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Abstract 9 

The long runtimes of variable density and salt transport numerical models hinder the 10 

implementation of simulation-optimization routines for coastal aquifer management. To reduce 11 

this excessive computational cost, surrogate models have been successfully applied in several 12 

studies. However, it has not been previously addressed how effective is surrogate modelling in 13 

pumping optimization of coastal aquifers, given a limited number of available runs with the 14 

seawater intrusion model. To that end, two surrogate-based optimization frameworks are 15 

employed and compared against the direct optimization approach under restricted 16 

computational budgets. The first surrogate-assisted algorithm, utilizes an infill strategy aiming 17 

at a fast local improvement of the surrogate model around optimal values. The other, balances 18 

global and local improvement of the surrogate model while it is applied for the first time in 19 

coastal aquifer management. The performance of the algorithms is investigated for 20 

optimization problems of moderate and large dimensionality. Results indicate that for all 21 

problems, the surrogate-based optimization methods provide higher objective function values 22 

than the direct optimization. Additionally, the selection of cubic radial basis function surrogate 23 

models, enables the construction of very fast approximations for problems with up to 40 24 

decision variables and 40 constraint functions.  25 
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  35 

Variable density and salt transport (VDST) numerical models are indispensable tools for 36 

simulating seawater intrusion (SWI) in coastal aquifers (Werner et al. 2013). They have been 37 

effectively employed to improve understanding in real-world SWI problems (e.g. Gingerich & 38 

Voss 2005; Giambastiani et al. 2007; Kopsiaftis et al. 2009; Kerrou et al. 2013). Additionally, 39 

the simulation of dispersive flow between seawater and freshwater by using VDST models, 40 

enables a more accurate management of groundwater abstraction in coastal aquifers (Pool and 41 

Carrera , 2011). 42 

However, VDST models are computationally expensive, as is the case with most of the high-43 

fidelity computer simulations. Hence, their use in iterative numerical tasks, such as sensitivity 44 

analysis or optimization, is hindered by the increased computational cost. To address this issue, 45 

several studies have employed data-driven surrogate modelling techniques either to partly or 46 

fully replace the computationally expensive VDST simulations (Sreekanth & Datta 2015). 47 

Examples of surrogate models in coastal aquifer management comprise artificial neural 48 

networks (e.g. Rao et al. 2004; Bhattacharjya & Datta 2005; Kourakos & Mantoglou 2009; 49 

Ataie-Ashtiani et al. 2013; Kourakos & Mantoglou 2013; Roy et al. 2016), genetic 50 

programming (Sreekanth & Datta 2011), evolutionary polynomial regression (Hussain et al. 51 

2015), polynomial chaos expansions (Rajabi et al. 2015), radial basis functions (Christelis & 52 

Mantoglou 2016a) or fuzzy inference systems (Roy & Datta 2016). 53 

Typically, an initial set of input-output data from the physics-based models is used to train 54 

the surrogate models in order to attain a certain level of accuracy for predicting responses to 55 

unseen data (Solomatine & Ostfeld 2008). It is unlikely though that a global accurate surrogate 56 

model can be constructed, given that the number of available runs with the original model is 57 

usually limited due to computational restrictions (Forrester et al. 2008). In certain coastal 58 

aquifer management studies, hundreds to thousands input-output patterns were used to 59 

construct an accurate surrogate model (Sreekanth & Datta 2015). The use of large training 60 

patterns may lead to impractical computational cost even for a VDST model with simulation 61 

runtimes of few minutes.  62 

Most coastal aquifer management studies, have applied surrogate-based optimization (SBO) 63 

methods without pre-specified restrictions on the overall computational budget. The use of 64 

adaptive surrogate training frameworks has significantly reduced the associated computational 65 

burden (e.g. Kourakos & Mantoglou 2009; Papadopoulou et al. 2010; Christelis & Mantoglou 66 

2016a). Alternatively, Ataie-Ashtiani et al. (2014) proposed a zonation methodology as a 67 

practical approach to reduce the dimensionality of the optimization problem and therefore the  68 
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required training data for building the surrogate models. It is also worth noting that pumping 69 

optimization problems of coastal aquifers usually involve non-linear constraints (Mantoglou et 70 

al. 2004). The presence of non-linear constraints further complicates the development of SBO 71 

methods (Forrester et al. 2008). 72 

Nevertheless, many engineering optimization studies have focused on approximating the 73 

global optimum based on a specified number of runs with the original expensive computer 74 

model. There is a wide body of SBO literature which develops adaptive sampling strategies 75 

that effectively utilize the expensive original model runs, to update the surrogate and increase 76 

its accuracy within regions of interest (e.g. Jones 1998; Mugunthan et al. 2005; Regis & 77 

