

GEOSTANDARDS and GEOANALYTICAL RESEARCH

Mg isotope inter-laboratory comparison of reference materials from earth-surface low-temperature environments

Journal:	Geostandards and Geoanalytical Research
Manuscript ID	GGR-0525.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Shalev, Netta; The Hebrew University of Jerusalem, Institute of Earth Science; The Geological Survey of Israel; ETH Zurich, Earth sciences Farkas, Juraj; Czech University of Life Sciences Prague, Faculty of Environmental Sciences; Czech Geological Survey, Department of Geochemistry; University of Adelaide Faculty of Sciences, Department of Earth Sciences Fietzke, Jan; GEOMAR, Marine Geosystems Novak, Martin; Czech Geological Survey, Department of Geochemistry Schuessler, Jan; GFZ German Research Centre for Geosciences Pogge von Strandmann, Philip ; University College London, and Birkbeck, University of London, London Geochemistry and Isotope Centre (LOGIC); Bristol University, Bristol Isotope Group (BIG) Törber, Philip ; Czech University of Life Sciences Prague, Faculty of Environmental Sciences; Czech Geological Survey, Department of Geochemistry; University of Adelaide Faculty of Sciences, Department of Earth Sciences
Keywords:	Mg isotopes, reference materials, Low-temperature, Earth-surface, Inter- laboratory comparison

SCHOLARONE[™] Manuscripts

2
3
4
4
5
6
-
7
8
0
9 4 6
10
11
17
12
13
14
15
15
16
17
10
18
19
20
21
21
22
23
24
24
25
26
27
27
28
20
29
30
31
27
JZ
33
34
25
30
36
37
20
38
39
40
-U
41
42
43
-J 4 4
44
45
16
40
47
48
10
49
50
51
51
52
53
54
57
55
56
57
57
58
59

1

1 Mg isotope inter-laboratory comparison of reference materials from earth-

2 surface low-temperature environments

3

6

- 4 Netta Shalev (1,2,3), Juraj Farkaš (4,5,6), Jan Fietzke (7), Martin Novák (5), Jan A. Schuessler (8),
- 5 Philip A.E. Pogge von Strandmann (9,10), Philip B. Törber (4,5,6)
- 7 Affiliations:
- 8 (1) Institute of Earth Science, the Hebrew University of Jerusalem, Edmond J. Safra campus, 91904, Jerusalem, Israel
- 9 (2) Geological Survey of Israel, 30 Malkhe Israel Street, 95501, Jerusalem, Israel
- 10 (3) Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, Clausiusstrasse 25, 8092 Zürich,
- 11 Switzerland; netta.shalev@erdw.ethz.ch, Tel: +41 44 633 67 84, Fax: +41 44 632 11 79
- 12 (4) Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech
- 13 Republic; toerber@fzp.czu.cz
- 14 (5) Department of Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic;
- 15 martin.novak@geology.cz
- 16 (6) Department of Earth Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia;
- 17 juraj.farkas@adelaide.edu.au
- 18 (7) GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany; jfietzke@geomar.de
- (8) GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; jan.schuessler@gfz-
 - 20 potsdam.de
 - 21 (9) London Geochemistry and Isotope Centre (LOGIC), University College London, and Birkbeck, University of London,
 - 22 Gower Street, London, WC1E 6BT, UK; p.strandmann@ucl.ac.uk
 - 23 (10) Bristol Isotope Group (BIG), Bristol University, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ.

25 Abstract

26	To enable quality control of measurement procedures for determinations of Mg isotope amount
27	ratios, expressed as $\delta^{26}Mg$ and $\delta^{25}Mg$ values, in earth-surface studies, the $\delta^{26}Mg$ and $\delta^{25}Mg$ values of
28	eight reference materials (RMs) were determined by inter-laboratory comparison between five
29	laboratories and considering published data, if available. These matrix RMs, including river water
30	SLRS-5, spring water SRM 1640a, Dead Sea brine DSW-1, dolomites JDo-1 and CRM 512, limestone
31	CRM 513, soil SRM 2709a and vegetation SRM 1515 apple leaves, are representative for a wide
32	range of earth-surface materials from low-temperature environments. The inter-laboratory
33	variability, 2s (twice the standard deviation), of all eight RMs ranges from 0.05 to 0.17 ‰ in δ^{26} Mg.
34	Thus, it is suggested that all these materials are suitable for validation of $\delta^{26} Mg$ and $\delta^{25} Mg$
35	determinations of earth-surface geochemical studies.
36	Keywords: Mg isotopes, Reference materials, Low-temperature, Earth-surface, Inter-laboratory
37	comparison
38	

39 1. Introduction

Magnesium is a major element of the silicate Earth and vital in biogeochemical cycling. It has three stable isotopes: ²⁴Mg (78.99%), ²⁵Mg (10.00%), and ²⁶Mg (11.01%). Analytical improvements over the past decades have made the differentiation between the Mg isotope amount ratios (expressed as δ^{26} Mg and δ^{25} Mg relative to the international δ -zero standard, DSM3; equation 1; Galy *et al.* 2003, IUPAC, see Brand et al., 2014) of terrestrial materials possible and enable today's rapid increase in the use of Mg isotopes as a powerful tool in investigations of Earth's biogeochemistry (e.g., Young and Galy 2004, Teng 2017). Yet, determinations of δ^{26} Mg and δ^{25} Mg values of natural samples are challenging, due to the significant risk of bias introduced during Mg purification, the large instrumental mass bias and the sensitivity of the sample-standards-bracketing measurements to matrix effects (e.g., Young and Galy 2004, An and Huang 2014, Teng 2017). Hence, processing well-

2		
3		
4		
5		
6		
7		
, 8		
0		
10		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
37		
32		
27		
25		
22		
50 77		
2/		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

50 characterised reference materials (RMs), similar in matrix to the samples, is required to validate the results. While δ^{26} Mg and δ^{25} Mg values of silicate rock RMs are available for high-temperature 51 52 systems (Teng et al. 2015), Mg isotope data of RMs representative of samples with complex matrices 53 from earth-surface low-temperature environments are scarce (Bolou-Bi et al. 2009, Foster et al. 54 2010, An and Huang 2014, Teng 2017). To assess systematic errors and achieve comparability of Mg 55 isotope data between different laboratories concerning earth-surface low-temperature systems, 56 well-characterised matrix RMs need to be established. 57 δ^{26} Mg and δ^{25} Mg values are being used as a biogeochemical tool to study many different processes 58 in low-temperature environments, e.g., in marine environments and marine sediments and rocks 59 (e.g., Ling et al. 2011, Wombacher et al. 2011, Pogge von Strandmann et al. 2014, Higgins and Schrag 60 2015), evaporitic environments (e.g., Geske et al. 2015b, Shalev et al. 2017), soils and vegetation 61 (e.g., Tipper et al. 2010, Opfergelt et al. 2012, Pogge von Strandmann et al. 2012, Ma et al. 2015, 62 Uhlig et al. 2017) and ground water, spring water and rivers (e.g., Tipper et al. 2006b, Pogge von 63 Strandmann et al. 2008, Brenot et al. 2008, Chapela Lara et al. 2017). The most fractionated materials on earth are found in low-temperature environments, with the lowest δ^{26} Mg values found 64 in carbonates (δ^{26} Mg of -5.6 ‰, Wombacher *et al.* 2011) and the highest in weathered residual 65 66 silicates (δ^{26} Mg of +1.8 ‰, Liu *et al.* 2014b) and evaporites (δ^{26} Mg= +1.4 ‰, Permian carnallite, 67 Shalev et al. 2017). However, the only natural earth surface RM which is well-characterised to date is 68 seawater (δ^{26} Mg of -0.83 ±0.09 ‰; 2s; N=90; Foster *et al.* 2010, Ling *et al.* 2011 and references therein). Published δ^{26} Mg and δ^{25} Mg data of earth surface materials from more than two 69 70 laboratories (N >2) are also available for Cal-S limestone (-4.38 ±0.09 ‰, 2s, N=3; Wombacher et al. 71 2006; Bolou-Bi et al. 2009), SCo-1 shale (-0.89 ±0.08 ‰, 2s, N=3), JCp-1 aragonite (-1.96 ±0.05 ‰, 2s, 72 N=4) and JDo-1 dolomite (-2.37 ±0.04 ‰, 2s, N=5; Teng 2017 and references therein). Here, N is 73 used to denote the number of full-procedure replicates, i.e. independent sample dissolution and Mg 74 purification, while n is used to denote the number of repeated measurements of the purified Mg 75 sample solutions by MC-ICP-MS. 2s is twice the standard deviation on N or n values.

2	
3	
4	
5	
6	
0 7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
27	
57	
38	
39	
40	
41	
42	
13	
40	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	

77	In this study, the $\delta^{26} Mg$ and $\delta^{25} Mg$ values of eight RMs (Table 1), representative for their respective
78	earth surface environments, were estimated by inter-laboratory comparison, conducted in five
79	laboratories. The participating laboratories utilised different sample preparation methods, i.e.,
80	different analyte-matrix separation procedures, and MC-ICP-mass spectrometers from various
81	manufacturers with different sample introduction systems (Table 2). This approach is suitable to test
82	the applicability of these different measurement methods with respect to the varying chemical and
83	physical material properties and to identify potential bias originating from differences in sample
84	preparation and instrument setup. Whereas measurement results from a single laboratory might
85	produce very precise δ^{26} Mg and δ^{25} Mg values for any material never analysed before, there is still
86	the potential risk that the data is affected by undetected bias. We suggest that our inter-laboratory
87	comparison study provides a robust and practicable approach to provide the geo-analytical
88	community with fit-for-purpose δ^{26} Mg and δ^{25} Mg values for matrix-RMs with confidence intervals
89	constrained by the currently attainable level of measurement precision. Materials of this study
90	included solids: carbonates, soil and organic material (leaves), and liquids: river water, spring water
91	and brine, thereby represent most of the material types from earth surface low-temperature
92	environments studied to date. Most selected RMs are provided by reference material producers and
93	are widely available to the community. Also, certified mass fractions data are available for most
94	materials studied in this work (Table 1). Based on the results of this study and published values,
95	where available, recommended $\delta^{26} Mg$ and $\delta^{25} Mg$ values are proposed. These can be used as quality
96	control RMs in laboratories analysing earth surface materials to verify their measurement methods.
97	[Table 1]
98	
99	2. Methods

2.1. Investigated materials

2	
2	
J ∧	
4	
с с	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 // 1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
<u>کر</u>	
54	
55	
56	
57	
58	
59	
60	

