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ABSTRACT 

Background: MSR1 repeats are a 36-38bp minisatellite element that have recently 

been implicated in the regulation of gene expression, through copy number variation 

(CNV). 

Patients and methods: Bioinformatic and experimental methods were used to 

assess the distribution of MSR1 across the genome, evaluate the regulatory 

potential of such elements and explore the role of MSR1 elements in cancer, 

particularly non-familial breast cancer and prostate cancer. 

Results: MSR1s are predominately located at chromosome 19 and are functionally 

enriched in regulatory regions of the genome, particularly regions implicated in short-

range regulatory activities (H3K27ac, H3K4me1, and H3K4me3). MSR1-regulated 

genes were found to have specific molecular roles, such as serine-protease activity 

(P=4.80x10-7) and ion channel activity (P=2.7x10-4). The kallikrein locus was found to 

contain a large number of MSR1 clusters, and at least six of these showed CNV. An 

MSR1 cluster was identified within KLK14, with 9-copies and 11-copies being normal 

variants. A significant association with the 9-copy allele and non-familial breast 

cancer was found in two independent populations (P=0.004; P=0.03). In the white 

British population, the minor allele conferred an increased risk of 1.21 to 3.51-times 

for all non-familial disease, or 1.7 to 5.3-times in early-onset disease. The 9-copy 

allele was also found to be associated with increased risk of prostate cancer in an 

independent population (odds ratio = 1.27-1.56;  P =0.009). 

Conclusions: MSR1 repeats act as molecular switches that modulate gene 

expression. It is likely that CNV of MSR1 will affect risk of development of various 

forms of cancer, including that of breast and prostate. The MSR1 cluster at KLK14 

represents the strongest risk factor identified to date in non-familial breast cancer 

and a significant risk factor for prostate cancer. Analysis of MSR1 genotype will allow 

development of precise stratification of disease risk and provide a novel target for 

therapeutic agents. 
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KEY MESSAGE 

MSR1 repeats are widespread in the genome and copy number variation (CNV) of 

the element acts as a molecular switch to control gene expression. MSR1 CNV is 

likely to control expression of >200 genes and drive dysregulation at the kallikrein 

locus and other cancer-related genes.  CNV of MSR1 at the kallikrein locus is an 

important risk factor for non-familial breast cancer and prostate cancer. 
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INTRODUCTION 

The concept of “junk DNA” arose from an observation: that DNA content is poorly 

correlated with the complexity of an organism; for example, the onion genome is 

approximately five times greater than human. To resolve this paradox, geneticists 

suggested that most DNA has no biological purpose and could be considered “junk”. 

This dogma has been challenged recently by studies such as the ENCODE project, 

which estimated that up to 80% of the genome has function [1,2]; although this has 

been considered by some to be an over-estimate [3,4]. ENCODE has, nevertheless, 

focussed attention on possible functions for “junk DNA” – including work on repeat 

elements, such as minisatellites.  

Chromosome 19 is unusually rich in repetitive DNA and one repeat element – the 

36-38bp minisatellite sequence, MSR1 – has been reported to be specific to this

chromosome [5,6]. It was shown that copy number variation (CNV) of MSR1 

regulates gene expression, with CNV of MSR1 repeats located upstream to the 

PRPF31 promoter affecting transcription of the downstream gene [7]. A cluster of 

MSR1 elements was identified within the murine troponin I (TnIc) promoter, and 

deletion alters Tnlc expression [8,9]. Furthermore, MSR1 sequence might regulate 

expression of an aberrant KLK4 sense-antisense chimera transcript in prostate 

cancer cells [10].  

The emerging influence of CNV of MSR1 on gene expression implicates a role in 

oncogenesis and, in this work, the regulatory potential of MSR1 repeats was 

explored, with focus on the oncogenic kallikrein locus.  
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METHODS 

Bioinformatic methods 

The MSR1 consensus sequence was identified from Repbase [11]. MSR1 family 

membership and sequence boundaries were determined by RepeatMasker, using 

the consensus sequence of the family. A Hidden Markov Model (HMM) profile was 

constructed using multiple sequence alignment and an extensive whole genome 

search for profile HMM was performed using nHMMER with strict profile threshold 

(E=1x10-8) [12]. The analysis followed the standard pipeline for transposon-related 

repeat families [13]. 

RepeatMasker annotations track for MSR1 family was probed for intersection with 

several regulatory tracks of ENCODE using Table Browser tool of UCSC genome 

browser (http://genome.ucsc.edu/) [14]. The regulatory data from 7 cell lines assayed 

in ENCODE was analysed (GM12878, K562, H1 human embryonic stem cells, 

HSMM, HUVEC, NHEK and NHLF). These cell lines were used as there is full, 

robust data of H3K marks and other regulatory signals.  

