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Patients with inflammatory bowel disease (IBD) have a high risk for development of colitis-associated cancer
(CAC). Serotonin is a neurotransmitter produced by enterochromaffin cells of the intestine. Serotonin and its re-
ceptors, mainly 5-HT3 receptor, are overexpressed in IBD and promote development of CAC through production
of inflammatory cytokines. In the present study, we demonstrated the in vivo activity of tropisetron, a 5-HT3 re-
ceptor antagonist, against experimental CAC. CACwas induced by azoxymethane (AOM)/dextran sodium sulfate
(DDS) in BALB/cmice. The histopathology of colon tissuewas performed. Beta-catenin and Cox-2 expressionwas
evaluated by immunohistochemistry as well as quantitative reverse transcription-PCR (qRT-PCR). Alterations in
the expression of 5-HT3 receptor and inflammatory-associated genes such as Il-1β, Tnf-α, Tlr4 and Myd88were
determined by qRT-PCR. Our results showed that tumor development in tropisetron-treated CAC groupwas sig-
nificantly lower than the controls. The qRT-PCR analysis demonstrated that the expression of 5-HT3 receptorwas
significantly increased following CAC induction. In addition, tropisetron reduced expression of β-catenin and
Cox-2 in the CAC experimental group. The levels of Il-1β, Tnf-α, Tlr4 and Myd88 were significantly decreased
upon tropisetron treatment in the AOM/DSS group. Taken together, our data show that tropisetron inhibits de-
velopment of CAC probably by attenuation of inflammatory reactions in the colitis.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Colon cancer is the third most common type of cancer, accounting
for approximately 70% of bowel neoplasms [1,2]. It has been shown
that patients with inflammatory bowel disease (IBD) are at high risk
of development of colitis-associated cancer (CAC) [3,4]. Due to improve-
ment of treatment strategies against IBD, the patients have longer sur-
vival which leads to augmentation in the CAC incidence [5]. This
indicates that there is a correlation between duration of IBD and in-
crease in the CAC prevalence [6]. In this setting, identifying novel and ef-
ficacious preventive strategies against CAC-prone IBD patients might
have substantial therapeutic benefit.
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It is well-recognized that chronic inflammation promotes several
stages of tumorigenesis, including transformation, proliferation, survival,
angiogenesis, invasion and metastasis [7]. Previous studies have implied
that inflammatory cytokines play a pivotal role in the pathogenesis of
CAC [8,9]. Cytokines promote tumor growth and survival by stimulation
of angiogenesis and suppression of the immune response [10]. For in-
stance, it has been demonstrated that interleukin-1 beta (IL-1β) and
tumor necrosis factor-alpha (TNF-α) induce secretion of numerous an-
giogenic factors as well as cyclooxygenase-2 (Cox-2) in CAC [11–14].
Therefore, decreasing the levels of TNF-α and IL-1β in patients with IBD
should reduce the risk of CAC development.

Toll like receptors (TLRs) are pattern recognition receptors that rec-
ognize pathogen molecules and initiate the immune response [15].
TLR4/MYD88/NF-κB cascade is overexpressed in CAC [16]. Induction of
Cox-2, activation of mitogen-associated protein (MAP) kinase signaling
pathway and epidermal growth factor receptor (EGFR) aswell as induc-
tion of production of pro-inflammatory cytokines such as TNF-α and IL-
1β by immune cells are the mechanisms through which TLR4 promotes
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Table 1
Primer sequences for qRT-PCR.

