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Abstract

In the field of machine learning, Gaussian process models are widely used families of
stochastic process for modelling data observed over time, space or both. Gaussian
processes models are nonparametric, meaning that the models are developed on an
infinite-dimensional parameter space. The parameter space is then typically learnt
as the set of all possible solutions for a given learning problem. Gaussian process
distributions are distribution over functions. The covariance function determines the
properties of functions samples drawn from the process. Once the decision to model
with a Gaussian process has been made the choice of the covariance function is a
central step in modelling.

In molecular biology and genetics, a transcription factor is a protein that binds
to specific DNA sequences and controls the flow of genetic information from DNA
to mRNA. To develop models of cellular processes, quantitative estimation of the
regulatory relationship between transcription factors and genes is a basic requirement.
Quantitative estimation is complex due to various reasons. Many of the transcription
factors’ activities and their own transcription level are post transcriptionally modified;
very often the levels of the transcription factors’ expressions are low and noisy. So,
from the expression levels of their target genes, it is useful to infer the activity of
the transcription factors. Here we developed a Gaussian process based nonparametric
regression model to infer the exact transcription factor activities from a combination
of mRNA expression levels and DNA-protein binding measurements.

Clustering of gene expression time series gives insight into which genes may be
coregulated, allowing us to discern the activity of pathways in a given microarray
experiment. Of particular interest is how a given group of genes varies with different
conditions or genetic backgrounds. In this thesis, we developed a new clustering method
that allows each cluster to be parametrized according to the behaviour of the genes
across conditions whether they are correlated or anti-correlated. By specifying the
correlation between such genes, we gain more information within the cluster about how
the genes interrelate. Our study shows the effectiveness of sharing information between
replicates and different model conditions while modelling gene expression time series.
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Chapter 1

Introduction

Machine learning is a joint field of artificial intelligence and modern statistics, predom-
inantly focused on the design and development of models, algorithms and techniques
that allow computers to extract information automatically, by some learning process,
from data. The structure learned from data can be described by a statistical model.
Gaussian process models are well-known families of stochastic processes for modelling
data observed over time, space or both. Data modelling with Gaussian process is a
state-of-the-art technique in the wider community, from robotics (Deisenroth et al.
(2014)) to genomics (Topa et al. (2015)), from astronomy (Rajpaul et al. (2015))
to meteorology (Chen et al. (2014)). Gaussian process models are nonparametric,
which means the models are developed on an infinite-dimensional parameter space.
For a particular learning problem, the parameter space is typically learnt as a set of
possible solutions. There are different ways to learn functions. Probabilistic inference
is one of the elegant and widely accepted way among them. In the field of machine
learning regression is a supervised learning problem, while clustering is an unsupervised
learning problem. A regression task is related to making predictions of a continuous
output variable at any desired input location, given an input-output training set. A
clustering task groups a set of observations into subsets (also known as clusters) so
that observations in the same cluster shows similarity in some particular sense. Here
we set two generic goals for this thesis

Generic goal 1: We will develop a tool to analyse transcription factor activities.
This tool will target the gene expression time series data which is sampled across
continuous time.

Generic goal 2: Our second goal is to develop an approach for gene expression
clustering that handles structure in the experimental conditions as part of the cluster
analysis.



2 Introduction

Our primary focus of this thesis is to achieve these goals by building Gaussian
process models from transcriptomic data.

1.1 System Biology

The prime goal of Biology is to gain insight of various principles and details of biological
systems. More than six decades ago, Watson and Crick discovered the structure of
DNA (Watson and Crick (1953)) and changed our approach to study and development
of biology and biological systems. They explained the biological phenomena with the
help of molecular basis. This concept helps to explain different aspects of biology like
heredity, different diseases, various evolutionary aspects as well as development with a
firmer theoretical ground. Since then, biology has become a framework of knowledge
governed by some basic and fundamental laws of physics.

Due to the enormous advances in molecular biology, at present, we have in-depth
knowledge of elementary processes like evolution, heredity, disease, development etc.
These mechanisms also include other biological features like replication, transcrip-
tion and translation. The accomplishment of symbolic DNA sequencing helped to
reveal large numbers of genes and their transcriptional products. DNA sequences for
many organisms like Mycoplasma, Plasmodium falciparum, Saccharomyces cerevisiae,
Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens and many more have
been fully identified. Due to the advancement of different methods, gene expression
profiles are available at the mRNA level. Even measurement of protein levels and their
different subsequent actions are also making progress.

Undoubtedly understanding at the molecular level will accelerate understanding of
biological systems, but this knowledge is not sufficient to understand biological systems,
as systems. Genes and protein are a few components of a whole system. It is necessary
to understand what constitutes the system, but even then just this knowledge is not
sufficient to understand the complete system. Systems biology is a new field of biology
that aims to understand every detail and principles of the biological system (Kitano
(2000)).

The extent of the area of system biology is very broad, and various techniques
may be required for each individual research target. Very often it demands combined
effort from multiple discipline research areas like molecular biology, high-precision
measurement technology, mathematics, computer science, control theory and other
engineering and scientific fields. Kitano (2002) mentioned the main four key areas
to be carried out for further research: (1) genomic and other molecular biology
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research, (2) diverse technology for comprehensive and high-precision measurements,
(3) computational studies, such as bioinformatics, modelling and simulation, software
tools, and (4) analysis of the dynamics of the systems. This depicts the requirement of
multidisciplinary research efforts to get the knowledge of biological systems as systems.
Indeed the abstract concept of a system is more than a collection of multi-disciplinary
research components. Besides the detailed description of the components to acquire
the proper insight of system it is also essential to know what happens during the period
or processes when any stimuli and/or disruptions take place.

The primary requirement to understand biological systems is the identification
of the system structure. Some of the key structures might have different regulatory
relationships of genes and interactions with proteins that show the metabolism pathway
and signal transduction, the physical structure of chromatin, cells, organisms and other
components. It is very critical to monitor biological processes in bulk. High-throughput
DNA microarray, real-time polymerase chain reaction (RT-PCR), protein chips and
other methods are essential to identify genes and metabolism network. Once a system
structure is established up to a certain degree, we need to unpick its behaviour. A
number of analysis methods can be used to understand this behaviour correctly. For
example, consider that we are interested to know the sensitivity of a specified behaviour
against some external perturbations and its time to return its normal state since the
stimuli took place. This type of analysis provides the system level characteristics as
well as uncover valuable insights of medical treatments by revealing cell responses to
certain chemical affinities.

To understand the behaviour of the system and to control the state of the biological
systems further research is required, with the knowledge previously obtained from the
system structure. All these phases lead toward the establishment of technologies that
allow us to design a biological system which can provide cures for different diseases.
Some futuristic examples could be organ cloning techniques for the treatment of diseases
that require organ transplants or building biological materials for engineering, especially
robotics, with self-sustaining and self-repairing capabilities.

1.2 Dynamic Mathematical Model: What and Why
in System Biology?

Any models are abstractions of reality. Models are designed to focus on specific aspects
of the objects for a particular kind of study. Loosely speaking, during these modelling
processes other aspects of less interest are abstracted away. Biologists are almost
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Fig. 1.1 A ‘cartoon’ model of protein protein interaction. Two different molecular
species A and B bind to form a complex molecular. The newly formed complex hinder
the rate at which molecules of species C are transformed to species D.

regularly making use of tangible ‘real world’ models. Some of them are very simple, like
molecular ball-and-stick, again some of them are highly complex such as animal disease
models or model organisms. They also use ‘conceptual models’. These conceptual
models usually take the form of verbal descriptions of the system and are communicated
by diagrams. These diagrams are usually constructed with a set of components and
the ways they interact with each other. These interaction diagrams or ‘cartoon models’
play a central role in representing knowledge of cellular or different other processes
(Ingalls (2012)).

A major drawback of these ‘cartoon models’ is that, while considering system be-
haviour, they could be significantly ambiguous. Furthermore, if there is any interaction
network related to feedback. Complexity increases even further when the number of
components and their corresponding interactions in the network grow. Sometimes it
becomes challenging to get the intuitive understanding of the system’s behaviour. A
mathematical model or description of the same model can eliminate the uncertainty
of the model behaviour. The mathematical model will consider the quantitative rep-
resentation of the individual interaction of the cartoon model. In Figure 1.1 species
A and B bind to form a new complex. The newly formed complex hinder the rate at
which molecules of species C are transformed into species D. A numerical description
of the process is required to quantify the interaction. Though for simple cases only
equilibrium condition is enough, in many other cases binding and unbinding rates
might also be required. The cartoon model or traditional knowledge cannot provide a
quantitative description rather than a qualitative explanation of the molecular interac-
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tion. A well-studied mechanism with sufficient data might be capable of showing the
quantitative characteristics. The interaction diagram with related quantitative data
can be used to develop a dynamic mathematical model. This kind of model consists of
a number of equations that describe the system’s behaviour over time. This behaviour
is termed as “system’s dynamic behaviour”. These models are usually mechanistic, as
they explain the mechanisms of molecular interaction with some laws of physics and
chemistry as well as mathematics. Any of the parts of the mechanistic model actually
represent the real observed system. Any change in the mechanistic model’s component
will also mimic to the real system. So, model simulation (in silico experiments) can
be used to predict system behaviour. Some numerical software built with different
programming languages are used for this simulation purposes.

As a mathematical model is a hypothesis, so the outcome or result of the model
hypothesis is also a hypothesis. Though the real cellular behaviour cannot be predicted
by simulation, it can be invaluable for further experimental design by showing the
promising paths for further investigation, or by showing the inconsistencies between
the real laboratory observations and our understanding of the models or systems.

1.3 The Systeome Project

‘Systeome’ is a collection of system profiles for all genetic variations and environmental
stimuli responses. A system profile consists of a set of information about the properties
of the system including structure, behaviour, analysis of results such as bifurcation
diagram or phase portfolio. The structure of the system should include the structure
of genes and metabolic networks and its physical structure, associated constants, and
their properties (Kitano (2002)).

Systeome is not just a simple cascade map; rather it assumes different active
and dynamic solutions, simulations as well as profiling of various system status. The
Systeome project might be established with dealing all aspects for profiling the Systeome
of yeast, C. elegans, Drosophila, mouse and finally human. The primary goal of the
Human Systeome project is defined as - “To complete a detailed and comprehensive
simulation model of the human cell at an estimated error margin of 20 percent by the
year 2020, and to finish identifying the system profile for all genetic variations, drug
responses, and environmental stimuli by the year 2030”(Kitano (2002)).

This is a highly ambitious project and requires several milestones. Some pilot
projects will lead toward the final goal. Initial pilot projects are using yeast for the
simplicity of structure and subsequent behaviour. C. elegans have comparatively
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complex system structure and so is their behaviour. Besides such pilot projects,
concurrently the Human Systeome project shall be commenced.

The futuristic impact of this project will be very wide spread as well as far-reaching.
These will be the baseline and standard asset for any further biological research to
provide fundamental diagnostics and prediction for a variety of medical practices. This
Systeome project involves many other major engineering projects for developing the
measurements, as well as software platforms.

1.4 Biological Background Related with this Thesis

In modern molecular biology, the biological systems like cells are treated as complex
systems. The usual conception of the complex system is a very large number of simple
but identical elements interact to generate the complex behaviour. The actual behaviour
of biological systems is different from this conception. A vast number of functionally
different and multifunctional group of elements act with each other selectively, perhaps
non-linearly, to generate coherent behaviour. Mostly, functions of biological systems
depend on a combination of the network and specific elements involved.

Development of molecular biology has discovered a large number of biological facts
like sequencing genome, protein properties etc. To explain the biological system’s
behaviour only these developments are never sufficient. Study of cell tissues, organs,
organisms also might be the systems’ components to be considered. Their specific
interaction which is defined by the evolution could be more supportive of reaching the
prime goal of biology. Though advancement in more accurate quantitative experimental
approach will continue, the detailed functional insights of biological systems may not
provide the exact results from purely intuitive basis due to the intrinsic complexity
of biological systems. A proper combination of experimental and computational
approaches is more likely to solve this problem. In modern molecular biology, the
organisational and functional activity of gene regulatory network is a key experimental
and computational challenge.

1.4.1 Transcriptome and Transcriptomics

A transcriptome is the complete set of messenger RNA (mRNA) produced by the
genome, in a specific cell or tissue type expressed by an organism under specific
circumstances. One of the key characteristics of a genome is it’s stability, while the
activity of transcriptome is dynamic. Transcriptomic activities change over time
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depending on many factors, such as change of the environmental conditions, stage of
the development. Gene activity is the count the number of transcripts, which is also
known as gene expression. Differentially expressed genes are identified by juxtaposition
of transcriptomes in response to different treatments or in distinct cell populations.
In any organisms, almost every cell contains the same genes, but the gene expression
patterns might be different depending on different properties of cells. These differences
are responsible for the different behaviours of divergent cells and tissues (Adams (2008)).
Transcriptomic data helps to explore different gene functions. For an example, in a
breast cancer cell study, an unknown gene’s expressions are significantly higher than in
healthy cells. It is more likely that the unknown gene is playing role in cell growth.
Thus the transcriptomic data may assist the researcher by reducing the search space.
Transcriptomics is the study of the transcriptome using high-throughput methods, such
as microarray analysis, Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
analysis, Chromatin immunoprecipitation (ChIP) experiments and many more.

1.4.2 ChIP-chip, Microarray and Gene Expression Data for
Genomics

Living cells contain thousands of genes. These genes code for one or more proteins.
Expressions of these genes are regulated by many of these proteins through a very
complex regulatory pathway. Usually regulation occurs to accommodate the changes
of the environment, as well as at the cell cycle of the development process. In the
process gene expression, information contained in the gene, synthesise to a functional
gene product. The genetic code stored in the DNA is usually expressed or interpreted
by gene expression which represents the phenotype. Gene expression data is usually
stored in a DNA microarray or DNA chip which is also known as a biochip.

In the field of transcriptomics, ChIP (Chromatin immunoprecipitation) is a tech-
nique applied to determine the location of DNA binding sites on the genome for a
particular protein of interest. Chromatin immunoprecipitation provides a broader
view of the protein and DNA interactions which occur inside the nucleus. ChIP-chip
(also known as ChIP-on-chip) is a technology that brings together chromatin immuno-
precipitation (ChIP) with DNA microarray chip. The ChIP-chip technology is used
for isolation and identification of the genome-wide location by specific DNA binding
proteins (Ren et al. (2000)). ChIP-chip technology facilitated researchers to annotate
functional elements. Mapping the location of protein markers with associated cite
this technology also provides a better understanding of the functionality of promoters,
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enhancers, repressor, insulators, etc. Chromatin immunoprecipitation is a microarray
technology which isolates DNA fragments bounded by specific DNA binding proteins.
Lockhart et al. (1996) used this technology to measure the concentration of DNA
fragments. Tiling Arrays are a subcategory of the microarray that differs from the
traditional microarrays by the nature of the probes. Tiling arrays probe intensively
for sequences that exist in contiguous or adjacent regions. The ChIP-chip technology
facilitates to represent the whole genome in a one dimensional series of signals. In
these signals, protein-binding sites are usually expressed by peaks. Therefore, from
the signals, protein-binding sites are detected by systematically recognising the peaks.
Peak recognition or peak detection is a mathematical modelling challenge. A process
called sonication is used to snip long genomic sequences into smaller DNA fragments.
In nature this snipping process is probabilistic. Therefore, special mathematics models
or tools with probabilistic assumptions are required to deal the snipping process and
also the peak recognition carefully.

The main steps of ChIP-chip process are-

• Let bound transcription factor and other associated proteins bind to DNA.

• Chop the DNA sequences into small fragments by sonication.

• Isolate the DNA fragments bound by proteins by chromatin immunoprecipitation
(ChIP).

• Cross-linking between DNA and protein is reversed and DNA is released, amplified
by ligation-mediated polymerase (LM-PCR) chain reaction and labelled with a
fluorescent dye.

• Both IP-enriched and -unenriched DNA pools of labelled DNA are hybridised to
the same high-density oligonucleotide arrays (chip).

Figure 1.2 shows two Affymetrix chips which contain DNA microarray. Two
Matchsticks are shown at the bottom and alongside for the purpose of size reference
of a microarray. The solid-phase DNA microarray is usually a collection of ordered
microscopic spots called features. Figure 1.3 shows the schema of the gene expression
microarray data. On a typical Affymetrix microarray, there are 6.5 million locations
(represented by columns) with millions of identical DNA strands in every location.
Every strand constructs with 25 probes or bases. The microarray is rinsed and washed
with a fluorescent stain. To accomplish a DNA test, two types of samples are used:
one is the controlled sample and another one is the test sample. After extracting
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Fig. 1.2 Gene expression data are extracted from Affymetrix microarray. Two Match-
sticks are placed for reference purpose. Images at the left side and right side are the
top-view and middle one is the bottom view of the microarray. Left one contains mouse
genome with 430 2.0 array, while right one contains human genome with U133 Plus 2.0
array. A special scanner (i.e. GeneChip scanner) is required to scan this high-density
arrays.

mRNA from DNA, copies are made from mRNA by reverse transcription. Two different
fluorescents tagged with cyanide are used to differentiate between the control sample
and a test sample. In general, green is used for control copy and red for test copy.
Then the tagged samples are washed on the microarray. DNA is analysed based on
matching with the probes on the microarray. A laser is used to glow the fluorescent
molecules. After the hybridization process, a green spot represents a hybridization with
the control targets only, a red spot indicates hybridization with the test targets only,
yellow represent hybridization both with the control targets and test targets, while
black represents no hybridization with the samples. Over the last couple of decades,
these gene expression data became one of the key resources of the biologists to diagnose
diseases and drug discovery, gene discovery and determining genetic variations, aligning
and comparing genetic codes, biomerker development, forensic application, functional
analysis and computational biology.

Using a dynamic Bayesian network Ong et al. (2002) modelled the regulatory
pathway in E.coli from the time series gene expression microarray data by modelling
causality, feedback loops or hidden variables. By analysing gene expression data
Friedman et al. (2000) were the first to determine the transcriptional properties for
Baker’s yeast using a Bayesian network.
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Fig. 1.3 Gene expression data: Affymetrix microarray. The dimension of a typical
Affymetrix microarray is 1.28cm by 1.28cm where there are 6.5 million locations on
each GeneChip array. At every location millions of identical DNA strands builds on.
Every strand constructs with 25 probes or bases.

Many of the recent studies already established the fact that the gene function of
the regulatory network depends on qualitative as well as quantitative aspects of the
organisation of the network like high-throughput data, including genomic sequence,
expression profiles and transcription factor. Among them, one of the major challenges
is the quantitative measurement and analysis of the mechanisms which regulate mRNA
transcription. Though using high throughput techniques it is comparatively easier to
measure the output of transcription; it is experimentally very complicated to measure
the protein concentration levels of transcription factors and chemical affinity to the
genes. Very often transcription factors are post-transcriptionally modified. So, the
actual protein concentration levels and binding affinities could be an unreliable proxy
for the mRNA expression levels of transcription factors (Sanguinetti et al. (2006)).
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Fig. 1.4 Anatomy of an adult hermaphrodite(C. elegans). (a) Differential interference
contrast (DIC) image of an adult hermaphrodite, left lateral side. Scale bar 0.1 mm. (b)
Schematic drawing of anatomical structures, left lateral side (Courtesy of WormAtlas
http://www.wormatlas.org/hermaphrodite/introduction/IMAGES/introfig1leg.htm).

Due to the advancement of the experimental technique, lot of interest in recent
years has been growing to infer information about regulatory activity from target
genes. Biologists are capable of acquiring the information about the structure of the
transcriptional regulatory network. Lee et al. (2002) determined the transcriptional
regulatory network of yeast using chromatin immunoprecipitation(ChIP). They tried to
figure out how yeast transcriptional regulators bind to promoter sequences across the
genome. By calculating a confidence value (P value) and setting up specific threshold,
they consider the protein-DNA interactions and artificially imposes a binding or not
binding binary decision for each of the protein-DNA pair.

1.4.3 Caenorhabditis elegans

Caenorhabditis elegans is a nonparasitic, soil dwelling, a small nematode worm. C.
elegans and other Caenorhabditis species are found through all over the world. It can
easily colonise mostly in the rotting materials with other micro-organisms. At the
laboratory C. elegans is easy to maintain in the Petri dishes. At 25 ◦C C. elegans
complete its life cycle in just 2.5 days from fertilised embryos to egg-laying adult
through 4 larval stages. Its typical lifespan is 2-3 weeks. In 1965, Sydney Brenner
introduced Caenorhabditis elegans as a model organism to study the behaviour and
development of animal (Brenner (1974)).

C. elegans is a relatively new addition as a model organism but its biological
characteristics and property already been studied to an extraordinary level. The
anatomical characteristics and detail development of this nematode were facilitated by



12 Introduction

its simple body plan. It is a eukaryote and it shares cellular and molecular structures
and control pathways with higher organisms. C. elegans is multicellular, an adult
wild type consists of 959 somatic cells and among these 302 are neurones (Palikaras
and Tavernarakis (2013); Sulston and Horvitz (1977)). Its developmental process
(e.g. embryogenesis, morphogenesis) goes through a complex process to develop into
an adult. Monitoring of the cellular process and recording of cell division pattern is
comparatively easier as its body is transparent. C. elegans ’s complete cell lineage at
the electron microscopy level has been completed. It has already been established that
the cell lineage is remarkably invariant between animal to animal (Brenner (1974);
Byerly et al. (1976); Sulston et al. (1980); Wood (1988)).

To elucidate pathways and processes relevant to human biology and diseases C.
elegans has been used as a vital model. There are between ∼20,250 to ∼21,700
predicted protein-coding genes in C. elegans (Gerstein et al. (2010)). Using four
different orthology-prediction methods, Shaye and Greenwald (2011) assayed four
methods to compile a list of C. elegans orthologs of human genes. A list of 7,663
unique protein-coding genes resulted in that list and this represents around 38% of
the 20,250 protein-coding genes of C. elegans. When human genes introduced into
C. elegans, human genes replaced their homologs. On the contrary, many C. elegans
genes can function with a great deal of similarity to human like mammalian genes. So,
the biological insight acquired from C. elegans may be applicable to a more complex
organism like the human.

