Gaussian Process in Computational Biology:
Covariance Functions for Transcriptomics

Muhammad Arifur Rahman

Department of Computer Science
University of Sheffield

A thesis submitted in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy

September 2017






To my loving family






Declaration

This thesis describes the work carried out between October 2011 and December 2016
in the MLQSITraN Group at The University of Sheffield, UK under the supervision of
Prof. Neil D. Lawrence.

This thesis has been composed by myself and has not, nor any similar dissertation

been submitted in any previous application for a degree.

Muhammad Arifur Rahman
September 2017



This thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction
is permitted without consent of the author. It is also protected by the Greative Commons
Licence allowing Attributions-Non-commercial-No derivatives.

« Abound copy of every thesis which is accepted as worthy for a higher degree, must be deposited in the University of
Sheffield Library, where it will be made available for borrowing or consultation in accordance with University Regulations.

« All students registering from 2008-09 onwards are also required to submit an electronic copy of their final, approved
thesis. Students who registered prior to 2008-09 may also submit electronically, but this is not required.

Thesis Title: Gaussian Process in Computational Biology: Covariance Functions for Transcriptomics Registration No: 11 01 21 7 14

For completion by all students:
Submit in print form only (for deposit in the University Library):

Submit in print form and also upload to the White Rose eTheses Online server: In full

Edited eThesis
Please indicate if there are any embargo restrictions on this thesis. Please note that if no boxes are ticked, you will
have consented to your thesis being made available without any restrictions.

Embargo details: (complete only if requesting an Embargo required? Length of embargo
embargo to either your print and/or eThesis) (in years)

Print Thesis  Yes[ ] No[v]
eThesis YesD No

Supervisor: |, the supervisor, agree to the named thesis being made available under the conditions specified above.
Name: Prof, Nejl D. Lawrence Dept: .Computer Science

pate:r.12.12.2016

Student: |, the author, agree to the named thesis being made available under the conditions specified above.

Signed:

| give permission to the University of Sheffield to reproduce the print thesis in whole or in part in order to supply single copies
for the purpose of research or private study for a non-commercial purpose.

| confirm that all copies of the thesis submitted to the University (including electronic copies on CD/DVD) are identical in
content.

name: MUhammad Arifur Rahman oept: COMputer Science

For completion by students also submitting an electronic thesis (eThesis):

I the author, agree that the University of Sheffield's eThesis repository (currently WREO) will make my eThesis available over
the internet via an entirely non-exclusive agreement and that, without changing content, WREO may convert my thesis to any
medium or format for the purpose of future preservation and accessibility.

|, the author, agree that the metadata relating to the eThesis will normally appear on both the University's eThesis server

and the British Library's EThOS service, even if the thesis is subject to an embargo. | agree that a copy of the eThesis may be
supplied to the British Library.

| confirm that the upload is identical to the final, examined and awarded version of the thesis as submitted in print to the
University for deposit in the Library (unless edited as indicated above).

name: MUhammad Arifur Rahman pept.COMputer Science

. et o 12.12.2016

%4

THIS SHEET MUST BE BOUND IN THE FRONT OF THE PRINTED THESIS BEFORE IT IS SUBMITTED




Acknowledgements

I would like to express my deepest gratitude to my mentor, Prof. Neil D. Lawrence for
accepting me as a post-graduate research student. Neil initiated me into the discipline
of Machine Learning in Computational Biology and continuously taught me the most
important scientific skills: showed me the connection between data, model and reality.
Very few have these skills and I was privileged to learn from a true master. Neil’s
contribution in this thesis is fundamental, from the basic idea of Gaussian process to
little comments that made my work presentable with confidence and clarity.

I wish to thank Prof. Guy J. Brown and Prof. Richard H. Clayton, the members
of my supervisory committee at the University of Sheffield for their advice, valuable
suggestions and insightful comments what guided me through all these years. I would
like to thank Paul R. Heath for his collaboration and providing me with biological
insights, which guided me in a better direction. I also wish to thank Professor Nick
Monk and Dr. Simon Rogers - my thesis examiners, for their helpful comments and
precious suggestions.

Good science is always the joint effort of many people and the research in this
thesis is no exception. This thesis could never have happened without my fellow
colleagues, with their constructive discussions and spontaneous assistance whenever or
wherever I was in need. Alphabetically: Teo de Campos, Mike Croucher, Luisa Cutillo,
Zhenwen Dai, Andreas Damianou, Nicolas Durrande, Nicol6 Fusi, James Hensman,
Javier Gonzalez Hernandez, Alfredo Kalaitzis, Ciira Maina, Jens D Nielson, Mu Niu,
Ricardo Andrade Pacheco, Alan Saul, Michael Smith, Alessandra Tosi, Bei Wang,
Fariba Yousefi, Sura Zaki, Max Zwiessele. I felt like this was a family and Neil was our
academic Dad. There are simply no words to express my gratitude to them.

I would also like to thank the many people who gave me the support and technical
backing so that I could focus on my research. I gratefully acknowledge the Ministry
of Science and Technology, Bangladesh, for the fellowship awarded to me and the
Department of Physics, Jahangirnagar University, Bangladesh for issuing me the
study leave. I thank the Department of Computer Science, University of Sheffield for

consistently providing the best and most reliable computer support possible. I thank all



viii

the administrative staff at the Sheffield Institute for Translational Neuroscience for all
their help and support, most importantly providing me the best working environment
ever possible where I could enjoy every bit of weather change from rain to sunshine,
hail to snow.

[ am grateful to my parents, for being so wonderful and supportive. They nurtured
my curiosity, creativity and passion for understanding from the earliest age. Abba,
thank you for teaching me the value of life and giving me the strength to chase my
dreams. I aspire to be like you. You were and will always be my role model though
you no longer with us. Amma, words cannot express how grateful I am to you for all
of the sacrifices that you've made for me. Your blessings were and will be the most
valuable asset of my life. You are my very inspiration to excel.

I thank my brothers, sisters, brother-in-laws and sister-in-laws specially Ezabul
Hossain and Shamim Reza for caring me so much and for their constant effort to step
forward in my life since my childhood to writing up this thesis. Without their love,
support and inspiration it would never possible to reach this stage of my life.

I apologize to my son Adib, who paid the heaviest price for this thesis, during
the endless hours I worked away from him. I hope when you will grow up, you will
understand and forgive me. I thank my father-in-law and mother-in-law for their
mental support and countless hours to take care of Adib when he was in Bangladesh
without me, and met up his every requirement with the best of love and care.

My special regards to my teachers, whose teaching at different levels of education
has made it possible for me to reach a stage where I could write this thesis. My students
are always the best source of my inspiration to continue my walk toward learning. I
would like to thank them all. T like to thank M. Shamim Kaiser for staying beside me
and playing roles of teacher, brother and above all a friend depending on my needs. I
would also like to thank all my old friends who do not need to be named to know their
importance to me!

I owe my deepest gratitude towards my better half for her eternal support and
understanding of my goals and aspirations. Her infallible love and support has always
been my strength. Her patience and sacrifice will remain my inspiration throughout
my life. Without her help, I would not have been able to complete much of what I
have done and become who I am. I am endlessly indebted and it would be ungrateful

on my part if I thank Zehan in these few words.

Muhammad Arifur Rahman
The University of Sheffield, UK



Abstract

In the field of machine learning, Gaussian process models are widely used families of
stochastic process for modelling data observed over time, space or both. Gaussian
processes models are nonparametric, meaning that the models are developed on an
infinite-dimensional parameter space. The parameter space is then typically learnt
as the set of all possible solutions for a given learning problem. Gaussian process
distributions are distribution over functions. The covariance function determines the
properties of functions samples drawn from the process. Once the decision to model
with a Gaussian process has been made the choice of the covariance function is a
central step in modelling.

In molecular biology and genetics, a transcription factor is a protein that binds
to specific DNA sequences and controls the flow of genetic information from DNA
to mRNA. To develop models of cellular processes, quantitative estimation of the
regulatory relationship between transcription factors and genes is a basic requirement.
Quantitative estimation is complex due to various reasons. Many of the transcription
factors’ activities and their own transcription level are post transcriptionally modified;
very often the levels of the transcription factors’ expressions are low and noisy. So,
from the expression levels of their target genes, it is useful to infer the activity of
the transcription factors. Here we developed a Gaussian process based nonparametric
regression model to infer the exact transcription factor activities from a combination
of mRNA expression levels and DNA-protein binding measurements.

Clustering of gene expression time series gives insight into which genes may be
coregulated, allowing us to discern the activity of pathways in a given microarray
experiment. Of particular interest is how a given group of genes varies with different
conditions or genetic backgrounds. In this thesis, we developed a new clustering method
that allows each cluster to be parametrized according to the behaviour of the genes
across conditions whether they are correlated or anti-correlated. By specifying the
correlation between such genes, we gain more information within the cluster about how
the genes interrelate. Our study shows the effectiveness of sharing information between

replicates and different model conditions while modelling gene expression time series.
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Chapter 1

Introduction

Machine learning is a joint field of artificial intelligence and modern statistics, predom-
inantly focused on the design and development of models, algorithms and techniques
that allow computers to extract information automatically, by some learning process,
from data. The structure learned from data can be described by a statistical model.
Gaussian process models are well-known families of stochastic processes for modelling
data observed over time, space or both. Data modelling with Gaussian process is a
state-of-the-art technique in the wider community, from robotics (Deisenroth et al.
(2014)) to genomics (Topa et al. (2015)), from astronomy (Rajpaul et al. (2015))
to meteorology (Chen et al. (2014)). Gaussian process models are nonparametric,
which means the models are developed on an infinite-dimensional parameter space.
For a particular learning problem, the parameter space is typically learnt as a set of
possible solutions. There are different ways to learn functions. Probabilistic inference
is one of the elegant and widely accepted way among them. In the field of machine
learning regression is a supervised learning problem, while clustering is an unsupervised
learning problem. A regression task is related to making predictions of a continuous
output variable at any desired input location, given an input-output training set. A
clustering task groups a set of observations into subsets (also known as clusters) so
that observations in the same cluster shows similarity in some particular sense. Here
we set two generic goals for this thesis

Generic goal 1: We will develop a tool to analyse transcription factor activities.
This tool will target the gene expression time series data which is sampled across
continuous time.

Generic goal 2: Our second goal is to develop an approach for gene expression
clustering that handles structure in the experimental conditions as part of the cluster

analysis.



2 Introduction

Our primary focus of this thesis is to achieve these goals by building Gaussian

process models from transcriptomic data.

1.1 System Biology

The prime goal of Biology is to gain insight of various principles and details of biological
systems. More than six decades ago, Watson and Crick discovered the structure of
DNA (Watson and Crick (1953)) and changed our approach to study and development
of biology and biological systems. They explained the biological phenomena with the
help of molecular basis. This concept helps to explain different aspects of biology like
heredity, different diseases, various evolutionary aspects as well as development with a
firmer theoretical ground. Since then, biology has become a framework of knowledge
governed by some basic and fundamental laws of physics.