Primer name Forward sequence Reverse sequence

H2afz TCATCGACACCTGAAATCTAGGA AGGGGTGATACGCTTTACCTTTA
Tnf-α CTGAACTTCGGGGTGATCGG GGCTTGTCACTCGAATTTTGAGA
Il-1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG
Tlr4 ATGGCATGGCTTACACCACC GAGGCCAATTTTGTCTCCACA
Myd88 ATCGCTGTTCTTGAACCCTCG CTCACGGTCTAACAAGGCCAG
5-HT3 receptor TCCTGAGGACTTCGACAATGT CCCCACGTCCACAAACTCAT
Cox-2 TTCCAATCCATGTCAAAACCGT AGTCCGGGTACAGTCACACTT
Β-catenin ATGGAGCCGGACAGAAAAGC TGGGAGGTGTCAACATCTTCTT

Fig. 2.Weight changes in CAC. Bodyweight changeswere expressed as a percentage of the
original weight on week 1. Values are shown as the mean ± S.E.M from 8 mice in each
group and were analyzed using two-way ANOVA followed by repeated measure post
hoc test. ⁎⁎P b 0.01 compared with the AOM/DSS group, ###P b 0.001 compared with the
control normal group.
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tumorigenesis [17,18]. In this regard, it has been reported that inhibition
of TLR4 using a blocking antibody attenuates dysplasia and prevents
CAC development [16]. Altogether, these studies suggest that TLR4/
MYD88 loop is an attractive therapeutic target in CAC and drugs that
modify its expression and functions are potential agents against CAC ini-
tiation and progression.

Cox-2 is an inducible enzyme which is overexpressed in CAC and
plays a cardinal role in CAC tumorigenesis via inhibition of apoptosis, in-
duction of proliferation and activation ofβ-catenin-dependent signaling
[19,20]. It has been shown that Cox-2 inhibitors reduce risk of CAC de-
velopment. Furthermore, recent studies indicate that treatment with
Cox-2 inhibitors is an effective strategy for the treatment of CAC [21,22].

Beta-catenin is a transcriptional coactivator which is aberrantly
overexpressed in CAC [23]. β-catenin is an effector in theWNT signaling
pathwaywhich has central role in cell growth and survival [24]. Overex-
pression and mutation in β-catenin/WNT pathway contribute to pro-
motion of various types of cancers including colon cancer [25]. Several
lines of evidence indicate that down-regulation of β-catenin attenuates
CAC tumorigenesis [26,27].

Serotonin, a key regulator of gastrointestinal tract motility, is mainly
secreted from enterochromaffin cells of the gut [28]. Serotonin acts on
the immune-inflammatory axis and modulates the immune response
[29,30]. Serotonin induces inflammation through overexpression of
prostaglandin E2 (PGE2) and up-regulation of IL-1β and TNF-α [31].
One of the known serotonin receptors is 5-HT3 receptor [32], and
serotonin/5-HT3 receptor loop modulates the function of immune
cells [33]. Evidence indicates that 5-HT3 receptor antagonists, especially
tropisetron, have anti-inflammatory properties [34,35]. It has also been
reported that tropisetron decreases production of pro-inflammatory cy-
tokines such as TNF-α and IL-1β in the experimental model of colitis
[36].While previous studies have clarified the anti-inflammatory effects
of tropisetron, there is no information about the chemopreventive ef-
fects of tropisetron in CAC. This study aimed to explore the in vivo activ-
ity of tropisetron against CAC in an experimental mouse model.
Fig. 1. Effect of treatment with tropisetron on tumor development
2. Materials and methods

2.1. Chemicals

Tropisetron, 5-Aminosalicylic acid (5-ASA), dextran sulfate sodium
(DSS) (MW36,000–50,000) and azoxymethane (AOM)were purchased
from sigma. Anti-β-catenin rabbit polyclonal antibody and anti-Cox-2
rabbit polyclonal antibody were purchased from abcam.

2.2. Animals

Forty-eight female BALB/c mice, 35 old days (16–20 g) (Pasteur In-
stitute of Iran, Tehran, Iran) were used in this study under standard lab-
oratory conditions. All procedures were carried out in accordance with
the National Institutes of Health (NIH) Guideline for the Care and Use
of Laboratory Animals (NIH publication # 80-23) and institutional
guideline for animal care and use (Department of Pharmacology, School
of Medicine, Tehran University of Medical Sciences).

