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ABSTRACT: Plant homeodomain (PHD) zinc fingers are histone
reader domains that are often associated with human diseases. Despite
this, they constitute a poorly targeted class of readers, suggesting low
ligandability. Here, we describe a successful fragment-based campaign
targeting PHD fingers from the proteins BAZ2A and BAZ2B as model
systems. We validated a pool of in silico fragments both biophysically
and structurally and solved the first crystal structures of PHD zinc
fingers in complex with fragments bound to an anchoring pocket at the
histone binding site. The best-validated hits were found to displace a
histone H3 tail peptide in competition assays. This work identifies new
chemical scaffolds that provide suitable starting points for future ligand
optimization using structure-guided approaches. The demonstrated
ligandability of the PHD reader domains could pave the way for the
development of chemical probes to drug this family of epigenetic
readers.

The plant homeodomain (PHD) zinc fingers are small
reader domains found in several chromatin-binding

proteins. They are characterized by the conserved motif Cys4-
His-Cys3, which binds two Zn ions important for the structural
integrity of the domain. PHDs recognize a diverse set of
histone marks,1 as well as DNA sequences;2 the specificity of
binding is dictated by the properties of the pocket.3 With more
than 170 sequences annotated as PHD finger in the human
genome, they are considered one of the largest families among
reader domains.4 They are often found located in tandem with
other reader domains, suggesting a potential cross-talk among
readers. Genetic evidence has linked PHD fingers to disease-
related pathways,5 electing them as a new class of potential
epigenetic drug targets.1 However, unlike other reader domains
(e.g., bromodomains),6 PHD fingers have been proven difficult
to target with small molecules, and no chemical probe has been
reported to date against them. To this end, only two studies
have investigated the ligandability of this class of reader
domains. In a first study, the Halo-tag technology was used for
screening small molecules against the PHD of JARID1A and
identified a chemical scaffold potentially able to disrupt the
interaction with the H3K4me3 peptide, although no structural
data were provided.7 In a later study, fragment screening was
applied to target the PHD finger of Pygo and the best
compound identified as binding to a cleft proximal to the
histone pocket.8

Here, we describe a fragment-based approach that yielded
fragments targeting two ligandable pockets of a PHD domain,
one of which is at the PHD/histone interface. As model
systems, we chose the PHD fingers of two proteins of the BAZ

(bromodomain adjacent to zinc finger) family:9 BAZ2A and
BAZ2B. The reason for choosing these targets was their
suitability to biophysical and structural investigation, as
previously demonstrated by our laboratory.10,11 PHD zinc
fingers in BAZ2 lie in proximity of bromodomain readers.9

Several studies already attempted to address the druggability of
BAZ2 bromodomains,12−16 whereas, to our knowledge, no
study has yet assessed the ligandability of BAZ2 PHD domains.
Further motivation came from an ultimate goal to develop
chemical probes that could inform on the biological function of
these proteins. BAZ2A is the most studied member of the
family, and it was previously identified as part of the nucleolar
remodelling complex (NoRC), which mediates silencing of
rDNA.17 BAZ2A was found to be involved in prostate cancer,
and its expression levels were proposed as potential biomarker
for the diagnosis of this type of cancer.18 In contrast, BAZ2B is
much less characterized. It was found associated with a
doubling of the risk of sudden cardiac death (SCD)19 but its
biological function remains unknown and information on
potential interactions with other macromolecules remains
elusive. Therefore, the development of chemical probes able
to target BAZ2 reader domains could provide useful tools to
shed light on the biological role of these proteins.
We began our ligandability study by considering the known

protein−protein interaction of the targeted PHD domains.