Due to the enormous advances in molecular biology, at present, we have in-depth
knowledge of elementary processes like evolution, heredity, disease, development etc.
These mechanisms also include other biological features like replication, transcrip-
tion and translation. The accomplishment of symbolic DNA sequencing helped to
reveal large numbers of genes and their transcriptional products. DNA sequences for
many organisms like Mycoplasma, Plasmodium falciparum, Saccharomyces cerevisiae,
Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens and many more have
been fully identified. Due to the advancement of different methods, gene expression
profiles are available at the mRNA level. Even measurement of protein levels and their
different subsequent actions are also making progress.

Undoubtedly understanding at the molecular level will accelerate understanding of
biological systems, but this knowledge is not sufficient to understand biological systems,
as systems. Genes and protein are a few components of a whole system. It is necessary
to understand what constitutes the system, but even then just this knowledge is not
sufficient to understand the complete system. Systems biology is a new field of biology
that aims to understand every detail and principles of the biological system (Kitano
(2000)).

The extent of the area of system biology is very broad, and various techniques
may be required for each individual research target. Very often it demands combined
effort from multiple discipline research areas like molecular biology, high-precision
measurement technology, mathematics, computer science, control theory and other
engineering and scientific fields. Kitano (2002) mentioned the main four key areas

to be carried out for further research: (1) genomic and other molecular biology
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research, (2) diverse technology for comprehensive and high-precision measurements,
(3) computational studies, such as bioinformatics, modelling and simulation, software
tools, and (4) analysis of the dynamics of the systems. This depicts the requirement of
multidisciplinary research efforts to get the knowledge of biological systems as systems.
Indeed the abstract concept of a system is more than a collection of multi-disciplinary
research components. Besides the detailed description of the components to acquire
the proper insight of system it is also essential to know what happens during the period
or processes when any stimuli and/or disruptions take place.

The primary requirement to understand biological systems is the identification
of the system structure. Some of the key structures might have different regulatory
relationships of genes and interactions with proteins that show the metabolism pathway
and signal transduction, the physical structure of chromatin, cells, organisms and other
components. It is very critical to monitor biological processes in bulk. High-throughput
DNA microarray, real-time polymerase chain reaction (RT-PCR), protein chips and
other methods are essential to identify genes and metabolism network. Once a system
structure is established up to a certain degree, we need to unpick its behaviour. A
number of analysis methods can be used to understand this behaviour correctly. For
example, consider that we are interested to know the sensitivity of a specified behaviour
against some external perturbations and its time to return its normal state since the
stimuli took place. This type of analysis provides the system level characteristics as
well as uncover valuable insights of medical treatments by revealing cell responses to
certain chemical affinities.

To understand the behaviour of the system and to control the state of the biological
systems further research is required, with the knowledge previously obtained from the
system structure. All these phases lead toward the establishment of technologies that
allow us to design a biological system which can provide cures for different diseases.
Some futuristic examples could be organ cloning techniques for the treatment of diseases
that require organ transplants or building biological materials for engineering, especially

robotics, with self-sustaining and self-repairing capabilities.

1.2 Dynamic Mathematical Model: What and Why
in System Biology?

Any models are abstractions of reality. Models are designed to focus on specific aspects
of the objects for a particular kind of study. Loosely speaking, during these modelling

processes other aspects of less interest are abstracted away. Biologists are almost
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Fig. 1.1 A ‘cartoon’ model of protein protein interaction. Two different molecular
species A and B bind to form a complex molecular. The newly formed complex hinder
the rate at which molecules of species C are transformed to species D.

regularly making use of tangible ‘real world” models. Some of them are very simple, like
molecular ball-and-stick, again some of them are highly complex such as animal disease
models or model organisms. They also use ‘conceptual models’. These conceptual
models usually take the form of verbal descriptions of the system and are communicated
by diagrams. These diagrams are usually constructed with a set of components and
the ways they interact with each other. These interaction diagrams or ‘cartoon models’
play a central role in representing knowledge of cellular or different other processes
(Ingalls (2012)).

A major drawback of these ‘cartoon models’ is that, while considering system be-
haviour, they could be significantly ambiguous. Furthermore, if there is any interaction
network related to feedback. Complexity increases even further when the number of
components and their corresponding interactions in the network grow. Sometimes it
becomes challenging to get the intuitive understanding of the system’s behaviour. A
mathematical model or description of the same model can eliminate the uncertainty
of the model behaviour. The mathematical model will consider the quantitative rep-
resentation of the individual interaction of the cartoon model. In Figure 1.1 species
A and B bind to form a new complex. The newly formed complex hinder the rate at
which molecules of species C are transformed into species D. A numerical description
of the process is required to quantify the interaction. Though for simple cases only
equilibrium condition is enough, in many other cases binding and unbinding rates
might also be required. The cartoon model or traditional knowledge cannot provide a

quantitative description rather than a qualitative explanation of the molecular interac-
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tion. A well-studied mechanism with sufficient data might be capable of showing the
quantitative characteristics. The interaction diagram with related quantitative data
can be used to develop a dynamic mathematical model. This kind of model consists of
a number of equations that describe the system’s behaviour over time. This behaviour
is termed as “system’s dynamic behaviour”. These models are usually mechanistic, as
they explain the mechanisms of molecular interaction with some laws of physics and
chemistry as well as mathematics. Any of the parts of the mechanistic model actually
represent the real observed system. Any change in the mechanistic model’s component
will also mimic to the real system. So, model simulation (in silico experiments) can
be used to predict system behaviour. Some numerical software built with different
programming languages are used for this simulation purposes.

As a mathematical model is a hypothesis, so the outcome or result of the model
hypothesis is also a hypothesis. Though the real cellular behaviour cannot be predicted
by simulation, it can be invaluable for further experimental design by showing the
promising paths for further investigation, or by showing the inconsistencies between

the real laboratory observations and our understanding of the models or systems.

1.3 The Systeome Project

‘Systeome’ is a collection of system profiles for all genetic variations and environmental
stimuli responses. A system profile consists of a set of information about the properties
of the system including structure, behaviour, analysis of results such as bifurcation
diagram or phase portfolio. The structure of the system should include the structure
of genes and metabolic networks and its physical structure, associated constants, and
their properties (Kitano (2002)).

Systeome is not just a simple cascade map; rather it assumes different active
and dynamic solutions, simulations as well as profiling of various system status. The
Systeome project might be established with dealing all aspects for profiling the Systeome
of yeast, C. elegans, Drosophila, mouse and finally human. The primary goal of the
Human Systeome project is defined as - “To complete a detailed and comprehensive
simulation model of the human cell at an estimated error margin of 20 percent by the
year 2020, and to finish identifying the system profile for all genetic variations, drug
responses, and environmental stimuli by the year 2030”(Kitano (2002)).

This is a highly ambitious project and requires several milestones. Some pilot
projects will lead toward the final goal. Initial pilot projects are using yeast for the

simplicity of structure and subsequent behaviour. C. elegans have comparatively
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complex system structure and so is their behaviour. Besides such pilot projects,
concurrently the Human Systeome project shall be commenced.

The futuristic impact of this project will be very wide spread as well as far-reaching.
These will be the baseline and standard asset for any further biological research to
provide fundamental diagnostics and prediction for a variety of medical practices. This
Systeome project involves many other major engineering projects for developing the

measurements, as well as software platforms.

1.4 Biological Background Related with this Thesis

In modern molecular biology, the biological systems like cells are treated as complex
systems. The usual conception of the complex system is a very large number of simple
but identical elements interact to generate the complex behaviour. The actual behaviour
of biological systems is different from this conception. A vast number of functionally
different and multifunctional group of elements act with each other selectively, perhaps
non-linearly, to generate coherent behaviour. Mostly, functions of biological systems
depend on a combination of the network and specific elements involved.

Development of molecular biology has discovered a large number of biological facts
like sequencing genome, protein properties etc. To explain the biological system’s
behaviour only these developments are never sufficient. Study of cell tissues, organs,
organisms also might be the systems’ components to be considered. Their specific
interaction which is defined by the evolution could be more supportive of reaching the
prime goal of biology. Though advancement in more accurate quantitative experimental
approach will continue, the detailed functional insights of biological systems may not
provide the exact results from purely intuitive basis due to the intrinsic complexity
of biological systems. A proper combination of experimental and computational
approaches is more likely to solve this problem. In modern molecular biology, the
organisational and functional activity of gene regulatory network is a key experimental

and computational challenge.

1.4.1 Transcriptome and Transcriptomics

A transcriptome is the complete set of messenger RNA (mRNA) produced by the
genome, in a specific cell or tissue type expressed by an organism under specific
circumstances. One of the key characteristics of a genome is it’s stability, while the

activity of transcriptome is dynamic. Transcriptomic activities change over time
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depending on many factors, such as change of the environmental conditions, stage of
the development. Gene activity is the count the number of transcripts, which is also
known as gene expression. Differentially expressed genes are identified by juxtaposition
of transcriptomes in response to different treatments or in distinct cell populations.
In any organisms, almost every cell contains the same genes, but the gene expression
patterns might be different depending on different properties of cells. These differences
are responsible for the different behaviours of divergent cells and tissues (Adams (2008)).
Transcriptomic data helps to explore different gene functions. For an example, in a
breast cancer cell study, an unknown gene’s expressions are significantly higher than in
healthy cells. It is more likely that the unknown gene is playing role in cell growth.
Thus the transcriptomic data may assist the researcher by reducing the search space.
Transcriptomics is the study of the transcriptome using high-throughput methods, such
as microarray analysis, Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

analysis, Chromatin immunoprecipitation (ChIP) experiments and many more.

1.4.2 ChIP-chip, Microarray and Gene Expression Data for

Genomics

Living cells contain thousands of genes. These genes code for one or more proteins.
Expressions of these genes are regulated by many of these proteins through a very
complex regulatory pathway. Usually regulation occurs to accommodate the changes
of the environment, as well as at the cell cycle of the development process. In the
process gene expression, information contained in the gene, synthesise to a functional
gene product. The genetic code stored in the DNA is usually expressed or interpreted
by gene expression which represents the phenotype. Gene expression data is usually
stored in a DNA microarray or DNA chip which is also known as a biochip.

In the field of transcriptomics, ChIP (Chromatin immunoprecipitation) is a tech-
nique applied to determine the location of DNA binding sites on the genome for a
particular protein of interest. Chromatin immunoprecipitation provides a broader
view of the protein and DNA interactions which occur inside the nucleus. ChIP-chip
(also known as ChIP-on-chip) is a technology that brings together chromatin immuno-
precipitation (ChIP) with DNA microarray chip. The ChIP-chip technology is used
for isolation and identification of the genome-wide location by specific DNA binding
proteins (Ren et al. (2000)). ChIP-chip technology facilitated researchers to annotate
functional elements. Mapping the location of protein markers with associated cite

this technology also provides a better understanding of the functionality of promoters,
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enhancers, repressor, insulators, etc. Chromatin immunoprecipitation is a microarray
technology which isolates DNA fragments bounded by specific DNA binding proteins.
Lockhart et al. (1996) used this technology to measure the concentration of DNA
fragments. Tiling Arrays are a subcategory of the microarray that differs from the
traditional microarrays by the nature of the probes. Tiling arrays probe intensively
for sequences that exist in contiguous or adjacent regions. The ChIP-chip technology
facilitates to represent the whole genome in a one dimensional series of signals. In
these signals, protein-binding sites are usually expressed by peaks. Therefore, from
the signals, protein-binding sites are detected by systematically recognising the peaks.
Peak recognition or peak detection is a mathematical modelling challenge. A process
called sonication is used to snip long genomic sequences into smaller DNA fragments.
In nature this snipping process is probabilistic. Therefore, special mathematics models
or tools with probabilistic assumptions are required to deal the snipping process and
also the peak recognition carefully.

