

Design and Implementation of a Data Persistence

Layer for the GEMMA Framework

Master Thesis

Submitted in fulfillment of the academic degree

M.Sc. in Automotive Software Engineering

Department of Computer Science

Chair of Computer Engineering

Submitted by: Indhu Mathi Gowda
Student ID: 367442

Supervisors: Prof. Dr. W. Hardt
 Philipp Helle (Airbus Group Innovations)

i

Abstract

Data within an organization is highly structured and organized into specified applications
or systems. These systems have a different function within an organization, so each user
will have a different level to access each system. So by the data mapping approach user
can easily isolate those data and prepare the declarations for the available data element.
Generic Modular Mapping Framework (GEMMA) a new common generic framework for
data mapping was developed by Airbus Group Innovation GmbH to avoid numerous
potential issues in matching data from one source to another. It is geared towards the high
flexibility in dealing with a large number of different challenges in handling huge data. It
has an open architecture that allows the inclusion of the application-specific code and
provides a generic rule-based mapping engine that allows the users to define their own
mapping rules. But GEMMA tool is presently used to read and process the data on the fly
in memory, as each time the tool is used for mapping data from different sources. This has
an impact on large memory consumption when handling large data and is inefficient in
storing and retrieving the session data which are the user decisions.
This paper provides a detailed description of the GEMMA tool, with the new concept for
specific requirements inherited in the framework and in the current architecture to achieve
the goals.

ii

Acknowledgement

The successful completion of the Master thesis was possible only with great support of

many people. I would like to take an opportunity to owe my gratitude to each and every

one of them for their direct or indirect support.

I would first like to express my deepest gratitude to my supervisor Philipp Helle for giving

me this wonderful opportunity to write my thesis at Integrated Product Engineering Team

in Airbus Group Innovations. He has provided me continuous support and encouragement

throughout the work of my thesis by his supervision and guidance. I would like to

specially thank my second supervisor Wladimir Schamai. Both of my supervisors played a

major role in the successful completion of my thesis by their advice and guidelines in

gathering information required for research of this thesis. This helped me gain a huge

knowledge in all the related topics of this thesis. They have been patient enough to clarify

all my doubts and give me constructive feedbacks throughout the work and also extensive

discussions about the complete architecture and present usage of the GEMMA framework.

I would like to express my sincere gratitude to Prof. Dr. rer. Nat. Wolfram Hardt, head of

Automotive Software Engineering department at TU Chemnitz as this thesis work would

have been incomplete without his guidance. I would also like to thank Stephan Blokzyl

from TU Chemnitz for his prompt support and tutoring. By their technical advices,

encouragement, attention to details and correction of my mistakes, technical guidance of

this thesis work whenever required was most valuable for the successful development of

the thesis.

Finally, I would like to thank all my family members and friends who have supported me

throughout my thesis work with their unconditional love and encouragement.

iii

List of Abbreviations

GEMMA Generic Modular Mapping

HQL Hibernate Query Language

SQL Structural Query Language

ORM Object Relational Mapping

JTA Java Transaction API

API Application Programming Interface

JDBC Java Database Connectivity

JNDI Java Naming and Directory Interface

EJB Enterprise JavaBeans

JBI Java Business Integration

RCP Rich Client Platform

GUI Graphical User Interface

XML Extensible Markup Language

OSGi Open Service Gateway Initiative

JCS Java Caching System

LD Levenshtein Distance

JVM Java Virtual Machine

LRU Least Recently Used

RAF Random Access File

GC Garbage Collector

NMN Number of Mappables and Nodes

OGMT Old GEMMA Mapping Time

NGMT New GEMMA Mapping Time

OGRT Old GEMMA Resolving Time

NGRT New GEMMA Resolving Time

OGMC Old GEMMA Memory Consumption

NGMC New GEMMA Memory Consumption

iv

Table of Contents

1 Introduction ... 1

1.1 Background .. 1

1.1.1 GEMMA as Eclipse Plugins .. 2

1.2 Motivation and Objective .. 4

1.3 Scope of the Thesis .. 5

1.4 Structure of the Thesis ... 5

2 Introducing GEMMA .. 7

2.1 Generic Modular Mapping Framework ... 7

2.1.1 GEMMA Core Concepts .. 9

2.1.2 Mapping rules ... 13

2.1.3 GEMMA Process ... 14

2.2 GEMMA Architecture ... 15

2.2.1 GEMMA GUI .. 18

2.2.2 Running GEMMA .. 20

2.2.3 GEMMA Application ... 20

3 Analyze the Need for Data Persistence in GEMMA .. 22

3.1 Related Work ... 22

3.2 GEMMA Architecture Analysis .. 31

3.3 Selection of Desired Approach .. 31

3.3.1 Selection of Kryo for Session Data Storage ... 31

3.3.2 Selection of MapDB for Reducing Memory Footprints 31

4 Concept Introduction of GEMMA .. 32

4.1 Change of GEMMA Architecture ... 32

4.2 Implementation of the New Approach .. 37

5 Results, Discussion and Future Work ... 42

5.1 Java VisualVM Testing Tool ... 42

5.2 Testing and Validation ... 45

5.2.1 Updated MapDB Code ... 51

5.3 Overview of GEMMA MapDB Solution .. 55

5.4 Future Work ... 61

v

6 Conclusion .. 62

7 Appendix A: MapDB Using Built-in Serialization ... 63

8 Appendix B: Kryo Serialization .. 69

9 Appendix C: MapDB Using Kryo Serialization ... 74

10 References ... 80

vi

List of Figures

Figure 1 - Data Mapping .. 1
Figure 2 - GEMMA Display Image ... 2
Figure 3 - Eclipse RCP ... 3
Figure 4 - GEMMA as a Collection of Eclipse Plugins ... 3
Figure 5 - Instantiation of GEMMA Modules at Runtime ... 4
Figure 6 - Mapping Tool .. 8
Figure 7 - Generic Mapping Tool .. 8
Figure 8 - Overview of Relevant Artifacts (from [1]) .. 10
Figure 9 - Basic GEMMA Example (from [1]) .. 11
Figure 10 - Simple Mapping Example ... 12
Figure 11 - GEMMA Generic Process ... 15
Figure 12 - Generic Mapping Framework Architecture ... 15
Figure 13 - Import Process ... 16
Figure 14 - Matching Process ... 17
Figure 15 - Export Process ... 17
Figure 16 - GEMMA Editor ... 19
Figure 17 - GEMMA Initialization Process ... 20
Figure 18 - Simulation Model Composition .. 21
Figure 19 - Serialization Mechanism (from [3]) .. 22
Figure 20 - Object Relational Mapping (from [6]) .. 25
Figure 21 - Hibernate Architecture (from [6]) ... 26
Figure 22 - Basic Caching Structure (from [8]) ... 27
Figure 23 - Storage Tiers of Ehcache (from [32]) .. 28
Figure 24 - New GEMMA Architecture .. 33
Figure 25 - Import to Lucene Database .. 34
Figure 26 - Matching Process ... 35
Figure 27 - Export Process ... 35
Figure 28 - VisualVM Application GUI .. 42
Figure 29 - Heap Graph in VisualVM .. 43
Figure 30 - Threads Tab in VisualVM ... 43
Figure 31 - VisualVM GUI of Monitor Tab .. 44
Figure 32 - GEMMA Console Tab .. 46
Figure 33 - Old GEMMA Breakdown Java VisualVM ... 56
Figure 34 - Old GEMMA Breakdown in GEMMA GUI ... 57
Figure 35 - New GEMMA Process Completion in Java VisualVM .. 59
Figure 36 - New GEMMA Process Completion in GEMMA GUI .. 60

vii

List of Tables
Table 1 - Serialization Test Platform ... 24
Table 2 - Generic Mapping Framework Modules (from [1]) ... 36
Table 3 - GEMMA Module Trial Results .. 48
Table 4 - GEMMA Module Trial Results .. 48
Table 5 - GEMMA Module Trial Results .. 49
Table 6 - GEMMA Module Trial Results .. 49
Table 7 - GEMMA Module Trial Results .. 50
Table 8 - GEMMA Module Trial Results .. 50
Table 9 - GEMMA Module Trial Results .. 52
Table 10 - GEMMA Module Trial Results .. 52
Table 11 - GEMMA Module Trial Results .. 53
Table 12 - GEMMA Module Trial Results .. 53
Table 13 - GEMMA Module Trial Results .. 54
Table 14 - GEMMA Module Trial Results .. 54

viii

1

Figure 1 - Data Mapping

Chapter 1

1 Introduction

The biggest challenges encountered by most of the researchers today in relation of data
mapping is: How to match the data from single or multiple data sources to data destination
from similar or distinct data sources in a flexible and in an adequate way? [1] The Generic
Modular Mapping Framework (GEMMA) gives an answer to this question by solving
different kinds of mapping problems. This framework was designed to create an extensible
and user-configurable tool that would allow a user to define the rules for mapping data.
GEMMA processes data on the fly in the memory which leads to inefficiency of data
persistency. Considering the drawbacks in GEMMA, this thesis presents solving inefficiency
of the GEMMA tool.

1.1 Background

Data mapping is a process of creating a data mapping specification of data elements
between two distinct data models based on specified rules. Figure 1 displays a data mapping
application, in which data points from different data sources have relationships, also known as
mappings. A mapping problem can now be defined as the challenge to identify mappings
between data points from (potentially) different data points.

The Generic Modular Mapping Framework (GEMMA) is a framework which is
designed to be a adaptable multi-purpose mapping tool for solving several kind of mapping
problems that requires matching data points to each other with user defined distinct rules [1].
It is implemented in Java, open source libraries and frameworks are used. GEMMA is
constructed upon the Eclipse Rich Client Platform (RCP), which prepare the strong basis for
the GEMMA graphical user interface (GUI) and can work on every Windows PC except any

2

other necessary installations. The Eclipse RCP enables the modular pluggable architecture of
GEMMA and allows the distribution of GEMMA as an Eclipse product. GEMMA tool was
developed to match huge data from multiple sources that is related in some way or the other,
but not necessarily referencing the same object [1].

The GEMMA framework features an open architecture which creates an extensible
and a user-configurable tool. The main matching process takes place in identification of
relationships in data with the user defined rules, which produce a link between two distinct
data models. It permits a user to define the rules for mapping data without any programming
knowledge and yet still has the possibility to include an application-specific code to adapt to
the needs of a concrete application. The GEMMA usage is generic for all kinds of application
scenarios. A GEMMA project is defined by a GEMMA configuration which is stored in an
XML file. This mainly defines the particular parsers, rules and exporters used in the particular
rule-based mapping project.

Figure 2 - GEMMA Display Image

1.1.1 GEMMA as Eclipse Plugins

GEMMA built on top of the Eclipse Rich Client Platform (RCP), which is a collection of
frameworks that enables building modular, pluggable architectures. As Figure 3 depicts that
the RCP provides some strong base services on top of which it is easily possible to build a
custom application, that may consist of number of modules that works together in a flexible
fashion.

3

Figure 3 - Eclipse RCP

GEMMA is an Eclipse product and uses the Eclipse OSGi extension mechanism for
registering and instantiating modules. This means that, as depicted by Figure 4, GEMMA is in
essence a collection of Eclipse plugins, some of which can be selected by a user for specific
applications, such as the data parsers or the exporters and some of which are fixed, such as the
GUI. This architecture allows a tailored deployment of GEMMA. If some modules are not
needed by a user or if a module must not be given to some users, it is possible to remove the
plugin from the installation directory of GEMMA without the need for any programming.

Figure 4 - GEMMA as a Collection of Eclipse Plugins

4

Only the plugins that are required by a mapping project configuration are needed and
instantiated during the runtime as shown in figure 5.

Figure 5 - Instantiation of GEMMA Modules at Runtime

1.2 Motivation and Objective

The main drawbacks of GEMMA motivate the work to increase its efficiency. The
typical usage of the GEMMA tool is to map the two distinct data points from one or many
data elements based on precise rules defined by the user. The complete data is stored in
memory during runtime. This complete data stored in the memory will consume huge amount
of memory during large data processing which increases memory footprints during runtime.

 The other main drawback of the framework which limits the process is that the
complete data is processed on the fly during the runtime and are not persistent. This means
that a user cannot resume a session without re-computing the data every time the tool is
started.

Considering these two main drawbacks which motivate the work with following two main
objective of the thesis are:

 Reduce the memory footprint of GEMMA during runtime

 Enable storing and restoring the session data without re-computing the whole data
every time

Apart from finding suitable solutions for the desired goals, the main approach is to
identify the complications in the GEMMA architecture workflow which is leading for tool
inefficiency.

5

1.3 Scope of the Thesis

Considering all the factors of GEMMA, the main aim of the thesis is to analyze the
GEMMA framework and need for the data persistence in it; To establish a list of criteria
based on the user requirements and other constraints that can be used to evaluate if a data
persistence solution fits to the user needs.

There is a huge availability of options which may seem like a solution. The following high
level task was considered during the project:

 Analysis of a GEMMA framework to implement new solution to satisfy the need for
data persistency; Establish a list of user requirements and main constraints that can be
tested against the exact fit to data persistency of user needs

 Compile a shortlist of solutions that could potentially be used to enable persistence in
the GEMMA framework that are in line with the existing GEMMA workflow

 Solution evaluation of the identified solution against the established criteria and select
the most beneficial solution

 Implement the finalized solution into the framework with the proper documentation

 Later develop evaluation criteria of the solution, test cases and procedures to verify
and validate the solution

1.4 Structure of the Thesis

This thesis is structured as follows:

Chapter 1 gives an introduction to the GEMMA tool as an eclipse plugin, followed by the
main motivation and objectives and the scope of the thesis work.

Chapter 2 gives an insight of how GEMMA actually works by its main concepts, rules
and how the old GEMMA architecture was actually functioning with its applications. This
chapter gives an in depth GEMMA functionalities, GEMMA graphical user interface and
GEMMA installation process.

Chapter 3 presents the analysis of various solutions which would meet the requirements
of thesis goals and the detailed description upon the selected approach. This chapter also
discuss the GEMMA architectural limitations which was a barrier for the implementation of
new approach and the solution to overcome this limitation.

Chapter 4 explains about the advancement in the GEMMA architecture as a solution for
the old GEMMA architectural limitation, to meet the desired goal and the detail description of
the selected approach with its prescribed features.

6

Chapter 5 gives an overview of the selected solution results. It describes the whole testing
and validation section of the GEMMA tool along with the future work of the GEMMA
application which can be performed.

