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Abstract—Depression and anxiety are common comorbid disorders observed in patients with inflammatory bowel
disease (IBD). Increasing line of evidence indicates that immune-inflammatory responses are involved in co-
occurrence of mood disorders and IBD. However, the mechanisms through which immune-inflammatory path-
ways modulate this comorbidity are not yet understood. This study investigated the role of innate immunity in
the development of behavioral abnormalities associated with an animal model of Crohn’s disease (CD). To do this,
we induced colitis in male adult mice by intrarectal (i.r.) injection of DNBS (Dinitrobenzene sulfonic acid). After 3
days, we performed behavioral tests for anxiety- and depressive-like behaviors as well as tissue collection. Our
results showed that DNBS-induced colonic inflammatory responses were accompanied by infiltration of inflam-
matory cells, and increased expression of genes involved in toll-like receptor signaling pathway in intestinal tis-
sue. Furthermore, the DNBS-treated mice showed depressive- and anxiety-like behaviors which were associated
with increased expression of the inflammatory genes and abnormal mitochondrial function in the hippocampus.
These results suggest that peripheral inflammation is able to increase the transcriptional level of the genes in toll-
like receptor pathway, induces abnormal mitochondrial function in the hippocampus, and these negative effects
may be involved in the co-occurrence of anxiety and depression in early stages of CD. � 2017 IBRO. Published by

Elsevier Ltd. All rights reserved.
Key words: depression, anxiety, Crohn’s disease, oxidative stress, hippocampus, toll-like receptor pathway.
INTRODUCTION

Inflammatory bowel disease (IBD), including Crohn’s

disease and ulcerative colitis, is a chronic disease

associated with psychiatric comorbidities such as

depression and anxiety (Chauhan et al., 2016; Mikocka-
https://doi.org/10.1016/j.neuroscience.2017.10.023
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Walus et al., 2016). Psychiatric comorbidities in IBD

patients negatively affect the quality of their lives and

the severity of disease in sufferings (van den Brink

et al., 2016; Yanartas et al., 2016). Evidence has shown

that the incidence of mood disorders is higher in patients

with IBD in comparison with other chronic diseases (Taft

and Keefer, 2016). Recent preclinical investigations have

revealed that induction of experimental colitis in rodents is

able to provoke psychopathologies such as depressive-

and anxiety-like behaviors in animals (Bercik et al.,

2010). In this regard, it has been shown that dextran
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sulfate sodium (DSS)-induced colitis in rodents is accom-

panied by behavioral comorbidities (Reichmann et al.,

2015; Nyuyki-Dufe et al., 2016). Also, interleukin-10

knockout (IL-10�/�) mouse (an animal model for study-

ing IBD) shows anxiety-like behaviors and memory

impairments (Kühn et al., 1993; Ohland et al., 2013). Con-

sidering direct association between IBD and psychologi-

cal disorders, only few studies have investigated the

underlying mechanisms involved in the comorbidity of

IBD and psychiatric disorders.

Emerging line of research suggests that oxidative and

nitrosative stress (O&NS) and immune-inflammatory

responses play important roles in the pathophysiology of

depression (Maes, 2008; Maes et al., 2009, 2011b;

Patki et al., 2013). Focusing on IBD, evidence has

recently suggested that oxidative challenge and pro-

inflammatory cytokines contribute to the pathophysiology

of IBD (Ghia et al., 2009; Maes et al., 2011b; Triantafillidis

et al., 2013). Evidence also suggests that peripheral

inflammation in patients with chronic diseases is able to

initiate the development of mood disorders by triggering

inflammatory signaling in the brain (Taché and

Bernstein, 2009; Bonaz and Bernstein, 2013). Several

studies have suggested that gut damage is accompanied

by the activation of peripheral inflammatory responses,

which may be related to the development of mood disor-

ders in IBD patients (Fleshner, 2013; McCusker and

Kelley, 2013; Singhal et al., 2014). Toll-like receptors

(TLRs) are the main components of innate immunity,

which recognize the pathogen-associated molecular pat-

terns (PAMPs) such as lipopolysaccharide (LPS) and

damage-associated molecular patterns (DAMPs). Activa-

tion of TLRs leads to production of pro-inflammatory

cytokines such as IL-1b and IL-6, and nitric oxide (NO)

in the brain (Barksby et al., 2007; Klune et al., 2008;

Diacovich and Gorvel, 2010; Fleshner, 2013). The ele-

vated levels of pro-inflammatory cytokines and nitrosative

stress are capable of inhibiting the mitochondrial respira-

tory chain components and result in cellular energy defi-

ciency (Mancuso et al., 2007; Maes et al., 2011a; Morris

and Maes, 2014). Considering the crucial role of mito-

chondria in massive production of reactive oxygen spe-

cies (ROS) under pathological conditions, a number of

studies suggest that abnormal mitochondrial function

and inflammatory responses may contribute to the patho-

genesis of depression (Rezin et al., 2009; Bakunina et al.,

2015; Crupi and Cuzzocrea, 2016).

In this study, we tested whether (1) experimental

model of Crohn’s disease is associated with the

development of behaviors related to anxiety and

depression, and (2) peripheral inflammation following

induction of colitis in mice activates the genes relevant

to innate immunity and oxidative stress in the

hippocampus.
EXPERIMENTAL PROCEDURES

Animals

We used male NMRI mice purchased from the Pasteur

Institute, Tehran, Iran. All animals, weighing 25–30 g,

were housed in the groups (4 mice in each cage), and
were kept at the temperature of 21–23 �C under a 12-h

consistent light/dark cycle and were given access to

food and water ad lib. All tests were performed between

10:00 and 14:00 h. All procedures were done in line with

the NIH Guide for the Care and Use of Laboratory

Animals (National Institutes of Health Publications No.

80-23, revised 1978) and the institutional guidelines for

animal care and use (Department of Pharmacology,

School of Medicine, Tehran University of Medical

Sciences). All experimental groups have been

demonstrated and designated in Table 1. Also, full

efforts were made to minimize the use of animals and to

optimize their comfort.