MSR1 repeats were probed in silico for their putative effect on genes using three 

models of gene regulation: (i) Basal-plus-extension; (ii) Two-nearest-gene; (iii) 

Single-nearest-gene (bioinformatic pipelines available on request). 

The list of genes that were possibly regulated by MSR1 repeat elements was 

analysed to detect functional clustering of protein domain (InterPro domains, 

https://www.ebi.ac.uk/interpro/), Molecular Signature Database (MSigDB, 

http://software.broadinstitute.org/gsea/msigdb/index.jsp), DAVID gene ontology 

(https://david.ncifcrf.gov/) and GREAT software 

(http://bejerano.stanford.edu/help/display/GREAT/) [15]. 
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Analysis of gene dysregulation in malignancy and the kallikrein locus 

Gene dysregulation data from 20 malignancies was obtained from COSMIC 

database (http://cancer.sanger.ac.uk/cosmic). Data for CNV of MSR1 at the kallikrein 

locus was obtained through UCSC genome browser (https://genome.ucsc.edu). 

Specifically, data was analysed for intersection of MSR1 sequence on the 

RepeatMasker track, with CNV data on the DGV structural variation track.  

Vector preparation and dual-luciferase reporter assay 

Non-labelled PCR product was amplified using template DNA from a control 

individual. A modified pGL3-basic vector (Promega) was used, containing a basic 

thymidine kinase promoter (pTK), and the fragments were cloned upstream to the TK 

sequence. Dual-luciferase reporter assay was performed in MCF7, RPE-1 cells and 

HeLa cells by transient transfection, as previously described [Error! Bookmark not 

defined.].  

Patient selection 

Breast cancer - Peripheral blood DNA was obtained from Tayside Biorepository, 

these being samples from White-British patients with a diagnosis of primary BrCa 

without family history suggestive of familial inheritance. The control samples were 

women from the same ethnic population with no history of BrCa, obtained from 

Generation Scotland 3D resource or ECACC control panels [16]. Written, informed 

consent was obtained from all individuals and local ethics approval was gained from 

the NHS Research Ethics Committee for Scotland A (REC reference number: 06/ 
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MRE00/105). 

Prostate cancer - A total of 905 prostate cancer patients were genotyped. From 

these, 600 patients were recruited via collaborations with The Cancer Council 

Queensland (ProsCan study) and 305 samples were provided by patients who 

donated blood to the QLD node of the Australian Prostate Cancer BioResource 

(APCB) as detailed previously [17,18]. From the 842 healthy controls analysed, 334 

were recruited through the Australian Red Cross Blood Services and 508 were 

enrolled through the Electoral Roll where age- and postal code-matched patients to 

the ProsCan study were selected [17]. All methods were carried out in accordance 

with relevant guidelines and regulations, and all experimental protocols were 

approved by QUT’s Human Ethics Committee (Ethics’ Approval number: 

1000001171), the Australian Red Cross Services (Ethics’ Approval number: 

2004#17) and Cancer Council Queensland (Ethics’ Approval number: 3629H). Only 

patients who provided informed written consent were included in the study. 

Analysis of patient genotype 

Breast cancer: In total, 633 patients with non-familial BrCa and 650 controls 

underwent analysis. PCR was performed using a FAM-labelled forward primer 

(5’FAM-GAAGCTGGATTGAGGAAACG) and an unlabelled reverse primer 

(GTGCCTCCGGTCTTGAGTAG).  PCR products underwent a standard genotyping 

reaction and were analysed on ABI 3130x. Data was analysed using Data Collection 

v30 and Gene Mapper v4.1. 

Prostate cancer: A touchdown PCR was optimised using the GoTaq Green Master 

Mix (Promega, Sydney, Australia). The first 10 cycles of the PCR used an annealing 

temperature of 63ᵒC while the remaining 30 cycles were performed at 62ᵒC. The rest 
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of the conditions for both series where identical, with an initial denaturation 

temperature of 95ᵒC for 30 seconds and a final elongation temperature of 72ᵒC for 

45 seconds. A subsequent 10 minutes at 72ᵒC finalised the protocol. The primers 

used were the same as for breast cancer samples. MSR1 copy number was 

assessed on agarose gels using a sizing ladder.  

Statistical analysis 

Breast cancer: Due to small sample size, ꭓ 2 testing was applied to compare the risk 

of disease in those carrying only the major allele (homozygous 11 copies), as 

compared to those carrying minor alleles (8-, 9-, or 10-copies). The odds ratio was 

estimated using conditional maximum likelihood estimate (CMLE). Dose-response 

analysis was performed by an Extended Mantel-Haenszel χ-square for linear trend. 

