
Formal Design and Verification of
Digital PID Gain Scheduling

Controllers
A Model Checking Approach

Pablo Armando Ordóñez Aguileta

Department of Engineering
University of Sheffield

This dissertation is submitted for the degree of
Doctor of Philosophy

February 2018

I would like to dedicate this thesis to my loving parents Pedro and Socorro. . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation, entitled "Formal Design and Verification of Digital PID Gain Scheduling
Controllers", is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Pablo Armando Ordóñez Aguileta
February 2018

Acknowledgements

My sincerest gratitude to my adviser, Tony Dodd, I could not have done any of this without
his support and encouragement throughout this long journey. His continuous guidance,
advice, and perspective made this possible even when I thought it was not. I will be forever
in debt with you Tony.

I would like to thank Andy Mills and Jun Liu for continuously providing feedback,
perspective, and more importantly, support during the development of this thesis. You have
been wonderful mentors and both of you played a fundamental role for the development of
this work.

I am truly honoured to had been part of the ACSE UTC group during my doctoral studies.
Not only did I have colleagues but I made friends, a wonderful group of people willing to
help or discuss ideas, especially if that meant a quick visit to The Red Deer. Special thanks
to Andrew, Masz, Chris, Romain, Kacper, Ibrahim, and Dan. That being said, thanks to The
Red Deer for always being open when I needed it.

To all my wonderful friends in this side of the world, thank you for being my family
away from home: Ariel, Debbie, AndyLú, Toño, Alepa, Mario, Jesús Alejandro, Yessi,
Maza, Robbie, Matamoros, Jaimito, Yess, Aldo, Harry, Oli, Jeff, Liliana, Celeste, Jorgito,
Anna-Lena, Samantha, Matei, Larín, and Antito. To Raquelín for helping me dance my
problems away at the very end of this journey. To Lucy Kemp for being so supportive during
the homestretch. To Matou for helping me so much when I needed it the most. A Karlira por
quererme cuando menos lo esperaba.

And last but not least, I would like to thank my family. They have always supported
me in whatever new challenge I took. To my dad and mom for everything. To my brother
Pedrito for always being there for me. To my uncle Pablo and my aunt Sonia, for being my
parents all over again. To my cousins Sonia, Made, and Pabloco, because you are basically
my siblings. My parents always thought that education and knowledge could open any door,
this is a testament to that idea.

Abstract

The verification process of embedded systems is fundamental for their correct development.
Embedded control is a popular choice among the engineering community, making the
relationship between control systems and computer science very close. Gain scheduling is a
typical approach for safety-critical systems (e.g. jet-engines). It is preferred due to a known
route to certification. Nonetheless, stability and performance are hard to prove analytically.
Consequently, safety and airworthiness are achieved by extensive testing, and therefore a
new way for verification is desirable.

Model checking, an exhaustive verification technique, is a part of formal methods. Model
checking can aid in detecting ambiguities and collisions in requirements, increasing and
improving testing coverage and error-detection rate. However, there are still limitations and
challenges to model checking. The state-space explosion problem limits its use to realistic
dynamic control systems: Computational memory runs out or available data types are not
appropriate for modelling.

This thesis addresses the formal design and verification of discrete PID gain-scheduled
control systems. By the means of a novel abstraction methodology the control problem is re-
solved in a model checking environment; formally tuning the controller whilst systematically
constructing a control schedule. The work in this overcomes typical constraints imposed by
model checking. In this manner, the gain-scheduled controller can be efficiently generated
and the resulting schedule is correct-by-construction with respect to high level performance
requirements. This novel methodology incorporates computer science and control systems
tools, proposing an a priori verification approach in contrast to current a posteriori testing
activities. By combining computer science and control engineering, the gap between formal
methods and control systems is reduced.

The next step in this line of research is to analyse the scalability of the approach using
more realistic models and design cases; in this manner the state-space explosion problem
can be addressed with a divide and conquer approach. Also, a trade-off analysis between
benefits and the required effort learning the new approach in a real development cycle must
be conducted to assess feasibility and capabilities of the approach.

Table of contents

List of figures xv

List of tables xxiii

Symbols and Acronyms xxv

1 Introduction 1
1.1 Motivation . 1

1.1.1 System Verification . 1
1.1.2 Trends in Aerospace Systems . 2
1.1.3 Avionics Certification . 4
1.1.4 Safety-Critical Software Development Life Cycle 5
1.1.5 Commercial Jet-Engine Control 7
1.1.6 Formal Methods and Model Checking 10
1.1.7 Challenges for a Formal Development Approach 11

1.2 Aims and Objectives . 12
1.3 Contributions . 13
1.4 Thesis Overview . 15

2 Literature Review and Technical Background 17
2.1 Overview . 17
2.2 Literature Review . 18

2.2.1 Verification & Validation . 18
2.2.2 Controller Synthesis and Properties Generation 19
2.2.3 Challenges and Approaches . 21
2.2.4 Remarks . 24

2.3 Technical Background . 26
2.3.1 Dynamic Control Systems . 26
2.3.2 Formal Methods and Model Checking 29

xii Table of contents

2.3.3 Model Checking and Hybrid Systems 31
2.3.4 Timed-Automata and Computation Tree Logic 31

2.4 Final Remarks . 35

3 Dynamic System Abstraction Methodology 37
3.1 Overview . 37
3.2 Discrete-time SISO LTI Models . 38
3.3 Fixed Point Representation Using Integer Data 39

3.3.1 Data Types for Data Representation 40
3.3.2 Fixed Point Data Size Considerations 41
3.3.3 Fixed Point Arithmetic Using Integer Data 42
3.3.4 Ad Hoc Data Type . 43

3.4 Modelling Error Compensation . 44
3.4.1 Parametric Compensation - ε1 Error 45
3.4.2 Fixed Point Representation Compensation - ε2 Error 48
3.4.3 Scaling Compensation - ε3 Error 48
3.4.4 Global Error . 51

3.5 Safety Guarantees . 52
3.5.1 Over and Under Approximation 53
3.5.2 Abstraction Generation . 53

3.6 Final Remarks and Discussion . 59

4 Control Performance Requirements Formal Verification 63
4.1 Overview . 63
4.2 High Level Requirements . 65
4.3 Design for Verifiability . 66

4.3.1 Automata Design . 71
4.3.2 UPPAAL Automata . 75

4.4 Requirements Formulation for Verification 79
4.5 Case Study: Thrust Control Verification 82

4.5.1 Verification Problem Formulation 83
4.5.2 System Abstraction . 85
4.5.3 Verification Results . 87
4.5.4 Discussion . 90

5 Digital PID Controller Formal Design 93
5.1 Overview . 93

Table of contents xiii

5.2 Problem Formulation . 94
5.2.1 Discrete PID Controller . 94
5.2.2 Controller Tuning: A Model Checking Formulation 97

5.3 Controller Synthesis Methodology . 100
5.3.1 Timed-Automata Update . 101
5.3.2 Requirements Formulation for Design 104
5.3.3 Controller Tuning Algorithm . 105

5.4 Case Study: Thrust Control Design . 106
5.4.1 Requirements and Initial Conditions 107
5.4.2 Results and Discussion . 108

6 Digital PID Gain Scheduling Control Formal Design 115
6.1 Overview . 115
6.2 Problem Formulation . 116

6.2.1 Gain Scheduled PI Control . 116
6.2.2 Schedule Design: A Model Checking Formulation 118

6.3 Schedule Synthesis Methodology . 119
6.3.1 Timed-Automata Update . 119
6.3.2 Requirements Formulation for Design 123
6.3.3 Schedule Design Algorithm . 124

6.4 Case Study: Thrust Control Schedule Design 125
6.4.1 Problem Formulation and Requirements 127
6.4.2 Results and Discussion . 131

7 Conclusions and Future Work 145
7.1 Conclusions . 145
7.2 Future Work . 147

References 151

List of figures

1.1 Block diagram representation of an Electronic Engine Control (EEC) unit
and the functional features it contains as software. 4

1.2 V-Shaped software development cycle. Popular within the aerospace industry
for software development. This process makes clear emphasis on testing ac-
tivities throughout the whole cycle, which are fundamental when developing
safety-critical software. 5

1.3 System verification: a posteriori approach. The verification takes place in
the product or a prototype of the product. The construction of the prototype
or product is performed before the verification activities takes place. If bugs
are found another iteration of the design and verification process is necessary. 7

1.4 Model checking verification approach: verification is performed in an a
priori manner. The verification is performed in a model of the system under
analysis before generating the product or a prototype. 8

2.1 Generic dynamic hybrid control system. A physical system regulated by a
computer-based controller. 27

2.2 Generic gain scheduled dynamic hybrid control system. A physical system
regulated by a computer based controller. The controller gains are con-
figurable while in operation depending on external factors and operating
points. 28

2.3 Generic transition system consisting of five nodes and eight edges. Every
node represents a state of the system and the edges represent how actions
make the system move between states. 30

2.4 Timed-Automaton example of a gate that open and closes on request. The
timing requirements regarding the opening and closing actions are modelled
using the clock x. 32

2.5 Graphic representation of state formulae in combination with path formulae.
a) ∀ϕ case and b) ∃ϕ case. 34

xvi List of figures

3.1 Generic continuous time closed loop control system. 45
3.2 Generic discrete time closed loop control system. 47
3.3 Open loop representation of the plant model with gain error compensation. . 47
3.4 Discrete-time system and discrete-time system abstraction response to a

step input comparison. KU = 0.001. KS=10,000. KS is used to scale the
original system and original with fixed-point system responses (this is done
for comparison purposes). The original input is a unit step, it is omitted in
the comparison for scaling reasons. 59

3.5 Discrete-time system and discrete-time system abstraction response to a step
input comparison. KU = 0.005. 60

4.1 Dynamic control system closed loop performance indicators: settling time,
maximum overshoot, rise time, and steady state error. 66

4.2 Example of a simplified feedback control system consisting of a plant and a
controller. The figure shows the most relevant control loop related variables
and their respective operating ranges. 67

4.3 Operating search space for an input (U) - output (Y) relationship using integer
data only. Input and output range: -32,767 - 32,767. The control problem
becomes a path search in (U,Y) coordinates - e.g. going from the origin to
point A or point B, moving from point C to point D. 68

4.4 Operating search space for an input (U) - output (Y) relationship using integer
data only. Input range: 0-10,000. Output range: 0-20,000. Every arrow
represents a ∆T amount of time elapsed. The reference tracking control
problem involves moving the output Y from an initial point towards a final
region by the means of changing the input U. Every ∆T both U and Y are
updated using their respective dynamics. 69

4.5 Operating space for input signal U and output signal Y showing the control
system performance indicators of interest. The reference tracking control
problem becomes one of analysing the trajectory from the origin point to
the reference point. The performance indicators become way-points in the
trajectory. 70

4.6 Reference tracking control problem for input signal U and output signal Y
with performance requirements as way-points in the trajectory. 71

4.7 Plant automaton. This automaton generates the output signal Y using a
discrete SISO LTI model and monitors its behaviour to determine transitions
between states. The high level performance requirements are processed in
this automaton under its different states. 73

List of figures xvii

4.8 Controller automaton. This automata generates the control signal U using a
discrete SISO LTI model and monitors its behaviour to determine transitions
between states. The controller automaton has less states than the Plant
automaton because in this problem formulation the control signal is not
under analysis, it is simple required for it to be generated. 73

4.9 Observer automaton. Automaton in charge of controlling the data flow
between the controller and the plant. This automaton monitors the control
signal U and output process signal Y to determine transitions between states. 74

4.10 UPPAAL implementation of the plant automaton. This automaton generates
the output signal Y and monitors its behaviour to determine transitions
between states. 77

4.11 UPPAAL implementation of the controller automaton. This automata gener-
ates the control signal U and monitors its behaviour to determine transitions
between states. 78

4.12 UPPAAL implementation of the observer automaton. Automaton in charge of
controlling the data flow between the controller and the plant. This automata
monitors the control signal U, output process signal Y, and the elapsed
time to determine transitions between states. It coordinates the execution
between plants and controllers using communication channels C and D. One
channel is used for the over approximation and the other one for the under
approximation. 79

4.13 Proposed automata: a) Plant automaton. b) Controller automaton. c) Ob-
server automaton. Performance requirements verification portrayed as a
reachability problem: can the states labelled as End be reached starting at
the states labelled as Start visiting the states which follow the blue arrows
trajectories in a finite amount of time? . 81

4.14 Open loop response for the linear system part of the thrust control problem.
The model corresponds to one of the operating regions in the thrust control
problem. 84

4.15 Open loop response comparison for the system abstraction and the initial
model for operating region 1 in the thrust control problem from Figure 4.14.
The initial response is scaled up for comparison purposes (using KS = 10,000). 86

4.16 Closed loop response of the system abstraction. Both over and under approx-
imation responses are plotted. Highlighted in red is the area where the over
approximation fails to meet the overshoot requirement. 89

xviii List of figures

4.17 Closed loop response of the original system. Highlighted in red is the area
where the system fails to meet the overshoot requirement. 90

4.18 Closed loop response of the system abstraction and the scaled original system.
Highlighted in red is the area where the over approximation and the original
system fail to meet the overshoot requirement. The original system response
is scaled for comparison purposes (using KS = 10,000). 91

5.1 Operating space for PI controller gains KP and KI . To tune the controller
gains requires finding a different combination of gains which drive the
system’s dynamics into a trajectory that meets requirements. Starting from
an initial set of gains a search is performed to find a possible solution to the
control problem. 98

5.2 Limited operating space for PI controller gains KP and KI . The search space
for each gain is limited to a certain area with upper and lower boundaries. The
available combination of controller gains are comprised in the intersection of
the two areas. The model checker uses this bounded area as the search space
to find a controller gains combination that drives the system into meeting
requirements. 99

5.3 Updated Observer automaton. Automaton in charge of the tuning procedure
of the controller gains and controlling the data flow between the controller
and the plant. This automaton monitors the control signal U and output
process signal Y to determine transitions between states. 102

5.4 UPPAAL implementation of the observer automaton. Automaton in charge of
controlling the data flow between the controller and the plant. The controller
tuning process has been incorporated. Gains KP and KI are modified in order
to find a suitable combination which drives the process to meet requirements.
This automaton monitors the control signal U, output process signal Y, and
the elapsed time to determine transitions between states. It coordinates the
execution between plants and controllers using communication channels C
and D. One channel is used for the over approximation and the other one for
the under approximation. 104

5.5 Closed loop response of the system abstraction. Both over and under approx-
imation meet all the requirements. 109

5.6 Closed loop response of the system abstraction and the scaled original system.
Both the abstraction (over and under approximations) and the original system
meet the requirements as determined by the model checker. The original
system response is scaled for comparison purposes (using KS = 10,000). . . 110

List of figures xix

5.7 Closed loop response for the original system using the initial PI controller
gains and the final controller gains. Highlighted in red is the overshoot area
where the initial controller tuning fails to meet the requirements. 111

6.1 Gain scheduled control scheme. The controller has a proportional+integral
(PI) structure (Equation 5.4). The schedule is driven by a combination of
external inputs and the controlled variable. 117

6.2 Gain scheduled control problem portrayed as a reachability problem. Three
different operating regions are presented. Each region has a different dynamic
behaviour. Trajectories between reference points are given by the amount
of possible schedule entries. In this case and for this example purpose only
2 possible trajectories are shown. The number of schedule entries will be
generated as required. 118

6.3 Updated Observer automaton. Automaton in charge of controlling the data
flow between the controller and the plant. This automaton keeps track of the
changes in reference and operating regions and commands both the plant
and controller automata to change their respective dynamics if required.
This automata monitors the control signal U and output process signal Y to
determine transitions between states. 120

6.4 UPPAAL implementation of the observer automaton. Automaton in charge
of controlling the data flow between the controller and the plant. The process-
ing of different operating regions, their respective dynamics, and different
controller tunings has been incorporated. Every time a change in the op-
erating point is detected the controller tuning can be non-deterministically
selected. This automaton monitors the control signal U, and output process
signal Y to determine transitions between states. It coordinates the execution
between plants and controllers using communication channels C and D. One
channel is used for the over approximation and the other one for the under
approximation. This particular automaton processes 5 different operating
points. 122

6.5 Gain schedule formal design methodology. High fidelity model and high
level requirements are taken into the model checking framework. The model
checking framework is composed of the abstraction methodology which
enables the formal PI controller tuning and the gain schedule design. Both
the controller tuning and the gain schedule design automata are used in
combination to solve the gain schedule design problem. 125

xx List of figures

6.6 Jet-engine thrust control. This is a possible behaviour of the control system
consisting of five operating regions. Each operating region has a particular
dynamic. In this scenario the same controller tuning is used for all the
operating regions. 128

6.7 Closed loop control system behaviour for the abstraction. Only one control
tuning is available and used for the five operating regions. The performance
indicators are listed in Table 6.4. The graph shows both the over and under
approximations with their respective control signals. 133

6.8 Closed loop control system behaviour for the original system. Similar to
Figure 6.7 only one control tuning is available and used for the five operating
regions. The performance indicators are listed in Table 6.4. The graph shows
generated thrust % and the control signal. 134

6.9 Closed loop control system behaviour for the abstraction. Two control
tunings are available. Tuning 1 is used for regions 1, 3, 4, and 5. Tuning 2 is
used for region 2. The performance indicators are listed in Table 6.6. The
graph shows both the over and under approximations with their respective
control signals. 136

6.10 Closed loop control system behaviour for the original system. Similar to
Figure 6.9 two control tunings are available. Tuning 1 is used for regions 1,
3, 4, and 5. Tuning 2 is used for region 2. The performance indicators are
listed in Table 6.6. The graph shows generated thrust % and the control signal.137

6.11 Closed loop control system behaviour for the abstraction. Final schedule:
Three control tunings are available. Tuning 1 is used for regions 1, 3, 4,
and 5. Tuning 2 is used for region 2. Tuning 3 is used for region 4. The
performance indicators are listed in Table 6.8. The graph shows both the
over and under approximations with their respective control signals. 139

6.12 Closed loop control system behaviour for the original system. Final schedule:
similar to Figure 6.11 three control tunings are available. Tuning 1 is used
for regions 1, 3, 4, and 5. Tuning 2 is used for region 2. Tuning 3 is used
for region 4. The performance indicators are listed in Table 6.8. The graph
shows generated thrust % and the control signal. 140

List of figures xxi

6.13 Initial controller tuning versus final schedule. Final schedule: three control
tunings are available. Tuning 1 is used for regions 1, 3, 4, and 5. Tuning 2 is
used for region 2. Tuning 3 is used for region 4. The performance indicators
for the final schedule are listed in Table 6.8. The performance indicators for
the initial configuration are listed in Table 6.4. The graph shows generated
thrust % and the control signal. 141

6.14 Closed loop control system behaviour for the abstraction. Counter-example
trace tunings were used in this case: Tuning 3 for regions 1, 2, 3, and 4.
Tuning 2 for region 5. The performance indicators are listed in Table 6.9. The
graph shows both the over and under approximations with their respective
control signals. 143

6.15 Closed loop control system behaviour for the abstraction. Counter-example
trace tunings were used in this case: Tuning 3 for regions 1, 2, 3, and 4.
Tuning 2 for region 5. The performance indicators are listed in Table 6.9.
The graph shows generated thrust % and the control signal. 144

List of tables

3.1 Integer data type ranges. 40
3.2 Possible fixed point representations with 16-bit integer data type 40
3.3 Size considerations for data operations - binary case. 41
3.4 Fixed point representation - binary case 42
3.5 A / B = C: Largest possible result - binary case 42
3.6 Data size requirements. 43
3.7 Ad hoc data type for abstraction . 44
3.8 Possible compensation operations considering the aforementioned sources

of error. 52
3.9 Mapping between original floating-point values and fixed-point integer rep-

resentation. 57

4.1 UPPAAL queries which can generate either a witness or a counter example
trace. 80

4.2 Requirements verification results for the system abstraction. 88
4.3 Requirements verification results for the original system. 90

5.1 Controller gains operating space configurations and verification results. The
initial values for every iteration are KP = 0.1392 and KI = 0.1496. 108

5.2 Initial and final gain values for the PI controller. 108
5.3 Requirements design and verification results for the system abstraction. . . 109
5.4 Requirements comparison between initial and final controller tunings. . . . 111

6.1 Open loop continuous SISO LTI models for operating regions in the thrust
control problem. 128

6.2 Open loop discrete SISO LTI models for operating regions in the thrust
control problem. Column 2 uses floating-point representation and column 3
the selected fixed-point representation. 130

xxiv List of tables

6.3 System abstraction: integer-only discrete SISO LTI models for operating
regions in the thrust control problem. Two models are generated per region:
under approximation and over approximation. 130

6.4 Performance indicators for the system abstraction and the original model
using the initial tuning only. The requirements that failed are highlighted in
bold. 132

6.5 Performance indicators for the system abstraction and the original model for
operating region 2 using the set of gains obtained with Algorithm 4. 133

6.6 Performance indicators for the system abstraction and the original model after
1 iteration. Two controller tunings are available for use. The requirements
that failed are highlighted in bold. 135

6.7 Performance indicators for the system abstraction and the original model for
operating region 4 using the set of gains obtained with Algorithm 4. 135

6.8 Performance indicators for the system abstraction and the original model after
2 iterations: Final control schedule. Three controller tunings are available
for use. 138

6.9 Performance indicators for the system abstraction and the original model
performing the coverage verification. All three controller tunings from
the final schedule are available for use. The requirements that failed are
highlighted in bold. 142

Symbols and Acronyms

Symbols

b0 Discrete PID coefficient zero

b1 Discrete PID coefficient one

KD Controller Derivative gain

KI Controller Integral gain

KP Controller Proportional gain

T System sampling period

δ Gain delta

∆KI Controller integral gain total delta change

∆KI SS Controller integral gain delta change step size

∆KP Controller proportional gain total delta change

∆KPSS Controller proportional gain delta change step size

ε Error

E(z) Discrete-time System Error

F Fractional Digit

I Integral Digit

Kab Coefficients Scaling Gain

K System gain

xxvi Symbols and Acronyms

KS Input-Output Scaling Gain

KU Parametric Compensation Error Gain

ωn System natural frequency

A Path quantifier - For all computation paths

E Path quantifier - For some computation paths

<> Eventually temporal operator

[] Globally temporal operator

ϕ State formula - Logical expression that can be evaluated in a state

R Real Numbers

R(z) Discrete-time System Reference

ess Steady State Error

θ System transport delay

tr Rise Time

ts Settling Time

OS UPPAAL query language Maximum Overshoot indicator

RT UPPAAL query language Rise Time indicator

SSE UPPAAL query language Steady State Error indicator

ST UPPAAL query language Settling Time indicator

U(z) Discrete-time System Input

Y(z) Discrete-time System Output

Z+ Positive Numbers

ζ System damping ratio

Acronyms

ARX Auto-Regressive with Exogenous Input

Symbols and Acronyms xxvii

CTL Computational Tree Logic

CTS Continuous Time Systems

DCS Distributed Control System

DES Discrete Event Systems

DO-178C Software Considerations in Airborne Systems and Equipment Certification

DO-333 Formal Methods Supplement to DO-178C and DO-278A

DPM Dynamic Power Management

EASA European Aviation Safety Agency

EEC Electronic Engine Control

FAA Federal Aviation Administration

FAR Federal Aviation Regulations

FBW Fly By Wire

FSM Finite State Machines

LTI Linear Time Invariant

LTL Linear Temporal Logic

LT Linear Time

MCDC Modified Condition Decision Coverage

MEA More Electric Aircraft

MEE More Electric Engine

MOC Model of Computation

NASA National Aeronautics and Space Administration

ODE Ordinary Differential Equation

PBW Power By Wire

PID Proportional Integral Derivative

xxviii Symbols and Acronyms

PI Proportional Integral

POA Power Optimized Aircraft

PRISM Probabilistic Model Checker

RSM Runway Safety Monitor

SAT Propositional Satisfiability Problem

SCADE Safety-Critical Application Development Environment

SDV Simulink Design Verifier

SISO Single Input Single Output

SS Sequential Systems

TIMES Totally Integrated More Electric Systems

TS Transition Systems

UPPAAL-Cora UPPAAL for Cost Optimal Reachability Analysis

UPPAAL-TiGa UPPAAL for TImed GAmes based controller synthesis

UPPAAL Uppsala and Aalborg Universities Real-Time systems model checker

V&V Verification and Validation

Chapter 1

Introduction

1.1 Motivation

Cyber-physical systems comprise a wide range of computer-based systems which require
the integration of various technologies such as computers, control, and communications in
order to achieve stability, performance, reliability, efficiency and robustness when dealing
with physical systems [133]. Nowadays and thanks to advances in computer science and
technology, it is extremely common to use computer-based systems on a day to day basis
[7, 86]. From mobile phones to power grids, they are part of our civilization. The development
of the hardware and software that makes this possible is a major engineering activity in many
sectors. Along with the development of such systems the concept of system verification
emerges: to ensure the correctness of the system against requirements. When the system
does not entirely meet requirements the damages could be minor (e.g. a smart-phone reset)
or catastrophic (e.g. the loss of human lives).

1.1.1 System Verification

A system failure can be very costly and even if no human lives are lost, the consequences of
a software or hardware error could have severe repercussions. Intel lost millions of dollars
because of the Pentium processor error [7, 130]; in 1996 the Ariane-5 rocket crashed a few
seconds after launch [45, 96]; the Mars Pathfinder rover suddenly stopped working [82];
and patients died of an overdose of radiation using the Therac machine [99]. All these
failures happened because of a bug in the system and the consequences were monetary, loss
of credibility and the loss of human lives. Over the years the case for better verification
procedures has been made and even if current practices have improved compared to when all
those errors occurred, every now and then we are reminded of the gaps we need to fill.

2 Introduction

In computer science, the related activities to software testing are referred to as Verification
and Validation (V&V). These activities are a cornerstone for software development and are a
huge component of any software development life-cycle [113]. They are different activities
and address two different aspects of product development [21]:

• Verification: Are we building the product right? The product meets requirements doing
what it is supposed to do in the way it is supposed to do it. The product is bug-free.

• Validation: Are we building the right product? The product does what it is supposed to
do, it fulfils high level functional requirements.

The V&V activities use different approaches, tools, and procedures. The more complex the
project or product, the need for novel and better tools arises. Over the years the software
development community has come up with new standards, tools, procedures, and practices in
order to provide higher quality products and avoid fatal failures. The type of product under
development drives the V&V efforts and the amount of time spent in these activities. For
safety-critical applications, such as control systems in automotive or aerospace industries,
not being too careful is not an option and the software should be stressed as much as possible
to prove its correctness and safety. Besides being able to detect the errors of the design, it is
desirable to detect such errors as early as possible during the development process. Detecting
an error in a higher layer of the design process can increase the cost of fixing it several orders
of magnitude compared to the lowest development stages.

For many years now dynamic control systems are implemented using embedded control.
The control algorithm is thus implemented on a computer-based system in a software manner.
This change in paradigm meant versatility because modifying a controller meant simply a
software change. More advanced control algorithms became available and new control theory
was born [86]. Software engineering and control systems engineering are a fundamental
component in cyber-physical systems. The control community should care about the software
community because it relies strongly on it, and the software community should care about
the control community for the same reason. Even if most of the time these two fields of
engineering are considered independently, in practice they are one discipline and this fact
should be made clear to both software and control engineers, especially in safety-critical
control applications.

1.1.2 Trends in Aerospace Systems

The trend pattern for the aerospace industry is one of growth. The Federal Aviation Adminis-
tration (FAA) has predicted that within the next 2 decades air traffic will increase by 150% to

1.1 Motivation 3

250% compared to the beginning of this decade [62]. The long-term vision for future aircraft
is one of a more electric machine. Companies and organizations are currently developing
technology to bring the concepts of More Electric Aircraft (MEA) [136] and More Electric
Engine (MEE) [73, 116] to a reality. Projects like Totally Integrated More Electric Systems
(TIMES) and Power Optimized Aircraft (POA) [52] are part of this effort [39, 118].

Power-By-Wire (PBW) [79, 90] technology will then become crucial. PBW means
that the power to move an actuator comes from electric sources. Having electric-powered
actuators will increase the complexity of current electric systems; if it is considered that in
the future the main propulsive power for aircraft will come from electric sources, complexity
increases even more. To integrate different electric technologies for long term operation
presents new unseen challenges in several engineering and design aspects. This change in
paradigm is partly enabled by current computational power in embedded applications for the
aerospace industry, and to address these new challenges embedded systems will play a key
role to provide solutions for control, health, and communications.

Computer-based control was a big leap in aviation and for decades centralized embedded
control has been used to address control challenges. The inclusion of the computer as a
control device made software a very important component for aviation. As technology
progressed computational power increased, allowing to enhance the on-board software and
a number of additional functionalities became standard, providing not only control but
also health management and safety features. In a modern aircraft jet-engine the control
architecture is centralized, and by including more features on the same computer software
has become more complex. There exists a dependency relationship among the various
features of the software.

Figure 1.1 shows a generic block diagram representation of a centralized jet engine
Electronic Engine Control (EEC) unit and typical functional features that are implemented
in the form of software [38]. The system contains 2 computers for redundancy and safety
purposes. Both computers run the same software while sharing information via a data
link. The software components become strongly connected with a dependency relationship.
Therefore the development of aviation control software has become more complex over
the years: adding or removing features generates development and certification efforts for
the sake of safety. As a result, time is invested and a higher cost in development has to
be paid. The next step in control system architectures is one towards Distributed Control
System (DCS) [10]: control and health management functions are executed on different
computers; instrumentation wired to communication buses and local control processes
supervised by a top level controller [116]. A more modular approach with local control
loops would help to reduce complexity in development and accelerate certification processes

4 Introduction

Fig. 1.1 Block diagram representation of an Electronic Engine Control (EEC) unit and the
functional features it contains as software.

[62]. Nonetheless the DCS architecture is still under development with many open problems
to solve. By partitioning functionalities the individual development effort may be reduced
but the integration of all the features over a distributed architecture will require effort that
is still unknown. Whether a distributed architecture becomes the standard practice or the
centralized one remains the standard, software will become more complex in order to address
the new challenges to come: more electric systems, more efficient systems, enhanced health
management, more advanced control, etc.

1.1.3 Avionics Certification

For commercial aviation, the Federal Aviation Authority (FAA) and European Aviation
Safety Agency (EASA) are the two major bodies in charge of aircraft certification [43].
Regulations to be fulfilled by a jet engine manufacturer can be found in Federal Aviation
Regulations (FAR) parts 25 and 33 [50]. Part 25 is related to "Transport Category Airplanes"
and Part 33 to "Aircraft Engines". All the certification activities for commercial airborne
systems exist for safety reasons: they ensure that the right thing is being built in the right
way, contemplating every aspect and detail of the aircraft.

Modern aviation systems use Fly By Wire (FBW) technology, evolving towards PBW
technology. This means that control algorithms are and will be implemented in the form of
software. It does not matter by which technique or method the controller has been developed;
it will be implemented on an embedded computer system. Since the integration of computer
systems into the aviation industry and as part of the certification process, software has to

1.1 Motivation 5

be verified and validated versus requirements. DO-178C [51] is the standard created by
regulation authorities to regulate and assess the safety of airborne software. This document
does not specify how to make the software but rather describes what is to be expected of the
software and the evidence to be provided for compliance. Standards like DO-178C identify
a level of criticality of the related software according to its functionality by estimating
the amount of damage that a malfunction in the software could generate. For the aviation
industry the criticality levels go from A to F, level A being the most critical. Level A
software malfunctions are classified as catastrophic, there exists a potential aircraft crash
with potential human lives lost. A computer-based controller such as the EEC for a jet-engine
is thus considered a safety-critical system.

1.1.4 Safety-Critical Software Development Life Cycle

It is especially for safety reasons that certification standards like DO-178C exist, and qual-
ifying software for certification efforts is extremely critical and burdensome. In order to
accomplish this, software development processes and practices have been established to
facilitate and aid in the software development life cycle. Software development cycles were
born in computer science and depending on the type of software under development one
is chosen over another. For aviation systems, perhaps the most popular is the V-Shaped
development cycle [113].

Fig. 1.2 V-Shaped software development cycle. Popular within the aerospace industry for
software development. This process makes clear emphasis on testing activities throughout
the whole cycle, which are fundamental when developing safety-critical software.

6 Introduction

Figure 1.2 shows a block diagram description of the process. It is a popular choice
because it is easy to follow and there are clear deliverables in each phase [113]. This model
makes clear emphasis on the testing phase of the software. For safety-critical systems,
verification and validation activities strongly rely on testing and a good amount of effort is
spent on this activity: unit testing, integration testing, and acceptance testing [113]. Currently,
1 defect per 1000 lines of code is an accepted measure for today’s software [7]. Considering
Boeing’s 787 avionics system, it is estimated to contain around 6 million of lines of code
and therefore that would mean 6000 defects. In software development, testing all possible
scenarios becomes harder when the software itself grows in size. Exhaustive testing practices
like Modified Condition Decision Coverage (MCDC) are not sufficient to detect all defects.
It is estimated that current testing activities amount to approximately 30% to 50% of the total
cost of a software project [7].

We cannot forget that in the end there is an engineer coding the software, as Leveson
and Turned have pointed out: "it is still a common belief that any good engineer can build
software, regardless of whether he or she is trained in state-of-the-art software-engineering
procedures" [99]. The most frequent reason for software crashes are due to programming
bugs while doing the implementation of an abstract design [26, 139]. The more complex
and large a design is, the more the chances for error. If the tasks can be separated in a more
modular architecture with defined objectives for each task, the implementation and validation
of the design can be benefited. It is therefore desirable to find a new approach to verification
and validation which relies not only on testing activities.

Formal methods provide the means to analyse cyber-physical systems with a mathematical
rigour. A report by NASA and FAA concluded that formal methods should become a standard
part of engineering [7]. Within formal methods there is model checking, an exhaustive
verification technique. Given a formal description of the system (a model) and a formal
description of a property (a requirement for the system), model checking can verify if such
property is fulfilled by the system. Model checking brings formality to both requirements
and modelling, which is in turn useful when dealing with high level requirements expressed
in natural languages for a complex system.

The usual verification process for a system versus requirements is an a posteriori one. A
prototype of the product, or the product itself, is developed and the verification is performed
using that prototype or product. Both the design and verification processes are driven by the
system specifications but no formal approach is taken when bringing those specifications into
low level requirements for the implementation or testing processes. Figure 1.3 shows a block
diagram description of the process [7]. This is what most software development life-cycles

1.1 Motivation 7

tend to follow: the verification is done in the actual product while it is under development.
This falls well within the V-Shaped development cycle testing activities from Figure 1.2.

Fig. 1.3 System verification: a posteriori approach. The verification takes place in the product
or a prototype of the product. The construction of the prototype or product is performed
before the verification activities takes place. If bugs are found another iteration of the design
and verification process is necessary.

In contrast model checking provides an alternative to verification that relies on a model
of the system and a formal description of its requirements (properties). Figure 1.4 shows the
model checking approach to verification. The model checking verification approach works
over a model of the system, not the product itself (e.g. the final code in the software). The
verification is performed in an a priori manner: errors, inconsistencies, and bugs can be
detected before the product development process takes place. This is an important change
in paradigm when it comes to development and verification. To fully exploit these benefits
a greater effort in modelling has to be performed, so there is a trade-off when choosing
which verification approach to take. However, the exhaustive verification capabilities and the
formality of the model checking approach are appealing features for safety critical systems
such as jet-engine control software.

1.1.5 Commercial Jet-Engine Control

A jet-engine is one of the most complex pieces of machinery ever created. No engine is the
same and performance varies from engine to engine and on the same engine over time [78].
The engine components degrade at different rates and after an overhaul or repair performance
is also affected. This presents a challenge for the control system because it should be able to
cope with both slow degradations in performance and rapid changes due to overhaul [78].