Chapter 6 declares the final conclusion of the thesis work

7

Chapter 2

2 Introducing GEMMA

The Generic Modular Mapping Framework (GEMMA) is designed as a flexible multipurpose
tool for any kind of problem that requires matching data points to each other. With the
baseline of GEMMA framework in the introductory chapter, this chapter is the detailed
description of the GEMMA for the clearest illustration of the tool. The following subsections
will introduce the artifacts that make up the core idea behind GEMMA with suitable examples
and describe the kind of mapping rules that can be implemented. Without these basic concepts
of GEMMA framework, there cannot be any analysis of the GEMMA architecture in
upcoming chapters.

2.1 Generic Modular Mapping Framework

The following subsections will introduce the requirements that were considered during the
GEMMA development, the artifacts that makeup the core idea behind GEMMA, describe the
kind of mapping rules that were implemented and show the generic process for the usage of
GEMMA.

A. Requirements

The basic concept of a mapping tool is mapping of data that do not necessarily match
completely in name, type, multiplicity or other details from different data sources to each
other as depicted by Figure 1.

Relations between data from different sources and possibly in different formats are
created. It is possible to output the generated relations in a user-defined format. This leads to a
first draft of mapping tool, as depicted by Figure 6.

Data from different sources in different formats are read by mapping tool, then a
mapping engine would create relations between the data and then the relations will be
exported in different formats.

This is the minimum functionality a mapping tool must provide. In addition to this,
there are three major requirements regarding the characteristics of the mapping tool, being
generic in order to enable applications in different areas with similar challenges i.e. being
extensible, as well as enable user interaction.

8

Figure 6 - Mapping Tool

B. Generic

The requirement for a generic tool stems from the fact that different mapping
problems and challenges require different data sources and mapping rules.

This means that it shall be possible for the user to define the rules which govern the
creation of mappings. The generic tool must read and interpret such rules in order to be able
to create mappings between input data sets.

Additionally, it shall be possible to setup the current configuration of the mapping tool
by means of user-defined configuration. Such project configuration contains information,
such as where the input data is located, what mapping rules should be used and where the
mapping export data should be written to. This discussion leads to an extension of second
draft of the mapping tool which is shown in Figure 7.

Figure 7 - Generic Mapping Tool

9

C. Modular

 The requirement for modular software is an extension for the requirement that the
software needs to be generic. Modular programming is a software design technique that
emphasizes separating the functionality of a program into independent, interchangeable
modules, such that each contains necessary information for executing only one aspect of the
desired functionality if required.

 GEMMA mapping tool anticipate very different contexts and applications with diverse
data formats for import and export. To support this application, the GEMMA architecture
needs to be modular by nature.

Standardizing the interfaces for importer and exporter modules allows creating new
modules for specific applications without affecting the rest of the tool. Which perticualar
modules are used in a specific mapping project can then be defined by the project
configuration.

D. Interactive

 Based on the assumption that the data in different data sources to be mapped can differ
quite substantially in name, type, multiplicity or other details, it is resonable to assume that a
perfect mapping is not always possible. This directly leads to the requirement that the
mapping tool needs to be interactive. i.e. allow user-involvement when needed.

 An interactive tool displays information to the user and allows user to modify the
displayed data. Hence the GEMMA mapping tool shall be able to display the generated
mappings between the input data and allow the user to modify these mappings using a
Graphical User Interface (GUI).

 In oder to present the generated mapping data to the user in a meaningful way it is
necessary to condsider interpretation of the generated mapping data, This can be achieved by
an additional module, the resolver module, which is an application-specific module. It is
aware of application-specific module. It is aware of application-specific requirements and
features. Using this information the resolver can process the genrated mapping data and
provide information regarding validity of the generated mapping data to the user.

2.1.1 GEMMA Core Concepts

GEMMA is centered on a set of core concepts that are depicted by Figure 8. In an
attempt to increment the flexibility of GEMMA tool functionalities, the core concepts have
been defined in an abstract fashion. These concepts explain the unique functionality and its
role in the rule based mapping tool. Each artifact’s functionality is explained in detail, with
real - world examples below.

10

Figure 8 - Overview of Relevant Artifacts (from [1])

As shown in Figure 8, GEMMA makes use of the following core concepts:

 Node – A Node concept in GEMMA is, a group of one or more mappables

 Mappable – A mappable concept in GEMMA is, anything that has a property that can
be mapped to other property corresponding to the particular mapping rules or user
defined rules
Orphan mappables are the mappables whose dominating node is not known or not
appropriate to the complication specified in particular [1]. GEMMA will only generate
data mappings for mappables that belong to a perticular node

 Mapping – The outcome of the specific application of mapping rules, i.e., a relation
between one FROM mappable and one or more TO mappables. In general mapping is
a connection established between the mappables [1]
Note that the semantic interpretation of a data mapping extremely dependant on the
application scenario [1]

 Mapping rule – Mapping rule is a function which determines how mappings are
generated, i.e. how a single mappable can be associated to other mappables [1]. In
general, it is a criterion that defines the mapping between mappables

11

 Mappable or node detail – This detail is a supplementary attribute of a mappable or a
node in the form of a {detail name: detail value} pair. Mappable or node details is a
choice which is not compulsory rule and can be defined in the context of a specific
application scenario. There can be one or more details for a single mappable or node.

To emphasize these abstract definitions, Figure 9 present a simple example where real
world objects depicted on the left hand side of the figure are represented in the form of
GEMMA concepts on the right hand side of the diagram.

Figure 9 - Basic GEMMA Example (from [1])

In this example the GEMMA concepts are used as follows:

 Node – A computer with input and output signals

 Mappable – An IO signal of a computer

 Mapping rule – Output signals must be connected to input signal according to some
criteria (e.g.: Same signal name or same data type etc.)

 Mapping – The connection established between Output 1 and Input 1

Another simple example to illustrate the core concepts of GEMMA is depicted in Figure
10. This gives an exact idea and a clear image of all the GEMMA core concepts. In this

12

example, as previously explained that a node or mappable can have more than one detail
according to its specific application scenario, there are two details for each mappable. And the
basic mapping rule for this particular example is that to map both customer and city with an
equal Zip Code value. The detailed description of a node, mappable, mapping and mapping
rules are explained below with specific details. This is the most basic rule that the GEMMA
can use.

Figure 10 - Simple Mapping Example

Here in this example the GEMMA concepts are used as follows:

 Node – Node 1 and Node 2 with collection of mappables and its details

 Mappable – The node 1 and 2 contains three mappables of Customer and City
respectively. It has the detailed Name and Zip Code value respectively

 Mapping rule – Map a customer to a city that has the same zip code as the customer

13

 Mapping – Connection established between Customer 1, 2 and City 1 and also
Customer 3 and City 3 where it satisfies the mapping rule i.e. same Zip Code value

2.1.2 Mapping rules

A mapping rule is a function that specifies how mappings are created, i.e. how one
mappable can be mapped to other mappables. Currently, GEMMA supports the following
types of mapping rules that can be combined to define how each mappable can be mapped to
other mappables. The mappings can be of any kind, i.e. one-to-one, one-to-many, many-to-
many mappings.

 Exact matching: E.g., map a mappable to other mappables with the exact same name

 Fuzzy matching or Approximate string matching: E.g., Map a mappable to other
mappables with an identical name (similarity can be based on the Levenshtein distance
(LD), i.e., “put” can be matched to “pot” if we allow an LD of 1) [1]

 Wildcard matching: E.g., map a mappable to mappables that contain a certain value

 RegEX matching: E.g., map a mappable to mappables based on a regular expression

 Tokenized matching: E.g., split a mappable property into tokens and then map to
another mappable with a property that contains each of these tokens in any order

 Details: E.g., match a mappable with value of detail X=x or more specifically, map a
mappable with particular detail direction=” output” to mappables with specific detail
direction=” input” [1]

 Structured rewriting of a searchable term is based on name, details and additional data,
e.g., constructing of a new string based on the properties of a mappable and some
given string elements and make a name matching with a new string (e.g., new string =
“ABCD::” + $mappable.detail(DIRECTION) + “:: TBD::” +
$mappable.detail(LOCATION) would influence to a search for other mappables with
the name “ABCD:: Input:: TBD:: Front”) [1]

 Semantic annotations is a rule in which a user-predefined possible mappings
(binding) are utilized as mediators, e.g., The recorded name of a mappable as a client
of a mediator is matched to all mappables whose name is recorded as a provider of the
same mediator [1]

So, by any series of the above mentioned type of rules can be utilized by the user to define
mapping rule. For example, structured rewriting can be enforced on the target mappables,
which would in effect mean determining aliases for each mappable in the mappable database
in the context of a user rule [1]. In one GEMMA rule set, several rules can be defined for the
same mappable with options for defining their application and prioritize, e.g. only if the rule
with highest priority does not find any matches then rules with a lower priority are evaluated.

14

These mapping rules for a GEMMA project can be stored in one or more GEMMA rule files
which have to conform to the XML schema GEMMARules.xsd.

2.1.3 GEMMA Process

The process for the usage of GEMMA framework is generic for all kinds of
application scenarios where it consists of five steps as shown in Figure 11:

 Import

 Pre-Processing

 Matching

 Post-Processing

 Export

The mapping process is configured using XML configuration file that defines which
parsers, rules, resolvers and exporters will be used in the mapping project. The open aspect of
GEMMA framework allows implementing different data parsers for importing data, resolvers
for post-processing of the mappings data and data exporters for exporting data [1].

Import loads data into the GEMMA framework. GEMMA framework provides the
interfaces DataParser, MappableSource and NodeSource to define a recent data parser for an
application-specific configuration of GEMMA. Later the data will be stored in the mappable
database.

 Pre-Processing of data involves selection of mappables that requires matching using
described mapping rules. The rules used in a particular mapping project will be defined by the
configuration.

 Matching process comprises of running queries on the mappable database to find
suitable matches for each selected mappable for mapping [1].

 Post-Processing or match resolving is an alternative level that is highly compelled
with specific application. It requires the interaction with the user to make a selection based on
requirements. Post-processing also permits the user to implement the graphical user interface
(GUI) to review and validate the produced mapping results, and thereby to check the
completeness and correctness of the user defined rules and to manipulate mappings manually
if needed [1].

 Export is highly application specific which transforms the internal data model into an
application specific output file.

15

Figure 11 - GEMMA Generic Process

2.2 GEMMA Architecture

GEMMA (Generic Modular Mapping) architecture is depicted in the Figure 12.

GEMMA modules can be categorized either as core or as application specific modules.
The core components are common to all GEMMA usage scenarios, whereas the application-
specific components have to be developed to implement features that are very specific to
achieve a certain goal. For example, data parsers are application-specific as applications
might need data from different sources, whereas the mappable database and query engine is a
core component that is shared.

Figure 12 - Generic Mapping Framework Architecture

16

GEMMA architecture in Figure 12 denotes the representation of the five process steps in
the application scenarios. The orderly data flow in the GEMMA architecture is explained as
follows:

- One or many application-specific Data Parser read data, converts it into the form of
nodes and/or mappables and import it into the GEMMA framework. All the available
parsers are registered in an internal parser registry.

- Run Configuration will instantiate, configure and run those parsers, which are
required by the configuration file in it. Run Configuration as a core component holds
the configuration that defines which parsers, exporters and rules are used in the current
mapping project.

- Later the data from the Run Configuration is sent to store in the Mappable database.
This mappable database uses a full-text search engine called Lucene. So all the
relevant data information is converted into strings. Each mappable is assigned a
unique ID from its parser and other required information is stored as a detail-value
pair in so-called fields as shown by Figure 13 [1].

Figure 13 - Import Process

- Matching involves running queries on Lucene Database to find suitable matches for
each mappable that is selected for mapping. The queries are derived from mapping
rules. A mapping is a one to many relations between the mappables and all the
matches that were found.

- As depicted by Figure 14, during the matching process, the mapper requests the
mappables that exits in all parsers through the run configuration. For every mappable
the mapper requests the application rules from the rule manager and uses the
information on these application rules to generate a query that be used to query the
mappable database. The results of the query are then used to create a mapping. These
mappings are stored in Mapper

17

Figure 14 - Matching Process

Then the mappings are sent to Resolver which is an optional step, where it resolves
mappings based on application specific semantics. During this process it allows user to apply
graphical user interface to review and validate or to select the generated mapping results.

- An Exporter mainly involves transformation of the internal data model into an
application specific output file, e.g. it can be just an XML file as the standard exporter
produces, but it can also be an exporter directly into an application using the
application’s API. How the data are exported is completely encapsulated in the
exporter.

Figure 15 - Export Process

Each Exporter can obtain the available mappables, nodes and mappings through run
configuration from data parsers and mapper respectively, and the status of the elements by the
resolver as interpreted by Figure 15. Using this information the exporter creates a mapping
export.

18

2.2.1 GEMMA GUI

GEMMA is built upon the Eclipse Rich Client Platform (RCP) [1], which provides the
basis for the GEMMA GUI. It enables GEMMA’s modular pluggable architecture and allows
the distribution of GEMMA as an Eclipse product.

The GEMMA GUI contains the main operations like import data for mapping, export
mapped data, load configuration file, etc. on the right side as shown by Figure 16. The Nodes
and Mappables Tree displays nodes and mappables used in that particular mapping project,
which have been imported by the Data Parsers. The Selection Graph section displays the
automatically created mapping results for the selected mappable from the tree. The lower
parts of both sides in Figure 16 are used to display the details or validation messages for a
selected mappable or node.

19

Figure 16 - GEMMA Editor

Nodes and Mappables Tree Tab Selection Graph Tab

Console Tab for High
Level Log Messages

20

2.2.2 Running GEMMA

GEMMA can run on every 64-bit Windows PC without any other installations.

GEMMA is distributed as an Eclipse product in the form of a .zip file which must be
unzipped into a working directory. GEMMA is started by double-clicking the GEMMA.exe
file in the GEMMA working directory as shown in Figure 17. This will start the loading
process, display the GEMMA splash screen and then finally open the GEMMA main GUI.

Figure 17 - GEMMA Initialization Process

2.2.3 GEMMA Application

Here is a simple application of simulation model composition from the public
aerospace use case of the CRYSTAL [17] project. It consists of component models such as
flight scenario profile, ice accretion dynamics, and tables for temperature of liquid water
content. All of the component models must be interconnected. For example, the temperature
profile component requires the current aircraft altitude, which is provided by the flight
scenario component; the ice accretions dynamic component requires the current aircraft
speed, which is also provided by the scenario component, etc. The individual models were
built using the Modelica tool Dymola and exported as Functional Mockup Units [18] (FMUs)
in order to be integrated, i.e. instantiated and connected, in a co-simulation environment [1].