The main steps of ChIP-chip process are-
e Let bound transcription factor and other associated proteins bind to DNA.
e Chop the DNA sequences into small fragments by sonication.

e [solate the DNA fragments bound by proteins by chromatin immunoprecipitation
(ChIP).

e Cross-linking between DNA and protein is reversed and DNA is released, amplified
by ligation-mediated polymerase (LM-PCR) chain reaction and labelled with a

fluorescent dye.

e Both IP-enriched and -unenriched DNA pools of labelled DNA are hybridised to
the same high-density oligonucleotide arrays (chip).

Figure 1.2 shows two Affymetrix chips which contain DNA microarray. Two
Matchsticks are shown at the bottom and alongside for the purpose of size reference
of a microarray. The solid-phase DNA microarray is usually a collection of ordered
microscopic spots called features. Figure 1.3 shows the schema of the gene expression
microarray data. On a typical Affymetrix microarray, there are 6.5 million locations
(represented by columns) with millions of identical DNA strands in every location.
Every strand constructs with 25 probes or bases. The microarray is rinsed and washed
with a fluorescent stain. To accomplish a DNA test, two types of samples are used:

one is the controlled sample and another one is the test sample. After extracting
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Fig. 1.2 Gene expression data are extracted from Affymetrix microarray. Two Match-
sticks are placed for reference purpose. Images at the left side and right side are the
top-view and middle one is the bottom view of the microarray. Left one contains mouse
genome with 430 2.0 array, while right one contains human genome with U133 Plus 2.0
array. A special scanner (i.e. GeneChip scanner) is required to scan this high-density
arrays.

mRNA from DNA, copies are made from mRNA by reverse transcription. Two different
fluorescents tagged with cyanide are used to differentiate between the control sample
and a test sample. In general, green is used for control copy and red for test copy.
Then the tagged samples are washed on the microarray. DNA is analysed based on
matching with the probes on the microarray. A laser is used to glow the fluorescent
molecules. After the hybridization process, a green spot represents a hybridization with
the control targets only, a red spot indicates hybridization with the test targets only,
yellow represent hybridization both with the control targets and test targets, while
black represents no hybridization with the samples. Over the last couple of decades,
these gene expression data became one of the key resources of the biologists to diagnose
diseases and drug discovery, gene discovery and determining genetic variations, aligning
and comparing genetic codes, biomerker development, forensic application, functional
analysis and computational biology.

Using a dynamic Bayesian network Ong et al. (2002) modelled the regulatory
pathway in E.coli from the time series gene expression microarray data by modelling
causality, feedback loops or hidden variables. By analysing gene expression data
Friedman et al. (2000) were the first to determine the transcriptional properties for

Baker’s yeast using a Bayesian network.
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Actual GeneChip array
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Fig. 1.3 Gene expression data: Affymetrix microarray. The dimension of a typical
Affymetrix microarray is 1.28cm by 1.28cm where there are 6.5 million locations on
each GeneChip array. At every location millions of identical DNA strands builds on.
Every strand constructs with 25 probes or bases.

Many of the recent studies already established the fact that the gene function of
the regulatory network depends on qualitative as well as quantitative aspects of the
organisation of the network like high-throughput data, including genomic sequence,
expression profiles and transcription factor. Among them, one of the major challenges
is the quantitative measurement and analysis of the mechanisms which regulate mRNA
transcription. Though using high throughput techniques it is comparatively easier to
measure the output of transcription; it is experimentally very complicated to measure
the protein concentration levels of transcription factors and chemical affinity to the
genes. Very often transcription factors are post-transcriptionally modified. So, the
actual protein concentration levels and binding affinities could be an unreliable proxy

for the mRNA expression levels of transcription factors (Sanguinetti et al. (2006)).
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©WormAtlas

Fig. 1.4 Anatomy of an adult hermaphrodite(C. elegans). (a) Differential interference
contrast (DIC) image of an adult hermaphrodite, left lateral side. Scale bar 0.1 mm. (b)
Schematic drawing of anatomical structures, left lateral side (Courtesy of WormAtlas
http://www.wormatlas.org/hermaphrodite/introduction/IMAGES /introfiglleg.htm).

Due to the advancement of the experimental technique, lot of interest in recent
years has been growing to infer information about regulatory activity from target
genes. Biologists are capable of acquiring the information about the structure of the
transcriptional regulatory network. Lee et al. (2002) determined the transcriptional
regulatory network of yeast using chromatin immunoprecipitation(ChIP). They tried to
figure out how yeast transcriptional regulators bind to promoter sequences across the
genome. By calculating a confidence value (P value) and setting up specific threshold,
they consider the protein-DNA interactions and artificially imposes a binding or not

binding binary decision for each of the protein-DNA pair.

1.4.3 Caenorhabditis elegans

Caenorhabditis elegans is a nonparasitic, soil dwelling, a small nematode worm. C.
elegans and other Caenorhabditis species are found through all over the world. It can
easily colonise mostly in the rotting materials with other micro-organisms. At the
laboratory C. elegans is easy to maintain in the Petri dishes. At 25°C C. elegans
complete its life cycle in just 2.5 days from fertilised embryos to egg-laying adult
through 4 larval stages. Its typical lifespan is 2-3 weeks. In 1965, Sydney Brenner
introduced Caenorhabditis elegans as a model organism to study the behaviour and
development of animal (Brenner (1974)).

C. elegans is a relatively new addition as a model organism but its biological
characteristics and property already been studied to an extraordinary level. The

anatomical characteristics and detail development of this nematode were facilitated by
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its simple body plan. It is a eukaryote and it shares cellular and molecular structures
and control pathways with higher organisms. C. elegans is multicellular, an adult
wild type consists of 959 somatic cells and among these 302 are neurones (Palikaras
and Tavernarakis (2013); Sulston and Horvitz (1977)). Its developmental process
(e.g. embryogenesis, morphogenesis) goes through a complex process to develop into
an adult. Monitoring of the cellular process and recording of cell division pattern is
comparatively easier as its body is transparent. C. elegans’s complete cell lineage at
the electron microscopy level has been completed. It has already been established that
the cell lineage is remarkably invariant between animal to animal (Brenner (1974);
Byerly et al. (1976); Sulston et al. (1980); Wood (1988)).

To elucidate pathways and processes relevant to human biology and diseases C.
elegans has been used as a vital model. There are between ~20,250 to ~21,700
predicted protein-coding genes in C. elegans (Gerstein et al. (2010)). Using four
different orthology-prediction methods, Shaye and Greenwald (2011) assayed four
methods to compile a list of C. elegans orthologs of human genes. A list of 7,663
unique protein-coding genes resulted in that list and this represents around 38% of
the 20,250 protein-coding genes of C. elegans. When human genes introduced into
C. elegans, human genes replaced their homologs. On the contrary, many C. elegans
genes can function with a great deal of similarity to human like mammalian genes. So,
the biological insight acquired from C. elegans may be applicable to a more complex

organism like the human.

1.4.4 Transcription

A number of biological functions like development, maintenance and repair of body
tissues, production of energy, creation of hormones and enzymes, transportation of
certain molecules and formation of antibodies take place using proteins. To perform
any of the above activities or functions cells need to generate protein continuously.
Inside the cell, proteins are manufactured from the DNA. When the cells are in need
of protein production, a special signal is sent to the DNA using transcription factors.
Then proteins reside in DNA start to manufacture depending on the received signals.
The way that the enzymes find the information required for protein construction is
extremely complicated.

DNA (Deoxyribonucleic acid) transcription is a process that transcribes genetic
information from DNA to a complementary RNA (Ribonucleic acid). By the tran-
scription process protein is produced from a copy of DNA. This production of proteins

and enzymes are controlled by the coding of cellular activity. Even the conversion of
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Fig. 1.5 A ‘cartoon model’ of DNA transcription. DNA consists of four nucleotide
bases named adenine (A), guanine (G), cytosine (C) and thymine (T) that are paired
together (A-T and C-G) to give DNA its double helical shape. By DNA transcription
genetic information from DNA transcribe to a complementary RNA.

DNA to proteins is not straight forward. At the initial stage of transcription, an RNA
polymerase reads the sequence of DNA and finally produces a complementary RNA
at the end of the transcription process. DNA consists of four nucleotide bases named
adenine (A), guanine (G), cytosine (C) and thymine (T) that are paired together (A-T
and C-G) to give DNA its double helical shape. The major steps of DNA transcription
are

RNA polymerase binding to DNA: In order to initiate the DNA transcription,
RNA polymerase and sigma factor! form a holoenzyme?, which binds to a specific
area of the DNA named promoter region. Transcription process starts at the promoter
region of a double-stranded DNA. Sigma factor can recognise the DNA and its specific
promoter region.

Elongation: A sequence-specific DNA binding factor, called transcription factor
unwind the DNA strand. Elongation of the transcript then continues by the RNA
polymerase and a sequence of the chain is opened up. A messenger RNA (mRNA) is
formed when RNA polymerase transcribes into a single-stranded RNA polymer from a
single-strand of DNA.

Termination: RNA polymerase moves along the DNA unwinding its double helical
form until it reaches the terminator sequence. At that point, RNA polymerase detaches
from the DNA and releases the mRNA polymer. In this way, DNA double helix is

1Sigma factor (o factor) is a special type of protein needed for the initiation of RNA synthesis.
2an active compound biochemically formed by the combination of an enzyme with a co-enzyme.
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opened, transcribed and reclosed with minimum stress on the DNA molecule. At any
certain time, many RNA polymerases can transcribe a single DNA sequence, which

can manufacture a large quantity of protein at once.

1.4.5 Transcription Factor

A transcription factor is a protein that binds to DNA sequences and controls the flow
of genetic information coding from DNA to mRNA (Karin (1990); Latchman (1997)).
Transcription factors can both promote or block the transcription process and act as an
activator or repressor respectively (Lee and Young (2000); Nikolov and Burley (1997);
Roeder (1996)). A transcription factor may contain one or more DNA-binding domains.
These binding domains attach to specific sequences of DNA adjacent to the genes
that they regulate. Though some other proteins such as coactivators, deacetylases,
chromatin remodelers, kinases, histone acetylases, and methylases also play crucial
roles in gene regulation, yet they are not classified as transcription factors due to
lack of DNA-binding domains (Brivanlou and Darnell (2002); Mitchell and Tjian
(1989); Ptashne and Gann (1997)). Figure 1.7 describes the mapping (we can also
say ‘cartoon’ mapping) between the environmental signal, transcription factors inside
the cell, and the gene that they regulate. The environmental signal activates specific
transcription factor. After the activation, the transcription factors bind DNA to change
the transcription rate (the rate at which mRNA is produced) of specific target genes.
The mRNA is then translated into protein by the process named translation (Alon
(2006)).