Induction and characterization of colitis
Induction of colitis. DNBS (Dinitrobenzene sulfonic

acid) (Sigma) was used to induce colitis. For this

purpose, 6 mg of DNBS dissolved in 100 lL of 50%

ethanol and slowly inject intra-rectally for each mouse.

Animals were deprived of food 24 h prior to colitis

induction, and were anesthetized using Isoflurane

inhalation (Sigma). DNBS was injected intra-rectally (i.r.)

using a flexible catheter 5 cm in length. After that the

mice were held upside down in a 45� position for 2 min

in order to avoid leakage of the DNBS solution, and

were returned to their home cages. Animals were

assessed for the behavioral or molecular assessments 3

d after colitis induction when the peak of acute

inflammation occurs (Hollenbach et al., 2005). Control

groups received 100lL normal saline (i.r.) and were eval-

uated 3 d after injection.

Macroscopic assessment. Animals were euthanized

under deep anesthesia using isoflurane inhalation (3 d

after DNBS or saline injection), colon was dissected out

and cut open longitudinally and gently cleaned using

PBS. The assessment of inflammation was scored

based on ulceration, inflammation, and extent of

disease. The scoring system subordinates from

following scale from 0 to 9: 0 = normal aspect of the

mucosa, 1 = localized hyperemia without ulcerations, 2

= ulceration, 3 = ulceration with thickening of bowel

wall at one site, 4 = two or more sites of ulceration and

thickening of the bowel wall, 5 = major sites of damage

extending <2 cm along the length of the colon, and

6–9 = damage extending >2 cm (with the score

increasing by 1 for each centimeter of damaged tissue)

(El-Salhy et al., 2014).

Histopathological evaluation. In order to microscopic

assessments, the colon was cut into pieces and fixed in

10% formalin. Formalin-fixed colon segments were

paraffin-embedded and cut into 5-lm divisions. Nine

sections obtained from each colon and were

deparaffinized using xylene and stained with

hematoxylin and eosin (H&E) (Hasanvand et al., 2016).

Histological analysis was done under light microscopy

by a pathologist in consistent with the previously

described method (Obermeier et al., 1999). Each score

characterized the mean of nine sections of each colon.



Table 1. Experimental groups of the study: Injections and number of animals in each experimental group for behavioral or molecular/histopathological

tests were illustrated

Groups Injections Numb. Behavioral tests Molecular/Histological tests

IBD1 DNBS (6 mg, i.r.) 8 OFT & FST –

IBD2 DNBS (6 mg, i.r.) 8 HBT & splash test –

IBD3 DNBS (6 mg, i.r.) 8 EPM & TST –

IBD4 DNBS (6 mg, i.r.) 8 SPT –

IBD5 DNBS (6 mg, i.r.) 8 – Colon macroscopic and histopathologic evaluations

IBD6 DNBS (6 mg, i.r.) 8 – Colon MPO activity

IBD7 DNBS (6 mg, i.r.) 4 – Colon Gene expression

IBD8 DNBS (6 mg, i.r.) 4 – HIPP Mitochondrial factors

IBD9 DNBS (6 mg, i.r.) 4 – HIPP Nitrite assay

IBD10 DNBS (6 mg, i.r.) 4 – HIPP inflammatory genes

Control1 Saline (100 lL, i.r.) 8 OFT & FST –

Control1 Saline (100 lL, i.r.) 8 OFT & FST –

Control2 Saline (100 lL, i.r.) 8 HBT & splash test –

Control3 Saline (100 lL, i.r.) 8 EPM & TST –

Control4 Saline (100 lL, i.r.) 8 SPT –

Control5 Saline (100 lL, i.r.) 8 – Colon macroscopic and histopathologic evaluations

Control6 Saline (100 lL, i.r.) 8 – Colon MPO activity

Control7 Saline (100 lL, i.r.) 4 – Colon Gene expression

Control8 Saline (100 lL, i.r.) 4 – HIPP Mitochondrial factors

Control9 Saline (100 lL, i.r.) 4 – HIPP Nitrite assay

Control10 Saline (100 lL, i.r.) 4 – HIPP inflammatory genes
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Histopathology was scored as follows: Epithelium (E): 0,

normal morphology; 1, loss of goblet cells; 2, loss of gob-

let cells in large areas; 3, loss of crypts; 4, loss of crypts in

large areas. Infiltration (I): 0, no infiltrate; 1, infiltrate

around crypt basis; 2, infiltrate reaching to L. muscularis

mucosae; 3, extensive infiltration reaching the L. muscu-

laris mucosae and thickening of the mucosa with abun-

dant edema; 4, infiltration of the L. submucosa. The

total histological score represents the sum of the epithe-

lium and infiltration score (total score = E + I).

Colonic myeloperoxidase (MPO) activity measure-
ment. MPO was assessed based on previously

described method (Abdolghaffari et al., 2010; Khanavi

et al., 2014). In brief, bowel samples were crushed on

ice and homogenized in 2 ml of 50 mmol/L phosphate buf-

fer, pH 7.4. Homogenizer probe was placed in a container

of ice. The homogenates were centrifuged for 30 min at

3500 g and 4 �C. The upper liquid was removed and 1

ml of 50 mmol/L phosphate buffer, pH 6 containing 0.5%

Hexadecyltrimethylammonium bromide (Sigma) and 10

mmol EDTA (Sigma) added into sediment samples and

sonicated and then centrifuged for 20 min at 12,000 g

and 4 �C. Subsequently, 15 ml from upper liquid phase

was added to an ELISA plate containing 240 ml of 50

mmol/L phosphate buffer, pH 6 containing 0.167 mg/ml

o-dianisidine (Sigma) and 0.0005% hydrogen peroxide

(Sigma, USA). The change in absorbance was measured

spectrophotometrically at 460 nm for 3 min. One unit of

MPO activity was described as the change in absorbance

per min at room temperature in the final reaction and

expressed as unit per mg protein of colon tissue.

Quantitative reverse transcription–PCR (qRT-PCR).