There are more than 20 components which require high manual effort to connect.
When more than 20 components without any connections is produced to GEMMA with the
desired rule set, GEMMA resolves the model with automatic connections which are more
than 50 connections as shown in Figure 18.

GEMMA GUI

21

Figure 18 - Simulation Model Composition

22

Chapter 3

3 Analyze the Need for Data Persistence in GEMMA

This chapter will describe the topics researched during the thesis work. The available
proprietary solutions and approaches used in the current market for solving two main goals of
GEMMA are discussed. Various interfaces and frameworks have been investigated to
evaluate the solutions for establishing criteria. Different methods were seemed to be a
solution in the beginning, but were not appropriate for the particular project in some
situations, so the appropriate solution is planned to be chosen for implementation.

3.1 Related Work

The main task was to understand GEMMA framework and the need for data persistence
in it: to establish a list of criteria based on user requirements and other constraints that can be
used to evaluate a data persistence solution that fits to the user needs. Few shortlisted
solutions which initially pretended to be the solution to enable the data persistence in
GEMMA framework was tested and evaluated based on references.

Serialization – Serialization is the transformation of an object into a stream of bytes in order
to save the objects or transmit it to memory, database or a file. The main principle of
serialization is to save the states of an object in order to be able to recreate or retrieve data
through the deserialization process whenever needed by the user as shown in Figure 19. Java
programmers can use the default Java serialization mechanism or can use their own custom
Serialization methods [12].

Figure 19 - Serialization Mechanism (from [3])

There are different serialization techniques available in the market with both advantages and
disadvantages for serialization in Java as the GEMMA framework is completely developed in

23

a Java environment. Some of them are presented and tested for the particular project
requirements and the best serialization for Java is selected in which solution was developed.

Built-in Serialization – Java has a built-in serialization process where the entire process is
JVM independent. When a Java class implements the java.io.Serializable interface, the JVM
will take care of serializing objects in default format. Classes that do not implement this
interface will not have any of their state serialized or deserialized [2].

 Built-in serialization writes down the fully qualified class name at the beginning of
every serialized instance, or else the search during deserialization will be unsuccessful, by this
there will be an increase of serialized object file with a lot of type information which will be
verified when the object is deserialized. So it conserves arbitrary object graphs (all the other
serializers flatten graphs to trees), so to do this Java built-in serializer keeps track of every
object’s status which is an expensive operation [5] with huge memory consumption.

Kryo Serialization – Kryo Serialization is a fast and efficient object graph serialization
framework for Java. Kryo serialization first registers the classes to serialize and then the
objects can be written and read. No interfaces, mapping files or any other actions beyond
registration are needed to serialize the objects using kryo. The serializers are implemented by
default to read and write the huge data in various ways. If these implementations do not meet
particular needs, they can be replaced in part or as in whole. The definition of distinct
approach which flows from objects to bytes and bytes to objects are produced by the abstract
class of Serializer. These Serializer has two approaches that can be enforced. Writes the
object as bytes from the write() function. Creates a new instance of the objects and reads from
the input to populate it from the read() function [4].

 When kryo serializer writes down an instance of an object, initially it may demand to
write down something that determine the object’s class. Automatically, the fully qualified
class name is written, and then the bytes for the object are written. Consecutive view of object
type within the similar object graph are written utilizing a variable length int. Writing the full
class name is considerably inefficient, so classes can be registered earlier [4]:

Kryo kryo = new Kryo();
 kryo.register(SomeClass.class);
 // ...
 Output output = ...
 SomeClass someObject = ...
 kryo.writeObject(output, someObject);

Here SomeClass in the example code is registered with kryo, which accomplice the class with
an int ID. While kryo serializer writes away an instance of SomeClass, it will write away the
int ID. This is more efficient than a Java built-in serialization, which writes out the whole
class name at each instance. During kryo deserialization, the registered classes must have the
perfect identical IDs they had during serialization. The registered approach as depicted in
above example code commits the following available, lowest integer ID, which means that the

24

order classes which are registered are essential. The ID can also be stated accurately to make
order insignificant [4]:

Kryo kryo = new Kryo();
 kryo.register(SomeClass.class, 0);
 kryo.register(AnotherClass.class, 1);
 kryo.register(YetAnotherClass.class, 2);

The IDs are written most intensively when they are small, positive integers [4]. This ID
method in kryo serialization reduce the size of the object file and make it performance
efficient. A Kryo serailizer instance, can be utilized to automatically read and write the
objects in a few distinct manners. For Kryo to automatically serialize the objects, it must
know what serializer it must use. Classes that should be serialized can be registered with Kryo
instance and a serializer can be specified.

Built-in Serialization vs Kryo Serialization

Both built-in serialization and kryo serialization methods were selected for the
comparison and to choose the best out of it with the main criteria to be satisfied with the
project. The main characteristics chosen for comparison were mainly the performance in
terms of Serialization and deserialization process speed, size of the serialized file, memory
consumed by the serialized file placed on the ram and the impact on the existing code. Table
4.1 shows the comparison characteristics and the compared characters below.

Characteristics
Serialization options for Java

Built-in Kryo

Performance/
Speed - +

Size - +

Memory Consumption - +

Impact on existing code - +

Table 1 - Serialization Test Platform

25

As seen in Table 1, the Kryo serialization process wins against the built-in Java
serialization process in all the characteristics selected for comparison according to the test
reference in [5]. So the selected solution for session storage is Kryo Serialization process

After finding a solution for session storage, the next challenge is to find an appropriate
approach for reducing memory footprint during runtime. A detailed analysis must be
organized to test the correct approach by the best impact on the existing project code and few
are discussed because of time constraint. Initially Kryo serialization was examined to serialize
the data and store it on the disc, but it didn’t work out because when every time the
deserialization starts all the serialized object must be loaded into the ram and then retrieved
back, which is not an appropriate solution. Some of the few approaches which were examined
for the desired project will be discussed below.

Hibernate – Hibernate is an Object-Relational Mapping (ORM) result for Java and it has
been an open source persistence framework. Hibernate involves process of mapping Java
classes to the database tables and from Java data types to the SQL data types. Hibernate acts
in between the traditional Java objects and the database server to manage all the job in
persisting those objects based on an appropriate object relational mechanisms and patterns as
demonstrated in Figure 20. [6] The Java classes can be mapped to database tables by utilizing
the configuration of an XML file or by utilizing the Java Annotations. Hibernate administer
an SQL influenced language called Hibernate Query Language (HQL) which allows SQL-like
queries to be written adjacent to Hibernate’s data objects. Hibernate is utilized together in
standalone Java applications and Java EE applications utilizing servlets, EJB session beans
and JBI service factor [7].

Hibernate utilize the database and configuration data to provide persistence services
(and persistence objects) to the application. Figure 21 exhibit the complete view of the
Hibernate Application Architecture with few important core classes. Hibernate uses various
existing Java APIs like JDBC, Java Transaction API (JTA) and Java Naming and Directory
Interface (JNDI). JDBC gives a rudimentary level of abstraction of functionality common to
relational databases, allowing almost any database with JDBC driver to be supported by
Hibernate. JNDI and JTA allow Hibernate to be integrated with J2EE application servers [6].

Figure 20 - Object Relational Mapping (from [6])

26

Figure 21 - Hibernate Architecture (from [6])

This Hibernate approach was tested by a sample example code. By this sample
implementation and by the referenced results there are a few drawbacks identified which is
not a good fit for the expected approach of GEMMA project. Hibernate has a performance
cost as it adds a layer over JDBC.

 Performance requirements are not met to the expectation as it is very slow for the huge
number of data

 Ease of implementation is bit high

 It generates lots of SQL statements during runtime which is extremely inefficient

 Generates complex queries with many joins during mapping from data-to-tables

When were there are changes to persistence tier you should check the SQL statements
which are executed, which is highly impossible for huge data projects. And also it has a lot of
table configuration information which is read at the beginning of the application which slows
down the application process. Considering all these drawbacks of Hibernate it was not chosen
to be the implementation solution for GEMMA.

27

Caching System

Caching systems are widely used across every IT industry. A cache is a temporary
section to store various frequently accessed data so that the data can be retrieved or accessed
in a very short period of time when compared the to normal repository. The idea is based on
retrieving an object from this temporary memory should be significantly faster than retrieving
the same object from its original source [24]. The main perception behind choosing caching
system was that the frameworks have the data overflow to disk feature.

If the client invokes a request of desired data to the directory, it first checks the cache.
When the entry can be established with a tag matching that of the desired data, then this data
is used without having to access the main data storage. This is known as Cache Hit [8]. If the
desired data not found in the cache, then this is known as Cache Miss at this stage a hit to the
Back Storage is made to fetch the data back to the cache. Figure 22 demonstrates the whole
process of Cache hit and Cache miss [8].

Figure 22 - Basic Caching Structure (from [8])

Ehcache – Ehcache is an open-source Java distributed cache for familiar purpose caching,
J2EE and light-weight containers tuned for large size cache objects. It features memory, off
heap store and disk store. Ehcache also acts as a pluggable cache for Hibernate, Spring and
JPOX etc. The cache behaves as a local copy of data retrieved from or stored to the system-
of-record (SOR). SOR is assumed to be a database in Ehcache [9].

Data stores which are promoted by Ehcache include:

 On – Heap Store – Utilizes Java’s on-heap RAM memory to store the cache entries

 Off – Heap Store – It is limited in size only by the available RAM

 Disk Store – Utilizes a disk (filesystem) to store the cache entries [32]

28

The Figure 23 displays the storage tiers of Ehcache. Example when a cache is configured to
use multiple data store, they are referred as tiers [32]. The functionalities of the storage tiers
of Ehcache is explained below:

 Applications may have one or more Cache Managers

 A cache manager can manage multiple Caches

 Caches are configured to utilize one or more tiers for storing cache entries

 Ehcache stores the most recently accessed data in the typically less abundant tiers and
the less recently accessed data in the more abundant tiers

Figure 23 - Storage Tiers of Ehcache (from [32])

After the clear analysis and the sample code implementation of the Ehcache, the
performance inefficiency is low in terms of speed, i.e. very slow when compared to JCS in
putting and getting data from the disk and also the memory consumption is high. According to
the reference [10] [11] the practical results of time consumed to get and put data on the disk
with comparison to JCS and MapDB are proven.

Java Caching System (JCS) – JCS is also a distributed caching system written in Java for
server-side Java applications where it is managed by Apache Software Foundation. It is
proposed to accelerate the speed of applications by contributing a means to manage cached
data of various dynamic natures. The basis of JCS is the Composite Cache, which is the
pluggable controller for a cache area. Four different category of caches that can be plugged
into the Composite Cache for any given region are [33]:

 LRU Memory Cache

29

 Indexed Disk Cache and JDBC Disk Cache

 TCP Lateral Cache

 RMI Remote Cache [33].

JCS uses a concept of regions that can be seen as cache instances. Each region can be
deployed with different combinations of plugins adding different levels with specific
behaviors to the instance [24].

According to the reference [28] the comparison between the JCS and LinkedHashMap
is executed. The test results to of JCS vs LinkedHashMap states that JCS is too slow in both
putting and getting the data from the cache. The test results depict that JCS is too slow when
compared to the speed of HashMap which led to the selection of different approach to satisfy
the thesis goals.

MapDB – MapDB is an embedded database engine for Java. Better performance is the result
of compromises between consistency, speed and durability. MapDB provide distinct options
to make various compromises. There are several storage implementations, commit and disk
sync strategies. It provides collections backed by on-disk or in-memory storage. Data is stored
in MapDB as a key value pair. By default, MapDB uses generic serialization which can
serialize indiscriminate cast of data. It is agile and higher in memory efficiency to use
specialized serializers. MapDB is adaptable and can be used in mutiple roles such as follows
[13]:

 Drop-in replacement for Maps, Lists, Queues

 Off-heap collections not affected by the Garbage Collector

 Multilevel cache with an expiration and disk overflow

 RDBMs replacement with transactions, incremental backups

 Local data processing and filtering. MapDB can process the huge qualities of data in
acceptable duration of time

There are two classes that act like the inseparable between the different pieces, namely the
DBMaker and the DB classes [19].

The DBMaker class handles various functions like database configuration, creation and
opening. MapDB has several modes and configuration options. Most of these can be set using
this DBMaker class [19].

A DB instance illustrate an unclosed database (or a single transaction session). These DB
instance can be utilized to create and open collection storages. These instance can also
manage the database’s process with methods such as commit(), rollback() and close(). Where
commit() function makes the changes made to the DB permanent, rollback() discards all the

30

changes made within current transaction and close() just closes the opened DB and it is very
necessary to call close() function to protect files from data corruption. These MapDB file
storage can only be opened by a single user at one perticular time. File lock will prevent files
being used multiple times [19].

To open (or create) a store, must use one of the DBMaker.xxxDB() static methods.
MapDB has much higher count of formats and modes, whereby each xxxDB() uses distinct
modes: memoryDB() which initiate an in-memory database backed by a byte[] array,
appendFIleDB() opens a database which utilize append-only log files and so on [13].

An xxxDB() method is followed by one or more configuration options and finally a
make() method which applies all options, open the selected storage and returns a DB object
[13].

MapDB extracts HashMap and HashSet collections from HTreeMap. HTreeMap is
endorsed for managing huge number of key/values. Java HashMap is a data structure, based
on hashing which allows storing an object as a key - value pair and the HashMap class
implements the interface Map<K, V>. The main methods of this interface are: [15]

 V put(K key, V value)

 V get(Object key)

 V remove(Object key)

 Boolean containskey(Object key)

And HashSet class implements the Set interface, backed by a hash table (actually a
HashMap instance) [16] and it stores objects (elements or values). It has a great performance
with large keys [23].

HTreeMap is a thread-safe and scales under parallel update [20].