Sub-type analysis was performed for age of onset and histological sub-type. 

Statistical analysis was performed using OpenEpi v3.03 (www.openepi.com). 

Prostate cancer: Association of MSR1 was analysed for prostate cancer risk using 

univariate binary logistic regression (IBM SPSS Statistics; 23.0) where the 

dependant variable is the case-control status. A P < 0.05 was considered significant, 

and OR and 95% confidence interval (CI) are shown. For genotype association 

analysis the most common allele, homozygous 11/11, was used as a reference. 

Random sampling with replacement tests has been carried out using the 

bootstrapping analysis (IBM SPSS Statistics 23.0) using a seed value of 1,000 

samples 1,000,000 times. To confirm the results were not age-related, both the 

univariate binary logistic regression and the bootstrapping were age-corrected. The 

allele/genotype was used as the categorical value and the age was the categorical 

co-variate. The prostate cancer/control status was the unique dependant variable. 
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RESULTS 

MSR1 repeat elements are distributed across the genome, with highest density 

on chromosome 19q 

The non-redundant (canonical) MSR1 sequence was found to have 978 hits across 

the human genome (Figure 1A, Supplementary Table S1, Supplementary Figure 

S1A-C). Additionally, there were >2000 further instances of degenerate sequence 

genome-wide (Supplementary Figure S1D). The canonical HMM sequence had the 

highest level of conservation, and was observed most frequently (>550 hits) on 

chromosome 19 (Figure 1A). There were also a reasonable number of occurrences 

on chromosome 7 (110 occurrences) and chromosome 1 (44 occurrences). All other 

chromosomes had a small number of occurrences (<30), but MSR1 was not evident 

on the mitochondrial genome (Supplementary Table S1).  

MSR1 repeats coincide with genomic markers of gene regulation 

To investigate if MSR1 repeats are a global regulator of transcription, it was 

considered whether the elements coincided with genomic markers of regulation 

(Figure 1B). It was found that 70% of MSR1 elements are located within open 

chromatin and, furthermore, a large proportion of MSR1 repeats were associated 

with H3K27ac (70%), H3K4me1 (83%) and/or H3K4me3 (85%). MSR1s were less 

commonly associated with DNaseI hypersensitivity sites, transcription factor binding 

sites (TFBS), DNA methylation marks or FAIRE signal.  
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Serine-protease genes and ion channel genes are putatively regulated by 

MSR1 elements 

Having identified that the majority of MSR1 sequence coincided with markers of 

gene regulation, it was considered important to study which genes might be 

regulated by the repeat, and to see whether these genes shared any common 

features. 

Only MSR1 repeats with highest fidelity were studied at this time, as it was felt that 

these were most likely to be functional. This highlighted 227 genes, mainly on 

chromosome 19, which are prime candidates for regulation by MSR1 repeats 

(Supplementary Figure S2). The genetic distance between the MSR1 repeat 

element and transcription start sites (TSS) of putatively regulated genes was then 

studied, showing that the vast majority of MSR1 elements were located within 50kB 

of TSS, with a significant proportion located very close to the gene TSS (<5kB) 

(Figure 1C-H). By the basal-plus-extension method, 41.0% were located between 0-

5kB of TSS and 52.9% were located at a distance of 5-50kB; by the two-nearest-

gene method, the respective figures were 31.8% and 60.6% respectively and for the 

single-nearest-gene method, 58.9% and 40.5%. To analyse whether MSR1 repeat 

elements were enriched in regions close to gene TSS, 5 random 50kB regions 

containing MSR1 elements were chosen at random. 

Gene ontology analysis of the functional clustering of genes putatively regulated by 

MSR1 elements showed enrichment for a number of molecular functions 

(Supplementary Table S2). In particular, MSR1-containing genes were strongly 

enriched for serine peptidase activity (P<4.8x10-7) and ion channel activity 

(P=2.7x10-4) (Figure 2A). This was confirmed on analysis of InterPro signatures, 
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which showed strong enrichment for peptidase domains (P=1.5x10-9) and voltage-

gated ion channels (P=3.2x10-3) (Figure 2B).  

Genes containing MSR1 clusters are frequently dysregulated in cancer 

The 227 genes that were identified as candidates for regulation by MSR1 repeats 

were analysed for dysregulation in 20 common malignancies. Gene expression data 

in malignancy was available for all but 13 of the genes. This showed that all the 

analysed genes putatively controlled by MSR1 were over-expressed in at least 5% of 

some cancer types, and 50 of the genes were dysregulated in a large proportion of 

at least one tumour type (≥15%) (Figure 3, Supplementary Table S3). Under-

expression of genes regulated by MSR was far less common, with only 78 of the 

genes being reported as under-expressed, and only 3 genes being reported as 

frequently under-expressed (Supplementary Table S4).  

