
For Review Only

 

 

 

 

 

 

Mg isotope inter-laboratory comparison of reference 

materials from earth-surface low-temperature 
environments 

 

 

Journal: Geostandards and Geoanalytical Research 

Manuscript ID GGR-0525.R2 

Manuscript Type: Original Article 

Date Submitted by the Author: n/a 

Complete List of Authors: Shalev, Netta; The Hebrew University of Jerusalem, Institute of Earth 

Science; The Geological Survey of Israel; ETH Zurich, Earth sciences 
Farkas, Juraj; Czech University of Life Sciences Prague, Faculty of 
Environmental Sciences; Czech Geological Survey, Department of 
Geochemistry; University of Adelaide Faculty of Sciences, Department of 
Earth Sciences 
Fietzke, Jan; GEOMAR, Marine Geosystems 
Novak, Martin; Czech Geological Survey, Department of Geochemistry 
Schuessler, Jan; GFZ German Research Centre for Geosciences 
Pogge von Strandmann, Philip ; University College London, and Birkbeck, 
University of London, London Geochemistry and Isotope Centre (LOGIC); 
Bristol University, Bristol Isotope Group (BIG) 
Törber, Philip ; Czech University of Life Sciences Prague, Faculty of 

Environmental Sciences; Czech Geological Survey, Department of 
Geochemistry; University of Adelaide Faculty of Sciences, Department of 
Earth Sciences 

Keywords: 
Mg isotopes, reference materials, Low-temperature, Earth-surface, Inter-
laboratory comparison 

  

 

 

Geostandards and Geoanalytical Research
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/153307707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For Review Only

1 
 

Mg isotope inter-laboratory comparison of reference materials from earth-1 

surface low-temperature environments 2 

 3 

Netta Shalev (1,2,3), Juraj Farkaš (4,5,6), Jan Fietzke (7), Martin Novák (5), Jan A. Schuessler (8), 4 

Philip A.E. Pogge von Strandmann (9,10), Philip B. Törber (4,5,6) 5 

 6 

Affiliations: 7 

(1) Institute of Earth Science, the Hebrew University of Jerusalem, Edmond J. Safra campus, 91904, Jerusalem, Israel 8 

(2) Geological Survey of Israel, 30 Malkhe Israel Street, 95501, Jerusalem, Israel 9 

(3) Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, 10 

Switzerland; netta.shalev@erdw.ethz.ch, Tel: +41 44 633 67 84, Fax:  +41 44 632 11 79 11 

(4) Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech 12 

Republic; toerber@fzp.czu.cz 13 

(5) Department of Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic; 14 

martin.novak@geology.cz 15 

(6) Department of Earth Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; 16 

juraj.farkas@adelaide.edu.au 17 

(7) GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany; jfietzke@geomar.de 18 

(8) GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; jan.schuessler@gfz-19 

potsdam.de 20 

(9) London Geochemistry and Isotope Centre (LOGIC), University College London, and Birkbeck, University of London, 21 

Gower Street, London, WC1E 6BT, UK; p.strandmann@ucl.ac.uk 22 

(10) Bristol Isotope Group (BIG), Bristol University, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ.  23 

  24 

Page 14 of 49Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

2 
 

Abstract 25 

To enable quality control of measurement procedures for determinations of Mg isotope amount 26 

ratios, expressed as δ26Mg and δ25Mg values, in earth-surface studies, the δ26Mg and δ25Mg values of 27 

eight reference materials (RMs) were determined by inter-laboratory comparison between five 28 

laboratories and considering published data, if available. These matrix RMs, including river water 29 

SLRS-5, spring water SRM 1640a, Dead Sea brine DSW-1, dolomites JDo-1 and CRM 512, limestone 30 

CRM 513, soil SRM 2709a and vegetation SRM 1515 apple leaves, are representative for a wide 31 

range of earth-surface materials from low-temperature environments. The inter-laboratory 32 

variability, 2s (twice the standard deviation), of all eight RMs ranges from 0.05 to 0.17 ‰ in δ26Mg. 33 

Thus, it is suggested that all these materials are suitable for validation of δ26Mg and δ25Mg 34 

determinations of earth-surface geochemical studies. 35 

Keywords: Mg isotopes, Reference materials, Low-temperature, Earth-surface, Inter-laboratory 36 

comparison 37 

 38 

1. Introduction 39 

Magnesium is a major element of the silicate Earth and vital in biogeochemical cycling. It has three 40 

stable isotopes: 24Mg (78.99%), 25Mg (10.00%), and 26Mg (11.01%). Analytical improvements over the 41 

past decades have made the differentiation between the Mg isotope amount ratios (expressed as 42 

δ26Mg and δ25Mg relative to the international δ-zero standard, DSM3; equation 1; Galy et al. 2003, 43 

IUPAC, see Brand et al., 2014) of terrestrial materials possible and enable today’s rapid increase in 44 

the use of Mg isotopes as a powerful tool in investigations of Earth’s biogeochemistry (e.g., Young 45 

and Galy 2004, Teng 2017). Yet, determinations of δ26Mg and δ25Mg values of natural samples are 46 

challenging, due to the significant risk of bias introduced during Mg purification, the large 47 

instrumental mass bias and the sensitivity of the sample-standards-bracketing measurements to 48 

matrix effects (e.g., Young and Galy 2004, An and Huang 2014, Teng 2017). Hence, processing well-49 
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characterised reference materials (RMs), similar in matrix to the samples, is required to validate the 50 

results. While δ26Mg and δ25Mg values of silicate rock RMs are available for high-temperature 51 

systems (Teng et al. 2015), Mg isotope data of RMs representative of samples with complex matrices 52 

from earth-surface low-temperature environments are scarce (Bolou-Bi et al. 2009, Foster et al. 53 

2010, An and Huang 2014, Teng 2017). To assess systematic errors and achieve comparability of Mg 54 

isotope data between different laboratories concerning earth-surface low-temperature systems, 55 

well-characterised matrix RMs need to be established. 56 

δ26Mg and δ25Mg values are being used as a biogeochemical tool to study many different processes 57 

in low-temperature environments, e.g., in marine environments and marine sediments and rocks 58 

(e.g., Ling et al. 2011, Wombacher et al. 2011, Pogge von Strandmann et al. 2014, Higgins and Schrag 59 

2015), evaporitic environments (e.g., Geske et al. 2015b, Shalev et al. 2017), soils and vegetation 60 

(e.g., Tipper et al. 2010, Opfergelt et al. 2012, Pogge von Strandmann et al. 2012, Ma et al. 2015, 61 

Uhlig et al. 2017) and ground water, spring water and rivers (e.g., Tipper et al. 2006b, Pogge von 62 

Strandmann et al. 2008, Brenot et al. 2008, Chapela Lara et al. 2017). The most fractionated 63 

materials on earth are found in low-temperature environments, with the lowest δ26Mg values found 64 

in carbonates (δ26Mg of -5.6 ‰, Wombacher et al. 2011) and the highest in weathered residual 65 

silicates (δ26Mg of +1.8 ‰, Liu et al. 2014b) and evaporites (δ26Mg= +1.4 ‰, Permian carnallite, 66 

Shalev et al. 2017). However, the only natural earth surface RM which is well-characterised to date is 67 

seawater (δ26Mg of -0.83 ±0.09 ‰; 2s; N=90; Foster et al. 2010, Ling et al. 2011 and references 68 

therein). Published δ26Mg and δ25Mg data of earth surface materials from more than two 69 

laboratories (N >2) are also available for Cal-S limestone (-4.38 ±0.09 ‰, 2s, N=3; Wombacher et al. 70 

2006; Bolou-Bi et al. 2009), SCo-1 shale (-0.89 ±0.08 ‰, 2s, N=3), JCp-1 aragonite (-1.96 ±0.05 ‰, 2s, 71 

N=4) and JDo-1 dolomite (-2.37 ±0.04 ‰, 2s, N=5; Teng 2017 and references therein). Here, N is 72 

used to denote the number of full-procedure replicates, i.e. independent sample dissolution and Mg 73 

purification, while n is used to denote the number of repeated measurements of the purified Mg 74 

sample solutions by MC-ICP-MS. 2s is twice the standard deviation on N or n values. 75 
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 76 

In this study, the δ26Mg and δ25Mg values of eight RMs (Table 1), representative for their respective 77 

earth surface environments, were estimated by inter-laboratory comparison, conducted in five 78 

laboratories. The participating laboratories utilised different sample preparation methods, i.e., 79 

different analyte-matrix separation procedures, and MC-ICP-mass spectrometers from various 80 

manufacturers with different sample introduction systems (Table 2). This approach is suitable to test 81 

the applicability of these different measurement methods with respect to the varying chemical and 82 

physical material properties and to identify potential bias originating from differences in sample 83 

preparation and instrument setup. Whereas measurement results from a single laboratory might 84 

produce very precise δ26Mg and δ25Mg values for any material never analysed before, there is still 85 

the potential risk that the data is affected by undetected bias. We suggest that our inter-laboratory 86 

comparison study provides a robust and practicable approach to provide the geo-analytical 87 

community with fit-for-purpose δ26Mg and δ25Mg values for matrix-RMs with confidence intervals 88 

constrained by the currently attainable level of measurement precision. Materials of this study 89 

included solids: carbonates, soil and organic material (leaves), and liquids: river water, spring water 90 

and brine, thereby represent most of the material types from earth surface low-temperature 91 

environments studied to date. Most selected RMs are provided by reference material producers and 92 

are widely available to the community. Also, certified mass fractions data are available for most 93 

materials studied in this work (Table 1). Based on the results of this study and published values, 94 

where available, recommended δ26Mg and δ25Mg values are proposed. These can be used as quality 95 

control RMs in laboratories analysing earth surface materials to verify their measurement methods. 96 

[Table 1] 97 

 98 

2. Methods 99 

2.1. Investigated materials 100 
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The investigated materials include: JDo-1 and BCS-CRM 512 dolomites, BCS-CRM 513 limestone, 101 

SRM 2709a soil, SRM 1515 apple leaves, IAPSO Atlantic seawater, SLRS-5 river water, SRM 1640a 102 

spring water and DSW-1 Dead Sea brine. Solid samples are powdered and require complete 103 

dissolution prior to the column chemistry. The published chemical compositions of the investigated 104 

materials are described in Table 1. ∑c(Matrix-cations)/c(Mg) molar ratios (i.e., the molar ratios of the 105 

sum of Na, K, Ca, Si, Al, Ti, Fe and Mn relative to Mg) of the RMs vary significantly: Na/Mg ratios 106 

range between 0.0 (carbonates) and 8.8 (seawater), Ca/Mg ratios range between 0.2 (seawater) and 107 