2.3. Induction of CAC

Mice received first AOM treatment (10 mg/kg, i.p.) on day 0. One
week later, 2% DSS was added in the drinking water for 7 d. One week
after the cessation of DSS, second injection of AOM (5 mg/kg, i.p.) was
carried out. One week later, the mice were given 2% DSS in drinking
water for 7 d. Two weeks later, the animals were randomly divided
in CAC. A: AOM/DSS group, B: tropisetron (10 mg/kg) group.



Table 2
Histopathologic changeswere scored semi-quantitatively. Values are expressed asmedian andmin-max (n=8) andwere analyzed using Kruskal-Wallis ANOVA followed by Dunn's test.

No. Treatment Median (min-max)

Nuclear/cytoplasmic ratio Epithelial stratification Nuclear dispolarity Goblet depletion Structural abnormality

1 AOM/DSS 2 (1–2)⁎ 2 (2–2)⁎ 1.5 (1–2)⁎ 1.5 (1–2)⁎ 2 (1–2)⁎

2 Control normal 0.5 (0–1) 0 (0–1) 0.5 (0–1) 0 (0–1) 0 (0–1)
3 AOM/DSS + 5-ASA (100 mg/kg) 0.5 (0–1)# 0.5 (0–1)# 1 (0–1)# 0 (0–1)# 0.5 (0–1)#

4 AOM/DSS + tropisetron (10 mg/kg) 1 (0–1)# 0.5 (0–1)# 0.5 (0–1)# 0 (0–1)# 0.5 (0–1)#

5 AOM/DSS + tropisetron (5 mg/kg) 1 (0–2) 1 (0–2) 1 (0–1) 0.5 (0–1) 1(0–1)
6 AOM/DSS + tropisetron (2 mg/kg) 1 (0–2) 1 (0–2) 0.5 (0–2) 0.5 (0–2) 1 (0–2)

⁎ P b 0.05 compared to control normal group.
# P b 0.05 compared to AOM/DSS group.
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into six groups: group 1 as control received normal saline; groups 2 to 4
were treated with tropisetron (2, 5 and 10 mg/kg, respectively) and
group 5was treatedwith 5-ASA (100mg/kg) for 21 d. Group 6 specified
as control normal group (neither CAC induction nor treatment). All an-
imals were sacrificed at the end of the study (d 70). Each experimental
group contains 8 mice. All drugs were dissolved in saline and adminis-
trated intra-peritoneally (i.p.) except 5-ASA which was given in drink-
ing water. DSS is commonly used to induce colitis and CAC [37]. In
order to decrease the duration of the experiment and to avoid repetitive
administration of DSS, AOM followed by DSS used to induce CAC [38].

2.4. Immunohistochemistry

Avidin–biotin immunoperoxidase method for immunohistochemical
evaluation of the β-catenin and Cox-2 was performed on 5 μm-thick
paraffin-embedded pieces of colons according to the criteria described
by Alizadeh et al. [39]. Of each experimental group, 8 colon samples
(n = 8) prepared for immunohistochemical assessment. Sections (five
slides prepared from each colon sample) were stained by anti-β-catenin
rabbit polyclonal antibody and anti-Cox-2 rabbit polyclonal antibody ac-
cording to themanufacturer's guideline. Finally, intensity of immunoreac-
tivities against primary antibodies were inspected on all sections using a
light microscope (Olympus BX41) by a pathologist blind to the study as
follows: no staining: 0, mild staining in at least 1/3 of cells: 1, moderate
staining in at least 1/2 of cells: 2 and strong staining in almost all cells: 3.

