N/2−1∑
n=−N/2

x(n+ b)x∗(n− b)
∑
nmiss

δ(n+ b− nmiss)e−j2πnp/N

= −
∑
nmiss

x(nmiss)x
∗(nmiss − 2b)e−j2π(nmiss−b)p/N .

(6.12)

V3(p, b) =

N/2−1∑
n=−N/2

x(n+ b)x∗(n− b)
∑
nmiss

δ(n+ b− nmiss)
∑
nmiss

δ(n− b− nmiss)e−j2πnp/N

=
∑
nmiss

δ(2b)x(nmiss)x
∗(nmiss)e

−j2πnmissp/N

+

N/2∑
b=−N/2

∑
nmiss

δ(n− nmiss + b)x(n+ b)
∑

nl 6=nmiss

δ(n− nl − b)x∗(n− b).

(6.13)

We can see that the first two terms (V1 and V2) can exist for ∀b. A component

of the third term is always located at b = 0, or along the Doppler frequency axis.
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This discourages the use of traditional RID kernels, which capture all values along

b = 0 due to marginal properties. With the same signal used as in Fig. 6.2 but with

50% of samples removed, the TFRs are severely contaminated as shown in Fig. 6.4.

The signal-dependent kernel AOK or RGK is “mislead” by the noise-like effects,

especially the artifacts along the Doppler frequency axis. This leads to inaccurate

TFRs. Fig. 6.5 illustrates these artifacts with the same signal used in Fig. 6.3 but

with 50% of samples absent.

We can conclude that the conventional signal-independent and signal-dependent

kernels cannot offer reliable signal TF signature in the case of missing data.

6.4 RID Chirp-Based Kernel Design

6.4.1 Properties of chirps in the ambiguity domain

Consider a certain chirp with a chirp-rate α and initial frequency β as follows:

s(n) = exp

[
j2π(α

n2

2F 2
s

+ β
n

Fs
)

]
, (6.14)

where Fs is the sampling frequency, n is the discrete time, n = 0, 1, ..., bT/Tsc, T is

the total observation time, Ts = 1/Fs is sampling period. Let N be the length of

the signal, N = bT/Tsc.
The corresponding IAF is expressed as:

Rss(n, b) = s(n+
b

2
)s∗(n− b

2
)

= exp

[
j2π

(
α
n2 + b2/4 + nb

2F 2
s

+ β
n+ b/2

Fs

)]
exp

[
−j2π

(
α
n2 + b2/4− nb

2F 2
s

+ β
n− b/2
Fs

)]
= exp

[
j2π

(
α
nb

F 2
s

+ β
b

Fs

)]
.

(6.15)

The WVD of s(n) is given as:

D(n, ω) =
∑
b

Rss(n, b)e
−jbω

= δ

[
ω

2π
− (β + α

n

Fs
)

]
.

(6.16)
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(a) (b)

(c) (d)

Figure 6.4: RIDs of an incomplete signal composed of two crossing chirps obtained

by: (a) Choi-Williams distribution; (b) Margenau-Hill distribution; (c) Rihaczek

distribution; (d) Born-Jordan distribution.
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(a) (b)

(c) (d)

Figure 6.5: (a) AF; (b) RGK; (c) AF after being filtered by RGK; (d) TFR with

RGK for a signal composed of two crossing chirps when 50% of the data is missing.
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Thus, the instantaneous frequency of the chirp signal s(n) is:

F (n) = α
n

Fs
+ β. (6.17)

Assume that the signal is sampled at the Nyquist rate, i.e. the sampling frequency

is double the maximum frequency of the signal, Fs = 2Fmax. Because Fmax is the

maximum frequency of the signal, so F (n) ≤ Fmax. Also, the maximum frequency

change in (N/Fs) second is Fmax. As the chirp-rate is the frequency change of a

chirp in one second, the maximum chirp-rate is as follows:

|αmax| = Fmax
Fs
N
. (6.18)

So if the signal is of one second length, N = Fs, the maximum chirp rate is Fmax.

The chirp signal s(n) is expressed in ambiguity domain as follows:

A(ω′, b) =
∑
n

Rss(n, b)e
−jnω′

= exp

(
j2πβ

b

Fs

)
δ

(
ω′

2π
− α b

Fs

)
,

(6.19)

where ω′ is the Doppler angular frequency. (6.19) shows that the AF of all chirps

has a linear support that passes through the origin of the ambiguity plane. The

chirp auto-term lies at a certain angle to the horizontal line which is determined

by the chirp-rate. Furthermore, since the chirp-rate is inside [−Fmax
Fs
N
, Fmax

Fs
N

], the

angle slope between the chirp and the horizontal in the ambiguity domain is also

restricted. The chirp signal s(n) in the ambiguity domain is plotted in Fig. 6.6.

Based on Fig. 6.6, the slope between the chirp line and the horizontal line in the

ambiguity domain is as follows:

φ = arctan
α/δf

1/δb

= arctan
2αN

F 2
s

,

(6.20)

where δf = Fs/N is the frequency resolution and δb = 2/Fs is the lag resolution.

Denote φ as the slope between the chirp and horizontal line in ambiguity domain.

From (6.18) and (6.20), if we consider the positive lag plane, φ is restricted to:

−π/4 ≤ φ ≤ π/4. (6.21)
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Figure 6.6: A chirp signal in ambiguity domain.

Similarly, for the negative lag plane, φ :

3π/4 ≤ φ ≤ 5π/4. (6.22)

We can conclude that the auto-term of any chirp has either |φ| ≤ π/4 or 3π/4 ≤
φ ≤ 5π/4.