220 (BCS-CRM 513 limestone) and K/Mg ratios range between 0.0 (JDo-1 and BCS-CRM 512 108 

dolomites) and 3.7 (SRM 1515 apple leaves). The soil (SRM 2709a), spring water (SRM 1640a) and 109 

limestone (BCS-CRM 513) have the most complex matrices with significant Si/Mg ratios (18, 3.3 and 110 

0.8, respectively), Al/Mg ratios (4.6, 0.04 and 0.45, respectively), Fe/Mg ratios (1.0, 0.02 and 0.08, 111 

respectively) and Ti/Mg ratio (0.12 in the soil SRM 2709a). 112 

 113 

2.2. Measurement procedures 114 

The eight RMs, IAPSO Atlantic seawater and Cambridge-1 were analysed for δ26Mg and δ25Mg values 115 

in the laboratories of the University of Bristol (BIG) and University of London (UCL), UK (BIG LOGIC); 116 

The Geological Survey of Israel (GSI), Jerusalem, Israel; the Helmholtz Laboratory for the 117 

Geochemistry of the Earth Surface (HELGES) at GFZ Potsdam, Germany; the Czech Geological Survey 118 

(CGS) in Prague (Czech Republic); and the GEOMAR Helmholtz Center for Ocean Research, Kiel, 119 

Germany. The powdered or liquid RMs were split and spread among the different laboratories. Each 120 

laboratory conducted measurements, using its own previously established measurement procedure, 121 

to get completely independent results, and potentially identify any method-specific bias. The 122 

different procedures for material digestion, Mg purification and instrumentation, conducted in each 123 

laboratory, are described below and summarized in Table 2. All Mg isotope ratio measurements 124 

were conducted by MC-ICP-MS using standard-sample bracketing and the calculated isotope amount 125 
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ratios are reported as per mil deviation from the delta-zero measurement standard DSM3 in the 126 

delta notation according to Coplen (2011): 127 

(1) ( )
( ) 











−== 1

MgMg

MgMg
 Mg Mg

DSM3

24x

sample

24x

3sample/DSM

24/xx δδ  128 

where x denotes either 26 or 25 and DSM3 is the mean value of the two bracketing standards 129 

measured before and after the sample, respectively. Multiplication of equation (1) with a factor 130 

1000 gives the per mil (‰) deviation relative to DSM3. 131 

To validate the different measurement procedures used by the participating laboratories and to test 132 

for any potential inter-laboratory bias, we adapted the following approach. During this study, 133 

Cambridge-1 and IAPSO Atlantic seawater were analysed by all participating laboratories. These 134 

results are compared to literature values (e.g., compilations in Teng 2017; An and Huang 2014; and 135 

the in GeoReM database, Jochum et al. 2005) in order to validate the measurement procedure of 136 

each laboratory. Thereby, the pure Mg-solution Cambridge-1 was used to evaluate the repeatability 137 

precision of the MC-ICP-MS measurements (solution not processed through columns) for each 138 

laboratory. Then, seawater was used to evaluate the intermediate precision of the entire 139 

measurement procedure for each laboratory, including sample pre-treatment, matrix separation by 140 

column chemistry, and MC-ICP-MS analysis. In addition, a typical intermediate precision was 141 

estimated by each laboratory (Table 2), based on long-term (more than one year) repeated 142 

measurements of one or more matrix materials as detailed below (sections 2.2.1-2.2.4). The only 143 

case where this long-term experience with matrix material is missing is at GEOMAR and therefore 144 

only Cambridge-1 repeatability precision was considered. These estimates are considered as a 145 

benchmark against which we can evaluate the precision obtained on the matrix RMs investigated in 146 

this inter-laboratory comparison study. Then, to provide consensus δ26Mg and δ25Mg values for each 147 

earth-surface reference material, the arithmetic mean of N ≥ 3 full-procedure-replicates was 148 

calculated. These comprised all data produced by the participating laboratories and – where 149 

available – literature data and are reported together with 95% confidence intervals. 150 
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[Table 2] 151 

 152 

2.2.1.  Sample preparation and Mg isotope ratio measurements at UCL and Bristol (BIG 153 

LOGIC) 154 

Procedures for sample analyses are similar to those described in previous studies (Pogge von 155 

Strandmann 2008, Foster et al. 2010, Pogge von Strandmann et al. 2011, 2012). A brief description is 156 

given below. 157 

Carbonate powders (ca. 20 mg) were dissolved in 2 mol/l HCl. Apple leaves (SRM 1515, ca 50 mg) 158 

were dissolved in repeated steps of concentrated HNO3, heated at 130 °C and evaporated to 159 

dryness. Soil powders (ca. 10 mg) were dissolved in stages of concentrated HF-HNO3, followed by 160 

HNO3, and finally 6 mol/l HCl. Water samples (ca. 0.01–0.2 ml) were simply dried down. 161 

Subsequently, the samples were dissolved in 2 mol/l HNO3, and a small aliquot (around 0.2 - 3 µg 162 

Mg) was taken for column chemistry.  163 

Magnesium analyte-matrix separation was performed by a two-stage cation exchange chemistry, 164 

using Bio-Rad AG® 50W-X12 (200-400 mesh) resin in 2 mol/l HNO3, as described by Pogge von 165 

Strandmann et al. (2011). Soil samples were subjected to an additional column to quantitatively 166 

remove Ti (because 48Ti2+ and 50Ti2+ are direct interferences on 24Mg+ and 25Mg+). This column 167 

contained 0.25 ml of TRU-Spec ™ resin, and Mg was eluted in 7 mol/l HNO3 (Pogge von Strandmann 168 

et al. 2012). The total procedural blank for Mg isotope ratio measurements by this method is ca. 0.4 169 

ng Mg, which is insignificant compared to the amount of Mg put through chemistry (<0.2 %). Splits 170 

of the elution were collected before and after the Mg collection bracket, to ensure close to 100 % 171 

Mg yield was achieved, i.e.,  <0.1 % of the processed Mg was detected in these splits. 172 

Magnesium isotope ratio measurements were conducted using a Thermo Scientific Neptune MC-ICP-173 

MS with a high-sensitivity “X” Ni skimmer cone and standard Ni sample cone interface. A purified 174 

sample solution of ca. 100 ng/ml Mg was introduced via an Elemental Scientific Inc. Apex-Q, with a 175 

ca. 50 µl/min uptake rate nebuliser tip, in 2 % HNO3 (v/v). Mg isotope ratios were measured in low 176 
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mass resolution mode (see footnote in table 2), with all intensities at m/z 24, 25 and 26 measured 177 

simultaneously in separate Faraday cups (H3, Centre, L3). Each individual measurement consisted of 178 

20 ratios (84 seconds total integration time). These conditions gave typical signals of 18 - 20 V/100 179 

ng/ml on 24Mg. The on-peak background in 2 % HNO3 (v/v) was repeatedly recorded during the 180 

sequence and subtracted from all standard and sample intensities. Each sample was analysed 3 or 4 181 

times (n = 3 or n = 4 in Table 3) during the same session (336 seconds/sample), each time separated 182 

by several hours. The difference in the measured 26Mg/24Mg intensities ratio between bracketing 183 

DSM3 standards was ≤0.06 ‰ in all analyses performed for this study. 184 

USGS (United States Geological Survey) and GSJ (Geological Survey of Japan) silicate rock reference 185 

material measurement results by this procedure are documented by Pogge von Strandmann et al. 186 

(2011), other silicate rocks by Teng et al. (2015), IAPSO Atlantic seawater results by Foster et al. 187 

2010, and carbonates by Pogge von Strandmann 2008, Kasemann et al. (2014) and Pogge von 188 

Strandmann et al. (2014). For example, measurements of the pure Mg solution Cambridge-1 189 

(without processing through columns) gave -2.63 ±0.07 ‰ for δ26Mg and -1.36 ±0.06 ‰ for δ25Mg 190 

(2s, n=126) and IAPSO Atlantic seawater results were -0.82 ±0.06 ‰ for δ26Mg and -0.43 ±0.04 ‰ for 191 

δ25Mg (2s, n=26, Foster et al. 2010). Hence, the typical intermediate precision of this method, based 192 

on several years of repeated measurements, is estimated at ±0.06 ‰ (2s) on δ26Mg, and ±0.04 ‰ 193 

(2s) on δ25Mg. The results on reference materials agree with data obtained in other laboratories, 194 

indicating no bias outside the stated precision. 195 

 196 

2.2.2.  Sample preparation and Mg isotope ratio measurements at GSI 197 

Carbonate powders (ca. 100-150 mg) were dissolved in HNO3 and evaporated to dryness. Water 198 

samples (ca. 10 µl DSW-1 and 2 ml IAPSO) were simply dried down. All samples were then re-199 

dissolved in 10 ml 1.3 mol/l HCl and an aliquot (200-500 µg Mg) was taken for column chemistry. 200 

Magnesium purification was performed by liquid chromatography (Galy et al. 2002) using Bio-Rad 201 

Econo-Pac Chromatography Columns 732-1010 with an extended reservoir, filled with ca. 18 ml of 202 
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Bio-Rad AG® 50W-X12 100-200 mesh resin. The matrix was rinsed with 25 ml of 1.3 mol/l HCl and 20 203 

ml of 2.3 mol/l HCl. Mg2+ was then eluted with 24 ml of 2.3 mol/l HCl. Total procedural blanks 204 

contained <0.5 % Mg of the amount of Mg processed through column chemistry. The first and the 205 

last 2 ml before and after the Mg elution were collected separately in order to verify close to 100% 206 

Mg recovery. In addition, the Mg amount in the Mg cut (Mg-COL) was compared to the amount 207 

originally loaded to the column (Mg-ORIG). Only samples with Mg-COL/Mg-ORIG >95 % (taking into 208 

account the uncertainties of both measurements), no detectable Mg in the first and the last 2 ml 209 

before and after the Mg fraction, and molar ratio of ∑c(matrix-cations)/c(Mg) in the final Mg fraction 210 

of <5 % (after Galy et al. 2001 and others) were used for isotope ratio measurements. These 211 

parameters were verified for each sample separation using ICP-AES (Optima 3300, Perkin–Elmer). 212 

Once Mg was purified, the solution was fully evaporated and the chloride salts were re-dissolved in 213 

0.1 mol/l HNO3. 214 

Magnesium isotope ratio measurements were conducted using a Nu instruments Plasma II HR-MC-215 

ICP-MS. The 2 µg/ml Mg solutions (in 0.1 mol/l HNO3) were introduced into the mass spectrometer 216 

via a DSN-100 desolvation system (self-aspirating PFA nebuliser, uptake rate of ca. 100 µl/min) and 217 

standard Ni cones interface. The measurements were conducted using pseudo-high resolution, with 218 

a 50 μm source slit at a mass resolving power RP(5,95%) = 7000 (see footnote in table 2). Three 219 

Faraday cup collectors were used to measure the ion beam intensities at m/z 24, 25 and 26 220 

simultaneously. Each measurement run comprises 20 integrations of 10 s data acquisition, i.e. a total 221 