101	The investigated materials include: JDo-1 and BCS-CRM 512 dolomites, BCS-CRM 513 limestone,
102	SRM 2709a soil, SRM 1515 apple leaves, IAPSO Atlantic seawater, SLRS-5 river water, SRM 1640a
103	spring water and DSW-1 Dead Sea brine. Solid samples are powdered and require complete
104	dissolution prior to the column chemistry. The published chemical compositions of the investigated
105	materials are described in Table 1. ∑c(Matrix-cations)/c(Mg) molar ratios (i.e., the molar ratios of the
106	sum of Na, K, Ca, Si, Al, Ti, Fe and Mn relative to Mg) of the RMs vary significantly: Na/Mg ratios
107	range between 0.0 (carbonates) and 8.8 (seawater), Ca/Mg ratios range between 0.2 (seawater) and
108	220 (BCS-CRM 513 limestone) and K/Mg ratios range between 0.0 (JDo-1 and BCS-CRM 512
109	dolomites) and 3.7 (SRM 1515 apple leaves). The soil (SRM 2709a), spring water (SRM 1640a) and
110	limestone (BCS-CRM 513) have the most complex matrices with significant Si/Mg ratios (18, 3.3 and
111	0.8, respectively), Al/Mg ratios (4.6, 0.04 and 0.45, respectively), Fe/Mg ratios (1.0, 0.02 and 0.08,
112	respectively) and Ti/Mg ratio (0.12 in the soil SRM 2709a).
113	
113 114	2.2. Measurement procedures
113 114 115	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ^{26} Mg and δ^{25} Mg values
113114115116	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ^{26} Mg and δ^{25} Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC);
 113 114 115 116 117 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ^{26} Mg and δ^{25} Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the
 113 114 115 116 117 118 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ ²⁶ Mg and δ ²⁵ Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey
 113 114 115 116 117 118 119 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ ²⁶ Mg and δ ²⁵ Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey (CGS) in Prague (Czech Republic); and the GEOMAR Helmholtz Center for Ocean Research, Kiel,
 113 114 115 116 117 118 119 120 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ ²⁶ Mg and δ ²⁵ Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey (CGS) in Prague (Czech Republic); and the GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany. The powdered or liquid RMs were split and spread among the different laboratories. Each
 113 114 115 116 117 118 119 120 121 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ ²⁶ Mg and δ ²⁵ Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey (CGS) in Prague (Czech Republic); and the GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany. The powdered or liquid RMs were split and spread among the different laboratories. Each
 113 114 115 116 117 118 119 120 121 122 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ ²⁶ Mg and δ ²⁵ Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey (CGS) in Prague (Czech Republic); and the GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany. The powdered or liquid RMs were split and spread among the different laboratories. Each laboratory conducted measurements, using its own previously established measurement procedure, to get completely independent results, and potentially identify any method-specific bias. The
 113 114 115 116 117 118 119 120 121 122 123 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ ²⁶ Mg and δ ²⁵ Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey (CGS) in Prague (Czech Republic); and the GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany. The powdered or liquid RMs were split and spread among the different laboratories. Each Iaboratory conducted measurements, using its own previously established measurement procedure, to get completely independent results, and potentially identify any method-specific bias. The
 113 114 115 116 117 118 119 120 121 122 123 124 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ ²⁶ Mg and δ ²⁵ Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey (CGS) in Prague (Czech Republic); and the GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany. The powdered or liquid RMs were split and spread among the different laboratories. Each Iaboratory conducted measurements, using its own previously established measurement procedure, to get completely independent results, and potentially identify any method-specific bias. The different procedures for material digestion, Mg purification and instrumentation, conducted in each
 113 114 115 116 117 118 119 120 121 122 123 124 125 	2.2. Measurement procedures The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ ²⁶ Mg and δ ²⁵ Mg values in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey (CGS) in Prague (Czech Republic); and the GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany. The powdered or liquid RMs were split and spread among the different laboratories. Each laboratory conducted measurements, using its own previously established measurement procedure, to get completely independent results, and potentially identify any method-specific bias. The different procedures for material digestion, Mg purification and instrumentation, conducted in each laboratory, are described below and summarized in Table 2. All Mg isotope ratio measurements

ratios are reported as per mil deviation from the delta-zero measurement standard DSM3 in thedelta notation according to Coplen (2011):

128 (1) $\delta^{x}Mg = \delta^{x/24}Mg_{sample/DSM3} = \begin{bmatrix} (xMg/^{24}Mg)_{sample} \\ (xMg/^{24}Mg)_{DSM3} \\ \hline (xMg/^{24}Mg)_{DSM3} \\ \hline \end{pmatrix}$

where x denotes either 26 or 25 and DSM3 is the mean value of the two bracketing standards
measured before and after the sample, respectively. Multiplication of equation (1) with a factor
1000 gives the per mil (‰) deviation relative to DSM3.

To validate the different measurement procedures used by the participating laboratories and to test for any potential inter-laboratory bias, we adapted the following approach. During this study, Cambridge-1 and IAPSO Atlantic seawater were analysed by all participating laboratories. These results are compared to literature values (e.g., compilations in Teng 2017; An and Huang 2014; and the in GeoReM database, Jochum et al. 2005) in order to validate the measurement procedure of each laboratory. Thereby, the pure Mg-solution Cambridge-1 was used to evaluate the repeatability precision of the MC-ICP-MS measurements (solution not processed through columns) for each laboratory. Then, seawater was used to evaluate the intermediate precision of the entire measurement procedure for each laboratory, including sample pre-treatment, matrix separation by column chemistry, and MC-ICP-MS analysis. In addition, a typical intermediate precision was estimated by each laboratory (Table 2), based on long-term (more than one year) repeated measurements of one or more matrix materials as detailed below (sections 2.2.1-2.2.4). The only case where this long-term experience with matrix material is missing is at GEOMAR and therefore only Cambridge-1 repeatability precision was considered. These estimates are considered as a benchmark against which we can evaluate the precision obtained on the matrix RMs investigated in this inter-laboratory comparison study. Then, to provide consensus δ^{26} Mg and δ^{25} Mg values for each earth-surface reference material, the arithmetic mean of $N \ge 3$ full-procedure-replicates was calculated. These comprised all data produced by the participating laboratories and – where available – literature data and are reported together with 95% confidence intervals.

151	[Table 2]
152	
153	2.2.1. Sample preparation and Mg isotope ratio measurements at UCL and Bristol (BIG
154	LOGIC)
155	Procedures for sample analyses are similar to those described in previous studies (Pogge von
156	Strandmann 2008, Foster et al. 2010, Pogge von Strandmann et al. 2011, 2012). A brief description is
157	given below.
158	Carbonate powders (ca. 20 mg) were dissolved in 2 mol/l HCl. Apple leaves (SRM 1515, ca 50 mg)
159	were dissolved in repeated steps of concentrated HNO $_3$, heated at 130 °C and evaporated to
160	dryness. Soil powders (ca. 10 mg) were dissolved in stages of concentrated HF-HNO ₃ , followed by
161	HNO ₃ , and finally 6 mol/l HCl. Water samples (ca. 0.01–0.2 ml) were simply dried down.
162	Subsequently, the samples were dissolved in 2 mol/l HNO $_3$, and a small aliquot (around 0.2 - 3 μg
163	Mg) was taken for column chemistry.
164	Magnesium analyte-matrix separation was performed by a two-stage cation exchange chemistry,
165	using Bio-Rad AG [®] 50W-X12 (200-400 mesh) resin in 2 mol/l HNO ₃ , as described by Pogge von
166	Strandmann et al. (2011). Soil samples were subjected to an additional column to quantitatively
167	remove Ti (because 48 Ti ²⁺ and 50 Ti ²⁺ are direct interferences on 24 Mg ⁺ and 25 Mg ⁺). This column
168	contained 0.25 ml of TRU-Spec™ resin, and Mg was eluted in 7 mol/l HNO₃ (Pogge von Strandmann
169	et al. 2012). The total procedural blank for Mg isotope ratio measurements by this method is ca. 0.4
170	ng Mg, which is insignificant compared to the amount of Mg put through chemistry (<0.2 %). Splits
171	of the elution were collected before and after the Mg collection bracket, to ensure close to 100 $\%$
172	Mg yield was achieved, i.e., <0.1 % of the processed Mg was detected in these splits.
173	Magnesium isotope ratio measurements were conducted using a Thermo Scientific Neptune MC-ICP-
174	MS with a high-sensitivity "X" Ni skimmer cone and standard Ni sample cone interface. A purified
175	sample solution of ca. 100 ng/ml Mg was introduced via an Elemental Scientific Inc. Apex-Q, with a
176	ca. 50 $\mu l/min$ uptake rate nebuliser tip, in 2 % HNO3 (v/v). Mg isotope ratios were measured in low
	7

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
21	
24	
35	
36	
37	
38	
39	
40	
10	
41	
42	
43	
44	
45	
46	
47	
., ۵۷	
40	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	
59	

60

177	mass resolution mode (see footnote in table 2), with all intensities at m/z 24, 25 and 26 measured
178	simultaneously in separate Faraday cups (H3, Centre, L3). Each individual measurement consisted of
179	20 ratios (84 seconds total integration time). These conditions gave typical signals of 18 - 20 V/100
180	ng/ml on 24 Mg. The on-peak background in 2 % HNO $_3$ (v/v) was repeatedly recorded during the
181	sequence and subtracted from all standard and sample intensities. Each sample was analysed 3 or 4
182	times (n = 3 or n = 4 in Table 3) during the same session (336 seconds/sample), each time separated
183	by several hours. The difference in the measured ²⁶ Mg/ ²⁴ Mg intensities ratio between bracketing
184	DSM3 standards was \leq 0.06 ‰ in all analyses performed for this study.
185	USGS (United States Geological Survey) and GSJ (Geological Survey of Japan) silicate rock reference
186	material measurement results by this procedure are documented by Pogge von Strandmann et al.
187	(2011), other silicate rocks by Teng <i>et al</i> . (2015), IAPSO Atlantic seawater results by Foster <i>et al</i> .
188	2010, and carbonates by Pogge von Strandmann 2008, Kasemann et al. (2014) and Pogge von
189	Strandmann et al. (2014). For example, measurements of the pure Mg solution Cambridge-1
190	(without processing through columns) gave -2.63 ±0.07 ‰ for δ^{26} Mg and -1.36 ±0.06 ‰ for δ^{25} Mg
191	(2s, n=126) and IAPSO Atlantic seawater results were -0.82 ± 0.06 % for δ^{26} Mg and -0.43 ± 0.04 % for
192	δ^{25} Mg (2s, n=26, Foster <i>et al.</i> 2010). Hence, the typical intermediate precision of this method, based
193	on several years of repeated measurements, is estimated at ±0.06 ‰ (2s) on $\delta^{26} Mg$, and ±0.04 ‰
194	(2s) on δ^{25} Mg. The results on reference materials agree with data obtained in other laboratories,
195	indicating no bias outside the stated precision.
196	

197 2.2.2. Sample preparation and Mg isotope ratio measurements at GSI

Carbonate powders (ca. 100-150 mg) were dissolved in HNO₃ and evaporated to dryness. Water
samples (ca. 10 µl DSW-1 and 2 ml IAPSO) were simply dried down. All samples were then redissolved in 10 ml 1.3 mol/l HCl and an aliquot (200-500 µg Mg) was taken for column chemistry.
Magnesium purification was performed by liquid chromatography (Galy *et al.* 2002) using Bio-Rad
Econo-Pac Chromatography Columns 732-1010 with an extended reservoir, filled with ca. 18 ml of

203	Bio-Rad AG [®] 50W-X12 100-200 mesh resin. The matrix was rinsed with 25 ml of 1.3 mol/l HCl and 20
204	ml of 2.3 mol/l HCl. Mg ²⁺ was then eluted with 24 ml of 2.3 mol/l HCl. Total procedural blanks
205	contained <0.5 % Mg of the amount of Mg processed through column chemistry. The first and the
206	last 2 ml before and after the Mg elution were collected separately in order to verify close to 100%
207	Mg recovery. In addition, the Mg amount in the Mg cut (Mg-COL) was compared to the amount
208	originally loaded to the column (Mg-ORIG). Only samples with Mg-COL/Mg-ORIG >95 % (taking into
209	account the uncertainties of both measurements), no detectable Mg in the first and the last 2 ml
210	before and after the Mg fraction, and molar ratio of ∑c(matrix-cations)/c(Mg) in the final Mg fraction
211	of <5 % (after Galy <i>et al.</i> 2001 and others) were used for isotope ratio measurements. These
212	parameters were verified for each sample separation using ICP-AES (Optima 3300, Perkin–Elmer).
213	Once Mg was purified, the solution was fully evaporated and the chloride salts were re-dissolved in
214	0.1 mol/l HNO ₃ .
215	Magnesium isotope ratio measurements were conducted using a Nu instruments Plasma II HR-MC-
216	ICP-MS. The 2 μ g/ml Mg solutions (in 0.1 mol/l HNO ₃) were introduced into the mass spectrometer
217	via a DSN-100 desolvation system (self-aspirating PFA nebuliser, uptake rate of ca. 100 $\mu l/min)$ and
218	standard Ni cones interface. The measurements were conducted using pseudo-high resolution, with
219	a 50 μ m source slit at a mass resolving power R _P (5,95%) = 7000 (see footnote in table 2). Three
220	Faraday cup collectors were used to measure the ion beam intensities at m/z 24, 25 and 26
221	simultaneously. Each measurement run comprises 20 integrations of 10 s data acquisition, i.e. a total
222	200 seconds of data acquisition per measurement. These conditions gave sample signal intensities of
223	25-35 V on m/z 24. The zero reference points were reset simultaneously for all measured masses by
224	deflecting the potential of the electrostatic analyser before measuring each block. A blank solution
225	measured in the beginning of each measurements day, produced <5 mV on m/z 24 and therefore
226	the difference from the off-peak zero is considered insignificant. Each sample solution was measured
227	by several brackets of standard-sample-standard, which were used for statistical analysis, where n is
228	the number of brackets of each sample. Outliers were eliminated as long as their elimination
	9