6.4.2 Kernel design for chirp signals

When the signal is composed of many chirps, and has missing samples, its AF

is filled with cross-terms and noise-like artifacts spreading all over the ambiguity

plane. However, as discussed in section 6.4.1, the auto-terms always locate inside

|φ| ≤ π/4 and 3π/4 ≤ φ ≤ 5π/4, and so the kernel can filter out the rest, which

corresponds to half of the ambiguity domain. Notice that the regions |φ| ≤ π/4

and 3π/4 ≤ φ ≤ 5π/4 do not include the Doppler axis, where the artifacts always

lie along. Therefore, it substantially mitigates the adverse effects of the missing

samples.

Based on this fact, we design a chirp-based kernel, which is basically the Gaussian

kernel modified such that all components outside the regions |φ| ≤ π/4 and 3π/4 ≤
φ ≤ 5π/4 are zeros. A two-dimensional, radially-Gaussian kernel with a spread

parameter σ [20] is expressed as:

C(p, b) = e−
p2+b2

2σ2 , (6.23)
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(a)

(b)

Figure 6.7: The proposed kernel in the AF domain: (a) σ =∞; (b) σ = 50.

where p and b are Doppler and lag variables. The kernel is easily expressed in polar

coordinates by using r2 = p2 + b2 as the radius variable:

C(r, φ) = e−
r2

2σ2 . (6.24)

The modified kernel is expressed as follows:

C(r, φ) =

{
e−

r2

2σ2 , |φ| ≤ π/4 & 3π/4 ≤ φ ≤ 5π/4

0, otherwise.
(6.25)

The proposed kernel is illustrated in Fig. 6.7. After applying a kernel C(p, b), the

resulting TFD is obtained through the 2D Fourier transform:

TFD(n, k) =
∑
p

∑
b

A(p, b)C(p, b)e−j2πnp/Ne−j2πbk/N . (6.26)
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Figure 6.8: Non-stationary windowed signal approximated by chirps.

6.4.3 Windowed chirp-based kernel

The chirp-based kernel is basically applied when the input signals are chirps. Since

other types of non-stationary signals have auto-terms locating anywhere in the am-

biguity plane, this kernel results in inaccurate TF approximation. Nevertheless, ac-

cording to [13, 14], the frequency law of any non-stationary windowed signal can be

approximated as a sum of chirps as illustrated in Fig. 6.8. Therefore, for each non-

stationary segments, the chirp-based kernel can be used. The algorithm proceeds

as follows. The chirp-based kernel is first computed with the predefined window

length Nw. At each time n, we compute the STAF centered at time n, AF (n; p, b).

AF (n; p, b) is given by:

AF (n; p, b)

=
∑
u

s∗(u− b/2)w∗(u− n− b/2)s(u+ b/2)w(u− n+ b/2)ej2πup/Nw

=
∑
u

IAF (n;u, b)w∗(u− n− b/2)w(u− n+ b/2)ej2πup/Nw ,

(6.27)

where w(u) is a symmetrical window function which is 0 when |u| > Nw/2 and

IAF (n;u, b) is the IAF of the windowed signal centered at n, which is illustrated in

Fig. 6.9. The current-time slice of the TFR is computed as one slice (at time n only)

of the two-dimensional Fourier transform of the STAF-kernel product, expressed as
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Figure 6.9: Illustration of the IAF of the windowed signal of length Nw.

follow:

TFR(n, k) =
∑
p

∑
b

A(n; p, b)C(n; p, b)e−j2πnp/Nwe−j2πbk/Nw . (6.28)

Similar to the AOK, this method can be used to extract signals’ TFRs for real-time,

online implementation or for very long signals.

6.4.4 Chirp-based adaptive optimal kernel

This approach combines the chirp-based kernel and the AOK to design an optimal

kernel for each windowed signal. The objective of the designed kernel is: 1) mit-

igating cross-components, 2) preserving auto-components and 3) combating with

adverse effects of incomplete data in the time-frequency domain.

According to [20, 79], AOK solves the optimization problem in polar coordinates.

It samples the angle φ and the radius r into Q, and G discrete values, respectively.

The discrete kernel in polar coordinates is expressed as follows:

C(g, q) = e
− (g∆r)2

2σ(q∆φ)2

g = 0, ..., G− 1, q = 0, ..., Q− 1,
(6.29)

where g and q are the radius and angle indices, ∆r and ∆φ are the radius and angle

step sizes. The discrete kernel is parameterized by a positive spread parameter,
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σ(q∆φ), in such a way that it is large at a certain angle if the magnitude of the AF

is large. Initially, the normal Gaussian kernel is used with equal spread parameter

σ for every angle. Then, the spread parameter is updated by the gradient ascent

methods to match with signals in the ambiguity plane. The AOK is implemented

on windowed signals in order to suit online and real-time applications. A major

drawback of the AOK in the case of missing data is that it capture wrong regions,

especially along the Doppler frequency lag, where noise-like artifacts are always

present.

As discussed above, for any short-time non-stationary signal, its auto-terms in

ambiguity domain reside significantly inside the regions |φ| ≤ π/4 and 3π/4 ≤
φ ≤ 5π/4. Thus, the AOK should only carry out the optimization in these regions

in order to lower the probability of choosing an incorrect area. The optimization

problem in [20, 79] is amended as follows:

max
σ(q∆φ)

G−1∑
g=0

Q−1∑
q=0

(g∆r) |Ass(n; g, q)C(n; g, q)|2

subject to C(n; r, q) = e
− (g∆r)2

2σ2(q∆φ)

N−1∑
q=0

σ2(q) ≤ vo

|q∆φ| ≤ π/4 & 3π/4 ≤ q∆φ ≤ 5π/4

(6.30)

where vo is the kernel volume. A set of reasonable upper and lower bounds for vo

is given by:

1 ≤ vo ≤ 5. (6.31)

Similarly, the current-time slice of the TFR is computed as one slice (at time n only)

of the two-dimensional Fourier transform of the STAF-kernel product, expressed as

follows:

TFR(n, k) =
∑
p

∑
b

A(n; p, b)C(n; p, b)e−j2πnp/Nwe−j2πbk/Nw . (6.32)
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6.5 Fast Implementation

Although straightforward conceptually, direct implementation of the chirp-based

kernel would be quite expensive computationally. Fortunately, there are a number

of tricks which can be applied to reduce the computation load required for this

algorithm.