200 seconds of data acquisition per measurement. These conditions gave sample signal intensities of 222 

25-35 V on m/z 24. The zero reference points were reset simultaneously for all measured masses by 223 

deflecting the potential of the electrostatic analyser before measuring each block. A blank solution 224 

measured in the beginning of each measurements day, produced <5 mV on m/z 24 and therefore 225 

the difference from the off-peak zero is considered insignificant. Each sample solution was measured 226 

by several brackets of standard-sample-standard, which were used for statistical analysis, where n is 227 

the number of brackets of each sample. Outliers were eliminated as long as their elimination 228 
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reduced the 95 % confidence interval (= � ∙
�

√�
), despite the reduction of n that rises both 

�

√�
 and the 229 

t-distribution value. 230 

The δ26Mg mean of pure Mg Cambridge-1 solution measured in this study is -2.62 ±0.14 ‰ (2s, n=36, 231 

Table 3), identical within stated precisions to results reported by other laboratories (e.g., 232 

compilations by Teng 2017, An and Huang 2014; -2.61 ±0.05 ‰, 2s). The δ26Mg value of IAPSO 233 

Atlantic seawater reference material measured in this study (-0.84 ±0.09 ‰, 2s, n=12, Table 3) is also 234 

identical to the previously reported seawater value (-0.83 ±0.09 ‰, 2s, N=90; Foster et al. 2010, Ling 235 

et al. 2011 and references therein). In order to further test the measurement procedure, a sample of 236 

modern Dead Sea brine (DSW-1) was purified through Mg column chemistry and this single solution 237 

was repeatedly measured over two years (δ26Mg=-0.67 ±0.11 ‰, δ25Mg=-0.35 ±0.05 ‰, 2s, n=35, 238 

Table 3). Accordingly, our long-term estimate of the typical intermediate precision is ±0.11 ‰ (2s) on 239 

δ26Mg, and ±0.05 ‰ (2s) on δ25Mg. The results on reference materials agree with data obtained in 240 

other laboratories, indicating no bias outside the stated precision. 241 

 242 

2.2.3.  Sample preparation and Mg isotope ratio measurements at GFZ 243 

Solid powders (30 - 100 mg) were digested in HF/HNO3 mixture at 110 °C, followed by 6 mol/l HCl, 244 

and 14 mol/l HNO3. For all samples, H2O2/HNO3 treatment in closed PFA-vials on a hotplate at 150 245 

°C/ 24 h was used to remove organics. In addition, a separate batch of the organic-rich soil (SRM 246 

2709a) and vegetation (SRM 1515) (ca. 1 g) were also acid-digested (H2O2/HNO3) using a microwave 247 

system (MLS Start) at 160 °C/ 20 min and elevated pressure. Both, the PFA-vial-hotplate and the 248 

microwave method achieved complete sample dissolution. Water RMs were evaporated on a hot 249 

plate (10 to 20 ml for SLRS-5 and SRM 1640a; 0.1 to 0.5 ml for the others), then treated with HF and 250 

H2O2/HNO3 and evaporated again to remove Si and dissolved organic carbon, respectively. All 251 

samples were finally re-dissolved in 1 mol/l HNO3 and aliquots containing between 2.5 and 15 µg Mg 252 

were taken for Mg purification.  253 
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Procedures for Mg purification and isotope ratio measurements are similar to those described 254 

previously (Uhlig et al. 2017). A brief description of the method applied during this study is given 255 

below. Magnesium purification was performed using chromatography columns (Spectrum PP 256 

104704, ID 8 mm) filled with 2.8 ml Biorad AG® 50W-X12 resin. After matrix elution with 32 ml 1 257 

mol/l HNO3, Mg was quantitatively eluted with 10 ml 2 mol/l HNO3. The Mg fraction was treated 258 

again with H2O2/HNO3, evaporated and re-dissolved in 0.3 mol/l HNO3. Each material was processed 259 

twice through the column procedure. Each column batch was accompanied by at least one 260 

commonly used reference material (IAPSO Atlantic Seawater, basalts BCR-2, BHVO-2 or granite GS-261 

N) and a blank. Total procedural blanks of the column chemistry and the H2O2/HNO3 treatment 262 

contained <12 ng Mg, which is <0.5 % Mg compared to the amount of Mg processed through column 263 

chemistry and is therefore considered insignificant (potential bias in δ26Mg is estimated <0.03 ‰). 264 

Magnesium recovery (quantitative column yield), purity of the Mg solutions (>90 % Mg was found to 265 

produce no bias using our measurement instrumental setup; see Pokharel et al. 2017), and the Mg 266 

content in total procedural blanks were checked by ICP-OES (Varian 720ES) and quadrupole ICP-MS 267 

(Thermo Scientific iCAP-Qc), respectively. 268 

Magnesium isotope ratio measurements were conducted using a Thermo Scientific Neptune MC-ICP-269 

MS equipped with a Neptune Plus Jet Interface (using a Pfeiffer OnToolBooster interface pump; 270 

standard sample cone and X skimmer cone). The 500 ng/ml Mg solutions were introduced into the 271 

mass spectrometer via a quartz-glass spraychamber (double pass cyclon-Scott type, Thermo SIS) 272 

equipped with a self-aspirating PFA nebuliser with an uptake rate of ca. 100 µl/min. The ion beam 273 

intensities at m/z 24, 25 and 26 were measured simultaneously in medium mass resolution mode 274 

(see footnote table 2) on Faraday detectors (L2, C, H2, all 1011 Ω amplifiers). The H2 cup was slightly 275 

moved toward higher masses so that 26Mg+ was measured on the interference-free low mass side of 276 

the flat-top peak (to avoid potential interference from 12C14N+). 27Al+ and 23Na+ were simultaneously 277 

monitored on Faraday detectors H4 and L4, respectively. Each measurement run comprises 20 278 

cycles, with an integration time of 4.2 seconds for each cycle. These conditions gave sample signal 279 
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intensities >10 V for 24Mg. Background intensities (typically <8 mV 24Mg) were measured on-peak in 280 

0.3 mol/l HNO3 before and after each standard-sample bracketing block and were subtracted from 281 

the sample and the standard signal intensities. Measurement results were accepted only if the 282 

instrumental mass bias was stable, i.e. linear drift <0.2 ‰, which is the deviation in 26Mg/24Mg 283 

between two bracketing DSM3 standards.  284 

The intermediate precision of this measurement procedure (including dissolution, Mg column 285 

separation, dilution, and MC-ICP-MS analyses) was evaluated by repeat analyses of reference 286 

materials (silicate rocks and IAPSO Atlantic Seawater) over the course of about 3 years (e.g., Uhlig et 287 

al. 2017, Pokharel et al. 2017). For example, for BHVO-2 basalt we obtained a mean δ26Mg of -0.24 288 

±0.10 ‰ and a mean δ25Mg of -0.13 ±0.06 ‰ (2s, n=24 measurements on N = 6 full dissolution and 289 

column chemistry replicates), which is identical within stated precisions to results produced 290 

independently in other laboratories (δ26Mg= -0.24 ±0.08 ‰, δ25Mg= -0.12 ±0.05 ‰, Teng 2017 and 291 

references therein). Measurements of the pure Mg solution Cambridge-1 (without processing 292 

through columns) gave a mean of -2.61 ±0.07 ‰ for δ26Mg and -1.35 ±0.05 ‰ for δ25Mg (2s, n=62) 293 

and IAPSO Atlantic seawater results were -0.81 ±0.12 ‰ for δ26Mg and -0.41 ±0.06 ‰ for δ25Mg (2s, 294 

n=13). Hence, our long-term estimate of the typical intermediate precision (based on repeated 295 

analyses on different materials over ca. 3 years) is ±0.10 ‰ (2s) for δ25Mg and ±0.06 ‰ (2s) for 296 

δ26Mg, respectively. The results on reference materials agree with data obtained in other 297 

laboratories, indicating no bias outside the stated precision. 298 

 299 

2.2.4.  Sample preparation and Mg isotope ratio measurements at CGS and GEOMAR 300 

Sample preparation for the measurements conducted at CGS and GEOMAR was done in the CGS 301 

laboratory according to the following procedure. Carbonate powders were digested in 6 mol/l HCl. 302 

Powders of the soil NIST SRM 2709a and apple leaves NIST SRM 1515a were successively dissolved in 303 

concentrated 1:1 HF:HNO3 and H2O2:HNO3, respectively, to breakdown the silicate fractions and 304 

organic matter. Aliquots of water RMs (equivalent to ca. 20 µg of Mg) were evaporated to dryness 305 
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and treated with concentrated HNO3. Solutions with visible solid residues were once again re-306 

dissolved in concentrated 1:1 HNO3:H2O2. All sample solutions were then evaporated to dryness and 307 

re-dissolved in 3 % HNO3 (v/v). Prior to loading samples onto microcolumns, at least 20 µg Mg 308 

aliquots were taken, evaporated to dryness and re-dissolved in 100 µl of 2.5 mol/l HCl. 309 

Purification of Mg was accomplished by a three-step chromatographic separation, using 1.25 ml 310 

resin (BioRad AG® 50W-X12, 200-400 mesh) in Savillex PFA 3.2 mm x 20 cm (inner diameter x length) 311 

microcolumns, for the first and third steps, and 0.12 ml resin in 2.4 mm × 15 cm microcolumns for 312 

the second step. In the first step, the Mg fraction, which still contains Na and Fe, was separated from 313 

other matrix elements by elution with 4.90 ml 2.5 mol/l HCl and collected subsequently. In the 314 

second step, the Mg fraction (with Fe) was separated from Na by elution with 4.96 ml 0.4 mol/l HCl 315 

and subsequently collected with 1.5 ml 6 mol/l HCl. In the third step, the Mg fraction was separated 316 

from Fe by rinsing with 5.2 ml 2 mol/l HNO3 prior to the elution of the purified Mg solution with 5.5 317 

ml 2 mol/l HNO3. The purified Mg fractions were then evaporated to dryness, re-dissolved in 200 µl 318 

concentrated 1:1 HF:HNO3, evaporated to dryness, re-dissolved in 200 µl concentrated 1:1 319 

H2O2:HNO3, evaporated to dryness again and finally dissolved in ca. 3 % HNO3 (v/v) for Mg isotope 320 

amount ratios analyses. Total procedural blank was <2 ng Mg. Mg yields of close to 100 % and molar 321 

ratios of ∑c(matrix-cations)/c(Mg) in the final Mg fractions of <5 % were verified by a Thermo 322 

Scientific iCAP-Q ICP-MS, as well as a Varian 720 series ICP-OES for each sample. 323 

 324 

2.2.4.1. Mg isotope ratio measurements at CGS 325 

Magnesium isotope ratio measurements were conducted using a Thermo Scientific Neptune MC-ICP-326 

