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Abstract. Systemic hypertension is a causative factor in left ventricular hypertrophy (LVH). This study is moti-
vated by the potential to reverse or manage the dysfunction associated with structural remodeling of the myo-
cardium in this pathology. Using diffusion tensor magnetic resonance imaging, we present an analysis of
myocardial fiber and laminar sheet orientation in ex vivo hypertrophic (6 SHR) and normal (5 WKY) rat hearts
using the covariance of the diffusion tensor. First, an atlas of normal cardiac microstructure was formed using the
WKY b0 images. Then, the SHR and WKY b0 hearts were registered to the atlas. The acquired deformation
fields were applied to the SHR and WKY heart tensor fields followed by the preservation of principal direction
(PPD) reorientation strategy. A mean tensor field was then formed from the registered WKY tensor images.
Calculating the covariance of the registered tensor images about this mean for each heart, the hypertrophic
myocardium exhibited significantly increased myocardial fiber derangement (p ¼ 0.017) with a mean dispersion
of 38.7 deg, and an increased dispersion of the laminar sheet normal (p ¼ 0.030) of 54.8 deg compared with
34.8 deg and 51.8 deg, respectively, in the normal hearts. Results demonstrate significantly altered myocardial
fiber and laminar sheet structure in rats with hypertensive LVH.© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Pathological left ventricular hypertrophy (LVH) is a myocardial
condition that can arise from chronic systemic hypertension
and is associated with oxidative stress, ischemia, and heart
failure.1–3 In previous studies, histology of the hypertrophic
myocardium has demonstrated increased derangement of
myocardial fibers.4–6 Reduced systolic and diastolic function
associated with LVH may be a result of this myocardial fiber
derangement and associated pathologies, such as myocardial
fibrosis. Analysis of the myocardial microstructure and micro-
structural changes as a result of hypertension-associated struc-
tural remodeling may contribute to a better understanding of
the biomechanics and electrical behavior of the pathologic
myocardium7 and help guide treatment of LVH.

Traditionally, assessments of myocardial fiber directionality
have been performed histologically using tissue slices. This
technique is destructive, mainly two-dimensional, and sensitive
to errors in slide preparation. Diffusion tensor magnetic reso-
nance imaging (DTMRI, or simply DTI) is an imaging tech-
nique that is sensitive to the anisotropic diffusion of water in
tissue. The sensitivity of DTI to tissue anisotropy allows for
nondestructive elucidation of myocardial tissue structure. The
diffusion tensor, a 3 × 3 symmetric matrix at each voxel in a
three-dimensional (3-D) volume, can be estimated using six or

more diffusion-sensitizing gradient magnetic resonance images
and one unweighted b0 image, and represents the diffusivity of
water at a voxel.8 Microstructural elements of the tissue, such
as myocardial fibers, will inhibit the water diffusion in an
anisotropic manner.4,8 It has been shown in studies7 correlating
DTI and tissue histology that the primary eigenvector of the
diffusion tensor coincides with the myocardial muscle fiber,
while the tertiary eigenvector is aligned with the laminar sheet
normal.9,10 Thus, the directionality of the myocardial fibers and
laminar sheets can be established nondestructively using DTI.

Since in vivo cardiac DTI is difficult due to the sensitivity of
diffusion imaging to cardiac motion and flow artifacts, a model
of the hypertrophic heart is required for ex vivo imaging. Ex vivo
imaging of the healthy human heart is difficult due to the high
demand for viable human hearts for transplantation, presenting
the problem of obtaining an experimental control. The sponta-
neously hypertensive rat (SHR) serves as a model for systemic
hypertension.11 These rats invariably develop LVH in response
to chronic hypertension.11 We present a voxel-wise comparative
analysis of the myocardium in these rats to their normotensive
controls, Wistar Kyoto (WKY) rats.6 This atlas-based approach,
which has been employed previously in cardiac MRI,12,13 avoids
the reproducibility issues involved with a comparative analysis
using parameters derived from manually drawn regions of
interest (ROI).
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A recent in vivo DTI study of asymmetric hypertrophic
cardiomyopathy in human hearts demonstrated that myocardial
fibers retained a generally systolic orientation in both systole
and diastole.14 The SNR limitations of in vivo imaging are dem-
onstrated by the 8 mm out-of-plane resolution employed in
this study. Our analysis does not seek to quantify these cardiac
cycle-dependent changes in fiber orientation; absolute changes
in fiber arrangement represent a separate facet of pathophysiol-
ogy in global hypertensive hypertrophy.6 Indeed, analysis of
hypertrophic myocardium in rats has demonstrated increased
disorder of myocardial laminar sheets and remodeling of the
extracellular matrix.15