8 Introduction

Fig. 1.4 Model checking verification approach: verification is performed in an a priori
manner. The verification is performed in a model of the system under analysis before
generating the product or a prototype.

In its early days, jet-engine control consisted mainly in regulating fuel flow into the
combustor, controlling the air-fuel mix. Over the years new control inputs have been
progressively added to the control scheme. Actuators such as guide vanes, variable exhaust
nozzles, variable compressor stators, and variable bleed valves, among others, have been
added to the jet-engine in order to obtain more thrust, better efficiency, and reduce weight
[166]. This in turn created the necessity for a change in the control scheme, giving birth to
more advanced algorithms.

A modern engine control system is in charge not only of control activities. As shown in
Figure 1.1, there are many other functions running in the control computer (e.g. EEC). The
three main functions are [38]:

• Communication with the aircraft to receive control commands and report status.

• Running the control algorithm to meet engine performance.

• Health management for diagnostics, prognostics, and control.

Advances in computer power allowed the possibility to add health management functions.
Because most of the health monitoring functions are related to control actuators, health

1.1 Motivation 9

management is tightly related to the control system itself [78]. Fault detection, isolation,
and accommodation plays a fundamental role in engine control and performance [78, 166].
Jet-engine control must be fault tolerant and highly reliable for safety reasons, which means
redundancy in both hardware and software components of the control system.

The main purpose of a jet-engine is that of providing a thrust output according to the
pilot’s demand [135, 149]. In whichever way thrust is regulated (e.g. shaft speed, pressure
ratio), the control scheme for a commercial jet-engine is that of gain scheduling: a digital
controller with multiple controller tunings (e.g. different sets of gains), the controller tuning
is changed depending on the operating conditions. The controller is implemented in its
digital form in the EEC and the gains for the controller are stored in a look-up table manner.
To maintain engine variables within limits a min-select strategy is preferred, which means
that the control strategy will comprise several control loops [149]. The controller will
switch between control loops during different engine operating modes and conditions. This
type of control is preferred because of its simplicity compared to more advanced control
methodologies [127, 149]. Even if more advanced control architectures and approaches
have been tested in real engines, this has either been in a prototype or military application.
Certification of military applications is regulated by a different legal framework which is
more flexible than that of commercial, which partially explains why intelligent and adaptive
control schemes have already been implemented in military aircraft [18]. There are still gaps
to be filled to bring more advanced control schemes into the commercial side of aviation,
which may also include a change in paradigm about the way certification is conducted and
what it entails.

This complexity makes the control system design for a jet engine a very challenging
task. The complexity resides not only in the nature of the process but in the complexity
of the control scheme itself. The control is implemented in the EEC and interacts with
several functionalities creating data dependencies, and because different functionalities are
constrained to different timing requirements this also adds to the complexity of the controller
[78]. For these reasons, modern commercial jet-engine control software, under the levels of
criticality designated by DO-178C, is classified as software level A: its failure is potentially
catastrophic.

Before more advanced control schemes reach enough maturity to become part of commer-
cial aviation, gain scheduling will be the default option in jet-engine control. Even though
gain scheduling is a well-known control scheme and has been around for over 50 years, in
practical applications it is still challenging to guarantee stability and prove its correctness
[94, 97, 127, 138]. Demonstrating safety and requirements conformity for a gain scheduling
controller is challenging from the design, verification, and implementation points of view.

10 Introduction

To prove stability and performance in an analytical manner is complicated [97, 127, 138],
also there are no performance guarantees in between design points [18]. Also, a jet-engine
consists of several control-loops for different engine conditions, accounting for every possible
variation is impractical at the least.

For a complex control system, such as a jet-engine control scheme that contains several
limit restrictions, control loops, fault modes, and signal selection to handle faults, ensuring
that a safe mode is reached in the event of multiple faults is non-trivial. Classical control
design methods are hard to scale for such a complex system, therefore relying strongly
in extensive testing activities in order to guarantee safety, performance, and certification
compliance.

1.1.6 Formal Methods and Model Checking

The model checking verification framework (Figure 1.4) provides a potentially different
approach to verification of gain scheduled controllers. The model checking exhaustive and
systematic search for every possible reachable system state can help to increase the range
of scenarios used during verification [139]. Formal methods and model checking have been
around since the 1970’s but their use have been limited mainly because of technological rea-
sons and computational power [7, 35], just over 25 year ago its use in industrial applications
was minimal [23]. In the last two decades, advances in computer systems and the increase of
the available overall computing power, have made possible that the use of model checking
transitioned from the research and academia environments into the industrial environment
[7, 86]. This change in paradigm comes hand in hand with the increase of cyber-physical
systems which depend on computer-based or embedded applications [86].

Formal methods and model checking have been successfully applied in industrial applica-
tions over a wide range of domains [8, 37, 61, 71, 86, 115, 148, 150, 162]. From computer
science where companies like Microsoft and Intel have dedicated formal methods groups
to manufacturing, aerospace, and motor industries. The National Aeronautics and Space
Administration (NASA) has been a strong advocate of formal methods for some time now
[29, 75], and over the years has improved and contributed to the incorporation of formal
methods into the real applications domain [26]. The aerospace industry has become more
interested in formal methods in recent years, analysing and experimenting with real-life sce-
narios case studies and in some cases even incorporating formal methods and model checking
into the software life cycle for some particular features. Companies like Dassault-Aviation
and Airbus have incorporated formal methods to replace some testing as early as 2001
[112]. For this reason regulation authorities like the FAA have updated their certification
standards. DO-178B was updated into DO-178C, where the C release includes a supplement

1.1 Motivation 11

on formal methods: DO-333 [137]. Benefits can be obtained from the incorporation of
model checking into safety-critical control software development cycle (e.g. test coverage
increase, automated test case generation, earlier error-detection, requirements clarification)
[16, 62, 80, 108, 139, 143, 147, 153]. Recent case studies involving DO-333 are covered in
a NASA report [36].

1.1.7 Challenges for a Formal Development Approach

Even though there are benefits to be obtained from including formal methods in the devel-
opment cycle, the practicality to obtain them is not a straight forward process [16]. Most
cases involve small scale studies and sometimes ad hoc tools have to be generated, which
takes time and effort which may out-weight the benefits [16, 46, 47, 131, 158]. It is for
reasons like this that it is hard to incorporate model checking into development frameworks.
The full adoption of formal methods and model checking into industrial environments in
the aerospace industry is still unlikely to happen soon, challenges and roadblocks have to
be addressed before this transition becomes a reality. The exhaustive verification nature of
model checking is also a hindrance.

This is referred to as the state-space explosion problem: the number of possible states of
the system model becomes too high and performing the analysis of all of them is impractical
and even impossible with current computational capabilities [7, 35]. All possible values for
all the system variables have to be analysed in order to explore the full behaviour of the
system model. This in turn derives in an exponential growth in the possible system states
as the number of system variables increases. Floating-point data type and its arithmetic is
part of this problem: a floating-point variable has potentially infinite possible values which
results in a state-space explosion problem. So far, no model checker fully supports this data
type which makes hard the modelling of dynamic control systems [108, 153].

Another challenge resides in the requirements formal description. Figure 1.4 shows
how requirements are an input to a process in order to generate a formalization of them.
The mathematical rigour of model checking needs that requirements be formalised as well.
This is not a common practice and the usual definition of requirements is in the form of
natural languages such as English. For this reason, a variety of model checking approaches
exist: depending on the type of systems to be modelled and requirements to be verified, a
formal language and modelling approach have to be chosen. There is extensive research on
the formalization of requirements and the translation from natural languages into a formal
description. However, dynamic control systems performance requirements are not directly
expressible in a model checking formal language and complex control algorithms such as
a feedback control loop with gain scheduling are problematic to implement in a model

12 Introduction

checking framework [143]. The lack of expertise in this area presents an important roadblock
towards the acceptance of model checking as a standard development tool. The use of model
checking tools and formal approaches for software design most of the time requires high
expertise and knowledge of formal methods from the software and control engineers [143].
In order to bring formal methods into common practices, the knowledge gap must be covered
with easy to understand frameworks and practices.

Given the capabilities of formal methods and model checking, lately a new approach
to control has emerged. The formal approach has not only been used for verification and
validation activities but also to synthesize controllers, this is known as the correct-by-
construction approach [67, 81, 152, 163]. One of the advantages of this approach is the use
of requirements as a formal input into the controller design and synthesis process, which in
turn can help to avoid ambiguities when the requirements are translated. The synthesized
controller is one of symbolic nature, a state machine [40, 65, 67, 81, 152]. However, so far
the correct-by-construction approach does not contemplate common controller structures
(e.g. PID) and has not yet been applied to gain scheduling control. It is highly desirable to
enable common modelling practices for control systems in a model checking environment
thus allowing control engineers to exploit the benefits of model checking for a safety-critical
application such as a jet-engine gain schedule control system.

1.2 Aims and Objectives

The aim of the research conducted in this thesis is to formally design and validate discrete
Proportional Integral Derivative (PID) controllers in a gain scheduling control scheme. To
demonstrate the applicability of the proposed methodology an aerospace application is
selected: a commercial jet-engine thrust control system. Model checking is the selected tool
within formal methods to conduct this research. To accomplish this, the following objectives
are set:

1. Generate a formal design and verification framework for discrete PID-type controllers
so that minimum intervention from the designer/engineer is required. In this manner
the model checking capabilities can be exploited with the aim of incorporating the
methodology in a design and verification software life-cycle.

2. Within a model checking environment, incorporate transient responses and system
dynamics to the controller synthesis problem.

3. Generate a dynamic system abstraction methodology to incorporate dynamic be-
haviours into a model checking environment. The system abstraction must consider

1.3 Contributions 13

modelling inaccuracies and compensate for them in order to provide safety guarantees
when designing and verifying the original system using the abstraction.

4. Generate a model checking framework which allows to formally verify dynamic
control systems high level performance requirements: maximum % overshoot, rise
time, settling time, and steady state error. Using the abstraction methodology in order
to generate the system dynamics, the model checking framework must allow to portray
the high level performance requirements in a formal manner so that the model checker
can verify them in the form of system properties. Once this has been accomplished,
the requirements verification problem can be addressed as a model checking properties
verification problem.

5. Generate a model checking design and verification framework for discrete PID-type
controllers. The framework will take as formal input high level control performance
requirements and using model checking will address the controller design problematic.

6. Generate a model checking design and verification framework for gain scheduling
discrete controllers. The framework will take as a formal input high level performance
requirements for a set of operating points of a dynamic system. Using a discrete PID-
type controller the control schedule will be systematically generated until requirements
are met in all operating points.

7. Perform a cross-verification of the model checking results with high-fidelity models to
assess the accuracy and veracity of the proposed model checking approach.

1.3 Contributions

The fulfilment of these aims and objectives leads to the following contributions:

• The first main contribution is a novel abstraction methodology for dynamics systems
that is described in Chapter 3. The input to the abstraction methodology is a continuous-
time model: Single Input Single Output (SISO) Linear Time Invariant (LTI). The
output of the methodology consists of a pair of discrete-time SISO LTI models. The
abstraction methodology uses a fixed-point data type representation using integer data
only, thus avoiding the necessity of floating-point data which makes the abstraction
suitable for a model checking environment. The abstraction methodology considers
modelling and data type errors. In this manner, upper and lower boundaries are
generated: an over-approximation and an under-approximation of the original model.

14 Introduction

Instead of abstracting the control system as a whole for its analysis in a model checking
environment, as it is typically done, by the means of the methodology the components
of a dynamic control system can be abstracted, implemented and analysed individually.
The methodology allows to calculate the system response within a model checking
environment, instead of pre-computing and preparing the data to import it into the
model checker as is the common practice. This also allows to calculate the interaction
between system components enabling a wider range of testing scenarios.

• The second main contribution is a novel formal verification framework for dynamic
control systems presented in Chapter 4. The verification framework allows for the first
time to formally verify the control system versus high level performance requirements:
maximum overshoot percentage, settling time, rise time, and steady state error. The
system abstraction (Chapter 3) is implemented in a model checking environment
consisting of a set of timed-automata. In this manner, the verification is performed
with a push-button approach in the model checker. The use of the over-approximation
and the under-approximation allows to infer properties of the original system in the
model checker. The methodology is demonstrated using an aerospace related control
system example.

• The third main contribution is a novel PID controller formal tuning methodology
presented in Chapter 5. For the first time a PID controller is tuned in a formal manner
using high level performance requirements as the formal input. By the means of
simulating the system response, the model checker non-deterministically searches
for a set of controller gains which can drive the system to meet requirements. The
controller tuning problem is solved as a reachability problem in model checking us-
ing a push-button approach. In this manner, the resulting PID controller is designed
using the correct-by-construction formal approach but instead of generating a sym-
bolic controller, a typical known-structure controller (e.g. PID) is tuned. The tuning
methodology is also demonstrated using an aerospace related control system example.

• The fourth main contribution is a novel gain scheduling formal design and verification
methodology presented in Chapter 6. The proposed methodology systematically builds
a gain scheduled control scheme for a PID controller. For the first time a full model
checking framework to address a gain scheduling problem is presented. The schedule
design is solved as a reachability problem using a push-button approach. In this manner,
the resulting schedule is designed with the correct-by-construction formal approach
using a typical PID controller structure. The proposed framework enables an a priori
approach for software design for safety-critical control applications. A partial version

1.4 Thesis Overview 15

of the methodology and its implementation was introduced in [123]. The novel formal
framework could work as a baseline towards incorporating the correct-by-construction
approach into the early design stages of the software life-cycle. As a direct result
of this, the time spent in the design, verification, and validation activities for control
software could potentially be reduced. The methodology uses a well-known model
structure for control systems with no change of coordinates when using the abstraction;
this feature makes debugging and analysis easier to the designer. The methodology is
demonstrated using an aerospace related example: jet-engine thrust control. The gap
between model checking and standard software development practices for aerospace
applications can be reduced by the use of formal frameworks like the one proposed in
this thesis.

1.4 Thesis Overview

This thesis is structured as follows:

• Chapter 2 presents the literature review and technical background regarding the main
subjects for the development of the research presented in this thesis: formal methods
and control systems. The literature review covers the trending towards the use of
formal methods in industrial environments, the various uses of formal methods in
software development, and current challenges to bring formal methods into a software
development cycle regarding current safety-critical control applications.

• Chapter 3 presents the system abstraction methodology for dynamics recovery. Discrete
SISO LTI models are proposed for the dynamical representation of the control system.
An ad hoc fixed-point integer only data type is proposed. In this manner, the ad hoc
data type only requires integer variables providing enough resolution to address the
system dynamic simulation. The proposed abstraction methodology allows to portray a
dynamic feedback control system without the need of floating-point or fixed-point data
types, which makes it suitable for a model checker implementation. The abstraction
methodology takes into account possible modelling errors and data type rounding
errors, compensating for these inaccuracies so that the abstraction provides boundaries
when reasoning about the original system. The output of this chapter is a novel dynamic
system abstraction methodology suitable for model checking which provides safety
guarantees regarding possible modelling errors.

• Chapter 4 presents the model checking approach to high level control system re-
quirements verification. A design for verification approach is taken to create a set of

16 Introduction

automata to enable the formal verification of high level control performance require-
ments: maximum % overshoot, rise time, settling time, and steady state error. Using
the abstraction methodology presented in Chapter 3 to recover the system dynamics,
the automata design is driven by the necessity of expressing control requirements
as properties for the model checker. In this manner the performance requirements
verification problem is addressed as a property verification in model checking. The
output of this chapter is a novel formal verification methodology for discrete feedback
control systems.

• Chapter 5 presents the formal discrete PID controller design and verification framework.
By combining the system abstraction methodology from Chapter 3 and the high
level performance requirements verification framework from Chapter 4, the automata
framework is extended to address the controller tuning problem. The model checker is
systematically used to generate a set of controller gains which drive the system into
meeting high level performance requirements. The output of this chapter is a novel
formal design and verification methodology for discrete PID controllers.

• Chapter 6 presents the formal discrete PID gain scheduling design and verification
framework. The framework is underpinned by the abstraction methodology from
Chapter 3, together with the high level control performance requirements verifica-
tion framework from Chapter 4, and the formal discrete PID controller design and
verification framework from Chapter 5. By bringing together all these elements, the
timed-automata framework is extended to address the gain scheduling problem. The
model checking framework is systematically used to generate the control schedule
which drive the system into meeting high level performance requirements in every
operating point. The model checking framework provides a novel push-button ap-
proach to design and verification of the schedule. The model checking framework
also allows to perform coverage testing over the final schedule. In order to provide
more information to the designer about possible behaviour of the system in case the
controller switched gains in regions for which the tuning was not intended to operate.

• Finally, Chapter 7 presents the conclusions regarding the work presented in this thesis
and the future work.

Chapter 2

Literature Review and Technical
Background

2.1 Overview

Nowadays, embedded computer systems are widely used for control applications. The
increase of computational power and the necessity of more complex control systems have
made the verification for correctness and compliance with requirements a major part of
the control systems development process [7]. In safety-critical applications where human
lives are at stake, safety must always be a priority. The relationship of control systems and
computer science has never been so close, the need to deliver safe and reliable computer-
based controllers is a crucial growing activity in engineering. Formal methods and model
checking can provide the means to improve the design, development, and verification of
embedded control applications.

This chapter presents the literature review and technical background related to the work
developed in this thesis. Section 2.2 presents a state of the art analysis regarding formal
methods and model checking. The main applications of formal methods and model checking
regarding software development and the recent advances in the area thanks to the increase of
computational power were analysed. Also, how formal methods and model checking fit into
an industrial development setting, the potential benefits from its application, and the current
challenges to be addressed in order to fully exploit formal methods and model checking
were analysed. This analysis was mainly focused on keeping in mind safety-critical control
systems applications, which is the main area of interest in this work for the application
of formal methods. Finally, Section 2.3 presents the necessary technical background to
understand the type of systems under analysis in this thesis. Both the model checking

18 Literature Review and Technical Background

fundamentals and the selected type of control systems fundamentals are presented in order to
cover the two main subjects of this work: formal methods and safety-critical dynamic control
systems.

2.2 Literature Review

The following section is about the different applications of formal methods. First, their use
for V&V activities is presented. Next, the controller synthesis application is presented along
with automatic properties generation. Finally, the benefits of the use of formal methods are
mentioned. Major challenges and roadblocks are presented as well as weaknesses of model
checking. How these roadblocks have been addressed in the past is analysed in order to
identify gaps in the current state of the art in the use of formal methods and model checking
for the design and verification of safety-critical dynamic control systems.

2.2.1 Verification & Validation

Due to the nature of formal methods, their main application is within software V&V activi-
ties. Whether the software under analysis is a controller [26, 74, 102, 108, 119, 126, 139],
diagnoser or fault management schemes [24, 63], network communication protocols [69], or
some other type of application [62, 129], its use in this activity is wide.

The automotive industry has also shown interest in the application of formal methods
and model checking for product development; the industry acknowledges the need for better
modelling and software engineering practices [27, 55, 56, 84, 140, 155]. Hybrid systems for
modelling an automotive engine and its power train control can be found in [9]. Here, formal
methods were used for V&V and to synthesize the power train controller. In [84] a formal
approach is used to verify that autonomous vehicles never violate safety requirements. The
formal approach is also used to verify the actual code of the autonomous vehicles, not just
the overall behaviour of the system. In [140] an incremental approach is presented in order
to use a SAT solver in combination with an industrial embedded software verification tool to
reduce runtime during the verification phase. In [155] system high level requirements were
translated from natural language into a formal language in order to detect redundancy among
requirements and test cases.

Given the computer science nature of formal methods the first power management
challenges addressed with these techniques were computer related. The efficient use of
energy for embedded systems has always been the subject of research. In the early 2000s
probabilistic and statistical model checking were first used to address power management

2.2 Literature Review 19

issues, tools such as PRISM arose to perform such analysis [72]. Regarding V&V, Dynamic
Power Management (DPM) policies under multiple constraints are verified and compared in
[117]. Same activities are performed in [145], but also DPM as a two game player (power
manager versus environment) is suggested. Hardware safety and efficiency requirements are
verified in [91].

The safety-critical nature of aerospace systems demands the use of advanced formal
verification methods which are capable of guaranteeing compliance with requirements. Both
the FAA and NASA have expressed their interest in the use of formal methods [7]. Space-
related applications have used formal methods for V&V activities, either in case studies
or real life applications. Results are encouraging for formal methods as a way to locate
software coding errors, outperforming traditional testing practices [26, 62, 63, 139, 146, 147].
Regarding the aerospace industrial environment, some companies have included in one way
or another the use of formal methods at least partially to improve or replace testing activities
[112]. The inclusion of formal methods in safety-critical control software development
processes has been studied recently; it is not a straightforward process but efforts are being
conducted in order to make this a reality and exploit the benefits of formal methods in
industrial size aerospace projects [16, 143, 158].

Regarding control systems design, in particular when dealing with the controller itself,
in [4, 5] a formal method approach for the verification of control envelopes is presented.
This approach uses a logic prover to verify a family of input-output relationships regarding
the controller and the plant. Instead of abstracting the system as a whole the verification is
performed over the input-output families. This is a static check over an invariant set (the
family of control envelopes) rather than a dynamic check of the closed loop behaviour of the
system.

2.2.2 Controller Synthesis and Properties Generation

Over the last two decades the use of formal methods for the synthesis of logic based
controllers has increased. This approach is known as correct-by-design because the control
algorithm is synthesized using a formal approach with requirements as a formal input. This
is an appealing application of formal methods and model checking because it provides
a new way of generating control schemes using the advantages provided by the formal
approach. The use of this approach is mainly in research activities and academia but the
obtained results are promising and encouraging towards accepting this methodology in an
industrial development application framework [9]. In particular, when the synthesis problem
under analysis can be portrayed in a scheduling scenario manner, the formal approach of
correct-by-design is popular [14, 17, 22, 31, 42, 81, 83, 95, 103, 105, 156].

20 Literature Review and Technical Background

Within model checking, linear-priced automata is the variant to address the control prob-
lem using an optimization criteria as part of the formulation to find a solution. An adversarial
approach to solve a two player game (e.g. the controller versus the environment) has been
used for DPM controller synthesis in [77] and a probabilistic model checking approach to
DPM is analysed in [142]. The two player game-type approach to controller synthesis led to
the realization of the UPPAAL-TiGa tool [11, 12] and linear-priced timed automata led to
the realization of the UPPAAL-CORA tool [14], where the model checker is turned into an
optimization schedule-solver. Adaptive schedule strategies for a pipeline system of a printer
are generated using UPPAAL-TiGa in [2], this is an industrial-type case study. A power-grid
relay controller was synthesized and verified using Linear Temporal Logic (LTL), Computa-
tion Tree Logic (CTL), and the model checker tool UPPAAL [60]. This example addresses a
case study of significant size regarding the problem it solves, showing promising results for
UPPAAL as a working tool in industrial applications. Within the aerospace domain, power
management for avionics has also been addressed by formal methods [163, 164]. Given a set
of power sources, buses, and contactors find the best configuration possible to meet safety
and performance requirements. Controllers are synthesized and verified to comply with
the given requirements. Another important aspect of this work is the comparison between
centralized and distributed control architectures and how to cope with them while using
formal methods. This is important due to the trend towards DCS in the aerospace industry.
Python was used to develop the in-house tool for this work and UPPAAL is mentioned as a
good option for future work [163, 164].

Regarding dynamic control systems, a design and verification framework was developed
in [58], using not model checking but theorem provers as the formal methods tool. In
[40, 67] a control synthesis toolbox is presented combining the use of both Matlab and the
model checker UPPAAL to construct a set of control laws by solving a game abstraction
as a reachability property in the model checker. In this example the system dynamics are
abstracted as time-invariant properties so the model checker can reason about them using
clocks. In [65, 151, 152] the design of regulators for hybrid systems using requirements
in the form of LTL formulae is explored. This work focuses on stability and regulation of
hybrid systems, providing a working framework in Matlab for the synthesis of symbolic
controllers. Also, this framework has been applied to motion planning as well. In [159–161]
a working framework for motion and trajectory planning is presented. The toolbox TuLiP
developed in Python takes a subset of LTL to describe control specifications as inputs and
generates a symbolic controller which is provably correct.

Another interesting area of research for formal methods is the automatic generation of
properties. As mentioned at the beginning of this section, not only the model of the system

2.2 Literature Review 21

has to be formal but also the language in which the properties are expressed. This means that
high-level requirements have to be translated into a formal language and sometimes this is
difficult, and because this activity is mostly conducted by hand and relying on the expertise
of the designer and end-user, it is prone to human error as well. It is desirable to be able
to translate requirements in a solid and systematic manner to avoid errors in the translation
into properties expressed in a formal language such as LTL or CTL. This has been explored
in [146] applied to an aerospace case study, and in [164] a property generation algorithm is
proposed.

The use of formal methods for controller design, V&V, and the automatic translation
of high level requirements into formal properties to address one particular problem, all at
the same time, may seem ambitious at the moment. Nevertheless, in many cases the use of
formal methods deals with at least two of these activities, particularly the combination of the
controller design and V&V. Formal methods and model checking still need to address some
weaknesses before becoming a standard development practice for software and hardware in
every engineering field [16, 80, 143]. Particularly in the area of dynamic control systems for
safety-critical applications, the state-space explosion is perhaps the main limitation due to
the nature of the processes under analysis and the required data representation to deal with
them. The following subsection elaborates this particular issue.

2.2.3 Challenges and Approaches

The benefits of using formal methods and model checking techniques to develop critical
software applications have been mentioned. Safety and error-detection rates are benefited
by the inclusion of such tools. The use of formal methods to verify and validate software
as well as for synthesizing controllers has recently increased in both academic and industry
environments [86]. The aerospace industry is willing to include these methods in the product
development process but before this can become a reality, certain aspects and roadblocks
have to be addressed.

One of the major drawbacks within the model checking tools is the state-space explosion
[7]. When using floating point data-type, the state-space explosion problem becomes harder
to address. A floating point variable has potentially infinite values which makes an infinite
state-space to be analysed, which is at the least impractical if not impossible. For the correct
representation of hybrid systems’ dynamics and models the use of this data-type is needed.
As mentioned in [108]: "the floating point arithmetic has proved to be problematic. These
kind of calculations are often used in the aerospace industry. There is no model checker
that fully supports floating point arithmetic". This is still an open problem and one that

22 Literature Review and Technical Background

needs to be addressed to fully exploit the capabilities of formal methods and model checking.
Different approaches are used to overcome the floating-point arithmetic limitation.

The approach in [83] was to first digitize a continuous time battery model using a fixed
sampling period. Once the model was in digital form, it was used to generate data regarding
the time-response of the system and the results were stored in the form of arrays for its
use in the model checker UPPAAL. The data contained within the arrays was integer-type
only. How the data was generated is not clear but the model checker was not involved in
the calculations. The approach basically pre-computes a time response, prepares the data
so the model checker can use it and imports it into the model checker. A limitation with
this approach is that the testing scenarios have to be pre-computed as well. Calculating the
dynamic interactions between components is not possible in this form. It is desirable to be
able to calculate the system response within the model checker, this in turn also allows to
verify for more scenarios and perform a more extensive verification.

Another way to deal with the floating-point limitation is reducing the complexity of the
model so that the variables of interest can be calculated using integer only data type. In [156]
a thermal model is simplified from a complex one so that the calculations can be performed
within the model checker. By doing so the dynamic behaviour is in a way abstracted from
a high-fidelity model. This approach may restrict the type of models to be used and it is
possible that transient behaviour is completely lost by doing so. Especially when dealing
with control feedback loops this approach may not be sufficient because of the interaction
and dependencies among components such as the plant and the controller.

Removing transient and dynamic behaviours is another way of avoiding the use of models
which require floating-point computations. In this approach the problem is then restricted
to its steady state formulation. In [108] even if the selected tool (e.g. SCADE) contains
a development environment and formal methods tools , the case study selected to show
the advantages of the approach entirely disregards linear arithmetic calculations. Such
calculations are supported by the development environment but not by the formal methods
tool. The properties which can be verified thus omit dynamic behaviour from the verification
process.

Another way to avoid the use of floating-point data operations to recover the system
dynamic behaviour when using a particular model structure, is to use an abstraction of the
dynamic behaviour using a different coordinate plane. In this way, a surrogate of the original
model is constructed. Some model checkers, especially the ones that deal with real-timed
systems, can deal with timing constraints (time invariants) using clock variables. Clock
variables are essentially floating-point variables but their use is very limited because they
are aimed at simulating time progression only. The model checker UPPAAL meets this

2.2 Literature Review 23

requirement and in [126] this option is explored: abstract dynamic behaviour using time
invariants constraints as surrogates. Another interesting remark is that MATLAB-Simulink is
used to calculate the timing constraints by using a complex model. Again, the model checker
is not in charge of dealing with the heavy burden of calculating the system dynamics but to
verify compliance with requirements.

The model checker UPPAAL and MATLAB-Simulink have also been used to synthesize
a temperature controller in [81]. The control problem was modelled as a two player game
using UPPAAL-TIGA and an S-Function for MATLAB-Simulink is automatically generated
once the model checker satisfies a property. This is an interesting application towards a fully
integrated implementation process. The heat exchange process is simulated within the model
checker using a model abstraction of a more complex non-linear process. As long as the
required properties to synthesize the controller are portrayed by the simpler model a correct
result can be obtained.

A divide and conquer approach is also suggested when dealing with the state-space
explosion problem. The approach relies on partitioning the system into smaller subsets and
generating a model abstraction consisting of a combination of under-approximations and
over-approximations. The correctness of individual components can assure the correctness
of system-level properties [62]. The verification is then performed on a family of models and
system-level properties can be analysed as a group of properties in the model abstraction.
By doing so the verification is done in smaller models, avoiding running out of memory and
generating an overall result by aggregating individual verifications.

Following the partitioning idea of the state-space and using the model checker to solve
reachability optimal problems, an extension of Linear-Time Priced Automata is proposed
in [95]. The concepts of Priced Zones and Faucets are introduced in order to deal with the
state-space explosion by reducing the amount of states that have to be visited to reach an
optimal solution. The methodology does not deal with system dynamics in any particular
way but it does alleviate the memory burden when solving problems.

The Runway Safety Monitor (RSM) was developed by NASA and its main purpose is
to generate alerts for possible crash scenarios. To deal with the state-space explosion (an
infinite set of positions of multiple airplanes in multiple runways) a discrete model was used
instead. By definition RSM only considers snapshots of data, discretizing the input data. In
this way an abstraction of the much more complex model is generated. Part of the software
was verified using model checking helping to detect errors that had been missed by common
testing practices [147].

NASA explored the option of using fixed-point instead of floating-point to limit the
variables’ range. The model checker used was developed by NASA as well (Java Pathfinder)

24 Literature Review and Technical Background

and the fixed-point module was developed from scratch and added to the model checker
[68, 128, 154]. The idea is the same: take an infinite range variable and reduce its range
just so it is still useful enough for model checking techniques to use it. MATLAB-Simulink
design verifier performs a similar task when dealing with floating-point data but it is not clear
how is this process performed [109].

2.2.4 Remarks

The development of cyber-physical systems is a non-trivial task. The interaction between
components and the environment keeps growing which adds to the complexity of the task.
Safety and reliability are important aspects to the development of cyber-physical systems, and
this becomes even more important for safety-critical systems. Efforts to incorporate formal
methods into this arena are currently being conducted. Several approaches, techniques, and
tools comprise a good body of knowledge in this subject. The problem under analysis and
design strongly drives the formal method approach (e.g. technique and tools) to be used to
tackle the problem; a good summary on formal frameworks and tools can be found in [120].
Most tools still have to deal with scalability issues and state-space explosion limitations
[120].

The state-space explosion is still a major limitation in the use of formal methods and
model checking to address dynamic control systems. The necessity of generating system
abstractions is required. The system abstraction must preserve the original system qualities
needed for the verification process. The generation of the abstraction is thus driven by the
type of requirements to be verified. In one way or another addressing the state-space problem
by using abstractions means the partition of the operating space into smaller versions of it.
This generates either an over-approximation of the system or an under-approximation of it.
Combining both the abstractions can provide boundaries regarding the original and more
complex system model.

It must not be overlooked the fact that model checking assumes a correct representation
of the system and it cannot do anything to prevent the user from generating incorrect results:
if the model is incorrect, then incorrect results could be obtained [7]. The generation of good
system abstractions to generate smaller models so that they can be used in model checking
still requires high level of expertise. Particularly when dealing with dynamic control systems,
abstractions are required to reduce the state-space to be analysed. This is strongly correlated
to the state-space explosion problem. Even if memory is still a limitation for the use of
high-fidelity models in model checking, with the increase of memory capabilities and better
abstractions methodologies, the use of model checking tools to address dynamic control
system problems is increasing.

2.2 Literature Review 25

It has been shown that model checking can help to identify gaps and errors in requirements,
models, testing scenarios, and design practices. Testing is and will be needed for certification
because it is performed on the product itself and not on a model. But results show that
the early inclusion of model checking in the design process is more productive than usual
verification techniques [147]. Also, errors can be found earlier in time when they are
cheaper to fix [7, 62]. This shows that the integration of model checking in current software
development practices is relatively easy.

Another benefit of model checking is the potential use of push-button technology. This
approach requires minimum interaction and involvement from the end user. In this respect,
running verification or design activities with the push-button approach does not require a
high degree of expertise in model checking [7].

The use of formal methods and model checking from academic applications and case
studies, into industrial case studies or even industrial applications, is a trending pattern.
Particularly this can be verified by looking at the use of the UPPAAL tool over the years,
going from basic examples as case studies to industrial size case studies [11, 28, 48].

Formal methods and model checking have been successfully applied in industrial environ-
ments and over the last two decades the use of the correct-by-design approach has become
an active research area pushing the development of tools. The application of model checking
for both controller design and V&V activities seem to be mature enough for industrial-size
applications, particularly when combining model checking tools with other simulating and
code-generating tools to provide an end-to-end solution from design to implementation
[32]. There are still technical limitations to the model checking approach, particularly the
state-space explosion.

When dealing with dynamic control systems from a model checking perspective this
becomes an obvious problem to tackle and to circumvent this limitation the use of model
abstractions becomes very helpful. The usual approach is to construct an abstraction of the
closed-loop behaviour using a particular controller [4]. This limits the capability of reasoning
and designing the controller itself because the system is abstracted as a whole, when the
controller design process has already taken place, which is a shortcoming of the approach.
Also, this approach is usually applied to trivial examples where one can abstract the controller
and plant system as a single entity [4]. These reasons partially explain why model checking
is yet to be applied into the design and verification of safety-critical control systems such as
gain scheduling PID control schemes, specially with the aims of certification practices in
mind. Not only the technical limitations have to be addressed but the existing gap between
current software engineering practices and model checking must also be addressed. Model
checking is not a common approach partially because it relies on the designer’s expertise on

26 Literature Review and Technical Background

the subject, making it not user-friendly. Easy to follow model checking practices for a control
engineer must be developed so that the benefits of model checking can be fully exploited.

2.3 Technical Background

The use of formal methods and model checking to address the design and verification of
dynamic control systems is the main subject of this thesis. Formal methods and control
systems are broad areas of engineering, which creates many possible applications and areas
of interest when combining them both. Particularly one aim of the work presented in this
thesis is to bring model checking and control systems together to address safety-critical
industrial applications type of problems. The following section explains the particular type
of dynamic control systems to be considered in this thesis and the type of model checking
technique which will be used to generate a formal design and verification framework.