MS, equipped with Ni sampler and X-Version Ni skimmer cones. The 500 ng/ml Mg solutions were 327 

introduced into the plasma via a 100 µl min−1 PFA nebuliser and a cyclonic quartz-glass spray 328 

chamber. All measurements were carried out with the guard electrode turned on and in medium 329 

mass resolution mode (see footnote table 2). The following cup configuration was used: the ion 330 

beam intensities at m/z 24, 25 and 26 were measured simultaneously using Faraday cups L1, C, and 331 
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H2, respectively.  Measurements were carried out on the low mass side of the peak to avoid 12C14N+ 332 

interference signals on m/z 26. Each individual measurement comprised 30 cycles with 8.4 seconds 333 

acquisition time per cycle. Each single delta value (equivalent to n = 1, as reported in Table 3) was 334 

calculated by at least 3 repeated measurements of the same sample solution, each bracketed by 335 

DSM3. Thus, each single delta value reported in Table 3 (n = 1) represents an average of 3 336 

measurements of a sample and 4 measurements of DSM3. Typical signals on m/z 24 were about 4 to 337 

8 V (i.e., ion beam of 24Mg+). Procedural blank contributions, including background, were 338 

consistently below 0.1 % of sample signals. Due to these very low blank contributions to the analyte 339 

signals, no on-peak blank corrections were applied. Only an electronic background was collected at 340 

half mass unit before each block and subtracted from the measured signals.  341 

Isotope fractionation during column chemistry was not detected with δ26Mg values of -0.01 ±0.05 ‰ 342 

(2s, n=3, based on a comparison of column processed and unprocessed DSM3) which further 343 

substantiates high Mg yields after column chemistry of close to 100 %. Measurements of the pure 344 

Mg solution Cambridge-1 (without processing through columns) gave a mean of -2.59 ±0.16 ‰ for 345 

δ26Mg and -1.34 ±0.11 ‰ for δ25Mg (2s, n=18). The intermediate precision of the sample preparation 346 

procedure and MC-ICP-MS measurement was estimated based on repeat column purifications and 347 

measurements of IAPSO Atlantic seawater and was -0.87 ±0.10 ‰ for δ26Mg and -0.45 ±0.06 ‰ for 348 

δ25Mg (2s, n = 14) during the period between the years 2012 and 2016. Hence, based on these long-349 

term observations we estimate our typical intermediate precision at ±0.13 ‰ for δ26Mg and ±0.09 350 

‰ for δ25Mg (2s). The results on reference materials agree with data obtained in other laboratories, 351 

indicating no bias outside the stated precision. 352 

 353 

2.2.4.2. Mg isotope ratio measurements at GEOMAR 354 

The magnesium isotope ratio measurements were carried out in August 2012 using a Thermo 355 

Scientific AXIOM MC-ICP-MS. R.A. Chilton cones (RAC19 & RAC705) have been used for best 356 

sensitivity. Samples, prepared as 200 ng/ml Mg solutions in 5 % HNO3 (v/v), were introduced via an 357 
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ESI MicroFlow PFA-50 nebuliser (50 µl/min) coupled to a CETAC ARIDUS desolvator (sweep Ar gas: 358 

ca. 2 l/min, N2: ca. 20 ml/min). Three Faraday cups have been utilized (L4: m/z 24, AX: m/z 25, H4: 359 

m/z 26) for simultaneous data acquisition. The instrumentation had been allowed for stabilization 360 

running ca. 1 day preliminarily tuned before actual fine tuning started. Tuning focused on hot and 361 

stable plasma conditions, not primarily on maximum intensity. Typically, 200 ng/ml Mg solutions 362 

yielded ca. 3.5 V 24Mg+ intensity. Each individual measurement result consisted of 10 DSM3 standard 363 

runs bracketing 9 runs of the unknown sample. A single run started with a 15 seconds on-peak-zero 364 

baseline measurement, while clean 5 % HNO3 (v/v) was introduced, followed by 50 x 2 s data 365 

collection (on either standard or unknown). Finally, sample washout was performed introducing 366 

clean 5 % HNO3 (v/v) for 60 seconds. Within each run, the collected 50 individual ratios of 25Mg/24Mg 367 

and 26Mg/24Mg, respectively, were calculated based on the on-peak baseline-corrected m/z 24, 25 368 

and 26 signal intensities. Results were calculated using the mean of the individual ratios after 369 

removing statistical outliers (1s). Each run of the unknown was used to calculate the δ-value relative 370 

to the preceding and following runs of DSM3. The resulting 9 δ-values were combined to an average 371 

for the measurement. Each measurement consumed about 200 ng of total Mg.  372 

The repeatability precision is estimated based on repeated measurements of Cambridge-1 during 373 

this study (without processing through columns) which gave -2.58 ±0.08 ‰ for δ26Mg and -1.33 374 

±0.06 ‰ for δ25Mg (2s, n =11). Measurements of Cambridge-1 processed through columns gave -375 

2.63 ±0.12 ‰ for δ26Mg and -1.31 ±0.03 ‰ for δ25Mg (2s, n =3; Table 3). The results agree with data 376 

obtained in other laboratories, indicating no bias outside the stated precision. Because no long-term 377 

data on repeated measurements on materials with different matrices is available to estimate the 378 

typical intermediate precision of the GEOMAR laboratory, as was done for the other laboratories, 379 

the typical precision was estimated by the long-term repeatability of the MC-ICP-MS to be ±0.08 ‰ 380 

(2s) for δ26Mg and ±0.06 ‰ (2s) for δ25Mg, based on the unprocessed Cambridge-1 results.  381 

[Table 3] 382 

 383 
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3. Results and Discussion 384 

3.1 Individual results validation of the participating laboratories 385 

All the δ26Mg’ versus δ25Mg’ results determined in different laboratories during this study plot on a 386 

single line with a slope of 0.518 ±0.004 (Fig. 1; linear fit was obtained using the Isoplot software), 387 

suggesting no major influence of isobaric interferences on the measured Mg isotope ratios. In 388 

addition, the δ26Mg and δ25Mg values of Cambridge-1 and Seawater, on which large datasets are 389 

available in the literature (e.g., compilations in Foster et al. 2010, Pogge von Strandmann et al. 2011, 390 

Ling et al. 2011, An and Huang 2014, Teng 2017, and references therein and in the GeoReM 391 

database, Jochum et al. 2005), were used to validate the individual measurement procedures and 392 

measurement results performed by each laboratory. First, to validate each mass spectrometric 393 

measurement procedure, the pure Mg solution Cambridge-1 was analysed without processing 394 

through Mg column chemistry. Second, to include the various sample preparation methods for Mg 395 

purification in the inter-laboratory comparison, IAPSO Atlantic seawater, which contains a complex 396 

element matrix (∑c(matrix-cations)/c(Mg) = 9.2; Table 1), was processed and analysed repeatedly in 397 

each laboratory. For both RMs, the δ25Mg and δ26Mg values agree well between all laboratories. The 398 

absolute differences (bias) between the values measured in this study and published consensus 399 

values are less than 0.04 ‰ and 0.03 ‰ for δ26Mg and δ25Mg, respectively (Table 3, Fig. 2), which 400 

are well within the precisions reported by each laboratory. These observations indicate that the 401 

various measurement procedures (including sample preparation and MC-ICP-MS measurements) do 402 

not induce any significant bias outside the reported measurement precision. However, due to the 403 

fact that all measurements in this and previous studies were conducted by MC-ICP-MS instruments, 404 

an independent validation using a different method cannot be made to exclude any potential 405 

systematic MC-ICP-MS bias. However, to date no other technique is able to measure δ26Mg and 406 

δ25Mg at the level of precision obtainable by MC-ICP-MS. 407 

The MC-ICP-MS repeatability precision for Cambridge-1 determined by each laboratory ranges from 408 

0.07 to 0.16 ‰ (2s) for δ26Mg and 0.03 to 0.11 ‰ (2s) for δ25Mg (Table 3). The intermediate 409 

Page 29 of 49 Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

17 
 

precision of the entire measurement procedure based on multiple IAPSO Atlantic seawater sample 410 

preparations and MC-ICP-MS analyses ranges from 0.04 to 0.12 ‰ (2s) for δ26Mg and 0.04 to 0.09 ‰ 411 

(2s) for δ25Mg (Table 3). Because the 2s of IAPSO Atlantic seawater results is not systematically larger 412 

than the precision (2s) of Cambrigde-1 results, we conclude that the different sample preparation 413 

methods do not introduce any additional significant sources of uncertainty that are not already 414 

included in the intermediate measurement precision (2s) reported for each RM result by the 415 

different laboratories.  416 

These findings are also consistent with the ‘typical’ intermediate precision reported by each 417 

laboratory, based on δ26Mg and δ25Mg values measurements of various RMs and natural samples 418 

over the long-term (between 0.06 ‰ and 0.13 ‰, 2s, in δ26Mg, and 0.04 ‰ and 0.09 ‰, 2s, in 419 

δ25Mg, Table 2, Fig. 2). Thus, the individual results from the different laboratories can be used to 420 

evaluate the consensus δ26Mg and δ25Mg values of the ‘new’ earth-surface RMs analysed in this 421 

study. This means that the consensus mean δ25Mg and δ26Mg values of the full-procedure-replicates 422 

measured by the different laboratories and their variance (reported both as 2s and 95 % confidence 423 

interval in tables 3 and 4) include random errors that stem from all influencing factors (sample 424 

preparation, matrix separation, instrumental conditions, etc.). Hence, following a “top-down” 425 

approach of uncertainty evaluation (e.g., Potts 2012a,b), we report consensus mean values for each 426 

earth-surface RM characterised in this study together with an uncertainty statement (95 % 427 

confidence interval- 95 % conf.), based on the δ25Mg and δ26Mg values reported by each laboratory, 428 

as discussed in the next section. 429 

[Figure 1] 430 

[Figure 2] 431 

 432 

3.2  Assigning consensus δ
26

Mg and δ
25

Mg values to the reference materials 433 

The results of the eight RMs, from the laboratories participating in this study, as well as the available 434 

literature data, are shown in table 3 and figure 2. The range of δ26Mg values of the studied RMs 435 
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covers almost the entire range of terrestrial materials (e.g., Teng 2017). As expected, the lowest 436 

δ26Mg values were found in carbonates: limestone BCS-CRM 513a (-4.46 ±0.12 ‰, 95 % conf., n=3), 437 

which represents the lower part of the global δ26Mg range of limestones, and the dolomites, JDo-1 438 

and CRM 512 (-2.35 ±0.05 ‰, 95 % conf., n=11 and -2.03 ±0.09 ‰, 95 % conf., n=6, respectively), 439 

which are within a typical range of dolomites (Teng 2017 and references therein). The most positive 440 