Shoemaker 2007; Forrester & Keane 2009; Parr et al. 2012; Regis & Shoemaker 2013; Regis 78 

2014; Tsoukalas et al. 2016). However, the application of comprehensive SBO strategies which 79 

exploit information from the surrogate models in order to sample the expensive original model 80 

is rather limited in groundwater modelling and optimization (Asher et al. 2015). Furthermore, 81 

it is debatable if there is a benefit from the use of surrogate models in optimization problems 82 

with increased dimensionality and under limited computational budgets (Razavi et al. 2012a). 83 

In the present paper, we address the effectiveness of surrogate modelling in pumping 84 

optimization of coastal aquifers, given a limited number of available runs with the expensive 85 

SWI model. Two SBO frameworks are employed in order to solve single-objective pumping 86 

optimization problems. The first SBO algorithm utilizes a metamodel-embedded evolution 87 

framework which constructs radial basis function (RBF) surrogate models for the constraints 88 

functions only. RBF surrogate models have been successfully applied in several SBO 89 

optimization problems (Razavi et al. 2012b). The other is an advanced SBO algorithm, namely, 90 

ConstrLMSRBF (Regis, 2011), which simultaneously deals with the objective function and the 91 

constraints of the optimization problem, by constructing RBF surrogate models for each one 92 

of them. ConstrLMSRBF algorithm is applied for the first time in water resources optimization 93 

and for problems of pumping optimization of coastal aquifers. The goal of this study is to 94 

investigate the performance of these SBO algorithms on different dimensionalities of the 95 

decision variable space while imposing strong restrictions on the number of available runs with 96 

the VDST model. The latter assumption is closer to real-world cases where coastal aquifer 97 

management problems involve computationally heavy numerical models of SWI. The SBO 98 

algorithms are compared against direct optimization with the VDST model in order to evaluate 99 

the usefulness of constructing surrogate models in the case of limited computational budgets.   100 

The rest of the paper includes 4 sections. Section 2 presents the SWI numerical simulation 101 

model, the coastal aquifer model and the formulation of the pumping optimization problem. In 102 
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section 3 the surrogate models along with their implementation in SBO strategies are described. 103 

Section 4 presents the optimization results and finally section 5 concludes on the findings of 104 

the present study.   105 

 106 

METHODS  107 

 108 

SWI modelling  109 

 110 

VDST models utilize numerical codes which solve a coupled system of partial differential 111 

equations of flow and transport in order to simulate SWI (Voss & Souza 1987). It is considered 112 

a complicated and computationally expensive numerical task mostly due to the spatial and time 113 

discretization requirements of the solute transport step (Werner et al. 2013). In the present 114 

paper, the HydroGeoSphere code (HGS) (Therrien & Sudicky 1996; Graf & Therrien 2005; 115 

Therrien et al. 2006) was used to simulate SWI. The HGS code applies the control volume 116 

finite element method with adaptive time-stepping while a Picard iteration scheme is utilized 117 

to iteratively solve the system of flow and transport equations for VDST simulations 118 

(Thompson et al. 2007). The mathematical formulation of VDST modelling is briefly described 119 

below whereas comprehensive presentations can be found elsewhere (e.g. Kolditz et al. 1998). 120 
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 126 

In the flow equation (1) the equivalent freshwater head hf  L  is the flow variable given by 127 

 f fh p g z  , where p 1 2ML T     is the fluid pressure, f
3ML   is the reference fluid 128 

density, g 2ML   is the gravity acceleration constant and z  L is the elevation above 129 

horizontal datum. The indices ,i j  represent the unit vectors in x and y directions respectively, 130 

while jn  represents the direction of flow and it equals 1 in the vertical direction and 0 for the 131 
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horizontal directions. In transport equation (2) the dimensionless relative concentration c    132 

is the transport variable which varies between 0 and 1. It is linearly related to fluid density 133 