1.4.6 Amyotrophic Lateral Sclerosis and Mouse Model

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease or Motor
neurone disease (MND) is a diverse neurodegenerative disorder. The median survival
of this lethal disorder is less than 5 years. The disease is heterogeneous with variable
severity in terms of speed of progression of the disease course (Brockington et al. (2013);
Peviani et al. (2010)). From the biological aspect, the disease progression speed is not
clear yet. For experimental purpose, many of the pathological and clinical features of
human ALS can be replicated very well by transgenic mice. These murine models also
show the heterogeneity in the disease progression for the clinical phenotype. In a study
Pizzasegola et al. (2009) reported that disease progression is much faster in 129Sv than
C57 mouse strain. Genomic analysis with gene expression time series data from these

murine models could be interesting to examine the speed of propagation of ALS.
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Fig. 1.6 A ‘cartoon model’ of transcription process: DNA transcribed in mRNA. RNA
polymerase binds to a promoter region of DNA. Transcription factor unwind the DNA
strand and after the elongation phase a sequence of chain is opened up. A messenger
RNA (mRNA) is formed when RNA polymerase transcribes into a single stranded

RNA polymer from a single strand of DNA.
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Fig. 1.7 The mapping between environmental signal, transcription factors and the
genes that they regulate (Alon (2006)). Some excitation or environmental changes
activates transcription factors. After the activation, the transcription factors bind to
DNA and regulates the transcription rate of the target gene.
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1.5 Gaussian Processes

Gaussian processes (GPs) are a general class of models of functions. GPs are one
of the most widely used families of stochastic processes. As a general setting, the
Gaussian process of many types has been studied and incorporated in research for
decades, especially for modelling dependent data observed over time, or space, or time
and space together. In GPs observations in the input space are random variables from
Gaussian distributions. We included the introductory concepts of the Gaussian process
in Chapter 3.

1.6 Publication Related with this Thesis

The work detailed in this thesis has been presented (as a form of poster and talk) at

different International Conferences, Workshops and Summer Schools as listed below

¢ Muhammad Arifur Rahman and Neil D. Lawrence, “A Gaussian Process
Model for Inferring the Dynamic Transcription Factor Activity”, International

Conference on Bioinformatics, Computational Biology, and Health Informatics,
USA, October 2016.

e Sura Zaki Alrashid, Muhammad Arifur Rahman?, Nabeel H. Al-Aaraji, Paul
R. Heath and Neil D. Lawrence, “Clustering Gene Expression Time Series of
Mouse Model for Speed Progression of ALS”, Workshop on Mathematical and

Statistical Aspects of Molecular Biology, University of Helsinki, Finland, April
2015.

¢ Muhammad Arifur Rahman and Neil D. Lawrence, “A Probabilistic Dynamic
Model for Transcription Factor Activity of C. elegans”, Machine Learning Summer

School and International Conference on Artificial Intelligence and Statistics,
Iceland, April 2014.

At the time of writing more developed work from these chapters is currently under

consideration for publication in a peer-reviewed journal.

3This is a collaborative work between Sura Zaki Alrashid and Muhammad Arifur Rahman where
the first authorship is shared.
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1.7 Road Map

The thesis is structured in the following chapters

Chapter 1: This document starts with some basic concepts and general terminology
to the field of interest to address some key issues which will be tackled or achieved
later on this work.

Chapter 2: This chapter starts with the basic concepts of a latent variable
model (LVM) and a probabilistic model. After describing the connectivity information
between genes and transcription factors we briefly describe the probabilistic model for
transcription factor activities. Earlier this problem has been solved for a unicellular
microorganism (yeast), we have forwarded the mathematical model of transcription
factors activity for a multicellular eukaryote (C. elegans) building our own connectivity
information.

Chapter 3: This is a technical background chapter where we briefly describe
the Gaussian process, regression problem and regression with the Gaussian process.
Choice of an appropriate kernel is one of the key issues while modelling with the
Gaussian process. In this chapter, we briefly describe some commonly used kernels.
We also mentioned about hyperparameter learning. Why and which kernel could be
an appropriate choice while modelling the transcription factor activity using Gaussian
process will be justified at the later section of this chapter.

Chapter 4: We note that the TFA model with Markov property proposed by
Sanguinetti et al. (2006) is a linear Gaussian model which is equivalent to a Gaussian
process model with a particular covariance function. We, therefore, build a model
directly from the Gaussian process perspective to achieve the same effect. In this chapter,
we design a covariance function for reconstructing transcription factor activities given
gene expression profiles and a connectivity information between genes and transcription
factors. We introduce a computational trick, based on a judicious application of singular
value decomposition, to enable us to efficiently fit the Gaussian process in a reduced
“TF activity’ space.

Chapter 5: Amyotrophic lateral sclerosis is an irreversible neurodegenerative
disorder that kills the motor neurones and results in death within 2 to 3 years from the
symptom onset. The speed of progression for different patients is heterogeneous with
significant variability. Transgenic mice from different backgrounds showed consistent
phenotypic differences for disease progression. We used a hierarchy of Gaussian
processes to model condition-specific and gene-specific temporal covariances. In this
chapter, we develop a new clustering method that allows each cluster to be parametrized

according to whether the behaviour of the genes across conditions is correlated or anti-
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correlated. By specifying the correlation between such genes, we gain more information
within the cluster about how the genes interrelate. This chapter also includes the gene
enrichment score analysis and KEGG pathway analysis that we used for our clustering
analysis results for biological validation.

Chapter 6 The final chapter concludes this thesis by summarising the achievements
highlighting its novelties. It also raises some important questions that need to be

considered in the future.

1.8 Notation, Symbols and Acronyms

1.8.1 Notation

The matrix X € R¥*™ represent the data space, where each row corresponds to a
observed data points to a data feature or dimension. Unless otherwise defined, we
denote y; is the row of the data matrix and y, ; is the column of the data matrix. y, ;

h

is the single scalar element from " row and j** column.

data features

X111 T1,2 L1,m
To1 X292 L2.m .

X = ] ) data points
IN1 IN2 " TNm

In the above matrix there are N rows and m columns. Similarly, y; represent the "

row and y. ; represent the 4" column of the matrix Y.
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1.8.2 Symbols

Throughout this paper, all vectors are represented with boldface lower-case symbols

(e.g., x) and matrices with bold upper-case symbols (e.g., K) unless otherwise specified

R

X

The set of real numbers

A vector

The " element of the vector x
The transpose of the vector x
A set of hyperparameters

A vector of zeros

A diagonal square matrix with the elements of the vector x along its
main diagonal

The element from 7"

row and j* column of the matrix x
The identity matrix

Determinant of the matrix A

The inverse of the matrix A

The transpose of the matrix A

Gaussian process

Gaussian distributions with mean p and covariance X

Probability distributions of Gaussian random variables with mean p
and covariance X

distributed according to the mentioned probability distribution
expectation of the random variable x

Gamma function
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1.8.3 Acronyms

cDNA

C. elegans
ChIP
DIC
DMI
DNA
EDGEdb
GO

GP
GPLVM
GPy
KEGG
LLS

LPF
LVM
mRNA
ORA
PCA
PLS
PPCA
RBF
RMI
RMSE
RNA
RT-PCR
SE

SVD

TF

TFA
TFBS

Complementary Deoxyribonucleic Acid
Caenorhabditis elegans

Chromatin Immunoprecipitation
Differential Interference Contrast
Differential Multi Information
Deoxyribonucleic Acid

C. elegans Differential Gene Expression Database
Gene Ontology

Gaussian process

Gaussian process Latent Variable Model

A Gaussian processes framework in python
Kyoto Encyclopedia of Genes and Genomes
Log Likelihood Score

Local field potential

Latent Variable Model

messenger Transfer Ribonucleic Acid
Overrepresentation Analysis

Principal Component Analysis

Partial Least Squares

Probabilistic Principal Component Analysis
Radial Basis Function

Renyi Mutual Information

Root Mean Square Error

Ribonucleic Acid

Reverse Transcription Polymerase Chain Reaction
Squared Exponential

Singular Value Decomposition
Transcription Factor

Transcription Factor Activity

Transcription Factor Binding Sites






Chapter 2

Probabilistic TFA of C. elegans

The data — information — knowledge — wisdom (DIKW) hierarchy is one of the funda-
mental and widely recognised hierarchy in information and knowledge literature. This
hierarchy contextualises data, information, knowledge and wisdom, on one another to
identify and describe the processes involved in the transformation of the lower level
entity of the hierarchy to a higher level one (Rowley (2007)). The increasing availability
of very high-dimensional data, with diverse characteristics and growing complexity,
play a vital role in the recent advancement of machine learning techniques. Figure
2.1 shows some example of high-dimensional data from different domains, types and
nature.

Data from the real world suffer from quality issues for various reasons. Acquisition
errors are very likely to be included even in a controlled environment. Dealing with noise
or added uncertainty of the data is troublesome. Within the constraints, probabilistic
modelling is the dominant approach with added flexibility and capability to deal with

uncertainty.

2.1 Motivation behind the study of TFA

In the consequences of diverse internal and external stimuli, cellular life must respond
and recognise appropriately. Gene expression that is the conversion of abstract coded
biological information preserved inside the DNA to a concrete physiologically active
proteins is tightly regulated. With very few minor exceptions all cell types in a
multicellular organism contain the same genetic information. Any individual cell
type expresses only a unique subset of the total number of distinct genes for that

specific organism. Differentially expressed genes are specified by unique epigenetic
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Fig. 2.1 Examples of high dimensional data: different types and nature. Left: 3D
model of a protein structure. Centre: Multiple samples of hand written digits from
MNIST dataset. available at http://yann.lecun.com/exdb/mnist/. Right: Multiple
image patches from breast cancer, liver, gastric mucosa, bone marrow connective tissue,
kidney tissue for virtual microscopy (Wienert et al. (2012)).

information. This information is present in the particular cell and which also determines
its phenotype Alberts et al. (2002); Keller (1994).

For most of the genes, control at the first step of expression, transcription, is
pivotal. The transcription profile is a highly preferable parameter for the recognition
of a distinct cell type. In general, a complex biological regulatory network controls
the differential gene expression, in which particular transcription factors relay the
signals to specific target genes. Among these transcription factors, many of them are
DNA-binding proteins, which bind to regulatory DNA elements located cis to the

target genes.

Transcription factors play a crucial role in the transcriptional regulation of gene
expression, and it allows to alter the cell growth patterns (in eukaryotes) in diverse
ways Phillips and Hoopes (2008); Takahashi and Yamanaka (2006). There are two
types of transcription factors; the first one is general transcription factors and the
second one is sequence-specific transcription factors. General transcription factors, also
known as basal transcription factors, usually acts in corporation with RNA polymerase
IT and transcribe a large number of genes Lee and Young (2000). The sequence-
specific transcription factors bind to specific subsets of target genes, leading to distinct
spatiotemporal structures of gene expression. Due to the complexity of transcriptional
control, the critical role of this kind of transcription factors has been overlooked in
many occasions Kadonaga (2004). Measuring the gene expression level systematic
gene expression quantification of DNA microarray has been available for a couple of

decades Schena et al. (1995). DNA microarray experiments allowed to describe the
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genome-wide expression level changes both in health and disease state. The result of
microarray experiments also stimulates the methodological development of diagnosis
and prognosis of different diseases. The advancement of genome-wide identification of
TF-binding sites instigates the development of chromatin immunoprecipitation (ChIP)
followed by microarray (ChIP-on-chip, also known as ChIP-chip) Horak and Snyder
(2002); Ren et al. (2000) and ChIP-sequencing (ChIP-seq) technologies Johnson et al.
(2007).

