

Model Transformation in context of Driver
Assistance System

 Meta-model based transformation for Simulink and

Scicos

Master Thesis

for

the fulfillment of the academic degree

M.Sc. in Automotive Software Engineering

Faculty of Computer Science

Department of Computer Engineering

Submitted by : Abhishek Mallikarjuna Kappattanavar

Matriculation number: 325392

Supervisor : Prof. Dr. W. Hardt, Technische Universität Chemnitz

 Dr. W. Lindner, Elektrobit Automotive GmbH, Böblingen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Multimedia ONline ARchiv CHemnitz

https://core.ac.uk/display/153229937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgement

This master thesis would not be possible without the extensive support and

encouragement of many people. I am very grateful to my mentors Prof. Dr. Wolfram

Hardt and Dr. Ariane Heller who supported me throughout my master’s degree. It is only

with the guidance of Prof. Dr. Hardt, I have been able to successfully pursue by master

thesis at Elektrobit Automotive GmbH under the department of Driver Assistance

System.

I would like to acknowledge and extend my heartfelt gratitude to my master thesis

advisor, Dr. Wolfgang Lindner, for his constant guidance and support during my thesis

work. I wish to acknowledge my heartfelt gratitude to Elektrobit Automotive GmbH for

giving me an opportunity to pursue my master thesis and providing technical support to

me during my thesis work.

I would like to thank all the members of the Elektrobit Automotive GmbH for their

warm welcome and the great working environment they created.

Finally, I would like to thank my family and friends, without their continuous support

this work would not have been possible.

ii

Abstract

In today’s world we see that Embedded Systems forms a major part in the life of a

human being. Almost every device today has an electronic chip embedded in it. When it

comes to automotive, these electronic devices are multiplying. This has resulted in

innovative methods of developing Embedded Systems. Among them, Model Based

Development has become very popular and a standard way of developing embedded

systems. Now, we can see that most embedded systems, especially the automotive

systems, are being developed using Model development tools like Simulink. In the design

and development of Driver Assistance System, Model Based Design (MBD) plays an

important role from system design and simulation to code generation. Modeling tool

Matlab/Simulink is now among the most popular tools. Due to the proprietary nature of

Simulink and challenges in requirement elicitation phase the industry is looking towards

an open source alternative, such as Scicos. Since, most of the OEMs are still using

Simulink, there is a need for interoperability between Simulink and Scicos. The present

work proposes metamodels for Simulink and Scicos, and Model transformation using

these Metamodels for the inter-operability.

In order to develop the model transformation the metamodels for Simulink and

Scicos were developed using EMF Ecore. These metamodels conform to OMGs MOF

Standards. These metamodels were used in developing the transformation definition

using the language QVTo. First a simple model was developed, and transformation rules

were applied and verified using it. Then a Simulink subsystem of a cross wind assistance

system was subjected to forward transformation. The outputs of the model before

transformation and that after transformation were compared. They were found to give

the same output as desired. Thus, verifying the transformation definition. An attempt was

made to achieve reverse transformation. A subsystem in Scicos was considered for

reverse transformation. After subjecting it to transformation, an intermediate model

conforming to Simulink metamodel was obtained. This shows that the interoperability

between Scicos and Simulink can be achieved.