 HTreeMap allow parallel writes by utilizing multiple segments, each with distinct
ReadWriteLock. HTreeMap is a segmented Hash Tree

 HTreeMap will not utilize any firm size Hash Table which are used by other
HashMaps, and does not rehash the whole data while Hash Table grows

 HTreeMap doesn’t need resizing of Index Tree as it uses auto-expantion of Index Tree

 HTreeMap also involve very definite amount of storage place, hence the empty hash
slots do not utilize any space

MapDB can be utilized for several common use cases and obstacle. MapDB offers a very
natural way to access the huge amount of data stored in a very agile paradigm, with a schema
that precisely matches application criteria. MapDB also answer the issues of applications
which suffer in running out of Java heap memory, or enormous Garbage Collection from
pursuing to overflow with too large number of objects into the application runtime. [14]

31

3.2 GEMMA Architecture Analysis

The GEMMA architecture explained in the second chapter was analyzed to find the
limitations in it as it was imposing problems for serialization. This architecture analysis gave
rise to a new GEMMA architecture with new concepts that had to be implemented which is
explained in the coming chapter. The main reason for serialization problems was that
GEMMA only provided an interface IMappable that was implemented by each parser
individually. It represents that there was no way to predict how the internal structure of these
mappables looked like. These interfaces gave rise to objects of different kinds which
increased complication for the serialization of data. As it’s analyzed that the data in GEMMA
old architecture gets stored in distinct components, so the exporter needs to fetch the data
from multiple locations. This data storage in multiple location complication needs the
structuring of data storage necessarily so that the exporter obtains all the data from the single
component.

So in the new architecture, the main aim is to get rid of this problematic IMappable
interface by replacing it with a common Class Mappable that has to be used by all parsers and
additionally a new component DataManager that stores the GEMMA data centrally and
provides it to other components.

3.3 Selection of Desired Approach

3.3.1 Selection of Kryo for Session Data Storage

The research was first made on the choice of the Kryo serialization. Proper analysis
and comparing results of other serialization gave way to choose Kryo. The main aim of the
thesis was to store and restore the session data to avoid re-computing of huge mapped data
each and every time the GEMMA tool is started. To solve this storing and restoring session
data problem, kryo serialization is chosen. Where the serialization technique involves serialize
session data to store the data on the disk and again deserialize this session data to retrieve
back the stored data whenever needed.

3.3.2 Selection of MapDB for Reducing Memory Footprints

The second main goal of the thesis was to reduce the memory footprints during the
runtime, to solve this problem MapDB database engine has been chosen. According to the
research made and also the comparison between few other approach, MapDB solution is
chosen for implementation in GEMMA project. The main technique involved in MapDB is
storing the huge data on the disk instead of memory to reduce memory footprints. The
MapDB database engine was selected to store the data which will be in terms of database
(DB) files on the disk.

32

Chapter 4

4 Concept Introduction of GEMMA

The previous chapter explained the analyzed results of the old GEMMA architecture and the
identified solution against the established criteria which seemed to be more beneficial. This
chapter has two sections which will explain the concept of the new GEMMA architecture and
the implementation of the chosen approach like Kryo and MapDB. The subchapters give the
clear illustration about the new architecture and its benefit towards the desired goal to be
achieved.

4.1 Change of GEMMA Architecture

The provident analysis of the GEMMA old architecture persuades the changes to
progress in the new GEMMA architecture to reach the expected goals of the thesis. The
disadvantage of the old GEMMA architecture made way for the new GEMMA architecture to
get structured in an efficient manner to achieve the desired goals of the thesis.

The Main Concept was to get rid of Mappable interface in favor of Mappable class that is
used by all parsers by including a new component called Data Manager in the existing
GEMMA architecture. This Data Manager would be the centralized data management for the
whole GEMMA project where it stores all the mapping data which is implemented by
MapDB database engine which was chosen as a solution to reduce memory footprints during
runtime. Data manager as a new component as an inclusion to the new GEMMA architecture
which store the complete mapping data which was stored in multiple components in old
GEMMA architecture. So, the three main concepts derived from all the analysis made here:

 To replace the IMappable interface causing serialization problems by the common
class Mappable

 Implement data persistence for the overall project state through
serialization/deserialization by Kryo

 To reduce the memory footprint during runtime by storing the data on the disk using
MapDB

The above three concepts, have to be implemented to reach the goals set for the
improvement in the GEMMA framework. The centralized Data Manager plays a greater role
in managing the data and data storage in a precise manner. The figure 24 portrays the new
GEMMA architecture with the Data Manager as a new centralized component.

33

Figure 24 - New GEMMA Architecture

The new GEMMA architecture provides a few transformations in the data flow with the new
centralized Data Manager and their categorization is interpreted as follows:

- One or more application-specific Data Parser reads data, convert it into the form of
nodes and/or mappables and provide it to define a new data parser. All available
parsers in GEEMA are registered in an internal parser registry where the Run
Configuration can instantiate, configure and run those parsers, those are required by
the configuration file. The data are then transfered to the Data Manager

- The Data manager will then transmit the mappable data to the mappable database i.e.
the Lucene Database

34

- To be stored in the Lucene Database, all relevant information from a mappable must
be converted into strings. Each mappable is assigned a unique ID from its parser and
other required information is stored as a detail - value pair in so called details as
shown by Figure 25

- Now Run Configuration runs in the background to just hold the configurations that
define which parsers, exporters and rules are in current project instead of providing
exporter with mappables, nodes and mapping data from data parser and mapper

Figure 25 - Import to Lucene Database

- Mappables in the Mappable database are selected based on mappable details that will
require matches. The required matches for each mappable that is selected for mapping
are obtained by running queries on the mappable database. The queries are derived
from the mapping rules which are user-defined. The set of rules which should be
applied in one mapping project will be defined by the configuration

- As illustrated by Figure 26, during the matching process, the generic Mapper requests
the Data Manager for existing mappables and receives it. For each and every
mappable the mapper requests the applicable user rules from the rule manager and
utilizes the content obtained in these applicable rules to generate a query that can be
used to query the mappable database

- The results from the query are then utilized to generate a mapping from the original
mappable to the query results. These mappings are stored in the Data Manager. A
mapping is a one to many relations between one mappable and all the various matches
that were found

- Resolving the matches is an alternative step that is highly driven by the specific
application. It potentially requires the interaction with the user to make a specific
selection, e.g., a mapping rule might say that for a mappable only one-to-one mapping

35

is acceptable, but if more than one match was found then the user can decide which of
the very nearest matches should be selected or not

Figure 26 - Matching Process

- The Resolver also permits the user to implement the graphical user interface to review
and validate the generated mapping results, and thereby to analyze the completeness
and correctness of the defined user rules and to manipulate mappings manually, e.g.,
to eliminate a mappable from a mapping if the match was incorrect

Figure 27 - Export Process

- At last is the Exporter which is a highly application specific. Where exporter task
involves the transformation of the internal data model into an application-specific
output file. Similar to the DataParser interface, a generic MappingExporter interface
allows the definition of the custom exporters that are registered in an exporter registry
where they can be accessed by the run configuration as dictated by the configuration
file

36

- Each exporter can obtain the available mappables, nodes and mappings from the Data
Manager as the new GEMMA architecture establishes the change in data storage with
the centralized data manager. And the resolver as usual provides an exporter with the
status of the data elements as depicted by Figure 27

- Using all the information provided by the Data Manager and Resolver the exporter
creates a mapping export. The mapping export can take many forms, e.g., it can be just
an XML file as the standard exporter produces, but it can also be an export directly
into an application using the application’s API. How the data is exported is completely
encapsulated in the exporter

Module Description Core Specific

Data Parser
Reads data (nodes and/or
mappables) into the internal data
model and feeds the mappable
database

x

Mapper Generates mappings between
mappables based on rules x x

GUI

Interface for loading
configuration, displaying
mappings as well as allowing
user-decisions and displaying of
data based on resolver as shown
in Figure 2.9

x

Mappable Database Stores mappable information and
allows searches x

Data manager Stores mappables, nodes and
mappings x

Resolver Resolves mappings based on
application specific semantics x

Run Configuration
Holds the configuration that
defines which parsers, exporters,
mapper and rules are used in the
current mapping project

x

Exporter Exports the internal data model
into a specific file format x

Table 2 - Generic Mapping Framework Modules (from [1])

37

By the detailed description of the new GEMMA architecture which shows how the
new Data Manager component brings an advancement when compared to old GEMMA
architecture. The new architecture is the baseline for the implementation of the data manager
in the GEMMA project as a Java code as the complete implementation of GEMMA tool was
done in Java on top of Eclipse Rich Client Platform (RCP). This new GEMMA architecture
makes the implementation of the most beneficial solution chosen for the established criteria
evident. In further there would be a detailed description of the new approach implementation.

4.2 Implementation of the New Approach

The technical design and implementation was the most crucial part of the thesis work. In
this section, the implementation of the code generated in MapDB for the data storing and
restoring on-disk and Kryo serialization for session data storage is discussed in detail.

MapDB Code Implementation

MapDB is an open-source, embedded Java database engine and collection framework
[19]. MapDB is flexible with many configuration options. But in most cases, it is configured
with just few lines of code. MapDB was chosen to be the solution to store complete data on
disk instead of ram for reducing memory footprints during runtime. As explained in section
3.1 MapDB seemed to exhibit consistently efficient performance compared to other selected
approaches examined.

Installation

The installation of MapDB to the existing GEMMA project is by downloading a single
MapDB jar file directly from the Maven Central repository and add the downloaded mapdb-
3.0.0-M6.jar file to the GEMMA project classpath. The MapDB 3.0 version is used in this
current thesis work. The new DataManager class package was plugged into the existing
GEMMA Java project to build a new class in it for the Data Manager. There are few
terminologies and unique functions in MapDB to be familiarized, so the following detailed
description.

DB and DBMaker

MapDB is a set of coupled components. To hold things together, there are two main
classes, namely DBMaker and DB as explained in section 3.1. Where

 DBMaker handles database configuration, creation and opening

 DB represents opened database (or single transaction session)

So to start coding in MapDB the first step is to create a store, once it’s created all the
upcoming processes can just close or clear the store and use as per required. fileDB() method
is followed by few configuration options and make() method which implies all options, open
storage and return DB object. As the chosen solution is to store data on the disk, based the

38

MapDB program code in appendix A the db file named mappable.db, node.db and
mapping.db is created to stored respective data on the disk.

The configurations used in appendix A in the fileDB() method are:

 fileMmapEnable() – Memory mapped files are activated with this setting. Memory
mapped files (mmap) is a fastest storage option for disk storage in MapDB when
compared to Random Access File (RAF) and File Channel. The exception {@code
java.lang.OutOfMemoryError: Map failed} is only on 32bit JVM, if this mode is enabled.
Memory mapped files are highly dependent on the operating system [21]

 fileMmapEnableIfSupported() – Enable Memory Mapped Files only if the current JVM
supports it (is 64 bit)

 fileMmapPreclearDisable() – To make the memory mapped files faster this mode is
called

 cleanerHackEnable() – Closes the file on db.close(). This mode is called because of a
bug encountered in a JVM on Windows. The memory mapped files were remained open
even after db.close() was called. This mode now prevents file to be reopened or deleted on
Windows

 closeOnJvmShutdown() – Adds JVM shutdown hook and closes the DB just before the
JVM [22] just to protect data if the JVM crashes or is killed [21]

Hence the dbMappableDisk, dbNodeDisk and dbMappingDisk are created similarly with the
above set of configurations.

Open and Create Collection

Once the DB is created it can open a collection or other records. DB uses builder style
configuration. It starts with the type of collection (e.g., HashMap, treeSet…) where HashMap
is the type used in this thesis, and name followed by the configuration is applied and finally
by operation indicator [19].

According to appendix A, the following code snippet opens (or creates new)
‘onMappableDisk’ named record

onMappableDisk = (HTreeMap<String,Object>)dbMappableDisk.hashMap("onMappableDisk")

 .keySerializer(Serializer.STRING)

 .hashSeed(111)

 .createOrOpen();

HTreeMap has a number of parameters. The most prominent parameter is name, which
determines a Map within a DB object and serializers which manage data inside the map.
MapDB utilizes Key Serializer to create Hash Code and to compare the keys [20].

 Serializer.STRING uses stronger XXHash which generates less collisions [20]

39

 HTreeMap adds hashSeed(111) for protection against Hash Collision Attack. These
Hash Collision attacks are randomly generated while the collection is produced and
persisted together with its description. User can also supply own unique Hash Seed

The similar configurations of onMappableDisk are used to create or open the collection in
MapDB code for onNodeDisk and onMappingDisk as in appendix A. The builder can end
with three different methods such as:

 create() – It will create a new collection, and throws an exception if the collection
already exists

 open() – It opens an existing collection, and throws an exception if it does not exist

 createOrOpen() – It opens an existing collection if it already exists, or else creates
the new one. This is the most adaptable option to be used in the MapDB as displayed
in appendix A

Transactions

DB has few methods to handle a transaction lifecycle in particular manner: commit(),
rollback() and close(). One DB object represents single transaction.

 commit() – It persists all the changes made by the user to the disk

 rollback() – It discards all the changes previously made by the user within the current
transaction

 close() – It closes the store completely

To protect the file from corruption, MapDB offered Write Ahead Log (WAL) to make
file changes atomic and durable. But WAL is slower as data has to be copied and synced
multiple times between files, so WAL is disabled by default [21]. With this WAL disabling
there would be no protection against a store or JVM crash. In this case the store must be
closed correctly or else there would be data loss. If MapDB detects an unclean shutdown, it
refuses to open such corrupted storage [21]. During this WAL disabling, the rollback function
throws an exception, so commit function attempts to flush all the write caches and
synchronizes the storage files [21]. So once the commit function is called even when there are
no writes, the store would be secure (no data loss) in case of JVM crash. The example below
is a code snippet to explain the above methods which uses a single transaction per store.

ConcurrentNavigableMap<Integer,String> map =

db.getTreeMap("collectionName");

map.put(6,"six");

map.put(7,"seven");

//map.keySet() is now [6,7] even before commit

db.commit(); //persist changes into the disk

map.put(3,"three");

//map.keySet() is now [6,7,3]

40

db.rollback(); //reverts recent changes

//map.keySet() is now [6,7]

db.close();

According to the MapDB code in appendix A, the commit() is called to persist all the
changes made to mappables, nodes and mappings to the disk before closing the stores
respectively in shutdown() method. The MapDB code in Appendix A consists of two similar
kinds of methods called shutdown() and close1(). Where shutdown() method is called in
RunConfiguration class of the GEMMA project to persist the configured data and close the
store before reopening of the restored data from the disk. And close1() method is called in the
GEMMAMainPart class to just close the mappable, node mapping stores before starting the
new GEMMA application which could lead to store corruption and JVM process crashes if
the stores are not closed properly. And onMappingDisk.clear is called to delete all the
mapping data on the disk.