2.3.1 Dynamic Control Systems

The evolution of control systems as we know them today has seen drastic changes over the
years generating alongside a wide body of knowledge around it. Early control systems relied
on analogue control and its implementation was performed using operational amplifiers
[19]. Their understanding and design generated early control theory based on frequency
domain analysis by Bode [20], Evans [49], and many others. With the arrival of the transistor
and digital computing, digital control was born around the 1950s [15]. The arrival of
computer systems and the ability to perform fast computations allowed to perform algorithmic
calculations before generating the desired control signal, improving control algorithms and
enabling a variety of control theory such as state-space, predictive, fuzzy, linear, non-linear,
adaptive, robust, hybrid, among others [86]. Among all the different types of control (and
controllers), PID control is probably the most widely used type of control [59, 85, 101, 121,
122, 124]. It is simple to implement and the fact that it only consists of 3 parameters for
tuning (proportional, integral, and derivative gains) makes it easy to configure.

The technological progress in computer science, both in hardware and software, has
enabled the incorporation of computer systems everywhere. This is referred to as embedded
systems, and when they are used for control purposes, embedded control systems. When
an embedded control system is used to regulate the behaviour of a physical system, a
hybrid system is born: continuous and discrete dynamics interacting. Figure 2.1 shows a
generic hybrid control system, the controller is implemented in a computer-based system
for the regulation of a physical variable. The actuator and the sensing device are the bridges

2.3 Technical Background 27

between the discrete and continuous worlds. This configuration is very common and flexible.
Changing a controller means in most cases a software update, making it very versatile.

Fig. 2.1 Generic dynamic hybrid control system. A physical system regulated by a computer-
based controller.

During the late 1950s computer-based control was being incorporated into aerospace
applications. Jet-engine control was a direct beneficiary of such an approach. Highly non-
linear processes such as thrust regulation in a jet-engine require more complex control
approaches. The early attempts to apply adaptive control in an embedded control system
for aerospace applications resulted in the gain scheduling approach [94, 149]: the gains of a
known structure controller are varied depending on external factors and different operating
points. The typical choice for the controller structure is a variation of the PID controller. In
this way, a non-linear control problem is solved as a series of linear control problems, which
in turn are easier to handle both from a design point of view and an implementation point of
view. The controller gains are stored as arrays or look-up tables in the computer.

Even if more advanced control techniques and higher computer power are available
with today’s technology, PID gain scheduling control is still a popular approach [97, 127].
In particular, for safety-critical commercial aerospace control systems, gain scheduling is
preferred because it is a well known approach, there is a lot of experience using it, it is simple
to implement, and the road to certification for an airborne system is known. Airworthiness
certification for commercial applications requires evidence to show the correct behaviour of
the system prior to operation, which can be done with gain scheduling control but not with
an adaptive system scheme [18].

However, certification practices are not exempt from mistakes and human errors. Proving
safety and compliance with requirements is an arduous process where testing activities play
a key role. The development of safety-critical control software can be improved by the

28 Literature Review and Technical Background

Fig. 2.2 Generic gain scheduled dynamic hybrid control system. A physical system regulated
by a computer based controller. The controller gains are configurable while in operation
depending on external factors and operating points.

incorporation of formal methods in the design and verification cycles, bringing together tools
from computer science and control engineering.

Final Value Theorem

To know if a system output settles eventually to a given input gives an stability verification;
also this calculation provides an indication of the system gain. To calculate the final value of
the system response to a given input, the final value theorem can be applied. The following
equation can be used to calculate the final value of a discrete SISO transfer function:

lim
z→1

(z−1)F(z) (2.1)

The step response for a discrete SISO system G(z) with input U(z) and output Y (z), can
be calculated as follows:

G(z) =
Y (z)
U(z)

Y (z) = G(z)U(z)

Y (z) = G(z)U(z) = G(z)
z

z−1
= F(z)

Using Equation 2.1 to calculate the final value of the transfer function F(z):

2.3 Technical Background 29

lim
z→1

(z−1)F(z) = lim
z→1

(z−1)G(z)
z

z−1
= lim

z→1
zG(z) (2.2)

The calculation of the final value of a system will be a useful tool for the proposed
abstraction methodology in this thesis. Chapter 3 will present the abstraction methodology in
more detail.

2.3.2 Formal Methods and Model Checking

The following section summarizes the basic concepts of formal methods and model checking.
A description of what they are and the key building blocks of these methods are provided.
In software and hardware engineering formal methods refer to the mathematically-based
techniques for the specification, development and verification of software and hardware
systems [87]. It is expected that the mathematical rigour which underpins formal methods
can improve reliability, quality, and robustness of the design [75].

Within formal methods a model-based verification technique is model checking. Model
checking is an exhaustive verification technique that given a formal description of the system
and of a required property, it automatically determines whether the property is satisfied or
not by the system [7]. To do so it has to explore all possible scenarios (this is why it is
exhaustive). When the property is violated it returns an execution that exhibits the problem,
which is called a counter example. This technique verifies the correctness of a model to meet
certain properties. Model checking is an exhaustive and systematic search of the reachable
states of a model of a given system [139]. Perhaps the most recognized limitation of model
checking is the state-space explosion [7, 139]: the necessary states to represent the desired
behaviour of the system is too high so that it easily exceeds the amount of computer memory.

To perform the formal verification of a system using model checking, two components
are required:

1. Model of the system, i.e. formal description of it.

2. Formal language to describe the properties of the system.

The two main components of model checking are explained in more detail in the following
sections.

Models: Transition Systems and Hybrid Systems

The models required for model checking are part of the Transition Systems (TS) family. TS
consist of nodes (states) and edges (transitions) which model node changes. Hybrid systems

30 Literature Review and Technical Background

use this modelling principle. Figure 2.3 shows a generic transition system consisting of five
nodes and eight edges. Events are related to edges so they trigger transitions to change states.

Fig. 2.3 Generic transition system consisting of five nodes and eight edges. Every node
represents a state of the system and the edges represent how actions make the system move
between states.

A hybrid system is composed of elements of both continuous and discrete dynamics.
These 2 components interact with each other to determine the overall behaviour of the system.
Due to the complexity of such systems a variety of modelling techniques have emerged.
These are known as Model of Computation (MOC) e.g. Markov Chains [30], Petri Nets [30],
Finite State Machines (FSM) [33, 57], Discrete Event Systems (DES) [3], Continuous Time
Systems (CTS) [144], Sequential Systems (SS) [92]. By using two or more MOCs a more
realistic model of a system can be built, which is becoming a common practice in order to
meet industry requirements [3, 25, 30, 88, 98, 104, 114].

Properties: Formal Languages

Once having a model of the system a formal language to express its properties is needed.
Such a language should be expressive enough to capture any possible property to be verified,
and formal enough to avoid vagueness or ambiguity. Requirements come in the form of plain
text written in human-spoken languages, which is not useful due to the lack of formalism
required for model checking. LTL and CTL are formal ways to express linear-time (LT)
properties for TS [7, 89]. The main difference between LTL and CTL is the concept of
’time’. In LTL time is linear and only one successor can follow each state, in CTL time is
considered to be able to branch thus allowing more than one successor. CTL made possible
the inclusion of explicit time-values in the verification process (in the form of clocks), which
is not possible in LTL where time is rather a concept with no specific value to be verified.

2.3 Technical Background 31

Some properties can be expressed in one and not in the other and equivalences exist between
certain properties as well. For a better understanding of both refer to [7] and [89].

2.3.3 Model Checking and Hybrid Systems

The verification of the system and its properties is performed in the model of the system, not
in the product itself or the prototype. This is an important point because it means the model
checking approach and the results obtained by it are only as good as the model. Therefore,
the verification is limited by how good the model is and by what kind of properties can be
expressed with the formal language [7]. Depending on the type of properties to be verified and
the system component’s interaction a modelling approach is selected. The selected approach
must preserve the properties of interest for the problem to be addressed. Regarding dynamic
control systems, transient behaviours and interactions among the various components are
of important significance when designing and verifying the system compliance with design
requirements. It is therefore desirable that the formal model is able to capture the system
dynamics as closely as possible to the real system.

Regarding dynamic control systems and due to the nature of model checking, an exhaus-
tive verification technique, the type of formal models to address a dynamic control problem
become restricted because of memory limitations. High fidelity commercial off-the-shelf
models used for control design purposes are not suitable for model checking. For this reason,
a system abstraction is the usual approach to construct a formal model of a system which
in turn is suitable for model checking. The system abstraction to be implemented in model
checking must preserve as closely as possible the dynamic system properties and interactions
of interest in the dynamic control problem.

2.3.4 Timed-Automata and Computation Tree Logic

The following section gives a brief description of the type of automata to be used in this
thesis and the formal language used to express the properties of the systems modelled using
the automata.

Timed-Automata

A timed-automaton is a finite-state machine extended with clock variables. A system can
be modelled as a network of timed-automata. Clock variables evaluate to a real number
and all the clocks in the system progress synchronously. A state of the system is defined
by the locations of all automata, clock constraints, and the values of the system variables.

32 Literature Review and Technical Background

Every automaton may fire an edge independently or via a synchronize operation with another
automaton [13].

A timed-automaton (TA) is a tuple (L,l0,C,A,E,I), where:

• L is a set of locations or states.

• l0 is the initial location.

• C is a set of clocks.

• A is a set of actions.

• E is a set of edges between the locations. Edges are constituted by actions, a guard,
and a set of clocks to be reset.

• I : L→ B(C) assigns invariants to locations.

B(C) is the set of conjunctions over simple conditions of the form x ◃▹ c or where x is a
clock and c is an integer value. The allowed operations for ◃▹ are {<,≤,=,≥,>}.

Consider the following example of a TA modelling the behaviour of a gate that opens and
closes. The timing requirements for the open and closing behaviour of the gate are modelled
using the clock x.

Fig. 2.4 Timed-Automaton example of a gate that open and closes on request. The timing
requirements regarding the opening and closing actions are modelled using the clock x.

The automaton definition is given by:

• L = {up, comingdown, down, goingup}.

• l0 = {up}.

• C = {x}.

2.3 Technical Background 33

• A = {lower, raise}.

• E = {up
true:lower,x−→ comingdown, comingdown

true:τ,∅−→ down,
down

true:raise,x−→ goingup, goingup
x≥1:τ,∅−→ up}.

• I = {comingdown−→ x≤ 1, goingup−→ x≤ 2}.

The model checker UPPAAL is used to conduct the formal verification and design
activities in the work presented in this thesis. UPPAAL uses TA to model systems. The
particular implementation of TA in the model checker UPPAAL contains semantics and
definitions particular to the tool. For further reference about TA in UPPAAL and how to
construct networks of TA to model systems refer to [13, 41].

Computation Tree Logic

In this section the basic syntax and semantics for CTL are presented. CTL has a two stage
syntax, state formulae and path formulae [7, 35]:

• State formulae: assertions about the atomic propositions (AP) in the states and their
branching structure.

• Path formulae: express temporal properties of paths.

CTL state formulae over the set of AP are formed according to the following grammar:

Φ ::= true | a |Φ1∧Φ2 | ¬Φ | ∃ϕ | ∀ϕ

where a ∈ AP and ϕ is a path formula. ∃ is the exist path quantifier (for some path), and ∀ is
the all path quantifier (for all paths).

CTL path formulae are formed according to the following grammar:

ϕ ::=⃝Φ |Φ1
⋃

Φ2

where Φ, Φ1, and Φ2 are state formulae,⃝ is the next operator, and
⋃

is the until operator .
Consider the following example. Let AP = {x = 1,x < 2,x ≥ 3} be a set of atomic

propositions. The following are examples of syntactically valid CTL formulae:

• ∃⃝ (x = 1).

• ∀⃝ (x = 1).

• (x < 2)∨ (x = 1).

34 Literature Review and Technical Background

• ∃((x < 2)
⋃
(x≥ 3)).

State formulae express a property of a state, while path formulae express a property of a
path (e.g. a sequence of state). Formula⃝Φ holds (evaluates to true) if Φ holds at the next
state in the path. Φ1

⋃
Φ2 holds for a path if there is some state along the path for which Φ2

holds, and Φ1 holds in all the states prior to that state. By combining both state and path the
properties verification can take place. For example, ∃ϕ holds in a state if there exists some
path satisfying ϕ that starts in that state, and ∀ϕ holds in a state if all paths that start in that
state satisfy ϕ .

Figure 2.5 shows a graphic representation of the state formulae and path formulae
combination for the ∀ϕ and ∃ϕ cases. Figure 2.5-a shows how ϕ is satisfied in a state for all
the available paths beginning in state Init. Figure 2.5-b shows how there exists at least one
path beginning at state Init where ϕ is satisfied in a state.

Fig. 2.5 Graphic representation of state formulae in combination with path formulae. a) ∀ϕ
case and b) ∃ϕ case.

The model checker UPPAAL works with a subset of CTL. The query language of
UPPAAL uses basically a combination of path formulae and state formulae with the here
presented path quantifiers. The syntax of the query language is particular to the tool, for
further reference see [13, 41].

The type of properties that can be verified using TA and CTL with the model checker
UPPAAL are (this is revisited in Section 4.4 again):

1. Reachability: It is possible to reach a system state.

2. Safety: Something can never happen.

3. Liveness: Something will eventually happen.

They all check different behaviours in the system, by using a combination of these
properties the design and verification problem for a dynamic control system can be portrayed.
The type of automata (TA), properties formal language (CTL), and available properties will
drive the modelling approach.

2.4 Final Remarks 35

Remarks

A brief description of the type of models and formal language that will be used in the novel
formal design and verification framework developed in this thesis was presented. For a more
detail description of both modelling approaches and formal languages refer to [7, 35]. For a
more detailed description of the modelling tool UPPAAL and its use refer to [13, 41].

2.4 Final Remarks

The design and verification of safety-critical applications are challenging activities. Formal
methods and model checking can provide tools to help improving the current design and
verification processes for safety-critical software applications. Dynamic control systems
present challenges from both modelling aspects and requirements formalization in order to be
fully addressed in a formal manner. The state-space explosion problem in model checking is
perhaps the main limitation when modelling, particularly this makes the use of floating-point
data and its arithmetic an open challenge for current model checking tools and techniques:
computational memory is still a major limitation.

The necessity of generating a system abstraction arises, where such abstraction must
maintain the particular features of interests to be formally verified. In dynamic control
systems, transitory and dynamic behaviours drive the level of abstraction to be used. Re-
garding feedback control loops it is desirable to be able to reason about the plant and the
controller individually, particularly when designing the controller. Current safety-critical
control applications rely on known control schemes such as PID gain scheduled controllers;
one of the main reasons for this is the certification of this type of software.

The incorporation of formal methods and model checking into the software life-cycle
for safety critical control applications requires the generation of easy to follow practices
and frameworks. In this way control and software engineers can embrace the use of formal
methods more easily and the benefits of their use to be fully exploited. The work developed
in this thesis targets the formal design and verification of discrete gain scheduled PID
controllers. The selected type of models and formal methods tools to address this problem
were presented in this chapter. The following chapters explain the methodology in detail,
from the selected approach to generate the system abstraction to the formal modelling of the
system in the model checker environment. The methodology is presented within the context
of an aerospace safety-critical control application.

Chapter 3

Dynamic System Abstraction
Methodology

3.1 Overview

Model checking is only as good as the model being used. As mentioned in Chapter 2
the main limitation of model checking is the state-space explosion problem: when the
system behaviour is expanded to its full possible states, the number is too high to perform
an exhaustive analysis over them [7, 35]. The use of the floating-point data type is part
of this limitation and currently no model checker fully supports this data type [108, 153].
This limitation makes it hard to simulate dynamic control systems and limits the use of
existing engineering models. The common approach to solve this limitation when addressing
dynamics systems in a model checking environment is to generate an abstraction of the
system dynamic [47, 86, 134, 152]. The abstraction must contain the desired dynamic
behaviour related to the problem to be verified. The abstraction therefore is a reduced version
of the original model. This usually means a change of coordinates by mapping the original
search space into another one where model checking can solve the problem. However, it
is desirable to use the same coordinates in the system abstraction to avoid one more level
of transformation. In this way, when requirements are translated into properties no extra
conversion is required and the reasoning can be performed using the original coordinates.

To overcome the floating point limitation, a model abstraction constructed with a fixed
point data type representation is proposed. To construct the fixed point representation only
integer data is used. By doing so the same coordinates are preserved but the search space
is limited so that model checking can address the design and verification problem. The
drawback of using this approach is the level of resolution that can be obtained when using

38 Dynamic System Abstraction Methodology

integer data to represent real numbers. Nonetheless the approach enables the use of well-
known dynamics models within a model checking framework. By using this abstraction
methodology the PID controller gain scheduling problem formulation can be addressed using
a formal verification approach with model checking. The key contribution of this chapter
is therefore presenting the underlying abstraction methodology that underpins the formal
design and verification approach for a gain scheduling control scheme in Chapter 6.

This chapter is structured as follows: Section 3.2 presents the type of dynamic models
to be used in the abstraction. Section 3.3 presents the fixed point representation and the
considerations when using it. Section 3.4 presents the error compensation approach to be
used by the methodology in order to provide safety guarantees when the final abstraction is
to be used. Section 3.5 presents the full abstraction methodology and presents an example of
its use. Finally, Section 3.6 presents final remarks and discusses the abstraction methodology.

3.2 Discrete-time SISO LTI Models

Considering a control scheme such as the one in Figure 2.1 and inspired by a classical control
approach, a discrete representation of the entire system is to be considered. The controller
is typically implemented in a computer-based system hence a discrete implementation is
fairly common. It is thus convenient to consider the entire system in the discrete domain and
address the problem in this domain. Also, from a model checking implementation point of
view, it is convenient to implement a discrete solver rather than a continuous one (e.g. ODE
solver).

In order to model dynamic systems (e.g. a closed control loop) and to address the gain
scheduling control design problem, discrete SISO LTI models have been selected. The
results can be generalized to the multi-variable case but it is not in the scope of this work.
Discrete-time SISO LTI deterministic models can be described by an auto-regressive with
exogenous input (ARX) model (Equation 3.1). Using the z transform notation:

Y (z−1)

U(z−1)
=

b1z−1−n +b2z−2−n + ...+bnbz−nb−n

1+a1z−1 +a2z−2 + ...+anaz−na
(3.1)

where:

bi,ai ∈ R

Y,U ∈ R

n,na,nb ∈ Z+

3.3 Fixed Point Representation Using Integer Data 39

where the output of the system is Y, the input is U and the system response delay to the
input is n. The order of the system is determined by the number of the coefficients a (na) and
b (nb). The output calculation is therefore the weighted sum of previous input and output
values:

Y (k) =
na

∑
i=1

aiY (k− i)+
nb

∑
i=1

biU(k− i−n) (3.2)

Every element in the control scheme (Figure 2.1) can be described by a SISO LTI. In this
manner the interaction between all the elements can be constructed by solving the recurrence
equations of the system components.

Inputs, outputs, and coefficients are real numbers which are best represented by floating-
point variables. The use of the floating-point data-type is currently very limited for model
checking due to the state space explosion problem. The range of a floating-point variable
is potentially infinite which makes the search space grow exponentially leading to a state-
space explosion. To overcome this limitation a fixed-point representation which uses integer
data-type is proposed. The following section explains the considerations in order to select a
fixed-point representation for the SISO LTI models.

3.3 Fixed Point Representation Using Integer Data

When considering modelling a dynamic control system the obvious numeric representation of
the related variables is real numbers. For computational purposes real numbers are expressed
as either floating-point data or fixed-point data. The use of integer data to represent real-
valued variables usually implies a transformation or equivalence between the two domains
- e.g. a change of coordinates. Within a model checking framework dealing with floating
point data is an open problem and no model checker fully supports this data type [108, 153].
On the other hand integer data type is supported by most model checkers even if with some
restrictions (e.g. data type size).

A fixed-point representation using integer data-type is proposed to overcome the floating-
point limitation in model checking. Limiting the operating range of the system variables
and using a scaling approach to recover a fixed number of digits with integer data type, a
fixed-point representation is constructed avoiding the necessity of floating-point data [66].
The selection of the fixed-point representation is driven by:

• Operating space range: input U and output Y range.

• Resolution: number of integer and fractional digits.

• Data operations: addition, subtraction, etc.

40 Dynamic System Abstraction Methodology

• Available size in integer data type (e.g. 16-bit signed, 16-bit unsigned).

The previous considerations will determine the type of ad hoc fixed-point data represen-
tation needed. The following sections explain how these considerations have an effect on the
final fixed-point selection and its implementation.

3.3.1 Data Types for Data Representation

Input U, output Y, a and b coefficients related to the discrete SISO LTI models directly affect
the first two items in the considerations listed in Section 3.3. Depending on the numbers
and range to be represented a suitable format must be chosen. Table 3.1 shows the data
ranges for different integer data sizes. The available number of digits and range will influence
the decision of where to separate the integer part from the fractional part in the fixed point
representation.

Table 3.1 Integer data type ranges.

Bits Available Digits
Signed Unsigned

Lower Limit Upper Limit Lower Limit Upper Limit

8 3 -128 127 0 255
16 5 -32768 32767 0 65535
32 10 -2147483648 2147483647 0 4294967295

Table 3.2 shows possible configurations for a fixed-point representation using a 16-bit
integer data type. Five digits are available to use in both the integer and fractional parts.
Choosing one configuration within the available options depends on the range and resolution
needed.

Table 3.2 Possible fixed point representations with 16-bit integer data type

Integer Digits Fractional Digits
Signed Unsigned

Lower Limit Upper Limit Lower Limit Upper Limit

4 1 -3276.8 3276.7 0 6553.5
3 2 -327.68 327.67 0 655.35
2 3 -32.768 32.767 0 65.535
1 4 -3.2768 3.2767 0 6.5535

The way data is chosen to be represented is highly relevant to the information listed in
Table 3.1 and Table 3.2. If the number of digits required to represent the data (in whichever

3.3 Fixed Point Representation Using Integer Data 41

configuration for integer and fractional parts is chosen) is higher than 5, then 16-bit integers
are not suitable for representation purposes. Following the same reasoning, if the number
of total elements (e.g. data range) is higher than 65,535 (either positive or negative values)
16-bit integers are not suitable to fit such data range. A compromise involving range and
presentation must be made when selecting how to represent the data.

3.3.2 Fixed Point Data Size Considerations

To calculate the system dynamics using a discrete SISO LTI model a weighted sum of
previous input and output values has to be performed (Equation 3.2). Performing this
operation affects the required size of the data type to be used. Regardless of the choice for
the fixed-point representation (e.g. number of digits for integer and fractional parts) the
operations are performed using integer data. Therefore it is important to consider the limits
of the chosen data representation and the type of operations to be performed with such data
to ensure there is no overflow, risking the end result of the operation. These considerations
will determine how to perform arithmetic operations with the selected data type.

When considering arithmetic operations using integer data the risk of overflow has to be
assessed. Multiplication and addition are the main risk of potential overflow. Table 3.3 shows
the required size (binary case) to store the result (C) when performing addition (subtraction
is considered to be a signed addition), multiplication, and divide operations with two integer
numbers (A, B) of size n for both upper and lower limits worst cases.

Table 3.3 Size considerations for data operations - binary case.

A+B A*B A/B
Inputs Output
A B C C C

2n 2n 2n+1 22n 20

2n 2-n 22n 20 22n

Performing addition and subtraction operations for a chosen fixed-point representation
using integer data is a straightforward procedure (e.g. using primitive operations with integer
data will provide the fixed-point result). Multiplication can also be performed using primitive
operations but the result will need a correction to compensate for the magnitude of the integer
part in the data representation. Most importantly a consideration of size to store the result of
the operation has to be considered. From Table 3.3 it can be seen that when multiplying two
integers of size n a 2n result will be generated.

42 Dynamic System Abstraction Methodology

Divide operations with integer data also present an overflow risk (Table 3.3), as in the
multiplication case a possible size of 2n to store the result may be necessary. However, the
fixed-point representation has other implications regarding overflow and data size. Consider
the fixed-point representation in Table 3.4. The total number of bits (binary case) is equal to
the sum of the number of bits in the integer and fractional parts.

Table 3.4 Fixed point representation - binary case

Total Bits ♯ Integer Bits ♯ Fractional Bits Representation

n = i+f i f 2i.2− f

Considering Table 3.4 the necessary bits to accommodate the largest result from a divide
operation A/B is 2n-i (Table 3.5).

Table 3.5 A / B = C: Largest possible result - binary case

A B A/B=C Required Representation ♯ Bits Required

2i 2− f 2i

2− f = 2i+ f 2n.2− f n+f=2n-i

These considerations will determine the data type size required to correctly use a fixed-
point representation and perform arithmetic operations. Arithmetic operations are also
driven by the selected representation. Some operations may be performed with standard
primitive integer data operations. The data type availability in the model checker, the type
of arithmetic operations to be performed with such data are relevant considerations to the
methodology because they will determine if the chosen fixed-point representation and its
arithmetic operations can be correctly implemented. However, if the required size is bigger
than the available data size in the model checker, an ad hoc implementation to compensate
for such limitations will be required.

3.3.3 Fixed Point Arithmetic Using Integer Data

In order to properly perform data operations with a fixed-point representation which uses
integer data only the size restrictions from Section 3.2, specifics of the fixed-point represen-
tation (e.g. digits/bits in fractional and integer parts), and the available data types must be
considered. Table 3.6 shows the required size to perform arithmetic operations for a given
number of digits. The limitation is mostly driven by the multiply operation requirement. The
number of bits needed to perform a multiplication is double the size of the bits needed to
represent a number.

3.3 Fixed Point Representation Using Integer Data 43

Table 3.6 Data size requirements.

Representation Operations

Data Type Bits Digits Data Type Bits Digits

Byte 8 3 Word 16 5
Word 16 5 Long 32 10
Long 32 10 Longword 64 19

The required data type is thus the one needed to perform arithmetic operations. To have a
5 digit representation (in whichever way the digits are distributed for integer and fractional
parts) with a 16-bit data range (e.g. -32,768 to 32,767) a total of 32 bits are needed to perform
data operations; hence Long data type is required. A case can be made when restricting upper
and lower bounds in the data but the reasoning is the same. In general, the number of bits
needed for operations are double the number of bits used to represent the highest magnitude
value in the data. The naming convention may vary from computer language or platform but
the consideration is driven by the number of bits needed to perform data operations.

Considering the information in Table 3.4 and Table 3.6, to use a 5 digit fixed point
representation using the full range of a signed 16-bit integer, 32 bits are required. If only
16-bit signed integers are available in the platform an ad hoc arithmetic is required to correctly
represent and perform arithmetic operations with the data.

3.3.4 Ad Hoc Data Type

The purpose for generating an ad hoc data type is to be able to run the discrete time solver
for the SISO LTI models presented in Section 3.2 using 16-bit integer only data. In this
manner the dynamic models can be implemented in a model checker environment even if
only 16-bit integer only data is available. This is a common limitation in model checking
because increasing the data type size availability could potentially turn into a state space
explosion due to an even bigger data range. Solving a recurrence equation with the form
of Equation 3.2 requires addition, subtraction, and multiplication operations. To correctly
perform all these operations considering a 5-digit fixed-point representation using 16-bit
signed integer data type, the data representation from Table 3.7 is proposed. This ad hoc data
type allows to use 5 digits for data representation with the range of a signed 16-bit integer.
This allows a magnitude of over 30,000 values to be distributed as required depending on the
fixed-point selection. Also, the ad hoc data type allows to perform addition, subtraction, and
multiplication arithmetic operations which are necessary to solve the recurrence equation of
a discrete SISO LTI model.

44 Dynamic System Abstraction Methodology

Table 3.7 Ad hoc data type for abstraction

Limits Required Bits Signed Integer
ElementsLower Upper Sign Magnitude Operations

-32767 32767 1 15 30 2

By modifying the lower limit of the data to -32,767 instead of the native -32,768 limit of
a 16-bit signed integer, two 16-bit signed integers are used to perform operations within the
specified range. The sign bit is handled independently so that data representation is strictly
limited to use 15-bit magnitude range.

A discrete SISO LTI model structure (Section 3.2) has been proposed to model the
system’s dynamics in combination with an ad hoc fixed-point data type (Section 3.3.4) in
order to perform data operations without the need of floating-point data. The combination of
the model structure with the fixed-point data type representation will enable the use of such
models in an environment where neither floating point nor fixed-point (in its native form)
data are available, enabling the use of this type of models in a model checking environment.
By enabling the use of discrete SISO LTI models in a model checking environment will allow
to formally verify typical dynamic control systems.

In order to provide guarantees when using the proposed abstraction, the amount of error
added by the approach has to be considered. The following section explains the type of
inaccuracies to be considered during the modelling process.

3.4 Modelling Error Compensation

In order to provide safety guarantees when using the model abstraction, modelling errors,
and data inaccuracies have to be integrated in the modelling process. The model abstraction
will be used in a model checking environment to reason about the performance of the original
control system, therefore it is important to provide safety guarantees when performing formal
verification and validation of the system. Therefore modelling errors and data type rounding
effects have to be considered before using the model abstraction to reason about the behaviour
of the system. The following sections explain the three different type of modelling errors to
be considered and how to address them.

3.4 Modelling Error Compensation 45

3.4.1 Parametric Compensation - ε1 Error

Considering the continuous domain closed loop control system in Figure 3.1, it is assumed
that:

• This is a single variable feedback control problem. The process G(s) is regulated by
the controller C(s).

• The controller structure C(s) is known.

• The process structure G(s) is unknown thus subject to modelling.

• The process is modelled by a transfer function in the continuous-time domain.

Fig. 3.1 Generic continuous time closed loop control system.

Taking into account the previous assumptions, the modelling error can be considered in
two forms: additive and relative [1].

Considering:

a G(s): True Plant.

b G0(s): Nominal Model.

The Additive Model Error is given by:

GEA(s) = G(s)−G0(s) (3.3)

Considering Additive Model Error (Equation 3.3) the true plant is given by:

G(s) = G0(s)+GEA(s) (3.4)

where GEA(s) can be considered as extra dynamics in the nominal model G0(s) and factored
in with it. The true plant can therefore be represented as:

G(s) = G0(s)G∆(s) (3.5)

46 Dynamic System Abstraction Methodology

G∆(s) can represent different types of dynamic errors:

1. Gain error - G∆(s) = (1+KU)

Thus G(s) = G0(s)(1+KU)

2. Delay and gain error - G∆(s) = (1+KU)e−sTU

Thus G(s) = G0(s)(1+KU)e−sTU

3. Pole and gain error - G∆(s) =
(1+KU)
(τPs+1)

Thus G(s) = G0(s)
(1+KU)
(τPs+1)

4. Zero and gain error - G∆(s) = (1+KU)(τZs+1)
Thus G(s) = G0(s)(1+KU)(τZs+1)

where:

• KU = Uncertainty gain magnitude.

• TU = Uncertainty time delay magnitude.

• τZ = Uncertainty zero time constant.

• τP = Uncertainty pole time constant.

The following assumptions regarding the modelling uncertainties G∆(s) are made:

• The plant is modelled as a stable system.

• Tolerance errors do not change the structure of the plant.

• The error has the same order as the plant: no zeros or poles added. This may lead to
closed-loop instability due to pole shifting.

These assumptions reduce the type of modelling errors to be considered, so only Gain
error remains. Only this type of error will be considered when compensating the plant. The
proposed models for the system abstraction are of discrete nature (Section 3.2). The same
reasoning about modelling error applies in a discrete formulation, Figure 3.2.

Considering Gain Error only, the true plant G(z) can be calculated as:

G(z) = G0(z)(1+KU) = G0(z)+KU G0(z) (3.6)

In open loop form, the plant model to be considered in this problem formulation is the
one in Figure 3.3.

3.4 Modelling Error Compensation 47

Fig. 3.2 Generic discrete time closed loop control system.

Fig. 3.3 Open loop representation of the plant model with gain error compensation.

The parametric compensation will be given by the selected value of KU.

KU ∈ R :−δ ≤ KU ≤ δ (3.7)

The magnitude of KU will determine the amount of system’s gain uncertainty to take
into account. The bigger the magnitude of KU the greater the distance between the nominal
model G0(z) and the abstraction. This could lead to having a model abstraction which is too
conservative so the real system dynamics are far from the abstraction. In the same way, a
small KU value can cause that the real system dynamics are not included in the abstraction.

The purpose of generating the abstraction is to enable addressing a dynamic control
design problem in a model checking environment. Both extremes (too small or too big a
value fo KU) could lead to false results in the model checker due to being too conservative or
too tight of an abstraction. After compensating the model dynamics, the data type restriction
has to be addressed. The following section explains how rounding effects to generate a
fixed-point representation contribute to the amount of error the abstraction will contain and
how to address it.

48 Dynamic System Abstraction Methodology

3.4.2 Fixed Point Representation Compensation - ε2 Error

The proposed data type for representation and data operations is fixed-point but using integer
data type only. In this way the necessity for fixed-point or floating-point data is removed from
the approach, making the abstraction suitable for a model checking implementation. The
amount of digits selected for the integer part and for the fractional part will determine how
much error is added by using a fixed-point representation instead of floating-point. When
using fixed-point data a rounding or truncating operation has to be performed to limit the
data to the selected representation, this amount of error has to be accounted for.

In general, when using a fixed-point representation for a real number X described by
Equation 3.8:

X = 2i.2− f (3.8)

with i bits for the integer part and f bits for the fractional part. The amount of error ε2

when truncating or rounding off a datum’s value is given:

|ε2|=
1
2

2−(fb+1) (3.9)

Alternatively, in decimal form:

|ε2|=
1
2

10−(fd+1) (3.10)

The amount of error per datum is described by Equation 3.9 in binary base and Equation
3.10 in decimal base. Thus, error is then bounded by the limits in the decimal base form:

− 1
2

10−(fd+1) ≤ ε2 ≤
1
2

10−(fd+1) (3.11)

When using the fixed-point representation the amount of error added by the selected
format has to be considered and accounted for in order to properly bound the arithmetic
operations in the proposed models to describe the system’s dynamics.

3.4.3 Scaling Compensation - ε3 Error

When using integer data to perform arithmetic operations with a fixed-point representation,
certain considerations have to be made when performing multiply operations:

• The original fixed-point data has to be scaled to recover the fractional part. This is
equivalent to performing a left-shift operation.

• Multiply operations have to be performed differently: multiply then divide.

3.4 Modelling Error Compensation 49

• The extra divide operation concerns the effect of scaling. Such effect has to be removed
once the operation has been performed.

Consider any number in a fixed-point representation, where every I element represents an
integer digit and every F element a fractional digit. In order to bring n fractional digits into
the integer part, the original number must be multiplied by 10n. In this way the fractional
part can be represented using an integer number:

• A = I.FFFF. B = I.FFF.

• nA = 4. nB = 3.

• 10nA = 10,000. 10nB = 1,000.

• A′ = A×10nA .

• B′ = B×10nB .

A data representation format has to be chosen depending on the range of the variables
involved in the operations. This selection has to be done beforehand to make sure the results
fit in the chosen format. Disregarding how this is done, assume the selected integer-only
format consist of 5 digits: 1 integer digit (I = 1) and 4 fractional digits (F = 4). This means
that the result (C) from the multiply operation will also be represented in this format. In the
same way as number (A), a value of 104 = 10,000 is required to bring this number into the
integer domain:

• C = I.FFFF.

• nC = 4.

• C′ =C×10nC .

The operation A×B =C is thus performed in the following way:

A′×B′ = (A×10nA)(B×10nB) =C×10nA+nB (3.12)

Because nA = nC:

A′×B′ =C′×10nB =C′′ (3.13)

To recover C’ from C” an extra division is required:

A′×B′ =
C′′

10nB
=C′ (3.14)

50 Dynamic System Abstraction Methodology

When multiplying to scaled-up values and portraying the result in the format of one of
the elements involved (A element in the previous example), the result must be divided by the
scaling factor of the other element (B element in the previous example). Using the ad hoc data
representation from Section 3.3.4 (two 16-bit signed integers to construct a 30 bit unsigned
integer), doing division by performing bitwise right-shift operations makes computations
easier. Choosing a scaling factor as a power of 2 will make sure that removing the scaling
effect can be done by performing bitwise right-shift operations.