δ26Mg value was found in the soil SRM 2709a (-0.15 ±0.03 ‰, 95 % conf., n=6), typical for silicate 441 

soils (Teng 2017 and references therein). The apple leaves SRM 1515 has δ26Mg value of -1.22 ±0.03 442 

‰ (95 % conf., n=6), consistent with previous findings. δ26Mg values in plants depend on the sources 443 

of Mg and on complex isotope fractionation processes during the uptake of Mg and transport within 444 

the plant (e.g., Black et al. 2008, Bolou-Bi et al. 2010, 2012, Tipper et al. 2010). In general, Mg in 445 

rivers and groundwaters yield a large range of δ26Mg values with a flux-weighted δ26Mg of global 446 

runoff of -1.09 ‰ (Tipper et al. 2006b). SLRS-5 river water (-1.22 ±0.06 ‰, 95 % conf., n=8) has 447 

lower δ26Mg value and spring water SRM 1640a (-0.73 ±0.03 ‰, 95 % conf., n=9) has higher δ26Mg 448 

value, relative to this average. The higher δ26Mg value of the Dead Sea brine (DSW-1; -0.58 ±0.05 ‰, 449 

95 % conf., n=8) relative to its precursor seawater may represent a contribution of 24Mg-depleted 450 

dolomitizing brines (Gavrieli et al. 2009, Shalev et al. 2014). 451 

To obtain mean δ26Mg and δ25Mg values for the RMs, we evaluate the inter-laboratory 452 

reproducibility (indicated as 2s on the consensus value derived from the results of all laboratories 453 

and literature data; Table 3). All eight RMs have an inter-laboratory reproducibility (2s) of 0.05 to 454 

0.17 ‰ in δ26Mg. For most RMs (DSW-1, SRM 1640a, SRM 2709a, SRM 1515 and CRM 513), the 455 

inter-laboratory reproducibility (0.05 ‰ – 0.12 ‰) is within or below the range of the ‘typical’ 456 

intermediate precision of the laboratories estimated from repeat analysis of different materials over 457 

the long-term (0.06 ‰ – 0.13 ‰ in δ26Mg), indicating that the measurement procedures used in all 458 

laboratories do not induce any additional uncertainty contributions when samples with such 459 

matrices are processed and measured. For these RMs, the individual results from all laboratories 460 

also agree within the reported measurement precision of each sample (Table 3 and Fig. 2). However, 461 

Page 31 of 49 Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

19 
 

the inter-laboratory reproducibilities of three RMs, i.e., SLRS-5 river water, JDo-1 dolomite and CRM 462 

512 dolomite (2s of 0.15 ‰, 0.15 ‰ and 0.17 ‰, respectively), are slightly higher than the ‘typical’ 463 

intermediate precisions reported by the participating laboratories. While all the individual SLRS-5 464 

results agree within 2s measurement precision of the repeat measurements of each RM, this is not 465 

the case for all individual results of the two dolomite RMs, JDo-1 and CRM 512 (Fig. 2). Averaged 466 

data of JDo-1 reported in the literature seem to be more uniform, but in some cases the reported 2s 467 

is larger, covering the whole range obtained in current research (Wombacher et al. 2009, Pearce et 468 

al. 2012, Mavromatis et al. 2013, Beinlich et al. 2014, Mavromatis et al. 2014, Lavoie et al. 2014; Fig. 469 

2). Similar to the results of this study, Wombacher et al. (2009) reported a precision of 0.18 ‰ (2s) 470 

on the mean of twelve measurement results of JDo-1 from four different Mg separations (test 471 

portions of 2.5 – 40 mg). Note that most of these values (Pearce et al. 2012, Mavromatis et al. 2013, 472 

Beinlich et al. 2014, Mavromatis et al. 2014) were obtained using a similar chemical sample 473 

preparation procedure.  474 

The reasons for the slightly higher inter-laboratory variance in the dolomite RMs are unknown. Inter-475 

laboratory variance can arise from many factors, including material properties (e.g., homogeneity at 476 

the level of the test portion, or stability over time), sample preparation procedure (e.g., incomplete 477 

dissolution, column yield, analyte purity and blank) and the procedures used in the mass 478 

spectrometric measurements and data reduction (e.g., mass bias stability and mass bias correction, 479 

matrix effects). No correlation was found between molar matrix elements/Mg ratios and the inter-480 

laboratory variance (examples in Fig. 3). Moreover, we checked for any correlations between 481 

individual δ26Mg values and test portions, blank/Mg, column capacity, but did not find any 482 

systematic relations. Thus, further investigation on these RMs is required to determine the sources 483 

of the observed variance. 484 

The consensus δ26Mg and δ25Mg mean values for the studied RMs are provided in Table 4 together 485 

with an associated uncertainty for each value. This uncertainty was estimated by the 95 % 486 

confidence interval on the mean of N laboratory results, including literature data, if available. 487 
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[Table 4] 488 

 489 

4. Summary and conclusions 490 

In this study, the δ26Mg and δ25Mg values of eight earth surface reference materials (RMs), 491 

representative of different low-temperature environments and material types, were determined by 492 

inter-laboratory comparison. Despite the differences in sample preparation procedures, different 493 

test portions, instrumentation, and isotope ratio measurement procedures, good agreement of the 494 

δ26Mg and δ25Mg data from the different laboratories was found. This encouraging result suggests 495 

that all methods described in this study are suitable for geochemical studies on these type of 496 

materials given they are strictly monitored and calibrated (recovery, blanks, matrix-removal, etc.). 497 

Moreover, the investigated RMs are suitable to be used by other laboratories for routine quality 498 

control of Mg isotope ratio measurement procedures during environmental and earth surface 499 

geochemical studies. The wide range of matrices, including river water, spring water, brine, 500 

dolomites, limestone, soil and plant leaves, allow analysts to identify potential issues (and facilitate 501 

modifications) with sample preparation methods previously developed for silicate rocks, for 502 

example, which are then applied to different sample types, such as Ca-rich carbonates, organic-rich 503 

soils or vegetation. 504 

 505 

5. Acknowledgments 506 

PPvS acknowledges ERC Consolidator grant 682760 - CONTROLPASTCO2. J. Bartel and J. Buhk are 507 

acknowledged for laboratory support at GFZ. F. von Blanckenburg and the Helmholtz Association are 508 

thanked for infrastructure support at GFZ. The analytical work done at CGS, GEOMAR and CULS was 509 

supported via the European Union’s Horizon 2020 research and innovation programme, under grant 510 

agreement No 643084 (Base-LiNE Earth project), and the Czech Science Foundation (GACR) grants 511 

No. 17-18120S and P210/12/P631. Technical and laboratory assistance of T. Magna, M. Francová, M. 512 

Page 33 of 49 Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

21 
 

Šimeček and J. Míková at CGS is acknowledged. The research done at the University of Adelaide was 513 

supported via Base-LiNE Earth, and the ARC Linkage project LP160101353 to JF. NS acknowledges L. 514 

Halicz, I. Gavrieli, B. Lazar and D. Vance for their advices and support and N. Teplyakov, Y. Zakun and 515 

K. Weiss for laboratory support at GSI. The work at GSI was funded by the DFG-trilateral project 516 

TRION (Ei272/30-1), the Israeli Ministry of Science, Technology and Space (Eshkol scholarship), the 517 

Israeli Ministry of National Infrastructures, Energy and Water resources and Dalia and Dan Maydan 518 

Fellowship. The research done at ETH Zürich was funded by an ETH postdoctoral fellowship (FEL-14 519 

16-1). The authors would also like to thank the editor, T. Meisel, and two anonymous reviewers 520 

whose comments helped to significantly improve this manuscript. 521 

 522 

6. References 523 

An Y. and Huang F. (2014)  524 

A review of Mg isotope analytical methods by MC-ICP-MS. Journal of Earth Science, 25, 822–840. 525 

 526 

Beinlich A., Mavromatis V., Austrheim H. and Oelkers E.H. (2014)  527 

Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration – Implications 528 

for the global Mg-cycle. Earth and Planetary Science Letters, 392, 166–176. 529 

 530 

Black J.R., Epstein E., Rains W.D., Yin Q.Z. and Casey W.H. (2008) 531 

Magnesium-isotope fractionation during plant growth. Environmental Science and Technology, 42, 532 

7831-7836. 533 

 534 

Bolou-Bi E.B., Vigier N., Brenot A. and Poszwa A. (2009)  535 

Magnesium isotope compositions of natural reference materials. Geostandards and Geoanalytical 536 

Research, 33, 95–109. 537 

 538 

Bolou-Bi E.B., Poszwa A., Leyval C. and Vigier N. (2010) 539 

Experimental determination of magnesium isotope fractionation during higher plant growth. 540 

Geochimica et Cosmochimica Acta, 74, 2523-2537. 541 

 542 

Bolou-Bi E.B., Vigier N., Poszwa A., Boudot J.P. and Dambrine E. (2012) 543 

Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the 544 

Vosges Mountains (France). Geochimica et Cosmochimica Acta, 87, 341-355. 545 

 546 

Brand W.A., Coplen T.B, Vogl J., Rosner M. and Prohaska T. (2014) 547 

Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). 548 

Pure and Applied Chemistry, 86, 425–467. 549 

Page 34 of 49Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

22 
 

 550 

Brenot A., Cloquet C., Vigier N., Carignan J. and France-Lanord C. (2008) 551 

Magnesium isotope systematics of the lithologically varied Moselle river basin, France. Geochimica 552 

et Cosmochimica Acta, 72, 5070–5089. 553 

 554 

Chapela Lara M., Buss H.L., Pogge von Strandmann P.A.E., Schuessler J.A. and Moore O.W. (2017) 555 

The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered 556 

andesitic catchment. Geochimica et Cosmochimica Acta, 202, 77–100. 557 

 558 

Coplen T.B. (2011)  559 

Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio 560 

measurement results. Rapid Communications in Mass Spectrometry, 25, 2538-2560. 561 

 562 

Foster G.L., Pogge von Strandmann P.A.E. and Rae J.W.B. (2010)  563 

Boron and magnesium isotopic composition of seawater. Geochemistry Geophysics Geosystems, 564 

11, 1–10. 565 

 566 

Galy A., Belshaw N.S., Halicz L. and O’Nions R.K. (2001)  567 

High-precision measurement of magnesium isotopes by multiple-collector inductively coupled 568 

plasma mass spectrometry. International Journal of Mass Spectrometry, 208, 89–98. 569 

 570 

Galy A., Bar-Matthews M., Halicz L. and O’Nions R.K. (2002)  571 

Mg isotopic composition of carbonate: insight from speleothem formation. Earth and Planetary 572 

Science Letters, 201, 105–115. 573 

 574 

Galy A., Yoffe O., Janney P.E., Williams R.W., Cloquet C., Alard O., Halicz L., Wadhwa M., Hutcheon 575 