6.5.1 STAF computation

Fast implementation of the STAF depends on an asymmetrical form of the AF, for

three reasons:

1. It supports a causal implementation suitable for on-line computation.

2. It allows computationally efficient recursive implementation.

3. It supports full-rate sampling in the correlation lag variable, which provides

an alias-free distribution for signals sampled at or above the Nyquist rate.

For a signal s(n) of length N , the positive asymmetric ambiguity function is given

by [90]:

χ(p, b) =
N−1∑
n=0

s(n)s(n− b)ej2πpn. (6.33)

With each lag b ∈ [−N,N ], range value of time is:{
b ≤ n ≤ N b ≥ 0

0 ≤ n ≤ N + b b < 0.
(6.34)

We can say that the symmetric AF As(p, b) can be easily obtained from the

asymmetric AF by multiplying it with a factor ej2πpb/2. The two-dimensional Fourier

transform of the asymmetric AF is called the Rihaczek distribution. Assume that

we have a signal composed of a sinusoid and a chirp, the symmetric AF, asymmetric

AF and their two-dimensional Fourier transform are shown in Fig. 6.10.

Recursion allows fast implementation of the STAF. In order to facilitate recursive

computation, the symmetric AF in (6.27) is amended to obtain asymmetric STAF
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(a) (b)

(c) (d)

Figure 6.10: (a) Asymmetric AF; (b) Rihaczek distribution (2D Fourier transform

of the asymmetric AF); (c) Symmetric AF; (d) TFD.
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by replacing u = n+Nw/2− b/2− v. The asymmetric STAF is expressed as:

χ(n; p, b) =
∑
v

s∗(n+Nw−v−b)w∗(−v+Nw−b)s(n+Nw−v)w(−v+Nw)e−j2πvp/Nw .

(6.35)

The range of v needs to satisfy:{
n−Nw/2 + 1 ≤ u− b/2 ≤ n−Nw/2

n−Nw/2 + 1 ≤ u+ b/2 ≤ n−Nw/2

⇐⇒

{
n−Nw/2 + 1 ≤ n+Nw/2− b− v ≤ n−Nw/2

n−Nw/2 + 1 ≤ n+Nw/2− v ≤ n−Nw/2

⇐⇒ 0 ≤ v ≤ Nw − b− 1.

(6.36)

For simplicity, we consider the special case of a rectangular window, and replacing

ns = n+Nw then the asymmetrical STAF in (6.35) becomes:

χ(n; p, b) =
Nw−b−1∑
v=0

s∗(ns − v − b)s(ns − v)e−j2πvp/Nw . (6.37)

According to [57, 79, 91, 92, 93], the asymmetric STAF χ(n; p, b) can be obtained

by recursion as follows:

χ(ns; p, b) = γe−j2πpχ(ns − 1; p, b) + s(ns)s
∗(ns − b)− γNw−be−2πp(Nw−b)

s(ns − (Nw − k))s∗(ns − b− (Nw − b))

= γe−j2πpχ(ns − 1; p, b) +R(ns, b)− γNw−be−2πp(Nw−b)R(ns − (Nw − b), b),
(6.38)

where γ is a positive real number just less than one. Rd(ns, b) is the asymmetric

instantaneous correlation function:

Rd(ns, b) = s(ns)s
∗(ns − b). (6.39)

Normally, we insert “Nw − 1” zeros in front of the signal. In this way, the initial

value for χ(ns− 1; p, b) is a zero matrix of dimension [NwxNw] and the initial values

for n and ns are Nw/2 and Nw. The first asymmetric instantaneous correlation

function is calculated with first one value of the signal. The relationship between

the asymmetric and the symmetric STAF is as follows:

A(n; p, b) = χ(n; p, b)ej2πp(n+Nw−b/2)/Nw . (6.40)
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We calculate the asymmetrical STAF from (6.38) and then use (6.40) to set the

symmetrical STAF. Once the discrete instantaneous asymmetric correlation func-

tion is computed, it can then be reused extensively, thus making the cost per STAF

in (6.38) only two complex multiplications and two complex additions. Further-

more, only STAF samples corresponding to positive lags need to be computed or

stored, because negative lag values can be obtained from the positive lags using the

symmetry relation:

A(n; p, b) = A∗(n;−p,−b). (6.41)

An additional benefit of this scheme is that half-sample lag values are avoided,

thus preventing the need for interpolation or oversampling to obtain unaliased TFRs.

6.5.2 TFR time-slice computation

The current-time slice of the TFR is computed as one slice (at time n only) of

the two-dimensional Fourier transform of the symmetrical STAF. Therefore, it is

not necessary to compute the frequency content at every time instant inside the

window. An efficient way to obtain the frequency slice at time n only is as follows:

D(n, k) =
∑
b

∑
p

A(n; p, b)C(n; p, b)e−j2πbk/Nwe−j2πpn/Nw

=
∑
b

∑
p

χ(n; p, b)ej2πp(n+Nw−b/2)/NwC(n; p, b)e−j2πbk/Nwe−j2πpn/Nw

=
∑
b

(∑
p

χ(n; p, b)ej2πp(Nw−b/2)/NwC(n; p, b)

)
e−j2πbk/Nw .