1.4.4 Transcription

A number of biological functions like development, maintenance and repair of body
tissues, production of energy, creation of hormones and enzymes, transportation of
certain molecules and formation of antibodies take place using proteins. To perform
any of the above activities or functions cells need to generate protein continuously.
Inside the cell, proteins are manufactured from the DNA. When the cells are in need
of protein production, a special signal is sent to the DNA using transcription factors.
Then proteins reside in DNA start to manufacture depending on the received signals.
The way that the enzymes find the information required for protein construction is
extremely complicated.

DNA (Deoxyribonucleic acid) transcription is a process that transcribes genetic
information from DNA to a complementary RNA (Ribonucleic acid). By the tran-
scription process protein is produced from a copy of DNA. This production of proteins
and enzymes are controlled by the coding of cellular activity. Even the conversion of
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Fig. 1.5 A ‘cartoon model’ of DNA transcription. DNA consists of four nucleotide
bases named adenine (A), guanine (G), cytosine (C) and thymine (T) that are paired
together (A-T and C-G) to give DNA its double helical shape. By DNA transcription
genetic information from DNA transcribe to a complementary RNA.

DNA to proteins is not straight forward. At the initial stage of transcription, an RNA
polymerase reads the sequence of DNA and finally produces a complementary RNA
at the end of the transcription process. DNA consists of four nucleotide bases named
adenine (A), guanine (G), cytosine (C) and thymine (T) that are paired together (A-T
and C-G) to give DNA its double helical shape. The major steps of DNA transcription
are

RNA polymerase binding to DNA: In order to initiate the DNA transcription,
RNA polymerase and sigma factor1 form a holoenzyme2, which binds to a specific
area of the DNA named promoter region. Transcription process starts at the promoter
region of a double-stranded DNA. Sigma factor can recognise the DNA and its specific
promoter region.

Elongation: A sequence-specific DNA binding factor, called transcription factor
unwind the DNA strand. Elongation of the transcript then continues by the RNA
polymerase and a sequence of the chain is opened up. A messenger RNA (mRNA) is
formed when RNA polymerase transcribes into a single-stranded RNA polymer from a
single-strand of DNA.

Termination: RNA polymerase moves along the DNA unwinding its double helical
form until it reaches the terminator sequence. At that point, RNA polymerase detaches
from the DNA and releases the mRNA polymer. In this way, DNA double helix is

1Sigma factor (σ factor) is a special type of protein needed for the initiation of RNA synthesis.
2an active compound biochemically formed by the combination of an enzyme with a co-enzyme.
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opened, transcribed and reclosed with minimum stress on the DNA molecule. At any
certain time, many RNA polymerases can transcribe a single DNA sequence, which
can manufacture a large quantity of protein at once.

1.4.5 Transcription Factor

A transcription factor is a protein that binds to DNA sequences and controls the flow
of genetic information coding from DNA to mRNA (Karin (1990); Latchman (1997)).
Transcription factors can both promote or block the transcription process and act as an
activator or repressor respectively (Lee and Young (2000); Nikolov and Burley (1997);
Roeder (1996)). A transcription factor may contain one or more DNA-binding domains.
These binding domains attach to specific sequences of DNA adjacent to the genes
that they regulate. Though some other proteins such as coactivators, deacetylases,
chromatin remodelers, kinases, histone acetylases, and methylases also play crucial
roles in gene regulation, yet they are not classified as transcription factors due to
lack of DNA-binding domains (Brivanlou and Darnell (2002); Mitchell and Tjian
(1989); Ptashne and Gann (1997)). Figure 1.7 describes the mapping (we can also
say ‘cartoon’ mapping) between the environmental signal, transcription factors inside
the cell, and the gene that they regulate. The environmental signal activates specific
transcription factor. After the activation, the transcription factors bind DNA to change
the transcription rate (the rate at which mRNA is produced) of specific target genes.
The mRNA is then translated into protein by the process named translation (Alon
(2006)).

1.4.6 Amyotrophic Lateral Sclerosis and Mouse Model

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease or Motor
neurone disease (MND) is a diverse neurodegenerative disorder. The median survival
of this lethal disorder is less than 5 years. The disease is heterogeneous with variable
severity in terms of speed of progression of the disease course (Brockington et al. (2013);
Peviani et al. (2010)). From the biological aspect, the disease progression speed is not
clear yet. For experimental purpose, many of the pathological and clinical features of
human ALS can be replicated very well by transgenic mice. These murine models also
show the heterogeneity in the disease progression for the clinical phenotype. In a study
Pizzasegola et al. (2009) reported that disease progression is much faster in 129Sv than
C57 mouse strain. Genomic analysis with gene expression time series data from these
murine models could be interesting to examine the speed of propagation of ALS.
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Fig. 1.6 A ‘cartoon model’ of transcription process: DNA transcribed in mRNA. RNA
polymerase binds to a promoter region of DNA. Transcription factor unwind the DNA
strand and after the elongation phase a sequence of chain is opened up. A messenger
RNA (mRNA) is formed when RNA polymerase transcribes into a single stranded
RNA polymer from a single strand of DNA.



16 Introduction

Fig. 1.7 The mapping between environmental signal, transcription factors and the
genes that they regulate (Alon (2006)). Some excitation or environmental changes
activates transcription factors. After the activation, the transcription factors bind to
DNA and regulates the transcription rate of the target gene.
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1.5 Gaussian Processes

Gaussian processes (GPs) are a general class of models of functions. GPs are one
of the most widely used families of stochastic processes. As a general setting, the
Gaussian process of many types has been studied and incorporated in research for
decades, especially for modelling dependent data observed over time, or space, or time
and space together. In GPs observations in the input space are random variables from
Gaussian distributions. We included the introductory concepts of the Gaussian process
in Chapter 3.

1.6 Publication Related with this Thesis

The work detailed in this thesis has been presented (as a form of poster and talk) at
different International Conferences, Workshops and Summer Schools as listed below

• Muhammad Arifur Rahman and Neil D. Lawrence, “A Gaussian Process
Model for Inferring the Dynamic Transcription Factor Activity”, International
Conference on Bioinformatics, Computational Biology, and Health Informatics,
USA, October 2016.

• Sura Zaki Alrashid, Muhammad Arifur Rahman3, Nabeel H. Al-Aaraji, Paul
R. Heath and Neil D. Lawrence, “Clustering Gene Expression Time Series of
Mouse Model for Speed Progression of ALS”, Workshop on Mathematical and
Statistical Aspects of Molecular Biology, University of Helsinki, Finland, April
2015.

• Muhammad Arifur Rahman and Neil D. Lawrence, “A Probabilistic Dynamic
Model for Transcription Factor Activity of C. elegans”, Machine Learning Summer
School and International Conference on Artificial Intelligence and Statistics,
Iceland, April 2014.

At the time of writing more developed work from these chapters is currently under
consideration for publication in a peer-reviewed journal.

3This is a collaborative work between Sura Zaki Alrashid and Muhammad Arifur Rahman where
the first authorship is shared.
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1.7 Road Map

The thesis is structured in the following chapters
Chapter 1: This document starts with some basic concepts and general terminology

to the field of interest to address some key issues which will be tackled or achieved
later on this work.

Chapter 2: This chapter starts with the basic concepts of a latent variable
model (LVM) and a probabilistic model. After describing the connectivity information
between genes and transcription factors we briefly describe the probabilistic model for
transcription factor activities. Earlier this problem has been solved for a unicellular
microorganism (yeast), we have forwarded the mathematical model of transcription
factors activity for a multicellular eukaryote (C. elegans) building our own connectivity
information.

Chapter 3: This is a technical background chapter where we briefly describe
the Gaussian process, regression problem and regression with the Gaussian process.
Choice of an appropriate kernel is one of the key issues while modelling with the
Gaussian process. In this chapter, we briefly describe some commonly used kernels.
We also mentioned about hyperparameter learning. Why and which kernel could be
an appropriate choice while modelling the transcription factor activity using Gaussian
process will be justified at the later section of this chapter.

Chapter 4: We note that the TFA model with Markov property proposed by
Sanguinetti et al. (2006) is a linear Gaussian model which is equivalent to a Gaussian
process model with a particular covariance function. We, therefore, build a model
directly from the Gaussian process perspective to achieve the same effect. In this chapter,
we design a covariance function for reconstructing transcription factor activities given
gene expression profiles and a connectivity information between genes and transcription
factors. We introduce a computational trick, based on a judicious application of singular
value decomposition, to enable us to efficiently fit the Gaussian process in a reduced
‘TF activity’ space.

Chapter 5: Amyotrophic lateral sclerosis is an irreversible neurodegenerative
disorder that kills the motor neurones and results in death within 2 to 3 years from the
symptom onset. The speed of progression for different patients is heterogeneous with
significant variability. Transgenic mice from different backgrounds showed consistent
phenotypic differences for disease progression. We used a hierarchy of Gaussian
processes to model condition-specific and gene-specific temporal covariances. In this
chapter, we develop a new clustering method that allows each cluster to be parametrized
according to whether the behaviour of the genes across conditions is correlated or anti-
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correlated. By specifying the correlation between such genes, we gain more information
within the cluster about how the genes interrelate. This chapter also includes the gene
enrichment score analysis and KEGG pathway analysis that we used for our clustering
analysis results for biological validation.

Chapter 6 The final chapter concludes this thesis by summarising the achievements
highlighting its novelties. It also raises some important questions that need to be
considered in the future.

1.8 Notation, Symbols and Acronyms

1.8.1 Notation

The matrix X ∈ RN×m represent the data space, where each row corresponds to a
observed data points to a data feature or dimension. Unless otherwise defined, we
denote yi is the row of the data matrix and y:,j is the column of the data matrix. yi,j

is the single scalar element from ith row and jth column.

X =

data features︷ ︸︸ ︷
x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m
...

... . . . ...
xN,1 xN,2 · · · xN,m


 data points

In the above matrix there are N rows and m columns. Similarly, yi represent the ith

row and y:,j represent the jth column of the matrix Y.
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1.8.2 Symbols

Throughout this paper, all vectors are represented with boldface lower-case symbols
(e.g., x) and matrices with bold upper-case symbols (e.g., K) unless otherwise specified

R The set of real numbers

x A vector

xi The ith element of the vector x

x⊤ The transpose of the vector x

θ A set of hyperparameters

0 A vector of zeros

diag
(
x⊤) A diagonal square matrix with the elements of the vector x along its

main diagonal

Aij The element from ith row and jth column of the matrix x

I The identity matrix

|A| Determinant of the matrix A

A−1 The inverse of the matrix A

A⊤ The transpose of the matrix A

GP (., .) Gaussian process

N (µ,Σ) Gaussian distributions with mean µ and covariance Σ

N (.|µ,Σ) Probability distributions of Gaussian random variables with mean µ
and covariance Σ

∼ distributed according to the mentioned probability distribution

E [x] expectation of the random variable x

Γ (.) Gamma function
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1.8.3 Acronyms

cDNA Complementary Deoxyribonucleic Acid
C. elegans Caenorhabditis elegans
ChIP Chromatin Immunoprecipitation
DIC Differential Interference Contrast
DMI Differential Multi Information
DNA Deoxyribonucleic Acid
EDGEdb C. elegans Differential Gene Expression Database
GO Gene Ontology
GP Gaussian process
GPLVM Gaussian process Latent Variable Model
GPy A Gaussian processes framework in python
KEGG Kyoto Encyclopedia of Genes and Genomes
LLS Log Likelihood Score
LPF Local field potential
LVM Latent Variable Model
mRNA messenger Transfer Ribonucleic Acid
ORA Overrepresentation Analysis
PCA Principal Component Analysis
PLS Partial Least Squares
PPCA Probabilistic Principal Component Analysis
RBF Radial Basis Function
RMI Renyi Mutual Information
RMSE Root Mean Square Error
RNA Ribonucleic Acid
RT-PCR Reverse Transcription Polymerase Chain Reaction
SE Squared Exponential
SVD Singular Value Decomposition
TF Transcription Factor
TFA Transcription Factor Activity
TFBS Transcription Factor Binding Sites





Chapter 2

Probabilistic TFA of C. elegans

The data – information – knowledge – wisdom (DIKW) hierarchy is one of the funda-
mental and widely recognised hierarchy in information and knowledge literature. This
hierarchy contextualises data, information, knowledge and wisdom, on one another to
identify and describe the processes involved in the transformation of the lower level
entity of the hierarchy to a higher level one (Rowley (2007)). The increasing availability
of very high-dimensional data, with diverse characteristics and growing complexity,
play a vital role in the recent advancement of machine learning techniques. Figure
2.1 shows some example of high-dimensional data from different domains, types and
nature.

Data from the real world suffer from quality issues for various reasons. Acquisition
errors are very likely to be included even in a controlled environment. Dealing with noise
or added uncertainty of the data is troublesome. Within the constraints, probabilistic
modelling is the dominant approach with added flexibility and capability to deal with
uncertainty.

2.1 Motivation behind the study of TFA

In the consequences of diverse internal and external stimuli, cellular life must respond
and recognise appropriately. Gene expression that is the conversion of abstract coded
biological information preserved inside the DNA to a concrete physiologically active
proteins is tightly regulated. With very few minor exceptions all cell types in a
multicellular organism contain the same genetic information. Any individual cell
type expresses only a unique subset of the total number of distinct genes for that
specific organism. Differentially expressed genes are specified by unique epigenetic
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Fig. 2.1 Examples of high dimensional data: different types and nature. Left: 3D
model of a protein structure. Centre: Multiple samples of hand written digits from
MNIST dataset. available at http://yann.lecun.com/exdb/mnist/. Right: Multiple
image patches from breast cancer, liver, gastric mucosa, bone marrow connective tissue,
kidney tissue for virtual microscopy (Wienert et al. (2012)).

information. This information is present in the particular cell and which also determines
its phenotype Alberts et al. (2002); Keller (1994).

For most of the genes, control at the first step of expression, transcription, is
pivotal. The transcription profile is a highly preferable parameter for the recognition
of a distinct cell type. In general, a complex biological regulatory network controls
the differential gene expression, in which particular transcription factors relay the
signals to specific target genes. Among these transcription factors, many of them are
DNA-binding proteins, which bind to regulatory DNA elements located cis to the
target genes.

Transcription factors play a crucial role in the transcriptional regulation of gene
expression, and it allows to alter the cell growth patterns (in eukaryotes) in diverse
ways Phillips and Hoopes (2008); Takahashi and Yamanaka (2006). There are two
types of transcription factors; the first one is general transcription factors and the
second one is sequence-specific transcription factors. General transcription factors, also
known as basal transcription factors, usually acts in corporation with RNA polymerase
II and transcribe a large number of genes Lee and Young (2000). The sequence-
specific transcription factors bind to specific subsets of target genes, leading to distinct
spatiotemporal structures of gene expression. Due to the complexity of transcriptional
control, the critical role of this kind of transcription factors has been overlooked in
many occasions Kadonaga (2004). Measuring the gene expression level systematic
gene expression quantification of DNA microarray has been available for a couple of
decades Schena et al. (1995). DNA microarray experiments allowed to describe the

http://yann.lecun.com/exdb/mnist/
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genome-wide expression level changes both in health and disease state. The result of
microarray experiments also stimulates the methodological development of diagnosis
and prognosis of different diseases. The advancement of genome-wide identification of
TF-binding sites instigates the development of chromatin immunoprecipitation (ChIP)
followed by microarray (ChIP-on-chip, also known as ChIP-chip) Horak and Snyder
(2002); Ren et al. (2000) and ChIP-sequencing (ChIP-seq) technologies Johnson et al.
(2007).

The transcriptional regulatory system plays a pivotal role in controlling many
biological processes, ranging from cell cycle progression Simon et al. (2001) and main-
tenance of intracellular metabolic and physiological balance, to cellular differentiation
and developmental time courses Dynlacht (1997) by ensuring the correct expression of
specific genes. A number of diseases emerge from a breakdown in the regulatory system:
transcription factors are over-represented among oncogenes Furney et al. (2006), and
almost one-third of human developmental disorders have been ascribed to dysfunc-
tional TFs Boyadjiev and Jabs (2000). Even alterations in the activity and regulatory
specificity of transcription factors are likely to be a primary reason for evolutionary
adaptation and phenotypic diversity De et al. (2008). Indeed, recent research and study
have already proved that increased sophistication of the transcriptional regulatory
system seems to have been a key requirement for the emergence of metazoan life Levine
and Tjian (2003). So inferring the dynamics of transcription factors activities might
play a significant role to obtain a deeper insight into the gene regulatory network.

2.1.1 Why is it Complicated?

The coordinated gene expressions drive a number of cellular processes. This coordination
is partially regulated by interactions between transcription factors and sequence-specific
DNA elements, also known as transcription factor binding sites (TFBS). Transcriptional
regulation is not an isolated process but coregulated in a highly interconnected gene
regulatory network consisting of hundreds of transcription factors, their target promoters
and also co-regulators Geertz and Maerkl (2010). Transcription factor binding and
transcription factors activities are regulated on several stages. The initial and most
fundamental order of regulation is achieved by the preferential binding of a transcription
factor to specific DNA sequences. Higher orders of regulation and activities are
accomplished by post-translational modifications of transcription factor domains or
binding of different co-regulators. These alterations, in turn, can modulate the activity
and cellular location of a transcription factor Tzamarias and Struhl (1994).
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It is the specific binding of transcription factors that determine in large part
the connectivity of gene regulatory networks and also the quantitative level of gene
expression Gertz et al. (2009). Genetic variations in transcription factor binding
sites are frequently associated with differences in transcription among individuals,
highlighting the necessity of precise characterization Kasowski et al. (2010). Thus,
in-depth characterization of TFA on a genome-wide level is pivotal to understand the
transcriptional regulation process.

2.1.2 Why do we need to study TFA?

To build a transcriptional regulatory network, it may appear that knowledge of par-
ticular biomedical functions of transcription factors are not important. Even with
some naive assumptions, it may appear that promoters or repressors regulate the
transcription process similarly under similar condition. However, these assumptions
can’t be considered as general rules as it already reported that transcription factor DNA
binding events might not follow the exact or defined biological regulatory mechanism.
Such as, in a study, Turcotte and Guarente (1992) reported that in different mutants of
yeast HAP1 positive control could selectively affect different gene expressions. Using
comparative genomics and functional scanning of transgenic mice Menke et al. (2008)
showed how the transcription factor TBX4 plays a pivotal role in hindlimb and vascular
development. They showed a group of enhancers control the gene expresses level in
different tissues. Genomic analysis also showed the relationship between transcription
factor binding events and transcription factors from genes affected by the mutation.
Hughes and de Boer (2013) explained even further where they reported about the role
of cofactors during the transcriptional mechanism. Only understanding of condition
specific activation, noise presence in the data or transcriptional cascades is not enough
to grasp the actual understanding of these phenomena. Therefore, to dissect the
regulatory mechanisms and gaining a better insight the complete index of transcription
factor activities and its interacting partners would be invaluable.

2.2 Latent Variable Model

Latent variable models (LVMs) (Bishop (1999)) explain complex relations between
multiple variables providing the connection between the variables and an underlying
unobservable, i.e. latent structure. Latent variables are typically included in statistical
models for different statistical concepts, including the representation of unobservable
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factors/covariates, missing data, random effects, finite mixtures, variations in hierar-
chical data, clusters and many more. Figure 2.2 shows an analogy of latent variable
model where a marionette’s different movement and dynamics are observed, whereas
these movements are taking place or controlled by the puppeteer. The dynamics of the
puppeteer is usually unobserved.

A set of latent (hidden or directly not observable) variables X that can be related to
the observed variables Y defines by a joint distribution over both. The latent space is
controlled by a prior distribution p (X) over the distribution of Y under the assumption
of a probabilistic mapping of the form

yi,j = fj (xi) + ϵi, (2.1)

where i = 1 . . . q and j = 1 . . . p, xi ∈ Rq is the latent point associated with the ith

observation yi ∈ Rp, j is the index of the features of Y. Inaccuracy of the model and
the noise of the data is modelled by the additional noise parameter ϵi. Typically it is
assumed that the noise has a Gaussian distribution ϵi ∼ N (0, β−1), where the term β

is the precision.

We can map f of Equation 2.1 as linear and equal to a matrix W ∈ Rp×q. Then
we can rewrite as

yi,j = wjxi + ϵi, (2.2)

where wj are the rows of W. This model recognized as probabilistic version of principal
component analysis (PPCA) (Roweis (1998); Tipping and Bishop (1999)).

Given that the prior distribution over the latent variables has a Gaussian distribution,
the precision β tends to infinity, PCA is recovered in the limit. The conditional
probability of data given the latent space is

p (yi|xi,W, β) = N
(
yi|Wxi, β

−1I
)
. (2.3)

If we consider the data points are independent, then the marginal likelihood of the
data is obtained by

p (Y|W, β) =

∫ N∏
i=1

p (yi|xi,W, β) p (xi) dx. (2.4)

where N is the total number of data. Even for finite precision β the maximum
likelihood solution for W spans the principal sub-space of the data (Tipping and
Bishop (1999)). This approach can be applicable for both linear (e.g. Silva et al. (2005))
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Fig. 2.2 Marionette analogy of latent variable model: Marionette’s different dynamics
are observed (represented by Y). But these movements are controlled by the puppeteer’s
control bar which is unobserved (dynamics represented by X).

and non-linear (e.g. GP-LVM by Lawrence (2005)) models. The classical approach while
dealing with these latent variables is to marginalised them. Then other parameters are
optimized using the maximum likelihood. Lawrence (2005) used an alternative but
similar approach by first marginalising the parameters and then optimizing the latent
variables.