2 Materials and Methods
All in vivo animal procedures prior to ex vivo imaging in this
study were approved by the Institutional Animal Care and Use
Committees (IACUC) of both UCSF and Lawrence Berkeley
National Laboratory.

2.1 Imaging Protocol

Diffusion tensor images from the hearts of five WKY rats and
six SHR rats were collected with most approximately 2 years of
age, from 2009 to 2010. These animals were obtained from
an unrelated longitudinal study of perfusion, and fatty acid and
glucose metabolism dysfunction using PET/CT.16 The hearts of
all SHRs exhibited LVH, confirmed by in vivo myocardial
positron emission tomography studies.16 In a second 2-year
study from 2011 to 2012, it was again confirmed that the
SHR model exhibits abnormal perfusion and metabolism.17

Anesthetic overdose of isoflurane was used after which the
heart was removed and the chambers flushed with saline solu-
tion delivered through the arterial valves. This was directly fol-
lowed by fixation and storage in formaldehyde solution prior to
the ex vivo imaging. The mean time between imaging and fix-
ation was 20� 16 days for the WKY rats (range 6 to 47 days)
and 33� 19 days for the SHR rats (range 10 to 65 days). The
formalin fixation process was performed immediately after the
death of the study animals. The time from death to the start of
the fixation was less than 1 min. Previous studies have noted that
cardiac DTI parameters remain stable for a period of up to
3 days between death and formalin fixation.18,19 The ratios of
heart/body masses were also obtained in order to confirm the
presence of LVH.

Diffusion tensor imaging was performed on a Bruker
BioSpec 7T small-animal scanner at the University of Utah for
17 hours using a 12 gradient orientation 3-D spin-echo sequence
with a TR/TE of 500∕19.224 ms, and a nominal b-value of
1000 s∕mm2 to achieve 60% signal attenuation for each data
set. Gradient separation was 10 ms, gradient duration was
4 ms, and the maximum strength of the gradient pulse was
30 G∕cm with a slew rate of 1.2 × 105 G∕cm∕s. Image matrix
size varied from 160 × 96 × 96 to 169 × 97 × 97 with constant
voxel dimensions of 0.156 × 0.156 × 0.156 mm3. Following
data acquisition, diffusion tensor estimation was performed
on the resultant diffusion-weighted imaging data sets using
the nonlinear least-squares fitting algorithm.20

2.2 Image Registration

In order to compare the microstructural differences voxel-by-
voxel between the hypertrophic and control hearts, a standard
normotensive heart atlas was created as a reference. We chose

to construct an atlas using group-wise registration of the b0 ana-
tomical WKY heart image data, to which every b0 and tensor
data set from both SHR and WKY hearts would be registered.
First, the b0 (unweighted) anatomical image and diffusion
tensor data sets for each heart were zero-padded to an image
matrix of 169 × 97 × 97 and isotropic voxel dimensions of
0.156 × 0.156 × 0.156 mm3 using MATLAB. The b0 images
were then masked using a threshold method with an erosion
operator applied to remove endocardial and epicardial signal.