Representing coefficients a and b from Equation 3.2 in the ad hoc format requires a
scaling factor of 104 to recover 4 fractional digits. This value (10,000) is not a power of 2,
hence a value of 16,384 (214) is selected because it is the closest power of 2 that allows to
recover 4 fractional digits. Removing this scaling effect from a multiplication becomes a 14
bit right-shift operation.

Because the scaling process is performed using a 214 factor, rounding effects are added
and hence the scaled value is subject to error. Consider the following example where the
value A will be converted into the ad hoc fixed-point format which uses integer data only:

A = 1.8529

A1 = A×104 = A×10,000 = 18,529.0

A2 = A×214 = A×16,384 = 30,357.9

Value A1 fits exactly into the 5 digit format but value A2 does not. Depending on the rounding
operation (e.g. up or down), the result could either be 30,357 or 30,358. This is the nature of
the scaling factor error: the rounding operation in the scaling process when a scaling gain
which is not a power of 10 but a power of 2 is used. The power of 2 gain is used for the sake
of performing divisions with shift operations. The rounding effect contributes to error. In a
similar manner as for the calculation of ε2 (Section 3.4.2) the amount of error is given by the
number of digits used in the selected data representation. Thus, the amount of error added by
the ad hoc data type ε3 is described by:

|ε3|=
1
2

10−(f+1) (3.15)

Rounding up or down will generate different results and for this reason representing error
in the form of boundaries is a better approach:

− 1
2

10−(f+1) ≤ ε3 ≤
1
2

10−(f+1) (3.16)

3.4 Modelling Error Compensation 51

Three different sources of error when translating the original model into the discrete
model using the ad hoc data type have been described. The following section explains how
to consider all these sources of error and generating bounds for the system abstraction.

3.4.4 Global Error

Discrete SISO LTI models have been selected to describe the system dynamics. A fixed-
point data representation which uses integer data type only will be used to overcome the
floating-point data restriction in model checking. Three different sources of error regarding
the modelling process have been described and will be considered when implementing the
system abstraction:

1. ε1 - Parametric: modelling inaccuracies, Gain Error only.

2. ε2 - Fixed Point: data representation error.

3. ε3 - Ad hoc data type: scaling factor error.

Error ε1 is determined by gain KU (Equation 3.7) which is a design parameter to be
selected. Errors ε2 and ε3 have the same magnitude. The ad hoc data representation (Section
3.3.4) consist of 5 digits total, using 4 digits for the fractional part. Therefore the value for f
in Equations 3.10 and 3.15 is 4, which leads to:

|ε2|= |ε3|=
1
2

10−5 (3.17)

Considering Table 3.2 the selected data representation can be ignored since all data will
be handled as integers. The value of f is thus 0 when considering every data as an integer
number, therefore the error compensation can be done in the integers’ domain:

|ε2|= |ε3|=
1
2

10−1 (3.18)

Considering the discrete SISO LTI model given by Equations 3.1 and 3.2, the global
error can be included in the coefficients ai and bi. Coefficients a and b can be referred to
generically as c coefficients where each ci coefficient will be calculated as follows:

c̄i = ci(1±|ε1|)±|ε2|± |ε3|= ci(1±|KU |)±|ε2|± |ε3| (3.19)

According to Equation 3.19, intervals have to be calculated when adding the error
compensation into the coefficients. The following section explains how these intervals are
calculated.

52 Dynamic System Abstraction Methodology

3.5 Safety Guarantees

In whichever way the system behaviour is represented in the model checker environment,
guarantees about the accuracy of what the model checker is saying about the system must be
provided. Using a fixed-point representation implemented with integer data allows the use
of the same model structure (discrete SISO LTI) to calculate the control system dynamics
without making any coordinates change in the process. However, modelling errors are present
along with rounding errors due to the use of fixed-point to represent floating-point data.

In order to compensate the modelling process, three sources of error have been iden-
tified (Section 3.4). Including the global error into the modelling process will provide a
level of confidence when using the model abstraction for design and verification purposes.
Incorporating Equation 3.19 into Equation 3.1:

Y (z−1)

U(z−1)
=

b̄1z−1−n + b̄2z−2−n + ...+ ¯bnbz−nb−n

1+ ā1z−1 + ā2z−2 + ...+ ¯anaz−na
(3.20)

Each coefficient has to be recalculated to include the global error effect. The compensa-
tion process consists of the selection of a KU value and using it in combination with Equations
3.18 and 3.19 to come up with a new coefficient value. Given there are three sources of error
and the effect is to add or subtract the amount of each type of error, there are 8 possible
combinations for how to apply the add/subtract operations, Table 3.8:

Table 3.8 Possible compensation operations considering the aforementioned sources of error.

Type of Error

O
pe

ra
tio

n

ε1 ε2 ε3

+ + +
+ + -
+ - +
+ - -
- + +
- + -
- - +
- - -

The purpose of the error compensation is to take into account possible modelling errors
and encapsulate the true behaviour of the process under modelling. An interval arithmetic
approach is proposed [110, 111]. In this way upper and lower bounds for the model will be
provided. A criteria to determine how to calculate upper and lower bounds for the coefficients
compensation is required. All the vertices of uncertainty in Table 3.8 have to be checked to

3.5 Safety Guarantees 53

find the extreme values (maximum and minimum) which will correspond to the upper and
lower bounds.

3.5.1 Over and Under Approximation

Using an interval arithmetic [110, 111] approach to calculate the upper and lower bounds for
the coefficients compensation will result in two different models: over approximation (upper
bound) and under approximation (lower bound). The plant behaviour is then bounded by
both the under approximation and the over approximation.

The final value of the system output to a step input (using the final value theorem presented
in Section 2.3.1) is selected as the criterion to determine the upper and lower bounds for the
system abstraction. This criterion is selected because the type of parametric compensation
(Section 3.4.1) in this abstraction methodology only considers a system gain compensation
(ε1 error), which in turn has a direct effect on the settling value of the system.

By applying Equation 2.2 with all the combinations in Table 3.8, the models with the
extreme gain values (e.g. minimum and maximum) will correspond to the under approx-
imation and the over approximation respectively. Finally, from a continuous SISO LTI
model a discrete SISO LTI abstraction can be generated. The following section explains this
procedure.

3.5.2 Abstraction Generation

The system abstraction consists of an under approximation and an over approximation of the
original system. To recover the original system response both over and under approximations
are needed because they provide bounds for the original system. The system abstraction is
generated so a feedback control problem can be addressed in a model checking environment.
Modelling errors and computational errors are taken into account to compensate for inaccura-
cies and include them in the final abstraction. Algorithm 1 indicates the inputs, outputs, and
steps in order to generate the model abstraction.

From a continuous time SISO LTI model an abstraction which is suitable for a model
checking environment implementation is generated. The model abstraction consists of two
discrete SISO LTI models, and two scaling gains (Kab and KS). The model abstractions use
integer data only to represent the models’ coefficients.

Data Processing Cycle

Once the abstraction has been generated it can be implemented to process the input/output
relationship given by the transfer functions of the over and under approximations. The data

54 Dynamic System Abstraction Methodology

Algorithm 1: Over and Under Approximation Generation Procedure.
Input :Continuous SISO LTI Model, Sampling Period (T), KU gain.
Output :Over and Under Approximations: Discrete SISO LTI, coefficients scaling

gain Kab, Input/Output scaling gain KS.
1 Digitize the SISO LTI model using sampling period T.
2 Define operating space of the model: Input-Output range.
3 Based on Step 2 range, select fixed-point representation (I, F).
4 Based on Step 3 fixed-point representation select Input-Output scaling gain KS.
5 According to the selected fixed-point representation, convert the discrete SISO LTI

model to fixed-point: round-off to the selected amount of fractional digits F.
6 Verify non-zero fractional digits in coefficients a and b can be recovered using the

selected fixed-point representation with scaling Kab gain.
7 Based on Step 3 fixed-point representation, calculate the value of the coefficients

scaling gain Kab: closest value to 10F which is a power of 2 .
8 Recalculate coefficients using Equation 3.17, KU, and Table 3.8.
9 Apply final gain value theorem (Equation 2.2) to all generated transfer functions.

10 Select the transfer functions with the highest and lowest final value gains from Step 9.
11 Scale coefficients using Kab gain and round off to integer values.

cycle for processing the system output requires an update to the normal data cycle when
using discrete SISO LTI models (given by Equation 3.2).

To calculate the output for a discrete SISO LTI model described by Equation 3.2, a
weighted sum of previous inputs and outputs values must be performed. The general idea of
the process is described by Algorithm 2. Whether the system consists of one or more discrete
SISO LTI models the general data flow described by Algorithm 2 has to be maintained.

Algorithm 2: Discrete SISO LTI Data Processing Cycle.
Input :Discrete SISO LTI model(s): a and b coefficients, Total run time (iterations),

Input signal(s) U.
Output :Output signal(s) Y.

1 Iteration=0.
2 while Iteration<Total Run Time do
3 Update input(s) for current iteration: U(Iteration).
4 Calculate Output(s) for current iteration: Y(Iteration).
5 Update previous input/output values.
6 Iteration++.
7 end

The reason for this change is the restriction in the use of floating-point or fixed-point
data. As explained in Section 3.3 an ad hoc fixed-point data representation is proposed. The

3.5 Safety Guarantees 55

proposed representation uses integer data only. It is the considerations when implementing
the arithmetic (Section 3.3.3) and the scaling effect added when processing multiplication
operations (explained in Section 3.4.2) that generate a change in the data processing cycle.
The updated data processing cycle is described by Algorithm 3.

Algorithm 3: Modified Discrete SISO LTI Data Processing Cycle.
Input :Discrete SISO LTI model(s): a and b coefficients, Total run time (iterations),

Input signal(s) U, Coefficients Scaling Gain Kab.
Output :Output signal(s) Y.

1 Iteration=0.
2 while Iteration<Total Run Time do
3 Update input(s) for current iteration: U(Iteration).
4 Calculate Output(s) for current iteration: Y(Iteration).
5 Remove Kab effect from weighted sum: Y(Iteration)=Y(Iteration)/Kab.
6 Update previous input/output values.
7 Iteration++.
8 end

After step 4 (Algorithm 3) an extra operation is added to the processing cycle: the removal
of the Kab gain effect. The reason for doing so is the need to remove the scaling effect added
when representing fixed-point data with integers. By using Algorithm 3 the simulation of the
system can be computed. The following section explains with a practical example how the
abstraction is generated (Algorithm 1) and the simulation of the process is achieved using
Algorithm 3.

Example

To show the applicability of Algorithm 1 with the proposed data-type, a practical example is
presented. From a continuous SISO LTI system a discrete SISO LTI abstraction consisting of
integer data only will be generated. A simulation of the system response will be generated
using the abstraction and will be compared to the original discrete-time system. Taking into
account the restrictions in data range and type that Algorithm 1 presents, it guarantees that a
system abstraction can be generated from any dynamic system described by a continuous
SISO LTI model.

Consider a generic second order system described by:

G(s) =
Y (s)
U(s)

=
Kωn

2e−θs

s2 +2ζ ωns+ωn2 (3.21)

56 Dynamic System Abstraction Methodology

where, the following arbitrary values to demonstrate the abstraction methodology are
selected:

• System gain K = 1.

• System transport delay θ = 1 sec.

• System natural frequency ωn = 0.45 rad/sec.

• System damping ratio ζ = 0.5.

The system transfer function becomes:

G(s) =
Y (s)
U(s)

=
0.452e−s

s2 +0.45s+0.452 (3.22)

A sampling period of T = 0.5 seconds is selected, a parametric compensating gain KU =
0.001 (0.1%) is selected in order to apply Algorithm 1 to the system described by Equation
3.22.

Step 1 - Digitize the SISO LTI model using sampling period T: After digitizing Equa-
tion 3.22 using the selected sampling period T the following discrete SISO LTI system is
generated:

G(z) =
Y (z)
U(z)

=
0.0234186z+0.021724

z2−1.753373z+0.798516
z−2 (3.23)

Step 2 - Define operating space of the model: Input-Output range - The operating ranges
for input U and output Y are:

[0,1] = {U ∈ R : 0≤U ≤ 1}
[0,2] = {Y ∈ R : 0≤ Y ≤ 2}

The system gain is 1 and is described by a second order system such as Equation (3.21).
Because the system has overshoot, the range for the system output Y is selected equal to the
system’s input range.

Step 3 - Select fixed-point representation (I, F): Considering the selected data range
(step 2) and the ad hoc data type (Section 3.3.4) a value of I=1 and a value of F=4 are
selected. Table 3.9 shows an example of the minimum and maximum values from the original
fixed-point representation to the ad hoc integer-only fixed-point representation.

Step 4 - Select Input-Output Scaling Gain KS: Based on the information from Table 3.9
a value of KS=10,000 is selected. This value allows to map a value of 1 into the integer
representation equivalent of 10,000.

3.5 Safety Guarantees 57

Table 3.9 Mapping between original floating-point values and fixed-point integer representa-
tion.

Values Mapping
U Y

Original Abstraction Original Abstraction
0.0000 0 0.0000 0
0.0001 1 0.0001 1

.
0.9999 9,999 1.9999 19,999
1.0000 10,000 2.0000 20,000

Step 5 - Convert the discrete SISO LTI model to fixed-point: The selected fixed point
representation allows for 1 integer digit and 4 fractional digits. Taking Equation 3.23 into
this format:

G(z) =
Y (z)
U(z)

=
0.0234z+0.0217

z2−1.7534z+0.7985
z−2 (3.24)

Step 6 - Verify non-zero fractional digits in coefficients a and b can be recovered: As
can be seen in Equation 3.24 all the coefficients when put into the selected fixed-point repre-
sentation have non-zero values. The reason for this step is to avoid eliminating coefficients
altogether because they do not fit into the selected data type.

Step 7 - Calculate the value of the Coefficients Scaling Gain Kab: To recover 4 fractional
digits from the coefficients a value of 10,000 is required. The first value which is a power of 2
to allow to recover 4 fractional digits (hence it has to be in the order of the tens of thousands)
is 214 = 16,384. This is the selected value for Kab.

Step 8 - Recalculate coefficients using Equation 3.17, KU, and Table 3.8.
Step 9 - Apply final gain value theorem (Equation 2.2).
Step 10 - Select the transfer functions with the highest and lowest gains from Step 9.
The previous 3 steps are clustered together. After applying the error compensations to

Equation 3.24 and selecting the highest and lowest final gain values the following 2 transfer
functions are obtained:

GOver(z) =
Y (z)
U(z)

=
0.0236z+0.0219

z2−1.7553z+0.7993
z−2 (3.25)

GUnder(z) =
Y (z)
U(z)

=
0.0234z+0.0217

z2−1.7516z+0.7979
z−2 (3.26)

58 Dynamic System Abstraction Methodology

Equation 3.25 corresponds to the over approximation transfer function and Equation 3.26
corresponds to the under approximation transfer function.

Step 11 - Scale coefficients using Kab gain and round off to integer values: The selected
value of Kab is 16,384 (Step 7). After scaling Equations 3.25 and 3.26 the following Equations
are obtained:

GOver(z) =
Y (z)
U(z)

=
387z+359

16384z2−28759z+13096
z−2 (3.27)

GUnder(z) =
Y (z)
U(z)

=
383z+356

16384z2−28698z+13073
z−2 (3.28)

Equations 3.27 (over approximation) and 3.28 (under approximation) consist of integer
only data. These equations are the ones to be used to calculate the system’s dynamics using
Algorithm 3, the ad hoc data type, and integer data only. Figure 3.4 shows a 60 seconds
simulation of the system and the abstraction.

Both the original discrete and the original discrete with fixed-point representation outputs
(signals 2 and 3) are scaled up for comparison reasons with the abstraction. Scaling gain
KS is used to perform the scaling. Figure 3.4 shows the behaviour of the system abstraction
consisting of the over and under approximations along with the original discrete-time system
and the original discrete-time system with a fixed-point representation. The original discrete
plant is encapsulated by the abstraction. As expected, the over approximation settles at a
higher value than the original model and the under approximation settles at a lower value. The
distance between the original system and the over and under approximations is determined
by the amount of parametric compensation (KU) mainly. Also, the sampling time along with
the amount of fractional digits available play a role in this too: if the coefficients are small
because of a small sampling period the fixed-point and scaling compensations can become a
major contribution towards a final value of the abstraction coefficient.

Using the same dynamic system but with a parametric compensation KU = 0.005 (0.5%),
the system abstraction is described by Equations 3.29 and 3.30. Figure 3.5 shows the result
when KU is modified to a 0.5% value.

GOver(z) =
Y (z)
U(z)

=
388z+360

16384z2−28874z+13148
z−2 (3.29)

GUnder(z) =
Y (z)
U(z)

=
382z+354

16384z2−28580z+13020
z−2 (3.30)

Equation 3.29 is the new over approximation and 3.30 is the new under approximation.

3.6 Final Remarks and Discussion 59

Fig. 3.4 Discrete-time system and discrete-time system abstraction response to a step input
comparison. KU = 0.001. KS=10,000. KS is used to scale the original system and original
with fixed-point system responses (this is done for comparison purposes). The original input
is a unit step, it is omitted in the comparison for scaling reasons.

The over approximation settles to a higher value and the under approximation to a lower
value than the original system. This shows the effect the parametric compensation considered
in this problem formulation has on the abstraction: the higher the parametric compensation
the bigger the distance between the original system and the abstraction.

3.6 Final Remarks and Discussion

The system abstraction is suitable for a model checking environment implementation because
it does not require the use of floating point data and the system dynamics can be calculated
using recurrence equations. Dynamic control systems can be simulated using the proposed
abstraction methodology. The example in Section 3.5.2 demonstrated the applicability of

60 Dynamic System Abstraction Methodology

Fig. 3.5 Discrete-time system and discrete-time system abstraction response to a step input
comparison. KU = 0.005.

the methodology using one dynamic system, however the methodology is scalable and can
be applied to a system described by more than one dynamic element. When using the
methodology to generate a dynamic control system abstraction for verification and design
purposes all the elements in the control system have to be considered. Algorithm 1 produces
a system abstraction consisting of 2 discrete SISO LTI models per dynamic element. The
system abstraction bounds the behaviour of the original system and does not require the
use of floating point data. To compute the system response using the system abstraction
Algorithm 3 has to be used.

The amount of parametric compensation is an important design decision when generating
the abstraction because it could lead to an overcompensation in the modelling process. If the
abstraction compensation is too conservative it may account for many modelling parametric
errors but at the expense of hiding the true dynamics of the system in the process. From a
control design point of view this could lead to an unstable closed-loop system when in reality
the true system is stable. The purpose of generating the system abstraction is to implement a

3.6 Final Remarks and Discussion 61

dynamic control system in a model checking environment so a formal design and verification
approach can be performed. For model checking memory related reasons it is important to
consider the following factors which can affect the abstraction in its final fixed-point integer
data representation before implementing it in a model checking environment:

1. Order of the system: Number of coefficients a and b in the recurrence equation.

2. System delay: Term n in Equation 3.1.

3. Sampling time of the system: Period T used to convert the system into a discrete form.

These factors become important considerations when using the abstraction in a model
checking environment where memory becomes a limitation. The higher the number of
coefficients (item 1) the more memory will be needed to recover dynamics. The higher the
system delay (item 2) the bigger the registries to store past values of the systems inputs.
The smaller the sampling period (item 3) the smaller the b coefficients magnitudes. A small
coefficient may not fit the fixed-point representation or the rounding effect when limiting
to the selected representation could add too much uncertainty thus changing the dynamics.
Also, a smaller sampling period will require more iterations for a given running time scenario,
hence more computational memory. It is important to consider these factors in order to obtain
a good abstraction of the dynamic system.

The proposed abstraction methodology enables the use of discrete SISO LTI systems
to calculate a dynamic system response without the use of floating-point or fixed-point to
perform arithmetic operations. A fixed-point data representation which uses integer data
is proposed for this purpose. This representation uses integer data arithmetic as well. By
these means, the implementation of the abstraction becomes possible in a model checking
environment where there are data type restrictions and floating-point data is not available
or has limited use. The abstraction accounts for modelling errors and data-type rounding
errors, generating bounds for the original system so that safety guarantees can be provided
when using the abstraction for reasoning about the original system. Using the abstraction
methodology, the next step is to implement a dynamic control system in a model checking
environment and use the model checker to verify properties of the system such as performance
requirements. The results to be obtained in model checking for the over approximation and
the under approximations, thanks to the proposed abstraction methodology and the safety
guarantees it accounts for, can be used to infer properties of the original system

Chapter 4

Control Performance Requirements
Formal Verification

4.1 Overview

Modelling a dynamic control system is challenging from a model checking point of view
due to data type restrictions. For the correct representation of control systems the use of
floating-point data-type is desirable and no model checker fully supports it [108]. Most
model checkers only support basic operations and integer values which presents a challenge
when modelling systems such as PID controllers [153]. To overcome this data-type limitation
different approaches are used:

• Generate the system response a priori and import it in the model checker [83]. Test
scenarios have to be precomputed and the interaction among system components
becomes limited restricting the search capabilities of model checking.

• Dynamics over-simplification to use integer data only with limited data range [81,
157]. Accurate transient behaviour is lost, traditional feedback loops become hard to
implement.

• Disregard system dynamics [106, 108, 163, 165]. This limits the problem to a steady
state behaviour. Traditional feedback loops cannot be modelled.

• Abstract dynamics as timing invariants [40]. The problem is solved as time-invariant
restrictions instead of the original domain producing a change in coordinates of the
system variables. Transitory behaviours are hard to interpret when projecting into the
original domain coordinates.

64 Control Performance Requirements Formal Verification

The full adoption of model checking into standard software development practices,
especially for safety-critical applications such as airborne systems, is an ongoing effort
[54, 64, 112]. Standards and easy-to-follow practices are required to incorporate model
checking into the development process for safety-critical control systems. Current efforts
to develop standards still require expertise in model checking from the control engineer
[16, 47, 53, 63, 86, 106, 107, 134, 141, 143].

Regarding the plant modelling aspect, discrete Linear-Time-Invariant (LTI) models have
been proposed for modelling hybrid control systems using a model checking approach
[74, 93, 152]. In this case the synthesized controller is from a symbolic nature - e.g. a state
machine [65]. This limits the formal design and verification of current controller structures
(e.g. PID). Therefore it is highly desirable to enable the use of common modelling practices
for control systems in a model checking environment so that control engineers can exploit
the benefits of model checking.

The methodology presented in Chapter 3 allows to model a dynamic system using
discrete SISO LTI models without the need for floating-point arithmetic. By this means a
dynamic control system can be modelled within a model checking environment that does
not allow the use of floating-point numbers. The next step involves how to conduct the
modelling process within the model checker. Modelling is driven by the type of properties
required for the verification of the control system, e.g. high level control requirements. It
is important to design the model checking automata in a way so that the control system
requirements can be formulated as a property in the model checker, this is referred to as design
for verifiability. The key contribution of this chapter is therefore presenting the underlying
modelling methodology for a dynamic control system in a model checking environment using
the abstraction methodology from Chapter 3. In this manner, control system performance
requirements can be formally verified using the model checker. This will enable the design
of digital PID controllers using model checking in Chapter 5 and the gain schedule design in
Chapter 6.

This chapter is structured as follows: Section 4.2 presents the type of high level require-
ments to be verified. Section 4.3 presents the automata high and low level designs in order
to enable requirements verification via model checking. Section 4.4 presents the process
to verify the high level requirements using the model checker in the form of CTL queries
formulation. Finally, Section 4.5 presents the full control problem to be addressed, a case
study is extracted to show the applicability of the approach to verify high level control
requirements.

4.2 High Level Requirements 65

4.2 High Level Requirements

Current approaches to closed-loop feedback control system are based on stability, perfor-
mance, or both [44, 94, 121]. Despite the way the controller is designed, the verification
procedure for the actual implementation in the form of software relies strongly on a testing
phase [7, 86, 113]. The controller is designed, implemented, and then a series of testing stages
take place. In the case of a safety-critical system the different levels of testing take place
within simulation environments and the real system: embedded computer based controller
and the real plant. For verification and validation activities, current software engineering prac-
tices include unit testing, integration testing, and acceptance testing [113]. The verification
phase for safety-critical systems is still prone to human errors and requirements ambiguities.
Model checking is an exhaustive verification technique and by using it during design and
verification phases for safety-critical control systems, benefits such as test case generation,
higher error-detection rates, and coverage increase, can be obtained thus increasing the safety
of the end product.

Due to the complexity of a closed-loop system compliance verification phase, in this
work we focus on performance requirements as the main driver for the control system design.
This decision is also supported by the fact that usual control system requirements for a gain
scheduling control scheme are provided in the form of performance features. Within this
formulation and for the first time, high level performance requirements for a PID-type control
system will be formally verified with the aid of model checking, thus demonstrating the
underlying principles of verifiable design for control.

Figure 4.1 shows the most common performance requirements [121, 125]:

1. Settling Time ts: Time required for the response to settle at a steady value. Time
required to reach and stay within a specified range of the steady value. The criteria to
determine this range is usually 2% or 5% of the settled value. In this work the selected
criteria is that of 2%.

2. Maximum Overshoot: The difference between the maximum peak value and the
steady state value. Usually expressed as a % of the change in steady state value
response.

3. Rise Time tr: Time required by the system to rise from 10% to 90% of its final value.

4. Steady State Error ess: Difference between the actual output and the desired output
value (e.g. reference value) when time tends to infinite.

Model checking tools are very good at dealing with logic based requirements, safety require-
ments, and algorithmic requirements (e.g. verifying actions occur in a particular sequence or

66 Control Performance Requirements Formal Verification

Fig. 4.1 Dynamic control system closed loop performance indicators: settling time, maximum
overshoot, rise time, and steady state error.

after certain thresholds have been reached). Nonetheless and despite the fact that these are
the most common performance requirements in control design, model checking tools are not
aimed to address them [16, 80, 143]. Part of this limitation also resides on the notation of
the formal language in the model checker and its ability to express complex requirements
like the ones previously stated and the lack of knowledge in how to perform the translation
[16, 143]. Therefore, it is desirable to increase the range of requirements that can be formally
expressed and verified using model checking, thus improving design and verification stages
in the controller development cycle. This thesis proposes a novel methodology to deal with
the representation and verification of these requirements from a model checking perspective.
The following sections explains how to perform the automata design to tackle this control
problem formulation.

4.3 Design for Verifiability

The modelling approach in model checking is strongly driven by the type of properties to
be verified about a given system. The problem formulation in this thesis is one of a closed
loop control system and the properties under analysis are the high level control system
performance requirements from Section 4.2. The design of the model checking automata
must therefore enable the capturing of these requirements in the form of properties that the

4.3 Design for Verifiability 67

model checker can understand. In this thesis a novel approach to capture such requirements
using model checking by the means of automata is proposed.

The modelling approach is enabled by the ad hoc fixed-point data type presented in
Section 3.3.4. Integer values are used to represent both the system input signals and the
system output signals. The number of possible values available in the ad hoc data type
is limited. For this reason, prior to addressing the reference tracking problem in a formal
manner, a suitable operating space for the system’s inputs and outputs must be selected. This
has to be done in order to avoid truncating values, which could result in the loss of dynamic
behaviour.

The operating space of each variable is the range that contains all the possible values that
the given variable can take. The operating space of the system is the product of the operating
spaces of the system’s inputs and outputs.Figure 4.2 shows an example of a feedback control
system with its relevant variables and their respective ranges. The ranges of the variables
drive the selection of the data representation to be used. The controller reacts to the system

Fig. 4.2 Example of a simplified feedback control system consisting of a plant and a controller.
The figure shows the most relevant control loop related variables and their respective operating
ranges.

error and generates output U, which in turn is the input to the plant and generates system
output Y. The control signal U drives the plant signal Y, which in turn means that there is a
correspondence between the operating space of control signal U and the operating space of
plant signal Y. In this example, the variables ranges which define the operating space of the
control system, are given by:

[0.0,50.0] = {U ∈ R : 0.0≤U ≤ 50.0}
[0.0,100.0] = {Y ∈ R : 0.0≤ Y ≤ 100.0}

[−100.0,100.0] = {E ∈ R :−100.0≤ E ≤ 100.0}
[0.0,100.0] = {R ∈ R : 0.0≤ R≤ 100.0}

Knowing the range of the variables allows to define how to map the real values into the
ad hoc fixed-point representation using integer values only (Section 3.3.4). Disregarding
how the mapping from the real values into the fixed-point representation is chosen to be,

68 Control Performance Requirements Formal Verification

the ad hoc data type has a maximum allowed operating space. Considering only the system
output Y and the control signal U, using the full data range allowed by the ad hoc data type
(16-bit signed integer) for both signals, the system operating space can be plotted in a X-Y
coordinate plane. Figure 4.3 shows this operating space with control signal U in the X axis
and controlled signal Y in the Y axis where both signals have a range and operating space
given by:

[−32767,32767] = {U ∈ Z :−32,767≤U ≤ 32,767}
[−32767,32767] = {Y ∈ Z :−32,767≤ Y ≤ 32,767}

Figure 4.3 shows the maximum operating space allowed by the ad hoc data type considering

Fig. 4.3 Operating search space for an input (U) - output (Y) relationship using integer data
only. Input and output range: -32,767 - 32,767. The control problem becomes a path search
in (U,Y) coordinates - e.g. going from the origin to point A or point B, moving from point C
to point D.

the system output and the control signal. Under this consideration, the control problem can
be formulated and solved in the coordinate plane. The reference tracking control problem
becomes a trajectory search in the coordinate plane: how to go from one point in the plane to
another (e.g. point O to point A) in a certain amount of time and stay there indefinitely. In a
similar manner, disturbance rejection can also be portrayed as a trajectory search with both
origin and end points being the same point. The trajectory dynamics, which involve both the
controller and the plant (how variables U and Y interact) are determined by the SISO LTI
models presented in Chapter 3. How the trajectories will behave depends on the dynamics

4.3 Design for Verifiability 69

portrayed by the SISO LTI models. In this thesis only reference tracking control will be
addressed.

Depending on the variables ranges and their representation using the ad hoc data type,
the operating space for the system can be reduced. Instead of using the full range allowed
by the ad hoc data type, which covers the full coordinate plane in Figure 4.3, extracts
of the coordinate plane are preferred because this will reduce the system operating space
reducing the amount of effort when performing the trajectory search. Also, this limitation of
the operating space means saving memory in the model checking implementation. As an
example, Figure 4.4 shows an operating space for variables U and Y given by:

[0,10000] = {U ∈ Z : 0≤U ≤ 10,000}
[0,20000] = {Y ∈ Z : 0≤ Y ≤ 20,000}

Time evolves in a discrete manner where every step represents a T amount of time in

Fig. 4.4 Operating search space for an input (U) - output (Y) relationship using integer data
only. Input range: 0-10,000. Output range: 0-20,000. Every arrow represents a ∆T amount
of time elapsed. The reference tracking control problem involves moving the output Y from
an initial point towards a final region by the means of changing the input U. Every ∆T both
U and Y are updated using their respective dynamics.

the arrow direction. The purpose of defining an operating space is related to the type of
requirements under analysis. In the reference tracking problem formulation for this thesis,
high level control performance requirements need to be mapped into the trajectory search
problem in the operating space. By doing so, the verification of high level requirements can

70 Control Performance Requirements Formal Verification

be performed along with the trajectory search. Figure 4.5 portrays the performance high
level requirements from Section 4.2 in the example operating space.

Fig. 4.5 Operating space for input signal U and output signal Y showing the control system
performance indicators of interest. The reference tracking control problem becomes one
of analysing the trajectory from the origin point to the reference point. The performance
indicators become way-points in the trajectory.

The reference tracking control problem concerns the trajectory taken from the origin
point to reach the reference point area and stay there indefinitely within the specified timing,
steady state error, and overshoot requirements. Requirements become way-points in the
trajectory and such trajectory must avoid a particular operating area related to the overshoot
requirement.

Figure 4.6 shows a reference tracking problem formulated within a particular operating
space. The process output Y is driven by input U from the origin to the reference area within
a finite amount of time. Requirements are way-points in the trajectory. In this particular
scenario, the maximum overshoot requirement is not met because the area related to output Y
being equal to or higher than the maximum allowed value is included in the trajectory.

By formulating the control problem in this way, limiting the operating system space in
order to perform a trajectory search within the space, the reference tracking problem can
be addressed as a reachability problem in model checking. In order to bring this trajectory
search into a model checker framework, the problem must be portrayed in a suitable way that
the model checker can understand and work the problem around. In this thesis and for this
purpose a set of automata are proposed. The automata will work within a defined operating
space and process the system dynamics using discrete SISO LTI models as explained in

4.3 Design for Verifiability 71

Fig. 4.6 Reference tracking control problem for input signal U and output signal Y with
performance requirements as way-points in the trajectory.

Chapter 3, addressing the verification of high level performance requirements for a control
system as a reachability problem by performing a trajectory search and analysis in the
operating space. The following section explains the proposed automata to accomplish these
goals.

4.3.1 Automata Design

In order to capture the features of interest for the control problem formulation the automata
have to detect the behaviour of the system in a way that ensures the features are expressible
in the model checker language. Considering a dynamic control system like the one in Figure
2.1 and high level control requirements 1-4 from Section 4.2, such requirements must be
expressible in the form of properties. The labelling function must then tag states with such
requirements so they can be detectable and used as expression in the model checker language.

The following automata are proposed to achieve this goal:

• The Plant automaton generates the process output and monitors it. Because require-
ments are related to the process output Y, it is in this automata where requirements are
portrayed so they can be verified.

• The Controller automaton is in charge of generating the control action U.

• The Observer automaton synchronizes the correct execution of events between the
Controller and Plant automata.

72 Control Performance Requirements Formal Verification

More detailed description is given below:

Plant

Figure 4.7 shows the automaton in charge of simulating the process to be controlled. The
dynamics of the system are embedded in this automaton. Requirements are strongly correlated
to output signal Y, which is the reason why particular states to capture requirements are
generated. The automaton consists of the following states:

1. Settled: Initial state. An external event (change in reference) triggers a transition to the
Transient state. After an event has been triggered, if the system output settles this state
is reached. This state does not process the system dynamics.

2. Transient: Transitory state. Once a change in reference is triggered the process
dynamics calculations begin here. Whilst the process has not settled and has not
reached the 90% response level the process output is calculated here. If the process
reaches a settling value a transition to Settled state is triggered.

3. Rise Time: Rise time state. When 90% of the response is reached the automata
transitions here. While the process has not settled and has not reached an overshoot
level the process output is calculated here. If the process reaches a settling value a
transition to Settled state is triggered. If the process reaches an overshoot value a
transition to Overshoot state is triggered.

4. Overshoot: If the process output reaches an overshoot value the automata transitions
here. The overshoot threshold value is defined according to requirements. While the
process has not settled the process output is calculated here. If the process reaches a
settling value a transition to Settled state is triggered.

Controller

Figure 4.8 shows the automaton in charge of simulating the process controller. The dynamics
of the controller are embedded in this automaton. The automaton consists of the following
states:

1. Settled: Initial state. This state is similar to Settled in the Plant automaton. An external
event (change in reference) triggers a transition to the Transient state. After an event
has been triggered, if the controller output settles this state is reached. This state does
not process the controller dynamics.

4.3 Design for Verifiability 73

Fig. 4.7 Plant automaton. This automaton generates the output signal Y using a discrete SISO
LTI model and monitors its behaviour to determine transitions between states. The high level
performance requirements are processed in this automaton under its different states.