2.3 Bayesian Modelling

Many facets of Bayesian modelling are widely used in machine learning for various kind
of problem solutions. Bayesian models are very much dependent on two elementary
probability operations. One is ‘conditioning’and another is ‘marginalization’. Bayes’
formula has a ‘double use’of the joint probability density as the product of conditional
and marginal densities. Let m1 and m2 be two continuous variables and their normalized
probability density is p (m1,m2). By definition, the marginal probability density for
m1 is obtained by integrating m2 out, we have

p (m1) =

∫
p (m1,m2) dm2 (2.5)

and the marginal probability density for m2 is obtained by integrating m1 out

p (m2) =

∫
p (m1,m2) dm1. (2.6)
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The conditional probability of m1 for given m2 is

p (m1|m2) =
p (m1,m2)∫
p (m1,m2) dm1

=
p (m1,m2)

p (m2)
(2.7)

and the conditional probability of m2 for given m1 is

p (m2|m1) =
p (m1,m2)∫
p (m1,m2) dm2

=
p (m1,m2)

p (m1)
. (2.8)

From Equation 2.7 we have

p (m1,m2) = p (m1|m2) p (m2) (2.9)

and From Equation 2.8 we have

p (m1,m2) = p (m2|m1) p (m1) . (2.10)

Now from Equation 2.9 and Equation 2.10 we can write

p (m1|m2) p (m2) = p (m2|m1) p (m1) . (2.11)

Then Bayes’ rule can be obtained by

p (m1|m2) =
p (m2|m1) p (m1)

p (m2)
=
p (m2|m1) p (m1)∫
p (m1,m2) dm1

. (2.12)

where the unconditioned p (m1) is called the prior to get the idea even before the
observation of m2. The conditional density p (m2|m1) is the likelihood, p (m2) is the
marginal likelihood and the conditioned density p (m1|m2) is the posterior. The
marginal likelihood p (m2) is independent of m1 and used as a normalizing constant.

2.4 Modelling Transcription Factor Activities

Modelling transcription factor activities can be seen as latent variable modelling. We
can observe the gene expression level, but these expression levels are regulated by
protein-coding genes that bind to a specific DNA sequence and controls the production
rate of mRNA. These gene expression levels are analogous to the movement of the
marionette (Figure 2.2), but the transcription factor’s activity is unobservable like the
puppeteer’s control bar which controls the gene expression levels.
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In recent years an idea that has gained a lot of interest to infer the regulatory
mechanism from the expression levels of genes. There has been a wealth of research on
microarray data. A number of methods (Alter and Golub (2004); Gao et al. (2004);
Liao et al. (2003)) aim to infer a matrix of transcription factor activities (TFAs). These
TFAs can be summed up in a single number at a certain experimental point to find
the concentration of the transcription factor and its binding affinity to its target genes.
A variety of approaches has been proposed to infer these TFAs. For example, Liao
et al. (2003) developed a data decomposition technique with dimension reduction and
introduced the concept of ‘network component analysis’. This method takes account
of the connectivity information by imposing algebraic constraints on the factors. They
argued that classical statistical methods such as principal component analysis and
independent component analysis, do not consider the underlying network structure
while computing low dimensional or hidden representation of a high-dimensional data
sets like DNA microarray.

Alter and Golub (2004) used a dimension reduction technique (singular value
decomposition) to figure out TFAs and also the correlation between DNA replication
initiation and RNA transcription during the yeast cell cycle. Using multivariate
regression and backward variable selection to identify active transcription factors Gao
et al. (2004) targeted the same; Boulesteix and Strimmer (2005) used the partial
least squares (PLS) regression to infer the true TFAs from a combination of tRNA
expression and DNA-protein binding measurement. A major drawback of the methods
mentioned above is that transcription factor activities do not hold any information
regarding the strength of the regulators’ interactivity between the transcription factors
and its different target genes. It is expected that depending on the experimental
conditions the transcription factor activities can vary from gene to gene. It is also
expected that different transcription factors may bind to the same gene. In most
cases, realistic information about the intervals may not be true as they were not based
on the fully probabilistic model. Moreover, false positives are always a problem for
connectivity data, typically a significant portion of ChIP data suffers from it (Boulesteix
and Strimmer (2005)). Furthermore, due to the various cellular process or changes in
environmental conditions the structure of the regulatory network of the cell can change
considerably. Using regression-based methods, it is difficult to track these changes.
Nachman et al. (2004) built a probabilistic model, using the basic framework of dynamic
Bayesian networks based on discrete random variables for protein concentrations and
binding affinities. Though the model was more realistic, the computational complexity
for genome-wide analysis can be expensive.
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2.5 Our Goal

In this chapter we will build a dynamical model that extends the linear regression
model of Liao et al. (2003) and probabilistic model of Sanguinetti et al. (2006) to model
the distribution of each transcription factor acting on each gene from a multicellular
eukaryote (C.elegans). By nature, this model will be a latent variable model which
will be developed based on probabilistic approach. Our first target is to construct
an open source tool by implementing this approach in R programming language and
made available by GitHub1. Then in Chapter 4 we will generalize the approach using
Gaussian process (A Gaussian process is a collection of random variables and where
the random variables have a normal distribution and it is associated with every single
point in a range of times or of space. In Chapter 3 we introduce a formal description
of Gaussian process.) to model the temporal changes from time-series gene expression
data. The covariance structure of the transcription factors will be shared among all
genes. This will lead to a manageable parameter space and will figure out useful
information about the correlation of TFAs.

2.6 Probabilistic TFAs

We developed our R programming language based tools ChipDyno using the proba-
bilistic approach of Sanguinetti et al. (2006). In the following section, we will briefly
describe this approach.

The logged gene expression measurements are collected in a design matrix, Y ∈
RN×d where N is the number of genes and d is the time points or number of experiments.
The binary matrix X ∈ RN×q is the connectivity measurements, where q is the number
of transcription factors. We assume that Xi,j is ‘1’if transcription factor j can bind
gene i, ‘0’otherwise.

Sanguinetti et al. (2006) used a latent variable model (as we described in Section:
2.2). TFAs were obtained by regression from the gene expressions using the connectivity
information, given the following linear model

yn = Bnxn + ϵn (2.13)

Here n = 1, ..., N indexes the gene, yn = Y(n, :)⊤, xn = X(n, :)⊤ and ϵn is an error
term. The matrix Bn has d rows and q columns, and models the gene specific TFAs.

1GitHub is a Web-based repository hosting service and source code management platform.
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Different TFAs for every individual gene will increase number of model parameters
drastically. This huge parameter space can be dealt through marginalization by prior
distribution on the rows of Bn. Yet, two physically plausible assumptions for selecting
the prior distribution will be helpful to determine the gene specific TFAs.

• The first assumption: bnt has the Markov property (Appendix A, Section A.4)
and hence gene specific TFA bnt at time t depends exclusively on the gene specific
TFA at time (t− 1).

• The second assumption: the prior distribution to be stationary in time.

In order to support these assumptions, there will be two limiting cases for prior
distributions. Let’s first assume all the bnt are identical for all t. Then the first limiting
case is

bn1 ∼ N (µ,Σ), (2.14)

and
bn(t+1) ∼ N (bnt,0). (2.15)

If the experimental dataset comes by replicating a condition then this model is an
appropriate one. The second limiting case appears when all the bnt are independent
and identically distributed (iid)

bnt ∼ N (µ,Σ). (2.16)

This is the case when experimental dataset comes from independent samples drawn
without any temporal order.

Sanguinetti et al. (2006) expected a realistic model of time series data to be
somewhere in between these two extremes (Equation 2.14, Equation 2.15 and Equation
2.16)

bn(t+1) ∼ N (γbnt + (1− γ)µ, (1− γ2)Σ) (2.17)

for t = 1, ..., (d− 1) and bn1 ∼ N (µ,Σ) where γ is a parameter measuring the degree
of temporal continuity of the TFAs. If genes are independent for a given TFA then the
likelihood function is given by

p (Y|B,X) =
N∏

n=1

p (yn|Bn,xn) . (2.18)
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Considering Gaussian noise ϵn ∼ N (0,σ2I) we have

p (yn|Bn,xn) = N
(
yn|Bnxn,σ

2I
)
. (2.19)

Factorizing the likelihood along the experiments with the assumption of spherical
Gaussian noise distribution, we can rewrite the Equation 2.18 as

p (Y|B,X) =
d∏

t=1

N∏
n=1

p (ynt|bnt,xn) (2.20)

where
p (ynt|bnt,xn) = N

(
ynt|b⊤

ntxn, σ
2
)
. (2.21)

Using the classical approach of latent variable model analysis, a marginal likelihood
for the observations can be obtained by

p (yn|σ,Σ,µ, γ,xn) =

∫ d∏
t=1

N
(
ynt|b⊤

ntxn, σ
2
)

×

(
d∏

t=2

p
(
bnt|bn(t−1)

))
N (bn1|µ,Σ) dbnt.

(2.22)

TFAs can be estimated a posteriori using Bayes’ theorem (we briefly described
Bayesian modelling using marginalization and conditioning of probability density in
Section 2.3)

p
([

b⊤
n1,b

⊤
n2, . . . ,b

⊤
nd

]⊤ |σ,Σ,µ, γ,X,Y
)
= N

(
b̄n,Σbn

)
(2.23)

where the posterior covariance is given by

Σbn =


A1 B 0 0

B A . . . 0

0 B . . . B

0 0 . . . Ad


−1

, (2.24)

where
A1 = Ad = σ−2xnx⊤

n +
(
1− γ2

)−1
Σ−1

A = σ−2xnx⊤
n +

(
1 + γ2

) (
1− γ2

)−1
Σ−1
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B = −γ
(
1− γ2

)−1
Σ−1,

and posterior mean is given by

b̄n = Σbn


σ−2y1x + 1

1+γ
Σ−1µ

σ−2y2x + 1−γ
1+γ

Σ−1µ
...

σ−2ydx + 1
1+γ

Σ−1µ

 . (2.25)

The detail explanation of this model is available at Sanguinetti et al. (2006).

2.7 Dataset

Sanguinetti et al. (2006) did their experiments on yeast cell cycle data of Spellman et al.
(1998) which is a unicellular microorganism. Our first research question is “can we step
forward to find out the transcription factor activities from a unicellular microorganism
to a multicellular eukaryote?”.

In 1965, Sydney Brenner introduced C. elegans as a model organism to study the
behaviour and development of animal (Brenner (1974)). It is a eukaryote and it shares
cellular and molecular structures and control pathways with higher organisms. To
elucidate pathways and processes relevant to human biology and disease C. elegans
play a vital model. We provided introductory information about this model organism
in Chapter 1. To find out the TFAs of C. elegans we had to work with three type of
dataset

1. Gene expression time series data

2. A list of transcription factors

3. Connectivity information between genes and transcription factors.

2.7.1 Gene Expression Time series data

The gene expression Affymetrix single colour GeneChip data2 on point estimate of
expression level is the source of our gene expression time series data.

2We would like to acknowledge Professor Andrew Cossins, Institute of Integrative Biology, University
of Liverpool, UK for providing us the data set with valuable information and also for the permission
for further analysis of the data.
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Fig. 2.3 Temperature and time settings for the gene response to chill exposure experi-
ments: ‘Pre1d ’- The first experimental data within one day of C. elegans ’s adulthood
at the temperature 20 ◦C. ‘1h ’- second experimental data were collected after one
hour of the reduction of the temperature to 5 ◦C. ‘1d ’- Third experimental data were
collected after 24 hours of the temperature reduction to 5 ◦C. ‘3d ’- Fourth experimental
data were collected after 72 hours of the temperature reduction. ‘Post1d ’- The fifth
experimental data were collected after one day of the rise of the temperature to 20 ◦C.

To extract this data we used a Bioconductor3 package puma (Pearson et al. (2009)).
puma can extract the gene expression level with estimates of uncertainty. In the wet
laboratory, the experiments were done at five different stages (i.e. our gene expression
time series dataset will have five time points). The main goal of the experiments in
the wet laboratory was to investigate the chilling effect and identify the cold tolerance
phenotype of C. elegans. We used the gene response to chill exposure as gene expressions.
Figure 2.3 shows the temperature and time settings. In the experimental setup, all
the environmental conditions apart from the temperature were same with the target
of consistent result. The first experimental data was collected within one day of C.
elegans ’s adulthood at the temperature 20 ◦C. To measure the gene response to chill
exposure the temperature was reduced to 5 ◦C and second experimental data was
collected after one hour of the reduction of the temperature. Third experimental data
was collected after 24 hours (1 day) of the temperature reduction. Fourth experimental
data was collected after 72 hours (3 days) of the temperature reduction. After the
fourth data collection the temperature was brought back to 20 ◦C. The fifth or final
experimental data was collected after one day of the rise of the temperature. In the
wet lab, the full experiment was repeated twice maintaining the similar setup. So,
three independent replicates of the experiments were available.

Figure 2.4 shows few examples of gene expression time series data extracted from
Affymetrix Microarray data. We annotated the Affymetrix ProbeID and found the

3The Bioconductor project is an open source software framework to assist biologists and statisticians
working in bioinformatics
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Fig. 2.4 Gene expression time series data extracted from Affymetrix Microarray data.
We can annotate the Affymetrix ProbeID and find the related Genes symbols. Here
in any individual plot, the title of each figure shows the Affymetrix ProbeID, x-axis
represents time and y-axis represents the extracted gene expression level. The dotted
lines represent the gene expression over time. We had three replications of data
obtained from three separate experiments with the same experimental condition setup.
The solid line represents the mean value of the gene expression level.
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Fig. 2.5 Principal component analysis of gene expression time series data. Figure on the
left shows the puma PCA which incorporates the uncertainty of the point expressions.
Figure in the right shows the standard PCA which does not include any uncertainty of
the point-expressions. It appears from these two figures that both of them have a very
similar representation. This means that the uncertainty of the point-expressions does
not have a significant effect on point expressions, it also proves the higher quality of
the data.
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related Genes symbols. As we had three replications of data from three separate
experiments, we extracted them separately and termed as experiment 1, 2 and 3. The
solid line represents the mean value of the gene expression level.

Figure 2.5 shows the PCA analysis of the gene expression time series data. The
puma PCA incorporates the uncertainty of the point expressions and the standard
PCA does not include any uncertainty of the point expressions. Both figures have a
very similar representation. This means that the uncertainty of the point expressions
does not have a significant effect on point expressions. As the added uncertainty does
change the standard PCA a lot, we can say the quality of the data is very high.

2.7.2 Transcription Factors

From different data sources, we found different number/list of transcription factors for
C. elegans. Inmaculada et al. (2007) built a database named C. elegans differential gene
expression database (EDGEdb), which contains the sequence information about 934
predicted transcription factors and their DNA binding domains. Initially, we took these
934 transcription factors for our baseline experimental setup, but tool ChipDyno can
deal with any number of transcription factors depending on the requirement/update of
the sequence information of transcription factors.

2.7.3 Connectivity Information

Network motifs are the simplest units of transcriptional regulatory network’s architec-
ture. A particular regulatory mechanism such as positive and/or negative feedback
loop can be well studied by these network motifs. Network motifs can grow in numbers
and complexity based on size and nature. Autoregulation, multi-component loop, single
input, multiple inputs, feedforward and regulators chain are some of the simplest and
well-known network motifs. Figure 2.6 shows their representation. Xie et al. (2005)
used motif conservation information for higher organisms like human, dog, rat and
mouse. For promoter analysis, they considered a number of network motif (also known
as transcription factor binding sites) and also some new motifs. These type of data,
termed as connectivity data by Liao et al. (2003), provide information about whether a
certain transcription factor can bind the promoter region of a gene or not.

WormNet (2015) is a gene network of protein-encoding genes for C. elegans based
on probabilistic function and modified Bayesian integration. They have considered
15,139 genes and 999,367 linkages between genes associated with a log-likelihood score
(LLS). These measured scores represent a true functional linkage between a pair of
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Fig. 2.6 Basic types of network motif: (a) autoregulation, (b) multi-component loop,
(c) single input motifs, (d) regulators chain, (e) multiple inputs and (f) feedforward
motifs. Here green ovals represents regulators and orange rectangles represents gene
promoters. Solid lines represent binding of a regulator to a promoter while dashed
arrow represents gene encoding regulators binding their respective regulators.

genes (Lee et al. (2007)). The linkage between two genes was measured based on the
evidence codes shown in Table 2.1.

We constructed the connectivity matrix between genes and associated transcription
factors from the gene to gene linkage and log-likelihood scores. Initially, we chose
co-expression among worm genes (CE-CX), high-throughput yeast 2-hybrid assays
among worm genes (CE-YH), literature curated human protein physical interactions
(HS-LC) and high-throughput yeast 2-hybrid assays among human genes (HS-YH) to
start our experiments. If needed we can consider any of the evidence to reconstruct
the connectivity matrix. From the gene list, we picked the protein-coding genes (i.e.
transcription factors) and later binarized it. If there is an associated LLS value between
a gene and a transcription factor, we set the value ‘1’and ‘0’otherwise.

2.8 Result Analysis

We developed R programming language based implementation of the ChipDyno algo-
rithm to identify the quantitative prediction of regulatory activities of the gene specific
TFA through posterior estimation. The ChipDyno User Guide4 explains different

4ChipDyno User Guide is available at GitHub.
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Gene1 - Gene2 Evidence for interaction

CE-CC Co-citation of worm gene

CE-CX Co-expression among worm genes

CE-GN Gene neighbourhoods of bacterial and archaeal orthologs of
worm genes

CE-GT Worm genetic interactions

CE-LC Literature curated worm protein physical interactions

CE-PG Co-inheritance of bacterial and archaeal orthologs of worm genes

CE-YH High-throughput yeast 2-hybrid assays among worm genes

DM-PI Fly protein physical interactions

HS-CC Co-citation of human genes

HS-CX Co-expression among human genes

HS-DC Co-occurrence of domains among human proteins

HS-LC Literature curated human protein physical interactions

HS-MS human protein complexes from affinity purification/mass spec-
trometry

HS-YH High-throughput yeast 2-hybrid assays among human genes

SC-CC Co-citation of yeast genes

SC-CX Co-expression among yeast genes

SC-DC Co-occurrence of domains among yeast proteins

SC-GT Yeast genetic interactions

SC-LC Literature curated yeast protein physical interactions

SC-MS Yeast protein complexes from affinity purification/mass spec-
trometry

SC-TS Yeast protein interactions inferred from tertiary structures of
complexes

Table 2.1 Gene linkage evidence code from WormNet (2015).
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Fig. 2.7 Inferred transcription factor activity of ZK370.2 from gene expression time
series data: x-axis represents time and y-axis represents the level of gene expression.
The dotted lines represent the gene expressions over time. We had three replications
of data obtained from three separate experiments with the same experimental setup.
The solid line represents the inferred transcription factor activity. The title of each
figure showing the name of the gene and correlation between gene expression level
(experiment 1) and transcription factor’s activity on that specific gene.
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functionality of this tool and working pathway. There is no established benchmark or
baseline, nor a known ground truth to compare with our results of gene specific TFA
for C. elegans.

According to WormNet (2015) the number of genes of C. elegans is 15,139 and
Inmaculada et al. (2007) presented 934 transcription factors. All the network motifs,
i.e. autoregulation, multi-component loop, feed forward loop, single input, multi-input
motif and regulator chain were visible for transcription factor activity. So it was a
mammoth task to choose all the transcription factors and show their activity. Rather
we chose some random transcription factors and find out their activity on different
genes.

As a random example, we chose transcription factor ZK370.2 and inferred its
activity on different genes. Figure 2.7 shows that transcription factor ZK370.2 can
regulate C37C3.2, Y105E8B.3, Y45F10B.3, C34F11.3, F26E4.6 and T24G10.2. We
investigated the correlation between the inferred transcription factor activity with gene
expression level. The title of each figure (in Figure 2.7) shows the name of the gene
and correlation between gene expression level (experiment 1) and transcription factor’s
activity on that specific gene. We noticed for few cases the correlation was quite high
(i.e. 0.932 for gene F26E4.6), but for some genes, the correlation was significantly
low (i.e. 0.176 for Y105E8B.3). We had three replicates of same experimental setup
and their outcomes. We performed our in-silico experiments for individual replicates
and collected the results. Later we presented all the outcome together by plots as
shown in Figure 2.8. From our experimental results we can say that the dynamics for
some of the gene specific regulations (i.e. F26E4.6 and T24G10.2) are very flat and
not that much informative, but for some genes, TFAs varies notably over time (i.e.
C37C3.2 and Y45F10B.3). These are the genes which are regulated significantly by
this transcription factor. For some cases (e.g. gene C34F11.3) the error bar is quite
high. These are the examples of bindings where the regulation is insignificant or false
positive. The magnitude of TFA also differs from one to another. We picked another
random transcription factor T20B12.8.3. Figure 2.9 shows its activity on different
genes.

We have also investigated the impact of gene knock-out and how can it play a
role to infer the gene-specific transcription factor activity. As we mentioned earlier,
transcription factor ZK370.2 can regulate gene C37C3.2, Y105E8B.3, Y45F10B.3,
C34F11.3, F26E4.6 and T24G10.2. So, we considered gene expressions of all these
genes while inferring the gene-specific transcription factor activity of ZK370.2. Then
for our investigation, we knock-out a gene (C37C3.2 in this example) and inferred the
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Fig. 2.8 Gene specific transcription factor activity of ZK370.2 on (top left to right)
C37C3.2, Y105E8B.3, Y45F10B.3 and (bottom left to right) C34F11.3, F26E4.6,
T24G10.2. x-axis represent the time stage of the experiments, and y-axis represent the
gene expression level for transcription factor activities. Three different lines represent
TFA for three replicates and red vertical lines are error bars.
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Fig. 2.9 Gene Specific transcription factor activity of T20B12.8.3 on (top left to
right) F46A8.7, F55C9.11, R13A1.1 (bottom left to right) F10G8.6, Y106G6H.5 and
Y71H2AM.5. x-axis represent the time stage of the experiments, and y-axis represents
the gene expression level for transcription factor activities. Three different lines
represent TFA for three replicates, and red vertical lines are error bars.
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Fig. 2.10 For a specific transcription factor (ZK370.2) effect of gene knockout on other
genes. ZK370.2 can transcribe a number of genes, and one of them is C37C3.2. Here
we inferred the transcription factor activates of other genes before and after knockout
of gene C37C3.2. x-axis represents time, and y-axis represents transcription factor
activates. The title of each figure shows root mean square error (RMSE) between the
transcription factor activities before and after gene knockout.
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Gene Name Regulators activity

C44B12.5 Y116A8C.35 = 1.719797± 3.493205,
F33A8.3 = 1.415785± 3.492985

Y105E8B.3 Y54G2A.1 = 0.07157665± 1.2222137
F33D11.12 = 0.03861905± 0.7252534
ZK370.2 = −1.20157055± 2.0318513

Y105E8B.3 T20B12.8 = 0.25474933± 2.5665869
F33A8.3 = 0.11619828± 3.5107742
Y116A8C.35 = 0.03289664± 3.8071374
F11A10.2 = 0.03016348± 1.7737585
C16A3.7 = 0.01883489± 0.9431105

Table 2.2 Example of genes regulated by multiple transcription factor.

transcription factor activity again. Figure 2.10 shows the impact of gene knock-out
on gene-specific transcription factor activates. We have also measured the root mean
square error (RMSE) between the transcription factor activities for a specific gene
before and after gene knockout. Titles of the Figure 2.10 shows the value. Coregulated
gene expression might be the main reason for varying these root mean square errors
from a very low value to high one. So, if two genes are coregulated, and we knock out
one of them, then we can expect a higher root mean square error. While if there is no
relation between two genes then we can expect a lower root mean square error.