For each WKY heart, the b0 anatomical MRI image data
were converted to an 8-bit grayscale image in the analyze format
using a custom MATLAB implementation. Then a landmark-
based rigid registration was performed in the DiffeoMap soft-
ware package21 with the apex of the heart and papillary muscles
used as landmarks. The resultant data were used as an input to
GLIRT22 (software package from University of North Carolina-
Chapel Hill), which used an iterative diffeomorphic demons
transformation algorithm23 to produce a group mean image.

GLIRT first computed a working group average from the
rigidly aligned anatomical WKY hearts. This working average
was used as the template to compute the first diffeomorphic
transform of the hearts. A second working average was then
taken of the transformed hearts, and was used as the template
image for a second diffeomorphic transform (see Fig. 1). This
process was iterated until the group average converged, which
required 10 iterations. The Jaccard similarity24 between the
thresholded 9th and 10th iterations was calculated to be 1, and
convergence verified by visual inspection.

The resulting final group mean of anatomical WKY b0
images was then used as the reference image to which the
anatomical SHR and WKY heart b0 images were coregistered.
Automatic registration was performed using the DiffeoMap and
DTIstudio software packages from Johns Hopkins University.21

After manual histogram intensity matching was performed on
each anatomical image, the automatic large deformation diffeo-
morphic metric mapping (LDDMM) function of DiffeoMap was
used to compute the final registration.21 This registration process
produced deformation fields that were used to transform the dif-
fusion tensor data of each SHR and WKY heart by adding the
deformations to the unregistered but aligned tensor images.
Then, a tensor reorientation was performed using the preserva-
tion of principal direction (PPD) strategy.25 The tensor field of
the myocardium was segmented using a global threshold. The
registered diffusion tensor data for the group of normal WKY rat
hearts were used to compute, as described in the next section,
an average tensor atlas.

The quality of the overall registration was evaluated using
the Jaccard similarity coefficient24 calculated by dividing the
size (number of voxels) of the intersection of two sample
sets by the size of their union. (The coefficient varies between
0 for two sets that do not intersect at all and 1 for sets that are
identical.) This was obtained for each sampled heart using
MATLAB. The registered tensor field was compared with the
group mean (average tensor atlas) to assess the quality of
registration.26 The average Jaccard similarity coefficient was
0.71 for WKY hearts and 0.69 for SHR hearts. No statistically
significant difference in Jaccard similarity coefficients was
observed.

Since the registered tensor data now shared spatial and ana-
tomical coordinates, a voxel-wise comparison could be drawn
between the hypertrophic rat hearts (SHR hearts) and the nor-
motensive WKY hearts.
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2.3 Log-Euclidean Tensor Averaging

Following registration of the tensor images, an average WKY
tensor image was computed for the tensor atlas using the regis-
tered WKY tensor image data. Due to the non-Euclidean nature
of the diffusion tensor space, Euclidean element-wise averaging
of the tensor at each voxel produces inaccurate results,27 which
can lead to misleadingly inflated diffusivity. Tensor averaging
was implemented in MATLAB following the log-Euclidean
framework,27 which is a computationally efficient system that
avoids these problems of tensor swelling and asymmetry.

Since the diffusion tensor is by definition symmetric posi-
tive-definite, its matrix logarithm can be computed by diagonal-
izing the tensor

EQ-TARGET;temp:intralink-;e001;63;191D ¼ RTSR; (1)

where D, the diffusion tensor, is decomposed into the rotation
matrix R and the matrix S containing the tensor eigenvalues
along the diagonal. S 0 is then computed by taking the natural
logarithm of each of the eigenvalues

EQ-TARGET;temp:intralink-;e002;63;115S 0
ii ¼ logðSiiÞ; (2)

for i ¼ 1; 2; 3. The matrix logarithm at a given voxel x is then

EQ-TARGET;temp:intralink-;e003;326;341 log½DðxÞ� ¼ RTS 0R: (3)

The mean tensor can then be calculated by averaging the tensor
logarithms for each voxel x across N tensor images and taking
the matrix exponent27

EQ-TARGET;temp:intralink-;e004;326;285D̄logðxÞ ¼ exp

�
1

N

XN
n¼1

log½DnðxÞ�
�
: (4)

This computation was performed for each voxel across a
160 × 96 × 96 image matrix using all the WKY tensor data
after image registration. The result of this was the WKY heart
tensor atlas that served as the basis for the tensor dispersion
comparison.