The transcriptional regulatory system plays a pivotal role in controlling many
biological processes, ranging from cell cycle progression Simon et al. (2001) and main-
tenance of intracellular metabolic and physiological balance, to cellular differentiation
and developmental time courses Dynlacht (1997) by ensuring the correct expression of
specific genes. A number of diseases emerge from a breakdown in the regulatory system:
transcription factors are over-represented among oncogenes Furney et al. (2006), and
almost one-third of human developmental disorders have been ascribed to dysfunc-
tional TFs Boyadjiev and Jabs (2000). Even alterations in the activity and regulatory
specificity of transcription factors are likely to be a primary reason for evolutionary
adaptation and phenotypic diversity De et al. (2008). Indeed, recent research and study
have already proved that increased sophistication of the transcriptional regulatory
system seems to have been a key requirement for the emergence of metazoan life Levine
and Tjian (2003). So inferring the dynamics of transcription factors activities might

play a significant role to obtain a deeper insight into the gene regulatory network.

2.1.1 Why is it Complicated?

The coordinated gene expressions drive a number of cellular processes. This coordination
is partially regulated by interactions between transcription factors and sequence-specific
DNA elements, also known as transcription factor binding sites (TFBS). Transcriptional
regulation is not an isolated process but coregulated in a highly interconnected gene
regulatory network consisting of hundreds of transcription factors, their target promoters
and also co-regulators Geertz and Maerkl (2010). Transcription factor binding and
transcription factors activities are regulated on several stages. The initial and most
fundamental order of regulation is achieved by the preferential binding of a transcription
factor to specific DNA sequences. Higher orders of regulation and activities are
accomplished by post-translational modifications of transcription factor domains or
binding of different co-regulators. These alterations, in turn, can modulate the activity

and cellular location of a transcription factor Tzamarias and Struhl (1994).
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It is the specific binding of transcription factors that determine in large part
the connectivity of gene regulatory networks and also the quantitative level of gene
expression Gertz et al. (2009). Genetic variations in transcription factor binding
sites are frequently associated with differences in transcription among individuals,
highlighting the necessity of precise characterization Kasowski et al. (2010). Thus,
in-depth characterization of TFA on a genome-wide level is pivotal to understand the

transcriptional regulation process.

2.1.2 Why do we need to study TFA?

To build a transcriptional regulatory network, it may appear that knowledge of par-
ticular biomedical functions of transcription factors are not important. Even with
some naive assumptions, it may appear that promoters or repressors regulate the
transcription process similarly under similar condition. However, these assumptions
can’t be considered as general rules as it already reported that transcription factor DNA
binding events might not follow the exact or defined biological regulatory mechanism.
Such as, in a study, Turcotte and Guarente (1992) reported that in different mutants of
yeast HAP1 positive control could selectively affect different gene expressions. Using
comparative genomics and functional scanning of transgenic mice Menke et al. (2008)
showed how the transcription factor TBX/ plays a pivotal role in hindlimb and vascular
development. They showed a group of enhancers control the gene expresses level in
different tissues. Genomic analysis also showed the relationship between transcription
factor binding events and transcription factors from genes affected by the mutation.
Hughes and de Boer (2013) explained even further where they reported about the role
of cofactors during the transcriptional mechanism. Only understanding of condition
specific activation, noise presence in the data or transcriptional cascades is not enough
to grasp the actual understanding of these phenomena. Therefore, to dissect the
regulatory mechanisms and gaining a better insight the complete index of transcription

factor activities and its interacting partners would be invaluable.

2.2 Latent Variable Model

Latent variable models (LVMs) (Bishop (1999)) explain complex relations between
multiple variables providing the connection between the variables and an underlying
unobservable, i.e. latent structure. Latent variables are typically included in statistical

models for different statistical concepts, including the representation of unobservable
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factors/covariates, missing data, random effects, finite mixtures, variations in hierar-
chical data, clusters and many more. Figure 2.2 shows an analogy of latent variable
model where a marionette’s different movement and dynamics are observed, whereas
these movements are taking place or controlled by the puppeteer. The dynamics of the

puppeteer is usually unobserved.

A set of latent (hidden or directly not observable) variables X that can be related to
the observed variables Y defines by a joint distribution over both. The latent space is
controlled by a prior distribution p (X) over the distribution of Y under the assumption

of a probabilistic mapping of the form

Yij = [ (X)) + €, (2.1)

where i = 1...qand j = 1...p, x; € RY is the latent point associated with the i**
observation y, € R, j is the index of the features of Y. Inaccuracy of the model and
the noise of the data is modelled by the additional noise parameter ¢;. Typically it is
assumed that the noise has a Gaussian distribution ¢; ~ N (0, 57!), where the term /3

is the precision.
We can map f of Equation 2.1 as linear and equal to a matrix W € RP*9. Then
we can rewrite as
Yij = W;X; + €, (2.2)
where w; are the rows of W. This model recognized as probabilistic version of principal
component analysis (PPCA) (Roweis (1998); Tipping and Bishop (1999)).

Given that the prior distribution over the latent variables has a Gaussian distribution,
the precision (§ tends to infinity, PCA is recovered in the limit. The conditional

probability of data given the latent space is
p <Yi’Xi7 W7 ﬁ) = N (yz’WXz, ﬁilI) . (23)

If we consider the data points are independent, then the marginal likelihood of the

data is obtained by

p(YIW.5) = [ []p(lx W) (x) dx 2.9

where N is the total number of data. Even for finite precision § the maximum
likelihood solution for W spans the principal sub-space of the data (Tipping and
Bishop (1999)). This approach can be applicable for both linear (e.g. Silva et al. (2005))
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Fig. 2.2 Marionette analogy of latent variable model: Marionette’s different dynamics
are observed (represented by Y). But these movements are controlled by the puppeteer’s
control bar which is unobserved (dynamics represented by X).

and non-linear (e.g. GP-LVM by Lawrence (2005)) models. The classical approach while
dealing with these latent variables is to marginalised them. Then other parameters are
optimized using the maximum likelihood. Lawrence (2005) used an alternative but
similar approach by first marginalising the parameters and then optimizing the latent

variables.

2.3 Bayesian Modelling

Many facets of Bayesian modelling are widely used in machine learning for various kind
of problem solutions. Bayesian models are very much dependent on two elementary
probability operations. One is ‘conditioning’and another is ‘marginalization’. Bayes’
formula has a ‘double use’of the joint probability density as the product of conditional
and marginal densities. Let m; and my be two continuous variables and their normalized
probability density is p (m, my). By definition, the marginal probability density for

m; is obtained by integrating ms out, we have

p(my) = /p(ml,mz)dfm (2.5)

and the marginal probability density for ms is obtained by integrating m; out

p(my) = /p(mme)dml- (2.6)
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The conditional probability of m; for given msy is

_ p (my, my) . p (my, my)
P (m[my) = fp(ml,mz)dml B p (my) 27)

and the conditional probability of m, for given m; is

_ p(my, my) - p (my, my)
p(mgfmy) = fp(mth) dm, p(my) (28)

From Equation 2.7 we have
p(my, my) = p (my|my) p (my) (2.9)
and From Equation 2.8 we have
p(my, my) = p(mzm,)p (m;). (2.10)
Now from Equation 2.9 and Equation 2.10 we can write
p (my|my) p (my) = p (m2[my) p (my). (2.11)
Then Bayes’ rule can be obtained by

p (mam;) p (my) _ p (my|m;)p (m;)
p (my) [ p(my, my) dm;’

p (m;|my) = (2.12)
where the unconditioned p (m;) is called the prior to get the idea even before the
observation of my. The conditional density p (my|m;) is the likelihood, p (my) is the
marginal likelihood and the conditioned density p (m;|my) is the posterior. The

marginal likelihood p (mjy) is independent of m; and used as a normalizing constant.

2.4 Modelling Transcription Factor Activities

Modelling transcription factor activities can be seen as latent variable modelling. We
can observe the gene expression level, but these expression levels are regulated by
protein-coding genes that bind to a specific DNA sequence and controls the production
rate of mRNA. These gene expression levels are analogous to the movement of the
marionette (Figure 2.2), but the transcription factor’s activity is unobservable like the

puppeteer’s control bar which controls the gene expression levels.
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In recent years an idea that has gained a lot of interest to infer the regulatory
mechanism from the expression levels of genes. There has been a wealth of research on
microarray data. A number of methods (Alter and Golub (2004); Gao et al. (2004);
Liao et al. (2003)) aim to infer a matrix of transcription factor activities (TFAs). These
TFAs can be summed up in a single number at a certain experimental point to find
the concentration of the transcription factor and its binding affinity to its target genes.
A variety of approaches has been proposed to infer these TFAs. For example, Liao
et al. (2003) developed a data decomposition technique with dimension reduction and
introduced the concept of ‘network component analysis’. This method takes account
of the connectivity information by imposing algebraic constraints on the factors. They
argued that classical statistical methods such as principal component analysis and
independent component analysis, do not consider the underlying network structure
while computing low dimensional or hidden representation of a high-dimensional data

sets like DNA microarray.

Alter and Golub (2004) used a dimension reduction technique (singular value
decomposition) to figure out TFAs and also the correlation between DNA replication
initiation and RNA transcription during the yeast cell cycle. Using multivariate
regression and backward variable selection to identify active transcription factors Gao
et al. (2004) targeted the same; Boulesteix and Strimmer (2005) used the partial
least squares (PLS) regression to infer the true TFAs from a combination of tRNA
expression and DNA-protein binding measurement. A major drawback of the methods
mentioned above is that transcription factor activities do not hold any information
regarding the strength of the regulators’ interactivity between the transcription factors
and its different target genes. It is expected that depending on the experimental
conditions the transcription factor activities can vary from gene to gene. It is also
expected that different transcription factors may bind to the same gene. In most
cases, realistic information about the intervals may not be true as they were not based
on the fully probabilistic model. Moreover, false positives are always a problem for
connectivity data, typically a significant portion of ChIP data suffers from it (Boulesteix
and Strimmer (2005)). Furthermore, due to the various cellular process or changes in
environmental conditions the structure of the regulatory network of the cell can change
considerably. Using regression-based methods, it is difficult to track these changes.
Nachman et al. (2004) built a probabilistic model, using the basic framework of dynamic
Bayesian networks based on discrete random variables for protein concentrations and
binding affinities. Though the model was more realistic, the computational complexity

for genome-wide analysis can be expensive.
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2.5 Our Goal

In this chapter we will build a dynamical model that extends the linear regression
model of Liao et al. (2003) and probabilistic model of Sanguinetti et al. (2006) to model
the distribution of each transcription factor acting on each gene from a multicellular
eukaryote (C.elegans). By nature, this model will be a latent variable model which
will be developed based on probabilistic approach. Our first target is to construct
an open source tool by implementing this approach in R programming language and
made available by GitHub!. Then in Chapter 4 we will generalize the approach using
Gaussian process (A Gaussian process is a collection of random variables and where
the random variables have a normal distribution and it is associated with every single
point in a range of times or of space. In Chapter 3 we introduce a formal description
of Gaussian process.) to model the temporal changes from time-series gene expression
data. The covariance structure of the transcription factors will be shared among all
genes. This will lead to a manageable parameter space and will figure out useful

information about the correlation of TFAs.