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

60

1

The δ^{26} Mg mean of pure Mg Cambridge-1 solution measured in this study is -2.62 ±0.14 ‰ (2s, n=36,

Atlantic seawater reference material measured in this study (-0.84 ±0.09 ‰, 2s, n=12, Table 3) is also

identical to the previously reported seawater value (-0.83 ±0.09 ‰, 2s, N=90; Foster et al. 2010, Ling

et al. 2011 and references therein). In order to further test the measurement procedure, a sample of

modern Dead Sea brine (DSW-1) was purified through Mg column chemistry and this single solution

Table 3). Accordingly, our long-term estimate of the typical intermediate precision is ± 0.11 ‰ (2s) on

 δ^{26} Mg, and ±0.05 ‰ (2s) on δ^{25} Mg. The results on reference materials agree with data obtained in

Solid powders (30 - 100 mg) were digested in HF/HNO₃ mixture at 110 °C, followed by 6 mol/l HCl,

and 14 mol/l HNO₃. For all samples, H_2O_2 /HNO₃ treatment in closed PFA-vials on a hotplate at 150

°C/ 24 h was used to remove organics. In addition, a separate batch of the organic-rich soil (SRM

system (MLS Start) at 160 °C/ 20 min and elevated pressure. Both, the PFA-vial-hotplate and the

microwave method achieved complete sample dissolution. Water RMs were evaporated on a hot

plate (10 to 20 ml for SLRS-5 and SRM 1640a; 0.1 to 0.5 ml for the others), then treated with HF and

2709a) and vegetation (SRM 1515) (ca. 1 g) were also acid-digested (H_2O_2/HNO_3) using a microwave

2.2.3. Sample preparation and Mg isotope ratio measurements at GFZ

other laboratories, indicating no bias outside the stated precision.

was repeatedly measured over two years (δ^{26} Mg=-0.67 ±0.11 ‰, δ^{25} Mg=-0.35 ±0.05 ‰, 2s, n=35,

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 21	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 11	
44 15	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

229	reduced the 95 % confidence interval (= $t \cdot \frac{s}{\sqrt{n}}$), despite the reduction of n that rises both $\frac{1}{\sqrt{n}}$ and the
230	t-distribution value.

Table 3), identical within stated precisions to results reported by other laboratories (e.g.,

compilations by Teng 2017, An and Huang 2014; -2.61 \pm 0.05 ‰, 2s). The δ^{26} Mg value of IAPSO

H_2O_2/HNO_3 and evaporated again to remove Si and dissolved organic carbon, respectively. All
samples were finally re-dissolved in 1 mol/l HNO_3 and aliquots containing between 2.5 and 15 μg Mg
were taken for Mg purification.

	11
279	cycles, with an integration time of 4.2 seconds for each cycle. These conditions gave sample signal
278	monitored on Faraday detectors H4 and L4, respectively. Each measurement run comprises 20
277	the flat-top peak (to avoid potential interference from $^{12}C^{14}N^*$). $^{27}AI^*$ and $^{23}Na^*$ were simultaneously
276	moved toward higher masses so that $^{26}Mg^+$ was measured on the interference-free low mass side of
275	(see footnote table 2) on Faraday detectors (L2, C, H2, all $10^{11} \Omega$ amplifiers). The H2 cup was slightly
274	intensities at m/z 24, 25 and 26 were measured simultaneously in medium mass resolution mode
273	equipped with a self-aspirating PFA nebuliser with an uptake rate of ca. 100 μ l/min. The ion beam
272	mass spectrometer via a quartz-glass spraychamber (double pass cyclon-Scott type, Thermo SIS)
271	standard sample cone and X skimmer cone). The 500 ng/ml Mg solutions were introduced into the
270	MS equipped with a Neptune Plus Jet Interface (using a Pfeiffer OnToolBooster interface pump;
269	Magnesium isotope ratio measurements were conducted using a Thermo Scientific Neptune MC-ICP-
268	(Thermo Scientific iCAP-Qc), respectively.
267	content in total procedural blanks were checked by ICP-OES (Varian 720ES) and quadrupole ICP-MS
266	produce no bias using our measurement instrumental setup; see Pokharel et al. 2017), and the Mg
265	Magnesium recovery (quantitative column yield), purity of the Mg solutions (>90 % Mg was found to
264	chemistry and is therefore considered insignificant (potential bias in δ^{26} Mg is estimated <0.03 ‰).
263	contained <12 ng Mg, which is <0.5 % Mg compared to the amount of Mg processed through column
262	N) and a blank. Total procedural blanks of the column chemistry and the H_2O_2/HNO_3 treatment
261	commonly used reference material (IAPSO Atlantic Seawater, basalts BCR-2, BHVO-2 or granite GS-
260	twice through the column procedure. Each column batch was accompanied by at least one
259	again with H_2O_2/HNO_{3} , evaporated and re-dissolved in 0.3 mol/l HNO ₃ . Each material was processed
258	mol/l HNO $_{3,}$ Mg was quantitatively eluted with 10 ml 2 mol/l HNO $_{3}$. The Mg fraction was treated
257	104704, ID 8 mm) filled with 2.8 ml Biorad AG $^{ m \$}$ 50W-X12 resin. After matrix elution with 32 ml 1
256	below. Magnesium purification was performed using chromatography columns (Spectrum PP
255	previously (Uhlig et al. 2017). A brief description of the method applied during this study is given
254	Procedures for Mg purification and isotope ratio measurements are similar to those described

n		
2 3	280	intensities >10 V for ²⁴ Mg. Background intensities (typically <8 mV ²⁴ Mg) were measured on-peak in
4 5	281	0.3 mol/l HNO $_3$ before and after each standard-sample bracketing block and were subtracted from
6 7	282	the sample and the standard signal intensities. Measurement results were accepted only if the
8		
9 10	283	instrumental mass bias was stable, i.e. linear drift <0.2 ‰, which is the deviation in 26 Mg/ 24 Mg
11 12	284	between two bracketing DSM3 standards.
13 14	285	The intermediate precision of this measurement procedure (including dissolution, Mg column
15 16	286	separation, dilution, and MC-ICP-MS analyses) was evaluated by repeat analyses of reference
17 18	287	materials (silicate rocks and IAPSO Atlantic Seawater) over the course of about 3 years (e.g., Uhlig et
19 20	288	al. 2017, Pokharel <i>et al.</i> 2017). For example, for BHVO-2 basalt we obtained a mean δ^{26} Mg of -0.24
21 22	289	± 0.10 ‰ and a mean δ^{25} Mg of -0.13 ± 0.06 ‰ (2s, n=24 measurements on N = 6 full dissolution and
23 24	290	column chemistry replicates), which is identical within stated precisions to results produced
25 26	291	independently in other laboratories (δ^{26} Mg= -0.24 ±0.08 ‰, δ^{25} Mg= -0.12 ±0.05 ‰, Teng 2017 and
27 28 20	292	references therein). Measurements of the pure Mg solution Cambridge-1 (without processing
29 30 21	293	through columns) gave a mean of -2.61 ±0.07 ‰ for δ^{26} Mg and -1.35 ±0.05 ‰ for δ^{25} Mg (2s, n=62)
32 33	294	and IAPSO Atlantic seawater results were -0.81 ±0.12 ‰ for δ^{26} Mg and -0.41 ±0.06 ‰ for δ^{25} Mg (2s,
34 35	295	n=13). Hence, our long-term estimate of the typical intermediate precision (based on repeated
36 37	296	analyses on different materials over ca. 3 years) is ± 0.10 ‰ (2s) for δ^{25} Mg and ± 0.06 ‰ (2s) for
38 39	297	δ^{26} Mg, respectively. The results on reference materials agree with data obtained in other
40 41	298	laboratories, indicating no bias outside the stated precision.
42 43	299	
44		
45	300	2.2.4. Sample preparation and Mg isotope ratio measurements at CGS and GEOMAR
46 47	204	Comple properties for the manufacture and used at CCC and CEOMAD was done in the CCC
47 48	301	sample preparation for the measurements conducted at CGS and GEOMAR was done in the CGS
49	302	laboratory according to the following procedure. Carbonate powders were digested in 6 mol/l HCl.
	-	,

- Powders of the soil NIST SRM 2709a and apple leaves NIST SRM 1515a were successively dissolved in
- concentrated 1:1 HF:HNO₃ and H₂O₂:HNO₃, respectively, to breakdown the silicate fractions and
- organic matter. Aliquots of water RMs (equivalent to ca. 20 µg of Mg) were evaporated to dryness

Page 26 of 49

306	and treated with concentrated HNO_3 . Solutions with visible solid residues were once again re-
307	dissolved in concentrated 1:1 HNO_3 : H_2O_2 . All sample solutions were then evaporated to dryness and
308	re-dissolved in 3 % HNO3 (v/v). Prior to loading samples onto microcolumns, at least 20 μg Mg
309	aliquots were taken, evaporated to dryness and re-dissolved in 100 μl of 2.5 mol/l HCl.
310	Purification of Mg was accomplished by a three-step chromatographic separation, using 1.25 ml
311	resin (BioRad AG [®] 50W-X12, 200-400 mesh) in Savillex PFA 3.2 mm x 20 cm (inner diameter x length)
312	microcolumns, for the first and third steps, and 0.12 ml resin in 2.4 mm $ imes$ 15 cm microcolumns for
313	the second step. In the first step, the Mg fraction, which still contains Na and Fe, was separated from
314	other matrix elements by elution with 4.90 ml 2.5 mol/l HCl and collected subsequently. In the
315	second step, the Mg fraction (with Fe) was separated from Na by elution with 4.96 ml 0.4 mol/l HCl
316	and subsequently collected with 1.5 ml 6 mol/l HCl. In the third step, the Mg fraction was separated
317	from Fe by rinsing with 5.2 ml 2 mol/l HNO $_3$ prior to the elution of the purified Mg solution with 5.5
318	ml 2 mol/l HNO3. The purified Mg fractions were then evaporated to dryness, re-dissolved in 200 μl
319	concentrated 1:1 HF:HNO3, evaporated to dryness, re-dissolved in 200 μ l concentrated 1:1
320	H_2O_2 :HNO ₃ , evaporated to dryness again and finally dissolved in ca. 3 % HNO ₃ (v/v) for Mg isotope
321	amount ratios analyses. Total procedural blank was <2 ng Mg. Mg yields of close to 100 % and molar
322	ratios of ∑c(matrix-cations)/c(Mg) in the final Mg fractions of <5 % were verified by a Thermo
323	Scientific iCAP-Q ICP-MS, as well as a Varian 720 series ICP-OES for each sample.
324	
325	2.2.4.1. Mg isotope ratio measurements at CGS
326	Magnesium isotope ratio measurements were conducted using a Thermo Scientific Neptune MC-ICP-
327	MS, equipped with Ni sampler and X-Version Ni skimmer cones. The 500 ng/ml Mg solutions were
328	introduced into the plasma via a 100 μ l min $^{-1}$ PFA nebuliser and a cyclonic quartz-glass spray
329	chamber. All measurements were carried out with the guard electrode turned on and in medium
330	mass resolution mode (see footnote table 2). The following cup configuration was used: the ion
331	beam intensities at m/z 24, 25 and 26 were measured simultaneously using Faraday cups L1, C, and

2	
2	
ر ۸	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
-10 /17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
22	
20	
57	
58	
59	
60	