2.4 Myocardial Dispersion Measures

The covariance matrix between each tensor and the average
tensor was then computed voxel-by-voxel for the same voxels
in the atlas volume, again using our custom-written MATLAB
implementation. Compared to scalar DTI measures, such as the
fractional anisotropy (FA), the covariance method describes the
variability in orientation of the tensor about some reference
rather than the simple magnitude of the anisotropy. This infor-
mation allows differences in myocardial fiber directionality to

Fig. 1 Iterative diffeomorphic registration performed by GLIRT. Workflow of the process used to produce
the deformation fields is shown on the left as a schematic and on the right as a block diagram. The initial
unregistered hearts are the hearts aligned using the landmarked rigid registration.
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be comparatively analyzed, potentially providing greater insight
than can be obtained from the orientation-invariant intravoxel
information provided by FA. The covariance Σ for n ¼
1; : : : ; N tensor images with mean tensor D̄log is given by the
following equations:10

EQ-TARGET;temp:intralink-;e005;63;697ΔDnðxÞ ¼ log½DnðxÞ� − log½D̄logðxÞ�; (5)

EQ-TARGET;temp:intralink-;e006;63;664vecðDÞ ¼
�
D11;

ffiffiffi
2

p
D21;D22;

ffiffiffi
2

p
D31;

ffiffiffi
2

p
D32;D33

�
T

; (6)

EQ-TARGET;temp:intralink-;e007;63;623ΣðxÞ ¼ 1

N − 1

XN
n¼1

vec½ΔDnðxÞ�vec½ΔDnðxÞ�T: (7)

At a given voxel, the components of the 6 × 6 covariance
matrix in Eq. (7), in the directions of the planes normal to
the three eigenvectors of the mean tensor, correspond to the dis-
persions of the three equivalent eigenvectors of the sample ten-
sor D. Thus, the orthonormal basis of the mean diffusion tensor
is computed [Eqs. (8)–(10)], with the motivation of projecting
the covariance matrix onto the appropriate directions to compute
the eigenvector variability

EQ-TARGET;temp:intralink-;e008;63;490W23 ¼
1ffiffiffi
2

p ðν3νT2 þ ν2ν
T
3 Þ; (8)

EQ-TARGET;temp:intralink-;e009;63;446W13 ¼
1ffiffiffi
2

p ðν3νT1 þ ν3ν
T
1 Þ; (9)

EQ-TARGET;temp:intralink-;e010;63;406W12 ¼
1ffiffiffi
2

p ðν2νT1 þ ν1ν
T
2 Þ; (10)

where νi, i ¼ 1; 2; 3 are the three eigenvectors of the mean
tensor D̄log.

The three planes defined by sets of these orthonormal vectors
Wij correspond to the three planes normal to the eigenvectors of
the average tensor. By computing the components of the covari-
ance matrix in these planes, the variability of the tensor eigen-
vectors about the average eigenvectors can be calculated by10

EQ-TARGET;temp:intralink-;e011;63;290Eðε223Þ ¼
1

2ðλ2 − λ3Þ2
½vecðW23ÞT · Σ · vecðW23Þ�; (11)

EQ-TARGET;temp:intralink-;e012;63;245Eðε213Þ ¼
1

2ðλ1 − λ3Þ2
½vecðW13ÞT · Σ · vecðW13Þ�; (12)

EQ-TARGET;temp:intralink-;e013;63;205Eðε212Þ ¼
1

2ðλ1 − λ2Þ2
½vecðW12ÞT · Σ · vecðW12Þ�; (13)

where λi ¼ logðdiÞ and di, i ¼ 1; 2; 3 are the eigenvalues of the
mean tensor D̄log.