RNA was extracted using Tripure isolation reagent

(Roche) according to the company’s instructions and
quantified by a ND-100 spectrophotometer (Nanodrop

Technologies). Changes in mRNA expression of desired

genes were assessed by qRT–PCR after reverse

transcription of 1 lg RNA from each sample with

PrimeScript RT reagent kit (Takara) according to the

manufacturer’s order. The qRT–PCR was done on a

light cycler apparatus (Roche Diagnostics) using SYBR

Premix Ex Taq technology (Takara). Thermal cycling

environment involved an initial activation phase for 30 s

at 95 �C followed by 45 cycles including a denaturation

step for 5 s at 95 �C and a combined annealing/

extension step for 20 s at 60 �C. In order to approve

that whether all primers yield a single PCR product,

melting curve analysis was applied. Hypoxanthine

phosphoribosyl transferase1 (Hprt1), was considered as

a normalizer and fold changes in expression of each

target mRNA relative to Hprt1 was calculated based on

2�DDCt relative expression formula as described earlier

(Amini-Khoei et al., 2016; Amiri et al., 2017). The primer

sequences are listed in Table 2.
Behavioral tests
Forced swimming test (FST). FST was used as an

approved behavioral test for evaluating the despair

behavior in which increase in the immobility time

presents the depressive-like behavior (Porsolt et al.,

1977; Cryan and Holmes, 2005). Mice were individually

placed in an open glass cylinder (diameter: 10 cm, height:

25 cm) containing 19 cm water (23 ± 1 �C). Mice were

permitted to swim for 6 min and the immobility time was

documented during the last 4 min. Immobility behavior

was measured when the animal remained floating motion-

less in the water and made only those necessary activities

to keep its head above water.



Table 2. Primer sequences

Sequence (50 ? 30)

Gene Forward Reverse

Bdnf TTACCTGGATGCCGCAAACAT TGACCCACTCGCTAATACTGTC

Il-6 CTGCAAGAGACTTCCATCCAG AGTGGTATAGACAGGTCTGTTGG

Nlrp3 ATCAACAGGCGAGACCTCTG GTCCTCCTGGCATACCATAGA

Hmgb1 GCTGACAAGGCTCGTTATGAA CCTTTGATTTTGGGGCGGTA

Il-1b GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG

Tnf-a CTGAACTTCGGGGTGATCGG GGCTTGTCACTCGAATTTTGAGA

Hprt1 TGCTCGAGATGTGATGAAGG AAGCAGATGGCCACAGAACT

Myd88 ATCGCTGTTCTTGAACCCTCG CTCACGGTCTAACAAGGCCAG

Tlr-2 CTCTTCAGCAAACGCTGTTCT GGCGTCTCCCTCTATTGTATTG

Tlr-4 ATGGCATGGCTTACACCACC GAGGCCAATTTTGTCTCCACA
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Tail suspension test (TST). In the TST, mouse was

suspended on the edge of a rod 50 cm above a table

top using adhesive scotch tape, located approximately

1 cm from the tip of the tail. Tail climbing was prohibited

by passing the mouse’s tail through a small plastic

cylinder prior to suspension. The duration of immobility

time was manually documented for 6 min. Mice were

considered immobile only when they hung down

passively and were completely immobile (Steru et al.,

1985; Cryan et al., 2005).

Splash test. Splash test used to evaluate the

motivational and self-care difficulties, in which grooming

behavior of mice, is considered as an indirect measure

of palatable solution drinking. A 10% sucrose solution

was spewed on the dorsal coat of animals while they

were in their home cages and mice were evaluated for

5 min. Duration of grooming activity behavior including

nose/face cleaning, head washing, and body grooming

was observed by a person blinded to the experiment

(David et al., 2009; Marrocco et al., 2014; Haj-Mirzaian

et al., 2015).

Sucrose preference test (SPT). SPT is considered as

an approved test to evaluate the hedonic state of rodents

(Wallace et al., 2009). In this regard, animals were intro-

duced to two bottles of tap water, which were placed in

the home cage of each mouse in the first two days (1st

and 2nd days). Then, one of the bottles was substituted

by a bottle having 1% sucrose solution for the second

two days (3th and 4th days). On the test day (5th day), ani-

mals were deprived of food and water for 5 h and then

sucrose preference was assessed in one hour of liquid

consumption using two bottles of 1% sucrose solution

and tap water (DNBS/saline were injected in the 2nd

day). SPT was calculated using the following equation,

which evaluates the fraction of 1% sucrose solution con-

sumed to the total liquid consumed: Sucrose preference

= Sucrose consumed/(Sucrose consumed + tap water

consumed).

Open-field test (OFT). We used the OFT to elucidate

the effects of colitis on motoric function and anxiety-like

behaviors (Kulesskaya and Voikar, 2014; Amiri et al.,

2016). The OFT apparatus consisted of a white opaque

Plexiglas box measuring (50 cm � 50 cm � 30 cm) which
was dimly illuminated. Animals were placed individually

on the central zone of the apparatus (30 cm � 30 cm)

and their behaviors were recorded by a camera for 5

min and were analyzed by Ethovision software version 8

(Noldus, Netherlands). Distance moved (horizontal activ-

ity), number of rearings (vertical activity) and time spent

in the central zone were evaluated.
Hole-board test (HBT). Hole-board test presented as a

reliable trial to assess the anxiety-like behaviors in the

rodents (Takeda et al., 1998; Haj-Mirzaian et al., 2015).