Received: December 21, 2017
Accepted: March 12, 2018
Published: March 12, 2018

Letters

Cite This: ACS Chem. Biol. 2018, 13, 915−921

© 2018 American Chemical Society 915 DOI: 10.1021/acschembio.7b01093
ACS Chem. Biol. 2018, 13, 915−921

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

http://pubs.acs.org/action/showCitFormats?doi=10.1021/acschembio.7b01093
http://dx.doi.org/10.1021/acschembio.7b01093
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


Previous research has shown that BAZ2 PHDs recognize
preferentially unmodified H3 histone tail promoting helicity in
the H3 peptide upon binding.10,11 It was also shown that the
mutation to alanine of the second and third residues of the H3
histone tail abolishes binding.11,20 Therefore, we hypothesized
that the H3 N-terminal 3-mer motif “ART” might be essential
to anchor the histone tail to the surface of BAZ2 PHDs. To test
this hypothesis, we synthesized and biophysically characterized
the binding of ART against both PHD domains. The 3-mer
peptide retained binding, as measured by NMR and ITC, with
dissociation constants of 1−2 mM (see Figure S1 in the
Supporting Information). Next, we solved the crystal structure
of the PHD of BAZ2A in complex with ART, which confirmed
the expected binding mode with the peptide superposing well
with the first three residues of the bound H3 tail crystal
structure11 (see Figure 1A, as well as Figure S2 in the
Supporting Information). The amidic nitrogen at the C-
terminus of the ART peptide forms interactions with the
backbone carbonyl of Leu1691 and Asp1688 (Figure 1B). The
tripeptide surface covers an area of 610 Å2, which is comparable
with the size of small molecules.21 This observation encouraged

us toward the possibility to disrupt the PHD−histone
interaction with small molecules. Thus, we embarked on a
fragment screening campaign to explore the propensity of the
protein surface to bind small molecules.
First, we assessed the ligandability of the histone pocket of

BAZ2A using FTMap22 to probe the apo crystal structure.
FTMap readily identified the histone pocket as a hit (Figure
1C), even though it perceived it as a borderline druggable
pocket likely requiring charged compounds, in agreement with
the salt-bridges present in the BAZ2A−ART complex (Figure
1B). Interestingly, FTMap identified a second druggable
binding site in BAZ2A, which is located opposite to the
histone pocket and is rather hydrophobic (Figure 1C), which
we refer to here as the “back pocket”. Thus, we next assembled
a diverse virtual library of a thousand low-molecular-weight
compounds and performed in silico docking using Glide 7.0
(Schrödinger, LLC), targeting both pockets in BAZ2 PHDs.
Because proposed histone-pocket binders have a tendency to
be positively charged, selected compounds were subsequently
rescored using MM-GBSA (Prime 3.0, Schrodinger, LLC),
which accounts for a better estimation of desolvation penalties
upon binding. We normalized the docking rankings by
efficiency, visually inspected the top-ranked compounds, and
selected 19 fragments (see Table S1 in the Supporting
Information). Compounds were purchased and binding to
both proteins was interrogated via a biophysical screening
cascade.23 First-pass screen was performed using (15N−1H)-
heteronuclear single-quantum coherence (HSQC) NMR spec-
troscopy. Advantages of using HSQC as primary validation step
are (a) its sensitivity to low-affinity interactions and (b) the
possibility to provide information on the region of binding
through chemical shift mapping.24 Furthermore, chemical shift
perturbations (CSPs) can be used to estimate the binding
affinities24 and, consequently, ligand efficiency of the fragments
(see Table S2 in the Supporting Information). Second-pass,
thermal shift assay (TSA) was performed to test if the HSQC-
validated fragments were able to stabilize or destabilize BAZ2
PHDs in solution. In parallel, an AlphaLISA competition
assay25 was developed to assess the ability of these fragments to
displace an H3 peptide from the histone pocket. Ultimately, X-
ray crystallography was used to investigate the binding mode of
the validated fragments.
BAZ2 PHD (15N−1H)-HSQC spectra were suitable for CSP

experiments, using resonances previously assigned.11 (15N−1H)
HSQC spectra obtained after incubation of each protein with
each single fragment were overlaid with the apo form spectrum
of the protein; those fragments showing chemical shift for at
least one resonance of the spectrum were considered as binders
(Figure 1D). Of the 19 compounds tested, nine fragments were
confirmed by HSQC as potential binders (∼47% confirmation
rate). Most of the hits were common to the two PHDs, with a
few fragments selectively binding BAZ2A or BAZ2B (see
Figure 1E, as well as Figure S3 in the Supporting Information).
Among this pool of validated fragments, it was noted that
fragments Fr3 and Fr8 presented a relatively similar scaffold
and the poses predicted by docking, which reported binding to
the histone pocket, were in agreement with the CSP heat map
(see Figure 2A, as well as Figure S3). The predicted binding
mode of Fr3 to BAZ2B PHD (Figure 2A) shows how the
amino group on the azole derivative is thought to be the driving
force of binding. Indeed, it was noted that a similar fragment,
Fr15, which carries the −NH2 group on a phenyl ring (Table
S1), did not show binding by HSQC. Interestingly, Miller et al.