2.5. Quantitative reverse transcription-PCR

RNA extraction was performed using Tripure isolation reagent
(Roche) according to the manufacturer's instructions. RNA was
Fig. 3. The histopathological features provided from H & E-stained colon sections; H & E (
DSS + tropisetron (10 mg/kg), E; AOM/DSS + tropisetron (5 mg/kg) and F; AOM/DSS + tropi
quantified using a ND-100 spectrophotometer (Nanodrop Technolo-
gies). Alterations in the mRNA expression of genes were studied by
quantitative reverse transcription-PCR (qRT-PCR) after reverse tran-
scription of 1 μg RNA from each sample with PrimeScript RT reagent
kit (Takara) according to the manufacturer's instruction. The qRT-PCR
experiment was done on a light cycler apparatus (Roche Diagnostics)
using SYBR Premix Ex Taq technology (Takara). Thermal cycling envi-
ronment involved an initial activation step for 30 s at 95 °C followed
by 45 cycles including a denaturation step for 5 s at 95 °C and a com-
bined annealing/extension step for 20 s at 60 °C. Melting curve analysis
was applied to confirm whether all primers yield a single PCR product.
Histone H2A variant, H2afz, was amplified as a normalizer and fold
changes in expression of each target mRNA relative to H2afzwas calcu-
lated based on 2−ΔΔCt relative expression formula, as described earlier
[40]. The primer sequences are listed in Table 1.

2.6. Assessment of colon tumors

Mice were weighted every week and were sacrificed at the end of
the experiment. The colon tissue was examined macroscopically for
the presence of tumors.

2.7. Histopathological procedure

Colon was cut alongside the main axis then fixed in 10% formalde-
hyde and embedded in paraffin. For each subject, 5 μm sections from
the paraffin blocks were obtained and processed for routine
hematoxylin-eosin (H & E) staining. For CAC, the histopathological
scores were semi-quantitatively evaluated by a pathologist blind to
the study using the following considerations consistentwith the criteria
×400). A; AOM/DSS, B; control normal, C; AOM/DSS + 5-ASA (100 mg/kg), D; AOM/
setron (2 mg/kg).



Table 3
The expression of β-catenin and COX-2 were scored semi-quantitatively. Data are
expressed as median and min-max (n = 8) and were analyzed using Kruskal-Wallis
ANOVA followed by Dunn's test.

No. Treatment Score median (min-max)

β-catenin COX-2

1 AOM/DSS 3 (2–3)⁎⁎ 3 (2–3)⁎⁎

2 Control normal 0.5(0–1) 0.5 (0–1)
3 AOM/DSS + 5-ASA (100 mg/kg) 1 (0–1)# 1 (0–1)#

4 AOM/DSS + tropisetron (10 mg/kg) 1 (0–1)# 1 (0–2)#

5 AOM/DSS + tropisetron (5 mg/kg) 1(1–2) 1.5 (0–3)
6 AOM/DSS + tropisetron (2 mg/kg) 1.5(1–3) 1.5 (1–2)

⁎⁎ P b 0.01 compared to control normal group,
# P b 0.05 compared to AOM/DSS group.
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described by Alizadeh et al. [39]: A: nuclear/cytoplasmic ratio (b25%: 0,
25–50%: 1, N50%: 2); B: epithelial stratification (none: 0; mild: 1; se-
vere: 2); C: nuclear dispolarity (none: 0, mild: 1, severe: 2); D: goblet
depletion (null to mild: 0, moderate: 1, severe: 2); E: structural abnor-
mality (none: 0, mild: 1, severe: 2). Of each experimental group, 8
colon sample (n = 8) prepared for histopathological assessment. Five
sections from each sample were examined for grading.

2.8. Statistical analysis

In order to evaluate the statistical significance of qRT-PCR results, t-
test and/or one-way ANOVA and Tukey's post-hoc analysis test was
used. Kruscal-Wallis ANOVA followed by Dunn's post-hoc test analysis
was used for histopathological and immunohistochemical results. In
order to evaluate the weight change among groups, repeated measure
two-way ANOVAwas applied. P values b0.05were considered to be sta-
tistically significant.