The apparatus was made of a white Plexiglas square (5

0 cm � 50 cm) with 16 equally sized holes (3 cm in diam-

eter) and was located 50 cm above the floor. Mice were

placed in the center of the board, and the number of

head-dips was calculated in a 5-min period by an

experimenter.
Elevated plus maze (EPM). The EPM is an

appropriate test to assess the anxiety-like behavior in

mice (Ducottet and Belzung, 2005). The apparatus was

made of black opaque Plexiglas and consisted of two

open (30 � 5 cm) and closed (30 � 5 � 15 cm) arms,

which were attached by a platform area (5 � 5 cm). Test-

ing room was dimly illuminated and animals were individ-

ually placed in the center of the EPM facing to closed arm

and each behavioral session was videotaped for a 5-min

period and was analyzed by Ethovision software version

8 (Noldus, Netherlands). The time spent in the open arms

and number of entries into the open arms are described

as percentages.
Nitrite assay

Mice in each group were fasted overnight and after

scarification, hippocampi were quickly dissected out and

soaked in the liquid nitrogen and kept at �80 �C freezer

until the assays. To determine NO levels in the

hippocampus, we measured nitrite levels as the result of

the NO end product (Ding et al., 2010; Kordjazy et al.,

2015). Nitrite levels were measured by a colorimetric

assay based on the Griess reaction in each hippocampus

sample. Concentration of nitrite was determined by refer-

ence to a standard curve of sodium nitrite (Sigma) and

normalized to the weight of each sample.
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Mitochondrial function

Animals were sacrificed and hippocampi were dissected

out, washed with PBS and stored at �80 �C. Tissue

homogenization was done with cold mannitol solution (4

�C) containing 0.225 M D-mannitol, 75 mM sucrose and

0.2 mM EDTA. The homogenate was centrifuged at

1000�g for 10 min at 4 �C. The supernatant was

centrifuged at 10,000�g for 10 min as a source of

hippocampal mitochondria. The heavy mitochondrial

fraction was collected and re-suspended in the mannitol

solution and, re-centrifuged twice at 12,000�g for 10

min. The resulting pellet (P2 fraction), including both

synaptic and non-synaptic mitochondria was re-

suspended in desired buffer based on oxidative stress

markers including ROS production, ATP, and

glutathione (GSH) (Wieckowski et al., 2009). To ensure

that the obtained suspension is pure mitochondria, MTT

test was conducted to confirm the work according to pre-

vious works (Hosseini et al., 2014). Mitochondrial protein

concentration was determined by the Coomassie blue

protein-binding method using BSA as the standard

(Bradford, 1976). To keep the uniformity of experimental

condition, the mitochondrial samples (100 mg/ml mito-

chondrial protein) were used in all experiments.
ROS formation. To measure mitochondrial ROS

formation on isolated hippocampi mitochondria,

mitochondrial suspension were incubated with 20,
70-dichlorofluorescein diacetate (DCFH-DA) (final

concentration of 10 mM) in respiratory buffer including

KCl (130 mM), MgCl2 (5 mM), NaH2PO4 (20 mM), ADP

(1.7 mM), b-NADPH (0.1 mM), FeCl3 (0.1 mM), pH 7.4.

Mitochondrial fluorescence and light scattering were

analyzed for at least 12000 counts per sample in the

flowcytometry using the BD Biosciences FACS

CalibureTM flowcytometer. Samples were gated on the

forward/side scatter to exclude cell debris and clumps.

A flowcytometer with the Flomax software, equipped

with a 488-nm argon ion laser was used and

fluorescence signals were obtained using a 530-nm

band pass filter (FL-1 channel) (Gao et al., 2009;

Hosseini et al., 2014; Amini-Khoei et al., 2017).
ATP levels. Briefly, 0.5 ml aliquot of isolated

mitochondria homogenate in TCA (6%) was mixed with

0.5 mL of KOH 0.05 M (on ice), then, 1 mL deionized

water was added; after 2 min, 650 lL of KH2PO4 (0.05

M) was added and vortexed. After filtering, ATP level in

each sample was measured using luciferase enzyme as

described in our previous work (Eskandari et al., 2012).

Bioluminescence intensity was measured using Sirius

tube luminometer (Berthold Detection System, Germany).
Glutathione (GSH) levels. Glutathione levels were

determined using 5, 50-dithiobis-(2-nitrobenzoic acid) or

DTNB as the indicator. Briefly, 0.1 mL of supernatant

was added into 0.1 mol.L�1 of phosphate buffer and

0.04% DTNB in a total volume of 3.0 mL (pH 7.4). The

developed color was measured at 412 nm using a

spectrophotometer (UV-1601 PC, Shimadzu, Japan).
GSH content was expressed as mg mg�1 protein

(Jayakumar et al., 2014).

Experimental design

Experimental design of the study consisting of injections

(colitis vs. control), number of animals in each

experimental group, and molecular/behavioral

assessments which were performed in each group is

summarized in Table 1.

Statistical analysis

The sample size was calculated by power calculations

using G power software (ver.3.1.7, Franz Faul,

Universitat Kiel, Germany). We set a error at 0.05 and

power (1-b) at 0.8 and the required total sample size

per group was calculated as 6–8 in behavioral tests and

3–4 in molecular studies. Comparison between the

groups was analyzed using t-test using the Graph-pad

prism software (version 6). P < 0.05 was considered

statistically significant.

RESULTS

Assessment of colitis

In order to validate the DNBS-induced colitis, we have

assessed the possible effect of DNBS on macroscopic

and histopathological features and scores, MPO activity

and pro-inflammatory cytokines expression levels.

Macroscopic evaluation

As shown in Fig. 1, the macroscopic scores were

significantly higher in DNBS-treated mice when

compared with the saline-treated mice (t= 8.612, df =
12, P < 0.001).

Microscopic evaluation

In microscopic examination, epithelial damage and

inflammatory cell infiltration were detected in all DNBS-

treated samples. Massive neutrophilic infiltration

restricted to the mucosa as well as goblet cell and crypt

loss was evident, suggesting a pattern of colonic

damage. The histopathological scores were significantly

higher in DNBS-treated mice when compared with the

saline-treated mice (t = 5.1, df = 14, P < 0.01,

Table 3, Fig. 2).

Colitis increased MPO activity in the colon tissue

MPO activity value in DNBS-treated group was

significantly increased in comparison with the control

group (t= 16.63, df = 12, P < 0.001, Fig. 3).