Figure 1. Druggable pockets on BAZ2A/B PHD and validated
fragments. (A) Crystal structure of BAZ2A PHD in complex with ART
tripeptide. Fo − Fc electron density map of the peptide is contoured at
3σ. The R2 side chain of the peptide is not visible in the electron
density. (B) Close-up view of the interactions. (C) Druggable binding
sites in BAZ2A PHD (PDB: 4QF2)10 identified by FTMap, shown as
green mesh. Protein surface is colored according to the electrostatic
potential. (D) Overlay of (15N−1H) HSQC spectra recorded on the
apo form of 15N-BAZ2B PHD (blue) and after 5 mM fragment
addition (red). Arrows represent the shift direction. (E) Chemical
structures of the in silico fragments validated by HSQC. Fragments
reporting binding by NMR to the histone pocket are shown in red, and
fragments reporting binding by NMR to the back pocket are shown in
blue.
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also identified a benzothiazole scaffold (CF4) analogous to Fr8
as a binder of the Pygo PHD.8 In that study, CF4 was shown to
bind the protein at a back surface opposite to the histone
pocket, which was defined as the benzothiazole cleft.8 Herein,
we propose that the benzothiazole scaffold (Fr8), based on our
modeling and HSQC experiments, binds, instead, to the
histone pocket of BAZ2 PHDs (see Figures S3 and S4 in the
Supporting Information). Structural analyses showed no
similarities between the benzothiazole cleft of Pygo8 and the
histone pocket of BAZ2A PHD (see Figure S4). HSQC
experiments also allowed identifying fragments binding to the
back pocket, for example, Fr7 for BAZ2B PHD, according to
the docking model (see Figure 2B). Binding affinity was not
estimated for this fragment, since chemical shift intensities were
too low (<0.03 ppm) and resonances did not display relevant
changes upon titration, implying binding that was too weak
(see Figure S5 in the Supporting Information). The proximity
of Fr7 to the Zn and Cys1956 coordinating Zn suggests that it
might be possible in the future to increase its binding affinity by
growing the fragment with a group able to chelate the Zn or
covalently bind, for example, residue Cys1956 (see Figure 2B).7

The nine HSQC-validated hits were tested by TSA,
monitoring shifts of the melting temperature of the PHD
domains upon the addition of fragments (Figure S6). Some of
the fragments showed positive shifts and others showed
negative shifts (see Table S3 in the Supporting Information).

For example, Fr19, which showed binding to the histone
pocket by HSQC, reported negative ΔTm when tested with
BAZ2A PHD (Table S3). As previously shown, both positive
and negative shifts can yield validated fragment hits.26 We next
questioned if these HSQC-validated fragments could affect the
PHD−histone interaction. To this extent, an AlphaLISA25

competition assay was developed to measure the displacement
of a Flag-tagged peptide.11 We decided to use the peptide
ARTAATARKS (referred to as AA mutant), because it binds
significantly more tightly than the wild-type sequence (by 4-
fold and 14-fold vs BAZ2A and BAZ2B, respectively, as
measured by ITC11). Co-crystal structure revealed that the AA
mutant peptide retains the same binding mode of the wild-type
sequence (see Figure S7 in the Supporting Information),
supporting its use as a displacement probe for the assay (further
details are described in the Supporting Information). The
functionality of the assay was corroborated using the
corresponding untagged AA mutant peptide (see Figure S8 in
the Supporting Information). We found that some of the tested
fragments could displace the histone peptide in the assay in a
concentration-dependent manner, for example, Fr3 (see Figure
S9 in the Supporting Information). In contrast, other
fragments, such as, for example, Fr18, did show interference
only at high concentration (>1 mM); this was expected since,
by HSQC data, Fr18 binds the back pocket (see Figures S3 and
S9).