332	H2, respectively. Measurements were carried out on the low mass side of the peak to avoid $^{12}C^{14}N^{+}$
333	interference signals on m/z 26. Each individual measurement comprised 30 cycles with 8.4 seconds
334	acquisition time per cycle. Each single delta value (equivalent to n = 1, as reported in Table 3) was
335	calculated by at least 3 repeated measurements of the same sample solution, each bracketed by
336	DSM3. Thus, each single delta value reported in Table 3 (n = 1) represents an average of 3
337	measurements of a sample and 4 measurements of DSM3. Typical signals on m/z 24 were about 4 to
338	8 V (i.e., ion beam of ²⁴ Mg ⁺). Procedural blank contributions, including background, were
339	consistently below 0.1 % of sample signals. Due to these very low blank contributions to the analyte
340	signals, no on-peak blank corrections were applied. Only an electronic background was collected at
341	half mass unit before each block and subtracted from the measured signals.
342	Isotope fractionation during column chemistry was not detected with $\delta^{26} Mg$ values of -0.01 ±0.05 ‰
343	(2s, n=3, based on a comparison of column processed and unprocessed DSM3) which further
344	substantiates high Mg yields after column chemistry of close to 100 %. Measurements of the pure
345	Mg solution Cambridge-1 (without processing through columns) gave a mean of -2.59 \pm 0.16 $\%$ for
346	δ^{26} Mg and -1.34 ±0.11 ‰ for δ^{25} Mg (2s, n=18). The intermediate precision of the sample preparation
347	procedure and MC-ICP-MS measurement was estimated based on repeat column purifications and
348	measurements of IAPSO Atlantic seawater and was -0.87 ± 0.10 % for $\delta^{26}Mg$ and -0.45 ± 0.06 % for
349	δ^{25} Mg (2s, n = 14) during the period between the years 2012 and 2016. Hence, based on these long-
350	term observations we estimate our typical intermediate precision at ±0.13 ‰ for $\delta^{26}\text{Mg}$ and ±0.09
351	% for δ^{25} Mg (2s). The results on reference materials agree with data obtained in other laboratories,
352	indicating no bias outside the stated precision.
353	
354	2.2.4.2. Mg isotope ratio measurements at GEOMAR

The magnesium isotope ratio measurements were carried out in August 2012 using a Thermo

- 356 Scientific AXIOM MC-ICP-MS. R.A. Chilton cones (RAC19 & RAC705) have been used for best
- sensitivity. Samples, prepared as 200 ng/ml Mg solutions in 5 % HNO₃ (v/v), were introduced via an

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
37	
22 22	
ככ זג	
34 25	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
22	
20	
5/	
58	
59	
60	

358	ESI <i>MicroFlow PFA-50</i> nebuliser (50 μ l/min) coupled to a CETAC <i>ARIDUS</i> desolvator (sweep Ar gas:
359	ca. 2 l/min, N_2 : ca. 20 ml/min). Three Faraday cups have been utilized (L4: m/z 24, AX: m/z 25, H4:
360	m/z 26) for simultaneous data acquisition. The instrumentation had been allowed for stabilization
361	running ca. 1 day preliminarily tuned before actual fine tuning started. Tuning focused on hot and
362	stable plasma conditions, not primarily on maximum intensity. Typically, 200 ng/ml Mg solutions
363	yielded ca. 3.5 V 24 Mg $^{+}$ intensity. Each individual measurement result consisted of 10 DSM3 standard
364	runs bracketing 9 runs of the unknown sample. A single run started with a 15 seconds on-peak-zero
365	baseline measurement, while clean 5 % HNO $_3$ (v/v) was introduced, followed by 50 x 2 s data
366	collection (on either standard or unknown). Finally, sample washout was performed introducing
367	clean 5 % HNO ₃ (v/v) for 60 seconds. Within each run, the collected 50 individual ratios of 25 Mg/ 24 Mg
368	and 26 Mg/ 24 Mg, respectively, were calculated based on the on-peak baseline-corrected m/z 24, 25
369	and 26 signal intensities. Results were calculated using the mean of the individual ratios after
370	removing statistical outliers (1s). Each run of the unknown was used to calculate the δ -value relative
371	to the preceding and following runs of DSM3. The resulting 9 δ -values were combined to an average
372	for the measurement. Each measurement consumed about 200 ng of total Mg.
373	The repeatability precision is estimated based on repeated measurements of Cambridge-1 during
374	this study (without processing through columns) which gave -2.58 ±0.08 ‰ for $\delta^{26} Mg$ and -1.33
375	± 0.06 ‰ for δ^{25} Mg (2s, n =11). Measurements of Cambridge-1 processed through columns gave -
376	2.63 ±0.12 ‰ for δ^{26} Mg and -1.31 ±0.03 ‰ for δ^{25} Mg (2s, n =3; Table 3). The results agree with data
377	obtained in other laboratories, indicating no bias outside the stated precision. Because no long-term
378	data on repeated measurements on materials with different matrices is available to estimate the
379	typical intermediate precision of the GEOMAR laboratory, as was done for the other laboratories,
380	the typical precision was estimated by the long-term repeatability of the MC-ICP-MS to be ± 0.08 ‰
381	(2s) for $\delta^{26}Mg$ and ±0.06 ‰ (2s) for $\delta^{25}Mg$, based on the unprocessed Cambridge-1 results.
382	[Table 3]
383	

Page 29 of 49

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
10	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

384 3. Results ar	nd Discussion
384 3. Results ar	nd Discussior

385 **3.1 Individual results validation of the participating laboratories**

386 All the δ^{26} Mg' versus δ^{25} Mg' results determined in different laboratories during this study plot on a 387 single line with a slope of 0.518 ±0.004 (Fig. 1; linear fit was obtained using the *Isoplot* software), 388 suggesting no major influence of isobaric interferences on the measured Mg isotope ratios. In 389 addition, the δ^{26} Mg and δ^{25} Mg values of Cambridge-1 and Seawater, on which large datasets are 390 available in the literature (e.g., compilations in Foster et al. 2010, Pogge von Strandmann et al. 2011, 391 Ling et al. 2011, An and Huang 2014, Teng 2017, and references therein and in the GeoReM 392 database, Jochum et al. 2005), were used to validate the individual measurement procedures and 393 measurement results performed by each laboratory. First, to validate each mass spectrometric 394 measurement procedure, the pure Mg solution Cambridge-1 was analysed without processing 395 through Mg column chemistry. Second, to include the various sample preparation methods for Mg 396 purification in the inter-laboratory comparison, IAPSO Atlantic seawater, which contains a complex 397 element matrix (\sum (matrix-cations)/c(Mg) = 9.2; Table 1), was processed and analysed repeatedly in 398 each laboratory. For both RMs, the δ^{25} Mg and δ^{26} Mg values agree well between all laboratories. The 399 absolute differences (bias) between the values measured in this study and published consensus values are less than 0.04 ‰ and 0.03 ‰ for δ^{26} Mg and δ^{25} Mg, respectively (Table 3, Fig. 2), which 400 401 are well within the precisions reported by each laboratory. These observations indicate that the 402 various measurement procedures (including sample preparation and MC-ICP-MS measurements) do 403 not induce any significant bias outside the reported measurement precision. However, due to the 404 fact that all measurements in this and previous studies were conducted by MC-ICP-MS instruments, 405 an independent validation using a different method cannot be made to exclude any potential systematic MC-ICP-MS bias. However, to date no other technique is able to measure δ^{26} Mg and 406 δ^{25} Mg at the level of precision obtainable by MC-ICP-MS. 407 408 The MC-ICP-MS repeatability precision for Cambridge-1 determined by each laboratory ranges from 0.07 to 0.16 % (2s) for δ^{26} Mg and 0.03 to 0.11 % (2s) for δ^{25} Mg (Table 3). The intermediate 409

1	
2	
3	
4	
5	
6	
7	
, 8	
0	
10	
10	
11	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

410	precision of the entire measurement procedure based on multiple IAPSO Atlantic seawater sample
411	preparations and MC-ICP-MS analyses ranges from 0.04 to 0.12 ‰ (2s) for δ^{26} Mg and 0.04 to 0.09 ‰
412	(2s) for δ^{25} Mg (Table 3). Because the 2s of IAPSO Atlantic seawater results is not systematically larger
413	than the precision (2s) of Cambrigde-1 results, we conclude that the different sample preparation
414	methods do not introduce any additional significant sources of uncertainty that are not already
415	included in the intermediate measurement precision (2s) reported for each RM result by the
416	different laboratories.
417	These findings are also consistent with the 'typical' intermediate precision reported by each
418	laboratory, based on δ^{26} Mg and δ^{25} Mg values measurements of various RMs and natural samples
419	over the long-term (between 0.06 ‰ and 0.13 ‰, 2s, in δ^{26} Mg, and 0.04 ‰ and 0.09 ‰, 2s, in
420	δ^{25} Mg, Table 2, Fig. 2). Thus, the individual results from the different laboratories can be used to
421	evaluate the consensus δ^{26} Mg and δ^{25} Mg values of the 'new' earth-surface RMs analysed in this
422	study. This means that the consensus mean $\delta^{25}Mg$ and $\delta^{26}Mg$ values of the full-procedure-replicates
423	measured by the different laboratories and their variance (reported both as 2s and 95 % confidence
424	interval in tables 3 and 4) include random errors that stem from all influencing factors (sample
425	preparation, matrix separation, instrumental conditions, etc.). Hence, following a "top-down"
426	approach of uncertainty evaluation (e.g., Potts 2012a,b), we report consensus mean values for each
427	earth-surface RM characterised in this study together with an uncertainty statement (95 %
428	confidence interval- 95 % conf.), based on the δ^{25} Mg and δ^{26} Mg values reported by each laboratory,
429	as discussed in the next section.
430	[Figure 1]
431	[Figure 2]
432	
433	3.2 Assigning consensus δ^{26} Mg and δ^{25} Mg values to the reference materials
434	The results of the eight RMs, from the laboratories participating in this study, as well as the available
435	literature data, are shown in table 3 and figure 2. The range of δ^{26} Mg values of the studied RMs

Page 31 of 49

2	
3	
4	
5	
6	
0 7	
/	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
27	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
30	
10	
4U	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

436	covers almost the entire range of terrestrial materials (e.g., Teng 2017). As expected, the lowest
437	$\delta^{^{26}}$ Mg values were found in carbonates: limestone BCS-CRM 513a (-4.46 ±0.12 ‰, 95 % conf., n=3),
438	which represents the lower part of the global δ^{26} Mg range of limestones, and the dolomites, JDo-1
439	and CRM 512 (-2.35 ±0.05 ‰, 95 % conf., n=11 and -2.03 ±0.09 ‰, 95 % conf., n=6, respectively),
440	which are within a typical range of dolomites (Teng 2017 and references therein). The most positive
441	δ^{26} Mg value was found in the soil SRM 2709a (-0.15 ±0.03 ‰, 95 % conf., n=6), typical for silicate
442	soils (Teng 2017 and references therein). The apple leaves SRM 1515 has $\delta^{26} Mg$ value of -1.22 ± 0.03
443	% (95 % conf., n=6), consistent with previous findings. δ^{26} Mg values in plants depend on the sources
444	of Mg and on complex isotope fractionation processes during the uptake of Mg and transport within
445	the plant (e.g., Black <i>et al.</i> 2008, Bolou-Bi <i>et al.</i> 2010, 2012, Tipper <i>et al.</i> 2010). In general, Mg in
446	rivers and groundwaters yield a large range of $\delta^{26}Mg$ values with a flux-weighted $\delta^{26}Mg$ of global
447	runoff of -1.09 ‰ (Tipper <i>et al.</i> 2006b). SLRS-5 river water (-1.22 ±0.06 ‰, 95 % conf., n=8) has
448	lower $\delta^{26}Mg$ value and spring water SRM 1640a (-0.73 ±0.03 ‰, 95 % conf., n=9) has higher $\delta^{26}Mg$
449	value, relative to this average. The higher δ^{26} Mg value of the Dead Sea brine (DSW-1; -0.58 ±0.05 ‰,
450	95 % conf., n=8) relative to its precursor seawater may represent a contribution of ²⁴ Mg-depleted
451	dolomitizing brines (Gavrieli <i>et al.</i> 2009, Shalev <i>et al.</i> 2014).
452	To obtain mean $\delta^{26} Mg$ and $\delta^{25} Mg$ values for the RMs, we evaluate the inter-laboratory
453	reproducibility (indicated as 2s on the consensus value derived from the results of all laboratories
454	and literature data; Table 3). All eight RMs have an inter-laboratory reproducibility (2s) of 0.05 to
455	0.17 ‰ in δ^{26} Mg. For most RMs (DSW-1, SRM 1640a, SRM 2709a, SRM 1515 and CRM 513), the
456	inter-laboratory reproducibility (0.05 $\%$ – 0.12 $\%$) is within or below the range of the 'typical'
457	intermediate precision of the laboratories estimated from repeat analysis of different materials over
458	the long-term (0.06 ‰ – 0.13 ‰ in δ^{26} Mg), indicating that the measurement procedures used in all
459	laboratories do not induce any additional uncertainty contributions when samples with such
460	matrices are processed and measured. For these RMs, the individual results from all laboratories
461	also agree within the reported measurement precision of each sample (Table 3 and Fig. 2). However,