2. Transient: Transitory state. This state is similar to Transient in the Plant automaton.
Once a change in reference is triggered the controller dynamics calculations begin here.
While the controller output has not settled the controller output is calculated here. If
the controller output reaches a settling value a transition to Settled state is triggered.

Fig. 4.8 Controller automaton. This automata generates the control signal U using a discrete
SISO LTI model and monitors its behaviour to determine transitions between states. The
controller automaton has less states than the Plant automaton because in this problem
formulation the control signal is not under analysis, it is simple required for it to be generated.

Observer

Figure 4.9 shows the automaton in charge of coordinating the execution of the controller and
the plant. This automaton monitors both the controller output U and the process output Y to
determine when to finalize the simulation.

The automaton consists of the following states:

1. Init: Initial state. Initialize the models for simulation. Monitors the input reference
signal in order to trigger an event. Once a change in reference has been detected a
transition to Transient state is taken.

74 Control Performance Requirements Formal Verification

2. Transient: Transitory state. This is the state in charge of coordinating the execution of
the Plant and Controller automata. It monitors both the process output signal Y and
the controller signal U to determine when the process has reached a settling condition.
Once both the controller and the plant have settled a transition is triggered to the End
state.

3. End: Final state. After an event (change in reference) if an equilibrium condition is
reached the dynamics process comes to a halt and no more transitions are allowed in
any automaton.

Fig. 4.9 Observer automaton. Automaton in charge of controlling the data flow between the
controller and the plant. This automaton monitors the control signal U and output process
signal Y to determine transitions between states.

The presented set of automata provide a working framework to address the high level
control requirements verification problem in the reference tracking formulation. The actual
automata implementation in a model checking environment depends on the model checker.
Model checking tools vary depending on the type of problem they are aimed to solve. The
tools design is driven by the type of systems to be modelled and the type of properties to be
verified and whether these properties are expressible in the formal language used in the tool.
Some representative examples are NuSMV [34], SPIN [76], Simulink Design Verifier (SDV)
[109], and UPPAAL [13].

Simulink [109] is a popular tool for both modelling and development. Although, not
all the Simulink functionalities are available in SDV to perform formal verification and the
available formal verification blocks are mainly designed to deal with boolean-type problems
and run-time errors (e.g. division by zero, infinite loops). NuSMV [34] is aimed mainly to
verify synchronous systems which may represent a limitation when modelling a dynamic
system. SPIN [76] is designed to verify models for distributed systems, focusing mainly on
distributed software algorithmic behaviour. The model checker UPPAAL [13] is designed

4.3 Design for Verifiability 75

to model systems as networks of timed-automata with integer variables, structured data
types, clocks, and channel synchronization. Recent developments in the tool have enabled
its use in industry-like case studies, showing that the tool is suitable to address these type
of problems. UPPAAL offers a modelling environment which gives the user freedom to
program tailor-made functionalities for the timed-automata.

UPPAAL [13] was selected here because of the freedom it provides to implement func-
tionalities using a well-known programming language such as C. From a modelling point of
view, this freedom makes the abstraction implementation easier. Also, the type of properties
available in its formal language (details in Section 4.4) are a good fit to address the gain
scheduling design and verification problem. The following section explains the UPPAAL
implementation of the automata.

4.3.2 UPPAAL Automata

The particular implementation of the automata presented in Section 4.3.1 was carried out in
the model checker UPPAAL. The automata presented in this section captures the required
behaviour from those in Section 4.3.1.

Plant: UPPAAL

Figure 4.10 shows the automaton in charge of simulating the process under control. The
dynamics of the system are embedded in this automaton. The Plant_Calc function is in
charge of calculating the system dynamics given by a SISO LTI equation. This automata
receives a message via channel C to enable the calculation of process output Y.

The automata consists of the following states:

1. SS: Initial state. Similar to Settled state depicted in Figure 4.7. An external event
(change in reference) triggers a transition to the TS state. Once the system output
settles within the defined % band this state is reached. This state does not process the
system dynamics.

2. TS: Transitory State. Similar to Transitory state depicted in Figure 4.7. Once a change
in reference is triggered the process dynamics calculations begin here. Whilst the
process has not settled and has not reached the 10% response level the process output
is calculated here. If the process reaches a settling value a transition to STB state is
triggered.

76 Control Performance Requirements Formal Verification

3. TP: Rise time related state. When 10% of the response is reached the automata
transitions here. The detection of the 10% of the response is required to calculate rise
time. A time stamp is taken for the posterior calculation of rise time.

4. RT: Rise time state. Similar to Rise Time state depicted in Figure 4.7. When 90% of
the response is reached the automata transitions here and it means that the response
has reached the level required to calculate rise time. While the process has not reached
the percentage band settling value and has not reached an overshoot level the process
output is calculated here. If the process enters the percentage band settling value a
transition to STB state is triggered. During the transition to the STB state the settling
time is calculated. If the process reaches an overshoot value a transition to OS state is
triggered.

5. OS: Overshoot state. If the process output reaches an overshoot value the automata
transitions here. The overshoot threshold value is defined by the user according to the
high level requirements of the particular problem to solve, it is a variable to be defined
by the user. While the process output value remains equal to or above the overshoot
threshold the process output is calculated here. If the process output drops below the
overshoot threshold a transition to TS state is triggered.

6. STB: Settling state. Both SS and STB states comprise the behaviour of the Settled state
depicted in Figure 4.7. If the process output reaches a settling value the automata
transitions here. The process output is verified to stay within the settling percentage
band for a pre-defined amount of time before deciding the process has indeed settled.
If the process stays within the % band the pre-defined amount of time a transition
to SS state is triggered. During the transition to the SS state the steady state error is
calculated. If the process output goes outside the percentage band a transition to RT
state is triggered.

Controller: UPPAAL

Figure 4.11 shows the automaton in charge of simulating the controller. The dynamics of
the system controller are embedded in this automata. The PI_Calc function is in charge of
calculating the controller output dynamic given by a SISO LTI equation. This automaton
receives a message via channel C to enable the calculation of controller output U.

The automata consists of the following states:

1. Settled: Initial state. Similar to Settled state depicted in Figure 4.8. An external event
(change in reference) triggers a transition to the Transient state. After an event has

4.3 Design for Verifiability 77

Fig. 4.10 UPPAAL implementation of the plant automaton. This automaton generates the
output signal Y and monitors its behaviour to determine transitions between states.

been triggered, if the controller output settles this state is reached. This state does not
process the controller dynamics.

2. Transient: Transitory state. Similar to Transient state depicted in Figure 4.8. Once a
change in reference is triggered the controller dynamics calculations begin here. While
the controller output has not settled the controller output is calculated here. If the
controller output reaches a settling value a transition to Settled state is triggered.

Observer: UPPAAL

Figure 4.12 shows the automaton in charge of coordinating the correct execution of the
controller and the plant. This automaton monitors both the controller output U and the
process output Y to determine when to finalize the simulation. The coordination of the
execution of the controllers and the plants is achieved by using synchronization channels C
and D (one per system approximation). This automaton sends a message via channels C and
D to enable the execution of either the Plant or the Controller automata for both the over and
under approximations.

78 Control Performance Requirements Formal Verification

Fig. 4.11 UPPAAL implementation of the controller automaton. This automata generates the
control signal U and monitors its behaviour to determine transitions between states.

The automaton consists of the following states:

1. Init: Initial state. Similar to Init state depicted in Figure 4.9. Initialize the models for
simulation. Monitors the input reference signal in order to trigger an event. Once a
change in reference has been detected a transition to Sync state is taken.

2. Sync: Transitory state. Similar to Transient state depicted in Figure 4.9. State in charge
of coordinating the execution of the Plant and Controller automata. It monitors the
process output signal Y, the controller signal U, and the elapsed time to determine
when to finish the automata execution. The observer coordinates both the over and
under approximations via communication channels. Once both the controller and the
plant in both over and under approximations have settled and no time-out condition is
detected a transition is triggered to the End state.

3. End: Final state. Similar to End state depicted in Figure 4.9. After an event (change in
reference) if an equilibrium condition is reached the dynamics process comes to a halt
and no more transitions are allowed in any automata.

4. Timeout: Fail-safe state. A pre-defined amount of time is given to the process to reach
an equilibrium. In order to save memory and computations this condition is added.
If the process does not reach an equilibrium within the allowed amount of time the
automata transitions to this state.

This set of automata enables the implementation of a discrete control system using
discrete SISO LTI models to portray the dynamics. By using the abstraction methodology
presented in Chapter 3 and the automata in Section 4.3.2 the system can be implemented in

4.4 Requirements Formulation for Verification 79

Fig. 4.12 UPPAAL implementation of the observer automaton. Automaton in charge of con-
trolling the data flow between the controller and the plant. This automata monitors the control
signal U, output process signal Y, and the elapsed time to determine transitions between
states. It coordinates the execution between plants and controllers using communication
channels C and D. One channel is used for the over approximation and the other one for the
under approximation.

the model checker UPPAAL so that high level requirements can be formally verified. The
following section explains how to perform such verification in the model checker.

4.4 Requirements Formulation for Verification

Modelling the control system is strongly driven by the type of features to be verified. In
this problem formulation the features of interest are high level control system performance
requirements. The implementation of the control system in the UPPAAL model checker
allows to reason about the system using Computational Tree Logic (CTL). There are 3 types
of properties available in UPPAAL:

1. Reachability: It is possible to reach a system state.

2. Safety: Something can never happen.

3. Liveness: Something will eventually happen.

The Plant automaton contains the necessary elements to verify the high level control
performance requirements from Section 4.2. The states in the automaton are labelled with the
variables related to performance requirements (e.g. settling time, rise time, overshoot, and
steady state error) so they can be checked during the verification process. The verification of

80 Control Performance Requirements Formal Verification

high level performance requirements can be portrayed as a reachability problem - e.g. is it
possible to reach a system state where all control system requirements are met?

When performing the verification of properties the UPPAAL model checker can return a
witness or a counter example trace. A witness trace contains the actions that lead to a property
being fulfilled and a counter example trace contains the actions that lead to a property not
being fulfilled. Depending on how the verification is formulated is which type of trace can
be generated.

Table 4.1 shows three ways to generate either a witness or counter example trace in
UPPAAL, where:

1. A: Path quantifier - For all computation paths.

2. E: Path quantifier - For some computation path.

3. <>: Eventually temporal operator.

4. []: Globally temporal operator.

5. ϕ: State formula, a logical expression that can be evaluated in the state.

Table 4.1 UPPAAL queries which can generate either a witness or a counter example trace.

Query Type Formula Output
Reachability E <> ϕ Witness Trace

Safety A[]ϕ Counter-example Trace
Liveness A <> ϕ Counter-example Trace

The control problem under verification as portrayed in Figure 4.6 can be formulated in
the following way: can the reference point be reached from the origin in a finite amount of
steps whilst meeting all 4 performance requirements?

Figure 4.13 shows a graphic description of the reachability problem. From an initial
system configuration containing states (Settled, Init, Settled) can a final system configura-
tion containing states (Settled, End, Settled) be reached visiting the system configurations
(Transient, Transient, Transient), and (Transient, Transient, Rise Time) in the process? This
also means that any system configuration containing the Overshoot state must be avoided.
The final system configuration containing states (Settled, Init, Settled) must be labelled with
values which meet requirements for the verification to be successful. The desired trajectory
in every automaton must then follow the blue arrows.

The requirements verification is thus performed using a push-button approach by querying
the model checker using a reachability property such as:

4.4 Requirements Formulation for Verification 81

Fig. 4.13 Proposed automata: a) Plant automaton. b) Controller automaton. c) Observer
automaton. Performance requirements verification portrayed as a reachability problem: can
the states labelled as End be reached starting at the states labelled as Start visiting the states
which follow the blue arrows trajectories in a finite amount of time?

E <> Observer.End and Plant.Settled and Controller.Settled and

Plant.Overshoot ≤ Requirement and Plant.RiseTime≤ Requirement and

Plant.SettlingTime≤ Requirement and Plant.SSError ≤ Requirement (4.1)

If the verification process is successful the model checker will return Pass as a result and
the witness trace to show this. If the verification is not successful the model checker will
simply return Fail without a trace. In the Fail scenario in order to obtain information from

82 Control Performance Requirements Formal Verification

the model checker the path qualifier must be changed to A instead of E to use a Liveness
query so that a counter-example trace is generated.

With the current framework, the model checker can only be used to verify that the
trajectory ends in the desired region whilst meeting the performance requirements without
performing any design or controller tuning. Dynamics are entirely dictated by the discrete
SISO LTI models embedded in the automata. Nonetheless, this framework is necessary to
address the controller design problem formulation within a model checker environment. The
following section explains how to use the proposed automata along with the abstraction
methodology from Chapter 3 to address the performance verification problem.

4.5 Case Study: Thrust Control Verification

Consider a commercial jet-engine where generated thrust is regulated using a PID-type
controller with a gain scheduling scheme such as the one in Figure 2.2. The process dynamics
will vary depending on the operating point: factors such as altitude and temperature generate
a non-linear behaviour [149].

The control problem to solve is to find a control schedule that drives the system to
meet high level requirements in every operating point. The non-linear nature of the process
generates different dynamic behaviours throughout the operating points. Proving stability
and conformity with requirements for a gain schedule scheme is hard to do analytically [127].
Also, and for safety reasons, the control scheme final software form undergoes an extensive
verification and validation phase to make sure performance is met and to demonstrate and
justify that the software is safe, certifiable, and to be trusted [51, 70]. A model checking
approach can aid in this respect because the controller design can be done directly in the
software domain, running simulations to find a controller which meets requirements while
performing extensive testing. This problem formulation provides a good framework to show
the proposed methodology to design and verify PID-type gain schedule controllers. The gain
schedule design problem and the formal approach to address it will be presented in more
detail in Chapter 6.

In order to fully address the gain schedule design and verification problem, the following
tasks are required:

1. Abstract the control system dynamics.

2. Implement the control system abstraction in a model checking environment.

3. Verify high level performance requirements for the control system using model check-
ing.

4.5 Case Study: Thrust Control Verification 83

4. Perform the controller tuning process using model checking.

5. Generate and verify the control schedule using model checking.

Chapter 3 presented the dynamic system abstraction methodology to address item 1. The
proposed automata from Section 4.3 address item 2 and Section 4.5.1 will present how to
address item 3. Regarding items 4 and 5, Chapter 5 presents the methodology to tune a
controller using model checking. Finally, 6 addresses item 5, the full design and verification
methodology for the gain scheduling problem is presented.

4.5.1 Verification Problem Formulation

Before designing and verifying the schedule it is necessary to be able to verify high level
performance requirements using model checking. In order to do so a feedback control loop
must be able to be analysed by the model checker. The gain schedule problem will be
addressed using various linear models to portray the non-linear nature of the system. From
this formulation a linear model is extracted and selected as a starting point to apply the
methodology for the formal verification procedure. Figure 4.14 shows the open loop dynamic
response of the selected linear model which is part of the thrust control problem. The details
about the full system dynamics will be provided in Chapter 6

The continuous linear model for the system in Figure 4.14 is given by a second order
system (Equation 3.21). The parameters of the system equation are:

• System gain K = 1.

• System transport delay θ = 1 sec.

• System natural frequency ωn = 0.45 rad/sec.

• System damping ratio ζ = 0.5.

The continuous time system transfer function is given by:

G(s) =
Y (s)
U(s)

=
0.452e−s

s2 +0.45s+0.452 (4.2)

The selected controller is a parallel Proportional + Integral (PI) controller. In the continuous
domain the controller equation is given by:

C(s) =
U(s)
E(s)

= KP +
KI

s
(4.3)

84 Control Performance Requirements Formal Verification

Fig. 4.14 Open loop response for the linear system part of the thrust control problem. The
model corresponds to one of the operating regions in the thrust control problem.

where U(s) is the controller output, E(s) is the system error,KP is the controller proportional
gain, and KI in the integral gain. The controller is discrete in nature because it is implemented
in a computer-based system. It is common practice to perform the design in the discrete
domain and do the conversion to the discrete domain using discrete equivalences (e.g.
backward, Tustin) [1, 122]. Using the Tustin discrete equivalence with Equation 4.3 the
discrete transfer function for the PI controller using a sampling period T is given by:

C(z−1) =
U(z−1)

E(z−1)
=

(KP +KI)T −KIz−1

1− z−1 (4.4)

In this case a PI structure has been chosen as the preferred controller along with the tustin
continuous to discrete equivalence to digitize it. However, the controller structure and the
discrete equivalence to address this problem is not restricted to this particular choice, the

4.5 Case Study: Thrust Control Verification 85

methodology can be applied regardless of this choice. The next step is to generate the system
abstraction and implement it in the model checker using the proposed automata.

4.5.2 System Abstraction

The abstraction is required for the implementation of the control system in the model checker
UPPAAL. By applying Algorithm 1 to the system described by Equation 4.2 the system
abstraction is generated, both the over and under approximation will be generated as a
result of this process. The data type to be used in the model checker is as described in
Section 3.3.4. This data type allows to use 5 digits for data representation and perform
the necessary arithmetic operations to calculate the system dynamics using the recurrence
equations. Considering the following configuration parameters for the abstraction:

• Sampling time T = 0.5 seconds.

• Parametric compensation gain KU = 0.0005.

As a result of the application of Algorithm 1:

• Data-type representation format: 1 integer digit (I = 1) and 4 fractional digits (F = 4).

• KS = 10,000.

• Kab = 16,384.

The discrete integer-only SISO LTI models for the abstraction (over and under approxima-
tions) as described in Section 3.5.1 are given by:

GOver(z) =
Y (z)
U(z)

=
387z+359

16384z2−28744z+13089
z−2 (4.5)

GUnder(z) =
Y (z)
U(z)

=
383z+356

16384z2−28710z+13079
z−2 (4.6)

Equation 4.5 is the abstraction over approximation and Equation 4.6 is the abstraction
under approximation. The controller is discrete in nature, it is assumed that the controller
implementation will be restricted to a fixed-point data type. For this reason the controller
discrete model does not include error compensations. Considering this assumption, the
controller transfer function only requires to be converted into the selected data format. To
do so the controller coefficients from the discrete transfer function are scaled using gain
Kab. Using conventional tuning methods an initial configuration for the controller gains was
generated. The initial controller gains are:

86 Control Performance Requirements Formal Verification

Fig. 4.15 Open loop response comparison for the system abstraction and the initial model for
operating region 1 in the thrust control problem from Figure 4.14. The initial response is
scaled up for comparison purposes (using KS = 10,000).

• KP = 0.1392.

• KI = 0.1496.

Using Equation 4.4 with the controller gain values KP and KI, scaling gain Kab, and sampling
period T, the controller transfer function using the ad hoc data type is given by:

C(z−1) =
U(z−1)

E(z−1)
=

2,894−1,668z−1

16,384−16,384z−1 (4.7)

The abstraction implementation in the model checker UPPAAL consists of 5 automata:

• Two controllers: Controller_OA - over approximation controller. Controller_UA -
under approximation controller. Both controllers have the same transfer function.

4.5 Case Study: Thrust Control Verification 87

• Two plants: Plant_OA - over approximation plant. Plant_UA - under approximation
plant. Each plant has its own transfer function corresponding to their respective
dynamics.

• One observer: Observer - automata in charge of coordinating the interaction between
controllers and plants.

Once the configuration of all the controllers and plants is done the verification of high
level requirements can be performed using the model checker.

4.5.3 Verification Results

The type of requirements to be verified are those listed in Section 4.2. For the purpose of
showing the applicability of the methodology, the following requirements are selected:

1. Maximum Overshoot % (OS) ≤ 13%.

2. Settling Time (ST) ≤ 40 seconds.

3. Rise Time (RT) ≤ 15 seconds.

4. Steady state error % (SSE) ≤ 1%.

The verification is performed by verifying properties on the model. Requirements are
then expressed in the query language of the model checker in the form of properties. The
verification is conducted by querying the model in a push-button fashion because the user
simply has to click on the verify button with a property as the input to the model checker.
The types of properties to be used for the verification are either a reachability or a liveness
property (Table 4.1). The reachability property is used to generate a witness trace in case
requirements are met and the liveness property to generate counter example trace in case
requirements are not met.

E <> Observer.End and Controller_OA.Settled and Plant_OA.Settled

and Plant_OA.OS≤ 13% and Plant_OA.ST ≤ 40 (seconds) and

Plant_OA.RT ≤ 15 (seconds) and Plant_OA.SSE ≤ 1% and

Controller_UA.Settled and Plant_UA.Settled and

Plant_UA.OS≤ 13% and Plant_UA.ST ≤ 40 (seconds) and

Plant_UA.RT ≤ 15 (seconds) and Plant_UA.SSE ≤ 1% (4.8)

88 Control Performance Requirements Formal Verification

Equation 4.8 shows the verification of requirements 1-4 using a reachability query in
order to get a witness trace if requirements are met. The query can be read as: there exists a
path where the observer has reached a final state, both controllers have reached a settled
state, both plants have reached a settled state, and in both plants overshoot is less than or
equal to the specification, settling time is less than or equal to the specification, rise time
is less than or equal to the specification, and steady state error is less than or equal to the
specification.

The result after running the query in Equation 4.8 is a Fail. For this reason the model
checker does not return a trace. In order to get more information from the model checker,
and not just a Pass/Fail answer, the path quantifier is changed from E to A. This changes the
query into a liveness property, which returns a counter example trace when the property is not
met. After modifying the query and re-running the verification a trace is returned showing
why the verification fails: the over approximation fails to meet the overshoot requirement.
Table 4.2 shows the results for the abstraction after running the verification, these results are
cross-checked by running the simulation in the high fidelity simulator. The requirements
values are shown for both the over approximation and the under approximation. Figure
4.16 shows the closed loop behaviour of the system abstraction. Highlighted in red is the
overshoot area where the over approximation fails to meet the requirement.

As a sanity check and to corroborate the model checker is performing calculations
correctly, the overshoot requirement is changed from 13% to 16% in the model. Given the
information in Table 4.2 the expected result is Pass. After modifying the overshoot threshold
in the model, the query is re-run and the result is a Pass. The use of the model checker
and the generated traces for both the Pass and Fail scenarios will become fundamental in
Chapters 5 and 6. In Chapter 5 they will be used to tune the controller and in Chapter 6 to
find a suitable combination of controller tunings to generate the control schedule.

Table 4.2 Requirements verification results for the system abstraction.

Plant Requirement

Overshoot (%) Settling Time (sec) Rise Time (sec)
Steady State
Error (%)

Under
Approximation 12.2 34 6 0.1

Over
Approximation 15.74 35.5 6 0.12

If the abstraction meets high level requirements then the original system meets high
level requirements. This is derived from the fact that using both over-approximation and the
under-approximation in the model checker makes possible to infer properties of the original

4.5 Case Study: Thrust Control Verification 89

Fig. 4.16 Closed loop response of the system abstraction. Both over and under approximation
responses are plotted. Highlighted in red is the area where the over approximation fails to
meet the overshoot requirement.

system. Given the nature of the type of requirements to be checked, it can be reasoned
that for some requirements it is only required that either the over or under approximation
meets the requirement. For example, maximum overshoot is directly linked to the system
gain, the over-approximation has a higher gain than the original system, therefore if the
over-approximation meets this requirement the original system then is also guaranteed to
meet the requirement. However, the proposed methodology in this thesis verifies that both
approximations meet requirements.

The outcome when running the same scenario for the original system (given by Equation
4.2) is shown in Table 4.3. The original model also fails to meet the overshoot requirement.
Figure 4.17 shows the closed loop behaviour of the original system. Highlighted in red is the
overshoot area where the system fails to meet the requirement.

Figure 4.18 shows a comparison between the system abstraction and the original system
closed loop response. The original system response is scaled using the selected value of

90 Control Performance Requirements Formal Verification

Table 4.3 Requirements verification results for the original system.

Requirement

Overshoot (%) Settling Time (sec) Rise Time (sec)
Steady State
Error (%)

13.93 35 6 0.05

Fig. 4.17 Closed loop response of the original system. Highlighted in red is the area where
the system fails to meet the overshoot requirement.

KS = 10,000. The scaled system response is bounded by the system abstraction (over and
under approximations).

4.5.4 Discussion

The obtained results show that the model checking approach allows to reason about the
original system using the system abstraction and the timed-automata. The model checker
returns a Pass/Fail answer to the query regarding the high level performance requirements.

4.5 Case Study: Thrust Control Verification 91

Fig. 4.18 Closed loop response of the system abstraction and the scaled original system.
Highlighted in red is the area where the over approximation and the original system fail
to meet the overshoot requirement. The original system response is scaled for comparison
purposes (using KS = 10,000).

Depending on the result of the query either a witness trace or a counter-example trace is
generated which in turn returns information regarding the Pass/Fail result. The posteri-
ori cross-check verification with the original system shows that the system behaviour is
bounded by the system abstraction consisting of the over approximation and the under
approximation. This in turn shows how model checking results of over-approximations and
under-approximations combined can be used to infer properties of the original system, high
level control performance requirements in this case.

The verification of the high level performance requirements fails because the overshoot
requirement is not met. This is detected by the model checker in the over approximation
where a value of 15.74% of overshoot is detected. Overshoot in the original system is
13.93% which also fails the requirement of maximum overshoot of 13%. Given the fact
that the original system response is bounded by the system abstraction there can be cases

92 Control Performance Requirements Formal Verification

where a requirement is not met by the abstraction but indeed is met in the original system
(e.g. a 14% maximum overshoot requirement in the previous case shows that). This is an
important consideration related to the amount of parametric compensation and fixed-point
representation. Nonetheless, if the abstraction meets requirements then the original system
also meets requirements.

High level performance requirements are translated into a CTL formula so the model
checker can understand them, which removes uncertainty and possible ambiguity during
a typical verification and validation phase. So far, the exhaustive verification capabilities
of the model checker have not been used because the control system as portrayed in the
current automata framework does not include non-deterministic behaviour. Nonetheless it
has been demonstrated that the approach is suitable to formally verify control system high
level performance requirements using a model checker.

The proposed formal verification methodology presented in this chapter in combination
with the abstraction methodology presented in Chapter 3 allow to address the controller
design problem from a model checking point of view, which in turn will aid in the gain
scheduling design problem (Chapter 6). The following chapter addresses the discrete PID-
type controller tuning problem from a model checking point of view. The controller structure
is presented in detail and how to digitize the controller transfer function is explained. This is
necessary in order to perform the tuning process in the model checker, operating directly over
controller gains. The automata presented in this chapter need to be updated to enable these
capabilities of controller tuning. Using the updated automata an algorithm to systematically
use the model checker in order to find a set of gains is presented: If the current controller
tuning does not drive the system to meet requirements, the model checker can explore
different tuning configurations in order to find if there exists a valid set of controller gains
which drive the system into meeting requirements.

Chapter 5

Digital PID Controller Formal Design

5.1 Overview

The gain schedule control design and verification problem is the main focus of this thesis.
In order to address the problem in its entirety the problem was broken down into individual
problems which in turn are interconnected and have a dependency relationship. Providing a
solution to each of these individual problems lays the foundations for the following problem.

A novel methodology to formally verify high level performance control requirements
was presented in Chapter 4. A timed-automata framework was proposed to address the
verification problem. The presented approach from Chapter 4 is designed to address the
verification problem only. The controller structure is known and if modifications to the
controller are needed in order to drive the system into meeting requirements, they must be
performed outside the model checking environment. In order to provide a full formal solution
to the gain scheduling design problem, the controller tuning problem must also be addressed
in a formal manner.

By exploiting the model checking capabilities to perform exhaustive search within a
defined operating space, the controller tuning problem can be formulated as a reachabil-
ity/safety problem in a similar fashion to the performance requirements verification in Chapter
4. By augmenting the proposed timed-automata (Section 4.3) the PID-type controller gains
can be tuned in order to drive the system to meet control performance requirements. In this
way, performance requirements become a direct input for the model checker in a correct-by-
construction fashion to find a possible solution to the problem. By addressing the tuning
problem from a model checking perspective, a push-button approach is taken to perform the
design and verification of the controller, providing a systematic way to tune the controller
with minimum intervention from the user.

94 Digital PID Controller Formal Design

The process by which controller parameters are selected in order to meet certain require-
ments criteria (e.g. stability, performance) is called controller tuning. For a single variable
feedback control loop there are many methods for control design and tuning. Among the
most popular methods are [121, 167]:

1. Root locus pole placement.

2. Lead-lag compensation.

3. Ziegler-Nichols.

The first two methods are frequency domain approaches where the controller structure
is constructed by shaping the closed-loop poles of the system. They rely on a model of
the plant to be controlled. The Ziegler-Nichols method can be used with either a model of
the plant or with an experimentally derived time-response of the system. This method is
aimed at PID-type controllers (known structure). The Ziegler-Nichols rules provide a good
guess for the controller parameters to make the closed loop system stable but in no way
takes into account performance requirements [121, 167]. The usual approach is to generate a
first set of controller gains and then a series of fine tunings are performed to the gains until
requirements are met rather than generating the final set of gains in one attempt [121, 167].
In this chapter, a novel formal controller tuning methodology is proposed. From an initial
controller tuning (e.g. such as one provided by the Ziegler-Nichols method) the fine-tuning
procedure is addressed from a model checking point of view as a reachability and safety
problem synthesising a controller which meets performance requirements.

This chapter is structured as follows: Section 5.2 presents the tuning problem formulation.
Section 5.3 presents the updated timed-automata and the controller synthesis methodology.
Finally, Section 5.4 presents a case study to demonstrate the applicability of the approach to
formally synthesize a PID-type controller.

5.2 Problem Formulation

The following section presents the PID controller tuning problem to be solved in a formal
manner. The type of controller and its structure is presented, which in turn drives the formal
approach taken in model checking to address the controller tuning.

5.2.1 Discrete PID Controller

PID control is probably the most widely used type of control [59, 85, 101, 121, 122, 124].
The reason for this is its simple implementation either in analogue or digital form and the

5.2 Problem Formulation 95

fact that it only consists of 3 parameters for tuning (proportional, integral, and derivative
gains). The effect of each of the controller gains is well known and has been widely studied,
making this type of controller very robust for safety critical applications [6, 44, 59, 85, 101,
121, 122, 124].

There exist different type of PID configurations but it is usually a variation of its ideal
form. The continuous transfer function for a PID in its ideal form is given by [101, 121]:

GIPID(s) =
U(s)
E(s)

= KP(1+
1

KIs
+KDs) (5.1)

where:

• Controller output = U(s).

• System error = E(s).

• Proportional gain = KP.

• Integral gain = KP
KI

• Derivative gain = KPKD

The transfer function of the PID controller can also be expressed in its parallel form. In
this form each gain element is independent from each other. The transfer function for this
configuration is given by [101]:

GPPID(s) =
U(s)
E(s)

= KP +KI
1
s
+KDs (5.2)

The derivative term improves the transient phase by providing a faster response on the system.
On the other hand as a downside it can enhance the effect of noise in the process leading
to possible instability. This effect also occurs when the process contains a transport delay
[100, 101, 132]. This presents a challenge to select a suitable KD value and for this reason the
derivative term is often removed altogether. In safety critical applications (e.g. a commercial
jet-engine) a PI controller is sufficient for most systems [101, 149]. A parallel PI controller
configuration is thus selected for this problem formulation. The transfer function of a PI
controller in its parallel formulation is given by:

GPPI(s) =
U(s)
E(s)

= KP +KI
1
s

(5.3)

The control system considered in the problem formulation of this thesis is one of a continuous
signal regulated by a computer-based controller (Figure 2.1). The controller is thus of

96 Digital PID Controller Formal Design

discrete nature which makes its implementation easier in the digital domain. Also, from a
programming point of view it is expensive to have a numerical integration routine such as
Runge-Kutta [125]. Discrete equivalences are preferred to digitize a controller [59, 122, 125].
The result from applying discrete equivalences are difference equations (Equation 3.2).
Regarding the plant, a discrete representation is convenient for the same reason: difference
equations are computationally less expensive than numerical integration. A discrete approach
is convenient for modelling the control system as a whole (Figure 3.2) [1, 6].

There are 3 continuous to discrete equivalences to map the S-plane (continuous) to the
Z-plane (discrete) using a sampling period T [59, 122]:

1. Forward rectangular rule: s←− z−1
T .

2. Backward rectangular rule: s←− z−1
T z .

3. Trapezoid rule (Tustin method): s←− 2
T

z−1
z+1 .

Regarding the equivalences, it is worth mentioning some remarks [59, 122]:

1. Using the forward rectangular rule the discrete-time system is stable only if the
continuous system is. It can lead to having a continuous stable system but discrete
unstable.

2. Using the backward rectangular rule the discrete-time system is stable if the continuous
system is. It can lead to having a discrete stable system but continuous unstable.

3. Using the trapezoid rule the discrete-time system is stable if and only if the continuous
system is. It is the only equivalence that fully maps the stable region on the S-plane to
the stable region in the Z-plane.

For these reasons the trapezoid rule is selected to convert the parallel PI continuous
transfer function (Equation 5.3) to its discrete version. The resulting discrete transfer
function for the parallel PI controller is given by:

GPPI(z) =
U(z)
E(z)

=
(KP +

T
2 KI)z+(T

2 KI−KP)

z−1
=

b0z+b1

z−1
(5.4)

where:

• b0 = KP +
T
2 KI .

• b1 =
T
2 KI−KP.

5.2 Problem Formulation 97

In a generic way the tuning problem can be addressed as to find a set of values for KP and KI

in order to drive the system into meeting design requirements. In this work the tuning will be
performed directly over the KP and KI gains values. This means that coefficients b0 and b1

from Equation 5.4 have to be calculated in the model checker using the proposed data-type
representation and its arithmetic (Section 3.3.4).

In this thesis, a model checking approach for tuning PID-type controllers is proposed. By
the means of portraying the tuning problem as a reachability model checking problem, the
model checker can then find a possible solution to the tuning problem. In the same manner
as in Chapter 4 the verification of high level performance requirements was performed with a
push-button approach, the controller tuning problem is addressed in the same way: the tuning
procedure is performed by querying the model checker. The solution must then comply
with the selected tuning criteria: high level control system performance requirements. The
following section explains how the tuning problem is portrayed in the model checker in order
to find a set of gains that drive the system into meeting requirements.

5.2.2 Controller Tuning: A Model Checking Formulation

In Chapter 4 a novel formal verification methodology of high level performance requirements
for a control system was presented. In the Chapter 4 formulation the controller configuration
was known and fixed, the controller tuning could not be modified. The verification consisted
of observing the trajectory of the process in the operating space to determine whether or
not the process dynamics met requirements. The reference tracking control problem is
portrayed in Figure 4.5, Section 4.3. The trajectory followed by the process is determined
by the process dynamics and its interaction with the controller in the pre-defined controller
tuning. If the process failed to meet requirements the controller tuning had to be performed
outside the model checking environment using additional methods. Here, a novel PID-type
controller tuning methodology is presented, a formal approach to generate the controller gains
which drive the system to meet requirements. In this manner, using high level performance
requirements as a formal input to the model checker, the controller tuning will be generated
by the means of the exhaustive verification capabilities of model checking.

To tune the PI controller in order to meet performance requirements requires finding
a set of KP, KI gains which drive the process into the desired operating space area within
the timing constraints while avoiding visiting certain operating space (e.g. overshoot area).
Depending on the selected data representation format, the controller gains are also limited to
an operating space much in the same way that the process and controller output are restricted
to an operating space. If the controller does not meet requirements in its current tuning, the

98 Digital PID Controller Formal Design

task is to find if there exists another combination of gains that drive the process’ trajectory in
the desired way.