The kallikreins are a family of serine-proteases encoded by a series of tandem-array 

genes located at chromosome 19q13.4 – totalling 15 genes and one pseudo-gene 

(Figure 4A). Gene ontology analysis had indicated a strong functional clustering for 

serine-peptidases, due to functional clustering of 15 genes (CAPN1, HPN, KLK1, 

KLK10, KLK13, KLK14, KLK15, KLK2, KLK3, KLK4, KLK6, KLK7, KLK8, KLK9, 

PSENEN). Further analysis of the kallikrein locus mapped a large number of MSR1 

clusters (Table 1).  Analysis of deep-sequencing data showed that at least six of the 

clusters harboured CNV in a control population, these clusters lying closest to KLK4, 

KLK7, KLK14 and KLK15. 
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Copy number variation of the KLK14 MSR1 cluster alters gene transcription in

vitro

A cluster of MSR1 repeats located within the 3’UTR of KLK14 was selected for 

further study (Figure 4B). This cluster was chosen because it demonstrated CNV in 

previously published population data and KLK14 has associations with breast and 

prostate cancer.  

The cluster of interest was amplified from control individuals of Northern European 

descent, demonstrating four alleles (8-, 9-, 10- or 11-copies). The 11-copy allele was 

the major allele, but 9-copy was reasonably frequent (MAF = 13.3%). The 8- and 10-

copy alleles existed at <1% frequency and were considered rare variants. 

The two common alleles (11- or 9-MSR1 copies) were cloned upstream to a basic 

promoter in both forward and reverse strand orientation, and dual luciferase reporter 

activity was tested in MCF7, HeLa and RPE-1 cell lines (Figure 4C-E, 

Supplementary Table S5 and S6).   It was demonstrated that the presence of 

MSR1 elements enhanced basal transcription, but that the 9-copy allele had a 

significantly greater effect on reporter activity than the 11-copy allele.  

In the forward strand orientation, the 9-copy allele (KLK14-9) had 4.9 to 9.1-fold 

induction over pTK; similarly, in the reverse strand orientation, KLK14-9 had 5.0 to 

6.9-fold induction over pTK. In contrast, the 11-copy allele (KLK14-11) had a lesser 

enhancing effect on transcription, with 2.5 to 5.5-fold induction (forward) or 3.0 to 

3.5-fold induction (reverse). The difference between 9-copy and 11-copy alleles was 

statistically significant for both forward and reverse strand orientations in all three cell 

lines (P<1x10-5). It can, therefore, be considered that the observed polymorphism 
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causes a functional change and that the 9-copy allele drives relatively higher 

expression of KLK14 than the 11-copy allele.  

Copy number variation of MSR1 is a major risk for non-familial breast cancer 

As a functional role of the MSR1 CNV was demonstrated, and KLK14 dysregulation 

is associated with BrCa, a case-control analysis was performed for non-familial 

disease (Figure 4F-K, Supplementary Table S7). The risk of developing BrCa was 

studied by calculating the dose response to the 9-copy KLK14 allele; that is, the risk 

of carrying heterozygous exposure or homozygous exposure, as compared to 

baseline exposure of no rare alleles (11,11 homozygotes).   

There is a strong stratified association between the number of 9-copy alleles and the 

relative risk of BrCa (Table 2). Heterozygotes (9,11) have 1.21-times higher risk than 

11-copy homozygotes, whilst 9-copy homozygotes have a 3.51-times higher risk

(MH χ2 = 8.25; P=0.004). 

The observed effect was strongest for individuals with early-onset BrCa (less than 50 

years), with heterozygous carriers having 1.65-times higher risk and, remarkably, 

homozygous carriers having 5.34-times increased risk (MH χ2 = 10.71; P=0.001). 

The trend did not reach statistical significance for patients with onset of disease at 50 

years and older (MH χ2 = 2.98; P=0.08). The association was significant for the 

estrogen receptor (ER) positive subtype, with 1.22 to 3.42-times increased risk in 

heterozygous and homozygous carriers, respectively (MH χ2 = 5.62; P=0.02). The 

association between the 9-copy allele and ER-negative histological subtype did not 

reach significance.  
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There were insufficient individuals carrying the rare alleles (8- or 10-copy) and so it 

was not possible to perform a dose-response analysis.  Instead, ꭓ 2 analysis was 

performed; this did not show significant association between the rare alleles and risk 

of BrCa (P >0.05).  