2.8.1 Gene With Multiple Regulators

For the case of a multi-input motif, a single gene could be regulated by multiple
transcription factors. Our developed tool can determine a posteriori the relative
weight for the different transcription factors regulating the genes. Table 2.2 shows
some examples. Such as, gene C44B12.5 can be regulated by transcription factor
Y116A8C.35 and F33A8.3. While gene Y105E8B.3 is regulated by T20B12.8, F33A8.3,
Y116A8C.35, F11A10.2 and C16A3.7. The expression level can be determined by using
the posterior variance. Though for some cases the expression level is quite low and
noise margin is significantly high (examples of binding with insignificant regulation), we
can find the most significant one by ranking the transcription factor activities. We can
also rank these genes using the ranking method proposed by Kalaitzis and Lawrence
(2011) to rank the differentially expressed gene expressions.
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Fig. 2.11 Clustering gene expression data from microarray sample: Each row corresponds
to a single gene and each column corresponds to a microarray sample. This is an
ordered representation of rows and columns.

2.8.2 Different Clusters And Related Active TF

Clustering of genes is used to identify a set of genes with similar behaviour (i.e. similar
expression level or pattern) over a set of experiments (Eisen et al. (1998)). Clusters
provide an intuitive way to visualise the data and also help to facilitate the functional
annotation of the not yet characterised genes. If an uncharacterized gene belongs to a
cluster, then it could possibly have similar function and may be dominated by genes
of same the function (Pe’er (2003)). Cossins et al. (2007) performed cluster analysis
of genes based on different phenotypes. They constructed the basic clusters with the
following phenotype



48 Probabilistic TFA of C. elegans

Cluster 1 - Chill upregulated: related with cell morphogenesis, cell growth,
regulation of cell size, electron transport regulation of cell growth, generation of pre-
cursor metabolites and energy, anatomical structure morphogenesis, cellular metabolic
process, proteolysis, etc.

Cluster 2 - Chill late upregulated: related with chromosome organisation and
biogenesis, DNA packaging, chromatin architecture chromatin modification, negative
regulation of developmental process, chromatin remodelling, regulation of developmen-
tal process, DNA metabolic process larval development, organelle organisation and
biogenesis, postembryonic development, etc.

Cluster 3 - Chill downregulated genes: related with amino acid and derivative
metabolic process, carboxylic acid metabolic process, organic acid metabolic process,
fatty acid metabolic process, amino acid metabolic process, monocarboxylic acid
metabolic process, etc.

Rest of the genes were placed in the group ‘others’.

Clusters Active TF

1. Chill upregulated 6
2. Chill late upregulated 245
3. Chill downregulated 128
4. Others 203

Table 2.3 Active transcription factor on different clusters.

Figure 2.11 shows the heat map generated from DNA microarray data to reflect
the gene expression values at different temperatures and their basic clusters (Cossins
et al. (2007)). Based on the above clusters, we also find out the active transcription
factors active for different clusters. Table 2.3 shows the number of active transcription
factors for each clusters. For further analysis, we can present the full list.

2.9 Ranking Differentially Expressed Gene Expres-
sions

Kalaitzis and Lawrence (2011) analysed time series of gene expressions and filtered the
quiet or inactive genes from the differentially expressed genes. They developed their
model considering the temporal nature of data using Gaussian processes. We have
used their model to rank our time series gene expressions and ranked them accordingly.
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We ranked the three replicates of our data separately and later determine the Pearson
correlation between the ranking score of different samples.

Figure 2.12 shows the Pearson correlation between ranking scores from different
samples. The correlation coefficient for all three relations (between sample 1 and
sample 2, sample 2 and sample 3 and sample 3 and sample 1) was quite high. This
indicates the similarity of differentially expressed genes and quiet genes of different
samples or replication of time series data. So, if required, based on these ranking
we can easily filter out some of the quiet genes and keep the other genes for further
experiments.

2.10 Discussion

In this chapter, in the beginning, we have defined the latent variable model. Then we
described the probabilistic model of Sanguinetti et al. (2006) as the basis of our tool
ChipDyno.

We have reimplemented the tool ChipDyno using R programming language with
the aim to make it publicly available through GitHub. We used the mathematical
model of Sanguinetti et al. (2006) which integrate the connectivity information between
genes and transcription factors, and transcriptomic data. The probabilistic nature of
the model can determine the significant regulations in a given experimental condition.

Earlier the model was developed for a unicellular microorganism (yeast) but we have
successfully determined the gene-specific transcription factor activity for C. elegans, a
multicellular eukaryote. We were also successful to filtered out the quiet genes from
the differentially expressed genes.

To elucidate pathways and processes relevant to human biology and disease C.
elegans is using as a vital model. Different orthology prediction methods (Shaye and
Greenwald (2011)) are using to compile a list of C. elegans orthologs of human genes.
Already a list of 7,663 unique protein-coding genes has resulted in that list and this
represents 38% of the 20,250 protein-coding genes predicted in C. elegans. When
human genes introduced into C. elegans human genes replaced their homologous. On
the contrary, many C. elegans genes can function with a great deal of similarity to
human like mammalian genes. So, the biological insight acquires from C. elegans may
be directly applicable to a more complex organism like the human.

Lots of computational approaches on gene expression data for time series analysis
are not well suited where time points are irregularly spaced. Even in commonly used
state-space model time points must occur at regular intervals. On the other side gene
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Fig. 2.12 Pearson’s correlation between different ranking scores. For each figure number
at the top right position represent Pearson’s correlation.
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expression experiments with regular samples may not be cost effective or optimal from
the perspective of statistics. It is expected that models with irregular time points might
be more informative if the time points are selected considering some temporal features.
The Gaussian process is not restricted to equally spaced time series data. Already
Gaussian process regression has been successfully applied to overcome this issue and
analyse time series data (Kalaitzis and Lawrence (2011)). So our expected model will
overcome the restriction of temporal sampling of equally spaced time intervals.

The probabilistic dynamical model for quantitative inference of TFA that we
described in this chapter will be used as our basis for the coming chapters. We will
introduce Gaussian process at Chapter 3. In Chapter 4 we will devise a mechanism to
overcome the limitations of this mechanistic model using Gaussian process.





Chapter 3

Gaussian Process Regression

3.1 Brief History of Gaussian Process

The Gaussian process is one of the most widely used families of stochastic processes
for modelling dependent data observed over time, or space, or both together. As a
general setting, Gaussian processes of many types have been studied and incorporated
in research for decades. The Wiener process (e.g. Papoulis (1991), one of the best
known Lévy processes) is a particular type of Gaussian process. The story of using
Gaussian process is still a long one. Kolmogorov (1941) and Wiener (1949) first used
Gaussian process for time series prediction in the 1940’s, probably the history of the
Gaussian process is even older. Indeed the Brownian motion is a Gaussian process too.
This is because the distribution of a random vector is a linear combination of vectors
which follow a normal distribution. Einstein (1905, 1926) investigated the theory of
the Brownian movement. This is Gauss-Markov process. Thorvald N. Thiele was the
first to propose the mathematical theory of Brownian motion. He also introduced the
‘likelihood function’ during the period 1860-1870.

Since the 1970’s Gaussian process have been widely adopted in the field of meteo-
rology and geostatistics. Around that time Gaussian process regression was named
as kriging and used by Matheron (1973) for prediction in geostatistics. O’Hagan
(1978) used Gaussian process in the field of statistics for multivariate input regression
problems. For general purpose function approximators, Bishop (1995) reviewed neural
networks, Neal (1996) showed the link between Gaussian process and neural networks
and in the machine learning context, Williams and Rasmussen (1996) first described
Gaussian process regression.

Over the last two decades, the Gaussian process in machine learning has turned
to a major interest and much work has been done. Perhaps Rasmussen and Williams
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(2006) is the most widely used and cited text on the Gaussian process for machine
learning and most of the literature discussed in the beginning part of this chapter can
be found there in detailed form.

3.2 The Regression Problem

Machine learning problems can be roughly categorised into three basic classes.

1. Supervised learning: inferring a function from labelled training data;

2. Unsupervised learning: finding the hidden structure of unlabelled data;

3. Reinforcement learning: taking action by maximising the cumulative reward.

Supervised learning may be further sub-categorised in two fundamental tasks: regression
and classification. The regression problem deals with estimating the strength of the
relationship among some dependent variables with some independent variables, whereas
classification identifies the desired discrete output levels. Bishop (2006); MacKay (2003);
Rogers and Girolami (2011) described these concepts in detail.

Regression is the task of making a prediction of a continuous output variable at the
desired input, based on a training input-output data set. The input data can be any
types of objects or real-valued features located in RD which have some predictability
for an unobserved location.

By the definition of regression, it is obvious that there will be some inference based
on a function mapping the outputs from a set of given inputs because by inferring a
function we can predict the response to the desired input. In the case of Bayesian
inference, a prior distribution over functions is required. Then the model goes through a
training process and updates the prior, based on the training dataset. Let’s assume the
training data D constructed with N input vectors, such as {X,y}, where X ≡ {xn}Nn=1,
xn ∈ RD are the training inputs and y ≡ {yn}Nn=1, yn ∈ R are the training outputs.
Now a key question arises, how can we define a distribution over an infinite dimensional
object such as a function?

Although using plain and simple statistics, the regression problem can be solved;
the Gaussian process has been proven as a better selection to model a more complex
and specific learning task with improved reliability and robustness. Theoretically,
Gaussian process regression corresponds to Bayesian linear regression with an infinite
number of basis functions. In practice, a finite number of basis functions are used
and the number increase with the size of the dataset. Therefore, we can say Gaussian
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process models are nonparametric. A Gaussian process model can be used as regression
model having an object featuring infinite dimensionality. Gaussian processes have
advanced beyond the regression model and now are used for classification (Nickisch
and Rasmussen (2008); Williams and Barber (1998)), unsupervised learning (Ek et al.
(2008)), reinforcement learning (Deisenroth (2012)) and other related fields in machine
learning.

We assume the outputs in the training dataset generated from an underlying
mapping function f(x) may contain noise. The objective of the regression problem is to
construct f(x) from the data D. This task is ill-defined and dealing with noisy data is
even harder as the reasoning of the uncertainty is required. Hence, a single estimate of
f(x) clearly could be misleading, rather a probability distribution over likely functions
could be much more appealing. A regression model based on the Gaussian process
is a fully probabilistic Bayesian model and will definitely serve for our purpose. In
contrast with other regression models, here we will get the opportunity to choose the
best estimate of f(x). If we consider a probability distribution on functions p(f) as the
Bayesian prior for regression, then Bayesian inference can be used to make predictions
for given data

posterior︷ ︸︸ ︷
p (f |D) =

likelihood︷ ︸︸ ︷
p (D|f)

prior︷︸︸︷
p (f)

p (D)︸ ︷︷ ︸
marginal likelihood

(3.1)

where p (f) is a Gaussian process prior, p (D|f) likelihood, p (D) is the marginal
likelihood and p (f |D) is a posterior process over functions. Chapter 2 Section 2.3
showed how marginalization and conditioning is related to Bayesian analysis.

3.3 Gaussian Process definition

A Gaussian process is a collection of random variables, any finite number of which have
a joint Gaussian distribution (Rasmussen and Williams (2006)). It is a continuous
stochastic process and defines probability distributions for functions. It can be also
viewed as a collection of random variables indexed by a continuous variable. Any
finite set of values from the collection can be written as a vector. Let’s consider
f = {f1, f2, f3, ..., fN} corresponds with indexed inputs X = {x1,x2,x3, ...,xN}. In
Gaussian processes, variables from these random functions are jointly normally dis-
tributed and as a whole can be represented as a multivariate Gaussian distribution
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p(f|X) ∼ N (f|µ,K) , (3.2)

where µ is the mean and K is the covariance matrix. Both potentially depends on X.
The Gaussian distribution is over vectors but the Gaussian process is over functions.

We need to define the mean function and covariance function for a Gaussian process
prior. If f(x) is a real valued process, a Gaussian process is completely defined by
its mean function and covariance function given in Equation 3.3 and Equation 3.4
respectively. Usually the mean function m(x) and the covariance function k(x,x′) are
defined as

m(x) = E[f(x)], (3.3)

and
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (3.4)

where E represents the expected value. We denote the Gaussian process as

f (x) ∼ GP (m (x) , k (x,x′)) . (3.5)

The covariance matrix K is constructed from the covariance function k(x,x′) and
Kij = k (xi,xj), that is

K =


k (x1,x1) k (x1,x2) · · · k (x1,xn)

k (x2,x1) k (x2,x2) · · · k (x2,xn)
...

... . . . ...
k (xn,x1) k (xn,x2) · · · k (xn,xn)

 . (3.6)

Loosely speaking, a Gaussian process is multivariate Gaussian distribution defined
over an infinite number of dimensions. A sample from a Gaussian process is a random
function. While a n−dimensional Gaussian distribution is fully specified by mean µ, a
n× 1 vector of expectations and covariance matrix K, the n× n matrix of covariances
between all pair of points.

It is a common practice to consider a Gaussian process with zero mean when no prior
information is available. This is not excessively restrictive as a variety of functions can
be generated by a zero mean process. A second order stationary process has a constant
mean and the covariance function solely depends on the distance between the inputs.
Zero-mean process is a simplification just by centring the data as t = t − t, where t is
the data sample mean. An extra constant term with the covariance function can reflect
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the variation from the mean of the process (MacKay (2003)). So, a constant-mean or
a zero-mean assumption is not overly restrictive in practice.

3.4 GP: Covariance Functions

The covariance function (also called kernel, kernel function or covariance kernel)
characterises the properties or nature of the samples drawn from a Gaussian process.
The covariance function encodes the modelling assumptions we wish to incorporate
in our application. The mandatory requirement of a covariance matrix is to be
symmetric positive semi-definite1. So, as long as the covariance function generates
symmetric positive semidefinite matrix, we can use that function for a Gaussian process.
Smoothness, periodicity, amplitude, lengthscale etc. are basic properties that can be
incorporated while designing Gaussian process covariance function. Once the decision to
model with a Gaussian process has been made the choice of the covariance function is a
central step in modelling. The main goal of this thesis is to develop covariance functions
suitable for transcription factor activity analysis and clustering gene expressions. In
this chapter, we will discuss some of the very well known and widely used covariance
functions. A wide choice of valid covariance functions and their detail description can
be found in Rasmussen and Williams (2006).

Any form of covariance function is acceptable, provided it satisfies the following
equation ∑

i,j

aiajk (xi,xj) ≥ 0 (3.7)

where, ai, aj . . . an are arbitrary real coefficients and xi,xj . . .xn are finite set of data
points. A covariance function is termed ‘stationary’ when it follows

Cov [f (xi) , f (xj)] = k (∥xi − xj∥) (3.8)

for all xi,xj ∈ RD. In practice, a stationary covariance function gives a function
that is invariant to translation and does not depend on the absolute location of the
corresponding inputs; rather it depends on the distance separating them.

If the covariance does not only depend on the distance between the data points in
the input space, rather the model needs to adapt to functions where smoothness varies
with the inputs, a non-stationary covariance function will be required. There are many
interesting non-stationary covariance functions. Depending on nature or trend a careful

1A matrix C is called positive semi-definite if z⊤Cz ≥ 0 for all z. Where z is a non zero column
vector of length n, C is a n× n symmetric real matrix and z⊤ is the transpose of z.
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selection of appropriate covariance function is essential. One of the simplest examples
of non-stationary covariance function which have a linear trend can be expressed by

k (xi,xj) =
D∑

d=1

adx
d
ix

d
j (3.9)

where xdi is the dth component of xi ∈ RD.
In this thesis, as a prior, we used some stationary covariance functions, and in

the following section, we briefly describe some of them. Non-stationary covariance
functions are beyond our scope, and a detailed description is available in Rasmussen
and Williams (2006).

3.4.1 Exponentiated Quadratic Covariance Function

The exponentiated quadratic covariance is the most widely used covariance function
for Gaussian process. This is also known as squared exponential (SE) covariance or
radial basis function (RBF). The exponentiated quadratic has become the de-facto
default kernel for Gaussian process and has the following form

KEQ(r) = a2 exp

(
− r2

2l2

)
, (3.10)

where r = ∥x − x′∥. Here ∥x − x′∥ is invariant to translation and rotation. So,
the exponentiated quadratic covariance is stationary, as well as isotropic. Here the
parameters for output variance a and the lengthscale parameter l govern the property
of sample functions and are commonly known as hyperparameters. The parameter a
determines the typical amplitude, i.e. average distance of the function away from the
mean. l controls the lengthscale, i.e. the length of the wiggles of the function. Figure
3.1(a) represents the kernel and Figure 3.1(b) shows random sample functions drawn
from the Gaussian process using exponentiated quadratic covariance with different
lengthscales and amplitude hyperparameters. The random functions were generated
for a given input range by drawing samples from multivariate Gaussian using Equation
3.2 with zero mean. The smoothness of the sample function depends on the Equation
3.10. Function variables located closer in the input space are highly correlated, whereas
function variables located at a distance are loosely correlated or even uncorrelated.
Exponentiated quadratic covariance might be too smooth to perform any realistic
regression task. Depending on the basic nature of the function, other covariance
functions could also be interesting.
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Fig. 3.1 Exponentiated quadratic kernels (a) and random sample functions (b) for
different hyperparameter settings shown in the top left.

3.4.2 Rational Quadratic Covariance Function

The rational quadratic covariance function is equivalent to the sum of multiple expo-
nentiated quadratic covariance functions with different lengthscales. Gaussian process
prior with this kernel function expects a smooth function with many lengthscales.
In Equation 3.11 the parameter α can control the relative weights for lengthscale
variations. Exponentiated quadratic covariance function can be viewed as a special
case of rational quadratic covariance function. If α → ∞, both rational quadratic and
exponentiated quadratic functions become identical2.

KRQ(r) = a2
(
1 +

r2

2αl2

)−α

(3.11)

2The limit of a rational quadratic is exponentiated quadratic

lim
α→∞

(
1 +

x2

2α

)−α

= exp

(
x2

2

)
.
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Fig. 3.2 Rational quadratic kernels (a) and random sample functions (b) for different
hyperparameter settings shown in the top left.

where r = ∥x − x′∥. Figure 3.2 (a) shows the kernels and (b) shows three different
random sample functions drawn with different settings of hyperparameters a and l.

3.4.3 The Matérn Covariance Function

The Matérn class of covariance functions are given by Equation 3.12

KMat(r) = a2
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
(3.12)

where a, l, ν are positive hyperparameters, Kν is a modified Bessel function and Γ (.) is
the Gamma function. Hyperparameter ν controls the roughness of the function, and
like Exponentiated quadratic covariance function the parameters a and l controls the
amplitude and lengthscale respectively. Though for ν → ∞ we can obtain the expo-
nentiated quadratic kernel. For finite value of ν, the sample functions are significantly
rough.

The simpler form of Matérn covariance function is obtained when ν is half-integer:
ν = p+1/2, where p is a non-negative integer. The covariance function can be expressed
as a product of an exponential and a polynomial of order p. Abramowitz and Stegun
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Fig. 3.3 The Matérn32 kernels (a) and random sample functions (b) for different
hyperparameter settings shown in the top left.

(1965) derived the general expression as follows

Kν=p+1/2(r) = a2 exp

(
−
√
2νr

l

)
Γ (p+ 1)

Γ (2p+ 1)

p∑
i=0

(p+ i) !

i! (p− i) !

(√
8νr

l

)p−i

. (3.13)

The most interesting cases for machine learning are ν = 3/2 and ν = 5/2, for which we
get the following equations respectively

Kν=3/2(r) = a2

(
1 +

√
3r

l

)
exp

(
−
√
3r

l

)
(3.14)

and

Kν=5/2(r) = a2

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√
5r

l

)
. (3.15)

3.4.4 The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein (1930)) is a special case
of Matérn class covariance functions. The Ornstein-Uhlenbeck (OU) process was
developed as a mathematical model of the velocity of a particle moving with Brownian
motion.
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Fig. 3.4 The OU kernels (a) and random sample functions (b) for different hyperpa-
rameter settings shown in the top left.

The Ornstein-Uhlenbeck process can be found setting up ν = 1/2 and expressed
as Equation 3.16. Figure 3.4(a) shows the kernel and Figure 3.4(b) shows the sample
functions form the OU process with different hyperparameter settings as shown to the
left of the figure.

Kν=1/2(r) = a2 exp
(
−r
l

)
(3.16)

3.4.5 Cosine Kernel

Perhaps the cosine random processes on R is one of the most basic and widely used
smooth stochastic processes. This periodic stationary process is defined as

f (x) ≜ ξcosλx+ ξ′sinλx (3.17)

where λ is a positive constant, ξ and ξ′ are equidistributed and uncorrelated random
variables. Using the basic trigonometry Equation 3.17 can be written as

f (x) = Rcos (λ (x− ψ)) (3.18)
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Fig. 3.5 The Cosine kernels (a) and random sample functions (b) for different hyperpa-
rameter settings shown in the top left.

where R2 = ξ2 +
(
ξ
′)2

⪖ 0 and ψ = arctan
(

ξ

ξ
′

)
∈ (−π, π). Let’s consider E [ξ] = 0.

Then, the covariance function is given by

KCos (x, x′) = E [f (x) f (x′)]

= E [f (ξcosλx+ ξ′sinλx) (f (ξcosλx′ + ξ′sinλx′))]

= E
[
(ξ′)2

]
cos (λ (x− x′))

where we considered ξ and ξ′ are equidistributed and uncorrelated. The cosine kernel is a
stationary kernel regardless of the distribution of ξ. Figure 3.5 shows the representation
of kernels and sample functions with different hyperparameter settings.