Colitis increased expression of inflammatory genes
in the colon tissue

As shown in Fig. 4B, DNBS-induced colitis was

associated with significant increase in the expression

levels of the colonic pro-inflammatory cytokines

including Il-1b (t= 5.454, df = 6, P < 0.01), Il-6



Fig. 1. Macroscopic scores of the colitis. Values are expressed as

mean ± SD (n= 8) and were analyzed using t-test. ***P < 0.001

compared to the control group.

Table 3. Histopathologic scores of the colon samples. Histopathologic

changes were scored semi-quantitatively. Values are expressed

as median and min–max (n = 8) and were analyzed using t-test.
**P < 0.01 compared to the control group

Group no Treatment Pathologic score

Median (min–max)

1 DNBS 4 (2–5)**

2 Control 1 (0–2)

Fig. 3. Myeloperoxidase (MPO) activity in the colitis. Data are

expressed as mean ± SEM (n= 8) and were analyzed using t-test.
***P < 0.001 compared to the control group.
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(t= 3.669, df = 6, P < 0.05), Tnf-a (t = 3.457, df = 6,

P < 0.05), Hmgb1 (t= 3.233, df = 6, P < 0.05), Tlr-2
(t= 2.681, df = 6, P < 0.05) and Tlr-4 (t = 5.112,
df = 6, P < 0.01) as compared with the control saline-

treated group.
Colitis provoked behaviors relevant to depression
and anxiety

Analyses revealed that applying colitis using DNBS

induced depressive- and anxiety-like behaviors in

animals. We demonstrated the impact of colitis on
Fig. 2. Representative features of histopathologic evaluations provided from

sections (�100). (A) The saline-treated group, the normal mucus layer

leukocyte infiltration; (B) The DNBS-treated group, mucosal layer with l

(arrow).
depressive-like behaviors using FST, TST, splash test

and SPT. The possible effect of colitis on locomotor

activity and anxiety-like behaviors were determined

using OFT, HBT, and EPM.

Colitis increased immobility time in the FST and TST

Results showed that the immobility time, main indicator of

despair behavior, increased in DNBS-treated animals

when compared with control groups in the FST

(t= 8.945, df = 14, P< 0.001, Fig. 5A) and TST

(t= 3.465, df = 14, P< 0.01, Fig. 5B).

Colitis decreased grooming activity time in the
splash test

As shown in Fig. 5C, colitis caused self-care disturbance

and significantly reduced grooming activity time in the

splash test in comparison with the control group (t =
7.443, df = 14, P < 0.001).

Colitis decreased sucrose intake in the SPT. Our

finding determined that colitis was accompanied with an

anhedonic condition. SPT results showed that induction

of colitis with DNBS significantly reduced sucrose

consumption in comparison with control mice (t= 5.99,
H & E-stained colon

and crypts without

eukocyte infiltration
df = 14, P < 0.001, Fig. 5D).

Colitis decreased time spent in
central zone without change in
locomotor activity in the OFT

In the OFT, there is no significant

difference in the total distance moved

(horizontal activity) (t= 0.3119, df =

14, P > 0.05, Fig. 6A) and number of

rearings (vertical activity) (t= 0.6544,
df = 14, P > 0.05, Fig. 6B) between

colitis and control groups. As shown

in Fig. 6C, DNBS-treated animals

spent less time in the central zone of

the OF apparatus in comparison with

the control animals (t= 3.035, df =
10, P < 0.05).



Fig. 4. The expression of Il-1b, Tnf-a, Tlr4, Tlr2, Il-6 and Hmgb1 in the hippocampus (A) and the colon (B) tissues were determined by qRT–PCR.

Data are shown as mean ± SEM (n = 4) and were analyzed using t-test. *P < 0.05, **P < 0.01 and ***P < 0.001 compared to the control

counterparts. Il-1b: interleukin-1 beta, Tnf-a: tumor necrosis factor alpha, Tlr4: toll-like receptor 4, Tlr2: toll-like receptor 2, Il-6: interleukin 6 and

Hmgb1: high mobility group box 1protein.

Fig. 5. Effects of colitis on depressive-like behaviors including immobility time in the FST (A),

immobility time in the FST (B), grooming activity time in the splash test (C) and percent of sucrose

consumption in SPT (D). Values are expressed as the mean ± S.E.M. (n= 8) and were

analyzed using t-test. **P < 0.01 and ***P < 0.001 compared to the control group. FST: forced

swimming test, SPT: sucrose preference test.
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Colitis decreased number of head-dip in the HBT

As shown in Fig. 6D, colitis caused a significant decrease

in number of head-dips in IBD group when compared with

control animals (t = 3.402, df = 14, P < 0.01).
Open arm time and entries decreased in colitic mice
in the EPM

In the EPM, percentage of spent time in the open arms

and percentage of open arms entries were evaluated as
variables relevant to anxiety-like

behaviors. In comparison with the

control animals, DNBS administration

remarkably decreased percentage of

spent time in the open arms

(t= 2.331, df = 14, P < 0.05,

Fig. 6E) as well as percentage of

open arms entries (t= 4.122, df= 14,

P < 0.01, Fig. 6F) in IBD mice.
Colitis increased expression of
genes related to inflammation in the
hippocampus

Fig. 4A shows the effects of IBD on

expression of genes related to

inflammatory markers. t-test analysis

demonstrated the over-expression of

Tlr-2 (t = 5.421, df = 6, P < 0.01),

Tlr-4 (t = 7.131, df = 6, P < 0.001),

Myd88 (t= 4.330, df = 6, P < 0.01)

and Hmgb1 (t= 3.745, df = 6,
P < 0.01) in hippocampus of IBD

groups in comparison with the control

animals. Also, significant rise in

expression of Tnf-a (t = 4.272, df =
6, P < 0.01) and Il-6 (t = 2.771, df

= 6, P < 0.05) was observed in the

hippocampus of the colitic mice in

comparison with the control mice.

Our findings showed that there is no
significant difference in the expression of Il-1b (t= 5.1,

df = 14, P > 0.05) and nlrp3 (t= 1.324, df = 6,
P > 0.05) in the hippocampus of colitic mice when

compared with the control mice.