Figure 5.1 shows how starting from an initial controller configuration set of gains their
values are modified in order find a new set of values which drive the process trajectory into
meeting performance requirements. The tuning is performed by modifying each gain by the
means of finding a ∆ value by decreasing or increasing the gains in predefined step sizes.
The operating space in the PI controller tuning formulation problem is the cross product

Fig. 5.1 Operating space for PI controller gains KP and KI . To tune the controller gains
requires finding a different combination of gains which drive the system’s dynamics into a
trajectory that meets requirements. Starting from an initial set of gains a search is performed
to find a possible solution to the control problem.

of the ranges of both gains. Ideally, the ranges are limited by the maximum allowed value
according to the selected data representation using the ad hoc data type from Chapter 2. For
practical reasons and to limit the search space thus preventing a possible state space explosion,
boundaries are assigned for each gain in order to reduce the possible gain configurations.

Figure 5.2 shows a graphical representation of the search space for KP and KI gains with
upper and lower boundaries. From the initial configuration, upper and lower bounds are
imposed on both gains’ ranges thus limiting the search space to the intersection of the two
bounded areas. The resulting operating and search space corresponds to the intersection of
the bounded areas for both KP and KI . It is in this operating space where the model checker

5.2 Problem Formulation 99

Fig. 5.2 Limited operating space for PI controller gains KP and KI . The search space for each
gain is limited to a certain area with upper and lower boundaries. The available combination
of controller gains are comprised in the intersection of the two areas. The model checker
uses this bounded area as the search space to find a controller gains combination that drives
the system into meeting requirements.

performs the exhaustive search. The tuning procedure requires the following variables to be
configured before the search is performed:

• Initial KP and KI values.

• Minimum and maximum allowed values for both KP and KI gains.

• Step size for KP and KI gains. This is the resolution allowed when performing modifi-
cations in the initial gain values.

• Choosing how to perform the tuning: modifying KP only, KI only, or both gains.

Also, the following considerations regarding the tuning procedure as a search problem in
the model checker have to be taken into account:

• Step size: having too small a step size may create memory issues in the actual imple-
mentation because of a state space explosion. Having too big a step size may limit the
search in a way that a solution is not found when in fact there exists one.

100 Digital PID Controller Formal Design

• Number of gains to be modified: when modifying one gain only the search space
is smaller and a solution could be found faster. Modifying both gains may result in
running out of memory before finding the solution.

• The possibility that no actual solution exists.

These considerations are taken into account when configuring the model checker to
perform the tuning procedure. The proposed tuning approach will consider a variable step
size for each gain, configurable upper and lower boundaries for each gain to limit the search
space, and the possibility of tuning either KP, KI , or both. Section 5.3.3 explains the tuning
procedure in more detail.

The novel controller tuning approach needs to be added to the current automata framework
from Chapter 4. Before verifying high level control requirements as explained in Chapter 4,
the PI tuning feature will be added. The timed-automata need to be updated to include the
controller gains search prior to the requirements verification, this also requires the calculation
of the controller b0 and b1 coefficients according to the newly selected controller gains. The
following section explains the necessary updates to the timed-automata to include these
features.

5.3 Controller Synthesis Methodology

In order to tune the digital PI controller using the automata framework from Chapter 4 two
features have to be included:

1. KP and KI gains selection.

2. b0 and b1 coefficients calculation for the PI transfer function.

The selection process to modify the controller gains is performed non-deterministically by
the model checker before the requirements verification. The tuning procedure must address
the following items:

1. Define KP and KI initial values.

2. Define KP and KI upper and lower limits.

3. Define KP and KI step size to perform the search.

4. Define if both gains are to be modified or only one of them, if only one, which one.

5.3 Controller Synthesis Methodology 101

5. Enable the model checker to perform the search within the predefined boundaries and
step sizes.

6. Calculate b0 and b1 coefficients for the PI discrete transfer function.

7. Perform the requirements verification in the same fashion as it was presented in Chapter
4: a reachability problem.

After modifying the initial gain values, the transfer function coefficients will be updated to
reflect this change and finally the requirements verification will be performed. The model
checking procedure for tuning the PI controller is presented in its entirety in Section 5.3.3.
From the model checker point of view, the reachability query does no longer mean verifying
the trajectory versus high level requirements only. The query is now also posing the question
about the existence of a trajectory within the predefined boundaries of the gains by which
the controller can drive the system in order to meet requirements. The controller is tuned
simultaneously in a formal way aiding not only in the verification process but also in the
design process. The following section explains the necessary automata updates to integrate
the formal PI tuning procedure to the current automata framework.

5.3.1 Timed-Automata Update

In order to enable the features to solve the PI controller tuning problem in the previously
proposed automata (Section 4.3.1), modifications are made to the Observer automata from
Figure 4.9. Both the Controller (Figure 4.8) and Plant (Figure 4.7) automata remain without
changes. In more detail:

Observer

Figure 5.3 shows the automata in charge of coordinating the execution of the controller
and the plant. This automata monitors both the controller output U and the process output
Y to determine when to finalize the simulation. A new state has been added so after the
initialization process the tuning process takes place. This state will modify the initial KP and
KI gains and calculate the new b0 and b1 coefficients for the controller.

The automaton consists of the following states:

1. Init: Initial state. Initialize the models for simulation. After the initialization the
system transitions to the Select Gains state.

2. Select Gains: Gain selection state. In this state both KP and KI gains are modified
and the new b0 and b1 coefficients for the controller are calculated. After the gain

102 Digital PID Controller Formal Design

Fig. 5.3 Updated Observer automaton. Automaton in charge of the tuning procedure of the
controller gains and controlling the data flow between the controller and the plant. This
automaton monitors the control signal U and output process signal Y to determine transitions
between states.

modifications have been performed, the input reference signal is monitored in order to
trigger an event. Once a change in reference has been detected a transition to Transient
state is taken.

3. Transient: Transitory state. This is the state in charge of coordinating the execution of
the Plant and Controller automata. It monitors both the process output signal Y and
the controller signal U to determine when the process has reached a settling condition.
Once both the controller and the plant have settled a transition is triggered to the End
state.

4. End: Final state. After an event (change in reference) if an equilibrium condition is
reached the dynamics process comes to a halt and no more transitions are allowed in
any automata.

The Select Gains state and its functionalities have to be included in the UPPAAL im-
plementation. The UPPAAL implementation with the updated features is shown in Figure
5.4.

Observer: UPPAAL Implementation

Figure 5.4 shows the automaton in charge of coordinating the correct execution of the
controller and the plant. The automaton modifies the values of the controller gains KP

and KI in order to tune the controller. Once the gains have been modified the calculation
of the controller’s transfer function coefficients is done. This automata monitors both the
controller output U and the process output Y to determine when to finalize the simulation.
The coordination of the execution of the controllers and the plants is achieved by using
synchronization channels C and D (one per system approximation). This automata sends a

5.3 Controller Synthesis Methodology 103

message via channels C and D to enable the execution of either the Plant or the Controller
automata for both the over and under approximations.

The automaton consists of the following states:

1. KP: Initial and KP tuning state. This state functions partially as the Init state and
the Select Gains state depicted in Figure 5.3. The tuning process is split into two
states instead of one as in the automata from Figure 5.3. This state is dedicated to
the selection of the KP gain. The model checker non-deterministically selects a ∆KP

value to modify the initial KP gain. The size of ∆KP is determined by the ∆KPSS size
step and the KPUL upper and KPLL lower boundaries (Figure 5.2). This state can be
bypassed to avoid modifying the KP gain value. Once the gain modification has been
performed a transition to KI state is taken.

2. KI: KI tuning state. This state functions partially as the Select Gains state depicted in
Figure 5.3. The model checker non-deterministically selects a ∆KI value to modify
the initial KI gain. The size of ∆KI is determined by the ∆KISS size step and the
KIUL upper and KILL lower boundaries (Figure 5.2). This state can be bypassed to
avoid modifying the KI gain value. Once the gain modifications have been performed
function CoCa is called to calculate the new b0 and b1 coefficients. Input reference
signal is monitored in order to trigger an event. Once a change in reference has been
detected a transition to Sync state is taken.

3. Sync: Transitory state. Similar to Transient state depicted in Figure 5.3. State in charge
of coordinating the execution of the Plant and Controller automata. It monitors the
process output signal Y, the controller signal U, and the elapsed time to determine
when to finish the automata execution. The observer coordinates both the over and
under approximations via communication channels. Once both the controller and the
plant in both over and under approximations have settled and no time-out condition is
detected a transition is triggered to the End state.

4. End: Final state. Similar to End state depicted in Figure 5.3. After an event (change in
reference) if an equilibrium condition is reached the dynamics process comes to a halt
and no more transitions are allowed in any automata.

5. Timeout: Fail-safe state. A pre-defined amount of time is given to the process to reach
an equilibrium. In order to save memory and computations, this condition is added.
If the process does not reach an equilibrium within the allowed amount of time the
automaton transitions to this state.

104 Digital PID Controller Formal Design

Fig. 5.4 UPPAAL implementation of the observer automaton. Automaton in charge of
controlling the data flow between the controller and the plant. The controller tuning process
has been incorporated. Gains KP and KI are modified in order to find a suitable combination
which drives the process to meet requirements. This automaton monitors the control signal
U, output process signal Y, and the elapsed time to determine transitions between states. It
coordinates the execution between plants and controllers using communication channels
C and D. One channel is used for the over approximation and the other one for the under
approximation.

With these new features included in the automata the controller tuning process can take
place. From a model checking point of view, the controller design process is similar to the
previously presented requirements verification process in Section 4.4. The following section
explains the required modifications to the model checker queries and the differences with the
previous verification process.

5.3.2 Requirements Formulation for Design

The controller tuning problem is a search problem as portrayed in Figure 5.2 and can be
formulated in the following way: is there a set of gains KP and KI that can drive the system
closed loop behaviour to meet the closed loop requirements? The verification of the closed
loop requirements is done in the same way as explained in Section 4.4: a trajectory search
like the one in Figure 4.6. The gain search is performed verifying closed loop requirements.

The controller tuning design procedure is thus performed using a push-button approach
by querying the model checker using a reachability property (Table 4.1) like Equation 4.1.
The query is the same as the one presented during the verification phase. The reason for this
is because the verification still takes place in order to decide if the design is successful or
not. The main difference is that in this formulation the controller gains are modified before
performing the verification.

If the property verification is successful the model checker will return Pass as a result. A
witness trace will be generated to show how to obtain this result. As part of the witness trace
the modification to the controller gains (∆KP and ∆KI) will be returned by the model checker.

5.3 Controller Synthesis Methodology 105

If the property verification is not successful the model checker will simply return Fail without
a trace. This means that within the KP and KI search space there is not a combination that
satisfies the requirements, a modification of the search space is necessary to systematically
find a possible gain combination. The following section explains how to perform a systematic
search in order to find a solution to the tuning design problem.

5.3.3 Controller Tuning Algorithm

Using the updated automata the controller tuning design problem can be addressed by
performing a systematic search in the operating space of both KP and KI gains. Algorithm
4 presents the necessary steps to address the design and verification of the PI controller
problem.

Algorithm 4: Controller formal design and verification procedure.
Input :Linear plant, Closed-loop performance requirements, Initial tuning: KP and

KI , Fixed-Point integer-only representation for abstraction (I, F), Coefficients
scaling gain Kab.

Output :Tuned controller gains.
1 Using the selected fixed-point integer only representation and coefficients scaling gain

Kab, convert the initial KP and KI gains into the chosen representation.
2 Use the abstraction methodology (Chapter 3) to generate and implement the system

abstraction in the model checker.
3 Bypass the gains modification states in the automata and perform an initial

requirements verification (Section 4.4). If the verification is successful no tuning is
necessary. If not, proceed to step 4.

4 Remove the bypass for the gain modification states.
5 Select a resolution (step size) for KP and KI gains.
6 Select upper and lower limits for the gain values search space.
7 Verify the system property (Equation 4.1) to find a new set of gains.
8 If no solution is found in the current search space, change resolution (step size),

upper/lower limits for the gain values operating space, and/or restrict the search to a
single gain. Go back to step 7, repeat.

9 If a solution is found, use ∆KP and ∆KI values returned by the model checker to
calculate the new set of gains.

The objective of this design and verification process is to find a suitable set of gains
for the controller which drive the closed-loop behaviour of the system to meet the given
requirements. The process is iterative but it requires minimal intervention from the designer.
A solution may be found in the first iteration but there is no guarantee for this to happen.
Also, it may be the case that the given requirements cannot be met by the current controller

106 Digital PID Controller Formal Design

structure. If a solution exists the iterative process can eventually find it. The outcome after
applying Algorithm 4 will be a set of controller gains which meets design requirements and
has been formally verified. The following section shows how to apply the methodology using
the design problem case study presented in Chapter 4.

5.4 Case Study: Thrust Control Design

The control design problem to be solved in this thesis is that of a gain scheduling control
scheme using model checking to formally verify and design the schedule. In Section 4.5 a
brief description of the necessary tasks to address in order to solve the main design problem
as sub-problems was presented. So far items 1-4 have been addressed:

1. Abstract the control system dynamics: Chapter 3 presented the system dynamics
abstraction methodology to be used to implement the control system in a model
checking environment.

2. Implement the control system abstraction in a model checking environment: Chap-
ter 4 presented how to use the system abstraction along with a set of proposed automata
so that the abstraction can be implemented in a model checking environment.

3. Verify high level performance requirements for the control system using model
checking: Chapter 4 presented how high level performance requirements for a control
system can be formally verified by portraying the control problem as a reachability
problem in model checking.

4. Perform the controller tuning process using model checking: Section 5.2 presented
how to portray the tuning design problem in a similar fashion as the requirements
verification problem: a reachability problem in model checking. Section 5.3 presented
the full novel methodology for how to tune the controller using model checking.

By providing solutions to the aforementioned tasks a novel gain schedule formal design
and verification methodology can be constructed; the full methodology will be presented
in Chapter 6. In this section the applicability of the novel PI controller formal design and
verification methodology is demonstrated (item 4). Taking the results in Chapter 4 Section
4.5.3 as a starting point, the PI controller tuning problem is addressed using the formal design
and verification methodology presented in this chapter.

5.4 Case Study: Thrust Control Design 107

5.4.1 Requirements and Initial Conditions

The high level performance requirements for the control design and verification problem are
as from Section 4.5.3:

1. Maximum Overshoot % (OS) ≤ 13%.

2. Settling Time (ST) ≤ 40 seconds.

3. Rise Time (RT) ≤ 15 seconds.

4. Steady state error % (SSE) ≤ 1%.

The system and its abstraction (recap from Section 4.5.2) are:

• Original system transfer function is given by Equation 4.2.

• Sampling time T = 0.5 seconds.

• Parametric compensation gain KU = 0.0005.

• Data-type representation format: 1 integer digit (I = 1) and 4 fractional digits (F = 4).

• Input-Output scaling gain KS = 10,000.

• Coefficients scaling gain Kab = 16,384.

• Abstraction over approximation is given by Equation 4.5.

• Abstraction under approximation is given by Equation 4.6.

The initial configuration for the discrete PI controller was generated using the Ziegler-Nichols
method:

• Controller discrete transfer function is given by Equation 5.4

• Initial proportional gain KP = 0.1392.

• Initial integral gain KI = 0.1496.

From this starting point Algorithm 4 is applied to design and verify the PI controller in
order to meet high level performance requirements from Section 4.5.3. The query used to
find a solution to the tuning problem is described by Equation 4.8.

108 Digital PID Controller Formal Design

5.4.2 Results and Discussion

From the obtained results in Section 4.5.3 it is known that the initial controller configuration
fails to meet all the requirements: overshoot is not in compliance. Algorithm 4 is then used
to find a solution to this control problem. The results are summarized in Table 5.1. From
an initial KP and KI operating space selection the model checker is systematically used to
find a suitable set of gains. Step 8 in Algorithm 4 is where the search is reconfigured in case
no solution is found by the model checker with the current step sizes and boundaries. After
every iteration it is the designer’s arbitrary decision to select a different step size, boundaries,
and to tune 1 or 2 gains. In this example, after every iteration, step sizes and boundaries were
changed in order to find a solution.

Table 5.1 Controller gains operating space configurations and verification results. The initial
values for every iteration are KP = 0.1392 and KI = 0.1496.

Parameter Iteration 1 Iteration 2 Iteration 3

KP KI KP KI KP KI
Step Size 0.0021 0.0021 0.0036 0.0036 0.0067 NA

Upper Limit 0.1926 0.2030 0.2231 0.2335 0.3070 NA
Lower Limit 0.0858 0.0961 0.0552 0.0656 0.0000 NA

Result Fail Fail Pass

Using Algorithm 4 provides a new set of gains that correctly drive the process into a
trajectory which meets all the requirements. It was necessary to have 3 iterations in the
search. The first two searches were performed modifying both KP and KI gain values. Both
verifications returned negative results due to a memory issue: the search space was too big
for the model checker to handle. Instead of increasing the step size to reduce the search space
explosion even if it meant to increase the total range of the search, it was decided instead to
just modify the proportional gain KP. The model checker arrives at a solution. The initial
and final tunings with their respective gain modifications are shown in Table 5.2.

Table 5.2 Initial and final gain values for the PI controller.

Parameter Initial Final ∆

KP 0.1392 0.1862 0.0470
KI 0.1496 0.1496 0.0000

Table 5.3 shows the results for the abstraction after running the design and verification
process. The requirements values are shown for both the over approximation and the under

5.4 Case Study: Thrust Control Design 109

approximation. The witness trace returned by the model checker provided the required
modifications to the initial gain values. Figure 5.5 shows the closed loop behaviour of the
system abstraction.

Table 5.3 Requirements design and verification results for the system abstraction.

Plant Requirement

Overshoot (%) Settling Time (sec) Rise Time (sec)
Steady State
Error (%)

Under
Approximation 9.49 32 5.5 0.13

Over
Approximation 12.96 33.5 5.5 0.08

Fig. 5.5 Closed loop response of the system abstraction. Both over and under approximation
meet all the requirements.

Both the under approximation and the over approximation meet all the requirements
(Table 5.3). A comparison is performed between the abstraction and the original system. The

110 Digital PID Controller Formal Design

original system response is scaled-up for comparison purposes using input-output scaling
gain KS = 10,000. This comparison is shown in Figure 5.6. As expected the original system
is bounded by the abstraction, which in turn means that the original system also meets the
requirements.

Fig. 5.6 Closed loop response of the system abstraction and the scaled original system.
Both the abstraction (over and under approximations) and the original system meet the
requirements as determined by the model checker. The original system response is scaled for
comparison purposes (using KS = 10,000).

The new gain values returned by the model checker make the system follow a trajectory
which meets the desired requirements. Finally, a comparison is performed between the
original system initial controller tuning and the final controller tuning. Table 5.4 shows the
closed loop performance values for both controller configurations and Figure 5.7 shows the
response for the system under both controller tuning configurations.

5.4 Case Study: Thrust Control Design 111

Table 5.4 Requirements comparison between initial and final controller tunings.

Tuning Requirement

Overshoot (%) Settling Time (sec) Rise Time (sec)
Steady State
Error (%)

Initial 13.93 35 6 0.05
Final 11.29 33 5.5 0.05

Fig. 5.7 Closed loop response for the original system using the initial PI controller gains and
the final controller gains. Highlighted in red is the overshoot area where the initial controller
tuning fails to meet the requirements.

Discussion

A novel PI controller tuning methodology has been presented in this chapter. The abstraction
methodology (Chapter 3), and the verification approach for high level performance require-
ments (Chapter 4) set the building blocks to allow the formal design of the PI controller
presented in this chapter. The methodology relies on model checking to perform the con-

112 Digital PID Controller Formal Design

troller tuning. By the means of approaching the PI tuning problem as a search problem in
model checking, the controller gains can be modified so that high level control performance
requirements are met. The methodology takes a controller configuration as a starting point,
this is not a necessary requirement but it is desirable that this is the case. The reason for
this is because if a solution to the tuning problem exists, the closer to a solution the initial
configuration is the faster Algorithm 4 will converge. Starting from an initial configuration
which is far from a solution will likely require more iterations over Algorithm 4 because the
state space for the model checker to handle may be too big and memory runs out or indeed
no solution exists in the current search space. However, and as demonstrated in the case
study, Algorithm 4 can systematically be applied to find a solution to the problem.

Starting from an initial controller tuning that drives the system into a stable behaviour is
desirable. This can be achieved by classical methods such as Ziegler-Nichols. Even if many
methods for tuning a PID controller exists, the proposed methodology in this thesis takes a
correct-by-construction formal approach where high level requirements are included in the
tuning procedure from the start point.

The controller design and verification is performed using the discrete version of the
controller, this version being the one that usually is implemented in the embedded system,
hence the methodology considers the software implementation side of the design process.
Verifying software compliance with requirements is a challenging task from a software
development cycle point of view. Also, the safety of the software has to be proven as well,
current practices rely strongly on extensive testing to comply with both assurance and safety
regulations. By incorporating model checking into the design and verification framework
of embedded PID-type controllers, testing practices can be improved by increasing testing
coverage from early design stages and increasing the error detection rate as well.

The model checker allows to address the tuning problem with a push-button type of
approach, requiring minimum intervention from the design engineer. This in turn can help
reducing the gap between formal methods and industrial software practices for safety critical
systems. The current framework allows to formally verify a closed loop control system
versus performance requirements as well as to aid in the design process of the controller in
case tuning the controller is needed.

The final design goal is to formally design and verify a gain schedule controller. The
presented tuning methodology fits well within this problem because from an initial controller
configuration the model checker can be used to find various controller tunings to system-
atically construct a schedule, requiring at most one initial controller tuning generated by
classical methods. Taking the current framework as a starting point, the following chapter

5.4 Case Study: Thrust Control Design 113

shows the required additions in order to address the gain scheduling design and verification
problem from a model checking design point of view.

Chapter 6

Digital PID Gain Scheduling Control
Formal Design

6.1 Overview

Gain scheduling is a commonly used control scheme for non-linear processes and safety
critical applications. It is appealing due to its simplicity compared to more advanced control
methodologies [127, 149]. In safety-critical systems it is extensively used (e.g. commercial
jet engines) and it is implemented in the form of embedded software [127, 149]. The
usual approach to embedded control is to design analogue controllers and digitize them for
implementation in a computer-based system (Fig. 2.1). Airworthiness certification requires
evidence to show the correct behaviour of the system prior to operation, which in turn derives
in a series of extensive and time consuming procedures to ensure safety [18, 43, 51]. However,
current development and certification practices are prone to human error and requirements
ambiguities [53, 106].

Demonstrating safety and requirements conformity for a gain scheduled controller is
challenging from the design, verification, and implementation points of view. To guarantee
safety and conformity with requirements, extensive testing is performed. It is estimated that
current testing activities amount to approximately 30% to 50% of the total cost of a software
project [7]. It is therefore desirable to find a new approach to verification and validation.

For the first time, using a correct-by-design approach a gain scheduled control scheme
is formally designed and verified using model checking. The formal verification of control
requirements and controller design is enabled by the proposed model abstraction methodology
(Chapter 3), verification methodology (Chapter 4), and controller design methodology
(Chapter 5). The proposed gain schedule design and verification methodology requires

116 Digital PID Gain Scheduling Control Formal Design

minimum intervention from the control engineer because the schedule is incrementally
constructed via a push-button approach enabled by the model checker. The end result
consists of a gain schedule with the minimum number of controller tunings which satisfy
high level performance requirements.

This chapter is structured as follows: Section 6.2 presents the discrete PID-type gain
schedule problem formulation. Section 6.3 presents the new timed-automata to address this
problem and presents the controller synthesis methodology. Finally, Section 6.4 presents the
case study to show the applicability of the approach to formally synthesize a gain schedule
PID-type control scheme and a discussion about the generated results.

6.2 Problem Formulation

To address the gain schedule design problem, this thesis proposes a methodology to system-
atically and incrementally construct a schedule to satisfy high level control performance
requirements. The abstraction methodology presented in Chapter 3 allows to implement a
dynamic control system in a model checking environment, allowing to formally verify high
level control performance requirements as presented in Chapter 4. Chapter 5 presented a
PID-type controller tuning method using model checking, taking as a formal design input
the high level performance requirements into the model checker. By expanding the previous
framework from Chapters 4 and 5, the necessary features to address the gain schedule design
problem will be added. The following section explains in more detail the problem to be
solved and how to formulate it from a model checking perspective.

6.2.1 Gain Scheduled PI Control

Gain scheduled control was developed as a solution to non-linear problems and it is an early
attempt at adaptive control [94, 97]. The approach assumes a strong relationship between a
measured variable which characterizes the operating conditions and the plant model. It is then
possible to minimize the effect of parameter variation by changing the controller parameters
accordingly. It can be considered as open-loop adaptive control because the performance
modifications resulting from the change in controller parameters are not used in a feedback
fashion to quantify the efficiency of parameter adaptation [94]. The implementation is usually
a computer-based look-up table which gives the controller parameters for a given set of
environment measurements. Due to its simplicity gain scheduling control is widely used,
especially for safety critical applications [138].

6.2 Problem Formulation 117

As mentioned in Chapter 5, PID control is extensively used because of the number of
parameters available for tuning (e.g. proportional, integral, and derivative gains) and the
great body of knowledge on the individual controller actions. Furthermore, for critical
applications in many cases a PI controller is the chosen configuration to avoid dealing with
the possible side-effects of the derivative action [101]. A gain scheduling control scheme
in combination with a PI controller structure is a versatile and easy to deploy option from a
design and implementation point of view. The complexity resides in the number of operating
points, compliance with high level requirements, stability, and the control system actual
implementation [97, 127, 138].

Fig. 6.1 Gain scheduled control scheme. The controller has a proportional+integral (PI)
structure (Equation 5.4). The schedule is driven by a combination of external inputs and the
controlled variable.

Designing a control gain schedule scheme and verifying its conformity with high level
requirements is hard to do analytically. Also, the control system is to be implemented as an
embedded computer system which means that the controller will be translated into software.
An analytical design method usually does not consider this. Safety-critical systems, such as
a jet-engine thrust controller, requires extensive testing in simulation environments to prove
the system meets requirements and the software’s safety. The proposed methodology, for
the first time, uses high-level control performance requirements as a formal input during the
design and verification phases of the control scheme. The controller design is performed
using the same structure as its final embedded software form. By the means of running
extensive simulations the controller design is done, thus performing extensive testing at the
same time as the design is taking place, increasing coverage analysis early in the process.

Figure 6.1 shows the proposed gain schedule control scheme, where the control action
is generated using a PI controller (Equation 5.4). The schedule in charge of modifying the
controller gains is determined by a combination of external inputs and the controlled variable.

118 Digital PID Gain Scheduling Control Formal Design

With this configuration in mind and the proposed model checking framework, the control
problem must then be portrayed in a model checking fashion so it can be addressed.

6.2.2 Schedule Design: A Model Checking Formulation

The control problem to solve is one of finding a set of controller gains for every operating
region in order to drive the system to meet performance requirements. In a similar fashion as
described in Chapter 4, Section 4.3, the control problem becomes a reachability problem.
Given a set of possible controller tunings, is there a combination of current gains that make
the system trajectories for all the operating regions fall within the given requirements? If
a new set of gains is required then it will be generated using the methodology presented in
Chapter 5 thus completing the design and verification framework.

Fig. 6.2 Gain scheduled control problem portrayed as a reachability problem. Three different
operating regions are presented. Each region has a different dynamic behaviour. Trajectories
between reference points are given by the amount of possible schedule entries. In this case
and for this example purpose only 2 possible trajectories are shown. The number of schedule
entries will be generated as required.

Figure 6.2 shows how the gain schedule problem is presented as a reachability problem.
In this example the operating space is partitioned into three different operating regions.
Each operating region has different dynamics. Three different reference points are shown,
one per operating region. How to move between those reference points is given by the
selected controller tuning and each controller tuning is linked to a particular trajectory. For
example purposes two different sets of trajectories are shown, meaning there are two possible
controller tunings available.

6.3 Schedule Synthesis Methodology 119

Chapter 5 presented a novel model checking approach to perform PID controller tuning.
The methodology from Chapter 5 is a push-button approach to the tuning problem where
the solution is found by portraying the controller tuning problem as a model checking
reachability problem. Following the same line of reasoning, in order to solve the gain
schedule design problem, the problem is translated into a model checking reachability
problem. To accomplish this the current timed-automata framework needs to be updated to
include these features, the following section addresses the required updates.

6.3 Schedule Synthesis Methodology

In order to construct the control schedule containing the PI controller gains with the automata
framework from Chapter 4 the following capabilities have to be added:

1. To have different system dynamics for the various operating regions.

2. To have different controller tunings and being able to switch between them.

3. Keep track of the operating region the system is operating on in order to change the
system dynamics and the controller tuning if needed.

The first two items are addressed in their respective Plant and Controller automata.
The dynamics for both the plant and the controller are included as arrays containing the
coefficients. Instead of having a one-dimensional array with a single set of coefficients a
multi-dimensional array is used instead. This multi-dimensional array contains the different
sets of coefficients. To change the system dynamics or the controller dynamics means to point
to a different entry in the array. Regarding item 3, because more than one operating region is
to be included in the problem formulation, this means that the performance indicators have to
be processed for all regions. This is done in the Plant automaton as explained in Section 4.3.2.
In the same way that different dynamics are stored in multi-dimensional arrays, performance
indicators will be stored in one-dimensional arrays instead of doing it in single-variable
elements like in the original automaton (Section 4.3.2). Item 3 is the one that requires major
changes in the Observer automaton, the following section explain such changes.

6.3.1 Timed-Automata Update

In order to capture the nature of the gain scheduling problem using the proposed modelling
and abstraction methodology from Chapter 3, the automata must be able to change its
dynamics depending on the operating region. Discrete SISO LTI models were selected to

120 Digital PID Gain Scheduling Control Formal Design

portray the system dynamics (Section 3.2). In order to portray a non-linear dynamic system
using linear models, a family of models are constructed to divide the non-linear problem into
a subset of linear problems.

With this problem formulation, both the Plant and Controller automata need to be able to
change its dynamics on demand. The Observer automaton is the one in charge of coordinating
the execution of the controller and the plant, monitoring the simulation scenario. For this
reason this automaton is where the updates to implement the required features are added in
order to portray the schedule problem.

Observer

Figure 6.3 shows the automata in charge of coordinating the execution of the controller and
the plant. This automata monitors both the controller output U and the process output Y
to determine when to finalize the simulation. A new state has been added so that after the
initialization process the tuning process takes place. This state will modify the initial KP and
KI gains and calculate the new b0 and b1 coefficients for the controller.

Fig. 6.3 Updated Observer automaton. Automaton in charge of controlling the data flow
between the controller and the plant. This automaton keeps track of the changes in reference
and operating regions and commands both the plant and controller automata to change their
respective dynamics if required. This automata monitors the control signal U and output
process signal Y to determine transitions between states.

The automaton consists of the following states:

1. Init: Initial state. Initialize the models for simulation. After initializing a transition
to the Configuration state is taken. If all the required operating points have been
processed and verified a transition to the End state is taken.

2. Configuration: Plant dynamics and controller tuning configuration state. After a
change in operating point has been detected the automaton commands a change in
plant dynamics if needed. If a change in controller configuration is required this

6.3 Schedule Synthesis Methodology 121

automaton commands the controller to do so. Among the possible controller tunings
available the automaton non-deterministically chooses a tuning to control the process
in that particular operating point. Once a change in dynamics and/or a controller tuning
has been selected a transition to the Transient state is triggered.

3. Transient: Transitory state. This is the state in charge of coordinating the execution of
the Plant and Controller automata. It monitors both the process output signal Y and
the controller signal U to determine when the process has reached a settling condition.
Once both the controller and the plant have settled a transition is triggered to the Init
state.

4. End: Final state. After all the required operating points have been verified data
processing comes to a halt and no more transitions are allowed in any automata.

The Configuration state and its functionalities have to be included in the UPPAAL
implementation. The UPPAAL implementation with the updated features is shown in Figure
6.4.

Observer: UPPAAL Implementation

Figure 6.4 shows the automaton in charge of coordinating the correct execution of the
controller and the plant. The automaton modifies the controller tuning by choosing among
a pre-defined set of tunings in order to find a configuration which drives the process into a
desired trajectory for every operating point. The automata modifies the system’s dynamics
when a change in operating region is detected. This automata monitors both the controller
output U and the process output Y to determine when to change the operating region and to
finalize the simulation. The coordination of the execution of the controllers and the plants is
achieved by using synchronization channels C and D (one per system approximation). This
automata sends a message via channels C and D to enable the execution of either the Plant
or the Controller automata for both the over and under approximations.

The automaton consists of the following states:

1. Init: Initial state. Similar to Init state depicted in Figure 6.3. When an event is detected
(change in reference) a transition to OP1Tr state is taken. During this transition the
non-deterministic selection of the controller tuning is taken.

2. OP1Tr: Operating point 1 transient state. Operating point requirements verification.
Once the process and controller have settled a transition to the OP1SS state is taken.
Similar to Transient state depicted in Figure 6.3.

122 Digital PID Gain Scheduling Control Formal Design

3. OP1SS: Operating point 1 steady state. This state functions as the Init state depicted
in Figure 6.3 in the sense that the processing for a new operating point is performed
here. Instead of returning to the initial state every operating point is split into transient
and steady state sections. The reference signal is monitored and once a new event is
detected (change in operating point) a transition to the next operating point transient
state is taken. During this transition the non-deterministic selection of the controller
tuning is taken.

4. End: Final state. Similar to End state depicted in Figure 6.3. After the last event
(change in operating point) has been processed, if an equilibrium condition is reached
the dynamics process comes to a halt and no more transitions are allowed in any
automata.

Fig. 6.4 UPPAAL implementation of the observer automaton. Automaton in charge of
controlling the data flow between the controller and the plant. The processing of different
operating regions, their respective dynamics, and different controller tunings has been
incorporated. Every time a change in the operating point is detected the controller tuning
can be non-deterministically selected. This automaton monitors the control signal U, and
output process signal Y to determine transitions between states. It coordinates the execution
between plants and controllers using communication channels C and D. One channel is used
for the over approximation and the other one for the under approximation. This particular
automaton processes 5 different operating points.

The automaton in Figure 6.4 is constructed to process 5 different operating points. This
automaton is particular to this example where 5 different operating points are processed but
it can easily be extended. Each operating point consists of a transient state and a steady state.
Their functionality is similar in terms of transitions. Depending on the problem formulation
more or less operating points can be included in the automaton. From a model checking point
of view, the schedule synthesis process is similar to the previously presented PI synthesis

6.3 Schedule Synthesis Methodology 123

process in Section 5.3: the problem can be systematically addressed as a reachability problem.
This automaton keeps track of which controller tuning is used in every operating point, if
requirements are met in every operating point the automaton will contain the control schedule
as part of its internal variables. With these new features included in the automaton the gain
schedule design can take place in a formal manner. The following section explains the
required queries to be used in the push-button approach within the model checker in order to
fully enable the gain schedule formal design process.

6.3.2 Requirements Formulation for Design

The controller gain schedule design is a trajectory search problem as portrayed in Figure 6.2
and can be formulated in the following way: is there a combination of controller tunings that
can drive the system closed loop behaviour to meet the closed loop requirements for every
operating point? The verification of the closed loop requirements for each operating point is
done in the same way as explained in Section 4.4: a trajectory search like the one in Figure
4.6.

The gain schedule design procedure is thus performed using a push-button approach by
querying the model checker using a reachability property (Table 4.1) like Equation 4.1. The
automata design splits the problem into each operating region performing the requirements
verification independently as in the verification phase from Chapter 4. Therefore the query
must contain the verification of all the operating points involved in the design problem. As
mentioned in Section 6.3.1 the plant automaton will keep track of the requirements in an
array form instead of single elements so that the query can be done using the locations in the
array assigned for each operating point. The reachability query takes the following form:

E <> Observer.End and

Plant.Overshoot[1]≤ Requirement and Plant.RiseTime[1]≤ Requirement and

Plant.SettlingTime[1]≤ Requirement and Plant.SSError[1]≤ Requirement and

Plant.Overshoot[2]≤ Requirement and Plant.RiseTime[2]≤ Requirement and

Plant.SettlingTime[2]≤Requirement and Plant.SSError[2]≤Requirement and . . .