3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
50 27	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

462	the inter-laboratory reproducibilities of three RMs, i.e., SLRS-5 river water, JDo-1 dolomite and CRM
463	512 dolomite (2s of 0.15 ‰, 0.15 ‰ and 0.17 ‰, respectively), are slightly higher than the 'typical'
464	intermediate precisions reported by the participating laboratories. While all the individual SLRS-5
465	results agree within 2s measurement precision of the repeat measurements of each RM, this is not
466	the case for all individual results of the two dolomite RMs, JDo-1 and CRM 512 (Fig. 2). Averaged
467	data of JDo-1 reported in the literature seem to be more uniform, but in some cases the reported 2s
468	is larger, covering the whole range obtained in current research (Wombacher et al. 2009, Pearce et
469	al. 2012, Mavromatis et al. 2013, Beinlich et al. 2014, Mavromatis et al. 2014, Lavoie et al. 2014; Fig.
470	2). Similar to the results of this study, Wombacher et al. (2009) reported a precision of 0.18 ‰ (2s)
471	on the mean of twelve measurement results of JDo-1 from four different Mg separations (test
472	portions of 2.5 – 40 mg). Note that most of these values (Pearce <i>et al.</i> 2012, Mavromatis <i>et al.</i> 2013,
473	Beinlich et al. 2014, Mavromatis et al. 2014) were obtained using a similar chemical sample
474	preparation procedure.
475	The reasons for the slightly higher inter-laboratory variance in the dolomite RMs are unknown. Inter-
476	laboratory variance can arise from many factors, including material properties (e.g., homogeneity at
477	the level of the test portion, or stability over time), sample preparation procedure (e.g., incomplete
478	dissolution, column yield, analyte purity and blank) and the procedures used in the mass
479	spectrometric measurements and data reduction (e.g., mass bias stability and mass bias correction,
480	matrix effects). No correlation was found between molar matrix elements/Mg ratios and the inter-
481	laboratory variance (examples in Fig. 3). Moreover, we checked for any correlations between
482	individual δ^{26} Mg values and test portions, blank/Mg, column capacity, but did not find any
483	systematic relations. Thus, further investigation on these RMs is required to determine the sources
484	of the observed variance.
485	The consensus $\delta^{26} Mg$ and $\delta^{25} Mg$ mean values for the studied RMs are provided in Table 4 together
486	with an associated uncertainty for each value. This uncertainty was estimated by the 95 $\%$
487	confidence interval on the mean of N laboratory results, including literature data, if available.
	19
	462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 475 476 475 476 477 478 479 480 481 481 482 483 484 485 486 487

[Table 4]

1

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
37	
54 25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>40</u>	
77 50	
50	
21	
52	
53	
54	
55	
56	
57	
58	
59	
60	

509

489	
490	4. Summary and conclusions
491	In this study, the δ^{26} Mg and δ^{25} Mg values of eight earth surface reference materials (RMs),
492	representative of different low-temperature environments and material types, were determined by
493	inter-laboratory comparison. Despite the differences in sample preparation procedures, different
494	test portions, instrumentation, and isotope ratio measurement procedures, good agreement of the
495	δ^{26} Mg and δ^{25} Mg data from the different laboratories was found. This encouraging result suggests
496	that all methods described in this study are suitable for geochemical studies on these type of
497	materials given they are strictly monitored and calibrated (recovery, blanks, matrix-removal, etc.).
498	Moreover, the investigated RMs are suitable to be used by other laboratories for routine quality
499	control of Mg isotope ratio measurement procedures during environmental and earth surface
500	geochemical studies. The wide range of matrices, including river water, spring water, brine,
501	dolomites, limestone, soil and plant leaves, allow analysts to identify potential issues (and facilitate
502	modifications) with sample preparation methods previously developed for silicate rocks, for
503	example, which are then applied to different sample types, such as Ca-rich carbonates, organic-rich
504	soils or vegetation.
505	
506	5. Acknowledgments
507	PPvS acknowledges ERC Consolidator grant 682760 - CONTROLPASTCO2. J. Bartel and J. Buhk are
508	acknowledged for laboratory support at GFZ. F. von Blanckenburg and the Helmholtz Association are

510 supported via the European Union's Horizon 2020 research and innovation programme, under grant

511 agreement No 643084 (Base-LiNE Earth project), and the Czech Science Foundation (GACR) grants

512 No. 17-18120S and P210/12/P631. Technical and laboratory assistance of T. Magna, M. Francová, M.

20

thanked for infrastructure support at GFZ. The analytical work done at CGS, GEOMAR and CULS was

3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
54	
22	
56	

513 Šimeček and J. Míková at CGS is acknowledged. The research done at the University of Adelaide was

- 514 supported via Base-LiNE Earth, and the ARC Linkage project LP160101353 to JF. NS acknowledges L.
- 515 Halicz, I. Gavrieli, B. Lazar and D. Vance for their advices and support and N. Teplyakov, Y. Zakun and
 - 516 K. Weiss for laboratory support at GSI. The work at GSI was funded by the DFG-trilateral project
 - 517 TRION (Ei272/30-1), the Israeli Ministry of Science, Technology and Space (Eshkol scholarship), the
 - 518 Israeli Ministry of National Infrastructures, Energy and Water resources and Dalia and Dan Maydan
- 519 Fellowship. The research done at ETH Zürich was funded by an ETH postdoctoral fellowship (FEL-14
- 520 16-1). The authors would also like to thank the editor, T. Meisel, and two anonymous reviewers
 - 521 whose comments helped to significantly improve this manuscript.

522

534

538

542

546

6. References 523

- 524 An Y. and Huang F. (2014) 525 A review of Mg isotope analytical methods by MC-ICP-MS. Journal of Earth Science, 25, 822–840. 526
 - 527 Beinlich A., Mavromatis V., Austrheim H. and Oelkers E.H. (2014)
 - 528 Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration – Implications 529 for the global Mg-cycle. Earth and Planetary Science Letters, 392, 166–176. 530

531 Black J.R., Epstein E., Rains W.D., Yin Q.Z. and Casey W.H. (2008)

- 532 Magnesium-isotope fractionation during plant growth. Environmental Science and Technology, 42, 533 7831-7836.
- 535 Bolou-Bi E.B., Vigier N., Brenot A. and Poszwa A. (2009)
- 536 Magnesium isotope compositions of natural reference materials. Geostandards and Geoanalytical 537 Research, 33, 95-109.
- 539 Bolou-Bi E.B., Poszwa A., Leyval C. and Vigier N. (2010)
- 540 Experimental determination of magnesium isotope fractionation during higher plant growth.
 - 541 Geochimica et Cosmochimica Acta, 74, 2523-2537.

543 Bolou-Bi E.B., Vigier N., Poszwa A., Boudot J.P. and Dambrine E. (2012)

544 Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the 545 Vosges Mountains (France). Geochimica et Cosmochimica Acta, 87, 341-355.

547 Brand W.A., Coplen T.B, Vogl J., Rosner M. and Prohaska T. (2014)

- 548 Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report).
- 549 Pure and Applied Chemistry, 86, 425–467.

1		
2		
3	550	
4	551	Brenot A., Cloquet C., Vigier N., Carignan J. and France-Lanord C. (2008)
5	552	Magnesium isotope systematics of the lithologically varied Moselle river basin, France. Geochimica
6	553	et Cosmochimica Acta, 72, 5070–5089.
7	554	
8	555	Chapela Lara M., Buss H.L., Pogge von Strandmann P.A.E., Schuessler J.A. and Moore O.W. (2017)
9	556	The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered
10	557	andesitic catchment Geochimica et Cosmochimica Acta 202 77–100
11	559	
12	220	Contan T.B. (2011)
13	559	Copien 1.6. (2011)
15	560	Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio
16	561	measurement results. Rapid Communications in Mass Spectrometry, 25, 2538-2560.
17	562	
18	563	Foster G.L., Pogge von Strandmann P.A.E. and Rae J.W.B. (2010)
19	564	Boron and magnesium isotopic composition of seawater. Geochemistry Geophysics Geosystems,
20	565	11 , 1–10.
21	566	
22	567	Galy A., Belshaw N.S., Halicz L. and O'Nions R.K. (2001)
23	568	High-precision measurement of magnesium isotopes by multiple-collector inductively coupled
24	569	plasma mass spectrometry. International Journal of Mass Spectrometry, 208, 89–98
25	570	
26	570	Calu A. Bar Matthews M. Halicz L. and O'Nions P.K. (2002)
27	571	Galy A., Bal-Matthews M., Haitz L. and O Nons K.K. (2002)
28	572	Ng isotopic composition of carbonate: insight from speleotnem formation. Earth and Planetary
29	5/3	Science Letters, 201, 105–115.
30	574	
31 27	575	Galy A., Yoffe O., Janney P.E., Williams R.W., Cloquet C., Alard O., Halicz L., Wadhwa M., Hutcheon
32 33	576	I.D., Ramon E. and Carignan J. (2003)
33	577	Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for
35	578	magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry, 18, 1352–
36	579	1356.
37	580	
38	581	Gavrieli I., Yoffe O., Burg A. and Halicz L. (2009)
39	582	Mg isotope fractionation in the Ca-chloride Dead Sea brine system. Geochimica et Cosmochimica
40	583	Acta Sunnlement 73 A419
41	584	
42	504	Coske A Lakier S Dietzel M Bichter D.K. Buhl D and Immenhauser A (2015)
43	202	Magnasium isotone composition of colube nerowater and related (Sub) Decent staichiometric
44	580	Magnesium isotope composition of sabkna porewater and related (Sub-)kecent stoicniometric
45	587	dolomites, Abu Dhabi (UAE). Chemical Geology, 393–394, 112–124.
46	588	
4/	589	Golan R., Gavrieli I., Ganor J. and Lazar B. (2016)
48	590	Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea. Earth and Planetary Science
49 50	591	Letters, 434, 289–297.
51	592	
52	593	Higgins J.A. and Schrag D.P. (2015)
53	594	The Mg isotopic composition of Cenozoic seawater – evidence for a link between Mg-clavs, seawater
54	595	Mg/Ca, and climate. Earth and Planetary Science Letters. 416. 73–81.
55	596	o, ,
56	597	lochum K.P. Nohl II. Herwig K. Lammel F. Stoll B. and Hofmann A.W. (2005)
57		
58		22
59		