Figure 2. Biophysical and structural validation of fragment hits. (A) Docking pose of BAZ2B PHD and Fr3 showing a set of residues shifted in
HSQC and clustered at the histone pocket. Residues are colored according to the intensity of the shifts: strong shifts in red (Δδ > δΔ + 2σ),
intermediate shifts in orange (Δδ > δΔ + σ) and lower shifts or no shifts in green (Figure S3). (B) Docking pose of BAZ2B PHD and Fr7 with shifts
clustered at the back pocket of BAZ2B and close-up view of in silico predicted interactions. (C) Crystal structure of BAZ2A PHD in complex with
Fr19 (in sticks, with green carbons). Fo − Fc electron density map is contoured at 3 σ around the bound fragment. The Thr3 methyl hydrophobic
pocket is colored in yellow, and the acidic wall is red. (D) Chemical structures of optimized fragments.
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To investigate the molecular details of the interaction of the
BAZ2 PHDs with the nine HSQC-validated fragments, we
performed co-crystallization and soaking experiments. The
crystal structure of BAZ2A PHD in complex with Fr19 was
solved at 1.9 Å. The unbiased Fo − Fc electron density map was
observed in two of the four protomers (chains B and C), within
the pocket that accommodates Ala1 of the histone peptide
(Figure 2C). The 2-amino-N-acetamide moiety of the fragment
was fully defined in the electron density, while the density was
incomplete for the 4,5,6,7-tetrahydrothieno(3,2-c)pyridine ring
of the ligand (see Figure 2C, as well as Figure S10 in the
Supporting Information). In the crystal lattice, the fragment
binding site from one protein chain packs against one from the
neighboring asymmetric unit, and this constrains the 5,6 fused
ring of the fragment to adopt two distinct orientations in order
to avoid steric clash (see Figure S11 in the Supporting
Information). This results in ring−ring stacking interactions
from neighboring asymmetric units, and packing against
Leu1693 in one chain (see Figure 2C and Figure S11). In
both bound conformations, the terminal amino group of the
fragment displaces the structural water W1 (Figure 1B) to form
three hydrogen bonds: one with the side-chain carboxylate of
Asp1695, a second one with the Leu1693 backbone carbonyl,
and a third one with a new water molecule (observed bound in
three of the four protomers). The amide carbonyl of the

fragment forms a hydrogen bond with the Leu1693 backbone
NH (see Figure 2C).
The conformations adopted by Fr19 do not allow the 5,6

fused ring to fill the hydrophobic pocket that accommodates
the Thr3 methyl group of the H3 peptide, defined by Leu1692,
Val1713, and Ile1703 (see Figure 2C and 1B). From these
observations, optimization of Fr19 was attempted in silico using
molecular docking. The 2-amino-N-acetamide moiety was
constrained to the crystallographic conformation, while
modeling focused on determining suitable groups to better
fill the hydrophobic cavity. Opening of the aliphatic ring
showed improvement in the flexibility of the molecule, and
allowed one to introduce aromatic substituents attached to the
secondary amide. Phenyl and thiazole aryls were identified as
suitable groups (Figure 2D). To further stabilize the aromatic
ring in the pocket, we also chose phenol and aniline
substituents (Figure 2D) to engage in hydrogen bond
interactions with Asp1688 on the acidic wall (ref 11, shown
in red in Figure 2C). The insertion of a methyl on the 2-amino
terminal of the fragment (Figure 2D) aimed to address
hydrophobic interactions in the pocket defined by Trp1718 and
Pro1714, which accommodate the methyl of Ala1 of the H3
peptide (Figure 1B). Fragments Fr20−Fr23 (Figure 2D) were
tested as singleton in HSQC, which confirmed the histone
pocket as a region of binding (see Figure S12 in the Supporting