In addition, as presented in Fig. 7, colitis significantly

decreased Bdnf expression in hippocampus in

comparison with saline-treated mice (t= 2.594, df = 6,
P < 0.05).



Fig. 6. Effect of colitis on behaviors related to anxiety and locomotor activity. Total distance

moved in the OFT (A), number of rearings in the OFT (B), time spent in the central zone in the

OFT (C), number of head-dips in the HBT (D),% open arm time in the EPM (E), and % open arm

entries in EPM (F). Values are expressed as the mean ± S.E.M. (n= 8) and were analyzed

using t-test. *P < 0.05 and **P < 0.01 compared to the control group. OFT: open-field test, EPM:

elevated plus maze, HBT: hole-board test.

Fig. 7. The expression of Bdnf in the hippocampus was determined

by qRT-PCR. Data are shown as mean ± SEM (n = 4) and were

analyzed using t-test. *P < 0.05 compared to the control counter-

parts. Bdnf: brain-derived neurotrophic factor.
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Colitis induced mitochondrial
dysfunction and NO
overproduction in the
hippocampus

The effects of colitis on hippocampal

mitochondria parameters including

GSH and ATP levels as well as ROS

production were presented in

Table 4. Results obtained from t-test
analysis revealed that there was a

significant decrease in GSH levels in

the colitic group when compared with

the control group (t= 6.979, df = 8,

P < 0.001). Also, a significant

decrease in ATP levels was observed

in the colitic mice as compared with

the controls (t= 18.97, df = 8, P <

0.01).

Furthermore, assessment of ROS

formation was performed in 2 time

intervals (5 min and 45 min) in the

IBD and the control groups. Results

obtained from t-test demonstrated

that colitis significantly increased

levels of ROS in the hippocampus in

intervals 5 min (t = 6.397, df = 11,

P < 0.0) and 45 min (t= 4.545, df
= 14, P < 0.001) in comparison with

control group (Table 5).

We have also evaluated the impact

of colonic inflammation on hippocampal

nitrite levels. Analysis revealed that

colitic animals have a higher level of

hippocampal nitrite content in

comparison with the controls (t=8.497,

df = 8, P < 0.001, Table 4).
DISCUSSION

Results of the current study showed

that depressive- and anxiety-like

behaviors in an animal model of CD
are associated with increased transcription of the genes

relevant to innate immunity in the hippocampus. In

addition, altered expression of these genes was

accompanied by an overproduction of ROS and NO in

hippocampus of animals. We found that colonic

inflammatory responses were associated with the

infiltration of inflammatory cells and the increased

expression of the genes involved in TLRs pathway in

intestinal tissue. These alterations were accompanied

by increased transcriptional levels of the genes relevant

to innate-immunity in the hippocampus of colitic mice.

Further, activation of innate immunity was associated

with behavioral abnormalities and oxidative stress in the

hippocampus. These results suggest that association

between peripheral and central immune-inflammatory

responses play a critical role in the co-occurrence of

depression and anxiety in CD.

In the current work, using an experimental model of

colitis, we observed a significant inflammation in the



Table 4. Effect of colitis on GSH, ATP, and nitrite levels in the

hippocampus: Values are expressed as Mean ± S.D. (n= 4) and

were analyzed using t-test. **P < 0.01 and ***P < 0.001 compared with

control group. GSH: glutathione, ATP: adenosine triphosphate

GSH ATP Nitrite

(mg/mg

protein)

(nmol/mg

tissue)

(nmol/mg

protein)

Control 14.7 ± 2.3 3.2 ± 0.2 79.48 ± 2.8

Colitis 5.36 ± 1.7*** 1.28 ± 0.13** 147.4 ± 3.2***

Table 5. % increase of ROS formation in hippocampus after induction

of colitis. Values are expressed as Mean ± S.D. (n= 4) and were

analyzed using t-test. **P < 0.01 and ***P < 0.001 compared with

control group. ROS: reactive oxygen species

Groups DCF fluorescence intensity (%)

5 min 45 min

Control 3 ± 2 9 ± 1

Colitis 12 ± 1** 157 ± 14***
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colonic tissue that was confirmed by pathological and

molecular evaluations. Infiltration of inflammatory cells

such as PMN cells and macrophages into colonic tissue

was accompanied by an increase in the MPO level and

upregulation of the Tlr-2 and 4 and Hmgb1 as well as

pro-inflammatory cytokines including Tnf-a, Il-1b, and Il-
6. Ample evidence has demonstrated the significant

contribution of pro-inflammatory cytokines in the

pathogenesis of IBD (Strober and Fuss, 2011; Senhaji

et al., 2016). Inflamed intestinal barrier contains antigen-

presenting cells such as macrophages which produce

several inflammatory factors (Papadakis and Targan,

2000). In this regard, IL-1b is known to increase the para-

cellular permeability of the intestinal mucosa/epithelium,

and has been suggested as a determinant factor for the

initiation of disease (Al-Sadi et al., 2008; Neurath,

2014). Also, TNF-a and IL-6 are known to mediate the

majority of systemic inflammatory responses in IBD,

which account for the disease progression, perpetuation

and comorbid difficulties (Leppkes et al., 2014; Neurath,

2014; Waldner and Neurath, 2014). These results are in

line with previous investigations, which have reported that

experimental models of colitis have severe colonic dam-

age and pervasive inflammatory responses in the intesti-

nal tissue (Martin-Subero et al., 2015; Heydarpour et al.,

2016).