(6.42)

By using the asymmetric AF, the Fourier transform over the Doppler variable is

replaced by a simple inner sum and thus the computational load is smaller. After

summing the product over the Doppler variable, we get a vector changing with lag

variable. Its one-dimensional Fourier transform gives only one frequency slice.

6.6 Simulation Results

This section evaluates the performance of the proposed RIDs, windowed chirp-based

kernel and chirp-based adaptive optimal kernel, with various types of non-stationary
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signals. The signals are sampled at the Nyquist rate, and then randomly shortened

to create the incomplete data to be processed. The two representatives of signal-

independent and signal-dependent kernels, Choi-Williams and the AOK, are simu-

lated with the same signals to get a visual comparison with our methods. Notice

that all methods will be applied on sliding windowed signals. The resulting images

are normalized and transferred to the energy version to display. A parameter of

concentration level ζ is used to access the accuracy of the resulting TFR. ζ is the

ratio of the sum of pixel magnitude along the actual instantaneous frequency of the

signals with respect to the rest of the TF values. So, the higher ζ, the more accurate

the TF approximation. It is shown that the TFR based on chirp-based kernel design

provides improved TF estimations when compared to the conventional RIDs. In all

plots, the frequency axis is normalized with respect to the sampling frequency Fs.

1) Example 1: The first example considers a signal composed of a chirp and a

sinusoid, which is expressed below:

s(n) = exp

{
j2π[(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]

}
+

exp

{
j2π[(0.1Fs)

n

Fs
]

}
+ v(n),

(6.43)

with the sampling frequency Fs = 256Hz. The signal’s length is one second, or

N = Fs, and n = 0, ..., N − 1. The signal is corrupted by white Gaussian noise

v(n) with the signal-to-noise ratio (SNR) set to 30dB. A rectangular window of

length Nw = 64 is used. We randomly remove 50% of the signal samples to have

the compressed observations.

Fig. 6.11 shows the time-frequency signature of the full signal obtained by the

proposed approach as well as other methods for comparison. Fig. 6.11(a) shows

the windowed Choi-Williams distribution using full data. This method calculates

the STAF first, then builds the Choi-Williams kernel with a predefined window

length and obtains the TFRs by the two-dimensional FFT. It can be seen that with

the fixed Choi-Williams kernel, cross-terms still show their strong existence in the

TF domain. The concentration level ζ = 2.84. The windowed chirp-based kernel

gives an improved TFR with a higher ζ = 5.91. It is reasonable since the chirp-based

kernel only considers half of the ambiguity plane where the auto-terms reside. Under

the full data condition, the two adaptive optimal kernels get good TF estimations.
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(a) (b)

(c) (d)

Figure 6.11: (a)Windowed Choi-Williams distribution; (b) TFR obtained using the

AOK; (c) Windowed chirp-based TFR; (d) Chirp-based adaptive optimal TFR of

the full signal in (6.43).

155



(a) (b)

(c) (d)

Figure 6.12: (a)Windowed Choi-Williams distribution; (b) TFR obtained using the

AOK; (c) Windowed chirp-based TFR; (d) Chirp-based adaptive optimal TFR of

the signal (6.43) when 50% data is missing.
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The conventional AOK has ζ = 20.31 while the chirp-based adaptive optimal TFR

has ζ = 24.1.

To get a comparison with the full data case, Fig. 6.12 shows the signal’s instan-

taneous frequency obtained by the same techniques when 50% of data is missing.

Missing samples introduce noise-like artifact which clutters both the time and the

frequency domains, as evident in Fig. 6.12(a). The traditional signal-independent

Choi-Williams kernel allows through not only part of the cross-terms but also arti-

facts, especially ones along the Doppler axis. Thus, the TF signature is corrupted

with noise-like effect and cross-terms. The concentration levels in the case of missing

data are obviously lower than those in the case of full data. The concentration level

of the TFR obtained by the fixed Choi-Williams kernel is only ζ = 0.73. The fixed

windowed chirp-based kernel gives a better performance as seen in Fig. 6.12(c) be-

cause it suppresses more cross-terms and artifacts. In particular, it removes all the

artifact along the Doppler axis. The concentration level is ζ = 1.74. Fig. 6.12(b) de-

picts many vertical lines in the TFR obtained by the AOK. These lines are impulses

caused by components captured along the Doppler axis. The dependent-kernel AOK

performs better than the two independent-kernels with ζ = 3.39. By removing the

artifacts along the Doppler axis, the chirp-based adaptive optimal kernel achieves

the most reliable result among the four methods with ζ = 6.

2) Example 2: The second example observes a multi-component signal as follows:

s(n) = exp

{
j(0.15Fs) cos(2π

n

Fs
+ π) + j2π(0.25Fs)

n

Fs

}
+ exp

{
j(0.15Fs) cos(2π

n

Fs
) + j2π(0.25Fs)

n

Fs

}
+ v(n).

(6.44)

Similarly, we set SNR = 30dB, Fs = 256 Hz, N = 256, n = 0, ..., N − 1. A rect-

angular window of length Nw = 64 is used. The signal is also randomly shortened

by 50%. The signal TF signature is also obtained in both the full data case and the

missing data case by four similar methods: the windowed Choi-Williams kernel,the

chirp-based kernel, the AOK, the chirp-based adaptive optimal kernel. The simu-

lation results in Fig. 6.13 and Fig. 6.14 show that both fixed and adaptive kernels

based on the chirp give a better performance than the traditional ones.
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(a) (b)

(c) (d)

Figure 6.13: (a) Windowed Choi-Williams distribution; (b) TFR obtained using

AOK; (c) Windowed chirp-based TFR; (d) Chirp-based adaptive optimal TFR of

the full signal in (6.44).
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(a) (b)

(c) (d)