As already described MapDB uses generic built-in serialization to serialize whole data
and store it on the disk, this thesis work also implements MapDB using kryo serialization. The
complete examined results of both MapDB using built-in serialization and MapDB using kryo
serialization against old GEMMA tool efficiency are explained in chapter 5.

Kryo Serialization

Kryo serialization is a fast and efficient object graph serialization framework for Java.
Kryo is used to persist data objects to a file, database, disk or even over the network. Kryo
does not enforce a schema or concern about what data is written or read. This is left to the
serializers. Appendix B is the Kryo serialization code which is implemented to store the
session data as a .gma file format on the disk during runtime.

Installation

Kryo is used without maven by adding the jar files to the GEMMA classpath. As kryo jar
has a some external dependencies, they are:

 MinLog logging library – It is a tiny logging library which has a few features like
zero overhead, extremely lightweight, simple and efficient at runtime [25]

 Objenesis library – It is a library dedicated to bypass the constructor when creating
an object [26]

 ReflectASM library – It is a very small Java library that provides reflection by using
code generation [27]

All these three jar files along with kryo-3.0.3. jar file is added to the GEMMA classpath
before kryo code implementation.

41

IO

The Input class of a kryo serializer is an InputStream that reads the whole data from a
byte array buffer. This byte array buffer can be set directly, if the reading from a byte array is
desired. If the Input is provided to an InputStream, it will fill up the buffer from the stream
when the buffer is disabled. Input has numerous methods to efficiently read the primitives and
strings from bytes. It produces functionality which is similar to DataInputStream,
BufferedInputStream, FilterInputStream and ByteArrayInputStream [4].

According to Appendix B, which depicts that the session data is read from the disk,
i.e. to deserialize or restore the data stored in the form of a file on the disk, FileInputStream is
used.

The OutputStream is an Output class that writes the whole data to a byte array buffer.
This buffer can be obtained and utilized directly, if a byte array is desired. While the Output is
given an OutputStream, it will expel the bytes to the stream when the buffer is completely
filled. Output has multiple methods for efficiently writing primitives and strings of bytes. It
provides functionality similar to a DataOutputStream, BufferedOutputStream,
FilterOutputStream and ByteArrayOutputStream [4].

The Output buffers when writing to an OutputStream, flush() or close() function must
be called after writing is complete so that the buffered bytes are written to the underlying
stream.

According to Appendix B, to write the data on the disk, i.e. to serialize the session
data and store it on the disk in the form of data objects, FileOutputStream is used.

Finally the data is serialized compressed into a zip file as .gma format and stored on
the disk and the deserialization involves unzipping the file later deserializing and restoring
back to GEMMA framework when called by the user.

By this the implementation processes of MapDB and Kryo for the desired goal of the
thesis are completed and the following chapter discusses in detail about the careful examined
results.

42

Chapter 5

5 Results, Discussion and Future Work

In this chapter, an overview of the GEMMA tool with the MapDB implementation results are
discussed. This chapter also presents the performance trials conducted with multiple tests in
terms of memory consumption and the time taken by the GEMMA tool to complete the
mapping task are generated. It aims to display the effectiveness of the new approach MapDB
and Kryo serialization by comparing different approaches to achieve the same goal. The areas
of application of the code generated and the future extension of this thesis of the new
approach is briefly explained.

5.1 Java VisualVM Testing Tool

The testing tool used to calculate the memory consumption of each GEMMA mapping
process was VisualVM which is by default wrapped in the JDK. VisualVM is really simple
and yet powerful to find the memory usage of the Java application during runtime. The
VisualVM application monitors and troubleshoots applications running on Java using various
technologies including jvmstat, Serviceablility Agent (SA) and Attach API [29].

Display local and remote Java process

VisualVM automatically detects and lists locally and remotely running Java applications and
applications can also be manually defined by using JMX [2.9].

Figure 28 - VisualVM Application GUI

There are five different tabs in VisualVM like overview, monitor, threads, samplers and
profiler. The overview tab displays the information about the launched Java application.

The next tab is the monitor tab in Figure 31 which illustrate the CPU and memory usage of
the application. Monitor tab contains four different graphs. The first graph monitors
application CPU usage and garbage collector activity, second graph monitors heap and

43

metaspace / permanent generation memory, third graph monitor the number of loaded classes
and fourth graph monitors the running threads [29].

Monitor process performance and memory consumption

 The Figure 29 displays the heap graph which is one of the graph in monitor tab. This
heap graph was mainly used to record each GEMMA application memory consumption in
both old GEMMA and MapDB implemented GEMMA application. This graph was the main
focus in the whole VisualVM application of the thesis.

Figure 29 - Heap Graph in VisualVM

Visualize process threads in threads tab

 The third tab in the VisualVM is the threads tab. All the multiple threads running in a
Java process are presented in a timeline together with aggregated Running, Sleeping, Wait,
Park, and Monitor times [29].

Figure 30 - Threads Tab in VisualVM

Profile performance and memory usage

VisualVM provides basic profiling capabilities for analyzing application performance
and memory management [29]. This profiling capability is obtained by the fourth tab of
VisualVM which is the sampler tab, it regularly samples the Java application in terms of CPU

44

sampling to collect performance data and memory sampling to collect memory data and by
fifth tab of VisualVM which is profiler tab to instrumenting the classes and methods of Java
application.

F
ig

u
re

 3
1

-
V

is
u

al
V

M
 G

U
I

of
 M

on
it

or
 T

ab

45

5.2 Testing and Validation

The result of new concept implementation of the existing GEMMA tool is tested and
recorded. The kryo implementation of the GEMMA session storage is to avoid the
recomputing of data every time when the GEMMA is newly launched. The implementation is
now used to save the project, on the disk and also retrieve back. The serialized data is stored
on the disk as a zip file to reduce the size of the file and this zipped file is unzipped and
deserialized when retrieving the saved data, which is all implemented using kryo serialization.

MapDB data engine implementation in the GEMMA framework to offload data from the
RAM to the disk storage is successfully implemented with all the interconnections to be made
internally in the existing GEMMA framework. The testing of this new approach
implementation involves multiple data strength mapping and trials based on the GEMMA
particular memory consumption. The comparison between the new GEMMA framework with
MapDB implementation and the old GEMMA framework is made on performance gain in
terms of speed and memory consumption.

The main comparison was based on the speed of data computation in mapping in terms of
time. The two main regions where GEMMA claims time to execute large data are during
mapping and resolving the data. The amount of data depends on the combination of number
of mappables and nodes in one particular mapping project. The time consumed for mapping
involves establishing connections between the selected mappables based on user defined
rules. And the time consumption of resolving process involves resolving and validating the
mappings and also adding the validation status of mappables to index. This mapping time and
the resolving time vary on the total sum of mappables and node data used in one particular
mapping project.

To analyze the effectiveness of the new implementation of the GEMMA framework
against the old GEMMA tool, numerous test cases have been tested and reviewed. These test
cases are first tested for the MapDB custom serialization using kryo and the second set of
testing is on MapDB built-in serialization. The two sets of serialization version in MapDB are
tested on three different memory limits, by limiting the Java heap to 512 MB, 1024 MB and
2048 MB respectively. The memory consumption by each mapping project is calculated by
using Java VisualVM.

46

Figure 32 - GEMMA Console Tab

The testing is launched by illustrating the difference between Old GEMMA Mapping Time
(OGMT) and New GEMMA Mapping Time (NGMT), Old GEMMA Resolving Time
(OGRT) and New GEMMA Resolving Time (NGRT) measured in seconds and finally Old
GEMMA Memory Consumption (OGMC) and New GEMMA Memory Consumption Time
(NGMC) measured in megabytes (MB) for five selected set of iterations based on Number of
Mappables and Nodes (NMN) i.e., 1000, 10000, 25000, 50000, 100000 to be precise in the
variation. The testing was conducted with five trials of each number of mappables and nodes
respective of the memory limits selected and the average of each trials are mentioned in the
following tables. The mapping time and resolving time of GEMMA process was recorded
from the GEMMA console tab as shown in Figure 32 which reveals the present application
details by its prescribed time consumption.

The two sets of comparison between the old and the new GEMMA framework
commenced from the kryo serialization and then followed by the MapDB built-in
serialization. The Table 3, 4, 5 depicts that the new MapDB implemented GEMMA
framework readings for NGMT and NGRT are too high when compared to the old GEMMA
framework OGMT and OGRT. The Table 3 for memory limit of 512 MB illustrate that for the
huge NMN value the old GEMMA framework breaks down during the mapping process
without completion of the task and the new GEMMA framework. But the new GEMMA
framework executes the mapping process and stops by throwing ‘GC Overhead limit
exceeded’ error during resolving particular mapping project. The ‘GC Overhead limit
exceeded’ error indicates that the garbage collector runs all the time and the GEMMA tool is
making very slow progress. So in 512 MB memory usage the GEMMA tool shuts down
without any good performance status even when MapDB is implemented.

The further investigation of the GEMMA MapDB performance results were not
satisfactory with any particular performance in terms of speed or memory consumption. The
NGMT seems to be acceptable as there is an increase of 20-30% of mapping time, but the
NGRT is largely high in terms of hours for the 50000 – 100000 mappables and nodes. The
same unsatisfactory results of MapDB using kryo serialization continue with the MapDB
using built-in serialization as shown in Table 6, 7, 8. The main issue of MapDB kryo
serialization was the NGRT error in 512GB memory usage and high time consumption during
NGRT for 50000 – 100000 mappables and nodes in 512 GB, 1024 GB, 2048 GB which was

47

still worse while using MapDB built-in serialization. Because when compared with Table 5
and 8 the NGRT and NGMC the built-in serialization is too high.

As the GEMMA MapDB time consumption during the resolving process of any mapping
data was high when compared to old GEMMA resolving process, this lead to the further
improvements in the MapDB code implementation to enhance the performance of MapDB
during resolving data. The analysis leads to a few changes in the DataManager class and also
in the GEMMA project for an effective result to achieve the desired goals. The following
section 5.1.1 explains the analysis of MapDB code and the changes made.

48

Comparison of GEMMA MapDB Kryo Serialization versus Old GEMMA

Memory Limit – 512 MB

NMN = No of Mappables and Nodes, OGMT = Old GEMMA Mapping Time, NGMT =
New GEMMA Mapping Time, OGRT = Old GEMMA Resolving Time, NGRT = New
GEMMA Resolving Time, OGMC = Old GEMMA Memory Consumption, NGMC = New
GEMMA Memory Consumption

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 4 1 6 233 158

10000 6 15 4 208 298 319

25000 15 30 11 1260 350 460

50000 38 54 16 3 Hrs 450 400

100000 Stops 118 Stops Error Stops Error

Table 3 - GEMMA Module Trial Results

Memory Limit – 1024 MB

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 3 1 5 260 288

10000 6 15 4 195 426 448

25000 13 27 11 500 525 635

50000 36 52 22 1 Hr 675 845

100000 82 112 50 10 Hrs 938 1100

Table 4 - GEMMA Module Trial Results

49

Memory Limit – 2048 MB

NMN = No of Mappables and Nodes, OGMT = Old GEMMA Mapping Time, NGMT =
New GEMMA Mapping Time, OGRT = Old GEMMA Resolving Time, NGRT = New
GEMMA Resolving Time, OGMC = Old GEMMA Memory Consumption, NGMC = New
GEMMA Memory Consumption

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 3 1 6 233 432

10000 6 12 5 190 738 758

25000 14 29 11 1098 800 920

50000 37 53 18 1Hr 900 1100

100000 82 109 57 5Hrs 1260 1500

 Table 5 - GEMMA Module Trial Results

Comparison of GEMMA MapDB Built-in Serialization versus Old GEMMA

Memory Limit: 512 MB

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 2 1 4 233 170

10000 6 10 4 253 298 365

25000 15 16 11 1980 350 460

50000 38 49 16 3 Hrs 450 450

100000 Stops 116 Stops Error Stops Error

Table 6 - GEMMA Module Trial Results

50

Memory Limit: 1024 MB

NMN = No of Mappables and Nodes, OGMT = Old GEMMA Mapping Time, NGMT =
New GEMMA Mapping Time, OGRT = Old GEMMA Resolving Time, NGRT = New
GEMMA Resolving Time, OGMC = Old GEMMA Memory Consumption, NGMC = New
GEMMA Memory Consumption

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 2 1 4 260 223

10000 6 9 4 246 426 453

25000 13 18 11 1725 525 900

50000 36 49 22 2 Hrs 675 920

100000 82 112 50 12 Hrs 938 1000

Table 7 - GEMMA Module Trial Results

Memory Limit: 2048 MB

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 2 1 4 233 585

10000 6 9 5 230 738 765

25000 14 15 11 1500 800 1000

50000 37 51 18 2 Hrs 900 1900

100000 82 115 57 9 Hrs 1260 2000

Table 8 - GEMMA Module Trial Results

51

5.2.1 Updated MapDB Code

The examination of the initial MapDB code for the improvements gave way for the
identification of few corrections in whole GEMMA project. The main correction in MapDB
code which is defined as a DataManager class in GEMMA Java project was in the methods
getAllMappables() and getAllNodes(). These getAll() methods used to every-time read the
whole GEMMA data every-time they were called. So when the huge data task is executed
there would be large time consuming by the GEMMA tool to resolve the data.

The following code snippet below was the getAll() method used to get all the nodes in the
DataManager class which used to read the whole node data every-time the GEMMA tool is
executed.

public HashMap<String, Node> getAllNodes() {

 HashMap<String, Node> nodes = new HashMap<String,
Node>();
 for (Object key : onNodeDisk.keySet()) {

nodes.put(((Node)onNodeDisk.get(key).getID(),
(Node)onNodeDisk.get(key));

 }

 return nodes;

 }

The above code snippet was replaced by the code snippet below i.e., getAllNodes() method
was replaced by getAllNodeKeys() method. The important modification in getAllNodeKeys()
method was by only returning the set view of all the keys in the hashmap. This
getAllNodeKeys() method reads only the updated data instead of reading the whole data
every-time. The similar method was implemented to read the mappable and mapping data
during the resolving process in GEMMA as shown in Appendix A.

public Set<String> getAllNodeKeys() {

 return onNodeDisk.keySet();

 }

The above new changes made in the MapDB code and also some other internal changes in the
GEMMA whole project brought a drastic change in the time consumption. The complete
updated MapDB using kryo serialization code used for testing is in Appendix C and MapDB
using built-in serialization is in Appendix A.