Plant.Overshoot[n]≤ Requirement and Plant.RiseTime[n]≤ Requirement and

Plant.SettlingTime[n]≤ Requirement and Plant.SSError[n]≤ Requirement (6.1)

Equation 6.1 is a reachability query which checks for all 4 requirements to be within
limits for n operating points. The variables related to each individual operating region are

124 Digital PID Gain Scheduling Control Formal Design

stored in arrays, hence the indexing to access them. In this format the verification can be
done for particular operating points individually. If the property verification is successful the
model checker will return Pass as a result and the witness trace to show how this result can be
obtained. As part of the witness trace the model checker will return the schedule that drives
the system to meet requirements, providing a solution to the control problem. If the property
verification is not successful the model checker will simply return Fail without a trace. This
means that within the available controller tunings there is not a combination that satisfies
requirements for all operating points. In the Fail scenario in order to obtain information from
the model checker the path qualifier must be changed to A instead of E to use a Liveness
query so that a counter-example trace is generated.

Using the model checking framework presented in Chapter 5 to conduct the formal
controller tuning procedure, and the model checking framework presented in this section, a
novel methodology to formally design and verify a gain schedule control scheme is proposed.
The following section explains how to use the full framework in a systematic way in order to
find a solution to the gain schedule design problem.

6.3.3 Schedule Design Algorithm

The automata framework presented in Chapter 5 is exclusively designed to address the PI
controller tuning problem. The automata framework from Section 6.3.1 addresses the gain
schedule generation but does not solve the associated PI controller tuning problem. Using
both sets of automata the full problem of the gain schedule design can be addressed in
a formal manner with a model checking approach. The gain schedule generation could
potentially use a different controller, or a different PID-type controller structure as well, this
is not restricted to a PI controller design. In order to do so the associated controller automata,
in both the controller tuning and schedule design formulations, would have to be adapted to
deal with the new controller structure.

Figure 6.5 shows a block diagram of the proposed gain schedule formal design method-
ology using model checking. The model checking framework consists of the abstraction
methodology, the PI controller tuning automata, and the gain schedule design automata.
The abstraction methodology enables both sets of automata. The methodology takes a high
fidelity model and high level requirements as inputs. The output is a formally designed gain
schedule PI controller that meets the desired requirements. If requirements cannot possible
be met the methodology will say why is this happening. The procedure for how to approach
the design problem using the framework is presented as follows.

The objective of this design process is to generate a control schedule with the minimum
necessary control tunings in order to meet requirements for all operating points. The schedule

6.4 Case Study: Thrust Control Schedule Design 125

Fig. 6.5 Gain schedule formal design methodology. High fidelity model and high level
requirements are taken into the model checking framework. The model checking framework
is composed of the abstraction methodology which enables the formal PI controller tuning
and the gain schedule design. Both the controller tuning and the gain schedule design
automata are used in combination to solve the gain schedule design problem.

design is incremental. After the operating space has been split, an operating region is
arbitrarily selected and the controller is tuned to meet requirements in that region. The model
checker is then used to verify if requirements are met for all the other regions as well. If
not, another region where requirements are not met is selected and the process is repeated.
The number of available tunings increases and this also allows the model checker to use
those tunings as options in order to meet requirements for the remainder of the operating
points. The outcome after applying Algorithm 5 will be a control schedule which meets
high level performance requirements and has been formally designed and verified. Step 10
in Algorithm 5 is added as a test coverage measure. Increasing coverage is a benefit from
model checking and it is worth showing how this can be applied with the current design and
verification framework. The following section presents the problem under analysis and how
to use the proposed methodology to solve the control schedule design problem.

6.4 Case Study: Thrust Control Schedule Design

As an example to illustrate the proposed methodology, an aerospace related application is
selected: gain scheduling jet-engine control. However, the methodology is not restricted to
this type of application and can be applied to a generic embedded gain scheduling control
approach.

Gain scheduling control is widely used due to the fact that it is relatively simple to imple-
ment, making it the usual control choice for commercial jet-engines. The implementation is

126 Digital PID Gain Scheduling Control Formal Design

Algorithm 5: Gain schedule formal design methodology using model checking.
Input :High fidelity model, performance requirements.
Output :Formally verified control schedule.

1 Partition the operating space into M regions.
2 Generate a SISO LTI model for each of the M operating regions (3.2).
3 Use classical control methods (e.g. Ziegler-Nichols) for tuning the controller for

operating region 1.
4 Use the abstraction methodology (Chapter 3) and generate the system abstraction for

all the operating regions and the controller.
5 Use the automata framework (Section 6.3.1) to verify requirements for all M operating

regions using the available controller tunings.
6 If requirements are met for all regions, cross-check in the original model.
7 If a region fails to meet requirements, use the PI controller tuning automata (Chapter 5,

Algorithm 4) to find a suitable tuning for the operating region that fails. Use the last
entry in the available controller tunings as a starting point for Algorithm 4.

8 Update gain schedule automata framework with the newly designed controller tuning.
9 Go back to step 5, repeat.

10 Perform an extensive verification with the final controller tunings and all the operating
regions.

usually a computer-based look-up table which gives the controller parameters for a given set
of environment measurements [94]. Jet-engine control is a complex mechanism because of
the system restrictions to which the engine is subject to [135, 149]:

• Maximum fan speed.

• Maximum compressor speed.

• Maximum turbine temperature.

• Fan stall.

• Compressor stall.

• Maximum compressor discharge pressure.

• Minimum compressor discharge pressure.

• Lean burner blowout.

• Rich burner blowout.

6.4 Case Study: Thrust Control Schedule Design 127

The complexity of a jet-engine system requires a control approach which is also complex but
one that can be broken-down into less-complex problems. Gain scheduling control meets the
criteria and because it has been around for over 50 years is a well known control approach
for avionics applications [97, 138]. Nonetheless the control software is also complex due to
the fact that several functionalities reside in the same computer system creating dependencies
and interactions among software modules which do not necessarily exist in the physical
system. Therefore, for safety reasons the control software undergoes extensive verification
and validation practices, certification requirements are extremely rigorous when it comes
to safety-critical airborne software. For this reason a better approach to certification is
desirable. The proposed model checking framework in this thesis fits well within this
problem formulation and can aid in the design and verification process for such a critical
piece of software. The applicability of the proposed gain schedule formal design methodology
is presented in this section. A jet-engine thrust control gain schedule control design problem
is used for this purpose.

6.4.1 Problem Formulation and Requirements

Consider a commercial jet-engine where generated thrust is regulated using a discrete PI
controller with a gain scheduling scheme such as the one in Figure 6.1. The process dynamics
will vary depending on the operating point: factors such as altitude and temperature generate
a non-linear behaviour [149]. Figure 6.6 shows a possible behaviour of the control system
which, without loss of generality, in this case consists of five operating regions (M = 5
- Algorithm 5). The control design problem to solve is to find a controller schedule that
drives the system to meet high level requirements in every operating region. This problem
formulation provides a good framework to show the proposed methodology to systematically
design and verify a PI gain schedule controller in a formal manner.

System Dynamics

Taking the high fidelity model as a starting point the operating space is split into five operating
regions. This is an arbitrary choice in order to show the applicability of the methodology.
A continuous SISO LTI model per operating region is generated using linear identification
techniques [121]. Table 6.1 shows the open loop continuous transfer functions for each
operating region. Using these models and the high level performance requirements, the
system abstraction will be generated in order to implement it in the model checker.

128 Digital PID Gain Scheduling Control Formal Design

Fig. 6.6 Jet-engine thrust control. This is a possible behaviour of the control system consisting
of five operating regions. Each operating region has a particular dynamic. In this scenario
the same controller tuning is used for all the operating regions.

Table 6.1 Open loop continuous SISO LTI models for operating regions in the thrust control
problem.

Region Transfer Function
1 GR1(s) =

Y (s)
U(s) =

0.452e−s

s2+0.45s+0.452

2 GR2(s) =
Y (s)
U(s) =

(1.1)(0.452)e−s

s2+(1.4)(0.45)s+0.452

3 GR3(s) =
Y (s)
U(s) =

(1.25)(0.552)e−s

s2+0.55s+0.552

4 GR4(s) =
Y (s)
U(s) =

(1.5)(0.652)e−s

s2+(1.4)(0.65)s+0.652

5 GR5(s) =
Y (s)
U(s) =

(1.6)(0.752)e−s

s2+(1.2)(0.75)s+0.752

Requirements

The high level performance requirements for the control system, particularly selected to show
the applicability of the methodology, are:

6.4 Case Study: Thrust Control Schedule Design 129

1. Regions 1 and 2: Maximum Overshoot % (OS) ≤ 13%.

2. Regions 3 - 5: Maximum Overshoot % (OS) ≤ 20%.

3. Settling Time (ST) ≤ 40 seconds.

4. Rise Time (RT) ≤ 15 seconds.

5. Steady state error % (SSE) ≤ 1%.

Depending on the system under analysis and the partition of the operating space, it is possible
to have different requirements for different regions. In a complex system, like a jet-engine,
there exists many constraints from which the control requirements are derived. These
circumstances may allow to have different performance requirements for different operating
regions. In this sense and for demonstrating purposes, different overshoot requirements were
selected for different operating regions. This requirements relaxation could be a side effect of
the number of design points for the control scheme: the system spends most of its lifetime in
a certain operating point resulting in stricter requirements for that particular operating point.

Before generating the abstraction models for the over and under approximations, the
configuration parameters for the abstraction must be selected.

Abstraction Configuration

The abstraction configuration parameters are:

• Original system transfer functions are given in Table 6.1.

• Sampling time T = 0.5 seconds.

• Parametric compensation gain KU = 0.0005.

• Data-type representation format: 1 integer digit (I = 1) and 4 fractional digits (F = 4).

• Input-Output scaling gain KS = 10,000.

• Coefficients scaling gain Kab = 16,384.

• Model checker Plant state machines = 2 - under and over approximations.

• Model checker Controller state machines = 2 - under and over approximations.

• Model checker Observer state machines = 1.

130 Digital PID Gain Scheduling Control Formal Design

Using the selected sampling time the discrete models are generated. Table 6.2 shows the
discrete SISO LTI transfer functions from which the abstraction is generated. After applying
the abstraction methodology, both over and under approximations are generated for each
operating region. Table 6.3 shows the abstraction transfer functions using the ad hoc data-type
representation which uses integer-data only. The discrete PI controller initial configuration

Table 6.2 Open loop discrete SISO LTI models for operating regions in the thrust control
problem. Column 2 uses floating-point representation and column 3 the selected fixed-point
representation.

Region Transfer Function - Floating-Point Transfer Function - Fixed-Point
1 GR1(z) = 0.02342z+0.02172

z2−1.75337z+0.79851z−2 GR1 f p(z) =
0.0234z+0.0217

z2−1.7534z+0.7985z−2

2 GR2(z) = 0.02503z+0.02254
z2−1.68654z+0.72978z−2 GR2 f p(z) =

0.0250z+0.0225
z2−1.6865z+0.7298z−2

3 GR3(z) = 0.04294z+0.03917
z2−1.69386z+0.75957z−2 GR3 f p(z) =

0.0429z+0.0392
z2−1.6939z+0.7596z−2

4 GR4(z) = 0.06787z+0.058304
z2−1.55032z+0.63444z−2 GR4 f p(z) = 0.0679z+0.0583

z2−1.5503z+0.6344z−2

5 GR5(z) = 0.09626z+0.08282
z2−1.525703z+0.63762z−2 GR5 f p(z) = 0.0963z+0.0828

z2−1.5257z+0.6376z−2

Table 6.3 System abstraction: integer-only discrete SISO LTI models for operating regions in
the thrust control problem. Two models are generated per region: under approximation and
over approximation.

Region Under Approximation Over Approximation
1 GR1Under(z) =

383z+356
16384z2−28710z+13079z−2 GR1Over(z) =

387z+359
16384z2−28744z+13089z−2

2 GR2Under(z) =
410z+367

16384z2−27615z+11954z−2 GR2Over(z) =
413z+372

16384z2−27650z+11964z−2

3 GR3Under(z) =
703z+642

16384z2−27738z+12442z−2 GR3Over(z) =
708z+646

16384z2−27769z+12452z−2

4 GR4Under(z) =
1111z+954

16384z2−25389z+10392z−2 GR4Over(z) =
1116z+958

16384z2−25416z+10401z−2

5 GR5Under(z) =
1576z+1357

16384z2−24981z+110445z−2 GR5Over(z) =
1578z+1362

16384z2−25013z+10451z−2

is given by:

• Controller discrete transfer function is given by Equation 5.4

• Initial proportional gain KP = 0.1862.

• Initial integral gain KI = 0.1496.

Using the selected data type representation and the abstraction configuration parameters, the
PI controller transfer function is given by:

GPPI(z) =
4276z−3051

16384z−16384
(6.2)

6.4 Case Study: Thrust Control Schedule Design 131

The problem which was solved in Chapter 5 is the one regarding the first operating region
in the gain schedule scenario in this section. It is then expected that using the obtained PI
tuning in Chapter 5 for region 1 meets requirements. From this baseline, Algorithm 5 is
applied. The requirements verification is thus performed using a push-button approach by
querying the model checker using either a reachability or a liveness property (Table 4.1). The
reachability property is used to generate a witness trace in case requirements are met and the
liveness property to generate a counter-example trace in case requirements are not met. The
liveness property is also used to conduct the exhaustive verification at the end of Algorithm 5
to increase coverage.

E <> Observer.End and

Plant_OA.OS[1]≤ 13% and Plant_OA.ST [1]≤ 40 (seconds) and

Plant_OA.RT [1]≤ 15 (seconds) and Plant_OA.SSE[1]≤ 1% and

Plant_UA.OS[1]≤ 13% and Plant_UA.ST [1]≤ 40 (seconds) and

Plant_UA.RT [1]≤ 15 (seconds) and Plant_UA.SSE[1]≤ 1%

. . .

Plant_OA.OS[5]≤ 20% and Plant_OA.ST [5]≤ 40 (seconds) and

Plant_OA.RT [5]≤ 15 (seconds) and Plant_OA.SSE[5]≤ 1% and

Plant_UA.OS[5]≤ 20% and Plant_UA.ST [5]≤ 40 (seconds) and

Plant_UA.RT [5]≤ 15 (seconds) and Plant_UA.SSE[5]≤ 1% (6.3)

Equation 6.3 shows an extract of the query used in the schedule design problem. Require-
ments must be verified for all 5 operating regions in both the under approximation and the
over approximation. Requirements are indexed 1-5 referring to each operating region. The
actual query contains the verification for all 5 operating regions (index 1 through 5).

6.4.2 Results and Discussion

Algorithm 5 was applied to solve the problem and generate a schedule that drives the system
to meet requirements in every operating region. The starting point is the result of tuning a
PI controller for region 1 in Chapter 5. As expected region 1 already meets requirements.
The first iteration of the algorithm is to verify the rest of the operating regions with the initial
controller configuration.

132 Digital PID Gain Scheduling Control Formal Design

Iteration 1

After using the model checker, it is found that the initial configuration fails to meet re-
quirements in regions 2 and 4. This is confirmed with the original model. Table 6.4 shows
the performance indicators for both the abstraction and the original model using the initial
controller tuning. As expected region 1 meets requirements in both the abstraction and the
original model since the initial controller tuning was particularly generated for this region.

Table 6.4 Performance indicators for the system abstraction and the original model using the
initial tuning only. The requirements that failed are highlighted in bold.

Region
Overshoot

(%)
Settling

Time (sec)
Rise Time

(sec)
Steady State
Error (%)

Under Approximation
1 9.49 32 5.5 0.13
2 14.74 20 6 0.15
3 17.35 19 4 0.15
4 29.17 12 3.5 0.02
5 17.46 10.5 3.5 0.02

Over Approximation
1 12.96 33.5 5.5 0.08
2 18.13 28 6 0.1
3 18.46 19.5 4.5 0.01
4 28.82 12.5 3.5 0.02
5 18.87 10.5 3.5 0.02

Original
1 11.29 33 5.5 0.05
2 16.456 27 6 0.1
3 17.771 19.5 4.5 0.1
4 29.153 16.5 3.5 0.1
5 18.399 10.5 3.5 0.1

Figure 6.7 shows the abstraction behaviour using the initial controller tuning. Figure
6.8 shows the original system behaviour using the initial controller tuning. Because both
regions 2 and 4 failed to meet requirements, a new iteration is required. Therefore region 2 is
selected to apply Algorithm 4 and find a new tuning that meets requirements. The new set of
gains are KP = 0.2778 and KI = 0.1496. Only the proportional gain was modified from its
original value. Table 6.5 shows the performance indicators for operating region 2 with the
new set of gains for both the abstraction and the original model. With this new tuning the
verification can take place again and a new iteration within Algorithm 5 is performed.

6.4 Case Study: Thrust Control Schedule Design 133

Fig. 6.7 Closed loop control system behaviour for the abstraction. Only one control tuning is
available and used for the five operating regions. The performance indicators are listed in
Table 6.4. The graph shows both the over and under approximations with their respective
control signals.

Table 6.5 Performance indicators for the system abstraction and the original model for
operating region 2 using the set of gains obtained with Algorithm 4.

Region
Overshoot

(%)
Settling

Time (sec)
Rise Time

(sec)
Steady State
Error (%)

Under Approximation
2 9.86 26.5 6 0.04

Over Approximation
2 13.0 27.5 6 0.09

Original
2 11.36 27 5 0.05

Iteration 2

Since the new set of gains correspond to region 2, the model checker must select this as the
default choice for this region. At this point only region 4 does not meet requirements. The

134 Digital PID Gain Scheduling Control Formal Design

Fig. 6.8 Closed loop control system behaviour for the original system. Similar to Figure 6.7
only one control tuning is available and used for the five operating regions. The performance
indicators are listed in Table 6.4. The graph shows generated thrust % and the control signal.

new set of gains are added to the search to see if a solution that includes region 4 is found.
Table 6.6 shows the performance indicators for both the abstraction and the original model
after performing a new search. The model checker fails to find a suitable combination which
means that tuning 2 does not drive region 4 into meeting requirements.

Figure 6.9 shows the abstraction behaviour using the generated schedule consisting of
two controller tunings. Figure 6.10 shows the original system behaviour using the generated
schedule. Region 4 is still not compliant with requirements so Algorithm 4 is applied in
order to find a new controller tuning. The new set of gains are KP = 0.1618 and KI = 0.1191.
In this case both gains needed modification to drive the system to meet requirements. Table
6.7 shows the performance indicators for operating region 4 with the new set of gains for
both the abstraction and the original model.

6.4 Case Study: Thrust Control Schedule Design 135

Table 6.6 Performance indicators for the system abstraction and the original model after
1 iteration. Two controller tunings are available for use. The requirements that failed are
highlighted in bold.

Region Tuning
Overshoot

(%)
Settling

Time (sec)
Rise Time

(sec)
Steady State
Error (%)

Under Approximation
1 1 9.49 32 5.5 0.13
2 2 9.86 26.5 6 0.04
3 1 17.35 19 4 0.15
4 1 29.17 12 3.5 0.02
5 1 17.46 10.5 3.5 0.02

Over Approximation
1 1 12.96 33.5 5.5 0.08
2 2 13.0 27.5 6 0.09
3 1 18.46 19.5 4.5 0.01
4 1 28.82 12.5 3.5 0.02
5 1 18.87 10.5 3.5 0.02

Original
1 1 11.29 33 5.5 0.05
2 2 11.36 27 5 0.05
3 1 17.771 19.5 4.5 0.1
4 1 29.153 16.5 3.5 0.1
5 1 18.399 10.5 3.5 0.1

Table 6.7 Performance indicators for the system abstraction and the original model for
operating region 4 using the set of gains obtained with Algorithm 4.

Region
Overshoot

(%)
Settling

Time (sec)
Rise Time

(sec)
Steady State
Error (%)

Under Approximation
4 17.95 11.5 4 0.03

Over Approximation
4 17.55 12 4 0.08

Original
4 18.197 12 4 0.08

Iteration 3 - Final Schedule

The new controller tuning is added to the available options. Controllers have been designed
for regions 2 and 4 and regions 1, 3, and 5 met requirements with the initial tuning. The

136 Digital PID Gain Scheduling Control Formal Design

Fig. 6.9 Closed loop control system behaviour for the abstraction. Two control tunings are
available. Tuning 1 is used for regions 1, 3, 4, and 5. Tuning 2 is used for region 2. The
performance indicators are listed in Table 6.6. The graph shows both the over and under
approximations with their respective control signals.

model checker must therefore provide this answer. After running the model checker this is
confirmed and the final schedule is generated. This is confirmed using the original model.
Table 6.8 shows the final schedule indicating which controller must be used in which region
in order to meet requirements. Performance indicators for all the regions are shown. Figure
6.11 shows the abstraction behaviour using the final schedule consisting of three controller
tunings. Figure 6.12 shows the original system behaviour using the generated schedule.
A comparison is performed between the initial tuning and the final schedule. Figure 6.13
shows the behaviour of the original system using both the initial tuning (tuning 1) and the
final schedule. As expected, because controller tunings were designed for those particular
regions, regions 2 and 4 show a different behaviour whilst regions 1, 3, and 5 show the same
behaviour.

6.4 Case Study: Thrust Control Schedule Design 137

Fig. 6.10 Closed loop control system behaviour for the original system. Similar to Figure
6.9 two control tunings are available. Tuning 1 is used for regions 1, 3, 4, and 5. Tuning 2
is used for region 2. The performance indicators are listed in Table 6.6. The graph shows
generated thrust % and the control signal.

Coverage Verification

The final step in Algorithm 5 is to perform a coverage verification using the final schedule.
This step could be considered a sanity check: verify that if using any of the available tunings
could drive the system out of requirements. Even if the tuning was not designed for a
particular operating region it is worth performing this verification. The reason being that
coverage is increased from a software point of view: more paths are executed. Also, the
control software resides in a computer system that is not just dedicated to control purposes.
The final product is a complex software system and it could be the case that for some external
reasons to the control system itself, a different tuning may be chosen for a certain operating
region even it if is not supposed to be used in that case.

138 Digital PID Gain Scheduling Control Formal Design

Table 6.8 Performance indicators for the system abstraction and the original model after 2
iterations: Final control schedule. Three controller tunings are available for use.

Region Tuning
Overshoot

(%)
Settling

Time (sec)
Rise Time

(sec)
Steady State
Error (%)

Under Approximation
1 1 9.49 32 5.5 0.13
2 2 9.86 26.5 6 0.04
3 1 17.35 19 4 0.15
4 3 17.95 11.5 4 0.03
5 1 17.46 10.5 3.5 0.02

Over Approximation
1 1 12.96 33.5 5.5 0.08
2 2 13.0 27.5 6 0.09
3 1 18.46 19.5 4.5 0.01
4 3 17.55 12 4 0.08
5 1 18.87 10.5 3.5 0.02

Original
1 1 11.29 33 5.5 0.05
2 2 11.36 27 5 0.05
3 1 17.771 19.5 4.5 0.1
4 3 18.197 12 4 0.08
5 1 18.399 10.5 3.5 0.1

The liveness query is used allowing the model checker to choose any control tuning for
any operating region. If the verification is successful it means that all the controller tunings
are capable of driving the system into meeting requirements. This is not true for this case
because it is already known that tuning 1 is not suitable for regions 2 and 4, so it is expected
that this verification will fail. However, as a result of this failure a counter-example trace is
returned showing why this is not the case. Table 6.9 shows the results from performing this
verification.

The counter-example trace shows that using tuning 2 in operating region 5 makes the
system fail to meet requirements in that region. Also it shows that using tuning 3 in regions
1, 2, and 3 also drive the system to meet requirements. Figure 6.14 shows the abstraction
behaviour using the counter-example trace tunings. Figure 6.15 shows the original system
behaviour using the counter-example trace tunings.

6.4 Case Study: Thrust Control Schedule Design 139

Fig. 6.11 Closed loop control system behaviour for the abstraction. Final schedule: Three
control tunings are available. Tuning 1 is used for regions 1, 3, 4, and 5. Tuning 2 is used
for region 2. Tuning 3 is used for region 4. The performance indicators are listed in Table
6.8. The graph shows both the over and under approximations with their respective control
signals.

Discussion

The proposed novel methodology in this thesis delivers a control schedule that has been for-
mally designed and verified with the aid of model checking, providing a working framework
for the design and verification of safety-critical control software. High level performance
requirements are taken as a formal input to the framework in order to design the control
schedule. The timed-automata design is strongly driven by the high level requirements that
the control problem requires. The verification of requirements is performed by the means
of simulation using a well-known type of control models: discrete SISO LTI models. The
abstraction methodology allows to use the same models as the original system in the model

140 Digital PID Gain Scheduling Control Formal Design

Fig. 6.12 Closed loop control system behaviour for the original system. Final schedule:
similar to Figure 6.11 three control tunings are available. Tuning 1 is used for regions 1, 3,
4, and 5. Tuning 2 is used for region 2. Tuning 3 is used for region 4. The performance
indicators are listed in Table 6.8. The graph shows generated thrust % and the control signal.

checker, if well a data-type restriction exists there is no need for changing operating space
coordinates because the dynamics of the control system are recovered in the same domain.

The proposed abstraction methodology used for both the schedule design and the PI
tuning problems provides good boundaries for the original system, allowing to reason about
the original system with the abstraction in a sound way. Results are cross-checked with
the original system confirming that the methodology is accurate in representing the original
system behaviour. The behaviour of the original system is bounded in the abstraction by
both the over-approximation and the under-approximation, which makes possible to infer
properties about the original system using the model checker.

The model checking approach enables the use of formal methods to solve a control
systems problem formulation which falls well within the current software development cycle
for safety-critical embedded applications such as jet-engine thrust control. Coverage can

6.4 Case Study: Thrust Control Schedule Design 141

Fig. 6.13 Initial controller tuning versus final schedule. Final schedule: three control tunings
are available. Tuning 1 is used for regions 1, 3, 4, and 5. Tuning 2 is used for region 2.
Tuning 3 is used for region 4. The performance indicators for the final schedule are listed
in Table 6.8. The performance indicators for the initial configuration are listed in Table 6.4.
The graph shows generated thrust % and the control signal.

be benefited by the inclusion of this type of approach in the software development cycle by
providing an increase by the means of exhaustive testing, also providing feedback when an
scenario that drives the system out of requirements is found.

The proposed model checking framework uses a push-button type of approach for design
and verification purposes in both the PI tuning and the gain schedule problem formulations,
which in turn can help the software engineer to design a control schedule even if he is not
familiar in control systems but knows model checking and formal methods. In a similar
manner, the control systems engineer can benefit by the use of the novel methodology from a
software design and verification point of view. Designing and verifying the compliance of a
controller versus performance requirements and safety requirements nowadays involves the

142 Digital PID Gain Scheduling Control Formal Design

Table 6.9 Performance indicators for the system abstraction and the original model performing
the coverage verification. All three controller tunings from the final schedule are available
for use. The requirements that failed are highlighted in bold.

Region Tuning
Overshoot

(%)
Settling

Time (sec)
Rise Time

(sec)
Steady State
Error (%)

Under Approximation
1 3 0 28 8 0.55
2 3 3.15 13 8 0.6
3 3 3.4 18 5 0.5
4 3 17.95 11.5 4 0.03
5 2 19.3 14 3 0.02

Over Approximation
1 3 0.35 27.5 7.5 0.3
2 3 6.05 20 7.5 0.125
3 3 3.9 18.5 5 0.2
4 3 17.55 12 4 0.08
5 2 20.55 14 3 0.05

Original
1 3 0 27 7.5 1.9
2 3 4.86 19 7.5 1.8
3 3 3.84 18.5 5 1.8
4 3 18.197 12 4 0.08
5 2 20.15 14 3 1.8

use and understanding of several software tools and practices, it is no longer a pure control
design matter but one of software engineering as well.

The proposed novel methodology, by enabling the use of model checking in the design
and verification processes of a well-known control system scheme, is a step towards closing
the gap between safety-critical control software for airborne applications and the use of
formal methods.

6.4 Case Study: Thrust Control Schedule Design 143

Fig. 6.14 Closed loop control system behaviour for the abstraction. Counter-example trace
tunings were used in this case: Tuning 3 for regions 1, 2, 3, and 4. Tuning 2 for region 5.
The performance indicators are listed in Table 6.9. The graph shows both the over and under
approximations with their respective control signals.

144 Digital PID Gain Scheduling Control Formal Design

Fig. 6.15 Closed loop control system behaviour for the abstraction. Counter-example trace
tunings were used in this case: Tuning 3 for regions 1, 2, 3, and 4. Tuning 2 for region 5.
The performance indicators are listed in Table 6.9. The graph shows generated thrust % and
the control signal.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The current development and verification processes of safety-critical control software use an
a posteriori approach: the product is developed and tested iteratively until requirements are
met. Exhaustive testing is required to ensure the safety of the product, which in turn takes a
lot of effort and is a time consuming activity. The need for better, faster, and more reliable
ways to verify control systems is impending: a new path to certification is needed. Formal
methods and model checking can provide a new approach to development and verification,
potentially benefiting the certification effort: an a priori approach. Potential applicabilities of
formal methods for safety-critical systems have been shown in the past, but they usually deal
with small scale problems, safety checks for the software itself or Boolean type of control.
The applicability and feasibility of formal methods for gain scheduled control has yet to be
addressed. In order to fully exploit the benefits of model checking, easy to follow practices
have to be developed so that they can be easily integrated into the design and verification
cycles.

The work presented in this thesis addressed the formal design and verification of a discrete
PID gain scheduled control scheme, using an aerospace related example as a candidate
application (e.g. jet-engine thrust control). A novel model checking design and verification
framework was proposed to address the safety-critical control software problem. By using
an a priori model checking framework, formality is introduced into the process for both
requirements definition and system modelling. The methodology uses a known structure to
represent the system dynamics: discrete SISO LTI. This being a common modelling structure
makes the methodology easier to embrace by control engineers. Formal and easy to follow
practices will help to develop safer and more reliable control systems. The proposed novel

146 Conclusions and Future Work

methodology is a step towards closing the gap between safety-critical control software and
the use of formal methods.

A dynamic system abstraction methodology was presented in Chapter 3. The purpose
of the abstraction methodology is to recover the dynamic behaviour of a control system for
its future implementation in a model checking environment. By omitting the necessity of
floating-point data the abstraction can be implemented in a model checking environment
using 16-bit signed integers only and in turn the state-space explosion problem is partially
addressed by limiting the possible number of values that the system’s inputs and outputs can
take. The methodology compensates for modelling and rounding errors so that the original
model behaviour can be properly captured. The final abstraction consists of a system over-
approximation and a system under-approximation which provide bounds for the behaviour
of the original model. The true behaviour is guaranteed to be bounded by the over and under
approximations so that when using the abstraction in a model checking environment, the
results can be used to infer properties about the original system.

The presented abstraction methodology allows to portray every element in a dynamic
system independently; allowing to decouple the system components thus enabling the
capability of analysing the controller and the plant independently. The closed loop behaviour
can be then computed within the model checker so that the controller design can be addressed
in a formal manner instead of redesigning the controller elsewhere. Because the control
signal is independently generated, it can be analysed and manipulated if needed, which is
impossible to do when the system is abstracted directly in its closed-loop form.

The translation of typical control system high-level performance requirements (e.g.
maximum percentage overshoot, settling time, rise time, and steady state error) into a formal
framework was demonstrated in the verification methodology in Chapter 4. Timed-automata
were designed to target these type of requirements, enabling the formal verification using a
temporal logic language (e.g. CTL). The automata in conjunction with the CTL properties
used for verification enable the translation of high-level control performance requirements
into a formal language. In this manner, the verification can be formulated as a reachability
problem in model checking. A design for verifiability approach was used to construct the
automata.

A formal PID controller tuning design and verification methodology was presented in
Chapter 5. Using the abstraction methodology and the requirements verification methodol-
ogy, the tuning problem was addressed as a reachability problem in model checking. To
circumvent a possible state-space problem (e.g. the possible values for the controller gains
can make the search space too big to handle) configurable upper and lower bounds for the
gains are used. In this manner a systematic approach is used to find a possible set of gains

7.2 Future Work 147

which solve the control problem. However, it is possible that the problem does not have a
solution which the model checker will point out. The result after applying the methodology
is a controller tuning that meets requirements and has been formally designed and verified,
or that a controller is not achievable.

A formal gain schedule control design methodology was presented in Chapter 6.
By splitting the operating control space into several operating regions, the abstraction

methodology allows to generate an abstraction per region.
Starting with an initial controller configuration (one single set of controller gains) the

schedule is incrementally constructed until requirements are met for all regions. The schedule
problem is addressed as a reachability problem in model checking. If requirements cannot
be met for a given region the methodology points out which requirement fails. The result
after applying the methodology is a control schedule which drives the system into meeting
requirements and has been formally designed and verified. By addressing the design and
verification problem in a formal environment such as a model checker, the intervention by
the designer is greatly reduced because a push-button approach is taken. The controller
tuning and the schedule design rely on this approach, where the designer can iterate over
the algorithms making minimum adjustments when performing either the controller tuning
or the schedule generation. This in turn reduces the required amount of expertise in formal
methods and model checking from the designer.

The work in this thesis was presented and demonstrated using a safety-critical aerospace
application: a jet-engine thrust control system. The design and verification of such a system
currently relies mainly on extensive testing activities. In this respect and by the means of
the proposed formal approach, the design and verification processes can be benefited by the
inclusion of the methodology into the product design cycle. Potential benefits include the
increase in testing coverage, earlier error detection, and an increase in safety because the
controller is designed with a correct-by-construction approach.

7.2 Future Work

The scalability of the methodology needs to be evaluated. It was demonstrated that the
methodology allows to address a gain schedule design problem in a formal manner, but
the main limitation of model checking is still present: state-space explosion and memory
capabilities. If the system consists of several operating regions (it was shown how to
address the problem with 5 different operating regions) memory will inevitably become
the main limitation. A divide and conquer approach may provide a good approach and
instead of addressing the full operating space with a single set of automata the problem can

148 Conclusions and Future Work

be decomposed into several smaller problems, aggregating the obtained results to provide
a full solution to the bigger problem. The methodology presented a possible abstraction
methodology, different levels of abstraction may be used as part of the divide and conquer
approach in order to tackle the memory problem.

A trade-off analysis between the actual benefits from using the methodology in a real
working development cycle, and the amount of effort required to implement it as part of
the design cycle should be conducted. The acceptance and usability of the methodology
requires training in the tools and methods, as well as a change in paradigm about the way
design and verification is performed. The presented methodology will need to incorporate
certain level of automation in order to generate and incorporate the system abstraction into
the model checker. This will be required to make the transition into the model checking
approach easier for the users, otherwise it will be harder to incorporate the methodology into
a working environment.

The gain scheduling design and verification problem was addressed in this thesis con-
sidering the reference tracking case only. Disturbance rejection mode is yet to be analysed,
as well as both modes working together. Also, optimization criteria can be included when
using the model checker to generate a solution to either the controller tuning problem or
the schedule design problem. As is, the model checker non-deterministically searches for a
solution to the problem with the one objective of meeting requirements, if more than one
solution exists there is no current criteria to explore them.

The presented methodology allows to consider the controller as a separate entity from
the plant in the model checking environment. So far, the type of performance requirements
that were considered for design and verification purposes are related to the plant. Constraints
to the control signal and the monitoring of its behaviour can be added into the problem
formulation as well.