I.D., Ramon E. and Carignan J. (2003)  576 

Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for 577 

magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry, 18, 1352–578 

1356. 579 

 580 

Gavrieli I., Yoffe O., Burg A. and Halicz L. (2009)  581 

Mg isotope fractionation in the Ca-chloride Dead Sea brine system. Geochimica et Cosmochimica 582 

Acta Supplement, 73, A419. 583 

 584 

Geske A., Lokier S., Dietzel M., Richter D.K., Buhl D. and Immenhauser A. (2015)  585 

Magnesium isotope composition of sabkha porewater and related (Sub-)Recent stoichiometric 586 

dolomites, Abu Dhabi (UAE). Chemical Geology, 393–394, 112–124. 587 

 588 

Golan R., Gavrieli I., Ganor J. and Lazar B. (2016)  589 

Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea. Earth and Planetary Science 590 

Letters, 434, 289–297. 591 

 592 

Higgins J.A. and Schrag D.P. (2015)  593 

The Mg isotopic composition of Cenozoic seawater – evidence for a link between Mg-clays, seawater 594 

Mg/Ca, and climate. Earth and Planetary Science Letters, 416, 73–81. 595 

 596 

Jochum K.P., Nohl U., Herwig K., Lammel E., Stoll B. and Hofmann A.W. (2005) 597 

Page 35 of 49 Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

23 
 

GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. 598 

Geostandards and Geoanalytical Research, 29, 333–338. 599 

 600 

Karasinski J., Bulska E., Wojciechowski M., Halicz L. and Krata A.A. (2017)  601 

High precision direct analysis of magnesium isotope ratio by ion chromatography/multicollector-602 

ICPMS using wet and dry plasma conditions. Talanta, 165, 64–68. 603 

 604 

Kasemann S.A., Pogge von Strandmann P.A.E., Prave A.R., Fallick A.E., Elliott T. and Hoffmann K.H. 605 

(2014)  606 

Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium 607 

isotopes. Earth and Planetary Science Letters, 396, 66–77. 608 

 609 

Lavoie D., Jackson S. and Girard I. (2014)  610 

Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of 611 

Canada. Sedimentary Geology, 305, 58–68. 612 

 613 

Ling M.-X., Sedaghatpour F., Teng F.-Z., Hays P.D., Strauss J. and Sun W. (2011)  614 

Homogeneous magnesium isotopic composition of seawater: an excellent geostandard for Mg 615 

isotope analysis. Rapid communications in mass spectrometry, 25, 2828–2836. 616 

 617 

Liu X.M., Teng F.Z., Rudnick R.L., McDonough W.F. and Cummings M.L. (2014)  618 

Massive magnesium depletion and isotope fractionation in weathered basalts. Geochimica et 619 

Cosmochimica Acta, 135, 336–349. 620 

 621 

Ma L., Teng F.-Z., Jin L., Ke S., Yang W., Gu H.-O. and Brantley S.L. (2015)  622 

Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone 623 

Observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation. Chemical 624 

Geology, 397, 37–50. 625 

 626 

Mavromatis V., Meister P. and Oelkers E.H. (2014)  627 

Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru 628 

Margin. Chemical Geology, 385, 84–91. 629 

 630 

Opfergelt S., Georg R.B., Delvaux B., Cabidoche Y.-M., Burton K.W. and Halliday A.N. (2012) 631 

Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe. 632 

Earth and Planetary Science Letters, 341–344, 176–185. 633 

 634 

Pearce C.R., Saldi G.D., Schott J. and Oelkers E.H. (2012)  635 

Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: Evidence from 636 

Mg isotopes. Geochimica et Cosmochimica Acta, 92, 170–183. 637 

 638 

Pokharel R., Gerrits R., Schuessler J.A., Floor G., Gorbushina A.A. and von Blanckenburg F. (2017)  639 

Mg isotope fractionation during uptake by a rock-inhabiting, model microcolonial fungus Knufia 640 

petricola at acidic and neutral pH. Environmental Science & Technology, 51, 9691–9699. 641 

 642 

Pogge von Strandmann P.A.E. (2008)  643 

Precise magnesium isotope measurements in core top planktic and benthic foraminifera. 644 

Geochemistry, Geophysics, Geosystems, 9, 1-13. 645 

Page 36 of 49Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

24 
 

 646 

Pogge von Strandmann P.A.E., Burton K.W., James R.H., van Calsteren P., Gislason S.R. and 647 

Sigfússon B. (2008)  648 

The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth 649 

and Planetary Science Letters, 276, 187–197. 650 

 651 

Pogge von Strandmann P.A.E., Elliott T., Marschall H.R., Coath C., Lai Y.J., Jeffcoate A.B. and Ionov 652 

D.A. (2011)  653 

Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica et 654 

Cosmochimica Acta, 75, 5247–5268. 655 

 656 

Pogge von Strandmann P.A.E., Opfergelt S., Lai Y.-J., Sigfússon B., Gislason S.R. and Burton K.W. 657 

(2012)  658 

Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and 659 

pore water profile in Iceland. Earth and Planetary Science Letters, 339–340, 11–23. 660 

 661 

Pogge von Strandmann P.A.E., Forshaw J. and Schmidt D.N. (2014)  662 

Modern and Cenozoic records of magnesium behaviour from foraminiferal Mg isotopes. 663 

Biogeosciences Discussions, 11, 7451–7484. 664 

 665 

Potts P.J. (2012a)  666 

A Proposal for the Publication of Geochemical Data in the Scientific Literature. Geostandards and 667 

Geoanalytical Research, 36, 225-230. 668 

 669 

Potts P.J. (2012b)  670 

Glossary of Analytical and Metrological Terms from the International Vocabulary of Metrology 671 

(2008). Geostandards and Geoanalytical Research, 36, 231-246. 672 

 673 

Shalev N., Lazar B., Halicz L. and Gavrieli I. (2014)  674 

Magnesium isotope fractionation during epigenetic dolomitization of carbonate rocks. Goldschmidt 675 

Abstracts 2014, 2257. 676 

 677 

Shalev N., Lazar B., Halicz L. and Gavrieli I. (2017)  678 

Mg isotope fractionation during precipitation of marine Mg- evaporites. Goldschmidt Abstracts 679 

2017, 3606.  680 

 681 

Summerhayes C. P. and Thorpe S.A. (1996)  682 

Oceanography An Illustrated Guide: Chapter 11. CRC Press, 165–181. 683 

 684 

Teng F.-Z., Qing-Zhu Yin, Ullmann C.V., Chakrabarti R., Pogge von Strandmann P.A.E., Yang W., Li 685 

W.-Y., Ke S., Wimpenny F.S.J., Meixner A., Romer R.L., Wiechert U. and Jacobsen S.B. (2015) 686 

Interlaboratory comparison of magnesium isotopic compositions of 12 felsic to ultramafic igneous 687 

rock standards analyzed by MC-ICPMS. Geochemistry Geophysics Geosystems, 16, 3197–3209. 688 

 689 

Teng F.-Z. (2017)  690 

Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82, 219–287. 691 

 692 

Tipper E.T., Galy A. and Bickle M.J. (2006a)  693 

Page 37 of 49 Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

25 
 

Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the 694 

oceanic Ca cycle. Earth and Planetary Science Letters, 247, 267–279. 695 

 696 

Tipper E.T., Galy A., Gaillardet J., Bickle M.J., Elderfield H. and Carder E.A. (2006b)  697 

The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope 698 

ratios. Earth and Planetary Science Letters, 250, 241–253. 699 

 700 

Tipper E., Gaillardet J., Louvat P., Capmas F. and White A.F. (2010) 701 

Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California. 702 

Geochimica et Cosmochimica Acta, 74, 3883–3896. 703 

 704 

Uhlig D., Schuessler J.A., Bouchez J., Dixon J.L. and von Blanckenburg F. (2017)  705 

Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable 706 

isotopes. Biogeosciences, 14, 3111–3128. 707 

 708 

Wombacher F., Eisenhauer A., Heuser A. and Weyer S. (2006) 709 

Combined chemical separation of Mg, Ca and Fe from geological reference samples for stable 710 

isotope determination by MC-ICP-MS and double-spike TIMS. In Geophysical Research Abstracts, 8, 711 

A06219. 712 

 713 

Wombacher F., Eisenhauer A., Heuser A. and Weyer S. (2009) 714 

Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by 715 

MC-ICP-MS and double-spike TIMS. Journal of Analytical Atomic Spectrometry, 24, 627. 716 

 717 

Wombacher F., Eisenhauer  A., Böhm F., Gussone N., Regenberg M., Dullo W.-C. and Rüggeberg  A. 718 

(2011) 719 

Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochimica et 720 

Cosmochimica Acta, 75, 5797–5818. 721 

 722 

Young E.D. and Galy A. (2004)  723 

The Isotope Geochemistry and Cosmochemistry of Magnesium. Reviews in mineralogy and 724 

geochemistry Geochemistry, 55, 197–230. 725 

 726 

Page 38 of 49Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

List of tables: 

Table 1: Materials descriptions and chemical compositions. GSJ: Geological Survey of Japan, BAS: Bureau of Analysed 

Samples Ltd., NIST: National Institute for Science and Technology, CCRMP: Canadian Certified Reference Material 

Programme, GSI: Geological Survey of Israel. 

Table 2: Summary of analytical techniques used by each laboratory 

Table 3: δ
26

Mg and δ
25

Mg values of the low-temperature RMs determined in current and previous studies. 

 

Table 4: Inter-laboratory consensus δ
26

Mg and δ
25

Mg values from this study and literature, if available, of low-

temperature, earth-surface reference materials. 

 

List of figures: 

Figure 1: δ
25

Mg’ versus δ
26

Mg’ values determined in this study. Error bars are 2s of each result. All the data is in 

accordance with a regression line that crosses the origin (dotted line) and has a slope of 0.52, typical to mass-dependant 

fractionation of terrestrial material. 

Figure 2: δ
26

Mg values of the studied earth-surface low-temperature materials. Individual results from each laboratory 

(grey circles) are presented with their repeatability precision (2s, twice the standard deviation of n repeated 

measurements). Multiple results from individual laboratories represent full-procedure replicates (including dissolution, Mg 

columns, and MC-ICP-MS measurements). Capped error bars next to each individual results indicate the typical 

intermediate precision (2s) for each laboratory (based on repeat analyses of samples with different matrices over the long-

term) for comparison with the measurement precision of the matrix RMs. Available literature data (specified in table 3) is 

also presented (white squares). Triangles, in the DSW-1 plot, refer to different samples of the Dead Sea brine. The inter-

laboratory arithmetic mean of these individual results is also shown (black circle) with 2s error bars and 95 % confidence 

interval (presented by grey dotted lines). The vertical axis in all plots ranges 0.8 ‰. 