Table 1. Crystallographic Data Collection and Refinement Statisticsa

data collection BAZ2A-ART BAZ2A-ARTAATARKS BAZ2A-Fr19 BAZ2A-Fr23

space group P43212 P43212 P43212 P43212
cell dimensions

a, b, c (Å) 73.4, 73.4, 99.7 72.7, 72.7, 99.9 72.1, 72.1, 99.2 72.8, 72.8, 99.6
α, β, γ (deg) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90

resolution 46.03 (2.0) 45.72 (2.0) 45.34 (1.9) 45.2 (2.7)
unique observations 19049 18751 21069 7841
completeness (%) 99.9 (99.9) 99.9 (99.9) 99.3 (98.8) 100 (100)
redundancy 8.6 (9.0) 9.7 (9.9) 3.8 (4.0) 12 (12.3)
CC1/2 0.99 (0.78) 0.99 (0.91) 0.99 (0.83) 0.99 (0.95)
I/σ(I) 15.5 (2.1) 14.0 (4.0) 14.3 (2.6) 10.7 (3.7)
wavelength (Å) 0.9282 0.9763 0.9763 0.9686
refinement

Rwork/Rfree (%) 19.3/23.5 19.4/22.3 18.9/23.1 20.8/24.4
rmsd bond (Å) 0.011 0.007 0.015 0.005
rmsd angle (deg) 1.6 1.26 1.9 0.75
PDB code 6FHU 6FKP 6FI0 6FAP

data collection BAZ2B−Fr21 BAZ2B−Fr23

space group P212121 P212121
cell dimensions

a, b, c (Å) 38.3, 45.4, 65.0 37.8, 45.5, 64.8
α, β, γ (deg) 90, 90, 90 90, 90, 90

resolution 65.04 (1.95) 64.83 (2.7)
unique observations 8453 3349
completeness 97.7 (87.1) 100.0 (100.0)
redundancy 5.8 (4.9) 5.6 (5.9)
CC1/2 0.99 (0.91) 0.96 (0.56)
I/σ(I) 18.1 (1.3) 5.3 (1.9)
wavelength (Å) 0.9686 0.9686
refinement

Rwork/Rfree (%) 18.5/23.8 22.6/29.9
rmsd bond (Å) 0.02 0.014
rmsd angle (deg) 1.88 1.73
PDB code 6FHQ 6FI1
aValues shown in parentheses are for the highest resolution shell.
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Information). Binding affinities, as measured by CSPs, did not
remarkably improve (Figure S12).
To gain further insights on the binding mode of these

fragments, soaking experiments were performed. Crystal
structures of BAZ2A and BAZ2B PHD were solved in complex
with Fr23 and of BAZ2B PHD in complex with Fr21 (data
collection and refinement statistics are reported in Table 1).
Crystal structure of BAZ2B PHD with Fr21 (see Figure 3A,

Figure S13D in the Supporting Information, and Table 1)
shows that the fragment interacts with residues Leu1947,
Leu1948, Asp1950, Gly1971, Ile1968, and Pro1969, which were
previously identified as hotspots of binding for the H3 10-mer
peptide.11 The secondary amide introduced a higher flexibility
able to fill the hydrophobic pocket with the thiazole group
(Figure 3A). The ring was modeled with the S atom pointing

toward the beta strand of the PHD, in agreement with high-
level DFT calculations, which show a strong preference of the
amide to remain in the thiazole plane with the S atom pointing
toward the amide oxygen (Figure 3D). This conformation is
stabilized by an n → σ* electron donation from the lone pair of
the amide oxygen (n) to the antibonding S−C orbital (σ*) in
the thiazole (En→σ* = 2.7 kcal/mol; see the Supporting
Information for more details).
Crystal structures of both BAZ2A PHD (Figure 3B, as well as

Figure S13B in the Supporting Information) and BAZ2B PHD
(Figures S13A and S13C) were solved in complex with Fr23.
Superposition of the two structures showed that the hotspots of
binding are equivalent (Figure 3C). Despite this, some
differences were observed in the torsion angle of the acetamide
of the ligand. In Fr23 bound to BAZ2B, the torsion angle of the
acetamide plane is rotated by only 10° compared to the ring
plane, whereas, in BAZ2A, it is rotated clockwise by 46°. The 2-
amino-N-acetamide orientation in Fr23 bound to BAZ2A is
also retained in Fr19 (Figure S14 in the Supporting
Information). From the structure, this rotation is needed to
retain the hydrogen bond with Asp1695, despite the aromatic
ring being pushed further by Val1713, which is oriented toward
the pocket (see Figure 3C). The corresponding residue in
BAZ2B is Ile1968, which points outside the pocket, allowing
the fragment to be accommodated closer (Figure 3C). The
dihedral angle in Fr23 was also studied by DFT calculations
using phenylacetamide as model, which shows a flat profile
between 0° and 50° (Erel < 0.35 kcal/mol; see Figure 3D). On
average, proteins can induce a strain energy of ∼0.6 kcal/mol
on a bound ligand;27 thus, the calculated low torsion energy gap
is consistent with the hypothesized protein-induced strain of
Fr23.
We next interrogated if Fr23 could interfere with the binding