Equation (11) describes the variation around the mean
tertiary eigenvector corresponding to the mean laminar sheet
normal.10 This provides a measure of the dispersion of the lam-
inar sheet. Equations (12) and (13) describe the variation around
the mean secondary and mean tertiary eigenvectors in planes
containing the primary eigenvector. This provides measures
of the dispersion of the fiber orientation about these average

eigenvectors. The variable εij represents the tangent of the
angles of the eigenvectors νj about the corresponding mean
eigenvector νi. By taking the inverse tangent, the angular vari-
ability of the sampled tensor eigenvectors about the mean can be
obtained. One can imagine this as a set of cones of uncertainty
surrounding each of the mean eigenvectors. This method was
implemented to obtain fiber and laminar sheet dispersion mea-
sures for each heart in the WKY and SHR populations.

2.5 Statistical Analysis

The SNR was measured in b0 images as the quotient of the mean
signal intensity of the myocardium divided by the standard
deviation of the largest possible ROI placed in the image back-
ground. All estimated values were expressed as mean� SD.
p-values were calculated using a Wilcoxon rank-sum test
because the sample size was small and we could not assume
the data to be normally distributed. Any p-value <0.05 was
considered statistically significant.

3 Results
The dispersion of the myocardial fibers was evaluated using
Eq. (12) to provide structural information about the variability
of the myocardial fiber orientation in the remodeled hypertro-
phic myocardium. An example of the spatial distribution of
this variability is shown in Fig. 2 as a mapping of the angular
dispersion.

Visual inspection of these dispersion maps suggests that the
hypertrophic hearts have a higher degree of angular dispersion
than the normotensive hearts. To confirm this, the mean fiber
variability was calculated for each heart. In order to exclude
low-signal edge voxels, each data set was first masked using
the thresholded anatomical group mean image to which an
erosion operator (shown in Fig. 3) was applied.

The mean fiber dispersion was higher in the hypertrophic
hearts than in the normotensive hearts, with some intrapopula-
tion variation (Fig. 4). The average fiber dispersion across all

Fig. 2 Masked myocardial fiber dispersion map. Fiber dispersion val-
ues mapped for selected axial slice through selected (a) WKY and
(b) SHR hearts. Black indicates low dispersion whereas white indi-
cates high dispersion (values in degrees).
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wild-type hearts was 34.8 deg. This was lower than the average
fiber dispersion for the hypertrophic hearts, which had an overall
mean of dispersion of 38.7 deg. The p-value obtained using a
Wilcoxon rank-sum test was 0.017. An overall voxel distribu-
tion of myocardial fiber angles was also plotted for the normal
WKYand hypertrophic hearts in Fig. 5, normalized by dividing
each bin count by the total number of voxels for the correspond-
ing population. The histogram shows an increased proportion of
high-dispersion voxels in the hypertrophic population compared
to the normal type. Global fiber dispersion data for each WKY
and SHR sample are presented in Tables 1 and 2, respectively.
The mean fiber dispersion was also measured over the 17
AHA ROIs,28 defined manually using MATLAB. The average
dispersion over each region of interest is reported in Table 3 for
both WKYand SHR rats. LVH manifests as a symmetric global
hypertrophy29 and correspondingly, increased dispersion mea-
sures are noted over the majority of the 17 ROIs.

This same data analysis was performed to measure the vari-
ability of the laminar sheet [i.e., using the component of the
covariance in Eq. (11) of the variation about the third mean
diffusion tensor eigenvector]. These measures show increased
variability compared to the primary eigenvector (see Fig. 6).
As with the fiber orientation dispersion, the comparative differ-
ence between WKY and SHR populations is mirrored in the
analysis of the laminar sheet angular dispersion, with character-
istic increased dispersion in the hypertrophic population shown

in Fig. 7. The calculated dispersion of the laminar sheet normal
in the wild-type population was 51.6 deg, compared to 54.8 deg
in the hypertrophic population. The p-value obtained using
a Wilcoxon rank-sum test was 0.030. Global laminar sheet
dispersion data for each WKY and SHR sample are presented
in Tables 4 and 5, respectively.