3ML    through    maxf f f f c   
 

      , under the assumption that the solute 134 

concentration of a fluid is max 1c   when max  . The term  f f    represents the 135 

dimensionless relative density r . 
ijK 1LT    are the coefficients of freshwater hydraulic 136 

conductivity tensor,
ijD  2 1L T    are the coefficients of the dispersion tensor,   is porosity, 137 

t  T  is time, Q

3 3 1L L T     is a volumetric fluid source/sink term per unit aquifer volume, cQ138 

3 1ML T     is a solute mass source/sink term and sS 1L   is the specific storage. The Darcy 139 

flux term iq is expressed for freshwater properties as: 140 

 141 
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 143 

Coastal aquifer application model  144 

 145 

The numerical SWI simulations are based on a coastal aquifer model of rectangular shape 146 

(figure 1) which is an approximation of a real aquifer at the Greek Island of Kalymnos 147 

(Mantoglou et al. 2004). 148 

 149 

    150 

 151 

 152 

 153 

 154 
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 155 

[FIGURE 1] 156 

 157 

The horizontal dimensions of the coastal aquifer model are 7000x m , 3000y m  and the 158 

aquifer base is at 25z m   below sea-level. On the west side of the aquifer model a hydrostatic 159 

specified head boundary condition is applied along with a specified salinity concentration of 160 

335Kg m for a saltwater density of approximately 31025Kg m . The aquifer is replenished by 161 

both recharge and inland fluxes. The two lateral boundaries are no-flow boundaries while fully 162 

penetrating pumping wells extract groundwater from the coastal aquifer. A homogeneous and 163 

anisotropic coastal aquifer is assumed where the values of hydraulic conductivity are 164 

100x yK K m day  and 10zK m day . The longitudinal dispersivity value was set to 100m  165 

and the transverse dispersivity value to10m . In the absence of field data and due to the 166 

exploratory features of this study, relatively large dispersivity values were selected to facilitate 167 

the setup of a faster VDST model since spatial discretization is related to dispersivity values 168 

(Werner et al. 2013). Note that for all the optimization problems described in the following 169 

sections, multiple independent optimization runs are performed in order to produce a statistical 170 

output due to the stochastic nature of the algorithms. In that sense, a relatively fast VDST model 171 

is required to realize such a demanding computational task for generic comparison purposes. 172 

A single run of the VDST model required an approximate CPU time of 30 seconds, running on 173 

a 2.53 GHz Intel i5 processor with 6 GB of RAM in a 64-bit Windows 7 system.  174 

 175 
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 176 

Formulation of the pumping optimization problem 177 

 178 

The pumping optimization problem of the present work lies in the category of non-linear 179 

constrained optimization problems described as follows: 180 

 181 
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 183 

where , if g represent the objective function and inequality constraint functions respectively. 184 

The vector ξ  takes values in the N dimensional continuous space , Nl u R . A real vector 185 

*
ξ is sought so that    * minf fξ ξ , subject to the constraints defined in equation (4). It is 186 

assumed that the derivatives of ,f g  are not available while the bound constraints define the 187 

search space of the optimization problem. The corresponding single-objective pumping 188 

optimization problem can be mathematically described as (Mantoglou 2003; Mantoglou et al. 189 

2004): 190 
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 193 

where iQ is the individual pumping rate of each pumping well and maxc

ix is the horizontal 194 

distance of the iso-salinity maxc from the coast, as a function of pumping rates from each 195 

pumping well. The variable ixw  refers to the pumping well location, while minQ  and maxQ196 

define the lower and upper limits which pumping rates can take. The goal is to maximize (the 197 

reason for the negative sign in the objective function) the total groundwater extraction, subject 198 

to constraints which maintain the salinity levels in pumped groundwater at the specified limit 199 

of max 35c mg lt . Figure 2 illustrates a plan view of the simulated iso-salinity contours at the 200 

aquifer base, for a feasible vector Q of pumping rates. 201 

 202 
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 203 

 204 

[FIGURE 2] 205 

 206 

The optimization problem in (5) can be translated to a bound-constrained optimization 207 

problem using penalty terms in the objective function. Thus, the objective function value is 208 

penalized every time that a constraint of the problem is violated. In this study we have applied 209 

the following objective function penalty formulation: 210 

 211 
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 213 

where vM represents the number of pumping wells that the constraint is violated. The above 214 

formulation aims to attribute a separate score for each violated constraint while it involves the 215 

magnitude of violation through the squared difference between maxc

ix and ixw . The penalized 216 

objective function is also multiplied by vM  to incorporate the number of constraint violations 217 

for a non-feasible vector Q . The pumping optimization problem defined above can be directly 218 

solved using the VDST model combined with a proper optimization algorithm. In pumping 219 

optimization of coastal aquifers, evolutionary algorithms tend to perform better than 220 

conventional gradient-based algorithms which might get trapped in local minima (Ketabchi & 221 