iii

Table of Contents

Page

List of Figures vi

List of Tables viii

1. Introduction 1

1.1 Motivation…………………………………………...…………...……. 1

1.1.1 Open Source Software and Open Standards……………............ 1

1.1.2 Open Source Software and Tools…………………………….... 3

1.1.3 The Requirement of Interoperability………………………....... 4

1.2 Objective………………………………………………………………. 5

1.3 Organisation of the Thesis…………………………………………….. 5

2. State of the Art 6

3. Background Concepts 11

3.1 Model Driven Engineering……………………………………………. 11

3.2 Model Driven Architecture…………………………………………… 13

3.3 Model Based Design……..…………………………………………… 13

3.3.1 V-Model……..…………………………………………………… 14

3.3.2 Advantages of Model Based Design……..……….………...……. 17

3.4 Metamodels……..…………………………………………………….. 17

3.5 Model Transformation……..………………………………………….. 20

3.5.1 Model to Model Transformation……..……….………...………... 21

3.5.2 Model to Text Transformation……..……….………...………….. 21

3.6 Summary……..……….………...……………………………………... 22

4. Tools and Technologies 23

4.1 Tools used in the development of candidate model….………...……... 23

4.1.1 Scilab/Scicos……..……….………...……………………………. 23

4.1.2 Matlab/Simulink……..……….………...………………………… 24

 TABLE OF CONTENTS

iv

4.2 Tools and technologies for the transformation..……….………...……. 25

4.2.1 Object Constraint Language..……….………………..…...……… 25

4.2.2 Meta Object Facility (MOF) ..……….………...………………… 25

4.2.3 QVT..……….………................…………………………………. 25

4.2.4 Eclipse Modeling Framework..……….………...………………... 27

4.3 Summary..……….………...…………………………………………... 28

5. Metamodel Development 29

5.1 Requirement of metamodel development..……….…………………… 30

5.2 Metamodeling..……….………………..…...…………………….…… 30

5.3 Scicos Metamodel..……….………………..…………………..……… 36

5.4 Development of Scicos Metamodel..……….………………..…...…… 36

5.4.1 Scicos Model Analysis..……….………………..…...…………… 37

5.4.2 Modeling the elements into the metamodel..……….……………. 38

5.4.3 Modeling the properties into the metamodel..……….…………... 39

5.5 Simulink Metamodel..……….………………..….....................……… 42

5.6 Development of Simulink Metamodel..……….………………..…...... 44

5.6.1 Simulink Model Analysis..……….………………..…...………… 45

5.6.2 Modeling the elements and properties into the metamodel….…… 46

5.7 Summary..……….………………..…...…………………………….… 50

6. Results of Metamodel Development 51

6.1 Results of the development of Scicos metamodel….…………………. 51

6.2 Results of the development of Simulink metamodel….………………. 51

6.3 Verification and Validation of the metamodels….………………….… 54

6.3.1 Simulink Metamodel..… ………...…………………………….… 54

6.3.2 Scicos metamodel..…………………….……………………….… 56

6.4 Summary..……….………………..…...…………………………….… 57

7. Implementation of Transformation 58

7.1 Transformation rule requirements..……….…………………..………… 58

7.2 Development of Forward Transformation….…………………………… 59

7.2.1 Analysis….………………………………………………….……. 59

 TABLE OF CONTENTS

v

7.2.2 Transformation Mappings using QVTo….………………….…… 61

7.3 Development of Reverse Transformation….………………….………… 69

7.4 Intermediate transformation….……………………………………….…. 71

7.5 Summary….………………………………………………….………….. 72

8. Results of Model Transformation 73

8.1 Results of Forward Transformation….……………………………….…. 73

8.2 Results of Reverse Transformation….…………………………………... 82

8.3 Verification and Validation….……………………………………….….. 84

8.4 Summary….…………………………………………………………...…. 86

9. Conclusion and Future Work 87

References 88

 vi

List of Figures

Figure Page

2.1 Proposed triangular transformation 9

3.1 Model Driven Engineering Overview 12

3.2 Model Based Design which supports V-Model 15

3.3 Overview of Layers M0 to M3 19

3.4 Model Transformation 20

4.1 QVT language and the relationship between their metamodels 26

5.1 Relationship between a language and its metalanguage 29

5.2 Representation of a metamodel using EMF Graphical Modeling Tool 32

5.3 Representation of a metamodel viewed as an XML file 33

5.4 Steps to develop metamodel by reverse engineering a model 34

5.5 Scicos Metamodel Development 35

5.6 Simulink Metamodel Development 43

6.1 Scicos Metamodel 52

6.2 Simulink Metamodel 53

6.3 A subsystem designed using Simulink 54

6.4 Model instance created using the developed Simulink metamodel 55

6.5 A subsystem designed using Scicos 56

6.6 Model instance created using Scicos metamodel 56

8.1 A Simulink model 73

LIST OF FIGURES

 vii

8.2 Intermediate model IM1 74

8.3 Intermediate model IM2 76

8.4 Resultant Scicos Model 76

8.5 A subsystem of cross wind assistance system 77

8.6 Intermediate model IMSubSystem1 78

8.7 Intermediate model IMSubSystem2 79

8.8 Resultant Scicos model for the subsystem of cross wind assistance system 82

8.9 Intermediate model IMR1 82

8.10 Intermediate model IMR2 83

 viii

List of Tables

Table Page

5.1 Scicos elements and corresponding classes in the metamodel 38

5.2 Subset of Simulink element and corresponding classes 46

8.1 Range of Input values and corresponding output values for Example 1 84

8.2 Range of Input values and corresponding output values for Example 2 85

Abhishek Mallikarjuna Kappattanavar 1 www.tu-chemnitz.de

Chapter 1

Introduction

Embedded Systems have become ubiquitous in today’s world, be it consumer

electronics, medical instruments, military equipment or transportation vehicles. The