3.5 Constructing Kernels

Modelling kernel is the central step in Gaussian process modelling. A number of
‘built-in’ kernels (both stationary and non-stationary) are available for the Gaussian
process, yet we may need to model a complicated structure which is not expressed
very well by any known kernel. To model such a structure, we may build our own
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Fig. 3.6 Representation of some basic kernels using the same lengthscale and variance
(a) Linear kernel (b) Brownian kernel (c) Exponentiated quadratic kernel (d) Cosine
kernel (e) Ornstein-Uhlenbeck kernel and (f) Periodic exponential kernel.

‘customised kernel’ with the required structure or, desired properties. An addition of
two Gaussian variables is a Gaussian. Scaling a Gaussian also leads to a Gaussian.
These two basic mathematical properties help to develop a range of kernels from a very
simple one to complex a one. Appendix A Section A.1.3, A.1.5 shows the addition and
multiplication properties of Gaussian processes respectively.

Figure 3.6 shows the representations of some basic kernels using the same lengthscale
and variance (a) Linear kernel (b) Brownian kernel (c) Exponentiated quadratic kernel
(or RBF) (d) Cosine kernel (e) Exponential kernel (f) Periodic exponential kernel.
These kernels are the realisation of different covariance functions3. These kernels
(including others) facilitate constructing new kernels or customising ‘on demand’of the
structure with the desired properties.

Assume an univariate data is globally periodic and local structures governed by
some random motions (Brownian motion). There are multiple choices dealing with
the global structure and one of the possible solutions could be a Cosine kernel for
the global structure and a Brownian kernel for local structures in an additive form.
The addition of two positive semi-definite kernels together always results in another
positive semi-definite kernel. Figure 3.7 shows the sample functions and representation

3We have not described the Linear, Brownian and Periodic exponential kernels here in this
thesis. Detail description is available at Rasmussen and Williams (2006) and their Python-based
implementation is available at The GPy Authors (2014).
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Fig. 3.7 Construction of ‘made by order’ kernel adding two basic kernels: an example
of a univariate data which is globally periodic and locally governed by some random
motions. (top-left) a sample is taken using the Brownian kernel, (top-middle) a sample
is taken using Cosine kernel, (top-right) a sample taken using a newly constructed
kernel by adding two kernels, (bottom-left) Brownian kernel, (bottom-middle) Cosine
kernel, (bottom-right) newly constructed kernel.

of the newly constructed kernel. Figure 3.8 shows another example where we used a
combination of Cosine kernel and Matérn kernel.

3.6 Gaussian Process Regression

Gaussian process regression can be done using the marginal and conditional properties
of the multivariate Gaussian distribution. Let’s consider that we have the observation
f of a function at the observation point x. Now we wish to predict the values of that
function at the observation points x⋆, which are represented by f⋆. Then the joint
probability of f and f⋆ can be obtained as

p

([
f

f⋆

])
= N

([
f

f⋆

]∣∣∣∣∣0,
[
Kx,x Kx,x⋆

Kx⋆,x Kx⋆,x⋆

])
(3.19)

where the covariance matrix Kx,x has elements derived from the covariance function
k (x, x′), such that the (i, j)th element of Kx,x is given by k (x [i] ,x [i]). The conditional
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Fig. 3.8 Construction of a new kernel using Cosine kernel and Matérn kernel. (top-left)
a sample taken using Cosine kernel, (top-middle) a sample taken using Matérn kernel,
(top-right) a sample taken using newly constructed kernel by adding two kernels,
(bottom-left) Cosine kernel, (bottom-middle) Matérn kernel, (bottom-right) newly
constructed kernel.

property of a multivariate Gaussian is used to perform regression. The conditional
property can be represented by

p (f⋆|f) = N
(
f⋆
∣∣Kx⋆,xK

−1
x,xf ,Kx⋆,x⋆ −Kx⋆,xK

−1
x,xKx,x⋆

)
. (3.20)

In an ideal case, the observation f is noise-free, but, in practice, it is always corrupted
with some noise. Let’s consider y as a corrupted version of f . If we consider this noise
as Gaussian noise, we can write p (y|f) = N (y|f , σ2I), where σ2 is the variance of
the noise and I is the identity matrix with the appropriate size and marginalise the
observation f . Then, the joint probability of y and f⋆ can be represented by

p

([
y

f⋆

])
= N

([
y

f⋆

]∣∣∣∣∣0,
[
Kx,x + σ2I Kx,x⋆

Kx⋆,x Kx⋆,x⋆

])
. (3.21)

Regression with Gaussian process is a Bayesian method. From the knowledge of a
prior over a function and data, we infer a posterior and this happens in a closed form
of Equation 3.20.

Figure 3.9 shows the overall covariance structure between some training and test
data. For this example, we choose 18 training points and 82 test points. We observe
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Fig. 3.9 Overall representation of covariances between training and test data.

the shaded structure because some of the training data are closer to some of the test
data. Observing this structure, we can also figure out the closeness between training
and test data.

3.6.1 Making Predictions

The probability density is represented by functions. Due to consistency this density is
known as a process. Also by this property, any future values of f⋆ which are unobserved
can be predicted without affecting f . To make predictions of the test data, we use
the conditional distribution. In an ideal case, the conditional distribution is p (f⋆|f)
and if we consider the noise, the conditional distribution will be p (f⋆|y). Both of the
distributions are also Gaussian

f⋆ ∼ N
(
µf ,Cf

)
. (3.22)

The mean of the conditional distribution in Equation 3.22 is

µf = K⊤
x,x⋆

[
Kx,x + σ2I

]−1
y (3.23)
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Fig. 3.10 A representation of Gaussian process regression: Modelling one-dimensional
function using Gaussian process. Coloured solid lines represent different samples
from the process and the dotted line is the mean function. The shaded area is the
95% confidence interval. (a) A Gaussian process not conditioned on any data points.
Without any observations, the prior uncertainty about the underlying function is
constant everywhere. (b-e) The posterior after conditioning on different amount of
data.
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and its covariance is given by

Cf = Kx⋆,x⋆ −K⊤
x,x⋆

[
Kx,x + σ2I

]−1
Kx,x⋆ . (3.24)

These results can be calculated using the block matrix inverse rules. The derivation
can be found in Appendix A Section A.2. Figure 3.10 shows a visual representation
of Gaussian process regression for a one-dimensional function. Coloured solid lines
represent different samples from the process and the dotted line is the mean function.
The shaded area is the 95% confidence interval. Figure 3.10(a) represents a Gaussian
process not conditioned on any data points. Without any observations, the prior
uncertainty about the underlying function is constant everywhere. Figure 3.10(b-e)
show some posterior samples after conditioning on different amount of training data as
shown in the figure.

3.6.2 Hyperparameter Learning

To construct the covariance function, still, we need to consider the hyperparameters
and optimize them. These adjustable parameters alter the distribution of the function
output values obtained from a Gaussian process. The most efficient and commonly
used optimization technique for hyperparameters is the maximum likelihood. If we
consider all the hyperparameters α (controls the amplitude), σ2 (variance of the noise)
and l (length-scale) in a vector θ, we can use gradient methods to optimize p (y|θ)
with respect to θ. The Log likelihood is given by

log p (y|θ) = −D
2

log2π − 1

2
× log

∣∣Kx,x + σ2I
∣∣− 1

2
y⊤ [Kx,x + σ2I

]−1
y. (3.25)

We can have the log maximum likelihood by

θmax = argmax
θ

(p (y|θ)) . (3.26)

3.7 Mean reverting Ornstein-Uhlenbeck Process

In 1827 the botanist Robert Brown noticed that discharged pollen particle from the
male part of the flower moves in a random fashion in water. Though he narrated
the problem but did not explain underlying mechanism that may create this motion
Brown (1828). Later in 1905, Einstein argued that the motion of the particle created
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by the momentum and energy exchange due to collisions of the particles surrounding
it. Einstein also gave a mathematical explanation of the transition probability Einstein
(1905). In 1920 Norbert Wiener presented the sound mathematical foundation for
Brownian motion as a stochastic process Wiener (1923).

The Ornstein-Uhlenbeck process is a diffusion process, which was introduced to
describe the model of velocity for a moving particle undergoing Brownian motion. When
the position of a particle is described using Brownian motion, the time derivative does
not exist. The Ornstein-Uhlenbeck process is an attempt to overcome this difficulty by
modelling the velocity directly. The Ornstein-Uhlenbeck process is a stationary Gauss-
Markov process (i.e. the process follow both Gaussian process and Markovian process).
Over time, the Ornstein-Uhlenbeck process tends to drift towards its long-term mean
value. For this reason, this process is called as mean reverting Ornstein-Uhlenbeck
Process Uhlenbeck and Ornstein (1930).

The Ornstein-Uhlenbeck process is widely used for modelling a mean reverting
process. An Ornstein–Uhlenbeck process, u, satisfies the following stochastic differential
equation

du = −λ (u− µ) dt+ σdB, (3.27)

where

• λ controls the speed of mean reversion

• µ is the long term mean , to which the process tends to revert.

• dB is a Brownian motion, where dB ∼ N (0, dt1/2)

• σ is a measures of the process volatility.

In order to model the Ornstein-Uhlenbeck process, it is usual to discretize time and
calculate samples at discrete time steps of width ∆t. A naïve approach to derive the
Equation 3.36 is

ut − ut−1 = −λ (ut−1 − µ)∆t+ σdB (3.28)

ut = ut−1 − λ (ut−1 − µ)∆t+ σdB (3.29)

For any any in silico experiment Gillespie (1996) pointed that Equation 3.29 is only
valid when ∆t is sufficiently small. The exact formula for any size of ∆t is given by

ut = e−λ∆tut−1 +
(
1− e−λ∆t

)
µ+ σ

√
(1− e−2λ∆t)

2λ
dB (3.30)
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Fig. 3.11 Sample paths of various mean reverting Ornstein Uhlenbeck processes with
parameters µ = 7, σ = 1.5, u0 = 1, and ∆t = 0.01. Where x-axis represents the time
and y-axis represents the amplitude of the stochastic process.

Figure 3.11 shows few examples of sample paths of mean reverting Ornstein-
Uhlenbeck processes with different parameters settings.

3.8 Toward the GP model of TFA

We are interested in developing a non-parametric model of transcription factor activity
using Gaussian process. Here, we want to prove that there is an analogical pathway4

to construct a kernel function for Gaussian process model from Markovian assumption
(Appendix A, Section A.4) based probabilistic approach of Sanguinetti et al. (2006).
From Chapter 2 Section 2.6 we have the probabilistic gene specific TFAs as

bn(t+1) ∼ N (γbnt + (1− γ)µ, (1− γ2)Σ). (3.31)

For a discrete time variable k the above equation can be rewritten as

bn(k+1) ∼ N
(
γbnk + (1− γ)µ, (1− γ2)Σ

)
, (3.32)

4We would like to acknowledge Simo Särkkä, Academy Research Fellow, Aalto University, Finland
for his valuable suggestions and guidelines.
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and
bn1 ∼ N (µ,Σ) . (3.33)

Let’s now form a continuous model which has the same finite-dimensional distribution.
First we construct a one-dimensional process with the property

uk+1 ∼ N
(
γuk + (1− γ)µ, (1− γ2)s

)
, (3.34)

where µ and s are scalar.

We can now assume that uk’s are actually values utk from a continuous process u(t)
and let’s assume that

tk = kDt. (3.35)

A good candidate for this kind of model is the mean-reverting Ornstein−Uhlenbeck
model (Uhlenbeck and Ornstein (1930))

du = −λ (u− µ) dt+ q1/2dB, (3.36)

where B is a standard Brownian motion (i.e., Wiener process). This equation can now
be solved on the time instants tk and the result is a recursion

u(tk) = au(tk−1) + bµ+ wk−1, (3.37)

where wk−1 ∼ N (0, c) with

a = exp(−λDt)

b =

∫ D

0

t exp(−λ(Dt− s))ds

= 1− exp(−λDt)

c =

∫ D

0

t exp(−λ(Dt− s))q exp(−λ(Dt− s))ds

= q

∫ D

0

t exp(−2λ(Dt− s))ds

= [q/(2λ)][1− exp(−2λDt)].
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That is,
uk+1 ∼ N (auk + bµ, c) . (3.38)

We can now match the coefficients

a = exp(−λDt) = γ (3.39)

b = 1− exp(−λDt) = 1− γ (3.40)

c = (1− γ2)s = [q/(2λ)][1− exp(−2λDt)] (3.41)

Equation 3.39 has a nice solution γ = exp(−λDt) and from Equation 3.41 we have
another solution s = q/(2λ), which can be inverted to give λ = −[1/Dt] log γ and
q = −[2s/Dt] log γ.

If we fix Dt = 1, we get λ = − log γ and q = −2s log γ.

We can now recall the (stationary) covariance function of the Ornstein-Uhlenbeck
process

ku(t, t
′) = [q/(2λ)] exp(−λ|t− t′|)
= s exp((log γ)|t− t′|)
= s exp(|t− t′|(log γ))
= s exp(log γ|t−t′|)

= sγ|t−t′|.

When we start from variance s = q/[2λ], the process indeed is stationary from the
beginning. Returning to the original vector valued b, because the system is separable,
we can conclude that the implied covariance function is just obtained by formally
replacing s with Σ everywhere

Kb(t, t
′) = Σγ |t−t′| (3.42)

This is equivalent to considering the vector process of mean-reverting Ornstein−
Uhlenbeck model

db = −λ(b − µ)dt +Q1/2dB. (3.43)
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3.9 Gaussian Process: Pros and Cons

The most appealing feature of the Gaussian process is expressibility. It is possible
to express a very wide range of modelling assumptions through a proper choice of
covariance function. Given a covariance function and some observations, the posterior
distribution can be predicted analytically. Modelling with the Gaussian process is
nonparametric and this is a rare property. The marginal likelihood of the data given a
model is calculated by integrating over all hypothesis. The Gaussian process compares
different models and improves the model selection. Integration over a wide range
of hypothesis lessens over-fitting than in comparable model class. The predictive
distribution of Gaussian process is a multivariate Gaussian distribution and can be
easily combined with other models.

There are several issues which may make Gaussian processes sometimes difficult to
use. In the generic inference and learning algorithm, we need to inverse the covariance
matrix which has O (N3) runtime complexity. Given the computational resource
available at present, the exact inference is prohibitively slow for more than a few
thousands of data-points. An exact inference for typical ‘Big data’ could be very costly
from the perspective of runtime complexity. However, this problem can be addressed
by variational inference, even for models containing millions of data points (Hensman
et al. (2013a)). Non-Gaussian predictive likelihoods could be challenging while working
with the Gaussian process. However, the Gaussian process framework GPy (The GPy
Authors (2014)) can automatically deal with the last two issues.

3.10 Discussion

In this chapter, we briefly described the Gaussian process, regression problem and
regression with the Gaussian process. The choice of the covariance function is a
central step in modelling with a Gaussian process. Our main goal of this thesis is
to develop covariance functions suitable for transcription factor activity analysis and
gene expressions clustering. In this chapter, we briefly described some commonly
used kernels. We also mentioned hyperparameter learning. Finally, we justified the
rationale behind choosing the Ornstein-Uhlenbeck kernel to model the transcription
factor activity. In the next chapter (Chapter 4), we will develop a Gaussian process
model to infer the transcription factor activity.



Chapter 4

GP Model of TFAs

In this chapter, we design a covariance function or kernel to reconstruct transcription
factor activities given gene expression profiles, and a connectivity matrix (also termed
as binding data) between genes and transcription factors our Gaussian process. Our
modelling framework builds on ideas of Sanguinetti et al. (2006) who used a linear-
Gaussian state-space modelling framework to infer the transcription factor activity
of a group of genes. In Chapter 3 Section 3.8, we showed how the linear-Gaussian
state-space modelling framework of Sanguinetti et al. (2006) can be updated using
Gaussian process with Ornstein-Uhlenbeck kernel to model the transcription factor
activity.

We note that the transcription factor activity model with Markov property proposed
by Sanguinetti et al. (2006) is a linear Gaussian state space model which is equivalent
to a Gaussian process model with a particular covariance function. We, therefore, build
a model straight from the Gaussian process perspective to achieve the same effect.
Here we introduced a computational mechanism, based on a judicious application of
singular value decomposition (SVD), to enable us to efficiently fit the Gaussian process
in a reduced ‘transcription factor activity’ space.

In the probabilistic inference of transcription factor activities, Spellman et al. (1998)
used gene expression time series data of synchronised yeast cells from the CDC-15
experiment. Two colour spotted cDNA array data set of a series of experiments to
identify which genes in Yeast are cell cycle regulated.

Our second data set is from ChiP-chip experiments performed on yeast by Lee et al.
(2002). These give us the connectivity or binding information between transcription
factors and genes. As we know, a transcription factor can regulate multiple genes,
on another way a gene can be regulated by multiple transcription factors. So, there
exists a many-to-many relationship (Multiple input motifs (e) of Figure 2.6) between
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genes and transformation factors. In this thesis, we are going to combine this binding
information with the gene expression information to infer transcription factor activities.

4.1 Model for Transcription Factor Activities

Given Y ∈ Rn×T , is the matrix of log-ed gene expression, where n is the number
of genes, T is the time points1. We assume a linear (additive) is model giving the
relationship between the expression level of the gene and the corresponding transcription
factor activity which are unobserved (what we termed as our latent variable). We
represent transcription factor activity by a matrix F ∈ Rq×T , where q is the number
of transcription factors and T is the time points as mentioned earlier. Our basic
assumption is as follows

1. Transcription factors’ activities are in time series, so they are likely to be tempo-
rally smooth.

2. The transcription factors are potentially correlated with one another (to account
for transcription factors that operate simultaneously).

Correlation Between Transcription Factors: Let’s consider there are q tran-
scription factors. The correlation between different transcription factors is encoded in
a covariance matrix, Σ which have q × q dimensions.

Temporal Smoothness: we assume that the log of the transcription factors’
activities is temporally smooth, and drawn from an underlying Gaussian process with
covariance Kt.

Intrinsic Coregionalization Model: we assume that the joint process across
all q transcription factor activities and across all time points is well represented by
an intrinsic model of coregionalization where the covariance function is given by the
Kronecker product of these terms.

Kf = Kt ⊗Σ (4.1)

This is known as an intrinsic coregionalization model (Wackernagel (2003)). Alvarez
et al. (2012) presented the machine learning orientated review of these methods. The
matrix Σ is known as the coregionalization matrix. We describe the methodology of
designing kernel using coregionalization at Chapter 5 in Section 5.2.2. Figure 4.1 is
the realization of intrinsic model of coregionalization.

1Data samples taken since the beginning of the experiment.
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Fig. 4.1 Demonstration of Kronecker product by tiling. Assume (a) represents Kt and
(b) represents Σ of Equation 4.1, then the representation of Kf will be as like (c).

4.2 Relation to Gene Expressions

Let’s consider the jth gene’s expression is given by the product of the transcription
factors that bind to that gene. Because we are working in log-space, that implies a
log− linear relationship. At the ith time point, the log of the jth gene’s expression, yi,j

is linearly related to the log of the transcription factor activities at the corresponding
time point, fi,:. This relationship is given by the binding information from S. We then
assume that there is some corrupting Gaussian noise to give us the final observation.

yi,j = Sf:,i + ϵi (4.2)
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where the Gaussian noise is sampled from

ϵi ∼ N (0, σ2I) (4.3)

4.3 Gaussian Process Model of Gene Expression

We consider a vector operator which takes all the separate time series in Y and stacks
the time series to form a new vector n×T length vector y. A similar operation is applied
to form a q × T length vector f . Using Kronecker products we can now represent the
relationship between y and f as follows: Standard properties of multivariate Gaussian
distributions (Appendix A, Section A.1) tell us that

y ∼ N (0,K), (4.4)

where
K = Kt ⊗ SΣS⊤ + σ2I. (4.5)

This results in a covariance function that is of size n by T where n is the number of
genes and T is the number of time points. However, we can get a drastic reduction
in the size of the covariance function by considering the singular value decomposition
(Appendix A, Section A.3) of S. The matrix S is n by q matrix, where q is the number
of transcription factors. It contains a ‘1’ if a given transcription factor binds to a given
gene, and ‘0’ otherwise. The likelihood of a multivariate Gaussian is

L = −1

2
log|K|−1

2
y⊤K−1y (4.6)

In the worst case, because the vector y contains T × n points (T time points for
each of n genes) we are faced with O(T 3n3) computational complexity. We are going
to use a rotation trick to get the likelihood.

4.4 Method of Computation

4.4.1 Rotating the Basis of a Multivariate Gaussian

For any multivariate Gaussian you can rotate the data set and compute a new rotated
covariance which is valid for the rotated data set. Mathematically this works by first
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inserting RR⊤ into the likelihood at three points as follows:

L = −1

2
log|KR⊤R|−1

2
y⊤R⊤RK−1R⊤Ry + const (4.7)

The rules of determinants and a transformation of the data allows us to rewrite the
likelihood as

L = −1

2
log|R⊤KR|−1

2
ŷ⊤ [R⊤KR

]−1
ŷ + const (4.8)

where we have introduced the rotated data: ŷ = Ry. Geometrically what this says is
that if we want to maintain the same likelihood, then when we rotate our data set by
R we need to rotate either side of the covariance matrix by R, which makes perfect
sense when we recall the properties of the multivariate Gaussian.

4.4.2 A Kronecker Rotation

In this thesis, we are using a particular structure of covariance which involves a
Kronecker product. The rotation we consider will be a Kronecker rotation (Stegle et al.
(2011)). We are going to try and take advantage of the fact that the matrix S is square
meaning that SΣS⊤ is not full rank (it has rank of most q, but is size n× n, and we
expect number of transcription factors q to be less than number of genes n).

When ranks are involved, it is always a good idea to look at singular value decom-
positions (SVDs). The SVD of S is given by:

S = QΛV⊤ (4.9)

where V⊤V = I, Λ is a diagonal matrix of positive values, Q is a matrix of size n× q:
it matches the dimensionality of S, and we have Q⊤Q = I. Note that because it is
not square, Q is not in itself a rotation matrix. However it could be seen as the first q
columns of an n dimensional rotation matrix (assuming n is larger than q, i.e. there
are more genes than transcription factors).