of the H3 AA mutant peptide in solution using the AlphaLISA
competition assay. Dose−response curves in Figure 3E show
displacement of the peptide in both proteins, consistent with
the binding mode observed crystallographically. Fr23 binding
mode was then compared to the ART binding mode (Figure
3F). The amide carbonyl of Fr23 superposes closely with the
peptide R2 carbonyl, making a hydrogen bond with the
Leu1693 backbone (Figure 3C). The amino group of Fr23
displaces the structural water W1, which mediates binding of
the peptide N-terminal amino group to the protein (Figure
1B). The aromatic ring is accommodated in the Thr3 methyl
pocket. Overall, while the fragment occupies the same hot spot
pocket as H3, the details of the interaction are different.
In conclusion, this study reports the first fragment screening

campaign to identify ligandable pockets of the BAZ2 PHD zinc
fingers. In silico ligandability analysis highlighted two potential
druggable pockets and targeted virtual screening identified a set
of fragments that were validated experimentally for protein
binding. From this set, we were able to solve the co-crystal
structure of one compound (Fr19) bound to the histone
pocket, which guided further in silico optimization of the
binding mode, resulting in two more fragments successfully
soaked in BAZ2 PHDs. To the best of our knowledge, these are
the first fragment-bound crystal structures revealing protein−
ligand interactions at the histone pocket of a PHD zinc finger
domain. Analysis of these structures highlighted similarities and
differences in the molecular recognition between the two
proteins, as well as similarities and differences in binding mode
between fragments and histone peptide. Co-crystallized frag-
ments recapitulate a conserved anchoring hotspot at the

Figure 3. Insights on the binding mode of optimized fragments. (A)
Crystal structure of BAZ2B PHD in complex with Fr21 bound to the
histone pocket. (B) Crystal structure of BAZ2A PHD in complex with
Fr23 bound to the histone pocket. Fo − Fc electron density map of the
fragments is in gray and contoured at 2.5σ. (C) Superposition of BAZ2
PHDs in complex with Fr23. The black arrow shows the dihedral
angle. The red arrow shows the different orientation of Val1713 in
BAZ2A and Ile1968 in BAZ2B. (D) Relative torsion energy of
surrogate arylamides. The observed dihedral angles of the parent
compounds in complex with BAZ2 are highlighted with an arrow. (E)
AlphaLISA dose−response curves of Fr23. The error bars represent
the standard deviation of each point (see the Supporting Information
for more details). (F) Superposition of BAZ2A in complex with Fr23
and ART peptide.
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histone binding site, which, however, is not explored by the
bound histone tail. Thus, a rational design could take advantage
of the importance of the histone tail helicity revealed in
previous work,11 by linking our identified fragments with
synthetic scaffolds exploring those features of histone binding.28

This work provides a blueprint for the development of future
improved ligands of this family of PHDs. The development of
chemical probes to disrupt the interaction between BAZ2
PHDs and histone H3 could ultimately provide new chemical
tools to interrogate the still elusive activity and biological
function of these proteins. Beyond inhibitors of the PHD−
histone interaction, a small molecule able to bind the PHD zinc
finger could be strategically linked to a selective ligand of the
adjacent bromodomain14−16 with the intent to generate
bivalent compounds of increased affinity and selectivity for
the target protein. Such a bivalent approach targeting tandem
domains was demonstrated in recent work, targeting BET
bromodomains.29 Ultimately, improved ligands could also be
conjugated to E3 ubiquitin ligase ligands, yielding bifunctional
chemical degraders to induce proteasomal degradation of the
BAZ2 proteins.30,31
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For detailed description of material and methods, see the Experimental
Section in the Supporting Information.
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