We used validated and qualified behavioral tests for

the evaluation of anxiety- and depressive-like behaviors

in rodents. We found that the colitic mice exhibited

behaviors relevant to anxiety and depression 3 d

following DNBS-induced injury. Increased immobility

time in both FST and TST reflects the inability of

rodents to cope with an acute unescapable challenge

reflecting the depressive-like behaviors similar to

behavioral despair observed in depressed people

(Cryan and Holmes, 2005). Results of this work revealed

that the colitic mice not only had a significant increase in

the immobility time, but also had a decline in sucrose pref-

erence and consumption as well as self-care disturbance
in SPT and splash test. A decrease in consumption of

sucrose 1% in the SPT and low response (decrease in

grooming activity time) to sucrose 10% in splash test have

been reported as behaviors associated with anhedonia

and motivational difficulties in rodents (Der-Avakian and

Markou, 2012; Marrocco et al., 2014; Petit et al., 2014;

Amiri et al., 2015b). Also, the depressive behaviors of col-

itic animals in our experiments were not related to the

changes of locomotion. Although the FST and TST are

trusted behavioral tests, false negative results might be

obtained with sedation and sickness conditions. However,

the results we observed in this study do not seem to be

associated with locomotion changes, since DNBS-

induced colitis did not change the locomotion in the

OFT. Further, we have shown that colitis provoked

anxiety-like behaviors in OFT (decrease in spent time in

the central zone), EPM (decrease in both frequency and

spent time in open arms), and HBT (decrease in the num-

ber of head-dips). This behavioral profile indicates that the

induction of colitis in mice is associated with the co-

occurrence of anxiety- and depressive-like behaviors.

Clinical and preclinical investigations have recently

demonstrated that not only intestinal damage in IBD

induces behaviors relevant to affective disorders, but also

inflammatory factors play a part in mediation of these neg-

ative behavioral changes (Hassan et al., 2014; Pellissier

et al., 2014; Heydarpour et al., 2016). Prevalence of

depression and/or anxiety is more common in patients

with IBD in comparison with the general population, sug-

gesting that patients with IBD require psychiatric care

(Magni et al., 1991; Addolorato et al., 1997; Kurina

et al., 2001).

There is a consensus agreement that oxidative

challenge and inflammatory pathways are bidirectional

bridges that link diversity of systemic diseases to

negative affective disorders (Slavich and Irwin, 2014;

Martin-Subero et al., 2015). Emerging lines of research

have highlighted the role of brain–gut axis in the comor-

bidity of psychiatric disorders and bowel diseases

(Kennedy et al., 2014; Severance et al., 2014; Mayer

et al., 2014a, 2014b). It has been well documented that

immune-inflammatory cascades play a pivotal role in the

development of negative affective disorders such as anx-

iety and depression (Irwin and Miller, 2007; Maes, 2011).

Recent investigations have demonstrated that activation

of TLRs in cortico-limbic regions contribute to pathobiol-

ogy of several brain disorders including anxiety and

depression (Dantzer et al., 2008; Wohleb, 2013). In the

current study, depressive- and anxiety-like behaviors in

colitic mice were accompanied by an increase in the

expression of genes relevant to innate immunity such as

TLRs and NLRP3 pathways. Overexpression of the Tlr2
and Tlr4 in the hippocampus was associated with upreg-

ulation of Myd88 as the main regulatory protein of the

TLRs pathway. Stimulation of TLR-4 and TLR-2 activate

several signaling pathways in the CNS which lead to the

initiation of inflammatory responses. Recently published

results by our colleagues showed that TNBS-induced col-

itis induces behavioral despair in animals and these

behavioral changes are associated with a significant

increase in hippocampal TNF-a and iNOS protein levels
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(Heydarpour et al., 2016). Moreover, inhibition of iNOS by

aminoguanidine reversed the despair behavior of animals

in the FST and decreased both iNOS and TNF-a level in

the hippocampus (Bakunina et al., 2015; Heydarpour

et al., 2016). In this work, we observed that DNBS-

induced colitis not only increased nitrite contents in the

hippocampus, but also induced mitochondrial abnormali-

ties and oxidative challenge. We found a considerable

decrease in hippocampal ATP levels, suggesting that

mitochondria were not able to produce enough energy

supply following DNBS challenge. Using flowcytometry,

a valid and quantitative tool for the measurement of mito-

chondrial ROS, we observed a time-dependent increase

in mitochondrial derived ROS suggesting the abnormal

function of mitochondria in the hippocampus. Also, a sig-

nificant decrease in the GSH levels, as the main antioxi-

dant in the brain, indicates that overproduction of ROS

and NO causes oxidative challenge in the hippocampus.

In this regard, previous investigations have highlighted

the role of oxidative challenge and nitrergic system in

modulation of anxiety- and depressive-like behaviors

(Amiri et al., 2015a; Haj-Mirzaian et al., 2016). Mitochon-

dria are intracellular organelles which have pivotal role in

ATP production in the cells (Calabrese et al., 2001). Mito-

chondrial dysfunction as defect in biochemical cascade or

damage to the mitochondrial respiratory chain has been

recommended as a main factor in the pathogenesis of

neuropsychiatric disorders such as anxiety and depres-

sion (Rezin et al., 2009; Hovatta et al., 2010; Tobe,

2013). Suggesting, brain metabolism impairment and

decrease in mitochondrial ATP can be considered as a

mechanism underlying psychiatry disorders (Fattal et al.,

2006; Burroughs and French, 2007; Rossignol and Frye,

2015). In this regard, it is demonstrated that potent anxi-

olytic and antidepressant agents may improve and protect

mitochondrial efficiency and function indicating mitochon-

drial function may be linked to the pathophysiology and

treatment of behavioral/mood disorders (Einat et al.,

2005; Burroughs and French, 2007).

Clinical and preclinical studies have suggested that

peripheral inflammatory responses in IBD trigger the

initiation of immune-inflammatory pathways in the brain

through different pathways (Maes et al., 2011b; Martin-

Subero et al., 2015). Despite the extensive research in

the bidirectional effects of brain–gut axis, it is not clear

how inflammatory factors in the bowel can influence

behavioral profile sufferings. Focusing on animal studies,

recent studies have demonstrated that TNBS-induced

colitis is able to enhance neuronal excitability and inflam-

matory responses in the hippocampus through increasing

the activity of glutamatergic system and TNF-a (Neurath

et al., 2000; Boissé et al., 2003; Riazi et al., 2008).