52

Comparison of GEMMA Updated MapDB Kryo Serialization versus Old GEMMA

Memory Limit: 512 MB

NMN = No of Mappables and Nodes, OGMT = Old GEMMA Mapping Time, NGMT =
New GEMMA Mapping Time, OGRT = Old GEMMA Resolving Time, NGRT = New
GEMMA Resolving Time, OGMC = Old GEMMA Memory Consumption, NGMC = New
GEMMA Memory Consumption

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 3 1 4 233 160

10000 6 15 4 23 298 289

25000 15 31 11 57 350 407

50000 38 58 16 115 450 482

100000 Stops 116 Stops 241 Stops 483

Table 9 - GEMMA Module Trial Results

Memory Limit: 1024 MB

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 3 1 3 260 269

10000 6 15 4 22 426 430

25000 13 30 11 56 525 558

50000 36 56 22 114 675 701

100000 82 110 50 234 938 791

Table 10 - GEMMA Module Trial Results

53

Memory Limit: 2048 MB

NMN = No of Mappables and Nodes, OGMT = Old GEMMA Mapping Time, NGMT =
New GEMMA Mapping Time, OGRT = Old GEMMA Resolving Time, NGRT = New
GEMMA Resolving Time, OGMC = Old GEMMA Memory Consumption, NGMC = New
GEMMA Memory Consumption

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 3 1 3 233 268

10000 6 14 5 22 738 681

25000 14 30 11 55 800 820

50000 37 54 18 114 900 978

100000 82 111 57 241 1260 1220

Table 11 - GEMMA Module Trial Results

Comparison of GEMMA Updated MapDB Built-in Serialization versus Old GEMMA

Memory Limit: 512 MB

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 2 1 1 233 139

10000 6 8 4 7 300 257

25000 15 17 11 18 375 337

50000 36 47 22 39 490 454

100000 Stops 115 Stops 93 Stops 478

Table 12 - GEMMA Module Trial Results

54

Memory Limit: 1024 MB

NMN = No of Mappables and Nodes, OGMT = Old GEMMA Mapping Time, NGMT =
New GEMMA Mapping Time, OGRT = Old GEMMA Resolving Time, NGRT = New
GEMMA Resolving Time, OGMC = Old GEMMA Memory Consumption, NGMC = New
GEMMA Memory Consumption

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 2 1 1 260 170

10000 6 8 4 7 426 382

25000 13 16 11 17 550 503

50000 38 51 22 39 700 641

100000 82 118 52 90 948 851

Table 13 - GEMMA Module Trial Results

Memory Limit: 2048 MB

NMN OGMT
(sec)

NGMT
(sec)

OGRT
(sec)

NGRT
(sec)

OGMC
(MB)

NGMC
(MB)

1000 1 2 1 1 233 125

10000 6 8 5 7 738 650

25000 14 17 11 17 860 792

50000 37 50 23 39 960 900

100000 82 118 57 88 1270 1174

Table 14 - GEMMA Module Trial Results

55

5.3 Overview of GEMMA MapDB Solution

The results obtained from the updated code of DataManager class has been enhanced
between the two sets of serialization testing when compared to the old GEMMA results. The
main objective of the testing was to examine whether the chosen solution, MapDB is suitable
to achieve the goals of the thesis. So the multiple test trials were executed to record the test
results and ultimately aimed for the best results.

Again the same testing scenarios as in section 5.1 continued to examine the results
brought by the changes made in the old code of DataManager class. The MapDB using kryo
serialization results is noted down in the Table 9, 10, 11 and MapDB using built-in
serialization results are listed in Table 12, 13, 14 for the clear observation. There was a drastic
change in the results obtained by both the set of serialization patterns in MapDB when
compared with the older version of the MapDB results.

This segment is the comparison of MapDB previous solution and the MapDB
improved solution results. The NGRT of the MapDB kryo serialization with a 512 MB
memory limit in Table 3 and Table 9 of same functionalities is considered as it had a massive
drawback. The massive drawback was that the GEMMA process was incomplete because
resolving the huge data of about 100000 numbers of mappables and nodes even after using
MapDB as seen in Table 3 NGRT tend to be an error. The immense development with
improved code is that the GEMMA function is completed even when the memory usage is
limited to the least possible value. As seen in Table 9 the resolution of huge data of 100000
mappables and nodes is executed with the reasonable memory usage with 512 MB memory
limit. Considering the Table 3 and 9 the NGMT and NGMC value remains almost similar but
NGRT value of Table 9 is reduced by 70%-90% when compared to NGRT of Table 3 by
solving the massive drawback in GEMMA.

Followed by the comparison of similar functionalities of MapDB kryo serialization of
the previous and the present results with memory limit of 1024 MB and 2048 MB is
considered in this particular division. Even with 1024 MB and 2048 MB results in the drastic
reduction of 70% - 90% in the resolving time of the GEMMA process, i.e. NMRT of Table 10
and Table 11 when compared to NMRT of Table 4 and Table 5 like as in the 512 MB memory
limit. Along with the resolving time the memory usage during the GEMMA process, i.e.
NGMC of Table 10 and Table 11 has a slight reduction of 10% - 30% when compared to
NGMC of Table 4 and 5.

 Considering the comparison between the pervious results of MapDB built-in
serialization in Table 6, 7, 8 and Table 12, 13, 14 which is the present results obtained with
the improved code in MapDB built-in serialization. The comparison results imply that the best
results are obtained with the improved code of MapDB built-in serialization with any memory
usage limit. The improved MapDB built-in serialization results with a huge reduction of
resolving time by 90% - 97% and also the memory consumption by 10% - 20% of each
GEMMA process when compared to the previous MapDB built-in serialization.

56

 The Figure 33 depicts the visaulvm view of the old GEMMA application process
breakdown while resolving 100000 mappables and nodes as a data. The memory limit is
constrained to 512 MB the old GEMMA application halts without completion of mapping
data and execution of the results.

Figure 33 - Old GEMMA Breakdown Java VisualVM

57

The old GEMMA application breakdown when the huge data are used for mapping,
this GEMMA breakdown in the initial stage of mapping is displayed in Figure 34 in the
GEMMA console tab. Where the console tab depicts the complete information about the
launched GEMMA mapping process. When the old GEMMA processed 100000 mappables
and node data it was ceased without any further improvements as it was not efficient to
compact the data in the given memory limit.

Figure 34 - Old GEMMA Breakdown in GEMMA GUI

58

Instantly by the multiple comparison of the GEMMA test results and the description
made between MapDB results show that the improved MapDB code yields the expected
results. As the improved MapDB solution is based on two different set of serialization pattern,
the comparison between these two serialization patterns may yield the desired solution for the
thesis work in terms of memory footprint reduction. Therefore, considering the improved
MapDB test results in 512 MB, 1024 MB, 2048 MB in these three different memory limit
which is mentioned in Table 9, 10, 11 respectively for kryo serialization and Table 12, 13, 14
respectively for built-in serialization. The comparison of mapping time (NGMT), resolving
time (NGRT) and memory consumption (NGMC) evidently displays that the upgraded
MapDB with built-in serialization is better than the MapDB with kryo serialization. The
resolving time (NGRT) of MapDB with built-in serialization is approximately 60% - 70% less
when compared to resolving time (NGRT) of MapDB kryo serialization and the memory
consumption (NGMC) is reduced by 10% - 20 % when compared to the memory consumption
(NGMC) of MapDB kryo serialization.

 The multiple trials which were performed to check the performance of the MapDB
method to achieve the main purpose of the thesis was discussed with the suitable comparisons
bring in the conclusion that the upgraded MapDB built-in serialization yields the best results.
Ultimately the final comparison of upgraded MapDB built-in serialization result is with the
old GEMMA process as shown in Table 12, 13, 14. With respect to the mapping and
resolving time consumption the upgraded MapDB solution is 10% - 30% higher when
compared to the old Gemma mapping and resolving time. And the memory consumption by
each GEMMA mapping process by upgraded MapDB is 10% - 30% less consumed when
compared to old GEMMA application.

 The main objective which was met after the implementation of MapDB solution was
that it was very efficient in the mapping process in any specific memory limit situation, which
was not satisfied with the old GEMMA application. As the results of MapDB and old
GEMMA comparisons is encountered in Table 12 display that for the huge number of
mappables and nodes like example 100000 mappables and nodes are not being able to manage
by old GEMMA application as seen in Figure 33 which is recovered by MapDB as seen in
Figure 35 with a limited amount of memory consumption without any exceptions. Despite of
its slight increase in mapping and resolving time the performance efficiency of MapDB is
leading old GEMMA to satisfy the thesis goal to reduce memory footprints of data during
runtime. By the entire result of analysis, the MapDB proves to be the solution to store the
whole, serialized data on the disk as the database file for depositing mappings, mappable and
node data.

 Hence the analysis of the chosen solution MapDB to reduce memory footprints during
runtime is suitable to achieve the first goal of the thesis work and the second goal to enable
storing and restoring of session data is achieved by kryo serialization. By the new GEMMA
architecture along with two proposed method MapDB and Kryo serialization each solving the
specific goal of the thesis results for the better performance and data efficiency of the
GEMMA tool.

59

The upgraded MapDB solution was very efficent in solving the disadvantage faced by
the old GEMMA application. The MapDB completed the whole GEMMA process of 100000
mappable and node data with 512 MB memory limit without any interruption in between. As
shown in the Figure 35 which display the memory usage graph of upgraded MapDB in
visualvm application.

Figure 35 - New GEMMA Process Completion in Java VisualVM

60

The Figure 36 depicts the upgraded MapDB solution of solving 100000 mappables and nodes
data in the GEMMA console tab.

Figure 36 - New GEMMA Process Completion in GEMMA GUI

61

5.4 Future Work

During this thesis work, the MapDB and kryo serialization fulfill the objectives and goals
which were proposed at the initial stage of the thesis. There is always a wide range of
acceptance for the future research and development of the GEMMA framework by utilizing
this present thesis results and conclusion.

The results obtained by the thesis work could be analyzed for the future enhancement in
the performance of the new approach. The MapDB database engine obtained an acceptable
result, while reducing memory footprints during runtime when compared to the old GEMMA
framework. During the MapDB operation, it is highly impossible to open the database files
which get locked on the disk, if the system crashes without closing the database store. Closing
the database store on the disk, plays a vital role in the MapDB framework which leads to a
high alert for a GEMMA framework to orderly follow the open and close database store
without fail.

By the automatic file lock issue, MapDB could be researched and replaced by a new
approach called Xodus according to the results in the reference [30]. Where Xodus is a
transactional schema-less embedded high-performance database written in Java. There are
few main advantages of Xodus in contrast to MapDB i.e., Xodus provides an outstanding
performance due to very compact data storing, lock-free reads, lock-free optimistic writes,
and intelligent lock-free caching according to the reference in [31].

 In terms of overall system features of the GEMMA, there is always a further
contribution made to maintain the GEMMA architecture behavior repeatedly. At present
GEMMA is used in most of the research projects in Airbus Defense and Space, but the future
aim is to make GEMMA as an open source tool.

62

Chapter 6

6 Conclusion

 The two fundamental goals of the thesis were to reduce the memory footprints of the
GEMMA framework during runtime and to enable storing and restoring the session data
without re-computing whole data every time. After the thorough analysis of methods and
tools, MapDB database engine to reduce memory footprints and kryo serialization to store and
restore the session data on the disc, both were considered to achieve the desired goal.

After the selection of two main approach MapDB and kryo, the foremost analysis was
on the GEMMA architectural behavior to examine whether the old GEMMA architecture
needs any advancement. After the complete analysis of architecture, GEMMA old
architecture gave rise to IMappable interface that was implemented by each parser
individually. These interfaces gave rise to restriction against data serialization. This lead to
the concept of new GEMMA architecture to eliminate the interfaces causing serialization
problems.

The new concept of GEMMA new architecture included a new component for
centralized data management for the whole project called Data Manager. The centralized Data
Manager plays a vital role in managing the huge data and huge data storage on the disk as a
database file using MapDB. Later the whole session data could be stored and restored from
the disk using kryo serialization.

The new approach implementation of MapDB and kryo was completely tested against
the old GEMMA tool with multiple trials of various data collection with various memory
limits. The MapDB solution was tested with two different sets of serialization i.e. built
serialization of MapDB and kryo serialization. The initial test results of MapDB, proposed for
the further advancement in the MapDB code, which was implemented. The final results of the
implemented MapDB solution are efficient in reducing memory footprints during runtime as
the data is stored on the disk.

MapDB could overcome the old GEMMA drawback by able to solve the issue of
GEMMA breakdown while mapping huge amount of data in limited memory consumption
E.g. While mapping 100000 mappables and nodes under 512 MB memory limit. The desired
results were obtained by the selected approach, MapDB and kryo which was examined,
implemented and tested in detail.