Figure 6.14: (a) Windowed Choi-Williams distribution; (b) TFR obtained using the

AOK; (c) Windowed chirp-based TFR; (d) Chirp-based adaptive optimal TFR of

the signal (6.44) when 50% data is missing.
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It is evident that the windowed Choi-Williams distribution is severely influenced

by the cross-terms and the noise-like effect caused by the missing samples, which can

be seen in Fig. 6.13(a) and Fig. 6.14(a). The concentration level when we have all

the data is ζ = 1.85, which is larger than ζ = 0.52 obtained when 50% of the data is

absent. The fixed chirp-based kernel gives superior results compared with the fixed

Choi-William kernel with ζ = 11.11 with full data and ζ = 2.48 with incomplete

data. Similarly with example 1, the AOK works well under the full data condition

with ζ = 12.65. In the case of incomplete data, the TFR shows some vertical lines

as the result of wrong areas captured in the ambiguity domain especially along the

Doppler axis. The concentration level gets lower at ζ = 3.5. The TF estimations

get improved when chirp-based optimal kernel is used with ζ = 13 for full data, and

ζ = 5.8 for incomplete data. It is because the optimization is performed only in

regions where the auto-terms reside, and it excludes the regions covering the Doppler

axis.

3) Example 3: In the third example, we observe a signal composed of three

components as follows:

s(n) = exp

{
j(0.15Fs) cos(2π

n

Fs
+ π) + j2π(0.25Fs)

n

Fs

}
+ exp

{
j2π[(0.1Fs)

n

Fs
+ (0.2Fs)

n2

2F 2
s

]

}
+ exp

{
j2π[(0.2Fs)

n

Fs
+ (0.2Fs)

n2

2F 2
s

]

}
+ v(n).

(6.45)

Similar parameter settings are used. Simulations are also carried out with both full

data and missing samples. The windowed Choi-Williams kernel and the AOK are

also deployed to get a comparison between the two proposed methods, which are

based on the chirp property in the ambiguity domain. The results are plotted in

Fig. 6.15 and Fig. 6.16. The TFRs obtained by the four methods (the windowed

Choi-Williams kernel, the AOK, the windowed chirp-based TFR and the chirp-based

adaptive optimal kernel) get worse when we use incomplete data because of the noise-

like effect. The windowed Choi-William kernel gives the worst performance as it lets

much of cross-terms and missing sample artifacts go through. The concentration

levels in the full data case and the incomplete data case are 0.5 and 1.2, respectively.

The fixed windowed chirp-based kernel offers more accurate TF estimations with

160



(a) (b)

(c) (d)

Figure 6.15: (a) Windowed Choi-Williams distribution; (b) TFR obtained using

the AOK; (c) Windowed chirp-based TFR; (d) Chirp-based adaptive optimal TFR

of the full signal in (6.45).
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(a) (b)

(c) (d)

Figure 6.16: (a) Windowed Choi-Williams distribution; (b) TFR obtained using the

AOK; (c) Windowed chirp-based TFR; (d) Chirp-based adaptive optimal TFR of

the signal (6.45) when 50% data is missing.
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ζ = 1.4 and ζ = 3.7. The signal-dependent kernels outperform the fixed kernels.

The AOK achieves concentration levels in the missing and full data conditions of

ζ = 1.64 and ζ = 15.6, respectively. The chirp-based adaptive optimal kernel give

the best TFRs with the highest concentration level, ζ = 5.2 in the case of limited

data and ζ = 41.24 in case of full data.

6.7 Conclusion

This chapter has introduced novel methods of designing signal-independent and

signal-dependent kernels in the ambiguity domain. Similar to the AOK, they op-

erate on windowed signals. The frequency slice at the middle point of the window

is obtained by a two-dimensional Fourier transform of the STAF and the kernel

product. The proposed methods also give superior results when compared with the

traditional kernels both in the case of complete and incomplete data. It is because

the kernels remove half of the ambiguity plane where the signals’ auto-term do not

reside. Especially, the removed region includes the Doppler axis, where the noise-like

artifacts always appear. Therefore, these artifacts are largely mitigated. The pro-

posed signal-independent kernel builds a mask with the predefined window length,

and this mask is used in the whole TF estimation procedure. The chirp-based adap-

tive kernel, on the another hand, calculates a mask for each signal segment. This

method can not only track the local change of the signal but also combat the adverse

effects of compressed data.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has provided an overview of conventional as well as modern TFDs like

the short time Fourier transform, the Wigner-Ville distribution, the reduced inter-

ference Cohen’s class and the sparse TF reconstruction from full and windowed

signals in both the time and ambiguity domains. However, each method has its

own drawbacks, which leads to undesired results. So here we have introduced two

new TFDs which can bring about more reliable estimations of the TF signature of

non-stationary signals.

The first approach performs sparse reconstruction from windowed data in the

time domain with a novel chirp dictionary. As in many situations, the non-stationary

signal frequency law is more properly approximated by piece-wise second-order poly-

nomials than fixed frequency sinusoids. Thus, the chirp dictionary, instead of the

sinusoidal dictionary, is better suited for sparse reconstruction problems dealing

with these signals. The chirp dictionary is built in two ways. The first way in-

cludes all possible chirps which can appear in any signal segment. The second way

is also composed of all chirps, but they are formed from sinusoids which are rotated

through all eligible angles by the fractional Fourier transform. Although the dic-

tionary construction procedure is different, the two ways actually lead to the same

results.

The chirp dictionary approach has been proven to provide more reliable TF es-

timations compared with the sinusoidal approach. The chirp method nevertheless,
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deploys a very large dimension measurement dictionary. Since there are two param-

eters to be estimated (i.e. the chirp rate and the initial frequency), the dictionary

dimension can be equal to the square of the dimension when using the sinusoid atom.