The association was replicated by re-analysis of previously published data [19]. 

Although only a small number of cases and controls were available (24 of each 

group), analysis of dose-response replicated the association of the 9-copy allele with 

non-familial BrCa in a second, independent population (P =0.03, Table 2).  

Copy number variation of MSR1 is a major risk for prostate cancer 

The association between MSR1 CNV at the KLK14 locus and PrCa was then 

assayed in an Australian case-control cohort, as a further replication and validation 

of the association between MSR1 CNV and malignancy. The two most common 

alleles were the 9 and 11 repeats, the 11-copy being the major allele (11-copy allele 

frequency = 79.6%; 9-copy allele frequency = 17.1%). Interestingly, a greater variety 

of rare alleles were observed in the Australian population: 6-copies (0.2%), 8-copies 

(1.3%), 10-copies (1.2%), 12-copies (0.4%) and 13-copies (0.1%) (Supplementary 

Table S8).  

The 9-copy allele was shown to be significantly associated with prostate cancer risk 

at allele level (OR = 1.3, CI = 1.1 – 1.6, p =0.001) and genotype level (OR = 1.3, CI = 

1.04 – 1.6, p =0.001). The results were age independent and confirmed by 

bootstrapping (Table 2, Table 3). The major 11-copy allele was associated with a 

protective effect (OR = 0.65, CI = 0.5 – 0.9, p =0.025) and the results were also age-

independent and confirmed by bootstrapping (Table 3). 
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DISCUSSION 

The ENCODE project predicted that many “junk DNA” sequences, including 

repetitive elements, would have a molecular function. MSR1 is a minisatellite 

sequence that was previously considered chromosome 19 specific [Error! 

Bookmark not defined.]. Recently, MSR1 repeat elements were implicated in 

regulation of gene expression – with CNV of MSR1 at the PRPF31 locus modulating 

expression of the upstream gene [Error! Bookmark not defined.].  

In this work, bioinformatic methods were used to establish the distribution of MSR1s 

within the human genome, to explore whether MSR1 acted as a global regulator of 

gene expression, and to investigate how regulation of gene expression by MSR1 

influences malignancy.  

First, this work has shown that the MSR1 sequence is not exclusively located on 

chromosome 19 – but is found on all chromosomes, except the mitochondrial 

genome. Most MSR1 repeat elements were found to be located close to gene TSS – 

this being suggestive of a role in short-range regulation. Furthermore, more than 

70% of MSR1 elements intersect with H3K marks.  H3K marks tend to be associated 

with short-range enhancers; as opposed to FAIRE signal, which is associated with 

long-range elements and with which there was little intersection. This is supportive of 

previously published work that looked at the putative mechanism of action of MSR1 

[7]. This work showed that spatial relation of the MSR1 cluster to the promoter 

sequence was critical for the effect of CNV and that the element did not bind 

transcription factors, nor was it a target for epigenetic regulation [7]. It was proposed, 

therefore, that 3D DNA conformational change (e.g. DNA looping) was the 

mechanism by which MSR1 affected gene transcription. 
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Next, gene ontology and functional clustering analyses showed that MSR1 sequence 

chiefly regulated genes with ion-channel and serine-peptidase function, including the 

kallikrein locus. Dysregulation of protease activity is one of the key events implicated 

in tumour growth and progression, both at primary and metastatic disease sites [20]. 

Our analysis found that serine-protease genes were strongly enriched for MSR1 

elements (P<4.80x10-7) due to clustering in the kallikrein locus.  Dysregulation of 

kallikrein genes has been implicated in several malignancies; particularly, endocrine 

cancers (prostate, breast, ovarian) but also adenocarcinoma of the colon, lung and 

pancreas, neuroendocrine tumours, and acute lymphoblastic leukaemia [21,22]. It 

was found that at least four kallikrein genes harboured MSR1 CNV in a normal 

population: KLK4, KLK7, KLK14 and KLK15. However, the structural variation data 

available for analysis was from a small sample of South Asian Malay individuals and 

is, as such, likely to be an under-estimate of true CNV at the kallikrein locus [23].  

It was surmised that MSR1 CNV element might cause over-expression of KLK14 in 

BrCa. Reporter assay showed that presence of the 3’UTR MSR1 cluster acted as an 

enhancer element.  Critically, in vitro, the 9-copy allele induces a greater 

enhancement of transcription than the 11-copy allele. This was consistently 

demonstrated in three different cell lines –  including MCF7, which is a BrCa cell line. 