1		
2	500	CooperAt A New Cooperation Details on few Defensions Materials and Jactaria Standards
3	598	Geokewi: A New Geochemical Database for Reference Materials and isotopic Standards.
4	599	Geostandards and Geoanalytical Research, 29, 333–338.
6	600	
7	601	Karasinski J., Bulska E., Wojciechowski M., Halicz L. and Krata A.A. (2017)
8	602	High precision direct analysis of magnesium isotope ratio by ion chromatography/multicollector-
9	603	ICPMS using wet and dry plasma conditions. Talanta, 165, 64–68.
10	604	
11	605	Kasemann S.A., Pogge von Strandmann P.A.E., Prave A.R., Fallick A.E., Elliott T. and Hoffmann K.H.
12	606	(2014)
13	607	Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium
14	608	isotopes. Earth and Planetary Science Letters, 396, 66–77.
15	609	
16	610	Lavoie D., Jackson S. and Girard I. (2014)
1/	611	Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of
10	612	Canada, Sedimentary Geology, 305, 58–68.
19 20	613	
20	614	Ling M -X Sedaghatnour F Teng F -7 Havs P.D. Strauss L and Sun W (2011)
22	615	Homogeneous magnesium isotonic composition of segwater: an excellent geostandard for Mg
23	616	isotopo apolysis. Papid communications in mass spectrometry 25, 2020–2026
24	617	isotope analysis. Rapid communications in mass spectrometry, 25, 2828–2850.
25	017	Lin V.M. Tong E.Z. Dudeich D.L. McDennich W.E. and Commission M.L. (2014)
26	618	Liu X.M., Teng F.Z., Rudnick R.L., McDonough W.F. and Cummings M.L. (2014)
27	619	Massive magnesium depletion and isotope fractionation in weathered basalts. Geochimica et
28	620	Cosmochimica Acta, 135, 336–349.
29	621	
30	622	Ma L., Teng FZ., Jin L., Ke S., Yang W., Gu HO. and Brantley S.L. (2015)
3 I 2 1	623	Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone
32	624	Observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation. Chemical
34	625	Geology, 397, 37–50.
35	626	
36	627	Mavromatis V., Meister P. and Oelkers E.H. (2014)
37	628	Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru
38	629	Margin. Chemical Geology, 385, 84–91.
39	630	
40	631	Opfergelt S., Georg R.B., Delvaux B., Cabidoche YM., Burton K.W. and Halliday A.N. (2012)
41	632	Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe.
42	633	Earth and Planetary Science Letters, 341–344, 176–185.
43	634	
44 45	635	Pearce C.R., Saldi G.D., Schott J. and Oelkers E.H. (2012)
46	636	Isotonic fractionation during congruent dissolution, precipitation and at equilibrium: Evidence from
47	637	Mg isotopes Geochimica et Cosmochimica Acta 92 170–183
48	628	
49	030	Deliberal D. Corrite D. Schusseler I.A. Floor C. Corbushing A.A. and you Blanckenburg F. (2017)
50	640	Poknarel n., Gerris n., Schuessier J.A., Floor G., Gorbushina A.A. and von Blanckenburg F. (2017)
51	040	ivig isotope fractionation during uptake by a rock-innabiting, model microcolonial tungus Knuffa
52	641	petricola at acidic and neutral pH. Environmental Science & Technology, 51, 9691–9699.
53	642	
54	643	Pogge von Strandmann P.A.E. (2008)
55 56	644	Precise magnesium isotope measurements in core top planktic and benthic foraminifera.
50 57	645	Geochemistry, Geophysics, Geosystems, 9, 1-13.
58		
59		23

2		
3	646	
4	647	Pogge von Strandmann P.A.E., Burton K.W., James R.H., van Calsteren P., Gislason S.R. and
5	648	Sigfússon B. (2008)
6	649	The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth
7	650	and Planetary Science Letters, 276, 187–197.
8	651	
9	652	Pogge von Strandmann P.A.F. Elliott T. Marschall H.R. Coath C. Lai Y.L. Jeffcoate A.B. and Jonov
10	653	
11	654	Variations of Li and Mg isotone ratios in bulk chondrites and mantle venoliths. Geochimica et
12	655	Cosmochimica Acta 75 E247 E269
13	055	
15	050	
16	657	Pogge von Strandmann P.A.E., Optergelt S., Lai YJ., Sigtusson B., Gislason S.R. and Burton K.W.
17	658	(2012)
18	659	Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and
19	660	pore water profile in Iceland. Earth and Planetary Science Letters, 339–340, 11–23.
20	661	
21	662	Pogge von Strandmann P.A.E., Forshaw J. and Schmidt D.N. (2014)
22	663	Modern and Cenozoic records of magnesium behaviour from foraminiferal Mg isotopes.
23	664	Biogeosciences Discussions, 11, 7451–7484.
24	665	
25	666	Potts P.J. (2012a)
26	667	A Proposal for the Publication of Geochemical Data in the Scientific Literature Geostandards and
2/	668	Genanalytical Research 36, 225-230
20 20	660	Scoundry lear hescarch, 50, 225 250.
30	670	Botte B L (2012b)
30	670	Potts P.J. (2012b)
32	6/1	Glossary of Analytical and Metrological Terms from the International Vocabulary of Metrology
33	672	(2008). Geostandards and Geoanalytical Research, 36, 231-246.
34	673	
35	674	Shalev N., Lazar B., Halicz L. and Gavrieli I. (2014)
36	675	Magnesium isotope fractionation during epigenetic dolomitization of carbonate rocks. Goldschmidt
37	676	Abstracts 2014, 2257.
38	677	
39	678	Shalev N., Lazar B., Halicz L. and Gavrieli I. (2017)
40	679	Mg isotope fractionation during precipitation of marine Mg- evaporites. Goldschmidt Abstracts
41	680	2017, 3606.
42	681	
45 44	682	Summerhaves C. P. and Thorpe S.A. (1996)
44	683	Oceanography An Illustrated Guide: Chapter 11, CRC Press , 165–181.
46	684	
47	685	Tong E7 Oing-7hu Vin Illmann C.V. Chakrabarti P. Doggo von Strandmann P.A.F. Vang W. Li
48	605	W. V. Ko S. Wimnenny E S. L. Meivner A. Demor D. L. Wiesbert I. and Jacobson S. P. (2015)
49	080	wr., ke s., wimpenny r.s.j., weixner A., komer K.L., wiechert O. and Jacobsen S.B. (2015)
50	687	internationatory comparison of magnesium isotopic compositions of 12 feisic to ultramatic igneous
51	688	rock standards analyzed by MC-ICPMS. Geochemistry Geophysics Geosystems, 16, 3197–3209.
52	689	
53	690	Teng FZ. (2017)
54	691	Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82, 219–287.
55	692	
56	693	Tipper E.T., Galy A. and Bickle M.J. (2006a)
5/		
50 50		24
59 60		
00		

2		
3	694	Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the
4	695	oceanic Ca cycle. Earth and Planetary Science Letters, 247, 267–279.
5	696	
6	697	Tipper E.T., Galy A., Gaillardet J., Bickle M.J., Elderfield H. and Carder E.A. (2006b)
7	698	The magnesium isotone budget of the modern ocean. Constraints from riverine magnesium isotone
8	699	ratios Farth and Planetary Science Letters 250 2/1–253
9	700	$\mathbf{ratios.} \mathbf{Lattit} \mathbf{and} \mathbf{ratical} \mathbf{y} \mathbf{Science} \mathbf{Letters}, \mathbf{z} \mathbf{y}, \mathbf{z} \neq 1 - \mathbf{z} \mathbf{y} \mathbf{z}$
10	700	Times F. Colleget I. Lowert D. Common F. and Wikita A. F. (2010)
11	701	Tipper E., Gaillardet J., Louvat P., Capmas F. and White A.F. (2010)
12	702	Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California.
13	703	Geochimica et Cosmochimica Acta, 74, 3883–3896.
14	704	
15	705	Uhlig D., Schuessler J.A., Bouchez J., Dixon J.L. and von Blanckenburg F. (2017)
16	706	Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable
17	707	isotopes. Biogeosciences. 14. 3111–3128.
18	708	
19	709	Wombacher F. Fisenhauer A. Heuser A. and Wever S. (2006)
20	703	Combined chemical congration of Mg. Co and Fe from geological reference complex for stable
21	710	Combined chemical separation of Mg, ca and Fe from geological reference samples for stable
22	/11	isotope determination by MC-ICP-MS and double-spike TIMS. In Geophysical Research Abstracts, 8,
23	712	A06219.
24	713	
25	714	Wombacher F., Eisenhauer A., Heuser A. and Weyer S. (2009)
20	715	Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by
28	716	MC-ICP-MS and double-spike TIMS. Journal of Analytical Atomic Spectrometry, 24, 627.
29	717	
30	718	Wombacher F. Fisenhauer A. Böhm F. Gussone N. Regenherg M. Dullo WC. and Rüggeberg A.
31	710	
32	719	
33	720	Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochimica et
34	721	Cosmochimica Acta, 75, 5797–5818.
35	722	
36	723	Young E.D. and Galy A. (2004)
37	724	The Isotope Geochemistry and Cosmochemistry of Magnesium. Reviews in mineralogy and
38	725	geochemistry Geochemistry, 55, 197–230.
39	726	
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
50 57		
5/ 50		
50 50		25
27		

List of tables:

Table 1: Materials descriptions and chemical compositions. GSJ: Geological Survey of Japan, BAS: Bureau of AnalysedSamples Ltd., NIST: National Institute for Science and Technology, CCRMP: Canadian Certified Reference MaterialProgramme, GSI: Geological Survey of Israel.

 Table 2: Summary of analytical techniques used by each laboratory

Table 3: δ^{26} Mg and δ^{25} Mg values of the low-temperature RMs determined in current and previous studies.

Table 4: Inter-laboratory consensus δ^{26} Mg and δ^{25} Mg values from this study and literature, if available, of low-temperature, earth-surface reference materials.

List of figures:

Figure 1: δ^{25} Mg' versus δ^{26} Mg' values determined in this study. Error bars are 2s of each result. All the data is in accordance with a regression line that crosses the origin (dotted line) and has a slope of 0.52, typical to mass-dependent fractionation of terrestrial material.

Figure 2: δ^{26} Mg values of the studied earth-surface low-temperature materials. Individual results from each laboratory (grey circles) are presented with their repeatability precision (2s, twice the standard deviation of n repeated measurements). Multiple results from individual laboratories represent full-procedure replicates (including dissolution, Mg columns, and MC-ICP-MS measurements). Capped error bars next to each individual results indicate the typical intermediate precision (2s) for each laboratory (based on repeat analyses of samples with different matrices over the long-term) for comparison with the measurement precision of the matrix RMs. Available literature data (specified in table 3) is also presented (white squares). Triangles, in the DSW-1 plot, refer to different samples of the Dead Sea brine. The interlaboratory arithmetic mean of these individual results is also shown (black circle) with 2s error bars and 95 % confidence interval (presented by grey dotted lines). The vertical axis in all plots ranges 0.8 ‰.

Figure 3: Inter-laboratory variance (2s reproducibilities) of the studied materials versus selected matrix element molar ratios (before Mg purification by column chemistry). Dolomite RMs, JDo-1 and CRM-512, are shown as diamonds. Low R² of the linear regression lines (dashed lines) demonstrates absence of any correlation.

Figure 1: δ²⁵Mg' versus δ²⁶Mg' values determined in this study. Error bars are 2s of each result. All the data is in accordance with a regression line that crosses the origin (dotted line) and has a slope of 0.52, typical to mass-dependant fractionation of terrestrial material.

Shalev et al.

Shalev et al.

Geostandards and Geoanalytical Research

Figure 2: δ^{26} Mg values of the studied earth-surface low-temperature materials. Individual results from each laboratory (grey circles) are presented with their repeatability precision (2s, twice the standard deviation of n repeated measurements). Multiple results from individual laboratories represent full-procedure replicates (including dissolution, Mg columns, and MC-ICP-MS measurements). Capped error bars next to each individual results indicate the typical intermediate precision (2s) for each laboratory (based on repeat analyses of samples with different matrices over the long-term) for comparison with the measurement precision of the matrix RMs. Available literature data (specified in table 3) is also presented (white squares). Triangles, in the DSW-1 plot, refer to different samples of the Dead Sea brine. The interlaboratory arithmetic mean of these individual results is also shown (black circle) with 2s error bars and 95 % confidence interval (presented by grey dotted lines). The vertical axis in all plots ranges 0.8 ‰.

Figure 3: Inter-laboratory variance (2s reproducibilities) of the studied materials versus selected matrix element molar ratios (before Mg purification by column chemistry). Dolomite RMs, JDo-1 and CRM-512, are shown as diamonds. Low R² of the linear regression lines (dashed lines) demonstrates absence of any correlation.