Ataie-Ashtiani 2015). However, evolutionary algorithms require a large number of function 222 

evaluations to converge and their performance may vary depending on the application 223 
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(Mantoglou & Papantoniou 2008; Karpouzos & Katsifarakis 2013; Ketabchi & Ataie-Ashtiani, 224 

2015). Therefore, the direct solution of pumping optimization problems using VDST models 225 

and evolutionary algorithms may result in excessive computational burden. 226 

In this study, a heuristic optimization method, namely, the evolutionary annealing-simplex 227 

(EAS) algorithm (Efstratiadis & Koutsoyiannis, 2002), is utilized to solve the penalized 228 

formulation of the optimization problem defined in (6). EAS algorithm employs the concepts 229 

of evolutionary search, the downhill simplex scheme and simulated annealing (Rozos et al. 230 

2004). It has shown a robust performance for various pumping optimization problems of 231 

coastal aquifers (Kourakos & Mantoglou, 2009, Christelis & Mantoglou 2016a, Christelis & 232 

Mantoglou 2016b). Thereinafter, the direct optimization approach with the SWI model will be 233 

referred as VDST-EAS.  234 

 235 

The surrogate model 236 

 237 

The VDST-EAS approach may considerably increase the required computational effort to get 238 

an optimal solution. In some cases, the VDST simulations can be very expensive so that only 239 

a small number of them can be utilized to estimate a feasible solution in reasonable 240 

computational times (e.g. Christelis & Mantoglou 2016b). In this section, surrogate models are 241 

proposed as an alternative method for attaining an improved optimal solution based on a 242 

specified number of runs with the VDST model. 243 

In the pumping optimization problem described in (5), the objective function is just a linear 244 

function of the decision variables 1 2, ,...., MQ Q Q  which are the pumping rates, while the 245 

constraint functions are computationally expensive to evaluate. There are a variety of surrogate 246 

modelling techniques that can be used to approximate the constraints, including Kriging, RBF 247 

and Support Vector Machines (SVM). This paper employs a cubic RBF model augmented with 248 

a linear polynomial tail, in order to build a surrogate model for each of the M  inequality 249 

constraint functions  max

1 2, ,..., , 1,...,c

i M ix Q Q Q xw i M  . This type of surrogate was chosen 250 

because of its prior success when used with some SBO algorithms for constrained black-box 251 

optimization (e.g. Regis 2011; Regis 2014). 252 

For convenience, denote the decision vector of pumping rates by 1 2( , ,...., )MQ Q Q Q  and 253 

the objective function by  
1

M

i

i

f Q Q


  , and rewrite each inequality constraint function in 254 

the form ( ) 0ig Q  , where    maxc

i i ig Q x Q xw  . Now, given the vectors 255 
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     1 2
, ,...,

m MQ Q Q R (which are simply referred to as points) where the constraint functions 256 

have been evaluated (i.e. so that the values         1 2
, ,...

m

i i ig Q g Q g Q are known for all 257 

1,...,i M ), this paper uses an RBF model of the form (Powell, 1992): 258 

 259 

       
1

| |
m

k

m k

k

S Q Q Q p Q


           (7) 260 

 261 

for each of the M  inequality constraints. Here,   3r r  (the cubic form), 1,..., m R  are 262 

coefficients to be determined, and  p Q is a linear polynomial whose coefficients also need to 263 

be determined. Training the above RBF surrogate model for a constraint function means 264 

obtaining suitable values for the coefficients of the RBF part and the polynomial part so that 265 

the error between the constraint function and the RBF model at the training points 266 

     1 2
, ,...,

m
Q Q Q , is minimized. For the particular RBF model and training method used in this 267 

paper, the training error will always be zero, which means that the resulting RBF model passes 268 

through all the data points, that is, the surrogate model is an exact emulator. To obtain the 269 

coefficients in the above cubic RBF model for the ith constraint function ig , define the matrix 270 

M xMR  where
    ,

| |
k l

k l
Q Q   ) and the matrix 

 1mx M
P R


  whose ith  row is271 

  1,
T

i
Q 

  
. Moreover, define the vector 

        1 2
, ,...