If the same phenomenon occurred in vivo, it strongly suggests that the 9-copy allele 

induces higher levels of KLK14 gene expression as compared to the 11-copy allele. 

It was postulated, therefore, that the 9-copy allele might be associated with higher 

risk of BrCa.  

In our case-control cohort, it was shown that the 9-copy allele was associated with a 

significantly increased risk of disease.  Increasing presence of the 9-copy allele was 

associated with a greater risk of BrCa: thus, as compared to 11-copy homozygotes, 
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the heterozygous carriers of the 9-copy allele had an odds ratio of 1.2 and, of greater 

influence, those homozygous for the 9-copy allele had an odds ratio of 3.5. This 

effect was even greater in those with early-onset disease, with a remarkably high 

effect (1.7 to 5.3-fold increased risk). Furthermore, it seems the risk (9-copy) allele is 

strongly associated with the ER positive histological subtype, but not the ER 

negative subtype.   

In an association study, it is critical to show reproducibility in a second population. 

Here, we were able to re-analyse previously published data from a small cohort from 

Toronto, Canada [19]. Our analysis confirmed a statistically significant association 

between the 9-copy allele and risk of non-familial BrCa. Given the small n, however, 

caution would be advised in interpretation of the odds ratios generated from this 

analysis.  

As high-penetrance alleles are mainly associated with familial forms of cancer, it is to 

be expected that a study of non-familial BrCa would display an allele with low- or 

moderate-penetrance cancer susceptibility. It is crucial to note, however, that with an 

odds ratio of 1.2-3.5 (1.7-5.3 in early-onset disease), the KLK14-MSR1 cluster is by 

far the most influential susceptibility allele identified to date in non-familial BrCa. 

Crucially, even the identification of this single risk allele with such a high influence is 

a major step towards stratification of risk of non-familial BrCa in women in the 

general population, as even this one locus could be clinically useful for a predictive 

test. However, it is predicted that study of other kallikreins and MSR1-containing loci 

would allow formulation of an even more powerful method for risk stratification in 

non-familial BrCa – this facilitating enrolment into effective screening and early 

prevention programmes for those at highest risk.  



18 

To further confirm the association of MSR1 CNV with malignancy, a case-control 

analysis was performed between the KLK14-MSR1 cluster and prostate cancer. This 

confirmed that the higher-expressing, 9-copy allele was a robust and significant risk 

factor for prostate cancer in the population studied. The 9-copy allele was associated 

with prostate cancer risk at allele level (OR = 1.3; p =0.001) and genotype level (OR 

= 1.3; p =0.001), these results being age-independent and confirmed by 

bootstrapping. Furthermore, the major 11-copy allele was associated with a 

significant protective effect (OR = 0.65; p =0.025). 

The association between the KLK14 higher-expressing allele and risk of prostate 

cancer makes logical sense, as KLK14 expression is significantly higher in 

cancerous compared to non-cancerous prostatic tissue (Figure 3, [24]). 

Furthermore, up-regulation of KLK14 is observed in advanced and more aggressive 

tumours, and has been associated with disease progression [24,25]. 

It would be valuable to assess genotype of all MSR1 clusters across the kallikrein 

locus in a case-control cohort of patients with breast, prostate and other endocrine-

related malignancies. Subsequently, MSR1 elements outside the kallikrein locus 

could be studied, in malignancy and other diseases associated with these genes. 

Furthermore, we predict that hypermutation of the MSR1 clusters might occur within 

tumour cells, propagating further gene dysregulation. Finally, protease inhibitors are 

an emerging class of chemotherapeutic agents and, accordingly, pharmaceutical 

targeting of MSR1 might represent a new anti-cancer chemotherapeutic approach. 

In summary, this study provides persuasive evidence that MSR1 repeats are global 

regulators of gene expression and that this prototypical “junk DNA” element can 

influence many important human diseases. We anticipate that study of MSR1 will 
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allow development of tools for screening, diagnosis and prognostication for many 

diseases, and hope that long-term this will allow early intervention to predict and 

prevent devastating diseases, such as breast, prostate and other cancers. 
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TABLE LEGENDS 

TABLE 1 

Location and orientation of MSR1 clusters within the kallikrein locus, with the nearest gene 

and the copy number variants identified in a previously published database of whole genome 

deep-sequencing in a control population. The clusters with reported CNV in a test population 

are highlighted in grey.  

Table 2 Univariate binary logistic regression for the three most common genotypes of the 

MSR1 cluster located in the 3’UTR of KLK14 in either heterozygous (9,11 genotype) or 

homozygous form (9,9 genotype), as compared to the major allele homozygotes (11,11 

genotype 

The relative risk of BrCa is calculated as the Extended Mantel-Haenszel χ2 for linear trend 

with odds ratio. aOR Calculated using a binary logistic regression, bbootstrap (two-tailed). 