Although several mechanisms have been proposed to

mediate comorbidity of behavioral difficulties in IBD, most

of researchers suggest that cytokines are key mediators

of such responses (Mackner et al., 2011). Our results

revealed that upregulation of Tlr2 and Tlr4 genes in the

hippocampus was associated with an increase in the

expression of inflammatory genes (MyD88, IL-6, and

TNF-a) as well as oxidative and nitrosative stress. How-

ever, the main question is that how TLR-2 and TLR-4
were activated in the hippocampus of mice which experi-

enced DNBS-induced colitis. To answer this question, we

focused on the expression of the Hmgb1 gene.

It has been well documented that HMGB1 modulates

the systemic inflammatory responses in vast majority of

disorders and in case of IBD, this factor has been

suggested as the clinical marker for IBD diagnosis in

the stool of patients (Alex et al., 2007; El Gazzar,

2007; Chassaing et al., 2012). In addition, HMGB1 is

known as a well-known DAMP that accounts for activa-

tion of both TLR-2 and TLR-4 in variety of inflammatory

diseases (Yu et al., 2006; Mudaliar et al., 2013). In line

with previous reports, we observed an upregulation in

the HMGB1 gene not only in the colon tissue, but also

in the hippocampus of colitic mice indicating that this

molecule at least in part, mediates the primary inflamma-

tory responses in the CNS which results in appearance

of behavioral comorbidities. Hippocampus has high den-

sity of microglial cells. It has been suggested that activa-

tion of hippocampal microglial implicated in the

pathophysiology of psychiatric and stress-related disor-

ders (Rohan Walker et al., 2013; Brites and

Fernandes, 2015). In this context, it has been shown

that activation of HMGB1 is associated with depression

while blockage of HMGB1 attenuated the depressive-

like behaviors (Weber et al., 2015; Wu et al., 2015). Fur-

ther, we also found that the expression of brain-derived

neurotrophic factor (BDNF) was significantly lower in col-

itic animals. This neurotrophic factor has a pivotal role in

neuronal survival, regulation of neuronal differentiation,

migration and activity-dependent synaptic plasticity

(Duman et al., 2000; Vutskits et al., 2001). It has been

demonstrated that decreased BDNF expression in the

hippocampus is associated with pathophysiology of

depression-like behaviors. The fundamental role of

BDNF in pathophysiology of neuropsychiatric diseases

is approved by this fact that its level can be

improved by neuropsychiatric medications, such as

antidepressants, mood stabilisers and antipsychotics

(Harrisberger et al., 2015).

It should be noted that we report DNBS-induced

alterations at transcriptional level, and our results would

be improved if we measure these alterations at protein

levels. In addition, we could improve results of this study

by applying a pharmacological treatment to animals (such

as an anti-inflammatory compound or antioxidant) to show

the involvement of oxidative stress and inflammatory

responses in behavioral abnormalities following colitis.

However, our results showed that colitic mice exhibit a

wide range of behaviors relevant to anxiety and

depression. Our results also revealed that altered

hippocampal energy and redox status may play a role in

aggravating the inflammatory signaling following

induction of colitis in mice. Although we showed the

increased transcription of Hmgb1 in both central and

peripheral tissues, we could not show that HMGB1

triggers the inflammatory responses in the hippocampal

formation. We believe that further research is needed to

investigate the role of toll-like receptor pathway and

mitochondrial function in the co-occurrence of anxiety

and depression in IBD.
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Interestingly, there are a variety of compounds that

have been considered as useful for treating both IBD

and mood disorders. Plant compounds extracted from

Glycyrrhiza uralensis (Chinese licorice), Magnolia

officinalis, Zingiber officinale (ginger), Salvia miltiorrhiza

and curcumin exert anti-inflammatory effects through

interacting with TLR-4 pathway (Lucas and Maes,

2013). For instance, epigallocatechin-3-gallate (EGCG)

is a polyphenol compound found in green tea, and is able

to inhibit the MyD88 signaling (Youn et al., 2006). Further,

6-shoagol, as an active compound of ginger, is able to

block the activity of inhibitor-jB kinase (Park et al.,

2009). Many studies have shown that most of these herbs

are useful for the treatment of IBD and depression (Xu

et al., 2005; Zhao et al., 2008; Sun et al., 2009; Ung

et al., 2010). Focusing on mitochondrial function and

oxidative & nitrosative stress, studies have shown that

reducing mitochondrion-induced oxidative stress have

modulating effects on TLR pathway and is useful to allevi-

ate symptoms in both depression and IBD (Tirosh et al.,

2007; Lucas and Maes, 2013; Heydarpour et al., 2016;

Sonei et al., 2017). For example, N-acetylcysteine

(NAC) is a strong radical scavenger that showed thera-

peutic effects in both depression and IBD (Cetinkaya

et al., 2005; Magalhães et al., 2011). In addition, inhala-

tion or consumption of hydrogen (hydrogen-enriched

water) is able to decrease the activity of TLR4 pathway

by inhibiting NF-kB activity (Ito et al., 2011; Ohno et al.,

2012). It has been shown that consumption of

hydrogen-enriched water is able to alleviate the mitochon-

drial dysfunction and inflammatory responses (Li et al.,

2012; Xie et al., 2012). Interestingly, studies have shown

the efficacy of hydrogen consumption in the treatment of

both colitis and psychiatric disorders (Carbonero et al.,

2012; Ghanizadeh and Berk, 2013).
CONCLUSION

Using an experimental animal model of Crohn’s disease,

our results showed that behavioral abnormalities in early

stages of disease are associated with immune-

inflammatory responses (at transcript level) in both

colon and hippocampus. We demonstrated that DNBS-

induced colitis is able to provoke anxiety- and

depressive-like behaviors in animals. These behavioral

changes were accompanied by altered energy

metabolism and oxidative and nitrosative stress in the

hippocampus as well as increased expression of genes

in TLR-pathway. In addition, we suggest that HMGB1,

as an endogenous ligand for Tlr-2 and Tlr-4, may play a

role in the activation of inflammatory responses in the

brain and occurrence of abnormal behaviors in animals.
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