T
m

i i i iG g Q g Q g Q 
 

. Now, the 272 

vector of coefficients  1,...,
T

m   for the RBF part and the coefficients   0 1, ,...
T

Mc c c c  273 

for the polynomial part are obtained by solving the following system of linear equations: 274 

 275 

0 0
i

T

GP
cP

    
   
   


          (8) 276 

 277 

Under some simple conditions on the training points, namely that the matrix P  has full column 278 

rank, the interpolation matrix in the above system is guaranteed to be invertible (Powell 1992). 279 

Since the above system can be solved quickly and efficiently, even when M is large, the training 280 

time for the cubic RBF model is negligible in comparison to the simulation time needed to 281 

generate the constraint function values. In all, the computational benefits from the negligible 282 
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training time of cubic RBF models and their exact interpolation characteristics appear attractive 283 

for deterministic pumping optimization problems of large dimensionalities. 284 

 285 

SBO optimization using a prediction-based infill strategy 286 

  287 

Adaptive SBO methods have successfully applied in problems of pumping optimization of 288 

coastal aquifers. Those approaches managed to reduce the number of input-output patterns 289 

required from the surrogate model to provide reasonable approximations of the VDST model 290 

during optimization (Sreekanth & Datta 2015). Recently, Christelis and Mantoglou (2016a) 291 

applied cubic RBF surrogate models for a pumping optimization problem of coastal aquifers, 292 

which involved ten pumping wells and ten corresponding constraint functions for each 293 

pumping well. In their work, an online training scheme of the RBF models was embedded 294 

within the EAS algorithm. Their approach was to add infill points to the initial sampling plan 295 

by using the current best solutions found by the RBF model during the optimization operations. 296 

This infill strategy favours a fast improvement of the RBF model at the region of the current 297 

optimum (local exploitation). However, it neglects the global improvement of the surrogate 298 

model and might fail to identify the region of the global optimum (Forrester et al. 2008). In 299 

that study, the above approach reduced by 96% the corresponding computational time with the 300 

VDST-EAS approach while it successfully located the region of the global optimum. We apply 301 

the same method here, in order to test its performance as a basic SBO strategy and evaluate its 302 

performance for problems of larger dimensions and under limited computational budgets. The 303 

steps of the method, denoted hereinafter as RBF-EAS, are briefly presented below since the 304 

details have been presented in Christelis & Mantoglou (2016a): 305 

1. Use a Latin Hypercube Sampling method to produce the initial population for the EAS 306 

algorithm and evaluate the VDST model at these points. 307 

2. Store the initial sampling plan of the evaluation points      1 2
, ,...,

m
Q Q Q , along with the 308 

responses of the VDST model for the constraint functions   , 1,...,ig Q i M  and train 309 

the RBF surrogate models. 310 

3. Run EAS algorithm based on the RBF models and if a new optimum is found, use the 311 

VDST model to evaluate the current best solutionQ . Add the new input-output data to 312 

the initial sampling plan, and re-train the RBF models. 313 

4. Is the computational budget exhausted? If yes, return final solution, else go to step 3. 314 
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The ConstrLMSRBF algorithm 315 

 316 

The ConstrLMSRBF algorithm (Regis 2011) is an SBO algorithm for constrained black-box 317 

optimization that uses the RBF interpolation model described previously, to approximate the 318 

black-box objective and inequality constraint functions. In the case of the pumping 319 

optimization problem in (5), only the constraint functions are computationally expensive to 320 

evaluate. However, in the standard implementation of ConstrLMSRBF, the algorithm also 321 

maintains an RBF surrogate model for the objective function. In this case though, since the 322 

objective function is linear in the decision variables (the pumping rates), one can 323 

mathematically prove that the resulting surrogate will also be linear and will be identical to the 324 

objective function, provided there are at least 1M   training points. 325 

ConstrLMSRBF begins by evaluating the objective and constraint functions at a feasible 326 

starting point and at the points of a space-filling design, specifically a Latin hypercube design 327 