The 11/11 repeats was used as reference for genotype analysis (IBM SPSS Statistic 

Processor; bP value calculated by Extended Mantel-Haenszel χ2 for linear trend; *% with 

respect all the genotypes observed (see Supplementary Table S8 for full values); CI: 

confidence of interval. 

Table 3 

Results of association between the KLK14 MSR1 CNVs and prostate cancer in a large case-
control cohort. Association was calculated using (a) binary logistic regression, (b) bootstrap 
(two-tailed), (c) binary logistic regression (age corrected), (d) bootstrap (two-tailed) age 
corrected. The 11/11 repeats was used as reference for genotype analysis (IBM SPSS 
Statistic Processor; 23). OR: odds ratio; ns: not significant; CI: confidence interval (see 
Supplementary Table S8 for full values). 
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FIGURE LEGENDS 

FIGURE 1 

(A) The distribution of MSR1 repeat elements across the genome, shown as

occurrences (hit count) per 1 Mb of chromosome. 

(B) The coincidence of MSR1 repeat elements, by percentage, with recognised

genomic marks of regulatory potential. The assays analysed were: (i) chromatin

accessibility assays and chromatin interaction assays, (ii) layered H3K27Ac mark on

7 cell lines from ENCODE, (iii) layered H3K4Me1 mark on 7 cell lines from

ENCODE, (iv) layered H3K4Me3 mark on 7 cell lines from ENCODE, (v) digital

DNaseI Hypersensitivity Clusters from ENCODE, (vi) transcription levels assayed by

RNA-seq on 7 Cell Lines from ENCODE and ChIP Transcription Factor ChIP-seq

from ENCODE, (vii) formaldehyde-assisted isolation of regulatory elements (FAIRE)-

seq (viii) DNA methylation assays. Data from regulation supertracks (composite

regulatory signals from 7 cell lines (GM12878, K562, H1 HESC, HSMM, HUVEC,

NHEK, NHLF) was integrated into all 8 analytic sub-groups, thus highlighting

generality of these regulatory signals.

Relative position (C) and absolute distance (D) to gene TSS for genes detected by 

“basal-plus-extension” methods; relative position (E) and absolute distance (F) to 

gene TSS for genes detected by “two-nearest-genes” method; and relative position 

(G) and absolute distance (H) to gene TSS for genes detected by “single-nearest-

gene” method. In (C), (E) and (G), the x-axis distances are 1: <-500kB, 2: -500 to -

50kB, 3: -50 to -5 kB, 4: <-5kB, 5: 0-5kB, 6: 5-50kB, 7: 50-500kB, 8: >500kB.  

FIGURE 2 

Functional clustering analysis of the genes putatively regulated by MSR1 repeats 

showed important molecular functions (A), protein domains (B) and pathways (C) 

that are enriched.  

Statistical significance of enrichment denoted by asterisk – ***P=<0.001, **P=<0.01, 

*P=<0.05.
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FIGURE 3 

Analysis of 20 common malignancies for over-expression of 214 genes putatively 

controlled by MSR1 repeat elements. Colour-coded for percentage of tumour 

samples reported to over-express the gene: beige 1-4.9%, yellow 5-9.9%, orange 

10-14.9%, red 15-19.9%, maroon 20-29.9%, purple 30-39.9%, navy ≥40%.

FIGURE 4 
(A) Schematic representation of the kallikrein cluster at chromosome 19q13,

showing relative gene position and size (intergenic distances not to scale). Arrows 

represent gene orientation. (B) UCSC genome browser data, showing structure of 

KLK14, with genomic co-ordinates (hg19), exons and MSR1 repeat elements 

clusters (turquoise, the cluster assayed is arrowed). 

Results of dual-luciferase reporter assay in MCF7 cells (C), HeLa cells (D) and RPE-

1 cells (E). Data presented as the average ratio of pGL3-insert to pTK, error bars 

represent one standard deviation; the positive control (pTK) and negative control 

(pGL3) are also shown. Orientation of MSR1 sequence indicated by + (forward 

strand) or – (reverse strand). 



Cluster Start End +/- Size 
Nearest 
gene Gene position Deletions? Insertions? Inversions? 