3. Results

3.1. Tumor development

Tumor induction was observed with high percentage in the AOM/
DSS group (75%) compared to the controls. Tumor development was
detected among different groups as follows: group 2 (62.5%), group 3
(62.5%), group 4 (50%) and group 5 (37.5%). The groups have been
Fig. 4. The immunohistochemical features of β-catenin expression in colon tissue. A; AOM/DSS
DSS + tropisetron (10 mg/kg) (×400) E; AOM/DSS + tropisetron (5 mg/kg) (×400) and F; AO
defined in the materials and methods. As shown in Fig. 1, development
of tumor was inhibited following tropisetron (10 mg/kg) treatment.

3.2. Body weight change

Mice were weighted weekly and reduction in the body weight was
recorded as follows: 1, 1%–5%; 2, 5%–10%; 3, 10%–15%; and 4, N15%.
We observed that AOM/DSS administration caused a statistically signif-
icant decrease in the body weight (Fig. 2). Body weights in the treat-
ment groups were significantly increased on the 7th–10th weeks but
did not reach the levels of the control normal group on the 10th week.
However, there were no significant differences among the treatment
groups for weeks 7–10.

3.3. Histopathology assessment

Histopathologic evaluations for CAC sampleswere performed onH&
E-stained colon sections. The median number of nuclear/cytoplasmic
ratio, epithelial stratification, nuclear dispolarity, goblet depletion and
structural abnormality were determined in the CAC samples (Table 2,
Fig. 3). All histopathologic parameters were increased significantly in
the AOM/DSS group in comparison with the control normal group. Fur-
thermore, 5-ASA and tropisetron (10 mg/kg) significantly decreased
histopathologic parameters compared to the AOM/DSS group.

3.4. Immunohistochemistry for β-catenin and COX-2

As summarized in Table 3 and showed in Figs. 4 and 5, AOM/DSS sig-
nificantly increased the expression of β-catenin and Cox-2 in colon tis-
sue compared to the control normal group. Treatment with 5-ASA and
tropisetron (10 mg/kg) significantly reduced the expression of β-
catenin and Cox-2 in comparison with the AOM/DSS group.

3.5. qRT-PCR for expression of β-catenin and COX-2

As shown in Fig. 6, expression of β-catenin (A) and Cox-2 (B) was
significantly increased in the AOM/DSS group in comparison with the
control normal group. Furthermore, treatment with 5-ASA as well as
tropisetron (10 mg/kg) significantly decreased expression of β-catenin
and Cox-2 in colon tissue of the CAC experimental group. Moreover,
tropisetron (5 mg/kg) significantly decreased expression of β-catenin
as compared to the AOM/DSS group.
(×100), B; control normal (×400), C; AOM/DSS + 5-ASA (100 mg/kg) (×400), D; AOM/
M/DSS + tropisetron (2 mg/kg) (×400).



Fig. 5. The immunohistochemical features of COX-2 expression in colon tissue. A; AOM/DSS (×400), B; control normal (×400), C; AOM/DSS + 5-ASA (100 mg/kg) (×400), D; AOM/
DSS + Tropisetron (10 mg/kg) (×400), E; AOM/DSS + tropisetron (5 mg/kg) (×400) and F; AOM/DSS + Tropisetron (2 mg/kg) (×400).
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3.6. qRT-PCR for expression of 5-HT3 receptor

In order to determine expression of 5-HT3 receptor in colon tissue,
qRT-PCR was performed. As Fig. 7 shows, expression of 5-HT3 receptor
was significantly increased following induction of CAC.
3.7. qRT-PCR for expression of Il-1β, Tnf-α, Tlr4 and Myd88