If we call the n− q missing columns of this rotation matrix U then we have a valid
rotation matrix R =

[
Q U

]
. Although this rotation matrix is only rotating across the

n dimensions of the genes, not the additional dimensions across time. In other words
we are choosing Kt to be unrotated. To represent this properly for our covariance
we need to set R = I ⊗

[
Q U

]
. This gives us a structure that when applied to a

covariance of the form Kt ⊗Kn it will rotate Kn whilst leaving Kt untouched.
When we apply this rotation matrix to K we have to consider two terms, the

rotation of Kt ⊗ SΣS⊤, and the rotation of σ2I.
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Rotating the latter is easy, because it is just the identity matrix multiplied by a
scalar so it remains unchanged

R⊤Iσ2R = Iσ2 (4.10)

The former is slightly more involved, for that term we have[
I⊗

[
Q U

]⊤]
Kt ⊗ SΣS⊤

[
I⊗

[
Q U

]]
= Kt ⊗

[
Q U

]⊤
SΣS⊤

[
Q U

]
. (4.11)

Since S = QΛV⊤ then we have

[
Q U

]⊤
SΣS⊤

[
Q U

]
=

[
ΛV⊤ΣVΛ 0

0 0

]
. (4.12)

This prompts us to split our vector ŷ into a q dimensional vector ŷu = U⊤y and an
n− q dimensional vector ŷq = Q⊤y. The Gaussian likelihood can be written as

L = Lu + Lq + const (4.13)

where

Lq = −1

2
log|Kt ⊗ΛV⊤ΣVΛ+ σ2I|−1

2
ŷ⊤
q

[
Kt ⊗ΛV⊤ΣVΛ+ σ2I

]−1
ŷq (4.14)

and
Lu = −T (n− q)

2
log σ2 − 1

2σ2
ŷ⊤
u ŷu (4.15)

Strictly speaking, we should fit these models jointly, but for the purposes of
illustration, we will firstly use a simple procedure. Firstly, we fit the noise variance σ2

on ŷu alone using Lu. Once this is done, fix the value of σ2 in Lq and optimise with
respect to the other parameters.

With the current design, the model is switching off the temporal correlation. The
next step in the analysis will be to reimplement the same model as described by
Sanguinetti et al. (2006) and recover their results. That will involve using an Ornstein-
Uhlenbeck covariance (we proved the rationale behind the choice of the covariance
function in Chapter 3 Sec 3.8) and joint maximisation of the likelihood of Lu and Lq.



4.5 Making Prediction 81

0 20 40 60 80 100

0

20

40

60

80

100

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

Fig. 4.2 Kernel of Intrinsic Coregionalization model Kf considering 5 transcription
factors where covariance matrix Σ of Equation 4.5 was constructed using Ornstein-
Uhlenbeck kernel and White kernel in additive form.

4.5 Making Prediction

Using Kronecker product we can rewrite the Equation 4.4 as

yq ∼ N
(
0,Kt,t ⊗ΛVTΣVΛ+ σ2I

)
(4.16)

Standard properties of multivariate Gaussian distributions tells us can split equation
4.16 into

yq = g + ϵ (4.17)

where g and ϵ are also Gaussian distributions and can be represented by

g ∼ N
(
0,Kt,t ⊗ΛVTΣVΛ

)
(4.18)
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ϵ ∼ N
(
0, σ2I

)
(4.19)

Now we can represent the matrix F of transcription factor activity as

F = I⊗VΛ−1g (4.20)

Σ = WWT + diag (κ) (4.21)

where κ is the kappa value from coregionalization matrix.

F ∼ N (0,Kt,t ⊗Σ) (4.22)

Now we can find the conditional distribution of g for given yq by

p (g|yq) ∼ N
(
µg,Cg

)
(4.23)

with a mean given by

µg =
[
Kt⋆,t ⊗ΛVTΣVΛ

] [
Kt,t ⊗ΛVTΣVΛ+ σ2I

]−1
yq (4.24)

and the covariance given by

Cg =
[
Kt⋆,t⋆ ⊗ΛVTΣVΛ

]
−
[
Kt⋆,t ⊗ΛVTΣVΛ

[
Kt,t ⊗ΛVTΣVΛ+ σ2I

]−1
Kt⋆,t ⊗ΛVTΣVΛ

] (4.25)

Finally the posterior mean of the conditional distribution is is

µF = Kt⋆,t ⊗ΣVΛ
[
Kt,t ⊗ΛVTΣVΛ+ σ2I

]−1
yq (4.26)

and the covariance of the conditional distribution is

CF = Kt⋆,t⋆ ⊗Σ

−Kt⋆,t ⊗ΣVΛ
[
Kt,t ⊗ΛVTΣVΛ+ σ2I

]−1 [
Kt⋆,t ⊗ΛVTΣ

] (4.27)

Figure 4.2 shows the pictorial representation of intrinsic coregionalization kernel
(Equation 4.5) Kf considering 20 transcription factors where covariance matrix Σ of
was constructed using Ornstein-Uhlenbeck kernel and white kernel in additive form.
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Fig. 4.3 Variation of activities of different transcription factors with the exponentiated
quadratic kernel and white kernel in additive form. A solid line represents a posterior
mean, and shaded area represents the 95% confidence interval for a specific transcription
factor. Different colour shows the transcription factor activity of randomly picked
transcription factors. Here we have noticed that for every transcription factors the
activities are extremely smooth. In a practical case this behaviour is highly unlikely.
So, a combination of exponentiated quadratic kernel and white kernel in additive form
is not a very good choice to infer the transcription factor activity.

Rahman and Lawrence (2016) describes this methodology and a Jupyter Notebook
demo using programming language python is available at Rahman and Lawrence (2014).

4.6 Dataset and Result analysis

Here in this experiment, we used the classic Spellman et al. (1998) yeast cell cycle
dataset. The cdc15 time series data has 23 time points.

The exponentiated quadratic kernel is very smooth kernel compared to Ornstein-
Uhlenbeck kernel and perhaps is not a very good choice for the determination of actual
transcription factors activities. Still, it can figure out the basic nature of the activities
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Fig. 4.4 Transcription factor activity of ACE2. The solid line represents a posterior
mean of transcription factor activity, and shaded area represents 95% confidence
interval. x-axis represents the time, and y-axis represents the transcription factor
activity. Here a ‘x’ represents a gene expression level. At any time point, multiple gene
expression levels (‘x’) represent the level of gene expression obtained from different
genes which were regulated by transcription factor ACE2. We inferred the transcription
factor activity considering all these expression levels.

with over smoothness. Figure 4.3 shows activities of different transcription factors
while the model was developed considering exponentiated quadratic kernel with the
White kernel in additive form.

Figure 4.4 shows transcription factor activity of ACE2. While developing the model
we chose Ornstein-Uhlenbeck kernel and White kernel in additive form. In Figure 4.4,
we noticed at any time point, multiple gene expression levels (represented by black ‘x’)
were present, which shows the level of gene expression at that time point from different
genes. A transcription factor can regulate multiple genes. To infer the activity of a
transcription factor, we have to consider all these expressions. Here, we inferred the
transcription factor activity of ACE2 considering all these expression levels. Earlier,
we described (Chapter 3 Sec 3.8) how Ornstein-Uhlenbeck kernel can be used to model
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Fig. 4.5 Transcription factor activity of different transcription factors: individual plots
shows the activity of the transcription factor. Here, the solid line represents a posterior
mean and shaded area represents the 95% confidence interval. x-axis represents the
time and y-axis represent the TFA.
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the transcription factor activities. So, here we believe, the Ornstein-Uhlenbeck kernel
will consider the basic nature of the transcription factors activity while White kernel
will deal the noise associated the collected gene expression data.

Figure 4.5 transcription factor activity of different (arbitrarily chosen) transcription
factors where we used our newly developed model. Here, as a prior, we used Ornstein-
Uhlenbeck kernel and White kernel. In the plot, a solid line represented a posterior
mean of transcription factors activity and shaded area represents the 95% confidence
interval.

4.7 Discussion

At Chapter 3 Section 3.8 we noted that the linear Gaussian model is equivalent
to a Gaussian process with a particular covariance function. In this chapter, we,
therefore, build a model directly from the Gaussian process perspective. Here we
designed a covariance function for reconstructing transcription factor activities given
gene expression profiles and a connectivity information between genes and transcription
factors. In the beginning section (Sec 4.1) of the chapter, we assumed that the joint
process across all transcription factor activities and across all time points might have
some correlation, hence we introduced an intrinsic model of coregionalization for
the joint process. We also introduced a computational trick, based on a judicious
application of singular value decomposition, to enable us to efficiently fit the Gaussian
process in a reduced ‘TF activity’ space.



Chapter 5

Clustering Gene Expression Data

The dynamic behaviour or analysis of time series data in particular clusters is important
for exploring and understanding gene networks. In many conventional time series
models, one of the key requirements is data with regular intervals. Gene expression
experiments data with regular intervals might be less informative or may not be
optimal from a statistical perspective or even may not be cost effective for various
reasons. A model designed to obtain data with regular intervals may not elicit as much
information as a method designed to collect pertinent special temporal features. Again,
in many cases, multiple biological replicates are available when the same experiments
are repeated multiple times. For these cases simply considering only one experiment
or taking the mean values from different replicates may not be the best solution.
Interesting information might be discarded while dealing only with one data set or
with their mean values.

The aim of this chapter is to specify the significantly different genes that may
affect the speed of ALS progression by building a new model. We used the Gaussian
processes, and here we introduced coregionalization principle while developing the
kernel of the Bayesian hierarchical Gaussian process model. We believe, there might
be some degree of temporal continuity between different replicates, conditions and/or
genetic backgrounds. So, the kernel designed considering coregionalization model will
consider the shared information between those replicates and conditions of genetic
background. We used python programming language based tool GPy (The GPy
Authors (2014)), to develop our model. Later we optimised these models and compared
them based on likelihood scores and selected the best.

Amyotrophic lateral sclerosis (ALS) is a diverse neurodegenerative disorder with
around 10% of familial cases and the remaining sporadic. The disease is currently
irreversible from the onset and heterogeneous with variable severity in terms of speed
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of progression of the disease course. Injury and cell death of motor neurones in the
brainstem, spinal cord and motor cortex are the main reasons of this relentlessly
progressive disorder (Brockington et al. (2013); Ferraiuolo et al. (2011); Haverkamp
et al. (1995); Peviani et al. (2010)). Among the familial ALS [fALS] 20% is caused by
mutation in the Cu/Zn Superoxide Dismutase1 (SOD1) gene. The median survival
of this lethal disorder is less than 5 years, only 20% of patients live longer than 5
years, and less than 10% of patients survive more than 10 years from the symptom
onset (Beghi et al. (2011); Saccon et al. (2013)). The speed of disease progression
is not clear from the biological basis. Even in fALS, affected members clearly show
the clinical heterogeneity in terms of site of onset, age and progression rate of the
disease. In a study, Camu et al. (1999) reported the presence of potential gene modifiers
and pathways that particularly affect the disease phenotype. Mutation in the SOD1

gene notably characterised the distinctive nature by intrafamilial and interfamilial
variabilities in the phenotype. Many of the clinical and pathological features of human
ALS can be replicated very well by transgenic mice. These murine models also mimic
the human disease and show the heterogeneity in the disease progression for the clinical
phenotype. These variabilities may be related with expression levels of mutant SOD1

protein or specific SOD1 mutations (Turner and Talbot (2008)).
In a study Pizzasegola et al. (2009) reported that disease progression is much faster

in 129Sv mice with the survival time of 129 ± 5 days, while the C57 mouse strain
can survive 180± 16 days. Both the 129Sv and C57 carry the same copy numbers of
human mutant SOD1 and express the same amount of mutant SOD1G93A messenger
RNA in the spinal cord. Marino et al. (2015) reported about the differences in protein
quality control of these mice models in terms of speed of progression of the disease
course.

Here in this work, we built a mathematical model to cluster gene expression time
series data using hierarchical Gaussian process. Then as a part of validation, we
performed an investigation of these clusters. We have calculated the enrichment
scores (Huang et al. (2009a, 2007)) for every cluster using DAV ID1 (Database for
Annotation, Visualization and Integrated Discovery) (Huang et al. (2009b)) and
identified clusters which have very high enrichment scores. We perform a gene ontology
overrepresentation analysis, where we showed our clusters are less likely to be grouped
by chance. We carried out further analysis of clusters with high enrichment score and
which also demonstrated some interesting characteristics in their dynamic behaviour at
the four-time stages (pre-symptom, onset, symptom and end-stage) of disease course.

1http://david.abcc.ncifcrf.gov/tools.jsp

http://david.abcc.ncifcrf.gov/tools.jsp
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Our functional annotation clustering and pathway analysis reveal some interesting
information for a group of genes which might have some functionality for the speed of
propagation of ALS particularly with reference to this specific type of mouse model.

5.1 Related Work

Gene expression time series data has been used extensively over the last few decades
and implemented for in-silico experiments to investigate various fundamental biological
processes. Among the many processes examined, some of the notable examples are cell
cycle Spellman et al. (1998), cell signalling Barenco et al. (2006), regulatory activity
Sanguinetti et al. (2006), and developmental process Tomancak et al. (2002). Gaussian
processes have been applied to gene expression time series widely with several aims
and analyses, such as transcription factor target identification (Honkela et al. (2010)),
the inference of RNA polymerase transcription dynamics (Maina et al. (2014)), and
ranking differentially expressed time series (Kalaitzis and Lawrence (2011)).

Hierarchical models can significantly improve the inference in the Bayesian statistical
problems (Gelman et al. (2004)) while dealing with multiple related groups of data
allowing an exchange of information. Inference on the whole structure of data is
always preferable to a partial independent structure. Estimating replicate time shifts
were proposed by Liu et al. (2010), where they used Gaussian process regression with
uncertain measurement of mRNA expression. This method requires a large number
of variables optimisation. Previously, Ng et al. (2006) also Medvedovic et al. (2004)
used a clustering method to model replicates using a hierarchical structure. Both
of the models compute the replicate variance as multivariate Gaussian around some
gene-specific mean.

In a clustering application, Gaussian process regression could be useful for parsi-
monious temporal inference. Temporal covariance of genes within a cluster can be
designed by adding a hierarchical layer, again covariance between multiple biological
replicates can be constructed considering one more hierarchical layer (Hensman et al.
(2013b); Menzefricke (2000)). While Gaussian process also overcomes the requirement
of evenly spaced time points for time expression data. As a part of the motivation,
first, we clustered the gene expression time series data of C.elegans that has been
used earlier to analyse transcription factor activity. We used the method proposed by
Hensman et al. (2013b). Figure 5.1 shows the cluster analysis result. Apparently, this
is a flexible model for irregularly sampled replicated time series data.
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Here we constructed a hierarchical Gaussian process (Hensman et al. (2013b))
based model to analyse the gene expression time series data collected from four mouse
models with different genetic backgrounds (129Sv and C57 with transgenic and non-
transgenic). We also considered their replicates (four in our case) and built a covariance
matrix based on their shared information and the time points were pre-symptom, onset,
symptom and end stage of the disease course.

5.2 Methodology

5.2.1 Hierarchical Gaussian Process

Our gene expression time series came from four different genetic backgrounds or
strains and there are four biological replicates. With the idea of Hensman et al.
(2013b), every individual gene we can incorporate these in an hierarchical fashion. Let’s
consider the vector of measurements yi

nr denote gene expression of nth gene in the rth

biological replicate and ith biological strain or condition. Measurements were made at
different times and collected into the vector xi

nr, where n, r and i represent the same
as before. The data for the nth gene and ith strain is denoted by Yi

n = {yi
nr}Rr=1 and

Xi
n = {xi

nr}Rr=1, where R is the total number of replicates. The data for the nth gene
is represented by Yn = {Yi

n}Si=1 and Xn = {Xi
n}Si=1, where S is the total number of

strains or conditions.

Let’s consider some underlying function gn (x) model gene expression activity of
the nth gene, we have other functions enr (x) which consider rth replicates and finally
we have some other functions finr (x) for the ith condition of the genetic background.
The Gaussian process models are given by

gn (x) ∼ GP (0, kg (x, x′)) (5.1)

enr (x) ∼ GP (gn (t) , ke (x, x
′)) (5.2)

finr (x) ∼ GP (enr, kf (x, x
′)) (5.3)

For the input dataset Xn and hyperparameters θ we can calculate the likelihood by

p (Yn|Xn,θ) = GP
(
Ŷn|0,Σn

)
, (5.4)
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Fig. 5.1 Clustering gene expression data of C.elegans using the method proposed by
Hensman et al. (2013b). Along x-axis the five time points are as described in Section
2.7.1 (shown in Figure 2.3). Number at the corner indicates number of genes belong to
this cluster. Solid line represents a posterior mean and shaded area represents the 95%
confidence interval. We used top most 10,000 differentially expressed genes from the
total 15,000+ genes.



92 Clustering Gene Expression Data

where- Ŷn =
[
Y ⊤
n,1, Y

⊤
n,2, ...Y

⊤
n,S

]⊤ and θ represents the hyperparameters for the covari-
ance function kg, ke and kf . The structure of the covariance matrix Σn for two genes n
and n′ are given by

Σ [n, n′] =

Σn + kh

(
xn, xn′

)
, if n = n′.

kh

(
xn, xn′

)
, otherwise.

(5.5)

While designing different kernels k we have used coregionalization model.

5.2.2 Kernel Design with Coregionalization

Gaussian process models have been already used to capture structure in the data
arising from temporal correlation. Our innovation is to realise that there is additional
correlation structure relating to the genetic background of the organism (in our case,
the mice strains) and the status as control/experiment (in our case the presence or
absence of the SOD1 mutation). By acknowledging such structure in the covariance
matrix, we can increase the power of our method. Standard approaches force each of
these conditions to be fully independent. Our model allows the correlation structure
to be learned.

Our formalism for introducing correlations across conditions and strains is the
coregionalization principle (Alvarez and Lawrence (2011)) that originates in geostatistics
(Wackernagel (2003)). Coregionalization matrices allow us to share the information
between genetic background and replicates. In machine learning language this approach
is sometimes known as ‘multi-task learning’(Bonilla et al. (2007)) where each condition
and strain is assumed to be a different task. However, in statistical terms, it is simply
a multivariate regression or a multiple output model.

An appropriate general model that can capture the dependencies between all the
data points and conditions is known as the linear model of coregionalization (LMC) is
a model where output is a linear combination of independent random functions. (A
detail explanation of the coregionalization model is available at Alvarez and Lawrence
(2011); Alvarez et al. (2012)). If we can consider our problem with a set of D output
functions for xϵRp input domain, then output function {fd (x)}Dd=1 of LMC can be
expressed as

fd (x) =
Q∑

q=1

ad,quq (x) (5.6)
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Fig. 5.2 A simple demonstration of regression using coregionalization model with the
Gaussian process. Here, training data marked with black, while red represents test
data. The solid line represents a posterior mean function, and shaded area represents
the 95% confidence interval. The independent models (top-left and top-right) do not
share information across outputs. The independent models tend to return to the
prior assumptions in the regions where there is no training data specific to an output.
While the coregionalized model (bottom-left and bottom-right) shares information
across outputs. Here both outputs have associated patterns, where there is no training
data the fit is better with the coregionalized model. A Jupyter Notebook demo of
coregionalization using Gaussian processes is available at The GPy Authors (2014).
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Here the interpretation is that {uiq (x)}
Rq

i=1, i = 1, ..., Rq are a set of functions that
each share the same covariance function (one can think of them as some form of
underlying latent processes that determine system behaviour). The parameters ad,q
represent the relationship between a given latent function, q and an observed condition
and or strain. If we consider there can be several different covariance functions
associated with separate latent sets then, equation 5.6 is expressed as

fd (x) =
Q∑

q=1

Rq∑
i=1

aid,qu
i
q (x) (5.7)

and the cross covariance function between fd (x) and f
d
′ (x) in terms of the function

uiq (x) is given by

cov
[
fd (x) , fd′ (x

′)
]
=

Q∑
q=1

Q∑
q
′
=1

Rq∑
i=1

Rq∑
i
′
=1

aid,qa
i
′

d
′
,q
′cov

[
uiq (x) , u

i
′

q
′ (x′)

]
.

(5.8)

For the so-called homotopic case (Alvarez and Lawrence (2011); Wackernagel (2003))
the covariance matrix for the joint process f can be rewritten as a sum of Kronecker
products, finally we can write the covariance as

Kf,f =

Q∑
q=1

AqA⊤
q ⊗ Kq =

Q∑
q=1

Bq ⊗ Kq (5.9)

where ⊗ represents Kronecker product, Aq ∈ RD×Rq and Bq is the coregionalization
matrix2. The positive semi-definite covariance functions of the latent processes, kq (x,x′)

can be chosen from a wide range of covariance functions.

Figure 5.2 shows a simple demonstration of regression using coregionalization model
with Gaussian process. Here, the independent models do not share information across
outputs and tend to return to the prior assumptions in the regions where there is no
training data specific to an output. While the coregionalized model shares information
across outputs. Here both outputs have associated patterns, where there is no training
data the fit is better with the coregionalized model. We introduced coregionalization

2In Chapter 4 Section 4.1 we developed a model for transcription factor activity and used in-
trinsic coregionalization model. There the matrix Σ was termed as the coregionalization matrix.
Coregionalization matrix Σ of 4.1 and coregionalization matrix Bq of Equation 5.9 have the similar
realization.
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Fig. 5.3 A simple representation of Coregionalization: (a-c) demonstration of Kronecker
product by tiling. (d) Coregionalization kernel in the input space with 64 × 64
dimensions; (4 strains (129Sv−SOD1, 129Sv−Ntg, C57−Ntg and C57−SOD1) ×
4 replicates × 4 time points or stages of the disease). With a closer look, we can find
four primary segments, where every quarter can be treated as a strain; Each quarter
has four more segments which indicate four replicates; Each replicate has a further four
segments which represent four different disease stages or time points (e) kernel after
optimization considering top most 100 (an arbitrary suitable number for visualization)
differentially expressed genes. This is a realisation of covariance between genes, where
every pixel is computed using the coregionalization kernel.
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while developing the kernels in the hierarchical Gaussian process clustering. So, the
information between the conditions, replicates and disease stages will be shared.