The ratios of the mass of the excised heart/body mass for the
WKY and SHR rat populations are presented in Tables 6 and 7,
respectively, with the ages of the rats at time of euthanasia. The
mean dispersion is also plotted against heart/body mass ratio in
Fig. 8. The WKY samples appear to have lower heart/body mass
ratios than the SHR population; however, the p-value of 0.067

Fig. 3 Group mean images. Grayscale and thresholded group mean
image for selected short axis slice.

Fig. 4 Mean myocardial fiber dispersion for (a) WKY and (b) SHR hearts. Values measured in degrees.
WKY hearts are presented in blue, SHR in red.

5 15 25 35 45 55 65 75 85 95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fiber dispersion (deg)

A
rb

itr
ar

y 
un

its

Global voxel−wise distribution of myocardial fiber dispersion

 

 
WKY
SHR

Fig. 5 Histogram of myocardial fiber dispersion angles. Values pre-
sented for WKY and SHR hearts, measured in degrees.
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obtained using the nonparametric test for equal means for heart/
body mass ratio was not significant for this small sample size.

4 Discussion
A statistically significant difference was observed in the myo-
cardial fiber and laminar sheet dispersion between the normal
wild-type and the hypertrophic population (p < 0.05). The
dispersion measures were obtained using DT images acquired

Table 1 Global fiber dispersion measures for WKY rats.

Sample Global mean dispersion (deg) Standard deviation

WKY1 36.0 20.66

WKY3 35.5 22.62

WKY4 34.8 20.65

WKY6 31.8 19.41

WKY8 36.0 22.07

Table 2 Global fiber dispersion measures for SHR rats.

Sample Global mean dispersion (deg) Standard deviation

SHR1 35.8 19.73

SHR2 39.6 22.03

SHR3 42.4 22.57

SHR4 41.8 24.68

SHR6 36.3 21.29

SHR8 36.7 23.17

Table 3 Regional fiber dispersion measures for WKY and SHR rats.

AHA zone WKY dispersion (deg) SHR dispersion (deg)

1 36.7 41.3

2 29.3 31.6

3 29.7 34.9

4 37.0 38.1

5 36.5 38.4

6 35.0 42.0

7 37.7 38.4

8 31.5 33.8

9 35.7 37.3

10 33.1 32.9

11 37.6 40.3

12 30.6 34.7

13 27.9 30.3

14 29.9 30.6

15 29.8 34.1

16 28.6 35.3

17 25.1 38.0

Fig. 6 Masked laminar sheet dispersion map. Selected axial slice
through selected (a) WKY and (b) SHR hearts are presented. Black
indicates low dispersion, whereas white indicates high dispersion
(values in degrees).
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Fig. 7 Histogram of laminar sheet dispersion angles for WKY and
SHR hearts. Values measured in degrees.
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for 17 h resulting in excellent image quality and excellent values
for the SNR measured in b0 images ranging between 107 and
137 with means of 119. This lengthy imaging time is not
possible for in vivo imaging; however, the approach provides
structural information that through computer simulations one
can extrapolate information about diastolic and systolic phases
of the cardiac cycle. This is the first cardiac DTI paper that uses
a cardiac tensor atlas and the covariance matrix to characterize
cardiac disease by measuring structural variations of fiber and
laminar sheets.