As shown in Figs. 8, 5-ASA significantly reduced the levels of Il-1β,
Tnf-α, Tlr4 and Myd88 as compared to the AOM/DSS group. Further-
more, treatment with tropisetron (2, 5 and 10 mg/kg) significantly de-
creased the expression of Il-1β, Tlr4 and Myd88 in comparison with
the AOM/DSS group. Additionally, tropisetron (10 mg/kg) significantly
attenuated the expression of Tnf-α in comparison with the AOM/DSS
group. These results show that expression of Il-1β, Tnf-α, Tlr4 and
Myd88were significantly increased in the AOM/DSS group as compared
to the control normal group.
Fig. 6. The expression of β-catenin (A) and COX-2 (B) in colon tissuewas determined by qRT-PC
ANOVA followed by Tukey's post-hoc test. ##P b 0.01 compared to control normal group ⁎P b 0
4. Discussion

IBD is a debilitating disease with high morbidity rate and economic
burden that its incidence is increasing during recent years [41,42]. Evi-
dence indicates that IBD patients are at high risk for CAC development
[43], suggesting that there is a direct association between IBD and CAC
prevalence [6]. There is currently no effective treatment to prevent or
reduce CAC development. It is therefore a pressing need to devise
more efficacious preventive and therapeutic strategies against this
fatal disease. It has been reported that 5-HT3 receptor antagonists
have anti-inflammatory properties in certain inflammatory conditions
such as colitis [36,44]. Regarding the direct association between inflam-
mation and cancer [7], in the present study we aimed to explore the
in vivo activity of tropisetron, a 5-HT3 receptor antagonist, against
CAC in a mouse model of colitis.

IBD is a chronic relapsing condition which is pathologically consid-
ered by intestinal inflammation and epithelial injury. Cytokines are
thought to play a central role in the pathogenesis of IBD and thereby,
R. Data are shown as mean± SEM from triplicate tests andwere analyzed using one-way
.05 and ⁎⁎P b 0.01 compared to AOM/DSS group.



Fig. 7. The expression of 5-HT3 receptor was determined in colon tissue by qRT-PCR. Data
are shown as mean ± SEM from triplicate tests and were analyzed using t-test. ⁎P b 0.05
compared to control normal group.
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modulation of these molecules might be applied for the treatment of
IBD [45]. Among these cytokines, TNF-α and IL-1β are the most impor-
tant mediators that link inflammation and cancer through activation of
NF-κB and signal transducer and activator of transcription (STAT) path-
ways, leading to increased cell proliferation [46,47]. Chronically release
of TNF-α and IL-1β furthers tumorigenesis via induction of angiogenic
factors and increase in infiltration of leukocytes to inflammation sites.
In consistent with this, previous studies have demonstrated that inhibi-
tion of TNF-α and IL-1β inhibits tumor growth and tumorigenicity
[48–50].
Fig. 8. The expression of Il-1β, Tnf-α, Tlr4 andMyd88 in colon tissue was determined by qRT-PC
ANOVA followed by Tukey's post-hoc test.⁎P b 0.05, ⁎⁎P b 0.01 and ⁎⁎⁎P b 0.001 compared to A
TLR4/MYD88/NF-κB loop is overexpressed in CAC and promotes tu-
morigenesis via production of the inflammatory cytokines such as TNF-
α and IL-1β. This signaling network is a potential therapeutic target to
be exploited in translation research to establish novel and effective
treatment regimens against CAC [16]. Our results show that tropisetron
decreasedmRNA levels of Il-1β, Tnf-α, Tlr4 andMyd88 in the experimen-
tal model of CAC.

Canonical WNT/β-catenin signaling is essential for cell-cycle pro-
gression, proliferation, differentiation of stem cells and development
of uterus [51]. Alteration in WNT/β-catenin cascade promotes tumor
initiation and progression [52]. Mutation and overexpression of β-
catenin cause abundant proliferation and inhibition of differentiation
in various types of cancer cells such as colon cancer and is associated
with tumor progression and metastasis [53–55]. Therefore, inhibition
of WNT/β-catenin signaling is an attractive therapeutic and preventive
approach for the treatment of neoplasms. Our results show that expres-
sion of β-catenin was reduced following treatment with tropisetron in
the CAC model.