In our clustering problem, we used a combination of the exponentiated quadratic
kernel (also known as squared exponential or RBF kernel) to describe the properties of
the function which underlay each cluster. We used a white noise kernel in additive form
to deal with the noise of the process. The experimental conditions of acquisition of
gene expression measurements cannot be ideally controlled so that the measurements
could be corrupted by noise, incorporated either at the biological origin or introduced
in the measurement process. Figure 5.3 (a-c) demonstrate the Kronecker product by
tiling, (d) shows the representation of the coregionalized kernel in the input space and
(e) the representation of an optimised kernel where we considered only 100 (top most
differentially expressed; an arbitrary number suitable for visualisation) genes.

5.2.3 Clustering

We aimed to discover groups of genes that were exhibiting the same functional behaviour
across times and conditions. Our coregionalization approach allows us to cluster these
similar functional behavioural genes through a mixture of Gaussian process models:
each component is a function over time, genetic background and condition.

Partitioning genes into clusters are done by inference. Using Dirichlet process prior
for mixing coefficients and partitioning Dunson (2010) proposed a method where the
Gaussian process was used to model the function within a cluster. This mechanism
leads to Gibbs sampling. In this process, at every Gibbs step, a gene is removed from
the cluster and then reallocated it stochastically. The whole process can be slow in
practice. A potentially improved model was proposed by Hensman et al. (2013b),
where they consider the structure of covariance across the gene and separately across
replicates. They used a variational lower bound for model inference. Each gene is placed
in an individual cluster and later merged with a greedy selection process to maximise
the log marginal likelihood of time series data. Hyperparameters are optimised when
no merges are possible to improve the overall marginal likelihood. Then an expectation
maximization algorithm is used with the new covariance function3 (Hensman et al.
(2013b)).

3The idea is implemented in a tool named named GPClust, available at https://github.com/
jameshensman/GPclust

https://github.com/jameshensman/GPclust
https://github.com/jameshensman/GPclust
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5.3 Dataset and Results

Microarray Data Analysis: We used the Affymetrix data from Nardo et al. (2013).
In this experiment, spinal cord tissues were obtained from C57 and 129Sv transgenic
SOD1G93A mice and age-matched non-transgenic littermates at the presymptomatic,
the early symptomatic (onset) stage, symptomatic and end stage. The transcription
profiles of laser captured motor neurons isolated from the lumbar ventral spinal cords
of the rapid progressor (129Sv − SOD1G93A), slow progressor (C57 − SOD1G93A)

mice at four stages of the disease (presymptomatic, onset, symptomatic, end stage)
and respective non-transgenic littermates were generated using the murine GeneChip
Mouse Genome 430 2.0 Plus (Affy MOE4302). We used Bioconductor 4 package Puma
(Pearson et al. (2009)) to extract the point estimates of gene expression levels from the
GeneChip Affymetrix data.

Select differentially expressed genes: All the gene expression time series data
extracted from Affymetrix data might not be differentially expressed and filtering
out the requisite genes is obvious. Considering the temporal nature of data Kalaitzis
and Lawrence (2011) analysed time series gene expressions and filtered the quiet or
inactive genes from the differentially expressed ones using Gaussian process. In addition
identifying genes that have a good signal-to-noise ratio (SNR) is also used to filter
down the total number of genes that need further analysis. We can rank the genes
by the ratio of the mean replicate-wise variance to the variance of the replicate-wise
means. In our analysis, we used a combination of both approaches. First, we made the
initial ranking of the gene expressions (45,037 genes for our case) using the method
of Kalaitzis and Lawrence (2011) and then we use the SNR to choose 10,000 genes 5

for further analysis. The gene expression levels of each replicate were normalised to
zero-mean over all the samples before the filtering.

Cluster analysis: In the previous selection stage, we chose 10,000 genes6 from the
total of 45,037 probe sets which were more dynamically differentially expressed.

4Bioconductor is an open-source computational framework for the analysis of high-throughput
genomic data in the R programming language.

510,000 is an arbitrary choice. We did the similar experiments choosing 2,000, 5,000 and 15,000
genes and found similarity in the results with minor variations.

6The number of genes 10,000 is an arbitrary choice. We performed the similar experiments choosing
2,000, 5,000 and 15,000 genes and found similarity in the results with minor variations. We assumed,
10,000 most differentially expressed genes might be an appropriate choice for further analysis reducing
the computational cost.
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Fig. 5.4 Clustering gene expression data using the method proposed by Hensman et al.
(2013b). Along x-axis the four-time stages are pre-symptom, onset, symptom and
end-stage (all the data points together formed like solid vertical lines). A number at the
corner indicates the number of genes belong to this cluster. The solid line represents a
posterior mean and shaded area represents the 95% confidence interval. We used top
most 10,000 differentially expressed genes and they were clustered among 20 clusters.
The number of the clusters and the genes belongs to a specific cluster was selected by
the algorithm.
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Fig. 5.5 Clustering genes expressions using a hierarchy of Gaussian processes. Some
representative clusters from the 203 clusters generated (top to bottom, left to right:
cluster 1 to 7, 16 to 22, 31 to 37, 46 to 52, 61 to 67, 76 to 82 and 196 to 202). Along x-
axis the four-time stages are pre-symptom, onset, symptom and end-stage (all the data
points together formed like solid vertical lines). Four different colours yellow, red, green
and blue are representing four mouse strains 129Sv− SOD1, 129Sv−Ntg, C57−Ntg
and C57− SOD1 respectively. A number at the corner indicates the number of genes
belong to this cluster. Solid line represents a posterior mean function, and shaded area
represents the 95% confidence interval.
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Fig. 5.6 Along x-axis of each figure four-time stages are pre-symptom, onset, symptom
and end-stage. Four different colours yellow, red, green and blue are representing four
mouse strains 129Sv−SOD1, 129Sv−Ntg, C57−Ntg and C57−SOD1 respectively.
Examples of clusters where genes from different phenotypic background have different
behaviour in time series expression. We used a simple numbering system to represent
our clusters and here we are presenting (Figure left to right) cluster119, cluster154,
cluster14 and cluster197. Cluster119 showing the clear separation between transgenic
group (129Sv−SOD1 and C57−SOD1) with non-transgenic mouse model(129Sv−Ntg
and C57−Ntg), while cluster154 separating mouse C57 from mouse 129sv. Cluster14
and cluster197 showing the different characteristics of 129Sv− SOD1 from other three
models where it is increasing sharply or becoming very low respectively after the end
stage.
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We started with the baseline proposed by Hensman et al. (2013b) and clustered the
genes systematically. We found the most differentially expressed genes were clustered
into 20 clusters, where the first four cluster included 4,023 genes (1722, 1185, 1116 and
1008 respectively). A cluster with such a huge number of genes deemed insignificant
for further analysis. Moreover, this method was not showing the individual dynamic
behaviour for different genetic backgrounds. Figure 5.4 shows the first 10 clusters.

Later we applied our proposed hierarchical Gaussian process cluster model on the
same 10,000 most differentially expressed genes and collected the results for further
analysis. Figure 5.5 shows a small part of our result. For any individual graph, along
with x-axis the four-time stages are pre-symptom, onset, symptom and end-stage. We
have used four different colours (yellow, red, green and blue) to separate four mouse
strains (129Sv−SOD1, 129Sv−Ntg, C57−Ntg and C57−SOD1 respectively). Any
individual cluster contains a number of genes which might be biologically associated or
co-regulated and we mention the number of the genes belong to that cluster at the
corner of the plot. In the plot, a solid line represents posterior mean function and
shaded area represents 95% confidence interval. We have found a total of 203 different
clusters with a variety of the number of genes. Many of the clusters indicated different
dynamic behaviour of the gene set. Many of the clusters were attractive for further
analysis but that is beyond the scope of this study. We included some examples in
the Figure 5.6. We have limited our consideration to the clusters where the strain
129Sv − SOD1 (yellow colour in our representation) had different characteristics and
focussed our consideration for further analysis.

Enrichment score analysis: A typical biological process is regulated by a group
of genes. If we apply a high-throughput screen technology then the co-functioning
genes are more likely to appear together with a higher potential (or enrichment) score.
These logical reasons instigate the analysis of a gene list or group of genes moving from
individual gene-oriented view. The enrichment score is a quantitative measure derived
from some well known statistical methods like Binomial probability, hypergeometric
distribution, Chi-square, Fisher’s exact test. In a previous study, Huang et al. (2009a)
reported about 68 Bioinformatics tools to compute the enrichment score and grouped
them into three major categories. DAVID Huang et al. (2009b) is a widely used tool
developed based on Fisher’s exact and extensively used for singular enrichment analysis
(SEA) and modular enrichment analysis (MEA). We used DAVID on our clusters of
genes to calculate the enrichment score for individual clusters. Figure 5.7 and Figure
5.8 shows the results of enrichment score analysis. In a functional annotation clustering
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Fig. 5.7 Enrichment scores analysis without coregionalization. Figure at the top shows
the enrichment score for different clusters, where x-axis is the cluster number and
y-axis shows the enrichment score of that cluster. Figure at the bottom shows the
number of genes belongs to any specific cluster.

Fig. 5.8 Enrichment scores analysis. Figure at the top shows the enrichment score for
different clusters where x-axis is the cluster number and y-axis shows the enrichment
score of that cluster. Figure located in the middle shows the normalised score (mean
enrichment score is 1.05). While the bottom figure shows the number of genes belongs
to any specific cluster.
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example Huang et al. (2007) analysed a group of genes and used enrichment score of
1.3 as a threshold value to decide whether a list of genes is enriched or not. Here for
our 203 clusters, the mean enrichment score is 1.05 and we found at least 15 clusters
have an enrichment score of ≥ 2. We choose these top 15 annotation clusters out of
total 203 clusters for further analysis.

Pathway analysis: Pathway analysis allows us to gain an insight of the underlying
biology of the differentially expressed genes. Pathway analysis can reduce the complexity
and increase the explanatory power where high-throughput sequencing and gene
profiling are used to investigate whether a gene or a list of genes have any roles for
a phenotype or a given phenomena. It is also used for the analysis of gene ontology,
physical interaction networks, the inference of pathways from expression and sequence
data, and further comparisons. In a given condition it can identify the pathway by
correlating information with a pathway knowledge base. We identified some clusters
(which were deemed interesting in the cluster analysis and enrichment score analysis
stages) and performed gene ontology enrichment analysis (one example is given at
Table 5.2) and pathway analysis on individual clusters. We identified one of our clusters
(cluster197; Figure 5.6) which were selected at the earlier stage for further analysis
and had a relatively high enrichment score (2.16) is related to ALS. In previous study
Brockington et al. (2013) reported about SOD1 related genes and ALS. One of the
SOD1 genes, Derlin− 1 (Prob ID: 1415693_at), can accumulate with other misfolded
proteins and cause the neurone death and belongs to our chosen cluster.

The analysis carried out using the tool DAVID looks for shared ontological terms
that bind the clustered genes in a biologically meaningful manner. It also highlights
pathways or cellular mechanisms that are relevant to the paradigm being investigated.
For example, in the cluster 197 the gene Derlin− 1 is shown to play an important role
in ALS sitting at a position between the gene known to be involved in ALS, namely
SOD1, and an important pathway that of the accumulation of misfolded proteins.
Figure 5.9 shows the pathway analysis. Interestingly some other genes from the same
cluster; Stub1, Fzr1, Gabarapl1, Ap3m1 and Fuca1 also play a role in some aspects of
protein degradation pathways. Figure 5.10 shows the pathway analysis of Alzheimer’s
disease and Figure 5.11 shows the pathway analysis of Parkinson’s disease. Both of
these diseases are caused by cell death and the gene Atp5j is related with them. Gene
Atp5j is present in our cluster number 197. Further investigation might find some
further association between these genes and their protein products.
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Annotation Cluster 1 Enrichment
Score: 2.16

Count P_Value Benjamini

GOTERM_CC_FAT organelle inner mem-
brane

9 3.0E-5 4.5E-3

GOTERM_CC_FAT mitochondrial inner
membrane

8 1.6E-4 1.2E-2

GOTERM_CC_FAT organelle membrane 12 2.8E-4 1.4E-2
GOTERM_CC_FAT mitochondrial mem-

brane
8 6.1E-4 2.3E-2

GOTERM_CC_FAT mitochondrial enve-
lope

8 8.7E-4 2.6E-2

GOTERM_CC_FAT organelle envelope 9 1.2E-3 3.1E-2
GOTERM_CC_FAT envelope 9 1.3E-3 2.7E-2
SP_PIR_KEYWORDS mitochondrion inner

membrane
5 3.8E-3 4.2E-1

GOTERM_CC_FAT mitochondrial part 8 4.6E-3 8.3E-2
SP_PIR_KEYWORDS mitochondrion 9 5.8E-3 3.5E-1
GOTERM_CC_FAT mitochondrial mem-

brane part
3 1.6E-2 1.9E-1

GOTERM_BP_FAT transmembrane
transport

6 3.1E-2 8.8E-1

GOTERM_MF_FAT hydrogen ion
transmembrane
transporter activity

3 3.3E-2 9.9E-1

GOTERM_MF_FAT monovalent in-
organic cation
transmembrane
transporter activity

3 3.6E-2 9.4E-1

GOTERM_MF_FAT inorganic cation
transmembrane
transporter activity

3 7.1E-2 8.9E-1

SP_PIR_KEYWORDS transit peptide 5 7.4E-2 5.8E-1
GOTERM_CC_FAT mitochondrion 10 7.6E-2 5.5E-1
UP_SEQ_FEATURE transit pep-

tide:Mitochondrion
5 1.0E-1 1.0E0

KEGG_PATHWAY Oxidative phospho-
rylation

3 1.0E-1 8.6E-1

GOTERM_BP_FAT generation of precur-
sor metabolites and
energy

3 2.6E-1 9.9E-1

Table 5.1 Gene ontology enrichment analysis from functional annotation clustering of
cluster number 197 using DAVID.
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Prob ID Gene name KEGG Pathway

1416143_at Atp5j Oxidative phosphorylation, Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease

1415693_at Derl1 Amyotrophic lateral sclerosis (ALS)
1416580_a_at Stub1 Ubiquitin mediated proteolysis
1416375_at Ap3m1 Lysosome
1417651_at Cyp2c29 Arachidonic acid metabolism, Linoleic acid

metabolism, Retinol metabolism, Metabolism of
xenobiotics by cytochrome P450, Drug metabolism

1416565_at Cox6b1 Oxidative phosphorylation, Cardiac muscle contrac-
tion, Alzheimer’s disease, Parkinson’s disease, Hunt-
ington’s disease

1419353_at Dpm1 N-Glycan biosynthesis
1417357_at Emd Hypertrophic cardiomyopathy (HCM), Arrhythmo-

genic right ventricular cardiomyopathy (ARVC), Di-
lated cardiomyopathy

1419451_at Fzr1 Cell cycle, Ubiquitin mediated proteolysis,
Progesterone-mediated oocyte maturation

1416047_at Fuca2 Other glycan degradation
1416419_s_at Gabarapl1 Regulation of autophagy
1416340_a_at Man2b1 Other glycan degradation, Lysosome
1415917_at Mthfd1 Glyoxylate and dicarboxylate metabolism, One car-

bon pool by folate
1418226_at Orc2 Cell cycle
1416116_at Orc3 Cell cycle
1416875_at Parvg Focal adhesion
1422525_at Atp5k Oxidative phosphorylation
1417242_at Eif4a3 Spliceosome
1416754_at Prkar1b Apoptosis, Insulin signalling pathway
1416588_at Ptprn Type I diabetes mellitus
1416383_a_at Pcx Citrate cycle (TCA cycle), Pyruvate metabolism
1416625_at Serping1 Complement and coagulation cascades
1423501_at Max MAPK signaling pathway, Pathways in cancer, Small

cell lung cancer
1415891_at Suclg1 Citrate cycle (TCA cycle), Propanoate metabolism
1415943_at Sdc1 ECM-receptor interaction, Cell adhesion molecules

(CAMs)
Table 5.2 Pathway analysis from functional annotation clustering of cluster number
197 using DAVID.
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Fig. 5.9 KEGG pathway analysis of Amyotrophic lateral sclerosis (ALS).
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Fig. 5.10 KEGG pathway analysis of Alzheimer’s disease.
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Fig. 5.11 KEGG pathway analysis of Parkinson’s disease.
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5.4 Gene Ontology overrepresentation analysis with
Hypergeometric Test

In typical next generation high throughput experiments (e.g. gene expression microarray
data analysis) clustering analysis aims to produce groups of genes based on specific
criteria (e.g. differentially expressed genes). To learn more about the underlying
biology and gain more mechanistic insights, overrepresentation analysis (ORA) is one
of the most widely used approaches. Overrepresentation analysis uses the knowledge
of the functional behaviours or characteristics of the genes and probes whether the
identified gene groups or clusters functionally associated or not. Drǎghici et al. (2003)
first discussed the overrepresentation problem for a set, or cluster, of genes and
proposed different statistical methods to overcome this issue. Overrepresentation
analysis depends on the postulate whether a biological process has more identified
genes than expected by chance alone, that biological process is probably linked to the
experiment Grossmann et al. (2007).

Gene ontology terms provide a universal language for researchers to use that
categorises each gene and its related function. A gene ontology (GO) term annotates a
cluster of genes, shows the involvement in biological processes or indicates their known
molecular functions or cellular component locations. Gene ontology terms represent the
parent-child relationship by a directed acyclic graph, where a child represents a more
precise biological classification than its parent or parents (in the case where a child
has multiple parents). The annotation of a gene ontology term indicates automatic
annotation to all the other ancestors of that gene ontology term based on the annotation
propagation or true path rule. All genes that annotate to the gene ontology term
transcription factor activity, sequence-specific DNA will also annotate to the gene
ontology term regulation of transcription, DNA templated after some stages (layers of
parent-child graph) which is annotated to gene ontology term biological regulation and
finally biological process. Figure 5.12 shows the parent-child relationship by a directed
acyclic graph for the gene ontology term transcription factor activity, sequence-specific
DNA to the biological process.

There are many popular gene description databases or sites used for gene ontology
overrepresentation analysis, such as the Gene Ontology Consortium Ashburner et al.
(2000), the Database for Annotation, Visualization and Integrated Discovery (DAVID)
Huang et al. (2007) and so on. In our analysis, we determined the most relevant genes
associated with a given gene ontology term using the database of Huang et al. (2007).
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Fig. 5.12 The figure shows the parent-child relationship by a directed acyclic graph
for the gene ontology term transcription factor activity, sequence-specific DNA to the
biological process. All genes that annotate to the gene ontology term transcription
factor activity, sequence-specific DNA will also annotate to the gene ontology term
regulation of transcription, DNA templated which is annotated to biological regulation
and finally biological process. Figure curtsey Huang et al. (2007) and http://www.ebi.
ac.uk/QuickGO

http://www.ebi.ac.uk/QuickGO
http://www.ebi.ac.uk/QuickGO
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In overrepresentation analysis, the most widely used statistical test is based on
the hypergeometric distribution or its binomial approximation Beißbarth and Speed
(2004); Drǎghici et al. (2003); Lee et al. (2005); Martin et al. (2004). Let’s consider in
an experiment the full gene list is represented by G, A denotes a gene ontology term
and S represents a cluster of genes obtained from a systematic clustering approach.
The set of genes annotated to A is represented by gA and set of genes belonging to
the cluster S is denoted by gS from that complete gene list G. The number of genes
belonging to both A and S (A ∩ S), denoted by nA, indicates the representation of A
in S. Under the null hypothesis that A and S are independent (i.e. the gene ontology
term is not relevant to the gene cluster), nA follows a hypergeometric distribution. The
probability or p-value measuring the significance of association is the tail probability
of observing nA or more genes annotated by A in S is given by

p− value =

min(gA,gS)∑
k=nA

(
gA
k

)(
G−gA
gS−k

)(
G
gS

) (5.10)

where
(
p
q

)
= p!

q!(p−q)!
is the binomial coefficient. The closer the p-value is to zero, the

more significant the particular gene ontology term associated with the group of genes
is (i.e. the less likely the observed annotation of the particular gene ontology term to a
group of genes occurs by chance) Ashburner et al. (2000).

In our analysis, we have considered a random number of gene ontology terms. In
this thesis, we were interested about few gene ontology terms such as transcription
factor activity, sequence-specific DNA binding, cell death, immune response. Including
these gene ontology terms, we chose a total number of 20 terms for our further analysis.
Earlier from the clustering approach of Hensman et al. (2013b) (we called the base
model) we found a total number of 20 clusters and from our proposed model we have
found a total number of 203 clusters. For the above selected 20 gene ontology terms,
we performed the overrepresentation analysis using hypergeometric distribution and
generated the heatmaps showed in Figure 5.13. As we know the closer the p-value is to
zero (0), the more significant the particular gene ontology term associated with the
group of genes is. In another way, the closer the p-value is to one (1), a particular
gene ontology term to a group of genes is more likely occurs by chance. From the
heatmap we can see for the cluster created by base model, at least a subset of clusters
(9 out of 20; top heatmap of Figure 5.13 right portion of the dendrogram) are highly
penalised. Whereas for our proposed model (bottom heatmap of Figure 5.13) there
was no such penalization. Later for a fair trial, we randomly sampled 20 clusters out
of our 203 clusters and constructed the heatmaps for those gene ontology terms and
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Fig. 5.13 Heatmaps generated using the hypergeometric test shows the overrepresenta-
tion pattern (top- the baseline model, bottom- our developed model using coregional-
ization). For an individual heatmap, a column represents a cluster and a row represents
a specific gene ontology term. Here we chose 20 gene ontology terms randomly. Every
pixel of the heatmap represents the p-value obtained from the hypergeometric test for
a given gene ontology terms to a cluster of genes. In the heatmap red means relatively
low expression (0) and white means relatively high expression (1). Colour key (located
at the corner) shows the gradient.