(LHD) with 2 1M  points, over the region defined by the bound constraints of the problem 328 

 min max,Q Q . Together, the feasible starting point and the LHD points constitute the initial 329 

training points. The space-filling design points possibly include infeasible points, and for the 330 

version of ConstrLMSRBF used in this paper, the first initial point must be feasible. The 331 

requirement of having a feasible point is not unreasonable since in many applications a feasible 332 

solution is often available or easy to obtain, as is the case for the above pumping optimization 333 

problem, and the practitioner is simply looking to improve this feasible solution. However, an 334 

extension of ConstrLMSRBF in Regis (2014) allows all initial points to be infeasible. 335 

After evaluating the objective and inequality constraint functions at the initial points, RBF 336 

models are fit for the objective and constraint functions using all available data points. Then 337 

the algorithm goes through a loop that involves generating a large number of random candidate 338 

points obtained by perturbing some (or all) of the coordinates of the current best feasible point 339 

using Gaussian distributions with zero mean and with standard deviations that are allowed to 340 

vary adaptively depending on performance, to facilitate either local search or global search. 341 

When generating a candidate point, the choice of which coordinates of the current best point 342 

are perturbed is random, and is controlled by a parameter
select

p  which is the probability that a 343 

given coordinate is perturbed. In the numerical experiments, 
select

p  equals 0.5 or 1. Next, the 344 

algorithm gathers the candidate points that are predicted to be feasible or that have the 345 

minimum number of predicted constraint violations. These points will be referred to as the 346 

valid candidate points. The next point where the simulation will be run (or where objective and 347 
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constraint functions will be evaluated) is chosen to be the best point among all the valid 348 

candidate points according to two criteria: predicted objective function value of the candidate 349 

point according to the RBF model of the objective, and its minimum distance from previously 350 

evaluated points. More precisely, for each valid candidate point Q , the algorithm calculates a 351 

score for the RBF criterion,  RBFV Q , and a score for the distance criterion, ( )DISTV Q . These 352 

scores vary from 0 to 1, with the preferred candidate points having scores closer to zero. Then, 353 

the next point where the simulation will take place is the valid candidate point Q  that 354 

minimizes the value of: 355 

 356 

     RBF RBF DIST DISTV Q w V Q w V Q         (9) 357 

 358 

where RBFw  and DISTw  are the weights for the two criteria and they satisfy 1RBF DISTw w  . In 359 

the numerical experiments, these weights were fixed to 0.95RBFw   and 0.05DISTw   to put 360 

more emphasis on the RBF criterion.  361 

Once the VDST simulation has taken place at the selected valid candidate point, the 362 

algorithm re-trains the RBF surrogate model with the new data point. Then it goes back to 363 

generating a new set of random candidate points and continues in the same manner as before 364 

until the computational budget is exhausted (e.g. the maximum number of VDST simulations 365 

has been reached). More details on ConstrLMSRBF can be found in Regis (2011). 366 

 367 

Problem settings 368 

 369 

Four pumping optimization problems of different dimensionality were solved to test the 370 

performance of the algorithms described above. That is, 10M  , 20M  , 30M   and371 

40M  . For each increase in the number of pumping wells the total recharge of the coastal 372 

aquifer model was also modified accordingly. This facilitated the comparison on the 373 

performance of the algorithms by moving the region of the global optimum in a different 374 

location. Therefore, for 10M  the total recharge was set to 35409.86m day , for 20M   the 375 

total recharge was set to 36159.8m day , for 30M   the total recharge was set to 376 

36909.8m day  and for 40M   the total recharge was set to 37659.8m day . For each 377 

optimization problem (due to the different total recharge rates) an initial VDST model run was 378 

performed with no pumping present, until the head and salinity concentration fields reached 379 
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steady-state. These were used as the initial conditions for the subsequent VDST simulations 380 

during the optimization task. 381 

Each optimization problem was solved based on a specified budget of VDST simulations. 382 

The maximum allowed number of VDST model runs was set to 100 M . Since the 383 

optimization methods of this study are based on stochastic operators, a set of 30 independent 384 

optimization runs is used for each approach in order to perform an adequate statistical 385 

comparison. In addition, for each independent optimization run a new initial population is 386 

generated which is applied to all the optimization methods to ensure same starting conditions.  387 