This very large atom set leads to a much heavier computational burden and a longer

calculation time. Therefore, in order to obtain good TF estimation at low compu-

tational complexity, chirp dictionary simplification methods are needed. Therefore,

we introduce two approaches which reduce the chirp dictionary dimension, thus low-

ering the calculation load. In the first one, we estimate the chirp rate through the

DTFT of the bilinear product at a certain time lag. The initial frequency is solved

in the time domain, with a lower dimensional dictionary than the computationally

complex full chirp atom. In the second approach, the fractional Fourier transform

(FRFT) is used to obtain an initial frequency for each chirp-rate. This leads to a

much simpler chirp atom set.

The second method in this thesis introduces a novel fixed and signal-dependent

kernel in the ambiguity domain, which can efficiently remove cross-term interfer-

ence and partially combat missing sample effects without using compressive sensing

techniques. These kernels are applied on windowed signals to facilitate online imple-

mentation, or processing long signals, since any non-stationary signal segment can

be approximated by a sum of chirps. Additionally, the chirps’ auto-terms always

reside in only half of the ambiguity domain which does not cover the Doppler axis.

By removing the areas where the auto-terms do not lie, part of interference and

artifacts are mitigated. Moreover, the analysis of the distribution of the artifacts

shows that artifacts always appear along the Doppler axis. Filtering out the region

along the Doppler axis results in obviously improved TFRs.

7.2 Future Work

During the past decade, the technology associated with “seeing” through walls has

witnessed a growing interest. The objectives of sensing through walls and inside an

enclosed structure range from determining building layouts, discerning the nature

of activities inside the buildings and imaging building interiors to detect, identify,

classify and track the whereabouts of humans and moving objects. These attributes

are highly desirable for a range of organizations, including police, fire and rescue
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personnel, first responders and defence forces [1, 94, 95, 96, 97, 98, 99, 100, 101,

102, 103]. To achieve these objectives, electromagnetic waves are considered very

effective due to their ability to penetrate man-made building materials and image

targets behind opaque structures. Through-the-wall radar imaging is a multifaceted

technology. It requires a blending of several disciplines in the field of electrical

engineering, especially those that involve signal, array and image processing as well

as radars, antennas and electromagnetic waves. Suggestions for future work focus

on two important topics:

(a) Target range estimation and location of static and moving targets using com-

pressive sensing techniques and time-frequency analysis [53].

Radar imaging achieves its range and cross-range resolutions of targets through

the exploitation of, respectively, the bandwidth of the signals and the aperture

of an array of sensors used in the operation. The aperture of the array can

be achieved using a collocated physical array or a synthetic array. Depending

on the application requirement and the system feasibility, an antenna array

can be designed in one or two dimensions, or as a set of sparsely distributed

sensors. The data collection at different sensors may be processed coherently

or non-coherently.

For localization and tracking of a small number of targets in a sparse scene,

it becomes possible to exploit compressive sensing in data collection and pro-

cessing. Such techniques include the reduction of the number of time samples,

thinned arrays, and thinned frequency steps.

Targets in motion demonstrate Doppler signatures, which, through an appro-

priate exploitation of time-frequency analysis can be useful for signal enhance-

ment and target discrimination. Targets with different Doppler signatures may

be separated in the time-frequency domain, and their localization becomes fea-

sible, even with only a small number of frequency and array antennas.

The target range estimation deals with the high amount of multi-path in in-

door environments. A variety of multi-path exploitation approaches, both

under conventional and sparse reconstruction frameworks, have been recently

proposed in the literature. However, these methods require prior knowledge
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of the interior layout of the building to eliminate ghost targets (accumulation

of unwanted energy at incorrect target location) and provide enhanced qual-

ity. In practice, this information may not be available. Thus, significant more

research in this field needs to be carried out.

(b) Characterization and classification of human motion through radar micro-

Doppler signatures.

Recent research and developments for in home radar monitoring have shown

real promise of the technology in detecting normal and abnormal gross-motor

activities of humans inside their residences and at private homes. It has

been shown that typical interior walls do not significant alter the radar time-

frequency signature of a fall or normal walking, and the radar signal return

is only slightly weakened by wall penetration. Thus, radar can be used as a

remote fall-monitoring [104]. As the focus shifts to radar system integration,

operations and installation, attention is being paid to:

• The required number of radar units for a given residence.

• The radar unit is designed to be elderly or patient specific in the sense

that the detection and classification algorithms of a fall and other gross-

motor human activities do not use features extracted from training data

associated with a large population. Rather, these algorithm are self-tuned

to the person being monitoring.

• Classification methods, which can be based on physical features like ex-

treme frequency dynamic range [105] or PCA-based classification [106].
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Appendix A

A.1 Digital Computation of The Fractional Fourier

Transform (FRFT)

A.1.1 Compactness in the time domain, frequency domain

and Wigner space

A function will be referred to as compact if its support is so [49]. The support of

a function is the subset of the real axis in which the function is not equal to zero.

In other words, a function is compact if and only if its nonzero values are confined

in a finite interval. We all know that a function in time and its Fourier transform

cannot be both compact except the case that they are identically zero. However, in

practice, we can work with a finite time interval and a finite bandwidth. Thus, the

difference between the mathematical idealization and the real world is usually not

a problem when we work with signals of large time-bandwidth product.

The time-bandwidth product here is defined as the product of the temporal ex-

tent of the signal and its doubled-sided bandwidth. Let µ denote the time-bandwidth

product. For example, a signal has the sampling frequency Fs and the number of

samples is N = Fs. It means that the signal is confined to the time interval of [0, 1],

and frequency interval of [−Fs/2, Fs/2]. The time-bandwidth product of this signal

is µ = (2xFs/2)x1 = Fs.