 

Figure 3: Inter-laboratory variance (2s reproducibilities) of the studied materials versus selected matrix element molar 

ratios (before Mg purification by column chemistry). Dolomite RMs, JDo-1 and CRM-512, are shown as diamonds. Low R
2
 of 

the linear regression lines (dashed lines) demonstrates absence of any correlation. 

 

Page 39 of 49 Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Shalev et al. 

 

  
Figure 1: δ

25
Mg’ versus δ

26
Mg’ values determined in this study. Error bars are 2s of each result. All the data is in 

accordance with a regression line that crosses the origin (dotted line) and has a slope of 0.52, typical to mass-dependant 

fractionation of terrestrial material. 

 

y = 0.518x

R² = 0.999

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-5 -4 -3 -2 -1 0

δ
2

5
M

g
' [

‰
]

δ26Mg' [‰]

Page 40 of 49Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

1 

 

Shalev et al. 

 

 

-1.2

-1.0

-0.8

-0.6

-0.4

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

Atlantic Seawater

-1.6

-1.4

-1.2

-1.0

-0.8

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

SLRS-5 river water

-0.5

-0.3

-0.1

0.1

0.3
δδ δδ

2
6
M

g
D

S
M

3
(‰

)

SRM 2709a soil

-2.6

-2.4

-2.2

-2.0

-1.8

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

JDo-1 dolomite

-4.8

-4.6

-4.4

-4.2

-4.0

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

CRM 513 limestone

-3.0

-2.8

-2.6

-2.4

-2.2

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

Cambridge-1

-1.0

-0.8

-0.6

-0.4

-0.2

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

DSW-1

-1.1

-0.9

-0.7

-0.5

-0.3

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

SRM 1640a spring water

-1.6

-1.4

-1.2

-1.0

-0.8

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

SRM 1515 apple leaves

-2.4

-2.2

-2.0

-1.8

-1.6

δδ δδ
2

6
M

g
D

S
M

3
(‰

)

CRM 512 dolomite

Page 41 of 49 Geostandards and Geoanalytical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

2 

 

Shalev et al. 

 

Figure 2: δ
26

Mg values of the studied earth-surface low-temperature materials. Individual results from each laboratory 

(grey circles) are presented with their repeatability precision (2s, twice the standard deviation of n repeated 

measurements). Multiple results from individual laboratories represent full-procedure replicates (including dissolution, Mg 

columns, and MC-ICP-MS measurements). Capped error bars next to each individual results indicate the typical 

intermediate precision (2s) for each laboratory (based on repeat analyses of samples with different matrices over the long-

term) for comparison with the measurement precision of the matrix RMs. Available literature data (specified in table 3) is 

also presented (white squares). Triangles, in the DSW-1 plot, refer to different samples of the Dead Sea brine. The inter-

laboratory arithmetic mean of these individual results is also shown (black circle) with 2s error bars and 95 % confidence 

interval (presented by grey dotted lines). The vertical axis in all plots ranges 0.8 ‰. 
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Figure 3: Inter-laboratory variance (2s reproducibilities) of the studied materials versus selected matrix element molar 

ratios (before Mg purification by column chemistry). Dolomite RMs, JDo-1 and CRM-512, are shown as diamonds. Low R
2
 of 

the linear regression lines (dashed lines) demonstrates absence of any correlation. 
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Table 1: Materials descriptions and chemical compositions. GSJ: Geological Survey of Japan, BAS: Bureau of Analysed Samples Ltd., NIST: National Institute for Science and Technology, 

CCRMP: Canadian Certified Reference Material Programme, GSI: Geological Survey of Israel. 

   
g/100g 

           
mol/mol 

Material Producer Data source SiO2 TiO2 Al2O3 
Fe2O3 

(total) 
MnO MgO CaO Na2O K2O P2O5 

 
CO2 BaO S 

 

∑c(matrix- 

cations)/c(Mg)
1
 

solids 
                 

 

JDo-1 dolomite GSJ 
suppliers 

certificate 
0.216 0.001 0.017 0.0208 0.007 18.47 33.96 0.013 0.002 0.034 

 
46.5 

   
1.3 

BCS - CRM 512 

dolomite 
BAS 

suppliers 

certificate 
0.379 0.002 0.055 0.03 0.004 21.59 30.61 <0.15 <0.01 <0.001 

 
46.66 <0.02 <0.0085 

 
1.0 

BCS - CRM 513 

limestone 
BAS 

suppliers 

certificate 
0.228 <0.007 0.108 0.0275 0.01 0.182 55.59 <0.05 0.015 <0.01 

 
43.71 <0.02 0.01 

 
220 

SRM 2709a soil NIST 
suppliers 

certificate 
64.81 0.56 13.92 4.80 0.068 2.42 2.67 1.6 2.54 0.16 

  
   26 

                  
 

   
µg/g 

           
 

   
Si Ti Al Fe Mn Mg Ca Na K P N(total) C(total) Ba S Cl  

SRM 1515 apple 

leaves 
NIST 

suppliers 

certificate   
286 83 54 2710 15260 24.4 16100 1590 22500 

 
49 1800 579 7.2 

                  
 

   
µg/ml 

           
 

liquids 
  

Si 
 

Al Fe Mn Mg Ca Na K 
  

C(total) Ba S Cl  

Cambridge-1 (pure 

Mg solution) 

U. of 

Cambridge       
10000 

         
0 

IAPSO Atlantic 

seawater 
OSIL 

Summerhayes 

and Thorpe 

1996 

2.8 
 

5E-04 5.5E-5 1E-05 1290 412 10770 399 
  

27.6 0.014 904 
193

54 
9.2 

SLRS-5 river water 
CANMET 

(CCRMP) 

suppliers 

certificate 
0.002 

 
0.05 0.0912 0.004 2.54 10.5 5.38 0.839 

   
0.014 

  
5.0 

SRM 1640a spring 

water 
NIST 

suppliers 

certificate 
5.169 

 
0.053 0.0365 0.04 1.05 5.57 3.112 0.575 

   
0.151 

  
10 

                  
 

   
mmol/kg solution 

           
 

   Si 
 

Al Fe Mn Mg Ca Na K 
  

C(total) Ba S Cl  

DSW-1 Dead Sea 

brine 
GSI

2
 

Golan et al. 

2016
3
      

1663 391 1081 169 
  

0.86 
  

529

4 
0.9 

1
 ∑c(matrix cations)/c(Mg) refers to the molar ratio of the sum of Na, K, Ca, Si, Al, Ti, Fe and Mn relative to Mg.  

2
 DSW-1 can be obtained for free from the GSI (I. Gavrieli).  

3
 Concentrations refer to average Dead Sea (2013) and may be slightly different from DSW-1. However, the elemental ratios are similar. 
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Table 2: Summary of analytical techniques used by each laboratory 

Laboratory 

Sample test 

portion
1
 Dissolution method 

Mg column 

purification 

Typical 

column 

procedure 

blank 

Instrument², sample introduction 

system, uptake rate, acid matrix 

Integration time/bracket
3
, number of brackets

4
  

24
Mg signal intensity / analyte concentration 

Typical Mg consumption per single analysis (n 

=1)
5
 

Typical 

intermediate 

precision on 

δ
26

Mg; δ
25

Mg 

(2s) 

UCL/Bristol 
10–50 mg 

(0.2 - 3 µg Mg) 

carbonates: HCl 

leaves: HNO3 + H2O2 

soil: HF/ HNO3 + HCl 

liquids: evaporation  

2 steps: Bio-Rad 

AG50W-X12 resin in 

2 N HNO3 + TRUSpec 

in 7 N HNO3 

<0.4 ng 

Mg 

Neptune (LR), Apex-Q desolvator, 

50 µl/min, 2 % HNO3 

20x4.2 sec, 1 

18 - 20 V / 100 ng/ml Mg 

7 ng Mg 

±0.06 ‰; 

±0.04‰ 

GSI 

100-150 mg 

(200-500 µg 

Mg) 

carbonates: HNO3 

liquids: evaporation  

1 step: Bio-Rad 

AG50W-X12 resin in 

1.3/2.3 N HCl 

<100 ng 

Mg 

nu plasma II (MR), DSN-100 

desolvator, 100 µl/min, 0.1 N HNO3 

20x10 sec, 1 

25 - 35 V / 2000 ng/ml Mg 

670 ng Mg 

±0.11 ‰; 

±0.05 ‰ 

GFZ 

30 - 100 mg / in 

addition 1 g for 

SRM 1515 

(2.5 - 15 µg Mg) 

carbonates: HCl 

leaves: HNO3 + H2O2 

soil: HF/ HNO3 + HCl + H2O2 

liquids: HF + evaporation + H2O2 

2 steps: Bio-Rad 

AG50W-X12 resin in 

1 N/2 N HNO3 

(repeated twice) 

<12 ng 

Mg 

Neptune (MR), double pass cyclon-

Scott quartz-glass spray chamber 

(SIS), 100 µl/min, 0.3 N HNO3 

20x4.2 sec, 1 

10 - 15 V / 500 ng/ml Mg 

70 ng Mg 

±0.10 ‰; 

±0.06 ‰ 

CGS 
50-100 mg 

(20 - 50 µg Mg) 

carbonates: HCl 

leaves: HNO3 + H2O2 

soil: HF/ HNO3  

liquids: evaporation  

3 steps: Bio-Rad 

AG50W-X12 resin in 

2.5 N HCl (twice) + 

0.4 N HNO3 

<2 ng Mg 

Neptune (MR), cyclonic quartz-

glass spray chamber, 100 µl/min, 3 

% (v/v) HNO3 

30x8.4 sec, 3 

4 - 8 V / 500 ng/ml Mg 

630 ng Mg 

±0.13 ‰; 

±0.09 ‰  

GEOMAR same as CGS same as CGS same as CGS 
same as 

CGS 

AXIOM (LR), Aridus desolvator, 50 

µl/min, 5 % HNO3 

50x2 sec, 9 

3.5 V / 200 ng/ml Mg 

150 ng Mg 

±0.08 ‰; 

±0.06 ‰ 

1
 The test portion refers to the aliquot amount of the original sample taken for analysis. Amount of Mg processed through column purification is given in parenthesis. 

2
 LR and MR refers to the mass resolving power RP, defined as m/Δm = m/[m(5%) − m(95%)], where m(5%) and m(95%) are the masses at 5% and 95% peak intensity, respectively, and m is the mass of the peak. LR = 

low RP (ca. >1000), MR = medium RP (>6000) 
3
 Integration time/bracket refers to the measurement time of a sample or each one of the bracketing standards in a single bracket. 

4
 The number of brackets that were used to calculate a single δ result (n = 1 in Table 3) 

5
 Including the data acquisition time only, without take-up time, etc. 
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Table 3: δ
26

Mg and δ
25

Mg values of the low-temperature RMs determined in current and previous studies. 