2.6 Probabilistic TFAs

We developed our R programming language based tools ChipDyno using the proba-
bilistic approach of Sanguinetti et al. (2006). In the following section, we will briefly
describe this approach.

The logged gene expression measurements are collected in a design matrix, Y €
RN where N is the number of genes and d is the time points or number of experiments.
The binary matrix X € RY*? is the connectivity measurements, where ¢ is the number
of transcription factors. We assume that X; ; is ‘1'if transcription factor j can bind
gene 1, ‘0’otherwise.

Sanguinetti et al. (2006) used a latent variable model (as we described in Section:
2.2). TFAs were obtained by regression from the gene expressions using the connectivity

information, given the following linear model
v, = B.x, + €, (2.13)

Here n = 1,..., N indexes the gene, y, = Y(n,:)", x, = X(n,:)" and €, is an error

term. The matrix B,, has d rows and ¢ columns, and models the gene specific TFAs.

LGitHub is a Web-based repository hosting service and source code management platform.
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Different TFAs for every individual gene will increase number of model parameters
drastically. This huge parameter space can be dealt through marginalization by prior
distribution on the rows of B,,. Yet, two physically plausible assumptions for selecting

the prior distribution will be helpful to determine the gene specific TFAs.

e The first assumption: b, has the Markov property (Appendix A, Section A.4)
and hence gene specific TFA b,,; at time ¢ depends exclusively on the gene specific
TFA at time (t — 1).

e The second assumption: the prior distribution to be stationary in time.

In order to support these assumptions, there will be two limiting cases for prior
distributions. Let’s first assume all the b,,; are identical for all ¢. Then the first limiting

case is

and
bn(t+1) ~ N(bnt7 0) (215>

If the experimental dataset comes by replicating a condition then this model is an
appropriate one. The second limiting case appears when all the b,; are independent
and identically distributed (iid)

b ~ N (p, ). (2.16)

This is the case when experimental dataset comes from independent samples drawn

without any temporal order.

Sanguinetti et al. (2006) expected a realistic model of time series data to be
somewhere in between these two extremes (Equation 2.14, Equation 2.15 and Equation
2.16)

by ~ N (b + (1= 7)p, (1 = 7°)X) (2.17)

fort=1,...,(d— 1) and b,; ~ N (u,X) where v is a parameter measuring the degree
of temporal continuity of the TFAs. If genes are independent for a given TFA then the

likelihood function is given by

p(YIB,X) =[] p(y./Bu xn) . (2.18)

n=1



2.6 Probabilistic TFAs 33

Considering Gaussian noise €, ~ N (0, o?I) we have
p(¥,Bn. %) =N (v,|Buxn, 0°1) . (2.19)
Factorizing the likelihood along the experiments with the assumption of spherical

Gaussian noise distribution, we can rewrite the Equation 2.18 as

d N

p (Y|B’ X) = H H p (Ynt|bnta Xn) (2'20)

t=1n=1

where
P (Yt Prts Xn) = N (ynt|b11—txn7 ‘72) . (2.21)

Using the classical approach of latent variable model analysis, a marginal likelihood

for the observations can be obtained by

d
p(Yn|O-7E7“7’V7Xn) :/HN(ynt|b;|L—tXn,0'2)
o (2.22)

d
X (Hp<bnt|bn<t1>)> N (bi|p, X) dbyy.
t=2

TFAs can be estimated a posteriori using Bayes’ theorem (we briefly described
Bayesian modelling using marginalization and conditioning of probability density in
Section 2.3)

p ([b;,b;, bl e S X,Y) — N (b, 5,) (2.23)

where the posterior covariance is given by

A, B 0
B A ... 0
¥, = , 2.24
bn 0 B ... B (224)
0 0 .. Ay

where
A= Ag = 07X, x,) + (1 — 72)71 >t

A=0"x.%, + (1+7%) (1 - v2)_1 >t
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B=—y(1-7)"'37,

and posterior mean is given by

oYX + ﬁz_lﬂ

_ 0 2yyx + 23!
b=, |7 T HL (2.25)

o2 yaX + ﬁz_lﬂ

The detail explanation of this model is available at Sanguinetti et al. (2006).

2.7 Dataset

Sanguinetti et al. (2006) did their experiments on yeast cell cycle data of Spellman et al.
(1998) which is a unicellular microorganism. Our first research question is “can we step
forward to find out the transcription factor activities from a unicellular microorganism
to a multicellular eukaryote?”.

In 1965, Sydney Brenner introduced C. elegans as a model organism to study the
behaviour and development of animal (Brenner (1974)). It is a eukaryote and it shares
cellular and molecular structures and control pathways with higher organisms. To
elucidate pathways and processes relevant to human biology and disease C. elegans
play a vital model. We provided introductory information about this model organism
in Chapter 1. To find out the TFAs of C. elegans we had to work with three type of
dataset

1. Gene expression time series data
2. A list of transcription factors

3. Connectivity information between genes and transcription factors.

2.7.1 Gene Expression Time series data

The gene expression Affymetrix single colour GeneChip data? on point estimate of

expression level is the source of our gene expression time series data.

2We would like to acknowledge Professor Andrew Cossins, Institute of Integrative Biology, University
of Liverpool, UK for providing us the data set with valuable information and also for the permission
for further analysis of the data.
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Fig. 2.3 Temperature and time settings for the gene response to chill exposure experi-
ments: ‘Preld ’- The first experimental data within one day of C. elegans’s adulthood
at the temperature 20°C. ‘1h ’- second experimental data were collected after one
hour of the reduction of the temperature to 5°C. ‘1d ’- Third experimental data were
collected after 24 hours of the temperature reduction to 5°C. ‘3d ’- Fourth experimental
data were collected after 72 hours of the temperature reduction. ‘Post1ld - The fifth
experimental data were collected after one day of the rise of the temperature to 20°C.

To extract this data we used a Bioconductor® package puma (Pearson et al. (2009)).
puma can extract the gene expression level with estimates of uncertainty. In the wet
laboratory, the experiments were done at five different stages (i.e. our gene expression
time series dataset will have five time points). The main goal of the experiments in
the wet laboratory was to investigate the chilling effect and identify the cold tolerance
phenotype of C. elegans. We used the gene response to chill exposure as gene expressions.
Figure 2.3 shows the temperature and time settings. In the experimental setup, all
the environmental conditions apart from the temperature were same with the target
of consistent result. The first experimental data was collected within one day of C.
elegans’s adulthood at the temperature 20 °C. To measure the gene response to chill
exposure the temperature was reduced to 5°C and second experimental data was
collected after one hour of the reduction of the temperature. Third experimental data
was collected after 24 hours (1 day) of the temperature reduction. Fourth experimental
data was collected after 72 hours (3 days) of the temperature reduction. After the
fourth data collection the temperature was brought back to 20°C. The fifth or final
experimental data was collected after one day of the rise of the temperature. In the
wet lab, the full experiment was repeated twice maintaining the similar setup. So,
three independent replicates of the experiments were available.

Figure 2.4 shows few examples of gene expression time series data extracted from
Affymetrix Microarray data. We annotated the Affymetrix ProbelD and found the

3The Bioconductor project is an open source software framework to assist biologists and statisticians
working in bioinformatics
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Fig. 2.4 Gene expression time series data extracted from Affymetrix Microarray data.
We can annotate the Affymetrix ProbelD and find the related Genes symbols. Here
in any individual plot, the title of each figure shows the Affymetrix ProbelD, z-axis
represents time and y-axis represents the extracted gene expression level. The dotted
lines represent the gene expression over time. We had three replications of data
obtained from three separate experiments with the same experimental condition setup.
The solid line represents the mean value of the gene expression level.
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Fig. 2.5 Principal component analysis of gene expression time series data. Figure on the
left shows the puma PCA which incorporates the uncertainty of the point expressions.
Figure in the right shows the standard PCA which does not include any uncertainty of
the point-expressions. It appears from these two figures that both of them have a very
similar representation. This means that the uncertainty of the point-expressions does
not have a significant effect on point expressions, it also proves the higher quality of
the data.
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related Genes symbols. As we had three replications of data from three separate
experiments, we extracted them separately and termed as experiment 1, 2 and 3. The
solid line represents the mean value of the gene expression level.

Figure 2.5 shows the PCA analysis of the gene expression time series data. The
puma PCA incorporates the uncertainty of the point expressions and the standard
PCA does not include any uncertainty of the point expressions. Both figures have a
very similar representation. This means that the uncertainty of the point expressions
does not have a significant effect on point expressions. As the added uncertainty does

change the standard PCA a lot, we can say the quality of the data is very high.

2.7.2 Transcription Factors

From different data sources, we found different number /list of transcription factors for
C. elegans. Inmaculada et al. (2007) built a database named C. elegans differential gene
expression database (EDGEdb), which contains the sequence information about 934
predicted transcription factors and their DNA binding domains. Initially, we took these
934 transcription factors for our baseline experimental setup, but tool ChipDyno can
deal with any number of transcription factors depending on the requirement /update of

the sequence information of transcription factors.

2.7.3 Connectivity Information

Network motifs are the simplest units of transcriptional regulatory network’s architec-
ture. A particular regulatory mechanism such as positive and/or negative feedback
loop can be well studied by these network motifs. Network motifs can grow in numbers
and complexity based on size and nature. Autoregulation, multi-component loop, single
input, multiple inputs, feedforward and regulators chain are some of the simplest and
well-known network motifs. Figure 2.6 shows their representation. Xie et al. (2005)
used motif conservation information for higher organisms like human, dog, rat and
mouse. For promoter analysis, they considered a number of network motif (also known
as transcription factor binding sites) and also some new motifs. These type of data,
termed as connectivity data by Liao et al. (2003), provide information about whether a
certain transcription factor can bind the promoter region of a gene or not.

WormNet (2015) is a gene network of protein-encoding genes for C. elegans based
on probabilistic function and modified Bayesian integration. They have considered
15,139 genes and 999,367 linkages between genes associated with a log-likelihood score

(LLS). These measured scores represent a true functional linkage between a pair of
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Fig. 2.6 Basic types of network motif: (a) autoregulation, (b) multi-component loop,
(c) single input motifs, (d) regulators chain, (e) multiple inputs and (f) feedforward
motifs. Here green ovals represents regulators and orange rectangles represents gene
promoters. Solid lines represent binding of a regulator to a promoter while dashed
arrow represents gene encoding regulators binding their respective regulators.

genes (Lee et al. (2007)). The linkage between two genes was measured based on the
evidence codes shown in Table 2.1.