To calculate the discrete FRFT, we will scale frequency, time and other fractional

domains to the one variable. We will consider the coordinate of the new domain

x. Assume that the signal in the time domain is approximately confined to the
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interval [−∆t/2,∆t/2] and its frequency representation is confined to the interval

[−∆f/2,∆f/2]. The time-bandwidth product is µ = ∆t∆f . In the new domain, we

use the scale coordinates x = t/sl, y = fsl, where sl is scaling parameter. With these

new coordinates, the time and frequency domain representation will be confined to

intervals of length ∆t/sl and ∆fsl. Choose sl =
√

∆t/∆f , both intervals are now

equal to
√

∆t∆f =
√
µ, which we denote by ∆x (∆x =

√
µ). In other words, the

new domain x is confined in the interval [−∆x/2,∆x/2], and thus the sample space

is 1/∆x = 1/
√
N . Its orthogonal domain y is also confined to [−∆x/2,∆x/2].

From now on, we will assume that this dimensional normalization has been

performed and that the coordinates appearing in the definition of the FRFT, the

Wigner distribution, etc., are all dimensionless quantities.

If a representation of the signal in a certain domain, x for instance, is confined

to a certain interval around the origin, then the Wigner distribution will be confined

to an infinite strip perpendicular to x defined by that interval. Thus, assuming that

the representation of the signal in all domains is confined to an interval of length

∆x around the origin, this is equivalent to assuming that the Wigner distribution is

confined within a circle of diameter ∆x. With this, we mean that a sufficient large

percentage of the energy of the signal is contained within that circle.

Figure A.1: Circular support of a signal in TF space. The square bounding the

circle is also shown.
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Figure A.2: The effect of multiplication of the time domain representation of the

signal by a chirp function with chirp rate of tan(φ/2).

A.1.2 Effect of chirp multiplication and convolution on com-

pact signals

A signal is referred to as compact if its Wigner distribution is compact, that is, if it

is confined to a circle of some finite diameter ∆x (see Fig. A.1).

Now, let us assume that the time domain representation of our signal f(x) is

multiplied by the chirp function exp[j2π tan(φ/2)x
2

2
], where π/2 ≤ φ ≤ π/2. Math-

ematically, this corresponds to convolving the original Wigner distribution with the

Wigner distribution of the chirp function δ[y− tan(φ/2)x]. Its effect is to shear the

Wigner distribution in the y direction, as shown in Fig. A.2.

We see that the support of the Wigner distribution remains compact. Whatever

percentage of the signal was confined to the bandwidth ∆x, now it is confined to the

bandwidth ∆x(1 + | tan(φ/2)|). If φ = π/2, the new bandwidth will be double the

old one. So, multiplying a function f(x) with the chirp function exp[j2π tan(φ/2)x
2

2
]

results in a convolution of their Fourier transforms, resulting in an overall double-

sided bandwidth. Thus, we have to sample the modulated signal at interval of 1
2∆x

.
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If the samples of f(x) are spaced at 1
∆x

, we can interpolate these and then multiply

by the samples of the chirp function to obtain the desired number of samples.

A similar argument holds for convolution of a function with a chirp. But this

time, shearing of the Wigner distribution in the x-direction is involved.

A.1.3 Methods of computing the continuous Fractional Fourier

Transform

Let {Ff}(x) denote the Fourier transform of f(x′). The ath order fractional Fourier

transform {Faf}(x) of the function f(x′) may be defined for 0 ≤ |a| ≤ 2 as,

{Faf}(x) =

∫ ∞
−∞

Ba(x, x
′)f(x′)dx′

Ba(x, x
′) = Aφ exp

[
jπ(x2 cotφ− 2xx′ cscφ+ x′2 cotφ)

]
Aφ =

exp(−jπsgn(sinφ)/4 + jφ/2)

| sinφ|1/2
,

(A.1)

where

φ =
aπ

2
. (A.2)

This definition is easily extended outside the interval [−2, 2] by remembering that

F4i is the identity operator for any integer i and that the FRFT is additive in index,

that is, Fa1Fa2 = Fa1+a2 .

(A.1) can rarely be evaluated analytically; therefore, numerical integration is

called for. Numerical integration of quadratic exponentials, which often appear in

diffraction theory, requires a very large number of samples if conventional methods

are to be employed, due to the rapid oscillations of the kernel. The problem is

particularly pronounced when a is close to 0 or ±2. If we assume both the function

and its Fourier transform to be confined to a finite interval, then we can solve the

problem as follows [107, 108, 109]:

• If a ∈ [0.5, 1.5] or a ∈ [2.5, 3.5], we evaluate the integral directly.

• If a ∈ [−0.5, 0.5] or a ∈ [1.5, 2.5], we use the property Fa = F1Fa−1. Notice

that Fa−1 can be evaluated directly.
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Another method of evaluating (A.1) would be to use the spectral decomposition of

the kernel [110, 110, 111]. This is equivalent to first expanding the function f(x) as∑∞
n=0 cnψn(x), multiplying the expansion coefficients cn, respectively, with e−ianπ/2,

and summing the components.

Although both ways of evaluating the fractional Fourier transform may be ex-

pected to give accurate results, we do not consider them further since they take

O(µ2), where µ is time-bandwidth product.

A.1.4 Digital computation of the fractional Fourier trans-

form

The FRFT is a member of a more general class of transformations that are some-

times called linear canonical transformations or quadratic-phase transforms [112].

Members of this class of transformations can be broken down into a succession of

simpler operations, such as chirp multiplication, chirp convolution, scaling and or-

dinary transformation.