automotive systems today consists of a large number of embedded systems catering to

several requirements in the automotive systems, from human-machine interface to safety,

from chassis system to power train. These systems are turning more and more complex

as the requirements of each systems are increasing daily, based on the market

requirements, government regulations and many other reasons. In order to deal with

these complexities, Model Driven Engineering approach is being increasingly used.

Model Driven Engineering (MDE) is a methodology for development of software.

The main focus of MDE is creating and exploiting domain models. These models are

conceptual models to a particular problem and to its related topics.

1.1 Motivation

Model Driven Engineering has become a standard way of developing embedded

systems [1]. In the design and development of Driver Assistance Systems in the

automotive field, Model Based Design (MBD) plays an important role from system

design and simulation, to code generation. The modeling tool, Matlab/Simulink [2][1] is

the most popular tool for Model Based Design. Due to the proprietary nature of Simulink

and challenges in requirement elicitation phase the industry looks towards an open

source alternative, such as Scicos. Since, most of the Original Equipment Manufacturers

(OEMs) are still using Simulink, there is a need for an interoperability between Simulink

and Scicos.

1.1.1 Open Source Software and Open Standards

A standard is a level of the quality or attainment of a product or a service. It is a

measure against which other products are conformed. Standards help in improving the

https://en.wikipedia.org/wiki/Domain_model

CHAPTER 1. INTRODUCTION

Abhishek Mallikarjuna Kappattanavar 2 www.tu-chemnitz.de

levels of quality, safety, reliability, efficiency, and interoperability. This benefits the

users as well as producers in terms of convenience, portability, extensibility and

monetary costs.

Standards gain a lot more importance in the field of Software, especially when it

comes to interoperability of products and services in software and/or hardware.

Internationally, several organisations set or define standards for common interfaces, and

any change in the standards are generally made only with the consensus of the members

or stakeholders involved.

An open standard [3] is a standard that is available for the public to use. It may

include various rights associated with it. It may also include several properties based on

the process it was designed. Among the popular definitions of Open Standard is the

definition given by Bruce Perens[4], an Open Source exponent. As per Perens, Open

Standard is more than just a specification. It is the principles behind a standard and the

way of offering and operating the standard that makes a standard to be Open. It should

include certain principles as follows:

i. Availability: The standard should be open for all to read, use or implement.

ii. Maximize end-user choice: No lock in by vendor.

iii. No royalty: Open standards are free of royalty or any fee and free for all to use

and implement. However, it may include a fee for Certification by an

organisation setting standards.

iv. No Discrimination: Open standards cannot be favourable to one over another

except for the standard’s compliance of a vendor’s implementation.

v. Extension or subset: The implementation of the open standard may be extended

or may be made a subset. However, the certifying organisation may decline to

certify the extended version or may include restrictions.

vi. Predatory practices: License terms may be employed by the Open Standard to

protect it against subversion of standard by embrace and extend tactics.

CHAPTER 1. INTRODUCTION

Abhishek Mallikarjuna Kappattanavar 3 www.tu-chemnitz.de

1.1.2 Open Source Software and Tools

Open Source Software and Tools also follow certain principles in its development,

licensing, distribution, usage and even modification and extensions like Open Standards.

In general open source software should have certain freedoms associated with it, which

includes [3]:

i. Freedom to use and run the software

ii. Freedom to study and understand the software including the source code and also

to adapt changes based on the needs of the user

iii. Freedom to distribute or redistribute the copies, so that anyone can use it.

iv. Freedom to modify or extend the software including the freedom to improve the

software and release them to the public.