1 50838533 50838945 - 414 KLK15 Promoter Y N N 

50838964 50839068 - 108 

50839086 50839216 - 138 

2 50839388 50839641 - 255 KLK15 Promoter Y N N 

3 50858321 50858405 - 111 KLK3 Intron N N N 

4 50906457 50906862 - 411 KLK4 3' UTR Y N N 

5 50968950 50969313 - 373 KLK5 

Promoter/intron 

1 N N N 

6 50974768 50975026 - 237 KLK7 3' UTR N N N 

50975045 50975743 - 652 

7 50979979 50980231 - 256 KLK7 Intron N N N 

8 50982481 50983661 + 1204 KLK7 5' UTR Y N Y 

9 50999193 50999292 - 106 

10 51000301 51000392 + 108 KLK8 Intron N N N 

51001293 51001473 - 175 

11 51001710 51002157 - 440 KLK8/KLK9 Promoter N N N 

12 51003325 51003415 + 92 KLK9 Intron N N N 

51003447 51003619 + 172 

13 51015634 51015849 + 210 KLK10 Intron N N N 

14 51077561 51077973 - 412 KLK14 3' UTR Y N N 

15 51078986 51079439 + 462 KLK14 Intron Y N N 



Table 2 

MSR1 
genotype 

Exposure 
level 

Cases 
(%)* 

Controls 
(%)* 

Total 
Odds 
Ratioa 
(95% CI) 

MH  χ2 
P-

valueb 

All cases 
(BrCa) 

11,11 
Level 0 vs 

0 
418 
(66) 

470 (72) 888 1 

9,11 
Level 1 vs 

0 
177 
(28) 

164 (25) 341 
1.21 

(0.94 – 
1.56) 

9,9 
Level 2 vs 

0 
25 (4) 8 (1) 33 

3.51 (1.6 
– 7.9)

8.25 0.004 

Age of onset 

<50 years 
11,11 

Level 0 vs 
0 

66 470 536 1 

9,11 
Level 1 vs 

0 
38 164 202 1.65 

9,9 
Level 2 vs 

0 
6 8 14 5.34 10.71 0.001 

≥50 years 
11,11 

Level 0 vs 
0 

248 470 718 1 

9,11 
Level 1 vs 

0 
95 164 259 1.1 

9,9 
Level 2 vs 

0 
13 8 21 3.08 2.98 0.08 

Histological subtype 



ER - 
11,11 

Level 0 vs 
0 

58 470 528 1 

9,11 
Level 1 vs 

0 
25 164 189 1.24 

9,9 
Level 2 vs 

0 
4 8 12 4.05 2.73 0.10 

ER + 
11,11 

Level 0 vs 
0 

206 470 676 1 

9,11 
Level 1 vs 

0 
88 164 252 1.22 

9,9 
Level 2 vs 

0 
12 8 20 3.42 5.62 0.02 

Replication set (BrCa) 

11,11 
Level 0 vs 

0 
6 17 23 1 

9,11 
Level 1 vs 

0 
17 5 22 9.63 

9,9 
Level 2 vs 

0 
1 2 3 1.42 4.49 0.034 

All Cases 
(PrCa) 

11,11 
Level 0 vs 

0 
538 
(59) 

546 (65) 1084 1 

9,11 
Level 1 vs 

0 
292 
(32) 

233 (28) 525 
1.27 (1 – 

1.6) 

9,9 
Level 2 vs 

0 
37 (4) 24 (3) 61 

1.56 
(0.9 – 
2.7) 

6.77 0.009 





Table 3 

Genotype Controls (n) 
(%) 

Cases (%) OR
 
(95% CI)

a
p-value

a
p-value

b
 p-value

c
p-value

d
 

1 (0.1) 0 - - - - - 

1 (0.1) 0 - - - - - 

1 (0.1) 0 - - - - - 

6 (0.7) 2 (0.2) - - - - - 

14 (1.7) 9 (1) - - - - - 

24 (3) 37 (4) - ns - - - 

1 (0.1) 0 

233 (28) 292 (32) 1.3 (1.04 – 1.6) 0.021 0.018 0.029 0.023 

8 (1) 17 (1.9) - - - - - 

3 (0.4) 7 (0.8) - - - - - 

546 (65) 538 (59) Reference - - - - 

1 (0.1) 1 (0.1) - - - - - 

3 (0.4) 0 - - - - - 

0 2 (0.2) - - - - - 

3 (0.2) 0 - - - - - 

22 (1.3) 11 (0.6) - - - - - 

288 (17) 368 (20) 1.3 (1.1 – 1.6) 0.001 0.003 0.003 0.004 

20 (1.2) 41 (2) - - - - - 

1344 (80) 1385 (77) 0.65 (0.5 – 0.9) 0.025 0.025 0.042 0.041 

6 (0.4) 0 - - - - - 

1 (0.1) 5 (0.3) - - - - - 
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