The defining equation for the fractional Fourier transform in (A.1) can be put

in the form:

{Faf}(x) = Aφe
jπγx2

∫ ∞
−∞

e−i2πκxx
′
[eiπγx

′2
f(x′)]dx′, (A.3)

where γ = cotφ and κ = cscφ, x′ and x are the variables of the function before

and after performing FRFT. We are again assuming that the Wigner distribution of

f(x′) is zero outside a circle of diameter ∆x centered around the origin. Under this

assumption, and by limiting the order a to the interval 0.5 ≤ |a| ≤ 1.5, the amount

of vertical shear in the Wigner space resulting from the chirp modulation is bounded

by ∆x/2 (one side). Then, the modulated function eiπγx
′2
f(x′) is band-limited to

∆x (one side) in the frequency domain. It means that we have to sample f(x′) at a

sampling frequency 2∆x to get rid of the alias. Let nf be the discrete variable for x′

variable. Thus, eiπγx
′2
f(x′) can be represented by Shannon’s interpolation formula,

eiπγx
′2
f(x′) =

µ∑
nf=−µ

eiπγ(
nf

2∆x
)f(

nf
2∆x

) sinc
(

2∆x(x′ − nf
2∆x

)
)
, (A.4)
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where µ is the time-bandwidth product, µ = (∆x)2. The summation goes from

−µ to µ since f(x′) is assumed to be zero outside [−∆x/2,∆x/2]. From (A.3) and

(A.4), we have:

{Faf}(x) = Aφe
jπγx2

µ∑
nf=−µ

eiπγ(
nf

2∆x
)f(

nf
2∆x

)∫ ∞
−∞

e−i2πκxx
′
sinc

(
2∆x(x′ − nf

2∆x
)
)
dx′

=
Aφ

2∆x
ejπγx

2

µ∑
nf=−µ

eiπγ(
nf

2∆x
)f(

nf
2∆x

)e−i2πκx(nf/2∆x).

(A.5)

Then, the samples of the transformed function are obtained as:

{Faf}( uf
2∆x

) =
Aφ

2∆x

µ∑
nf=−µ

exp

(
jπγ(

uf
2∆x

)2 − i2πκ ufnf
(2∆x)2

+ iπγ(
nf

2∆x
)

)
f(

nf
2∆x

).

(A.6)

Direct computation of this form would require O(µ2) multiplications. An O(µ log µ)

can be obtained as follows. We put (A.6) into the following form after some algebraic

manipulations:

{Faf}( uf
2∆x

) =
Aφ

2∆x
eiπ(α−β)(

uf
2∆x

)2

µ∑
nf=−µ

eiπκ(
uf−nf

2∆x
)2

eiπ(α−β)(
nf

2∆x
)2

f(
nf

2∆x
). (A.7)

It can be seen that the calculation includes a chirp multiplication followed by a chirp

convolution followed by another chirp multiplication.

By assuming appropriate x2 interpolation and decimation, the procedure starts

with µ samples spaced at 1/∆x, which uniquely characterizes the function f(x′) and

returns the same for {Faf}(x). Let fff , fffa denote column vectors with µ samples of

f(x′) and {Faf}(x). The overall procedure can be represented as:

fffa = Fafff,

Fa = DKaJ,
(A.8)

where D and J are matrices representing the decimation and interpolation operator.

Ka is expressed as:

Ka(uf , nf ) =
Aφ

2∆x
ejπ{α(uf/2∆x)2−2κ[nfuf/(2∆x)2]+α(nf/2∆x)2}, (A.9)
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for |nf | ≤ µ and |uf | ≤ µ. The convolution can be computed in O(µ log µ) by

using the FFT. The output samples can be obtained by a final chirp multiplication.

Hence, the overall complexity is O(µ log µ).

We has assumed 0.5 ≤ |a| ≤ 1.5 in deriving this algorithm. Using the index

additivity property of the FRFT, we can extend this range to all values of a easily.

For instance, for the range 0 ≤ a ≤ 0.5, we use the formula:

Fa = Fa−1F1. (A.10)

A.2 Relationship between FRFT and WVD

TF representations are signal transformations that describe how the spectral content

of a time-varying signal or a non-stationary signal varies with time. One of the most

popular example is the Wigner Ville distribution (WVD) which is defined as:

WDs(t, f) =

∫
s(t+ τ/2)s∗(t− τ/2)e−j2πfτdτ. (A.11)

The relationship between the FRFT and the WVD is expressed as:

WDSφ(x, y) = WDs(t cos(φ)− f sin(φ), t sin(φ) + f cos(φ)), (A.12)

where WDSφ(x, y) denotes the WD of the FRFT signal Sφ(x), and WDs(t, f) is

the WD of the original time domain signal s(t). According to (A.12), WDSφ(x, y)

is simply a φ rotation of WDs(t, f). To illustrate, a chirp s(t) with the initial

frequency β = 0.1Fs and the chirp rate α = 0.3Fs is employed. We plot the WVD

of the time-domain signal and the WVD of the FRFT signal Sφ(x), with φ = π/16.

The figure is shown in Fig. A.3. This can be explained mathematically in [113].

The time domain signal can be obtained from the 2D WVD by the following two

ways: ∫
WDs(t, f)df = |s(t)|2∫
WDs(t, f) exp(j2πft)df = (F−1WDs)(t) = s(t)s(0)∗,

(A.13)

where s(0)∗ =
∫
WDs(0, f)df is a constant phase factor. From (A.13), the relation-

ship between the FRFT and the WVD can be explained in the following manner:
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(a) (b)

Figure A.3: Relationship between FRFT and WVD

s(t)→ WDs(t, f)(Wigner-Ville distribution)

WDs(t, f)→ WDs(t cos(φ)− f sin(φ), t sin(φ) + f cos(φ)) = WDSφ(x, y)

(RotateWDs(t, f) by an angle φ clockwise)

WDSφ(x, y)→ (F−1WDSφ)(x) = Sφ(x).

(Apply (A.13) to return the original form of the signal)

(A.14)

In short, the WVD of the FRFT with angle φ of a signal s(t) is simply the WVD

of the signal itself rotated by an angle φ.
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