5.4 Gene Ontology Overrepresentation Analysis 113

11 4 20 9 13 5 2 12 3 7 18 6 19 8 10 17 1 16 14 15

4

3

5

7

6

20

18

17

19

14

1

10

16

13

15

11

8

2

9

12

0 0.2 0.6 1

Value

Color Key

10 19 14 9 18 3 15 5 6 12 8 4 16 11 17 7 1 20 13 2

5

17

2

9

19

16

20

14

18

12

13

7

10

11

4

6

3

1

15

8

0 0.2 0.6 1

Value

Color Key

3 9 19 17 1 8 10 2 4 6 15 16 7 20 14 5 12 11 13 18

4

6

16

1

9

12

17

7

14

13

18

11

10

20

15

19

5

2

8

3

0 0.2 0.6 1

Value

Color Key

16 7 13 15 14 19 1 4 20 6 17 8 2 3 11 18 12 5 9 10

8

15

20

5

1

16

9

2

6

4

10

13

11

17

7

12

14

19

18

3

0 0.2 0.6 1

Value

Color Key

2 3 13 11 5 17 7 18 6 8 15 10 9 16 14 19 20 12 4 1

5

1

6

2

17

15

14

8

3

9

11

7

12

10

13

18

20

4

19

16

0 0.2 0.6 1

Value

Color Key

14 1 16 20 19 11 3 8 10 13 6 15 5 12 7 18 2 17 9 4

6

16

1

2

5

11

4

15

17

3

8

10

18

9

20

19

12

13

7

14

0 0.2 0.6 1

Value

Color Key

2 9 14 3 10 5 16 17 20 11 6 7 8 4 19 13 1 12 15 18

2

5

20

4

12

7

15

17

8

3

16

9

19

14

11

1

6

18

10

13

0 0.2 0.6

Value

Color Key

10 18 14 13 20 3 1 9 2 6 15 7 16 17 12 19 5 4 11 8

4

3

8

6

1

2

9

14

7

18

13

19

20

17

12

5

11

15

10

16

0 0.2 0.6

Value

Color Key

11 19 6 17 16 9 8 15 2 5 10 1 18 3 12 4 13 14 7 20

15

11

5

4

3

18

6

2

8

1

7

13

10

12

17

20

14

19

9

16

0 0.2 0.6 1

Value

Color Key

4 9 8 6 13 18 17 3 10 15 11 7 1 16 5 19 2 12 20 14

17

4

14

11

8

18

3

15

12

7

13

10

20

6

9

16

5

1

19

2

0 0.2 0.6 1

Value

Color Key

Fig. 5.14 Heatmaps generated using the hypergeometric test shows the overrepresen-
tation pattern (top- the base model, bottom three rows- heatmaps generated from
our model where for each map 20 clusters were selected randomly). For an individual
heatmap, a column represents a cluster, and a row represents a specific gene ontology
term. Every pixel of the heatmap represents the p-value obtained from the hypergeo-
metric test for a given gene ontology terms to a cluster of genes. In the heatmap red
means relatively low expression (0) and white means relatively high expression (1).
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Fig. 5.15 Individual gene ontology overrepresentation analysis for gene ontology term
immune response (top), neurological system process (middle) and innate immune
response (bottom) using the hypergeometric test. Left column shows overrepresentation
scores for the clusters obtained from the baseline model and right column shows the
results of proposed model. For any individual plot x-axis represents the clusters and
y-axis represents the probability or p-value.
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showed in the Figure 5.14. Where we noticed there was no subset of clusters (like the
base model) could be treated as highly penalised, or, in another way, grouped together
just by chance.

Figure 5.15 shows the comparative study of penalization (by more and higher
p-values) overrepresentation analysis for different gene ontology (immune response (top-
row), neurological system process (middle-row) and innate immune response (bottom-
row)) terms using the hypergeometric test. Left column shows overrepresentation
scores of the clusters obtained from the baseline model and right column shows the
p-values for proposed model.

GO Term gA PminBaseline
PminWithCorealization

GO Meaning

GO:0002768 841 0.849994946 0.009751129 Immune response

GO:0008219 1450 0.362907818 0.021004198 Cell death

GO:0003700 680 0.0489814 0.002020474 Transcription factor activity

GO:0051252 1017 0.032311122 0.003872594 Regulation of RNA metabolic process

GO:0000398 233 0.028107818 0.002842114 mRNA splicing

GO:0015031 723 0.013961439 0.005218494 Protein transport

GO:0043565 660 0.009939761 0.002853619 Sequence-specific DNA binding

GO:0006333 93 0.007166567 0.000506799 Chromatin assembly or disassembly

GO:0012501 752 0.005944224 0.005645826 Programmed cell death

GO:0002758 218 0.000164461 0.000668375 Innate immune response

GO:0006928 284 3.84E-05 0.000803479 Cell motion

GO:0016477 47 1.52E-05 2.16E-05 Cell migration

GO:0001764 47 1.52E-05 2.16E-05 Neuron migration

GO:0050877 340 4.15E-06 0.001152254 Neurological system process

GO:0051674 153 3.03E-07 0.00023249 Localization of cell

Table 5.3 A comparison of the minimum p-values (obtained from the hypergeometric
test for a given gene ontology term and clusters obtained from a specific clustering
method) between the base model proposed by Hensman et al. (2013b) (PminBaseline

) and
our proposed method (PminWithCorealization

). Here gA is the number of genes related to a
given gene ontology term obtained from the gene ontology database DAVID Huang
et al. (2007).
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Fig. 5.16 A comparison of minimum p-values between two methods for a given gene
ontology term. After determining the overrepresentation scores (p-values) from all
clusters for a given gene ontology term, we have calculated the minimum scores (Pmin)
for both of the methods. For any individual plot x-axis represents different ontology
terms, and y-axis represents the minimum p-values. Figure on the top shows scores for
baseline model while the bottom one is for our developed method.
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Table 5.3 shows the comparison of p-values obtained from the hypergeometric test
for a given gene ontology term and clusters obtained from a specific clustering method.
We have noticed, for most of the chosen gene ontology terms, our proposed model has
a less p-value than the base model i.e. the clusters we found from our model is less
likely occurred by chance.

After determining the overrepresentation scores (p-values) from all these clusters
for a given gene ontology term we have calculated the minimum scores (Pmin) for both
of the methods. Figure 5.16 shows the comparison. We have noticed that for some
gene ontology terms (such as cell death, transcription factor activity, immune response
and so on) we discussed earlier in this thesis the baseline model was comparatively
more penalized than our developed model i.e. genes we have clustered considering
genetic backgrounds, disease states and replications using the coregionalization model
are less likely to be clustered by chance.

Rather searching for statistical significance of each cluster, here in gene ontology
overrepresentation analysis we compared two methods and showed that our model, in
general, provides lower p-values, and therefore should result in more significant effect
regardless of later corrections.

5.5 Discussion

We have performed genome-wide analysis to cluster genes systematically and analysed
the rationale behind the variation in the speed of propagation for ALS. Our particular
innovation was to include the condition and genetic background of the organisms within
the underlying functional component of our clusters. This ensured that sub-groups,
where the underlying expression behaved similarly, were more likely to cluster together.
The hierarchical Gaussian process we used considers multiple replicates. For validation,
we have used a widely acceptable Gene ontology and functional annotation tool to
validate our clusters and their characteristics obtained from our model. We found a
number of clusters are highly enriched. Gene expression time series characteristics
curve and enrichment scores analyse helped us to narrow down our search and lead
toward finding the lists of genes or clusters which could be involved in the speed of
disease propagation. Our pathway analysis found a gene which is known to be involved
in the ALS disease process. Few other genes are also related to the neural disorder.
So, for further research exploring the biological characteristics of a few other clusters
might be interesting. Here we started with a whole genome set and ended with a single
gene directly related to disease. At the last part of this chapter, we made a comparison
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of gene ontology overrepresentation analysis for a number of gene ontology terms using
hypergeometric test where we found our clusters are less likely to be clustered just by
chance.

This finding leads us to conclude that the model we have developed based on the
Gaussian process can cluster the genes successfully and they are very much informative.
These clusters can be useful for further analysis. Even the model we have developed
using hierarchical Gaussian process could be useful to investigate other biological
activity where clustering from shared information is required.



Chapter 6

Conclusions and Future work

Over the last few decades, Machine learning has become one of the central components
of information technology, though mostly hidden part of our life. The increasing
availability of very high dimensional data, with diverse characteristics and growing
complexity, there is a good reason to believe that smart data analysis has become
a necessary ingredient for technological progress and achieve the wisdom. Machine
learning is a joint field of artificial intelligence and modern statistics, mostly focused on
the design and development of models, algorithms and techniques to extract information
automatically from data. Data modelling with the Gaussian process is a state of the
art technique in the wider community, and in practice turned to multidisciplinary. Our
main focus of this thesis was to achieve few goals by building Gaussian process models
on transcriptome data and analyse their behaviour. Here, the final chapter of this
thesis aims to summarise the key ideas and main contributions of the previous chapters
and consider possible directions for future work.

6.1 Summary of the Specific Contributions

Chapter 2: We have reimplemented the tool ChipDyno using R programming language
with the aim to make it public through an open source platform via GitHub. Earlier
the dynamics of TFAs were obtained for a unicellular microorganism (yeast), our tool
modelled transcription factor activities for a multicellular eukaryote (C.elegans). We
constructed our connectivity information between genes and transcription factors from
the evidence of gene to gene interaction to model the TFAs. The probabilistic dynamic
model for quantitative inference of TFA we described in this chapter has been used as
the basis for the Chapter 3 and Chapter 4.
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Chapter 3: In this technical background chapter we briefly described Gaussian
processes, the regression problem and regression with Gaussian processes. The choice
of the covariance function is a central step in modelling with a Gaussian process. We
justified the rationale behind choosing the Ornstein-Uhlenbeck kernel to model the
transcription factor activity using Gaussian processes. This analogy leads us to develop
a special covariance function suitable for transcription factor activity analysis.

Chapter 4: The probabilistic transcription factor activity model with Markov
property proposed by Sanguinetti et al. (2006) is a linear Gaussian model, which is
equivalent to a Gaussian process model with a particular covariance function. We,
therefore, built a model directly from the Gaussian process perspective. Here we
designed a covariance function for reconstructing transcription factor activities given
gene expression profiles and a connectivity information between genes and transcription
factors. The joint process across all transcription factor activities and across all
time points might have some correlation. Here we incorporated intrinsic model of
coregionalization for the joint process. We also introduced a computational trick, based
on judicious application of singular value decomposition, to efficiently fit the Gaussian
process in a reduced ‘transcription factor activity’ space.

Chapter 5: We have performed genome-wide analysis to cluster genes systemati-
cally and analysed the rationale behind the variation in the speed of propagation for
ALS. Our particular innovation was to include the condition and genetic background of
the organisms within the underlying functional component of our clusters. This ensured
that the underlying expressions behaved similarly were more likely to be clustered
together. We used a widely acceptable gene ontology and functional annotation tool
to validate our clusters and their characteristics obtained from our model. We made a
comparison of gene ontology overrepresentation analysis for a number of gene ontology
terms where we found our clusters are less likely to be clustered just by chance. Gene
expression time series characteristics curve and enrichment scores analyse helped us to
narrow down our search and lead toward finding the lists of genes or clusters which
could be involved in the speed of disease propagation. Our pathway analysis found
evidence of genes which are known to be involved in the disease process. The special
covariance function we have developed for clustering considering models condition,
genetic background, replicates and disease states with coregionalization could be useful
to investigate other biological activity where clustering is required.
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6.2 Future Work

Here we are going to set some possible directions of future work
Bridge between TFA and clustering: In Chapter 4, we developed a model to

analyse a latent variable (transcription factor) and determined their dynamic behaviour
using the gene expression time series data. In Chapter 5, we developed another model
to cluster gene expressions considering the genetic background, model conditions and
replicates. We aim to build a model ‘as a whole’, which will model the dynamics of
latent factor (transcription factor) considering various genetic backgrounds, conditions
and replicates and hence cluster the gene expressions based on both of the latent factors
and shared information.

Validation of clustered genes: Differential multi information (DMI) (Gam-
bardella et al. (2015)) value indicates the level of differential co-expression of the gene
set among the two classes. Each gene set is associated with a DMI value, computed
as the absolute difference of the Rényi mutual information (RMI) (Rényi (1960))
among diseases and among controls. A high DMI value means that the same genes are
coexpressed (and thus co-regulated) in a different manner between the conditions. For
this reason, the gene set is addressed as ‘differentially coexpressed’, and considered
relevant for the analysed disease. On the contrary, if a gene set has a low DMI value,
it means that the co-expression of the genes in the two biological conditions is almost
the same. Thus the gene set is not relevant for the analysed disease since different
biological conditions do not seem to affect the co-expression of that particular gene set.
One of our future plans is to validate the cluster of genes by building a model with
using DMI and RMI and calculate the associativity.

Big Data: In Chapter 3 we addressed data with a higher number of features might
be an issue while modelling with Gaussian process. On the other side, due to the
advancement of data acquisition techniques, every day the amount of data increasing
tremendously. These data are well known by a fancy term Big Data. Knowledge
extraction and interpretation of Big Data is a new challenge, which also triggered the
demand for special algorithms or models. The generic inference and learning algorithms
in Gaussian processes where we need to inverse the covariance matrix have O (N3)

runtime complexity and O (N2) memory complexity. However, an increasing number
of machine learning research (Dai et al. (2014); Hensman et al. (2013a)) has focused to
overcome these problems even with N > 106 data size. Our clustering algorithm (we
described in Chapter 5) targets multiple model conditions where data size may grow
geometrically with model conditions. We aim to extend our clustering model presented
in this thesis (Chapter 5), which will able to handle the Big Data.
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Classification of Single Sweep LFPs: To decipher brain activity and unprece-
dented information high-resolution neuronal probes has been developed. In a certain
investigation, data generated from this probe contain spiking activity as well as field
potential. Local field potential (LFP) is the extracellular space around neurones. LFPs
are used to investigate the information processing pathway among various cortical
layers. An average of recorded signal leads toward discarding valuable information
during the analysis of LFPs, while shapes in single-sweep signals play an important role
to decipher different neuronal network activity. From a pool of single LFPs extracting
the shape of LFPs is a clustering task. A commonly used method proposed by Mah-
mud et al. (2010) is a parametric model which used intelligent K -means (iK -means)
clustering algorithm. In this method, the pool of signals was treated as an outcome of
the single experiment though in practice they were collected from separate experiments.
We believe, there might have some correlation between different experiments with a
temporal condition. We already showed how coregionalization model with Gaussian
process could improve the capability of clustering when information is shared or, they
came from a temporal condition. We believe, a Gaussian process based non-parametric
model with coregionalization may reveal some interesting insight while clustering single
sweep LFPs.

Deep Gaussian Process: The deep Gaussian process (Damianou and Lawrence
(2013)) formed of a cascade of hidden layers of latent variables where the output of
any node from a certain layer acts as the input of the layer below. This output-input
relation from consecutive layers forms a hierarchy. In the deep Gaussian process, the
mapping between layers is governed by Gaussian process where data is modelled as an
output of a multivariate Gaussian process. In the domain of deep learning the deep
Gaussian process, is a very recent advancement and gaining its popularity day by day.
In our thesis (at Chapter 5) we developed a mechanism to cluster transcriptomic data
using hierarchical Gaussian process. A plausible advancement of this model might
be a clustering model using deep Gaussian processes. However, such a model may be
more difficult to implement because the interactions in a deep Gaussian process are
non-additive and therefore may be difficult to understand as a result.
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Appendix A

Mathematical Background

A.1 Gaussian Identities

This appendix aims to make the thesis self contained with a very short reference to
the basic mathematical identities we used in this document.

A.1.1 Gaussian Density

Perhaps Gaussian density is the most common probability density, given by

p
(
x|µ, σ2

)
=

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
≜ N

(
x|µ, σ2

)
(A.1)

where µ denotes the mean and σ2 is the variance of the density.

A.1.2 Multivariate Gaussian

Let’s x is an d-dimensional multivariate normal random variable, then the probability
function is given by

p (x|µ,Σ) ≜ N (x|µ,Σ) = (2π)−d/2 |Σ|−
1
2 exp

(
−1

2
(x − µ)⊤Σ−1 (x − µ)

)
(A.2)

where µ ∈ Rd denotes the mean and Σ is a symmetric, positive covariance matrix with
[d× d] dimension.
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A.1.3 Sum of two Gaussians

Sum of Gaussian variables is also Gaussian. Let’s

xi ∼ N
(
µi, σ

2
i

)
(A.3)

then the sum is distributed as

n∑
i=1

xi ∼ N

(
n∑

i=1

µi,

n∑
i=1

σ2
i

)
(A.4)

According to central limit theorem, as sum increases, sum of non-Gaussian with finite
variance variables is also Gaussian.

A.1.4 Scaling a Gaussians

Scaling a Gaussian variable is also Gaussian. Let’s

x ∼ N
(
µ, σ2

)
(A.5)

then the scaled density is distributed as

wx ∼ N
(
wµ,w2σ2

)
(A.6)

which leads to product of Gaussians. The product of two Gaussian is also Gaussian.

A.1.5 Product of two Multivariate Gaussians

Let’s, x, µa and µb be the size of [d× 1] and Σa and Σb be [d× d] covariance matrices.
The product of two multivariate Gaussian distributions is proportional to another
multivariate Gaussian distribution given by

N (x|µa,Σa)N (x|µb,Σb) = ZN (x|µc,Σc) (A.7)

where the covariance is
Σc =

(
Σ−1

a +Σ−1
b

)−1 (A.8)

and mean is
µc = Σc

(
Σ−1

a µa +Σ−1
b µb

)
. (A.9)
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The normalising constant Z is Gaussian in either µa or µb

zc = (2π)−
d
2 |ΣaΣbΣ

−1
c |−

1
2 exp

(
−1

2

(
µ⊤

a Σ
−1
a µa + µ⊤

b Σ
−1
b µb − µ⊤

c Σ
−1
c µc

))
. (A.10)

Let’s y is a [d′ × 1] Gaussian random variable whose mean depends linearly depends
on x where Σd has the dimension [d′ × d], and Σb has the dimension [d′ × d′]. The
product of two Gaussian is given by

N (x|µa,Σa)N (y|Σdµb,Σb) ∝ N (x|µc,Σc) (A.11)

The product is proportional to a multivariate normal density with mean

µc = Σc

(
Σ−1

a µa +Σ⊤
d Σ

−1
b y
)
. (A.12)

and the covariance is
Σc =

(
Σ−1

a +Σ⊤
d Σ

−1
b Σd

)−1
. (A.13)

A.1.6 Conditional and Marginal Distributions

Let’s N (x|µ,Σ) is a multivariate Gaussian, partitioned into x = [x1,x2]
⊤ such that

p

([
x1

x2

])
∝ N

([
x1

x2

]∣∣∣∣∣
[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(A.14)

The marginal distributions are

p (x2) ∼ N (x1|µ1,Σ11) (A.15)

and
p (x2) ∼ N (x2|µ2,Σ22) (A.16)

The conditional distributions are

p (x1|x2) ∼ N
(
x1|µ1 +Σ12Σ

−1
22 (x2 − µ2) ,Σ11 −Σ12Σ

−1
22 Σ21

)
(A.17)

and

p (x2|x1) ∼ N
(
x2|µ2 +Σ21Σ

−1
11 (x1 − µ1) ,Σ22 −Σ21Σ

−1
11 Σ12

)
. (A.18)
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A.1.7 Linear Forms

Let’s p (x) ∼ N (x|µ,Σ) and y = Ax + c then p (y) ∼ N
(
y|Aµ+ c,AΣA⊤).

A.1.8 Gaussian Integrals

The probability density function integrates to one (by definition), given by∫
Rd

N (x|µ,Σ) dx = 1 (A.19)

A.2 Matrix Analysis

Let’s P and Q be non-singular matrices with [d× d] dimensions. The inverse of the
product of two matrices can be written in terms of the individual inverses

(PQ)−1 = Q−1P−1. (A.20)

and the product with a scaler c is

(cP)−1 = c−1P−1. (A.21)

The sum of two matrices with inverses are valid for following identity

P−1 + Q−1 = P−1 (P + Q)Q−1. (A.22)

and also for (
P−1 + Q−1

)−1
= P (P + Q)−1 Q = Q (P + Q)−1 P. (A.23)

The Woodbury formula, or the matrix inversion lemma or the Sherman–Morrison–Woodbury
formula is given by(

P + QR−1S
)−1

= P−1 − P−1R
(
Q + SP−1R

)−1 SP−1. (A.24)

A.3 Singular Value Decomposition

The singular value decomposition is a matrix factorization technique of a real or
complex matrix. Let’s the matrix S is an |m× n| real matrix with m > n, then by
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singular value decomposition S can be written as

S = UΛV⊤ (A.25)

where U is an orthonormal matrix (i.e. U⊤U = I) with |m× n| dimensions, Λ is the
diagonal matrix containing the eigenvalues of S with |n× n| dimensions and V is
another orthonormal matrix (i.e. V⊤V = I) with |n× n| dimensions. When applied to
a positive semi-definite matrix, the singular value decomposition is equivalent to the
eigendecomposition.

A.4 Markov Property

Let’s {X(t), t ≥ 0} be a stochastic time continuous process with non-negative integer
values. This process is termed as a discrete Markov process if for every n ≥ 0, time
points 0 ≤ t0 < t1 < · · · < tn < tn+1 and states i0, i1, ..., in+1 it holds that

p(X(tn+1) = in+1 | X(tn) = in, X(tn−1) = in−1, ..., X(t0) = i0

= p(X(tn+1) = in+1 | X(tn = in)).
(A.26)

This definition states that any information of the future behaviour of the process
solely depends on the present state. Adding the history of the process does not increase
or update any new information.

A.5 Cholesky Decompositions

Inversion of a symmetric positive definite matrix is a very common requirement while
working with Gaussian processes and their approximations. Let’s Σ the symmetric
positive definite covariance matrix. In practice we rarely need the Σ−1 itself. For a given
vector y common forms we require are |Σ|, y⊤Σ−1y, and Σ−1y. The most efficient
and computationally stable way to obtain these forms is via Cholesky decomposition
(also known as the matrix square root)

Σ = LL⊤ (A.27)

where L is a triangular matrix known as Cholesky factor. Though Cholesky factor
has the same order cost as matrix inversion O (N3), it is cheaper in terms of constant
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factors.

y⊤Σ−1y = y⊤ (LL⊤)−1
y

= y⊤L−⊤L−1y

=∥ L−1y ∥2
(A.28)

The vector L−1y can be computed with the computational cost O (N2) by forward
substitution as L is triangular. Σ−1y can be computed using back substitution
L−⊤L−1y and |Σ| is computed as |Σ| =

∏
n L2

nn.
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