The GLIRT algorithm first produced an atlas from the WKY
scalar b0 images. (These images were first aligned using the
landmark rigid registration to the apex and papillary muscles.)
The atlas was then used to register both WKYand SHR b0 heart
images using LDDMM. This provided deformation fields,
which were then added to the aligned WKYand the SHR tensor

images to provide registered tensor images for each rat type.
These tensor images were then followed by the PPD reorienta-
tion strategy.10 Using the diffusion data from only the WKY
hearts, (4) was used to calculate the average tensor. Then, using
this average tensor, Eqs. (12) and (11) were applied to the reg-
istered WKY tensor images and to the registered SHR tensor
images to calculate the fiber and laminar sheet variability for each
rat. The registration could have also been performed by using the
tensor data to create an atlas for registration.30,31 However, we
chose to apply to tensor images the deformation fields acquired
from the registration of scalar b0 images.10 Even though there
are other possibilities for tensor registration, this approach has
been well tested, and the software21,22 is readily available.

The most prevalent morphological characteristic of LVH
caused by arterial hypertension is the symmetric thickening of
the LV muscle wall accompanied by an increase in mass.32

The addition of sarcomeres also produces an increase in the
size of the myocytes and molecular changes to the surrounding
collagen network. In the nonmyocyte connective network of
the myocardium, these structural changes include an elevated
collagen concentration.33 This collagen remodeling as a result of
hypertensive LVH was observed early on by Weber et al.33

and leads to increased cardiac microstructure disorganization.
This causes the changes in DTI measures that we observed.
Although the exact pathophysiology in these hypertrophic
hearts are still an open question, the gross structural remodeling

Table 6 Ratios of excised heart mass/body mass for WKY rats.

Sample Heart/body mass ratio Age (months)

WKY1 0.00335 7

WKY3 0.00478 18

WKY4 0.00581 7

WKY6 0.0031 23.5

WKY8 0.00342 15.5

Average 0.00409 14.3

SD 0.00104 6.42

Table 4 Global sheet dispersion measures for WKY rats.

Sample Global mean dispersion (deg) Standard deviation

WKY1 52.5 23.89

WKY3 52.3 24.84

WKY4 52.0 23.21

WKY6 49.2 23.59

WKY8 52.4 24.51

Table 5 Global sheet dispersion measures for SHR rats.

Sample Global mean dispersion (deg) Standard deviation

SHR1 53.5 22.71

SHR2 54.9 24.06

SHR3 58.5 23.43

SHR4 57.4 24.34

SHR6 52.6 24.31

SHR8 53.9 24.55

Table 7 Ratios of excised heart mass/body mass for SHR rats.

Sample Heart/body mass ratio Age (months)

SHR1 0.0044 7

SHR2 0.00637 19.25

SHR3 0.00784 17.25

SHR4 0.00627 19

SHR6 0.00483 16.5

SHR8 0.0044 15.5

Average 0.00568 15.71

SD 0.00126 4.12

Fig. 8 Mean fiber dispersion of WKY and SHR rats plotted against
heart/body mass ratio. The heart/body mass ratio is obtained by divid-
ing the mass of the excised heart by the overall body mass of the rat.
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in LVH is a change collectively brought about by molecular,
cellular, and biochemical events.34,35

Traditional scalar measures, such as FA and mean diffusiv-
ities (MD), are used to describe in vivo the degree of anisotropy
in cardiac disease. This is typically used because these measures
do not require the lengthy time necessary for diffusion tensor
imaging. Altered measures of FA and MD along with primary
(D1), secondary (D2), and tertiary (D3) diffusivities were used
to demonstrate a correlation with fibrosis and collagen deposi-
tion in patients with idiopathic dilated cardiomyopathy.36 Other
measures, such as a decrease in circumferential strain, have been
used as a marker of LVH associated with increased interstitial
fibrosis.37–39 T1 mapping40–42 has also been used to characterize
fibrosis in LVH and early gadolinium enhancement43 has also
been suggested as a potential indicator of myocardial damage
in hypertrophic cardiomyopathy.