 
δ

26
Mg DSM3 95% conf

1
 2s δ

25
Mg DSM3 95% conf

1
 2s n

2
 

Internationally established RMs 
       

Cambridge-1 (pure Mg solution) 
       

Bristol/UCL
4
 -2.63 0.01 0.07 -1.36 0.00 0.05 126 

CGS -2.59 0.04 0.16 -1.34 0.03 0.11 18 

GSI -2.62 0.02 0.14 -1.35 0.01 0.07 36 

GFZ -2.61 0.01 0.07 -1.35 0.01 0.05 62 

GEOMAR
5
 -2.63 0.15 0.12 -1.31 0.04 0.03 3 

Arithmetic mean -2.62 0.02 0.03 -1.34 0.02 0.04 N
3
 = 5 

An and Huang 2014 (compilation) -2.61  0.05 
    

        

IAPSO Atlantic seawater (OSIL)        

Bristol/UCL
6
 -0.82 0.01 0.06 -0.43 0.01 0.04 26 

CGS  -0.87 0.03 0.10 -0.45 0.02 0.06 14 

GSI  -0.84 0.03 0.09 -0.44 0.02 0.05 12 

GFZ A -0.81 0.03 0.12 -0.41 0.02 0.06 13 

GFZ B
7,8

 -0.85 0.06 0.07 -0.43 0.05 0.07 4 

GEOMAR -0.81 0.05 0.04 -0.40 0.05 0.04 3 

Arithmetic mean -0.83 0.02 0.05 -0.43 0.02 0.04 N
3
 = 6 

Ling et al. 2011 (compilation) -0.83  0.09 -0.43  0.06 90 

        
Surface water RMs        

DSW-1 (Dead Sea brine) 
       

CGS -0.68 0.09 0.17 -0.34 0.05 0.10 6 

GSI A -0.67 0.02 0.11 -0.35 0.01 0.05 35 

GSI B
7,9

 -0.51 0.03 0.07 -0.28 0.01 0.03 8 

GFZ A -0.59 0.31 0.07 -0.30 0.17 0.04 2 

GFZ B
7
 -0.57 0.05 0.10 -0.30 0.03 0.06 7 

GFZ C
7
 -0.53 0.05 0.12 -0.26 0.03 0.07 7 

GFZ D
7
 -0.54 0.06 0.08 -0.26 0.05 0.06 4 

Karasinski et al. 2017
9
 -0.57 0.06 0.18 

   
10 

Arithmetic mean -0.58 0.05 0.12 -0.30 0.03 0.07 N
3
 = 8 

        

SLRS-5 (river water) 
       

Bristol/UCL -1.14 0.05 0.06 -0.59 0.04 0.05 4 

CGS -1.11 0.10 0.20 -0.60 0.06 0.12 6 

GFZ A
7
 -1.30 0.43 0.10 -0.72 0.31 0.07 2 

GFZ B
7
 -1.31 0.05 0.09 -0.67 0.02 0.04 6 

GFZ C
7
 -1.25 0.03 0.06 -0.65 0.02 0.05 6 

GFZ D
7
 -1.24 0.05 0.12 -0.64 0.03 0.07 8 

GFZ E
7,8

 -1.28 0.04 0.10 -0.67 0.03 0.07 10 

GEOMAR -1.17 0.05 0.04 -0.57 0.03 0.03 3 

Arithmetic mean -1.22 0.06 0.15 -0.64 0.04 0.10 N
3
 = 8 

        
NIST SRM 1640a (spring water) 

       
Bristol/UCL A

7
 -0.76 0.06 0.05 -0.42 0.06 0.05 3 

Bristol/UCL B
7
 -0.81 0.07 0.05 -0.44 0.05 0.04 3 
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δ

26
Mg DSM3 95% conf

1
 2s δ

25
Mg DSM3 95% conf

1
 2s n

2
 

CGS -0.72 0.10 0.16 -0.35 0.04 0.07 5 

GFZ A
7
 -0.75 0.14 0.03 -0.39 0.46 0.10 2 

GFZ B
7
 -0.73 

  
-0.37 

  
1 

GFZ C
7
 -0.72 0.07 0.06 -0.39 0.07 0.05 3 

GFZ D
7
 -0.68 0.02 0.07 -0.35 0.01 0.03 13 

GFZ E
7,8

 -0.73 0.05 0.03 -0.39 0.06 0.03 6 

GEOMAR -0.68 0.07 0.06 -0.31 0.04 0.03 3 

Arithmetic mean -0.73 0.03 0.08 -0.38 0.03 0.08 N
3
 = 9 

        

Organic-rich solids 
       

NIST SRM 2709a (soil) 
       

Bristol/UCL -0.20 0.02 0.02 -0.11 0.04 0.03 3 

CGS -0.11 0.07 0.17 -0.07 0.04 0.08 8 

GFZ A (MW)
7
 -0.14 0.02 0.09 -0.07 0.01 0.05 19 

GFZ B
7
 -0.17 0.04 0.10 -0.09 0.02 0.05 8 

GFZ C
7
 -0.15 0.06 0.08 -0.08 0.04 0.05 4 

GFZ D
7,8

 -0.14 0.10 0.02 -0.08 0.06 0.01 6 

Arithmetic mean -0.15 0.03 0.06 -0.08 0.02 0.03 N
3
 = 6 

        

NIST SRM 1515 (apple leaves) 
       

Bristol/UCL -1.24 0.01 0.01 -0.64 0.08 0.06 3 

CGS  -1.24 0.08 0.13 -0.65 0.08 0.13 5 

GFZ A (MW)
7,8

 -1.24 0.04 0.01 -0.64 0.04 0.01 2 

GFZ B
7,8

 -1.20 0.04 0.12 -0.61 0.02 0.07 12 

GFZ C
7,8

 -1.20 0.02 0.02 -0.60 0.08 0.07 3 

GEOMAR -1.19 0.05 0.04 -0.58 0.03 0.03 3 

Arithmetic mean -1.22 0.03 0.05 -0.62 0.03 0.05 N
3
 = 6 

        

Carbonates 
       

JDo-1 (dolomite) 
       

Bristol/UCL -2.25 0.06 0.05 -1.16 0.05 0.04 3 

CGS -2.49 0.03 0.05 -1.30 0.06 0.12 6 

GSI -2.19 0.04 0.07 -1.14 0.04 0.07 5 

GFZ A
7
 -2.36 0.25 0.06 -1.24 0.03 0.01 2 

GFZ B
7
 -2.32 0.05 0.10 -1.20 0.03 0.05 6 

Wombacher et al. 2009 -2.38 0.06 0.18 -1.22 0.02 0.07 12 

Pearce et al. 2012 -2.33 0.04 0.09 -1.22 0.025 0.06 7 

Mavromatis et al. 2013 -2.37 0.03 0.08 -1.25 0.02 0.06 9 

Mavromatis et al. 2014 -2.36 0.03 0.06 -1.25 0.03 0.06 6 

Beinlich et al. 2014 -2.38 0.04 0.08 -1.23 0.03 0.05 6 

Lavoie et al. 2014 -2.38 0.29 0.36 -1.27 0.07 0.09 4 

Arithmetic mean -2.35 0.05 0.15 -1.23 0.03 0.09 N
3
 = 11 

        

BCS - CRM 512 (dolomite) 
       

Bristol/UCL A
7
 -1.92 0.03 0.02 -1.00 0.02 0.02 3 

Bristol/UCL B
7
 -2.01 0.06 0.05 -1.06 0.004 0.003 3 
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δ

26
Mg DSM3 95% conf

1
 2s δ

25
Mg DSM3 95% conf

1
 2s n

2
 

CGS -2.16 0.11 0.09 -1.13 0.04 0.03 3 

GSI -2.00 0.21 0.27 -1.03 0.09 0.12 4 

GFZ A
7
 -2.09 0.29 0.07 -1.08 0.06 0.01 2 

GFZ B
7
 -1.97 0.02 0.03 -1.03 0.01 0.02 7 

Arithmetic mean -2.03 0.09 0.17 -1.05 0.05 0.09 N
3
 = 6 

        

BCS - CRM 513a (limestone) 
       

Bristol/UCL A
7
 -4.48 0.10 0.08 -2.33 0.07 0.06 3 

Bristol/UCL B
7
 -4.50 0.11 0.09 -2.33 0.07 0.06 3 

GFZ -4.41 0.08 0.07 -2.29 0.07 0.06 3 

Arithmetic mean -4.46 0.12 0.10 -2.32 0.05 0.04 3 

Weighted mean -4.45 
 

0.06 -2.32 
 

0.03 N
3
 = 3 

1 
95 % confidence intervals calculated as 2SEt (95 % conf) = t·s/√n, with s = standard devia>on of n (or N) repeated measurements or 

replicates, t = correction factor for low n (or N) from Student’s t-distribution at 95% probability. 
2
 n is the number of δ values used for the calculation of the result given by each laboratory. As mentioned in Table 2, n =1 refers to one 

bracket measured at Bristol/UCL, GSI and GFZ, an average of three brackets measured at CGS or an average of nine brackets measured at 

GEOMAR. 
3
 N refers to the number of average δ values used for the calculations of the inter-laboratory arithmetic mean.  

4
 from: Pogge von Strandmann et al. 2011. 

5
 Processed through columns. 

6
 from: Foster et al. 2010. 

7
 A, B, C, D, and E are replicates of the full procedure including sample dissolution (solids) or evaporation (liquids), Mg column purification, 

and MC-ICP-MS measurements. MW indicates solid sample dissolution using a microwave system. 
8 

from Uhlig et al. 2017. 
9
 Different samples of the Dead Sea brine. 
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Table 4: Inter-laboratory consensus δ
26

Mg and δ
25

Mg values from this study and literature, if available, of low-

temperature, earth-surface reference materials. 

 
δ

26
MgDSM3 95% conf

1
 δ

25
Mg DSM3 95% conf

1
 N

2
 

DSW-1 (Dead Sea brine) -0.58 0.05 -0.30 0.03 8 

SLRS-5 (river water) -1.22 0.06 -0.64 0.04 8 

NIST SRM 1640a (spring water) -0.73 0.03 -0.38 0.03 9 

NIST SRM 2709a (soil) -0.15 0.03 -0.08 0.02 6 

NIST SRM 1515 (apple leaves) -1.22 0.03 -0.62 0.03 6 

JDo-1 (dolomite) -2.35 0.05 -1.23 0.03 11 

BCS - CRM 512 (dolomite) -2.03 0.09 -1.05 0.05 6 

BCS - CRM 513a (limestone) -4.46 0.12 -2.32 0.05 3 
1 

95 % confidence intervals calculated as 2SEt (95 % conf) = t·s/√N, with s = standard deviation of N full-procedure replicates, t = correction 

factor for low N from Student’s t-distribution at 95% probability. 
2
 N is the number of results used for the calculation of the consensus values and the 95 % confidence interval. These are detailed in Table 

3. 
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