Table 1: Materials descriptions and chemical compositions. GSJ: Geological Survey of Japan, BAS: Bureau of Analysed Samples Ltd., NIST: National Institute for Science and Technology, CCRMP: Canadian Certified Reference Material Programme, GSI: Geological Survey of Israel.

			g/100g		0													mol/mol
Material	Producer	Data source	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃ (total)	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5		CO ₂	BaO	S		∑c(matrix- cations)/c(Mg) ¹
solids																		
JDo-1 dolomite	GSJ	suppliers certificate	0.216	0.001	0.017	0.0208	0.007	18.47	33.96	0.013	0.002	0.034		46.5				1.3
BCS - CRM 512 dolomite	BAS	suppliers certificate	0.379	0.002	0.055	0.03	0.004	21.59	30.61	<0.15	<0.01	<0.001		46.66	<0.02	<0.0085		1.0
BCS - CRM 513 limestone	BAS	suppliers certificate	0.228	<0.007	0.108	0.0275	0.01	0.182	55.59	<0.05	0.015	<0.01		43.71	<0.02	0.01		220
SRM 2709a soil	NIST	suppliers certificate	64.81	0.56	13.92	4.80	0.068	2.42	2.67	1.6	2.54	0.16						26
			µg/g															
			Si	Ti	Al	Fe	Mn	Mg	Ca	Na	К	Р	N _(total)	C _(total)	Ва	S	Cl	
SRM 1515 apple leaves	NIST	suppliers certificate			286	83	54	2710	15260	24.4	16100	1590	22500		49	1800	579	7.2
			µg/ml															
liquids			Si		Al	Fe	Mn	Mg	Ca	Na	К			C _(total)	Ва	S	Cl	
Cambridge-1 (pure Mg solution)	U. of Cambridge							10000										0
IAPSO Atlantic seawater	OSIL	Summerhayes and Thorpe 1996	2.8		5E-04	5.5E-5	1E-05	1290	412	10770	399			27.6	0.014	904	193 54	9.2
SLRS-5 river water	CANMET (CCRMP)	suppliers certificate	0.002		0.05	0.0912	0.004	2.54	10.5	5.38	0.839				0.014			5.0
SRM 1640a spring water	NIST	suppliers certificate	5.169		0.053	0.0365	0.04	1.05	5.57	3.112	0.575				0.151			10
			mmol/	kg solutic	on													
			Si		Al	Fe	Mn	Mg	Ca	Na	К			C _(total)	Ва	S	CI	
DSW-1 Dead Sea brine	GSI ²	Golan <i>et al.</i> 2016 ³						1663	391	1081	169			0.86			529 4	0.9

 1 Σ c(matrix cations)/c(Mg) refers to the molar ratio of the sum of Na, K, Ca, Si, Al, Ti, Fe and Mn relative to Mg. 2 DSW-1 can be obtained for free from the GSI (I. Gavrieli).

³ Concentrations refer to average Dead Sea (2013) and may be slightly different from DSW-1. However, the elemental ratios are similar.

Shalev et al.

Table 2: Summary of analytical techniques used by each laboratory

Laborat	Sample test pry portion ¹	Dissolution method	Mg column purification	Typical column procedure blank	Instrument ² , sample introduction system, uptake rate, acid matrix	Integration time/bracket ³ , number of brackets ⁴ ²⁴ Mg signal intensity / analyte concentration Typical Mg consumption per single analysis (n =1) ⁵	Typical intermediate precision on δ^{2^6} Mg; δ^{2^5} Mg (2s)
UCL/Bri	stol 10–50 mg (0.2 - 3 μg Mg)	carbonates: HCl leaves: HNO $_3$ + H $_2O_2$ soil: HF/ HNO $_3$ + HCl liquids: evaporation	2 steps: Bio-Rad AG50W-X12 resin in 2 N HNO ₃ + TRUSpec in 7 N HNO ₃	<0.4 ng Mg	Neptune (LR), Apex-Q desolvator, 50 µl/min, 2 % HNO₃	20x4.2 sec, 1 18 - 20 V / 100 ng/ml Mg 7 ng Mg	±0.06 ‰; ±0.04‰
GSI	100-150 mg (200-500 μg Mg)	carbonates: HNO ₃ liquids: evaporation	1 step: Bio-Rad AG50W-X12 resin in 1.3/2.3 N HCI	<100 ng Mg	nu plasma II (MR), DSN-100 desolvator, 100 μl/min, 0.1 N HNO ₃	20x10 sec, 1 25 - 35 V / 2000 ng/ml Mg 670 ng Mg	±0.11 ‰; ±0.05 ‰
GFZ	30 - 100 mg / in addition 1 g for SRM 1515 (2.5 - 15 µg Mg)	carbonates: HCl leaves: HNO ₃ + H ₂ O ₂ soil: HF/ HNO ₃ + HCl + H ₂ O ₂ liquids: HF + evaporation + H ₂ O ₂	2 steps: Bio-Rad AG50W-X12 resin in 1 N/2 N HNO $_3$ (repeated twice)	<12 ng Mg	Neptune (MR), double pass cyclon- Scott quartz-glass spray chamber (SIS), 100 µl/min, 0.3 N HNO ₃	20x4.2 sec, 1 10 - 15 V / 500 ng/ml Mg 70 ng Mg	±0.10 ‰; ±0.06 ‰
CGS	50-100 mg (20 - 50 µg Mg)	carbonates: HCl leaves: HNO $_3$ + H $_2O_2$ soil: HF/ HNO $_3$ liquids: evaporation	3 steps: Bio-Rad AG50W-X12 resin in 2.5 N HCl (twice) + 0.4 N HNO $_3$	<2 ng Mg	Neptune (MR), cyclonic quartz- glass spray chamber, 100 μl/min, 3 % (v/v) HNO ₃	30x8.4 sec, 3 4 - 8 V / 500 ng/ml Mg 630 ng Mg	±0.13 ‰; ±0.09 ‰
GEOMA	R same as CGS	same as CGS	same as CGS	same as CGS	AXIOM (LR), Aridus desolvator, 50 μ l/min, 5 % HNO ₃	50x2 sec, 9 3.5 V / 200 ng/ml Mg 150 ng Mg	±0.08 ‰; ±0.06 ‰

¹ The test portion refers to the aliquot amount of the original sample taken for analysis. Amount of Mg processed through column purification is given in parenthesis.

² LR and MR refers to the mass resolving power R_P, defined as m/Δm = m/[m(5%) – m(95%)], where m(5%) and m(95%) are the masses at 5% and 95% peak intensity, respectively, and m is the mass of the peak. LR = low R_P (ca. >1000), MR = medium R_P (>6000)

³ Integration time/bracket refers to the measurement time of a sample or each one of the bracketing standards in a single bracket.

⁴ The number of brackets that were used to calculate a single δ result (n = 1 in Table 3)

⁵ Including the data acquisition time only, without take-up time, etc.

Geostandards and Geoanalytical Research

Page	e 46	of	49

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
21	
5Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42	
7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	
44 /r	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
20	
5/	
58	
59	

60

Table 3: δ^{26} Mg and δ^{25} Mg values of	the low-temp	perature RMs	determ	nined in currer	nt and previou	us studie:	S.
0	δ ²⁶ Mg _{DSM3}	95% $conf^1$	2s	$\delta^{25}Mg_{DSM3}$	95% conf ¹	2s	n ²
Internationally established RMs							
Cambridge-1 (pure Mg solution)							
Bristol/UCL ⁴	-2.63	0.01	0.07	-1.36	0.00	0.05	126
CGS	-2.59	0.04	0.16	-1.34	0.03	0.11	18
GSI	-2.62	0.02	0.14	-1.35	0.01	0.07	36
GFZ	-2.61	0.01	0.07	-1.35	0.01	0.05	62
GEOMAR⁵	-2.63	0.15	0.12	-1.31	0.04	0.03	3
Arithmetic mean	-2.62	0.02	0.03	-1.34	0.02	0.04	N ³ = 5
An and Huang 2014 (compilation)	-2.61		0.05				
IAPSO Atlantic seawater (OSIL)							
Bristol/UCL ⁶	-0.82	0.01	0.06	-0.43	0.01	0.04	26
CGS	-0.87	0.03	0.10	-0.45	0.02	0.06	14
GSI	-0.84	0.03	0.09	-0.44	0.02	0.05	12
GFZ A	-0.81	0.03	0.12	-0.41	0.02	0.06	13
GFZ B ^{7,8}	-0.85	0.06	0.07	-0.43	0.05	0.07	4
GEOMAR	-0.81	0.05	0.04	-0.40	0.05	0.04	3
Arithmetic mean	-0.83	0.02	0.05	-0.43	0.02	0.04	N ³ = 6
Ling et al. 2011 (compilation)	-0.83		0.09	-0.43		0.06	90
Curfe ee weter DMe							
DSW-1 (Dead Sea bring)							
	-0.68	0.09	0 17	-0 34	0.05	0 10	6
	-0.67	0.03	0.11	-0.35	0.05	0.10	35
GSI B ^{7,9}	-0.51	0.02	0.11	-0.28	0.01	0.03	8
GEZ A	-0.59	0.03	0.07	-0.30	0.01	0.04	2
$GFZB^7$	-0.57	0.05	0.10	-0.30	0.03	0.06	- 7
$GFZ C^7$	-0.53	0.05	0.12	-0.26	0.03	0.07	7
$GFZ D^7$	-0.54	0.06	0.08	-0.26	0.05	0.06	4
Karasinski <i>et al.</i> 2017 ⁹	-0.57	0.06	0.18				10
Arithmetic mean	-0.58	0.05	0.12	-0.30	0.03	0.07	N ³ = 8
SLRS-5 (river water)							
Bristol/UCL	-1.14	0.05	0.06	-0.59	0.04	0.05	4
CGS	-1.11	0.10	0.20	-0.60	0.06	0.12	6
GFZ A ⁷	-1.30	0.43	0.10	-0.72	0.31	0.07	2
GFZ B ⁷	-1.31	0.05	0.09	-0.67	0.02	0.04	6
GFZ C ⁷	-1.25	0.03	0.06	-0.65	0.02	0.05	6
GFZ D ⁷	-1.24	0.05	0.12	-0.64	0.03	0.07	8
GFZ E ^{7,8}	-1.28	0.04	0.10	-0.67	0.03	0.07	10
GEOMAR	-1.17	0.05	0.04	-0.57	0.03	0.03	3
Arithmetic mean	-1.22	0.06	0.15	-0.64	0.04	0.10	N ³ = 8
NIST SRM 1640a (spring water)		_		_			
Bristol/UCL A'	-0.76	0.06	0.05	-0.42	0.06	0.05	3
Bristol/UCL B'	-0.81	0.07	0.05	-0.44	0.05	0.04	3

Shalev et al.