63

7 Appendix A: MapDB Using Built-in Serialization

 package com.airbus.agi.GEMMA.DataManagement;

import java.io.File;
import java.io.Serializable;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Set;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.mapdb.DB;
import org.mapdb.DBMaker;
import org.mapdb.HTreeMap;
import org.mapdb.Serializer;

import com.airbus.agi.GEMMA.Mapping.Mappable;
import com.airbus.agi.GEMMA.Mapping.Mapping;
import com.airbus.agi.GEMMA.Mapping.Node;

public class DataManager implements Serializable {

 private static final long serialVersionUID = -4069122550495907255L;

 private static String cacheFolderAbsolutePath = null;

 final static String CACHE_FOLDER_NAME = "cache";

 //Get actual class name to be printed on
 static Logger log = LogManager.getLogger(DataManager.class.getName());

 //create an object of SingleObject
 private static DataManager instance = new DataManager();

 //Get the singleton
 public static DataManager getInstance(){
 return instance;
 }

 public static void setInstance(DataManager manager) {
 instance = manager;
 }

 private transient DB dbMappableDisk;
 private transient HTreeMap onMappableDisk;

 private transient DB dbNodeDisk;
 private transient HTreeMap onNodeDisk;

 private transient DB dbMappingDisk;
 private transient HTreeMap onMappingDisk;

 public void initialize() {

 dbMappableDisk = DBMaker
 .fileDB(new File(cacheFolderAbsolutePath + "/mappable.db"))
 .fileMmapEnable()
 .fileMmapPreclearDisable()

64

 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onMappableDisk = (HTreeMap<String,
Object>)dbMappableDisk.hashMap("onMappableDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 dbNodeDisk = DBMaker
 .fileDB(new File(cacheFolderAbsolutePath + "/node.db"))
 .fileMmapEnable()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onNodeDisk = (HTreeMap<String,
Object>)dbNodeDisk.hashMap("onNodeDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 dbMappingDisk = DBMaker
 .fileDB(new File(cacheFolderAbsolutePath + "/mappings.db"))
 .fileMmapEnable()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onMappingDisk = (HTreeMap<String,
Object>)dbMappingDisk.hashMap("onMappingDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 }

 public void reOpenOldDatabaseFiles() {

 dbMappableDisk = DBMaker
 .fileDB(cacheFolderAbsolutePath + "/mappable.db")
 .fileMmapEnable()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onMappableDisk = (HTreeMap<String,
Object>)dbMappableDisk.hashMap("onMappableDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 dbNodeDisk = DBMaker
 .fileDB(cacheFolderAbsolutePath + "/node.db")
 .fileMmapEnable()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()

65

 .make();

 onNodeDisk = (HTreeMap<String,
Object>)dbNodeDisk.hashMap("onNodeDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 dbMappingDisk = DBMaker
 .fileDB(cacheFolderAbsolutePath + "/mappings.db")
 .fileMmapEnable()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onMappingDisk = (HTreeMap<String,
Object>)dbMappingDisk.hashMap("onMappingDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 }

 public void shutdown() {
 if (dbMappableDisk != null) {
 dbMappableDisk.commit();
 dbMappableDisk.close();
 }

 if (dbNodeDisk != null) {
 dbNodeDisk.commit();
 dbNodeDisk.close();
 }

 if (dbMappingDisk != null) {
 dbMappingDisk.commit();
 dbMappingDisk.close();
 }

 }

 public void close1() {
 if (dbMappableDisk != null) {
 dbMappableDisk.close();
 }

 if (dbNodeDisk != null) {
 dbNodeDisk.close();
 }

 if (dbMappingDisk != null) {
 dbMappingDisk.close();
 }

 }

 public void clearMappings() {

 onMappingDisk.clear();
 }

66

 public void addMappable(Mappable mappable) {

 HashMap<String, Mappable> mappables = new HashMap<String,
Mappable>();
 onMappableDisk.put(mappable.getID(), mappable);
 addMappables(mappables);
 }

 public void addMappables(HashMap<String, Mappable> mappables) {
 for (Mappable mappable : mappables.values()) {
 addMappable(mappable);
 }
 if(mappables.size() != 0){
 log.debug("Adding Mappables to Lucene Database");
 MappableDatabase.getInstance().addMappablesToIndex(mappables);
 }
 }

 public void updateMappable(Mappable mappable) {
 this.onMappableDisk.put(mappable.getID(), mappable);
 MappableDatabase.getInstance().updateMappable(mappable);
 }

 public void deleteMappable(String mappableID) {

 onMappableDisk.remove(mappableID);
 MappableDatabase.getInstance().deleteMappable(mappableID);
 }

 public void deleteMappables(HashSet<String> mappableIDs) {
 for (String mappableID : mappableIDs) {
 deleteMappable(mappableID);
 }
 }

 public Set<String> getAllMappableKeys() {
 return onMappableDisk.keySet();
 }

 public HashMap<String, Mappable> getAllMappables() {

 HashMap<String, Mappable> mappables = new HashMap<String,
Mappable>();
 for (Object key : onMappableDisk.keySet()) {
 mappables.put(((Mappable)onMappableDisk.get(key)).getID(),
(Mappable)onMappableDisk.get(key));
 }
 return mappables;
 }

 public Mappable getMappable(String mappableID) {

 return ((Mappable)onMappableDisk.get(mappableID));
 }

 public Set<String> getAllNodeKeys() {
 return onNodeDisk.keySet();
 }

 public Node getNode(String nodeID) {

67

 return ((Node)onNodeDisk.get(nodeID));
 }

 public void removeNode(String nodesID) {
 onNodeDisk.remove(nodesID);
 MappableDatabase.getInstance().deleteMappable(nodesID);
 }

 public void removeNodes(HashSet<String> nodesIDs) {
 for (String id : nodesIDs) {
 onNodeDisk.remove(id);
 }
 }

 @SuppressWarnings("unchecked")
 public void addNode(Node node) {
 HashMap<String, Node> nodes = new HashMap<String, Node>();
 onNodeDisk.put(node.getID(), node);
 addNodes(nodes);
 }

 public void addNodes(HashMap<String, Node> nodes) {
 for (Node node : nodes.values()) {
 addNode(node);
 }

 }

 public void addMapping(Mapping mapping) {
 onMappingDisk.put(mapping.getFromMappable().getID(), mapping);
 }

 public void addMappings(HashMap<String, Mapping> mappings) {
 for (Mapping mapping : mappings.values()) {
 addMapping(mapping);
 }

 }

 public void deleteMapping(String fromMappableID) {
 onMappingDisk.remove(fromMappableID);
 MappableDatabase.getInstance().deleteMappable(fromMappableID);
 }

 public void deleteMappings(HashSet<String> fromMappableIDs) {
 for (String fromMappableID : fromMappableIDs) {
 onMappingDisk.remove(fromMappableID);
 }
 }

 public Set<String> getAllMappingKeys() {
 return onMappingDisk.keySet();
 }

 public Mapping getMapping(String mappingID) {
 return ((Mapping)onMappingDisk.get(mappingID));
 }

 private Object readResolve() {
 return instance;
 }

68

 public boolean fillDatabaseAfterRestore() {
 boolean success = true;
 log.debug("Adding Mappables to Lucene Database");
 success = success &&
MappableDatabase.getInstance().addMappablesToIndex(this.getAllMappables());
 return success;
 }

 public static String getCacheFolderAbsolutePath() {
 return cacheFolderAbsolutePath;
 }

 public static void setCacheFolderAbsolutePath(String
cacheFolderAbsolutePath) {
 DataManager.cacheFolderAbsolutePath = cacheFolderAbsolutePath;
 }

}

69

8 Appendix B: Kryo Serialization

package com.airbus.agi.GEMMA.Util;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import org.apache.commons.lang3.exception.ExceptionUtils;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.eclipse.core.runtime.IProgressMonitor;
import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;
import org.osgi.framework.Bundle;
import org.osgi.framework.FrameworkUtil;
import org.osgi.framework.wiring.BundleWiring;

import com.airbus.agi.GEMMA.Configuration.GEMMA_Parameters;
import com.airbus.agi.GEMMA.DataManagement.DataManager;
import com.airbus.agi.GEMMA.GUI.utls.GUIUtls;
import com.airbus.agi.GEMMA.Resolver.IResolver;
import com.esotericsoftware.kryo.Kryo;
import com.esotericsoftware.kryo.io.Input;
import com.esotericsoftware.kryo.io.Output;
import com.esotericsoftware.kryo.util.MapReferenceResolver;

import net.lingala.zip4j.core.ZipFile;
import net.lingala.zip4j.exception.ZipException;
import net.lingala.zip4j.model.FileHeader;
import net.lingala.zip4j.model.ZipParameters;
import net.lingala.zip4j.util.Zip4jConstants;

public class GEMMASerializeUtls {

 static Logger log =
LogManager.getLogger(GEMMASerializeUtls.class.getName());

 public static Object deserialize(String filePath, Object objectToRead,
IProgressMonitor monitor){

 ExtClassResolver cr = new ExtClassResolver();
 Kryo kryo = new Kryo(cr, new MapReferenceResolver());

 // Resolver may be in a different plugin. We need to find the
correct class loader
 if (objectToRead instanceof IResolver) {
 Bundle bundle =
FrameworkUtil.getBundle(objectToRead.getClass());
 BundleWiring bundleWiring = bundle.adapt(BundleWiring.class);
 ClassLoader classLoader = bundleWiring.getClassLoader();
 kryo.setClassLoader(classLoader);
 }
 kryo.register(objectToRead.getClass(),
objectToRead.getClass().hashCode());

70

 Input input;
 Object restoredObject = null;
 String msg;
 try {
 input = new Input(new FileInputStream(filePath));
 try {
 try {
 restoredObject = kryo.readObject(input,
objectToRead.getClass());
 msg = "Restored successfully from '" + filePath + "'";
 monitor.setTaskName(msg);
 log.debug(msg);
 input.close();
 } catch (Exception e) {
 msg = "Restoring failed from '" + filePath + "'.
Deserialization error, see log.";
 monitor.setTaskName(msg);
 input.close();
 log.error(msg);
 log.error(ExceptionUtils.getStackTrace(e));
 }
 } catch (Exception e) {
 msg = "Restoring failed from '" + filePath + "'. See log.
Will need to re-compute data.";
 monitor.setTaskName(msg);
 input.close();
 log.error(msg);
 log.error(ExceptionUtils.getStackTrace(e));
 }
 } catch (FileNotFoundException e) {
 msg = "Restoring failed from '" + filePath + "'. The file was
not found. Will need to re-compute data.";
 monitor.setTaskName(msg);
 log.error(msg);
 log.error(ExceptionUtils.getStackTrace(e));
 }

 return restoredObject;
 }

 public static boolean serialize(String filePath, Object
objectToSerialize, IProgressMonitor monitor){
 boolean isSuccess = true;
 ExtClassResolver cr = new ExtClassResolver();
 Kryo kryo = new Kryo(cr, new MapReferenceResolver());
 kryo.register(objectToSerialize.getClass(),
objectToSerialize.getClass().hashCode());

 try {
 Output output = new Output(new FileOutputStream(filePath));
 try {
 kryo.writeObject(output, objectToSerialize);
 String msg = "Storing "+filePath + "";
 monitor.setTaskName(msg);
 log.debug(msg);
 output.flush();
 output.close();
 } catch (Exception e) {
 String msg = "Storing failed for "+filePath + ".
Incompatible format.";
 monitor.setTaskName(msg);

71

 isSuccess = false;
 output.flush();
 output.close();
 log.error(msg);
 log.error(ExceptionUtils.getStackTrace(e));
 }
 output.flush();
 output.close();
 } catch (FileNotFoundException e) {
 String msg = "Storing failed for "+filePath + ". File not
found.";
 monitor.setTaskName(msg);
 isSuccess = false;
 log.error(msg);
 log.error(ExceptionUtils.getStackTrace(e));
 }
 return isSuccess;
 }

 public static boolean zip(String zipFileAbsolutePath, ArrayList<String>
filesPaths, IProgressMonitor monitor){
 try {
 HashSet<File> tempFilesToDelete = new HashSet<File>();
 // delete old file.
 new File(zipFileAbsolutePath).delete();

 ZipFile zipFile = new ZipFile(zipFileAbsolutePath);

 ZipParameters parameters = new ZipParameters();
 parameters.setCompressionMethod(Zip4jConstants.COMP_DEFLATE);
 // set compression method to deflate compression
 // Set the compression level. This value has to be in between 0
to 9
 // Several predefined compression levels are available
 // DEFLATE_LEVEL_FASTEST - Lowest compression level but higher
speed of compression
 // DEFLATE_LEVEL_FAST - Low compression level but higher speed
of compression
 // DEFLATE_LEVEL_NORMAL - Optimal balance between compression
level/speed
 // DEFLATE_LEVEL_MAXIMUM - High compression level with a
compromise of speed
 // DEFLATE_LEVEL_ULTRA - Highest compression level but low
speed

parameters.setCompressionLevel(Zip4jConstants.DEFLATE_LEVEL_NORMAL);

 ArrayList<File> dataFiles = new ArrayList<File>();
 ArrayList<File> cacheFiles = new ArrayList<File>();
 ArrayList<File> configFiles = new ArrayList<File>();

 for (String filePath : filesPaths) {
 if
(filePath.endsWith(GEMMAConstants.GEMMA_SERIALIZED_FILE_EXTENSION)) {
 dataFiles.add(new File(filePath));
 }
 else if
(filePath.endsWith(GEMMAConstants.GEMMA_CACHE_FILE_EXTENSION)) {
 cacheFiles.add(new File(filePath));
 }
 else if
(filePath.endsWith(GEMMAConstants.GEMMA_CONFIGURATION_FILE_EXTENSION)) {

72

 File config = new File(filePath);
 configFiles.add(config);
 }
 }

 zipFile.addFiles(configFiles, parameters);

parameters.setRootFolderInZip(GEMMA_Parameters.GEMMA_CACHE_DIR_NAME);
 zipFile.addFiles(dataFiles, parameters);
 zipFile.addFiles(cacheFiles, parameters);

 String msg = "Compressed successfully.";
 log.debug(msg);
 GUIUtls.setMonitorTaskName(monitor, msg);

 // clean up
 msg = "Cleaning up, deleting files used temporary.";
 log.debug(msg);
 GUIUtls.setMonitorTaskName(monitor, msg);

 tempFilesToDelete.addAll(dataFiles);
 // clean up
 for (File file : tempFilesToDelete) {
 file.delete();
 }

 // delete empty cache dir
 File cacheDir = new
File(FileUtil.getDirectoryPath(zipFileAbsolutePath) + "/" +
GEMMA_Parameters.GEMMA_CACHE_DIR_NAME);
 if (cacheDir.exists()) {
 cacheDir.delete();
 }

 return true;

 } catch (ZipException e) {
 String msg = "Compression failed. See log.";
 log.error(msg);
 GUIUtls.setMonitorTaskName(monitor, msg);
 log.error(msg);
 log.error(ExceptionUtils.getStackTrace(e));
 return false;
 }
 }

 @SuppressWarnings("rawtypes")
 public static ArrayList<String> unzip(String zipFileAbsolutePath,
String projectDirAbsolutePath, IProgressMonitor monitor, Shell
applicationShell){

 try {
 ArrayList<String> extractedFilesNames = new
ArrayList<String>();

 ZipFile zipFile = new ZipFile(zipFileAbsolutePath);

 // Get the list of file headers from the zip file
 List fileHeaderList = zipFile.getFileHeaders();

 for (int i = 0; i < fileHeaderList.size(); i++) {

73

 FileHeader fileHeader = (FileHeader)fileHeaderList.get(i);
 if
(fileHeader.getFileName().endsWith(GEMMAConstants.GEMMA_CONFIGURATION_FILE_
EXTENSION)) {
 File configFile = new File(projectDirAbsolutePath + "/"
+ fileHeader.getFileName());
 if (configFile.exists()) {
 Display.getDefault().syncExec(new Runnable() {

 public void run() {
 boolean override =
MessageDialog.openQuestion(applicationShell, "Confirm", "Overwrite " +
configFile + "?");
 if (!override) {

fileHeader.setFileName(GEMMAConstants.GEMMA_CONFIGURATION_TEMP_FILE_PREFIX
+ fileHeader.getFileName());
 log.info("Using existing configuration
file" + configFile);
 }
 else {
 log.info("Overwriting the existing file
with the one from .gma archive " + configFile);