The problem under analysis in this thesis was considered in an isolated manner. In reality,
the control software resides in the same computer which handles several more functionalities
(Figure 1.1) and has specific memory and timing constraints. By including more of these
features, not only control performance requirements can be analysed, but fault modes, and
the interaction of other control-related components and its overall effect in the system under
analysis can be included. By including fault modes in the problem formulation, external
factor boundaries and the type of damage these factors can do to the system can be analysed.

So far the problem was formulated so when the process switches operating regions a set
of gains is selected and it does not switch whilst operating in that particular region. This
assumption was made under the consideration that this is how the system behaves, but in
reality the case may be different and the controller could switch gains or control loops due to

7.2 Future Work 149

various circumstances. The effects of this possibility in the performance of the system need
to be analysed. This is also related to the fault modes analysis

Another possible future line of work is to address the control design and verification
problem using a different model-checking environment. Simulink Design Verifier (SDV)
seems like a good option to continue exploring the use of formal methods in the design
and verification of safety-critical dynamic control systems. Even if not all the Simulink
functionalities are available to be analysed in a formal manner, the benefits of Simulink to
deal with dynamic systems seem appealing. So far, most case studies regarding SDV and
safety-critical applications deal with algorithmic verifications, run-time errors, coding errors,
and boolean-type control laws, the applicability for aiding in the design and verification of a
gain schedule control scheme is yet to be addressed with SDV.

References

[1] Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L., David, C., Kesseli, P., and Kroening,
D. (2017). Sound and Automated Synthesis of Digital Stabilizing Controllers for Con-
tinuous Plants. In Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control, HSCC ’17, pages 197–206, New York, NY, USA. ACM.

[2] AlAttili, I., Houben, F., Igna, G., Michels, S., Zhu, F., and Vaandrager, F. (2009).
Adaptive scheduling of data paths using UPPAAL-TiGa. Proceedings of First Workshop
on Quantitative Formal Methods: Theory and Applications, QFM 2009.

[3] Antsaklis, P. J. (2000). A brief introduction to the theory and applications of hybrid
systems. In Proc IEEE, Special Issue on Hybrid Systems: Theory and Applications,
volume 88. CiteSeer.

[4] Aréchiga, N. and Krogh, B. (2014). Using verified control envelopes for safe controller
design. In American Control Conference (ACC), 2014, pages 2918–2923. IEEE.

[5] Aréchiga, N., Loos, S. M., Platzer, A., and Krogh, B. H. (2012). Using theorem provers
to guarantee closed-loop system properties. In American Control Conference (ACC), 2012,
pages 3573–3580. IEEE.

[6] Åström, K. J. and Wittenmark, B. (2013). Computer-controlled systems: theory and
design. Courier Corporation.

[7] Baier, C., Katoen, J.-P., and Larsen, K. G. (2008). Principles of model checking. MIT
Press.

[8] Ball, T., Cook, B., Levin, V., and Rajamani, S. K. (2004). SLAM and Static Driver
Verifier: Technology transfer of formal methods inside Microsoft. In International
Conference on Integrated Formal Methods, pages 1–20. Springer.

[9] Balluchi, A., Benvenuti, L., Di Benedetto, M. D., Pinello, C., and Sangiovanni-
Vincentelli, A. L. (2000). Automotive engine control and hybrid systems: Challenges and
opportunities. Proceedings of the IEEE, 88(7):888–912.

[10] Behbahani, A., Adibhatla, S., and Rauche, C. (2009). Integrated model-based controls
and PHM for improving turbine engine performance, reliability, and cost. In 45th AIAA
Joint Propulsion Conference.

[11] Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K. G., and Lime, D. (2006).
UPPAAL-TiGa: Timed games for everyone. In Nordic Workshop on Programming Theory
(NWPT’06).

152 References

[12] Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K. G., and Lime, D. (2007).
UPPAAL-TiGa: Time for playing games! In CAV, volume 4590, pages 121–125. Springer.

[13] Behrmann, G., David, A., and Larsen, K. (2004). A tutorial on UPPAAL. Formal
methods for the design of real-time systems, pages 33–35.

[14] Behrmann, G., Larsen, K. G., and Rasmussen, J. I. (2005). Optimal scheduling using
priced timed automata. ACM SIGMETRICS Performance Evaluation Review, 32(4):34–40.

[15] Bennett, S. (2002). Control and the digital computer: The early years. IFAC Proceedings
Volumes, 35(1):237–242.

[16] Bennion, M. and Habli, I. (2014). A candid industrial evaluation of formal software
verification using model checking. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 175–184. ACM.

[17] Bertoli, P., Cimatti, A., Slaney, J., and Thiébaux, S. (2002). Solving power supply
restoration problems with planning via symbolic model checking. In Proceedings of the
15th European Conference on Artificial Intelligence, pages 576–580. IOS Press.

[18] Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., and Engstrom, E. (2015).
Certification considerations for adaptive systems. In Unmanned Aircraft Systems (ICUAS),
2015 International Conference on, pages 270–279. IEEE.

[19] Black, H. S. (1934). Stabilized feed-back amplifiers. Electrical Engineering, 53(1):114–
120.

[20] Bode, H. W. (1945). Network analysis and feedback amplifier design. Bell Telephone
Laboratory series. Van Nostrand, New York, NY.

[21] Boehm, B. W. and DeMarco, T. (1997). Software risk management. IEEE software,
14(3):17.

[22] Bouyer, P., Cassez, F., Fleury, E., and Larsen, K. G. (2004). Optimal strategies in priced
timed game automata. In FSTTCS, volume 4, pages 148–160. Springer.

[23] Bowen, J. and Stavridou, V. (1993). Safety-critical systems, formal methods and
standards. Software Engineering Journal, 8(4):189–209.

[24] Bozzano, M., Cimatti, A., Gario, M., and Tonetta, S. (2013). A Formal Framework
for the Specification, Verification and Synthesis of Diagnosers. AAAI (Late-Breaking
Developments), 13:17.

[25] Branicky, M. S., Borkar, V. S., and Mitter, S. K. (1998). A unified framework for hybrid
control: Model and optimal control theory. IEEE transactions on automatic control,
43(1):31–45.

[26] Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg, A., Havelund, K., Lowry, M.,
Pasareanu, C., Venet, A., Visser, W., and Washington, R. (2004). Experimental evaluation
of verification and validation tools on martian rover software. Formal Methods in System
Design, 25(2):167–198.

References 153

[27] Broy, M. (2006). Challenges in automotive software engineering. In Proceedings of the
28th international conference on Software engineering, pages 33–42. ACM.

[28] Bulychev, P., David, A., Larsen, K. G., Mikučionis, M., Poulsen, D. B., Legay, A., and
Wang, Z. (2012). UPPAAL-SMC: Statistical model checking for priced timed automata.
Proceedings 10th Workshop on Quantitative Aspects of Programming Languages and
Systems, QAPL.

[29] Butler, R. W., Caldwell, J. L., Carreno, V. A., Holloway, C. M., Miner, P. S., and
Di Vito, B. L. (1995). NASA Langley’s research and technology-transfer program in
formal methods. In Computer Assurance, 1995. COMPASS’95. Systems Integrity, Software
Safety and Process Security. Proceedings of the Tenth Annual Conference on, pages 135–
149. IEEE.

[30] Cassandras, C. G. and Lafortune, S. (2009). Introduction to discrete event systems.
Springer Science & Business Media.

[31] Cassez, F., David, A., Fleury, E., Larsen, K. G., and Lime, D. (2005). Efficient on-the-
fly algorithms for the analysis of timed games. In CONCUR, volume 5, pages 66–80.
Springer.

[32] Cassez, F., Jessen, J. J., Larsen, K. G., Raskin, J.-F., and Reynier, P.-A. (2009). Au-
tomatic synthesis of robust and optimal controllers-an industrial case study. In HSCC,
volume 9, pages 90–104. Springer.

[33] Chow, T. S. (1978). Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, 4(3):178–187.

[34] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M. (1999). NuSMV: A new
symbolic model verifier. In International conference on computer aided verification,
pages 495–499. Springer.

[35] Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model checking. MIT press.

[36] Cofer, D. and Miller, S. P. (2014). Formal methods case studies for DO-333. Technical
Report NASA/CR-2014-218244, NF1676L-18435, NASA Langley Research Center;
Hampton, VA, United States.

[37] Craigen, D., Gerhart, S., and Ralston, T. (1995). Formal methods reality check:
Industrial usage. IEEE Transactions on Software Engineering, 21(2):90–98.

[38] Culley, D. E., Thomas, R., and Saus, J. (2007). Concepts for Distributed Engine
Control. In Proceedings of the 43th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
& Exhibit, pages 8–11.

[39] Cutts, S. (2002). A collaborative approach to the More Electric Aircraft. In Power
Electronics, Machines and Drives, 2002. International Conference on (Conf. Publ. No.
487), pages 223–228. IET.

[40] David, A., Grunnet, J. D., Jessen, J. J., Larsen, K. G., and Rasmussen, J. I. (2010).
Application of model-checking technology to controller synthesis. In International
Symposium on Formal Methods for Components and Objects, pages 336–351. Springer.

154 References

[41] David, A., Larsen, K. G., Legay, A., Mikučionis, M., and Poulsen, D. B. (2015).
UPPAAL SMC tutorial. International Journal on Software Tools for Technology Transfer,
17(4):397–415.

[42] Deligiannis, V. and Manesis, S. (2007). A survey on automata-based methods for
modelling and simulation of industrial systems. In Emerging Technologies and Factory
Automation, 2007. ETFA. IEEE Conference on, pages 398–405. IEEE.

[43] Dodd, I. and Habli, I. (2012). Safety certification of airborne software: An empirical
study. Reliability Engineering & System Safety, 98(1):7–23.

[44] Dorf, R. C. and Bishop, R. H. (2011). Modern control systems. Pearson.

[45] Dowson, M. (1997). The Ariane 5 software failure. ACM SIGSOFT Software Engineer-
ing Notes, 22(2):84.

[46] Drusinsky, D., Michael, J. B., and Shing, M.-T. (2008). A framework for computer-
aided validation. Innovations in Systems and Software Engineering, 4(2):161–168.

[47] Dwyer, M. B., Hatcliff, J., et al. (2003). Bogor: an extensible and highly-modular
software model checking framework. ACM SIGSOFT Software Engineering Notes,
28(5):267–276.

[48] Enoiu, E. P., Sundmark, D., and Pettersson, P. (2013). Model-based test suite generation
for function block diagrams using the UPPAAL model checker. In Software Testing, Veri-
fication and Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference
on, pages 158–167. IEEE.

[49] Evans, W. R. (1950). Control system synthesis by root locus method. Transactions of
the American Institute of Electrical Engineers, 69(1):66–69.

[50] FAA (2005). Airworthness standards. US Department of Transportation, 25.

[51] FAA (2012). DO-178C. Software considerations in airborne systems and equipment
certification.

[52] Faleiro, L. (2002). Power optimized aircraft. Interavia Business and Technology,
57(662):22–22.

[53] Fan, J., Jiao, J., Wu, W., and Zhao, T. (2015). A model-checking oriented modeling
method for safety critical system. In Reliability Systems Engineering (ICRSE), 2015 First
International Conference on, pages 1–6. IEEE.

[54] Fantechi, A. and Gnesi, S. (2011). On the adoption of model checking in safety-related
software industry. In International Conference on Computer Safety, Reliability, and
Security, pages 383–396. Springer.

[55] Fotouhi, A., Auger, D. J., Propp, K., and Longo, S. (2017). Accuracy versus sim-
plicity in online battery model identification. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, PP(99):1–12.

References 155

[56] Fotouhi, A., Shateri, N., Auger, D. J., Longo, S., Propp, K., Purkayastha, R., and Wild,
M. (2016). A MATLAB graphical user interface for battery design and simulation; from
cell test data to real-world automotive simulation. In 2016 13th International Conference
on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit
Design (SMACD), pages 1–6.

[57] Foukarakis, M., Leonidis, A., Antona, M., and Stephanidis, C. (2014). Combining
Finite State Machine and Decision-Making Tools for Adaptable Robot Behavior. In
International Conference on Universal Access in Human-Computer Interaction, pages
625–635. Springer.

[58] Franchetti, F., Sandryhaila, A., and Johnson, J. R. (2014). High assurance SPIRAL. In
SPIE Defense+ Security. International Society for Optics and Photonics. SPIE.

[59] Franklin, G. F., Powell, J. D., Emami-Naeini, A., and Powell, J. D. (1994). Feedback
control of dynamic systems, volume 3. Addison-Wesley Reading, MA.

[60] Garlapati, S. and Shukla, S. K. (2012). Formal verification of hierarchically distributed
agent based protection scheme in smart grid. In International SPIN Workshop on Model
Checking of Software, pages 137–154. Springer.

[61] Gerhart, S., Craigen, D., and Ralston, T. (1994). Experience with formal methods in
critical systems. IEEE Software, 11(1):21–28.

[62] Giannakopoulou, D. (2010). "Fly Me to the Moon": Verification of Aerospace Systems.
In Software Engineering and Formal Methods (SEFM), 2010 8th IEEE International
Conference on, pages 5–11. IEEE.

[63] Gibson, C., Bonnici, M., and Castet, J.-F. (2015). Model-based spacecraft fault man-
agement design & formal validation. In Aerospace Conference, 2015 IEEE, pages 1–12.
IEEE.

[64] Gigante, G. and Pascarella, D. (2012). Formal Methods in Avionic Software Certifica-
tion: The DO-178C Perspective. Leveraging Applications of Formal Methods, Verification
and Validation. Applications and Case Studies, pages 205–215.

[65] Girard, A., Pola, G., and Tabuada, P. (2010). Approximately bisimilar symbolic models
for incrementally stable switched systems. IEEE Transactions on Automatic Control,
55(1):116–126.

[66] Gordon, R. (1998). A calculated look at fixed-point arithmetic. Embedded Systems
Programming, 11(4):72–79.

[67] Grunnet, J. D., Bak, T., Bendtsen, J. D., and Ankersen, F. (2009). PAHSCTRL - A
control synthesis toolbox for piecewise-affine hybrid systems. In Control Conference
(ECC), 2009 European, pages 1161–1166. IEEE.

[68] Havelund, K. and Pressburger, T. (2000). Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer (STTT),
2(4):366–381.

156 References

[69] Havelund, K. and Shankar, N. (1996). Experiments in theorem proving and model
checking for protocol verification. In FME’96: Industrial Benefit and Advances in Formal
Methods, pages 662–681. Springer.

[70] Hawkins, R., Habli, I., Kelly, T., and McDermid, J. (2013). Assurance cases and
prescriptive software safety certification: A comparative study. Safety science, 59:55–71.

[71] Hinchey, M. G. and Bowen, J. P. (2012). Industrial-strength formal methods in practice.
Springer Science & Business Media.

[72] Hinton, A., Kwiatkowska, M., Norman, G., and Parker, D. (2006). Prism: A tool for
automatic verification of probabilistic systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 441–444. Springer.

[73] Hirst, M., McLoughlin, A., Norman, P., and Galloway, S. (2011). Demonstrating the
more electric engine: a step towards the power optimised aircraft. IET Electric Power
Applications, 5(1):3–13.

[74] Holaza, J., Takács, B., Kvasnica, M., and Di Cairano, S. (2015). Safety verification of
implicitly defined MPC feedback laws. In 2015 European Control Conference (ECC),
pages 2547–2552. IEEE.

[75] Holloway, C. M. (1997). Why engineers should consider formal methods. In Digital
Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE, volume 1, pages 1–3. IEEE.

[76] Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295.

[77] Irani, S., Singh, G., Shukla, S. K., and Gupta, R. K. (2005). An overview of the com-
petitive and adversarial approaches to designing dynamic power management strategies.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(12):1349–1361.

[78] Jaw, L. C. and Mattingly, J. D. (2009). Aircraft Engine Controls: Design, System
Analysis, and Health Monitoring. AIAA, Reston.

[79] Jensen, S. C., Jenney, G. D., and Dawson, D. (2000). Flight test experience with an
electromechanical actuator on the F-18 systems research aircraft. In Proceedings on The
19th Digital Avionics Systems Conference, volume 1, pages 2E3–1. IEEE.

[80] Jeppu, N. Y., Jeppu, Y., and Murthy, N. (2015). Arguing formally about flight control
laws. In Industrial Instrumentation and Control (ICIC), 2015 International Conference
on, pages 378–383. IEEE.

[81] Jessen, J. J., Rasmussen, J. I., Larsen, K. G., and David, A. (2007). Guided controller
synthesis for climate controller using UPPAAL-TIGA. In International Conference on
Formal Modeling and Analysis of Timed Systems, pages 227–240. Springer.

[82] Jones, M. (1997). What really happened on mars rover pathfinder. The Risks Digest,
19(49):1–2.

[83] Jongerden, M., Haverkort, B., Bohnenkamp, H., and Katoen, J.-P. (2009). Maximizing
system lifetime by battery scheduling. In Dependable Systems & Networks, 2009. DSN’09.
IEEE/IFIP International Conference on, pages 63–72. IEEE.

References 157

[84] Kamali, M., Dennis, L. A., McAree, O., Fisher, M., and Veres, S. M. (2017). Formal
verification of autonomous vehicle platooning. Science of Computer Programming, 148:88
– 106. Special issue on Automated Verification of Critical Systems (AVoCS 2015).

[85] Kelly, R. and Moreno, J. (2001). Learning PID structures in an introductory course of
automatic control. IEEE Transactions on Education, 44(4):373–376.

[86] Kim, K.-D. and Kumar, P. R. (2012). Cyber-physical systems: A perspective at the
centennial. Proceedings of the IEEE, 100(Special Centennial Issue):1287–1308.

[87] Kornecki, A. J. and Zalewski, J. (2010). Hardware certification for real-time safety-
critical systems: State of the art. Annual Reviews in Control, 34(1):163 – 174.

[88] Koutsoukos, X. D., Antsaklis, P. J., Stiver, J. A., and Lemmon, M. D. (2000). Supervi-
sory control of hybrid systems. Proceedings of the IEEE, 88(7):1026–1049.

[89] Kröger, F. and Merz, S. (2008). First-Order Linear Temporal Logic, pages 153–179.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[90] Kulshreshtha, A. and Charrier, J. (2007). Electric actuation for flight and engine control:
evolution and challenges. In SAE-ACGSC meeting, volume 99.

[91] Kumar, J. A. and Vasudevan, S. (2012). Verifying dynamic power management schemes
using statistical model checking. In Design Automation Conference (ASP-DAC), 2012
17th Asia and South Pacific, pages 579–584. IEEE.

[92] Kunze, M. and Weske, M. (2016). Sequential systems. In Behavioural Models, pages
39–79. Springer.

[93] Kwon, Y. and Kim, E. (2015). Bounded Model Checking of Hybrid Systems for Control.
IEEE Transactions on Automatic Control, 60(11):2961–2976.

[94] Landau, I. D., Lozano, R., M’Saad, M., and Karimi, A. (1998). Adaptive control,
volume 51. Springer Berlin.

[95] Larsen, K. G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., and
Romijn, J. (2001). As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In CAV, volume 2102, pages 493–505. Springer.

[96] Le Lann, G. (1997). An analysis of the Ariane 5 flight 501 failure - a system engi-
neering perspective. In Engineering of Computer-Based Systems, 1997. Proceedings.,
International Conference and Workshop on, pages 339–346. IEEE.

[97] Leith, D. J. and Leithead, W. E. (2000). Survey of gain-scheduling analysis and design.
International Journal of Control, 73(11):1001–1025.

[98] Lemmon, M. D., He, K. X., and Markovsky, I. (1999). Supervisory hybrid systems.
IEEE Control Systems, 19(4):42–55.

[99] Leveson, N. G. and Turner, C. S. (1993). An investigation of the Therac-25 accidents.
Computer, 26(7):18–41.

158 References

[100] Levine, W. S. (1996). The control handbook. CRC press.

[101] Li, Y., Ang, K. H., and Chong, G. C. (2006). PID control system analysis and design.
IEEE Control Systems Magazine, 26(1):32–41.

[102] Lindahl, M., Pettersson, P., and Yi, W. (2001). Formal design and analysis of a gear
controller. International Journal on Software Tools for Technology Transfer (STTT),
3(3):353–368.

[103] Liu, X. and Smolka, S. A. (1998). Simple linear-time algorithms for minimal fixed
points. In International Colloquium on Automata, Languages, and Programming, pages
53–66. Springer.

[104] Maler, O. (1997). Hybrid and Real-Time Systems: International Workshop, HART’97,
Grenoble, France, March 26-28, 1997, Proceedings, volume 1201. Springer Science &
Business Media.

[105] Maler, O., Pnueli, A., and Sifakis, J. (1995). On the synthesis of discrete controllers
for timed systems. In STACS 95, pages 229–242. Springer.

[106] Markovski, J. (2013). An integrated systems engineering framework for supervisor
synthesis, verification, and performance evaluation. In European Control Conference
(ECC), pages 650–657. IEEE.

[107] Markovski, J., van Beek, D. A., Theunissen, R. J., Jacobs, K. G., and Rooda, J. (2010).
A state-based framework for supervisory control synthesis and verification. In Decision
and Control (CDC), 2010 49th IEEE Conference on, pages 3481–3486. IEEE.

[108] Martin, L. K., Schatalov, M., Hagner, M., Goltz, U., and Maibaum, O. (2013). A
methodology for model-based development and automated verification of software for
aerospace systems. In IEEE Aerospace Conference, pages 1–19. IEEE.

[109] Mathworks (2013). Simulink Design Verifier.

[110] Moore, R. E. (1966). Interval Analysis, volume 4. Prentice-Hall Englewood Cliffs,
NJ.

[111] Moore, R. E. (1979). Methods and Applications of Interval Analysis, volume 2.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia.

[112] Moy, Y., Ledinot, E., Delseny, H., Wiels, V., and Monate, B. (2013). Testing or
formal verification: DO-178C alternatives and industrial experience. IEEE Software,
30(3):50–57.

[113] Munassar, N. M. A. and Govardhan, A. (2010). A comparison between five models of
software engineering. IJCSI International Journal of Computer Science Issues, 7(5):94–
101.

[114] Nerode, A. (1998). Special issue on hybrid control systems. IEEE Transactions on
Automatic Control, 43(4).

References 159

[115] Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., and Deardeuff, M.
(2015). How Amazon web services uses formal methods. Communications of the ACM,
58(4):66–73.

[116] Newman, R. (2004). The More Electric Engine Concept. In SAE Technical Paper
2004-01-3128. SAE International.

[117] Norman, G., Parker, D., Kwiatkowska, M., Shukla, S. K., and Gupta, R. K. (2002).
Formal analysis and validation of continuous-time Markov chain based system level
power management strategies. In High-Level Design Validation and Test Workshop, 2002.
Seventh IEEE International, pages 45–50. IEEE.

[118] Norman, P., Galloway, S., Burt, G., Hill, J., and Trainer, D. (2008). Evaluation of
the dynamic interactions between aircraft gas turbine engine and electrical system. 4th
IET International Conference on Power Electronics, Machines and Drives (PEMD 2008),
pages 671–675.

[119] Norstrom, C., Wall, A., and Yi, W. (1999). Timed automata as task models for event-
driven systems. In Real-Time Computing Systems and Applications, 1999. RTCSA’99.
Sixth International Conference on, pages 182–189. IEEE.

[120] Nuzzo, P., Sangiovanni-Vincentelli, A. L., Bresolin, D., Geretti, L., and Villa, T.
(2015). A platform-based design methodology with contracts and related tools for the
design of cyber-physical systems. Proceedings of the IEEE, 103(11):2104–2132.

[121] Ogata, K. (1970). Modern control engineering. Prentice-Hall.

[122] Ogata, K. (1995). Discrete-time control systems, volume 2. Prentice Hall Englewood
Cliffs, NJ.

[123] Ordóñez, P., Mills, A. R., Dodd, T. J., and Liu, J. (2017). Formal Verification of a
Gain Scheduling Control Scheme. In 25th Mediterranean Conference on Control and
Automation. IEEE.

[124] Ortega, R. and Kelly, R. (1984). PID self-tuners: Some theoretical and practical
aspects. IEEE Transactions on Industrial Electronics, 4:332–338.

[125] Pagetti, C., Saussié, D., Gratia, R., Noulard, E., and Siron, P. (2014). The ROSACE
case study: From Simulink specification to multi/many-core execution. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages
309–318. IEEE.

[126] Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., and Lee, I. (2014).
Model-driven safety analysis of closed-loop medical systems. IEEE Transactions on
Industrial Informatics, 10(1):3–16.

[127] Pakmehr, M., Fitzgerald, N., Feron, E. M., Shamma, J. S., and Behbahani, A. (2014).
Gain scheduled control of gas turbine engines: Stability and verification. Journal of
Engineering for Gas Turbines and Power, 136(3).

160 References

[128] Pasareanu, C. S., Mehlitz, P. C., Bushnell, D. H., Gundy-Burlet, K., Lowry, M., Person,
S., and Pape, M. (2008). Combining unit-level symbolic execution and system-level
concrete execution for testing NASA software. In Proceedings of the 2008 international
symposium on Software testing and analysis, pages 15–26. ACM.

[129] Pecheur, C., Cimatti, A., and Cimatti, R. (2002). Formal verification of diagnosability
via symbolic model checking. In Workshop on Model Checking and Artificial Intelligence
(MoChArt-2002), Lyon, France.

[130] Pratt, V. (1995). Anatomy of the Pentium bug. TAPSOFT’95: Theory and Practice of
Software Development, pages 97–107.

[131] Quan, T. T., Hoang, D. L., Nguyen, B. T., Nguyen, A. N., Tran, Q. D., Nguyen,
P. H., Bui, T. H., Do, A. T., Huynh, L. V., Doan, N. T., et al. (2010). MAFSE: A model-
based framework for software verification. In Secure Software Integration and Reliability
Improvement Companion (SSIRI-C), 2010 Fourth International Conference on, pages
150–156. IEEE.

[132] Quevedo, J. and Escobet, T. (2000). Digital control: Past, present and future of PID
control. Elsevier Science Inc.

[133] Rajkumar, R. R., Lee, I., Sha, L., and Stankovic, J. (2010). Cyber-physical systems:
the next computing revolution. In Proceedings of the 47th Design Automation Conference,
pages 731–736. ACM.

[134] Rodriguez-Navas, G. and Proenza, J. (2013). Using timed automata for modeling
distributed systems with clocks: challenges and solutions. IEEE Transactions on Software
Engineering, 39(6):857–868.

[135] Rolls-Royce (2015). The jet engine. John Wiley & Sons.

[136] Rosero, J., Ortega, J., Aldabas, E., and Romeral, L. (2007). Moving towards a more
electric aircraft. IEEE Aerospace and Electronic Systems Magazine, 22(3):3–9.

[137] RTCA (2011). DO-333 formal methods supplement to DO-178C and DO-278A.
Techinal Report.

[138] Rugh, W. J. and Shamma, J. S. (2000). Research on gain scheduling. Automatica,
36(10):1401–1425.

[139] Scherer, S., Lerda, F., and Clarke, E. M. (2005). Model checking of robotic control
systems. In Proceedings of the 8th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS).

[140] Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., and Bienmüller, T.
(2017). Incremental bounded model checking for embedded software. Formal Aspects of
Computing, 29(5):911–931.

[141] Sen, S. and Vangheluwe, H. (2006). Multi-domain physical system modeling and
control based on meta-modeling and graph rewriting. In Computer Aided Control Sys-
tem Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control, 2006 IEEE, pages 69–75. IEEE.

References 161

[142] Sesic, A., Dautovic, S., and Malbasa, V. (2008). Dynamic power management of
a system with a two-priority request queue using probabilistic-model checking. IEEE
transactions on computer-aided design of integrated circuits and systems, 27(2):403–407.

[143] Sexton, D., Gilhead, P., and Quadir, R. (2013). Practical experiences of using formal re-
quirements and their role in an overall work-flow. System Safety Conference incorporating
the Cyber Security Conference 2013, 8th IET International.

[144] Shmaliy, Y. (2007). Continuous-time systems. Springer Science & Business Media.

[145] Shukla, S. K. and Gupta, R. K. (2001). A model checking approach to evaluating
system level dynamic power management policies for embedded systems. In High-Level
Design Validation and Test Workshop, 2001. Proceedings. Sixth IEEE International, pages
53–57. IEEE.

[146] Silva, W., Bezerra, E., Winterholer, M., and Lettnin, D. (2013). Automatic property
generation for formal verification applied to HDL-based design of an on-board computer
for space applications. In Test Workshop (LATW), 2013 14th Latin American, pages 1–6.
IEEE.

[147] Siminiceanu, R. I. and Ciardo, G. (2012). Symbolic model checking for avionics.
Formal Methods for Industrial Critical Systems: A Survey of Applications, pages 85–112.

[148] Sobel, A. E. K. and Clarkson, M. R. (2002). Formal methods application: An
empirical tale of software development. IEEE Transactions on Software Engineering,
28(3):308–320.

[149] Spang III, H. A. and Brown, H. (1999). Control of jet engines. Control Engineering
Practice, 7(9):1043–1059.

[150] Sullivan, K. J., Socha, J., and Marchukov, M. (1997). Using formal methods to reason
about architectural standards. In Proceedings of the 19th international conference on
Software engineering, pages 503–513. ACM.

[151] Tabuada, P. (2009). Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media.

[152] Tabuada, P. and Pappas, G. J. (2006). Linear time logic control of discrete-time linear
systems. Automatic Control, IEEE Transactions on, 51(12):1862–1877.

[153] Valkonen, J., Björkman, K., Frits, J., and Niemelä, I. (2010). Model checking method-
ology for verification of safety logics. SIAS 2010 - The 6th International Conference on
Safety of Industrial Automated Systems.

[154] Visser, W., Pasareanu, C. S., and Khurshid, S. (2004). Test input generation with java
pathfinder. ACM SIGSOFT Software Engineering Notes, 29(4):97–107.

[155] Walter, B., Hammes, J., Piechotta, M., and Rudolph, S. (2017). A Formalization
Method to Process Structured Natural Language to Logic Expressions to Detect Redun-
dant Specification and Test Statements. In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pages 263–272.

162 References

[156] Wang, W., Qin, X., and Mishra, P. (2010a). Temperature-and energy-constrained
scheduling in multitasking systems: A model checking approach. In Proceedings of the
16th ACM/IEEE international symposium on Low power electronics and design, pages
85–90. ACM.

[157] Wang, W., Qin, X., and Mishra, P. (2010b). Temperature-and energy-constrained
scheduling in multitasking systems: a model checking approach. In Proceedings of the
16th ACM/IEEE International Symposium on Low Power Electronics and Design, pages
85–90. ACM.

[158] Whalen, M., Cofer, D., Miller, S., Krogh, B. H., and Storm, W. (2007). Integration
of formal analysis into a model-based software development process. In International
Workshop on Formal Methods for Industrial Critical Systems, pages 68–84. Springer.

[159] Wongpiromsarn, T., Topcu, U., and Murray, R. M. (2010). Receding horizon control
for temporal logic specifications. In Proceedings of the 13th ACM international conference
on Hybrid systems: computation and control, pages 101–110. ACM.

[160] Wongpiromsarn, T., Topcu, U., and Murray, R. M. (2012). Receding horizon temporal
logic planning. IEEE Transactions on Automatic Control, 57(11):2817–2830.

[161] Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., and Murray, R. M. (2011). Tulip: a
software toolbox for receding horizon temporal logic planning. In Proceedings of the 14th
international conference on Hybrid systems: computation and control, pages 313–314.
ACM.

[162] Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J. (2009). Formal methods:
Practice and experience. ACM computing surveys (CSUR), 41(4):19–19.

[163] Xu, H. (2013). Design, specification, and synthesis of aircraft electric power systems
control logic. PhD thesis, California Institute of Technology.

[164] Xu, H., Topcu, U., and Murray, R. M. (2012a). A case study on reactive protocols
for aircraft electric power distribution. In Decision and Control (CDC), 2012 IEEE 51st
Annual Conference on, pages 1124–1129. IEEE.

[165] Xu, H., Topcu, U., and Murray, R. M. (2012b). A case study on reactive protocols
for aircraft electric power distribution. In Decision and Control (CDC), 2012 IEEE 51st
Annual Conference on, pages 1124–1129. IEEE.

[166] Zeller, J., Lehtinen, B., and Merrill, W. (1982). The role of modern control theory in
the design of controls for aircraft turbine engines. Technical Report NASA-TM-82815,
E-1162, NAS 1.15:82815, NASA Lewis Research Center; Cleveland, OH, United States.

[167] Ziegler, J. G. and Nichols, N. B. (1942). Optimum settings for automatic controllers.
ASME, 64(11).

	Table of contents
	List of figures
	List of tables
	Symbols and Acronyms
	1 Introduction
	1.1 Motivation
	1.1.1 System Verification
	1.1.2 Trends in Aerospace Systems
	1.1.3 Avionics Certification
	1.1.4 Safety-Critical Software Development Life Cycle
	1.1.5 Commercial Jet-Engine Control
	1.1.6 Formal Methods and Model Checking
	1.1.7 Challenges for a Formal Development Approach

	1.2 Aims and Objectives
	1.3 Contributions
	1.4 Thesis Overview

	2 Literature Review and Technical Background
	2.1 Overview
	2.2 Literature Review
	2.2.1 Verification & Validation
	2.2.2 Controller Synthesis and Properties Generation
	2.2.3 Challenges and Approaches
	2.2.4 Remarks

	2.3 Technical Background
	2.3.1 Dynamic Control Systems
	2.3.2 Formal Methods and Model Checking
	2.3.3 Model Checking and Hybrid Systems
	2.3.4 Timed-Automata and Computation Tree Logic

	2.4 Final Remarks

	3 Dynamic System Abstraction Methodology
	3.1 Overview
	3.2 Discrete-time SISO LTI Models
	3.3 Fixed Point Representation Using Integer Data
	3.3.1 Data Types for Data Representation
	3.3.2 Fixed Point Data Size Considerations
	3.3.3 Fixed Point Arithmetic Using Integer Data
	3.3.4 Ad Hoc Data Type

	3.4 Modelling Error Compensation
	3.4.1 Parametric Compensation - 1 Error
	3.4.2 Fixed Point Representation Compensation - 2 Error
	3.4.3 Scaling Compensation - 3 Error
	3.4.4 Global Error

	3.5 Safety Guarantees
	3.5.1 Over and Under Approximation
	3.5.2 Abstraction Generation

	3.6 Final Remarks and Discussion

	4 Control Performance Requirements Formal Verification
	4.1 Overview
	4.2 High Level Requirements
	4.3 Design for Verifiability
	4.3.1 Automata Design
	4.3.2 UPPAAL Automata

	4.4 Requirements Formulation for Verification
	4.5 Case Study: Thrust Control Verification
	4.5.1 Verification Problem Formulation
	4.5.2 System Abstraction
	4.5.3 Verification Results
	4.5.4 Discussion

	5 Digital PID Controller Formal Design
	5.1 Overview
	5.2 Problem Formulation
	5.2.1 Discrete PID Controller
	5.2.2 Controller Tuning: A Model Checking Formulation

	5.3 Controller Synthesis Methodology
	5.3.1 Timed-Automata Update
	5.3.2 Requirements Formulation for Design
	5.3.3 Controller Tuning Algorithm

	5.4 Case Study: Thrust Control Design
	5.4.1 Requirements and Initial Conditions
	5.4.2 Results and Discussion

	6 Digital PID Gain Scheduling Control Formal Design
	6.1 Overview
	6.2 Problem Formulation
	6.2.1 Gain Scheduled PI Control
	6.2.2 Schedule Design: A Model Checking Formulation

	6.3 Schedule Synthesis Methodology
	6.3.1 Timed-Automata Update
	6.3.2 Requirements Formulation for Design
	6.3.3 Schedule Design Algorithm

	6.4 Case Study: Thrust Control Schedule Design
	6.4.1 Problem Formulation and Requirements
	6.4.2 Results and Discussion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References