Page 47 of 49

	δ ²⁶ Μα	95% conf ¹	20	δ ²⁵ Μα	95% conf ¹	20
		95% COIII	23		95% COIII	23
	-0.72	0.10	0.16	-0.35	0.04	0.07
GFZ A'	-0.75	0.14	0.03	-0.39	0.46	0.10
GFZ B'	-0.73			-0.37		
GFZ C ⁷	-0.72	0.07	0.06	-0.39	0.07	0.05
GFZ D ⁷	-0.68	0.02	0.07	-0.35	0.01	0.03
GFZ E ^{7,8}	-0.73	0.05	0.03	-0.39	0.06	0.03
GEOMAR	-0.68	0.07	0.06	-0.31	0.04	0.03
Arithmetic mean	-0.73	0.03	0.08	-0.38	0.03	0.08
Organic-rich solids	_					
NIST SRM 2709a (soil)	_					
Bristol/UCL	-0.20	0.02	0.02	-0.11	0.04	0.03
CGS	-0.11	0.07	0.17	-0.07	0.04	0.08
$GEZ A (MW)^7$	-0.14	0.02	0.09	-0.07	0.01	0.05
$GFZ B^7$	-0 17	0.02	0 10	-0.09	0.01	0.05
GF7 C ⁷	-0.15	0.04	0.10	0.0 <i>9</i>	0.02	0.05
GFZ D ^{7,8}	-0.13	0.00	0.00	-0.00	0.04	0.05
	-0.14	0.10	0.02	-0.08	0.00	0.01
Arithmetic mean	-0.15	0.03	0.06	-0.08	0.02	0.03
NIST SRM 1515 (apple leaves)						
Bristol/UCL	-1.24	0.01	0.01	-0.64	0.08	0.06
CGS	-1.24	0.08	0.13	-0.65	0.08	0.13
GFZ A (MW) ^{7,8}	-1.24	0.04	0.01	-0.64	0.04	0.01
GFZ B ^{7,8}	-1.20	0.04	0.12	-0.61	0.02	0.07
GFZ C ^{7,8}	-1.20	0.02	0.02	-0.60	0.08	0.07
GEOMAR	-1.19	0.05	0.04	-0.58	0.03	0.03
Arithmetic mean	-1.22	0.03	0.05	-0.62	0.03	0.05
Carbonates	_					
JDo-1 (dolomite)						
Bristol/UCL	-2.25	0.06	0.05	-1.16	0.05	0.04
•	-			-		
CGS	-2.49	0.03	0.05	-1.30	0.06	0.12
CGS GSI	-2.49 -2.19	0.03 0.04	0.05 0.07	-1.30 -1.14	0.06	0.12
CGS GSI GFZ A ⁷	-2.49 -2.19 -2.36	0.03 0.04 0.25	0.05 0.07 0.06	-1.30 -1.14 -1.24	0.06 0.04 0.03	0.12 0.07 0.01
CGS GSI GFZ A ⁷ GFZ B ⁷	-2.49 -2.19 -2.36 -2 32	0.03 0.04 0.25 0.05	0.05 0.07 0.06 0.10	-1.30 -1.14 -1.24 -1 20	0.06 0.04 0.03	0.12 0.07 0.01
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009	-2.49 -2.19 -2.36 -2.32	0.03 0.04 0.25 0.05	0.05 0.07 0.06 0.10	-1.30 -1.14 -1.24 -1.20 -1.22	0.06 0.04 0.03 0.03	0.12 0.07 0.01 0.05
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009	-2.49 -2.19 -2.36 -2.32 -2.38	0.03 0.04 0.25 0.05 0.06	0.05 0.07 0.06 0.10 0.18	-1.30 -1.14 -1.24 -1.20 -1.22	0.06 0.04 0.03 0.03 0.02	0.12 0.07 0.01 0.05 0.07
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009 Pearce <i>et al.</i> 2012	-2.49 -2.19 -2.36 -2.32 -2.38 -2.33	0.03 0.04 0.25 0.05 0.06 0.04	0.05 0.07 0.06 0.10 0.18 0.09	-1.30 -1.14 -1.24 -1.20 -1.22 -1.22	0.06 0.04 0.03 0.03 0.02 0.025	0.12 0.07 0.01 0.05 0.07 0.06
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009 Pearce <i>et al.</i> 2012 Mavromatis <i>et al.</i> 2013	-2.49 -2.19 -2.36 -2.32 -2.38 -2.33 -2.37	0.03 0.04 0.25 0.05 0.06 0.04 0.03	0.05 0.07 0.06 0.10 0.18 0.09 0.08	-1.30 -1.14 -1.24 -1.20 -1.22 -1.22 -1.25	0.06 0.04 0.03 0.03 0.02 0.025 0.02	0.12 0.07 0.01 0.05 0.07 0.06 0.06
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009 Pearce <i>et al.</i> 2012 Mavromatis <i>et al.</i> 2013 Mavromatis <i>et al.</i> 2014	-2.49 -2.19 -2.36 -2.32 -2.38 -2.33 -2.37 -2.36	0.03 0.04 0.25 0.05 0.06 0.04 0.03 0.03	0.05 0.07 0.06 0.10 0.18 0.09 0.08 0.06	-1.30 -1.14 -1.24 -1.20 -1.22 -1.22 -1.25 -1.25	0.06 0.04 0.03 0.03 0.02 0.025 0.02 0.03	0.12 0.07 0.01 0.05 0.07 0.06 0.06
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009 Pearce <i>et al.</i> 2012 Mavromatis <i>et al.</i> 2013 Mavromatis <i>et al.</i> 2014 Beinlich <i>et al.</i> 2014	-2.49 -2.19 -2.36 -2.32 -2.38 -2.33 -2.33 -2.37 -2.36 -2.38	0.03 0.04 0.25 0.05 0.06 0.04 0.03 0.03 0.04	0.05 0.07 0.06 0.10 0.18 0.09 0.08 0.06 0.08	-1.30 -1.14 -1.24 -1.20 -1.22 -1.22 -1.25 -1.25 -1.23	0.06 0.04 0.03 0.02 0.025 0.02 0.02 0.03 0.03	0.12 0.07 0.01 0.05 0.07 0.06 0.06 0.06
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009 Pearce <i>et al.</i> 2012 Mavromatis <i>et al.</i> 2013 Mavromatis <i>et al.</i> 2014 Beinlich <i>et al.</i> 2014	-2.49 -2.19 -2.36 -2.32 -2.38 -2.33 -2.37 -2.36 -2.38 -2.38	0.03 0.04 0.25 0.05 0.06 0.04 0.03 0.03 0.04 0.29	0.05 0.07 0.06 0.10 0.18 0.09 0.08 0.08 0.08 0.36	-1.30 -1.14 -1.24 -1.20 -1.22 -1.22 -1.25 -1.25 -1.23 -1.23 -1.27	0.06 0.04 0.03 0.02 0.025 0.02 0.02 0.03 0.03 0.03 0.07	0.12 0.07 0.01 0.05 0.07 0.06 0.06 0.06 0.05 0.09
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009 Pearce <i>et al.</i> 2012 Mavromatis <i>et al.</i> 2013 Mavromatis <i>et al.</i> 2014 Beinlich <i>et al.</i> 2014 Lavoie <i>et al.</i> 2014 Arithmetic mean	-2.49 -2.19 -2.36 -2.32 -2.38 -2.33 -2.37 -2.36 -2.38 -2.38 -2.38 -2.38 -2.38	0.03 0.04 0.25 0.05 0.06 0.04 0.03 0.03 0.04 0.29 0.05	0.05 0.07 0.06 0.10 0.18 0.09 0.08 0.08 0.06 0.08 0.36 0.15	-1.30 -1.14 -1.24 -1.20 -1.22 -1.22 -1.25 -1.25 -1.23 -1.23 -1.27 -1.23	0.06 0.04 0.03 0.02 0.025 0.02 0.03 0.03 0.03 0.07 0.03	0.12 0.07 0.05 0.07 0.06 0.06 0.06 0.05 0.09 0.09
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009 Pearce <i>et al.</i> 2012 Mavromatis <i>et al.</i> 2013 Mavromatis <i>et al.</i> 2014 Beinlich <i>et al.</i> 2014 Lavoie <i>et al.</i> 2014 Arithmetic mean BCS - CRM 512 (dolomite)	-2.49 -2.19 -2.36 -2.32 -2.38 -2.33 -2.37 -2.36 -2.38 -2.38 -2.38 -2.35	0.03 0.04 0.25 0.05 0.06 0.04 0.03 0.03 0.03 0.04 0.29 0.05	0.05 0.07 0.06 0.10 0.18 0.09 0.08 0.06 0.08 0.36 0.15	-1.30 -1.14 -1.24 -1.20 -1.22 -1.22 -1.25 -1.25 -1.25 -1.23 -1.27 -1.23	0.06 0.04 0.03 0.02 0.025 0.02 0.03 0.03 0.03 0.07 0.03	0.12 0.07 0.01 0.05 0.07 0.06 0.06 0.06 0.06 0.05 0.09 0.09
CGS GSI GFZ A ⁷ GFZ B ⁷ Wombacher <i>et al.</i> 2009 Pearce <i>et al.</i> 2012 Mavromatis <i>et al.</i> 2013 Mavromatis <i>et al.</i> 2014 Beinlich <i>et al.</i> 2014 Lavoie <i>et al.</i> 2014 Arithmetic mean BCS - CRM 512 (dolomite) Bristol/UCL A ⁷	-2.49 -2.19 -2.36 -2.32 -2.38 -2.33 -2.37 -2.36 -2.38 -2.38 -2.38 -2.38 -2.38	0.03 0.04 0.25 0.05 0.06 0.04 0.03 0.03 0.04 0.29 0.05	0.05 0.07 0.06 0.10 0.18 0.09 0.08 0.06 0.08 0.36 0.15	-1.30 -1.14 -1.24 -1.20 -1.22 -1.22 -1.25 -1.25 -1.23 -1.27 -1.23 -1.27 -1.23	0.06 0.04 0.03 0.02 0.025 0.02 0.03 0.03 0.03 0.07 0.03	0.12 0.07 0.01 0.05 0.07 0.06 0.06 0.05 0.09 0.09 0.09

Shalev et al.

	$\delta^{26}Mg_{DSM3}$	95% $conf^1$	2s	$\delta^{25}Mg_{DSM3}$	95% $conf^1$	2s	n ²
CGS	-2.16	0.11	0.09	-1.13	0.04	0.03	3
GSI	-2.00	0.21	0.27	-1.03	0.09	0.12	4
GFZ A ⁷	-2.09	0.29	0.07	-1.08	0.06	0.01	2
GFZ B ⁷	-1.97	0.02	0.03	-1.03	0.01	0.02	7
Arithmetic mean	-2.03	0.09	0.17	-1.05	0.05	0.09	N ³ = 6
BCS - CRM 513a (limestone)							
Bristol/UCL A ⁷	-4.48	0.10	0.08	-2.33	0.07	0.06	3
Bristol/UCL B ⁷	-4.50	0.11	0.09	-2.33	0.07	0.06	3
GFZ	-4.41	0.08	0.07	-2.29	0.07	0.06	3
Arithmetic mean	-4.46	0.12	0.10	-2.32	0.05	0.04	3
Weighted mean	-4.45		0.06	-2.32		0.03	N ³ = 3

¹95 % confidence intervals calculated as $2SE_t$ (95 % conf) = t s/vn, with s = standard deviation of n (or N) repeated measurements or replicates, t = correction factor for low n (or N) from Student's t-distribution at 95% probability.

² n is the number of δ values used for the calculation of the result given by each laboratory. As mentioned in Table 2, n =1 refers to one bracket measured at Bristol/UCL, GSI and GFZ, an average of three brackets measured at CGS or an average of nine brackets measured at GEOMAR.

 3 N refers to the number of average δ values used for the calculations of the inter-laboratory arithmetic mean.

⁴ from: Pogge von Strandmann *et al.* 2011.

⁵ Processed through columns.

⁶ from: Foster *et al.* 2010.

⁷ A, B, C, D, and E are replicates of the full procedure including sample dissolution (solids) or evaporation (liquids), Mg column purification, and MC-ICP-MS measurements. MW indicates solid sample dissolution using a microwave system. iid sampes

⁸ from Uhlig *et al.* 2017.

⁹ Different samples of the Dead Sea brine.

Shalev et al.

Table 4: Inter-laboratory consensus δ^{26} Mg and δ^{25} Mg values from this study and literature, if available, of lowtemperature, earth-surface reference materials.

	δ ²⁶ Mg _{DSM3}	95% conf ¹	$\delta^{25}Mg_{DSM3}$	95% conf ¹	N²
DSW-1 (Dead Sea brine)	-0.58	0.05	-0.30	0.03	8
SLRS-5 (river water)	-1.22	0.06	-0.64	0.04	8
NIST SRM 1640a (spring water)	-0.73	0.03	-0.38	0.03	9
NIST SRM 2709a (soil)	-0.15	0.03	-0.08	0.02	6
NIST SRM 1515 (apple leaves)	-1.22	0.03	-0.62	0.03	6
JDo-1 (dolomite)	-2.35	0.05	-1.23	0.03	11
BCS - CRM 512 (dolomite)	-2.03	0.09	-1.05	0.05	6
BCS - CRM 513a (limestone)	-4.46	0.12	-2.32	0.05	3

4.4 L 3SE₁ (95 % c.. ution at 95% probas. a calculation of the conse. ¹95 % confidence intervals calculated as 2SE_t (95 % conf) = t·s/vN, with s = standard deviation of N full-procedure replicates, t = correction factor for low N from Student's t-distribution at 95% probability.

² N is the number of results used for the calculation of the consensus values and the 95 % confidence interval. These are detailed in Table 3.

Shalev et al.