We constructed the connectivity matrix between genes and associated transcription
factors from the gene to gene linkage and log-likelihood scores. Initially, we chose
co-expression among worm genes (CE-CX), high-throughput yeast 2-hybrid assays
among worm genes (CE-YH), literature curated human protein physical interactions
(HS-LC) and high-throughput yeast 2-hybrid assays among human genes (HS-YH) to
start our experiments. If needed we can consider any of the evidence to reconstruct
the connectivity matrix. From the gene list, we picked the protein-coding genes (i.e.
transcription factors) and later binarized it. If there is an associated LLS value between

a gene and a transcription factor, we set the value ‘1’and ‘0’otherwise.

2.8 Result Analysis

We developed R programming language based implementation of the C'hipDyno algo-
rithm to identify the quantitative prediction of regulatory activities of the gene specific
TFA through posterior estimation. The ChipDyno User Guide* explains different

4 ChipDyno User Guide is available at GitHub.
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Genel - Gene2 Evidence for interaction

CE-CC
CE-CX
CE-GN

CE-GT
CE-LC

CE-PG
CE-YH
DM-PI

HS-CC
HS-CX
HS-DC
HS-LC

HS-MS

HS-YH
SC-CC
SC-CX
SC-DC
SC-GT
SC-LC
SC-MS

SC-TS

Co-citation of worm gene
Co-expression among worm genes

Gene neighbourhoods of bacterial and archaeal orthologs of
worm genes

Worm genetic interactions

Literature curated worm protein physical interactions
Co-inheritance of bacterial and archaeal orthologs of worm genes
High-throughput yeast 2-hybrid assays among worm genes
Fly protein physical interactions

Co-citation of human genes

Co-expression among human genes

Co-occurrence of domains among human proteins

Literature curated human protein physical interactions

human protein complexes from affinity purification/mass spec-
trometry

High-throughput yeast 2-hybrid assays among human genes
Co-citation of yeast genes

Co-expression among yeast genes

Co-occurrence of domains among yeast proteins

Yeast genetic interactions

Literature curated yeast protein physical interactions

Yeast protein complexes from affinity purification/mass spec-
trometry

Yeast protein interactions inferred from tertiary structures of
complexes

Table 2.1 Gene linkage evidence code from WormNet (2015).
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Fig. 2.7 Inferred transcription factor activity of ZK370.2 from gene expression time
series data: z-axis represents time and y-axis represents the level of gene expression.
The dotted lines represent the gene expressions over time. We had three replications
of data obtained from three separate experiments with the same experimental setup.
The solid line represents the inferred transcription factor activity. The title of each
figure showing the name of the gene and correlation between gene expression level
(experiment 1) and transcription factor’s activity on that specific gene.
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functionality of this tool and working pathway. There is no established benchmark or
baseline, nor a known ground truth to compare with our results of gene specific TFA

for C. elegans.

According to WormNet (2015) the number of genes of C. elegans is 15,139 and
Inmaculada et al. (2007) presented 934 transcription factors. All the network motifs,
i.e. autoregulation, multi-component loop, feed forward loop, single input, multi-input
motif and regulator chain were visible for transcription factor activity. So it was a
mammoth task to choose all the transcription factors and show their activity. Rather
we chose some random transcription factors and find out their activity on different

genes.

As a random example, we chose transcription factor ZK370.2 and inferred its
activity on different genes. Figure 2.7 shows that transcription factor ZK370.2 can
regulate C37C3.2, Y105E8B.3, Y45F10B.3, C34F11.3, F26E4.6 and T24G10.2. We
investigated the correlation between the inferred transcription factor activity with gene
expression level. The title of each figure (in Figure 2.7) shows the name of the gene
and correlation between gene expression level (experiment 1) and transcription factor’s
activity on that specific gene. We noticed for few cases the correlation was quite high
(i.e. 0.932 for gene F26E4.6), but for some genes, the correlation was significantly
low (i.e. 0.176 for Y105E8B.3). We had three replicates of same experimental setup
and their outcomes. We performed our in-silico experiments for individual replicates
and collected the results. Later we presented all the outcome together by plots as
shown in Figure 2.8. From our experimental results we can say that the dynamics for
some of the gene specific regulations (i.e. F26E4.6 and T24G10.2) are very flat and
not that much informative, but for some genes, TFAs varies notably over time (i.e.
C37C3.2 and Y45F10B.3). These are the genes which are regulated significantly by
this transcription factor. For some cases (e.g. gene C34F11.3) the error bar is quite
high. These are the examples of bindings where the regulation is insignificant or false
positive. The magnitude of TFA also differs from one to another. We picked another
random transcription factor T20B12.8.3. Figure 2.9 shows its activity on different

genes.

We have also investigated the impact of gene knock-out and how can it play a
role to infer the gene-specific transcription factor activity. As we mentioned earlier,
transcription factor ZK370.2 can regulate gene C37C3.2, Y105E8B.3, Y45F10B.3,
C34F11.3, F26E4.6 and T24G10.2. So, we considered gene expressions of all these
genes while inferring the gene-specific transcription factor activity of ZK370.2. Then

for our investigation, we knock-out a gene (C37C3.2 in this example) and inferred the
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Fig. 2.8 Gene specific transcription factor activity of ZK370.2 on (top left to right)
C37C3.2, Y105E8B.3, Y45F10B.3 and (bottom left to right) C34F11.3, F26E4.6,
T24(G10.2. z-axis represent the time stage of the experiments, and y-axis represent the
gene expression level for transcription factor activities. Three different lines represent
TFA for three replicates and red vertical lines are error bars.
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Fig. 2.9 Gene Specific transcription factor activity of T20B12.8.3 on (top left to
right) F46A8.7, F55C9.11, R13A1.1 (bottom left to right) F10G8.6, Y106G6H.5 and
Y71H2AM.5. z-axis represent the time stage of the experiments, and y-axis represents
the gene expression level for transcription factor activities. Three different lines
represent TFA for three replicates, and red vertical lines are error bars.
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Fig. 2.10 For a specific transcription factor (ZK370.2) effect of gene knockout on other
genes. ZK370.2 can transcribe a number of genes, and one of them is C37C3.2. Here
we inferred the transcription factor activates of other genes before and after knockout
of gene C37C3.2. x-axis represents time, and y-axis represents transcription factor
activates. The title of each figure shows root mean square error (RMSE) between the
transcription factor activities before and after gene knockout.
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Gene Name Regulators activity

C44B12.5 Y116A8C.35 = 1.719797 +£ 3.493205,
F33A8.3 = 1.415785 4 3.492985

Y105E8B.3 Y54G2A.1 = 0.07157665 + 1.2222137
F33D11.12 = 0.03861905 £ 0.7252534
ZK370.2 = —1.20157055 £ 2.0318513

Y105E8B.3 T20B12.8 = 0.25474933 + 2.5665869
F33A8.3 = 0.11619828 £ 3.5107742
Y116A8C.35 = 0.03289664 £ 3.8071374
F11A10.2 = 0.03016348 £ 1.7737585
C16A3.7 = 0.01883489 + 0.9431105

Table 2.2 Example of genes regulated by multiple transcription factor.

transcription factor activity again. Figure 2.10 shows the impact of gene knock-out
on gene-specific transcription factor activates. We have also measured the root mean
square error (RMSE) between the transcription factor activities for a specific gene
before and after gene knockout. Titles of the Figure 2.10 shows the value. Coregulated
gene expression might be the main reason for varying these root mean square errors
from a very low value to high one. So, if two genes are coregulated, and we knock out
one of them, then we can expect a higher root mean square error. While if there is no

relation between two genes then we can expect a lower root mean square error.

2.8.1 Gene With Multiple Regulators

For the case of a multi-input motif, a single gene could be regulated by multiple
transcription factors. Our developed tool can determine a posteriori the relative
weight for the different transcription factors regulating the genes. Table 2.2 shows
some examples. Such as, gene C44B12.5 can be regulated by transcription factor
Y116A8C.35 and F33A8.3. While gene Y105E8B.3 is regulated by T20B12.8, F33A8.3,
Y116A8C.35, F11A10.2 and C16A3.7. The expression level can be determined by using
the posterior variance. Though for some cases the expression level is quite low and
noise margin is significantly high (examples of binding with insignificant regulation), we
can find the most significant one by ranking the transcription factor activities. We can
also rank these genes using the ranking method proposed by Kalaitzis and Lawrence

(2011) to rank the differentially expressed gene expressions.
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Fig. 2.11 Clustering gene expression data from microarray sample: Each row corresponds
to a single gene and each column corresponds to a microarray sample. This is an
ordered representation of rows and columns.

2.8.2 Different Clusters And Related Active TF

Clustering of genes is used to identify a set of genes with similar behaviour (i.e. similar
expression level or pattern) over a set of experiments (Eisen et al. (1998)). Clusters
provide an intuitive way to visualise the data and also help to facilitate the functional
annotation of the not yet characterised genes. If an uncharacterized gene belongs to a
cluster, then it could possibly have similar function and may be dominated by genes
of same the function (Pe’er (2003)). Cossins et al. (2007) performed cluster analysis
of genes based on different phenotypes. They constructed the basic clusters with the
following phenotype
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Cluster 1 - Chill upregulated: related with cell morphogenesis, cell growth,
regulation of cell size, electron transport regulation of cell growth, generation of pre-
cursor metabolites and energy, anatomical structure morphogenesis, cellular metabolic
process, proteolysis, etc.

Cluster 2 - Chill late upregulated: related with chromosome organisation and
biogenesis, DNA packaging, chromatin architecture chromatin modification, negative
regulation of developmental process, chromatin remodelling, regulation of developmen-
tal process, DNA metabolic process larval development, organelle organisation and
biogenesis, postembryonic development, etc.

Cluster 3 - Chill downregulated genes: related with amino acid and derivative
metabolic process, carboxylic acid metabolic process, organic acid metabolic process,
fatty acid metabolic process, amino acid metabolic process, monocarboxylic acid
metabolic process, etc.

Rest of the genes were placed in the group ‘others’.

Clusters Active TF

1. Chill upregulated 6

2. Chill late upregulated 245
3. Chill downregulated — 128
4. Others 203

Table 2.3 Active transcription factor on different clusters.

Figure 2.11 shows the heat map generated from DNA microarray data to reflect
the gene expression values at different temperatures and their basic clusters (Cossins
et al. (2007)). Based on the above clusters, we also find out the active transcription
factors active for different clusters. Table 2.3 shows the number of active transcription

factors for each clusters. For further analysis, we can present the full list.

2.9 Ranking Differentially Expressed Gene Expres-

sions

Kalaitzis and Lawrence (2011) analysed time series of gene expressions and filtered the
quiet or inactive genes from the differentially expressed genes. They developed their
model considering the temporal nature of data using Gaussian processes. We have

used their model to rank our time series gene expressions and ranked them accordingly.
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We ranked the three replicates of our data separately and later determine the Pearson
correlation between the ranking score of different samples.

Figure 2.12 shows the Pearson correlation between ranking scores from different
samples. The correlation coefficient for all three relations (between sample 1 and
sample 2, sample 2 and sample 3 and sample 3 and sample 1) was quite high. This
indicates the similarity of differentially expressed genes and quiet genes of different
samples or replication of time series data. So, if required, based on these ranking
we can easily filter out some of the quiet genes and keep the other genes for further

experiments.