Expression of Cox-2 is increased in chronic inflammation as well as
cancer. Cox-2 creates an immune suppressive and proinflammatory mi-
croenvironment which plays a key role in inflammation-driven cancers
[56]. Accumulating evidence suggests that median survival is shorter in
patientswith Cox-2–expressing colon cancer [57]. Cox-2 is overexpressed
in CAC and promotes tumorigenesis by decreasing pro-apoptotic proteins
and enhancement of anti-apoptotic signals [58]. A large body of evidence
indicates that the risk of colon carcinogenesis is significantly reduced by
use of Cox-2 inhibitors such as aspirin [59,60]. Our results demonstrate
that tropisetron treatment reduced the expression of Cox-2 in a mouse
model of CAC.

Serotonin is found in the immune-inflammatory axis and influences
the immune response [30,61]. 5-HT3 receptors are expressed in im-
mune cells including T-cells [33,62] and modulate the effects of seroto-
nin on T-cells [32]. These data suggest that tropisetron might affect T-
cells function through 5-HT3 receptor. It is determined that serotonin
R. Data are shown as mean ± SEM from triplicate tests and were analyzed using one-way
OM/DSS group #P b 0.05 and ###P b 0.001 compared to control normal group.
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exerts mitogenic properties and promotes inflammation via induction
of pro-inflammatory cytokines [63,64]. Rahimian et al. determined
that protective properties of tropisetron are associated with its anti-
inflammatory properties against stroke [65]. Stratz et al. have shown
that blocking 5-HT3 receptors possess anti-inflammatory properties in
chondrocytes via decreasing IL-1β, IL-6 and Cox-2 expression [34]. Pre-
vious studies have reported that tropisetron exerts anti-inflammatory
effects in acute colitis and inhibits expression of TNF-α and IL-1β [36,
66]. Ataee et al. have shown that 5-HT3 receptor agonists havemitogen-
ic effects and increase proliferation of colon cancer cells which was re-
versed by 5-HT3 receptor antagonists [67]. It is well-determined that
serotonin acts as a regulator of inflammation, proliferation and regener-
ation [68,69]. In this regard, it has been shown that serotonin plays a key
role in growth of colon cancer allografts through increase in angiogene-
sis by reducing the expression of matrix metalloproteinase 12 (MMP-
12) in tumor-infiltrating macrophages [63]. Our findings show that
tropisetron attenuates tumorigenesis in a mouse model of CAC through
reduction of β-catenin, Cox-2 as well as the inflammation-associated
cancer genes such as Tnf-α, Il-1β, Myd88 and Tlr4.

The common symptom in patients with colon cancer is weight loss
[70]. Our findings show that tropisetron decreased weight loss in CAC.
Histopathological evaluation show that tropisetron improved patholog-
ical parameters in CAC. In current study we chose 5-ASA as reference
compound for CAC. It has been shown that 5-ASA given in the remission
stage of colitis suppressed CAC [71]. We have previously reported the
protective effects of tropisetron against anxiogenic-like effect of social
isolation in a mouse model [72]. Our unpublished work has shown
that applying 30 mg/kg i.p. of tropisetron induces mitochondrial dys-
function and oxidative stress in hippocampus and prefrontal cortex of
mice. We assessed various doses of tropisetron and found that
30mg/kg, and not 10mg/kg, exerts toxic effects on the brain tissue. Ac-
cordingly, we chose 2, 5 and 10 mg/kg of tropisetron for the present
study. Collectively, our data suggest that chemopreventive properties
of tropisetron may be related to its anti-inflammatory effects.

5. Conclusion

We found that tropisetron, a 5-HT3 receptor antagonist, given in the
remission stage of colitis, possess chemopreventive properties and sup-
press CAC development.We conclude that tropisetron exerts these pre-
ventive effects by decreasing the levels of Il-1β, Tnf-α, Tlr4 and MyD88
along with reduction in the expression of β-catenin and Cox-2.
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