Tensor measures, however, provide 3-D structure informa-
tion for developing models to study the electromechanical
effects of structural remodeling. The proposed measures in this
paper are well established for describing the orientation of the
motion of water molecules and, hence, the organization of the
fiber and the sheet structure of the myocardium. If fiber-tracking
methods are also applied to diffusion tensor data, this can pro-
vide an excellent visualization and discrete representation of
fiber and sheet structures.44 Fusion of the dispersion measures
obtained in this paper and fiber-tracking results from the
corresponding diffusion tensor data could provide FE computer
models for further study into the spatial localization of the path-
ology and its impact on heart function. These 3-D FE models
that incorporate fiber and laminar sheet orientation variability
from diffusion tensor data can then be used to study how struc-
tural changes reduce myocardial function through computer
simulations.

In previous work, we performed computer simulations6 of
the mechanical effects associated with fiber disarray by making
use of our FE model of the left ventricular wall.45,46 The model
assumed an “ideal distribution” of fiber structure. From this, we
incorporated the fiber disarray by altering the normal fiber ori-
entation distribution through the addition of randomly generated
offsets to the angles used to specify the myofiber orientation.
The amount of randomness of the fiber orientation distribution
was controlled by specifying the range over which random num-
bers were generated. Fiber disarray up to values of 4 deg exhib-
ited no compromise in the systolic parameters. Disarray values
of 10 deg or greater show ever-increasing degradation of systolic
function, lower SVs, and lower EFs. The fiber strain results indi-
cated that the loading on the fibers remains unchanged. The
simulations suggested that the effects of disarray upon systolic
function are pronounced whereas the diastolic function remains
largely unchanged. Fusion of fiber-tracking results and the
dispersion measures obtained in our present study from the
same corresponding diffusion tensor data is a future project
that could provide further insight into the spatial localization
of specific pathology and its impact on heart function and
may be useful in understanding the biomechanical ramifications
of LVH.

5 Limitations
This study is primarily limited by the small sample size and
registration quality and accuracy arising from morphological
differences between the WKY and SHR hearts and differences
in sample handling. We noted an average Jaccard similarity

coefficient of 0.70 with no statistically significant (p ¼ 0.53)
difference between the coefficients for the WKY and SHR im-
aging data. Because of the small sample size we did not use
a third group of WKYs to build the atlas, and then use two
separate WKY and SHR groups to estimate dispersion from
the atlas. The small sample size also did not show significant
differences in heart/body ratios between the SHR and WKY
populations, though in another one of our studies17 we saw
significant differences. Additionally, the average time between
fixation and imaging differed between the WKY and SHR
populations. The effect of long-term storage in formalin on
diffusion parameters and myocardial tissue microstructure is
still not completely understood. It has been demonstrated that
DTI parameters of myocardial tissue remain constant for a
period of at least 7 days postfixation.47 However, a more recent
study of the effects of long-term formalin fixation on myocardial
tissue demonstrated statistically significant differences in FA
and helix angle distribution.48 Previous studies of spinal cord
tissue have found that postfixation diffusion anisotropy and dif-
fusivity remain constant over time for a period of 15 weeks.49,50

Kim et al.50 suggest that storage in formalin does not cause a
significant change in the direction of the principal eigenvector
of the diffusion tensor. Despite these limitations, statistically
significant differences were observed in the myocardial fiber
dispersion measures between the wild-type and hypertrophic
populations, which are consistent with the previous histological
studies.5,15

6 Conclusion
Our results demonstrate significantly altered myocardial fiber
and laminar sheet structure in rats that suffer from hypertensive
LVH. These results correlate with those obtained in human
studies by Ferreira et al.,14 which demonstrated abnormalities
in laminar sheet orientation in hypertrophic myocardium. The
dispersion data obtained can be combined with fiber-tracking
methods to visualize myocardial changes in ventricular hyper-
trophy and understand the biomechanical ramifications of
the remodeling process in the hypertrophic heart.6 The
results make an important development for the strict quanti-
fication of changes in cardiac microstructure among various
populations. Development of a normative myocardial micro-
structure as part of the analysis discussed in this study is
expected to benefit other studies requiring group and longi-
tudinal analyses.
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