 388 

RESULTS AND DISCUSSION 389 

 390 

Figures 3 and 4 present the performance of the optimization methods based on their best 391 

average feasible objective function value among the 30 independent runs. The problems 392 

considering 10 and 20 pumping wells are considered of moderate dimensionality and are 393 

grouped together. The problems with 30 and 40 pumping wells are considered as of larger 394 

dimensionality and are also grouped together. 395 

 396 

 397 

[FIGURE 3] 398 
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 399 

 400 

 401 

[FIGURE 4] 402 

 403 

Results demonstrate that the SBO methods outperform the direct VDST-EAS optimization for 404 

all test problems. The SBO methods were able to improve the objective function value given 405 

the available number of runs with the VDST model. The more global search capabilities of 406 

ConstrLMSRBF against the predictive-based infill strategy of EAS-RBF algorithm are also 407 

demonstrated, particularly for the higher dimensional problems (figure 4). In both SBO 408 

frameworks, the objective function value exhibits a rapid improvement after the initial 409 

population evaluation comparative to VDST-EAS. However, in problems where 30M  and 410 

40M  , RBF-EAS appears to stall as the computational budget is exhausted. On the other 411 

hand, ConstrLMSRBF displays a continuous improvement of the average objective function 412 

value as the number of VDST runs are increased for all problems. A one-way analysis of 413 

variance (ANOVA) test was also performed on the above samples using the built-in MATLAB 414 

functions anova1 and multcompare (Statistics and Machine Learning Toolbox, 2016b). The 415 

results are shown in the following table.   416 

 417 
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[TABLE 1] 418 

Optimization frameworks p-value 

  M=10 M=20 M=30 M=40 

VDST-EAS RBF-EAS 3.365-07 1.053-09 4.088-08 6.424-08 

VDST-EAS ConstrLMSRBF 5.158-07 2.812-09 9.561-10 9.560-10 

RBF-EAS ConstrLMSRBF 0.994 0.798 0.0021 9.569-10 

 419 

It is demonstrated that the p-values between VDST-EAS and the two SBO strategies are close 420 

to zero for all optimization problems which confirms that the difference in their sample mean 421 

values is statistically significant. Furthermore, the comparison between RBF-EAS and 422 

ConstrLMSRBF shows that the sample means of the two methods for the 30 and the 40 decision 423 

variable problems are also significantly different.  424 

 425 

CONCLUSIONS 426 

 427 

A single-objective pumping optimization problem of coastal aquifer was solved using both 428 

direct and surrogate-based optimization methods. The direct optimization (VDST-EAS) 429 

involved the combination of a variable density and salt transport numerical model with an 430 

evolutionary algorithm. The two SBO methods were applied by utilizing the same surrogate 431 

models, namely, cubic RBF models. However, they were based on different update strategies 432 

for the surrogate model. The first (RBF-EAS) employed a classic prediction-based infill 433 

strategy (local exploitation) embedded in the same evolutionary algorithm with the direct 434 

optimization framework. The second (ConstrLMSRBF) was based on a comprehensive infill 435 

strategy which aims at both local exploitation and global exploration of the decision variable 436 

space. 437 

To the best of our knowledge, this is the first time in coastal aquifer management that 438 

optimization problems of moderate and large dimensionalities are employed and compared for 439 

both direct and SBO methods. It is also the first time that a comprehensive generic SBO method 440 

(ConstrLMSRBF algorithm) is tested for single-objective pumping optimization problems of 441 

coastal aquifers. Results demonstrated an outperformance of the SBO methods against the 442 

direct optimization for the case of four different optimization problems with increased 443 

dimensionality (from 10 to 40 pumping wells). In particular, ConstrLMSRBF algorithm is 444 

considered a promising SBO method for coastal aquifer management since located the best 445 

solutions under limited computational budgets and demonstrated a robust performance for all 446 

optimization problems. The ANOVA tests confirmed the statistical significance of the 447 
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differences in the sample means between the direct optimization and the SBO methods. 448 

Furthermore, the simple and fast implementation of cubic RBF surrogate models, in both SBO 449 

approaches, facilitated the individual treatment of a large number of constraint functions (up 450 

to 40) in negligible computational cost. 451 

 452 
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