2.10 Discussion

In this chapter, in the beginning, we have defined the latent variable model. Then we
described the probabilistic model of Sanguinetti et al. (2006) as the basis of our tool
ChipDyno.

We have reimplemented the tool ChipDyno using R programming language with
the aim to make it publicly available through GitHub. We used the mathematical
model of Sanguinetti et al. (2006) which integrate the connectivity information between
genes and transcription factors, and transcriptomic data. The probabilistic nature of
the model can determine the significant regulations in a given experimental condition.

Earlier the model was developed for a unicellular microorganism (yeast) but we have
successfully determined the gene-specific transcription factor activity for C. elegans, a
multicellular eukaryote. We were also successful to filtered out the quiet genes from
the differentially expressed genes.

To elucidate pathways and processes relevant to human biology and disease C.
elegans is using as a vital model. Different orthology prediction methods (Shaye and
Greenwald (2011)) are using to compile a list of C. elegans orthologs of human genes.
Already a list of 7,663 unique protein-coding genes has resulted in that list and this
represents  38% of the 20,250 protein-coding genes predicted in C. elegans. When
human genes introduced into C. elegans human genes replaced their homologous. On
the contrary, many C. elegans genes can function with a great deal of similarity to
human like mammalian genes. So, the biological insight acquires from C. elegans may
be directly applicable to a more complex organism like the human.

Lots of computational approaches on gene expression data for time series analysis
are not well suited where time points are irregularly spaced. Even in commonly used

state-space model time points must occur at regular intervals. On the other side gene
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Fig. 2.12 Pearson’s correlation between different ranking scores. For each figure number
at the top right position represent Pearson’s correlation.
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expression experiments with regular samples may not be cost effective or optimal from
the perspective of statistics. It is expected that models with irregular time points might
be more informative if the time points are selected considering some temporal features.
The Gaussian process is not restricted to equally spaced time series data. Already
Gaussian process regression has been successfully applied to overcome this issue and
analyse time series data (Kalaitzis and Lawrence (2011)). So our expected model will
overcome the restriction of temporal sampling of equally spaced time intervals.

The probabilistic dynamical model for quantitative inference of TFA that we
described in this chapter will be used as our basis for the coming chapters. We will
introduce Gaussian process at Chapter 3. In Chapter 4 we will devise a mechanism to

overcome the limitations of this mechanistic model using Gaussian process.






Chapter 3

(Gaussian Process Regression

3.1 Brief History of Gaussian Process

The Gaussian process is one of the most widely used families of stochastic processes
for modelling dependent data observed over time, or space, or both together. As a
general setting, Gaussian processes of many types have been studied and incorporated
in research for decades. The Wiener process (e.g. Papoulis (1991), one of the best
known Lévy processes) is a particular type of Gaussian process. The story of using
Gaussian process is still a long one. Kolmogorov (1941) and Wiener (1949) first used
Gaussian process for time series prediction in the 1940’s, probably the history of the
Gaussian process is even older. Indeed the Brownian motion is a Gaussian process too.
This is because the distribution of a random vector is a linear combination of vectors
which follow a normal distribution. Einstein (1905, 1926) investigated the theory of
the Brownian movement. This is Gauss-Markov process. Thorvald N. Thiele was the
first to propose the mathematical theory of Brownian motion. He also introduced the
‘likelihood function” during the period 1860-1870.

Since the 1970’s Gaussian process have been widely adopted in the field of meteo-
rology and geostatistics. Around that time Gaussian process regression was named
as kriging and used by Matheron (1973) for prediction in geostatistics. O’Hagan
(1978) used Gaussian process in the field of statistics for multivariate input regression
problems. For general purpose function approximators, Bishop (1995) reviewed neural
networks, Neal (1996) showed the link between Gaussian process and neural networks
and in the machine learning context, Williams and Rasmussen (1996) first described
Gaussian process regression.

Over the last two decades, the Gaussian process in machine learning has turned

to a major interest and much work has been done. Perhaps Rasmussen and Williams
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(2006) is the most widely used and cited text on the Gaussian process for machine
learning and most of the literature discussed in the beginning part of this chapter can

be found there in detailed form.

3.2 The Regression Problem

Machine learning problems can be roughly categorised into three basic classes.
1. Supervised learning: inferring a function from labelled training data;
2. Unsupervised learning: finding the hidden structure of unlabelled data;
3. Reinforcement learning: taking action by maximising the cumulative reward.

Supervised learning may be further sub-categorised in two fundamental tasks: regression
and classification. The regression problem deals with estimating the strength of the
relationship among some dependent variables with some independent variables, whereas
classification identifies the desired discrete output levels. Bishop (2006); MacKay (2003);
Rogers and Girolami (2011) described these concepts in detail.

Regression is the task of making a prediction of a continuous output variable at the
desired input, based on a training input-output data set. The input data can be any
types of objects or real-valued features located in R” which have some predictability
for an unobserved location.

By the definition of regression, it is obvious that there will be some inference based
on a function mapping the outputs from a set of given inputs because by inferring a
function we can predict the response to the desired input. In the case of Bayesian
inference, a prior distribution over functions is required. Then the model goes through a

training process and updates the prior, based on the training dataset. Let’s assume the

N
n=1»

training data D constructed with N input vectors, such as {X,y}, where X = {x,}
x, € RP are the training inputs and y = {y,}"_,, vy, € R are the training outputs.
Now a key question arises, how can we define a distribution over an infinite dimensional
object such as a function?

Although using plain and simple statistics, the regression problem can be solved;
the Gaussian process has been proven as a better selection to model a more complex
and specific learning task with improved reliability and robustness. Theoretically,
Gaussian process regression corresponds to Bayesian linear regression with an infinite
number of basis functions. In practice, a finite number of basis functions are used

and the number increase with the size of the dataset. Therefore, we can say Gaussian
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process models are nonparametric. A Gaussian process model can be used as regression
model having an object featuring infinite dimensionality. Gaussian processes have
advanced beyond the regression model and now are used for classification (Nickisch
and Rasmussen (2008); Williams and Barber (1998)), unsupervised learning (Ek et al.
(2008)), reinforcement learning (Deisenroth (2012)) and other related fields in machine

learning.

We assume the outputs in the training dataset generated from an underlying
mapping function f(x) may contain noise. The objective of the regression problem is to
construct f(x) from the data D. This task is ill-defined and dealing with noisy data is
even harder as the reasoning of the uncertainty is required. Hence, a single estimate of
f(x) clearly could be misleading, rather a probability distribution over likely functions
could be much more appealing. A regression model based on the Gaussian process
is a fully probabilistic Bayesian model and will definitely serve for our purpose. In
contrast with other regression models, here we will get the opportunity to choose the
best estimate of f(x). If we consider a probability distribution on functions p(f) as the
Bayesian prior for regression, then Bayesian inference can be used to make predictions

for given data
likelihood prior

posterior mﬂ?)
p(fID) = oD (3.1)
—~—

marginal likelihood

where p(f) is a Gaussian process prior, p(D|f) likelihood, p (D) is the marginal
likelihood and p (f|D) is a posterior process over functions. Chapter 2 Section 2.3

showed how marginalization and conditioning is related to Bayesian analysis.

3.3 Gaussian Process definition

A Gaussian process is a collection of random variables, any finite number of which have
a joint Gaussian distribution (Rasmussen and Williams (2006)). It is a continuous
stochastic process and defines probability distributions for functions. It can be also
viewed as a collection of random variables indexed by a continuous variable. Any
finite set of values from the collection can be written as a vector. Let’s consider
f = {f1, fo, f3,..., fn} corresponds with indexed inputs X = {x1,x2,X3,...,Xxx}. In
Gaussian processes, variables from these random functions are jointly normally dis-

tributed and as a whole can be represented as a multivariate Gaussian distribution
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p(f[X) ~ N (flp, K) (3-2)

where p is the mean and K is the covariance matrix. Both potentially depends on X.

The Gaussian distribution is over vectors but the Gaussian process is over functions.

We need to define the mean function and covariance function for a Gaussian process
prior. If f(x) is a real valued process, a Gaussian process is completely defined by
its mean function and covariance function given in Equation 3.3 and Equation 3.4
respectively. Usually the mean function m(x) and the covariance function k(x,x’) are
defined as

m(x) = E[f(x)], (3.3)
and

k(x,x') = E[(f(x) = m(x))(f(x) = m(X))], (3.4)

where [E represents the expected value. We denote the Gaussian process as
f(x) ~GP(m(x),k(x,x)). (3.5)

The covariance matrix K is constructed from the covariance function k(x,x’) and
Kzg =k (Xi,Xj), that is

k(xy,x1) k(x1,%2) -+ k(x1,X,)
K _ ]{5 (XQ:, Xl) l{f (XQ:, XQ) . ]{3 (XQ:, Xn) . (36>
k(xp,x1) k(Xp,X2) -+ k(Xn,Xp)

Loosely speaking, a Gaussian process is multivariate Gaussian distribution defined
over an infinite number of dimensions. A sample from a Gaussian process is a random
function. While a n—dimensional Gaussian distribution is fully specified by mean p, a
n X 1 vector of expectations and covariance matrix K, the n x n matrix of covariances

between all pair of points.

It is a common practice to consider a Gaussian process with zero mean when no prior
information is available. This is not excessively restrictive as a variety of functions can
be generated by a zero mean process. A second order stationary process has a constant
mean and the covariance function solely depends on the distance between the inputs.
Zero-mean process is a simplification just by centring the data as t = t — t, where t is

the data sample mean. An extra constant term with the covariance function can reflect
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the variation from the mean of the process (MacKay (2003)). So, a constant-mean or

a zero-mean assumption is not overly restrictive in practice.

3.4 GP: Covariance Functions

The covariance function (also called kernel, kernel function or covariance kernel)
characterises the properties or nature of the samples drawn from a Gaussian process.
The covariance function encodes the modelling assumptions we wish to incorporate
in our application. The mandatory requirement of a covariance matrix is to be
symmetric positive semi-definite!. So, as long as the covariance function generates
symmetric positive semidefinite matrix, we can use that function for a Gaussian process.
Smoothness, periodicity, amplitude, lengthscale etc. are basic properties that can be
incorporated while designing Gaussian process covariance function. Once the decision to
model with a Gaussian process has been made the choice of the covariance function is a
central step in modelling. The main goal of this thesis is to develop covariance functions
suitable for transcription factor activity analysis and clustering gene expressions. In
this chapter, we will discuss some of the very well known and widely used covariance
functions. A wide choice of valid covariance functions and their detail description can
be found in Rasmussen and Williams (2006).

Any form of covariance function is acceptable, provided it satisfies the following

equation

Z aiajk: (Xi, Xj) 2 0 (37)
2%

where, a;,a;...a, are arbitrary real coefficients and x;,x; ...x,, are finite set of data

points. A covariance function is termed ‘stationary’ when it follows

Cov [ (x:) ./ (x,)] = & ([lx; = ;1) (3.8)

for all x;,x; € RP. In practice, a stationary covariance function gives a function
that is invariant to translation and does n