 }
 }
 });
 }
 }
 extractedFilesNames.add(fileHeader.getFileName());

 }
// DataManager.getInstance().shutdown();
 zipFile.extractAll(projectDirAbsolutePath);

 return extractedFilesNames;

 } catch (ZipException e) {
 log.error("Decompression failed. See log.");
 log.error(ExceptionUtils.getStackTrace(e));
 }
 return null;
 }

}

74

9 Appendix C: MapDB Using Kryo Serialization

package com.airbus.agi.GEMMA.DataManagement;

import java.io.File;
import java.io.Serializable;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Set;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.mapdb.DB;
import org.mapdb.DBMaker;
import org.mapdb.HTreeMap;
import org.mapdb.Serializer;
import com.airbus.agi.GEMMA.DataManagementTest.SerializationWrapper;
import com.airbus.agi.GEMMA.Mapping.Mappable;
import com.airbus.agi.GEMMA.Mapping.Mapping;
import com.airbus.agi.GEMMA.Mapping.Node;

public class DataManager implements Serializable {

 private static final long serialVersionUID = -4069122550495907255L;

 private static String cacheFolderAbsolutePath = null;

 final static String CACHE_FOLDER_NAME = "cache";

 //Get actual class name to be printed on
 static Logger log = LogManager.getLogger(DataManager.class.getName());

 //create an object of SingleObject
 private static DataManager instance = new DataManager ();

 //private constructor
 private DataManager () {

 }

 //Get the singleton
 public static DataManager getInstance(){
 return instance;
 }

 public static void setInstance(DataManager manager) {
 instance = manager;
 }

 private transient DB dbMappableDisk;
 private transient HTreeMap onMappableDisk;

 private transient DB dbNodeDisk;
 private transient HTreeMap onNodeDisk;

 private transient DB dbMappingDisk;
 private transient HTreeMap onMappingDisk;

 @SuppressWarnings("unchecked")
 public void initialize() {

75

 dbMappableDisk = DBMaker
 .fileDB(new File(cacheFolderAbsolutePath + "/mappable.db"))
 .fileMmapEnable()
 .fileMmapEnableIfSupported()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onMappableDisk = (HTreeMap<String,
Object>)dbMappableDisk.hashMap("onMappableDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 dbNodeDisk = DBMaker
 .fileDB(new File(cacheFolderAbsolutePath + "/node.db"))
 .fileMmapEnable()
 .fileMmapEnableIfSupported()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onNodeDisk = (HTreeMap<String,
Object>)dbNodeDisk.hashMap("onNodeDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 dbMappingDisk = DBMaker
 .fileDB(new File(cacheFolderAbsolutePath + "/mappings.db"))
 .fileMmapEnable()
 .fileMmapEnableIfSupported()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onMappingDisk = (HTreeMap<String,
Object>)dbMappingDisk.hashMap("onMappingDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 }

 @SuppressWarnings("unchecked")
 public void reOpenOldDatabaseFiles() {

 dbMappableDisk = DBMaker
 .fileDB(cacheFolderAbsolutePath + "/mappable.db")
 .fileMmapEnable()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onMappableDisk = (HTreeMap<String,
Object>)dbMappableDisk.hashMap("onMappableDisk")
 .keySerializer(Serializer.STRING)

76

 .hashSeed(111)
 .createOrOpen();

 dbNodeDisk = DBMaker
 .fileDB(cacheFolderAbsolutePath + "/node.db")
 .fileMmapEnable()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onNodeDisk = (HTreeMap<String,
Object>)dbNodeDisk.hashMap("onNodeDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();

 dbMappingDisk = DBMaker
 .fileDB(cacheFolderAbsolutePath + "/mappings.db")
 .fileMmapEnable()
 .fileMmapPreclearDisable()
 .cleanerHackEnable()
 .closeOnJvmShutdown()
 .make();

 onMappingDisk = (HTreeMap<String,
Object>)dbMappingDisk.hashMap("onMappingDisk")
 .keySerializer(Serializer.STRING)
 .hashSeed(111)
 .createOrOpen();
 }

 public void shutdown() {
 if (dbMappableDisk != null) {
 dbMappableDisk.commit();
 dbMappableDisk.close();
 }

 if (dbNodeDisk != null) {
 dbNodeDisk.commit();
 dbNodeDisk.close();
 }

 if (dbMappingDisk != null) {
 dbMappingDisk.commit();
 dbMappingDisk.close();
 }

 }

 public void close1() {
 if (dbMappableDisk != null) {

 dbMappableDisk.close();
 }

 if (dbNodeDisk != null) {

 dbNodeDisk.close();
 }

77

 if (dbMappingDisk != null) {

 dbMappingDisk.close();
 }

 }

 public void clearMappings() {

 onMappingDisk.clear();
 }

 @SuppressWarnings("unchecked")
 public void addMappable(Mappable mappable) {

 HashMap<String, Mappable> mappables = new HashMap<String,
Mappable>();
 onMappableDisk.put(mappable.getID(), new
SerializationWrapper(mappable));
 addMappables(mappables);
 }

 public void addMappables(HashMap<String, Mappable> mappables) {
 for (Mappable mappable : mappables.values()) {
 addMappable(mappable);
 }

 if(mappables.size() != 0){
 log.debug("Adding Mappables to Lucene Database");
 MappableDatabase.getInstance().addMappablesToIndex(mappables);
 }
 }

 public void updateMappable(Mappable mappable) {
 this.onMappableDisk.put(mappable.getID(), new
SerializationWrapper(mappable));
 MappableDatabase.getInstance().updateMappable(mappable);
 }

 public void deleteMappable(String mappableID) {
 onMappableDisk.remove(mappableID);
 MappableDatabase.getInstance().deleteMappable(mappableID);
 }

 public void deleteMappables(HashSet<String> mappableIDs) {
 for (String mappableID : mappableIDs) {
 deleteMappable(mappableID);
 }
 }

 public HashMap<String, Mappable> getAllMappables() {

 HashMap<String, Mappable> mappables = new HashMap<String,
Mappable>();
 for (Object key : onMappableDisk.keySet()) {
 SerializationWrapper wrapper =
(SerializationWrapper)onMappableDisk.get(key);
 mappables.put((((Mappable)wrapper.getWrappedObject())).getID(),
((Mappable)wrapper.getWrappedObject()));
 }

78

 return mappables;
 }

 public Set<String> getAllMappableKeys() {
 return onMappableDisk.keySet();
 }

 public Mappable getMappable(String mappableID) {
 SerializationWrapper wrapper =
(SerializationWrapper)onMappableDisk.get(mappableID);
 if (wrapper != null) {
 return (Mappable)wrapper.getWrappedObject();
 } else {
 return null;
 }

 }

 public Set<String> getAllNodeKeys() {
 return onNodeDisk.keySet();
 }

 public Node getNode(String nodeID) {
 SerializationWrapper wrapper =
(SerializationWrapper)onNodeDisk.get(nodeID);
 if (wrapper != null) {
 return (Node)wrapper.getWrappedObject();
 } else {
 return null;
 }

 }

 public void removeNode(String nodesID) {
 onNodeDisk.remove(nodesID);
 MappableDatabase.getInstance().deleteMappable(nodesID);
 }

 public void removeNodes(HashSet<String> nodesIDs) {
 for (String id : nodesIDs) {
 onNodeDisk.remove(id);
 }
 }

 @SuppressWarnings("unchecked")
 public void addNode(Node node) {
 HashMap<String, Node> nodes = new HashMap<String, Node>();
 onNodeDisk.put(node.getID(), new SerializationWrapper(node));
 addNodes(nodes);
 }

 public void addNodes(HashMap<String, Node> nodes) {
 for (Node node : nodes.values()) {
 addNode(node);
 }
 }

 public void addMapping(Mapping mapping) {
 onMappingDisk.put(mapping.getFromMappable().getID(), new
SerializationWrapper(mapping));
 }

79

 public void addMappings(HashMap<String, Mapping> mappings) {
 for (Mapping mapping : mappings.values()) {
 addMapping(mapping);
 }

 }

 public void deleteMapping(String fromMappableID) {
 onMappingDisk.remove(fromMappableID);
 MappableDatabase.getInstance().deleteMappable(fromMappableID);
 }

 public void deleteMappings(HashSet<String> fromMappableIDs) {
 for (String fromMappableID : fromMappableIDs) {
 onMappingDisk.remove(fromMappableID);
 }
 }

 public Set<String> getAllMappingKeys() {
 return onMappingDisk.keySet();
 }

 public Mapping getMapping(String mappingID) {
 SerializationWrapper wrapper =
(SerializationWrapper)onMappingDisk.get(mappingID);
 if (wrapper != null) {
 return (Mapping)wrapper.getWrappedObject();
 } else {
 return null;
 }
 }

 private Object readResolve() {
 return instance;
 }

 public boolean fillDatabaseAfterRestore() {
 boolean success = true;
 log.debug("Adding Mappables to Lucene Database");
 success = success &&
MappableDatabase.getInstance().addMappablesToIndex(this.getAllMappables());
 return success;
 }

 public static String getCacheFolderAbsolutePath() {
 return cacheFolderAbsolutePath;
 }

 public static void setCacheFolderAbsolutePath(String
cacheFolderAbsolutePath) {
 DataManager .cacheFolderAbsolutePath = cacheFolderAbsolutePath;
 }

}

80

10 References

[1] Philipp Helle and Wladimir Schamai, “Using a Generic Modular Mapping Framework for
Simulation Model Composition”, 2015 7th International Conference on Advances in System
Simulation
[2] (5 August, 2016). Oracle documentation. Interface Serializable. [Online].
Available: https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
[3] Serialization and deserialization in Java. [Online]. Available:
http://www.codingeek.com/wp-content/uploads/2014/11/Serialization-deserialization-in-Java-
Object-Streams.jpg
[4] Margo. (2015). Kryo 3.0.0. [Online] Available: https://github.com/EsotericSoftware/kryo
[5] James Sutherland. (2013). Java Persistence Performance. [Online]. Available: http://java-
persistence-performance.blogspot.de/2013/08/optimizing-java-serialization-java-vs.html
[6] Hibernate Overview. [Online].
Available: http://www.tutorialspoint.com/hibernate/hibernate_overview.htm
[7] (07 July 2016). Hibernate (framework). [Online].
Available: https://en.wikipedia.org/wiki/Hibernate_(framework)
[8] (2009). Intro to Caching, Caching algorithm and caching frameworks part 1. [Online].
Available: http://javalandscape.blogspot.de/2009/01/cachingcaching-algorithms-and-
caching.html
[9] (2015). About Ehcache. [Online].
Available: http://www.ehcache.org/generated/2.10.2/html/ehc-
all/#page/Ehcache_Documentation_Set%2Fto-title_about_ehcache.html%23
[10] (07 October, 2016). JCS vs EHCache Memory Performance. [Online]. Available:
https://commons.apache.org/proper/commons-jcs/JCSvsEHCache.html
[11] (August 3 2015). Analysis of JVM off-Heap Caching libraries. [Online]. Available:
http://engineering.snapdeal.com/analysis-of-jvm-off-heap-caching-libraries-201508/
[12] Joshua Bloch, “Serialization”, in Effective Java, 2nd ed. Addison-Wesley Professional,
2008
[13] (09 September 2016). MapDB: Database engine [Online].
Available: https://github.com/jankotek/mapdb
[14] Lucy Carey. (May 16, 2014). MapDB which is a pure Java database, for Java developers.
[Online]. Available: https://jaxenter.com/cory-isaacson-mapdb-is-a-pure-java-database-for-
java-developers-107799.html
[15] Cristophe. (May 13, 2016). How does a HashMap work in Java. [Online]. Available:
http://coding-geek.com/how-does-a-hashmap-work-in-java/
[16] (08 June, 2016) Oracle documentation. Class HashSet<E>. [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html
[17] A. Mitschke et al., “CRYSTAL public aerospace use case Development Report - V2,”
ARTEMIS EU CRYSTAL project, Tech. Rep. D208.902, 2015.
[18] T. Blochwitz et al., “The functional mockup interface for tool independent
exchange of simulation models,” in 8th International Modelica Conference, Dresden, 2011,
pp. 20–22.

81

[19] (23 October 2016). MapDB Introduction. [Online]
Available: https://jankotek.gitbooks.io/mapdb/content/
[20] (02 October 2016). HTreeMap. [Online].
Available: https://jankotek.gitbooks.io/mapdb/content/htreemap/
[21] (21 September 2016). Performance durability. [Online].
Available: https://jankotek.gitbooks.io/mapdb/content/performance/
[22] (15 September 2016). Class DBMaker.Maker. [Online]. Available:
http://www.mapdb.org/javadoc/latest/mapdb/org/mapdb/DBMaker.Maker.html#fileMmapPre
clearDisable--
[23] (06 September 2016) Who is using MapDB. [Online]. Available:
http://www.mapdb.org/success/
[24] Tiago Marques Godinho, “DISTRIBUTED PACS: PERFORMANCE AND
AVAILABILITY,” M.S thesis, Dept. Electronic Telecommunication and Informatik,
University de Aveiro, 2013.
[25] (2016) MinLog. [Online]. Available: https://github.com/EsotericSoftware/minlog/
[26] (2016) Objenesis. [Online]. Available: https://github.com/easymock/objenesis
[27] (2016) ReflectASM. [Online]. Available:https://github.com/EsotericSoftware/reflectasm
[28] Ahmed Ali. (March 24, 2009). Intro to Caching, Caching algorithms and caching
frameworks part 4. [Online]. Available: http://javalandscape.blogspot.de/2009/03/intro-to-
cachingcaching-algorithms-and.html
[29] Jiri Sedlacek and Tomas Hurka. (2016). VisualVM. [Online]. Available:
https://visualvm.github.io/features.html
[30] (2016) Xodus. [Online]. Available: http://jetbrains.github.io/xodus/#download
[31] (2016) Xodus Overview. [Online]. Available: https://github.com/JetBrains/xodus/wiki
[32] Concepts Related to Caching. [Online]. Available:
http://www.ehcache.org/documentation/3.1/caching-concepts.html
[33] (07 October, 2016). Java Caching System. [Online]. Available:
https://commons.apache.org/proper/commons-jcs/