Benefits of using Open Source Software

Some of the advantages and benefits of using Open Source Software are [3]:

i. Reliability: In an Open Source Software, generally the presence of any bugs or

errors are known very quickly and fixed.

ii. Stability of the Software: A Software may become obsolete when a vendor

releases a new version and decides not to support the older version. These

problems are greatly reduced when using Open Source Software.

iii. Auditability: In an open source software, the source code is open for all to read

and modify. Hence, any bugs or any security risks are more visible and user

knows about it. It is easy for a third party to audit an open source software unlike

a proprietary software.

iv. Flexibility and freedom: Open source software provide more freedom and

flexibility, since most of the open source software follow Open Standards. This

will help in modifying the set of software and match it with other modules of the

software which provide the required feature for the change in the requirements.

v. Support and Accountability: Open source software also disclaim any liabilities

and warranties like proprietary software. With respect to support, it is claimed

that proprietary software vendors provide support for their software while open

source software vendors many times do not. However, many vendors create open

source software and then retain the company to provide support for the software.

CHAPTER 1. INTRODUCTION

Abhishek Mallikarjuna Kappattanavar 4 www.tu-chemnitz.de

Also, if an open source software becomes very popular, then many companies

which gains expertise would then provide support of the software. So effectively

equating itself to the support provided by the proprietary software vendors.

vi. Security: An open source software developer focuses more on the technical

aspects of the software, making sure that the software covers all the technical

features including security. Also, if any security vulnerability is present then it is

immediately discovered in an open source software as against a proprietary

software.

1.1.3 The Requirement of Interoperability

An approach of MDE is called Model Based Design (MBD). MBD is used in the

development of embedded systems. A tool such as Matlab/Simulink is required for the

development of embedded systems based on Model Based Design approach. As such,

Simulink has virtually monopolised [2] the embedded field, especially the automotive

industry. Simulink is a proprietary software tool which has high cost of purchase and at

the same time low freedom. Due to this reason some of the software vendors in the

automotive domain are looking towards an alternative tool, an open source tool which

would provide more freedom and be cost effective.

Among the alternatives present, Scilab/Scicos is a more popular tool. However, many

among the OEMs are using Simulink in the development of the systems. In the

development of an automotive system, in many instances, the initial or the basic design

is made by the OEMs. This design is then provided to vendors to include various major

systems and to develop different functions. The vendors may prefer to use Scicos in the

development for obvious reasons mentioned above, but the OEMs provide the basic

design developed in Simulink. In order to use Scicos in the development, the vendors

would have to redesign the whole system again using Scicos. This brings in the

requirement of transformation of Simulink model into Scicos model in an automated way

and vice versa. Therefore, this has provided a motivation to make an attempt to

transform the models using Model Transformation techniques.

CHAPTER 1. INTRODUCTION

Abhishek Mallikarjuna Kappattanavar 5 www.tu-chemnitz.de

1.2 Objective

Model transformation has been proposed for the interoperability between Simulink

model and Scicos model. The present work proposes the development of metamodels for

model transformation. The following are the objectives of the present work:

1. Development of metamodel for Simulink

2. Development of metamodel for Scicos

3. Development of Forward Transformation Definition

The metamodels for Simulink and Scicos are proposed to be developed based on

OMG MOF Standards. The metamodels are to be developed using the EMF Ecore’s

Graphical Modeling Tool. As a part of the solution for the interoperability, the

development of the transformation definition using QVT Operational Mappings (QVTo)

is also proposed.

1.3 Organisation of Thesis

Chapter 1 explains about the open standards and the open source software. It is

followed by the discussion about the current trend in the industry regarding Model Based

Development and the requirement of interoperability between Simulink and Scicos.

Chapter 2 presents an extensive survey carried out on model transformation.

Chapter 3 presents the concepts behind the model transformation including Model

Driven Engineering, Model Driven Architecture, Model Based Design, Metamodels and

Model Transformation. Chapter 4 explains the different tools, languages and

technologies, some of which are part of the transformation itself and others which have

been used to bring about the transformation. Chapter 5 presents the development of

Scicos and Simulink metamodels. It explains the development process from analysis of

the model to the development of the metamodels required for the model transformation.

Chapter 6 presents the results of the development of metamodels. Chapter 7 presents the

development of the transformation definition using QVTo. The forward transformation

and the reverse transformation are explained in detail. Chapter 8 presents the results of

transformation and includes verification and validation of the transformations. Finally, in

Chapter 9, the conclusion and the further work is discussed.

Abhishek Mallikarjuna Kappattanavar 6 www.tu-chemnitz.de

Chapter 2

State of the Art

A brief introduction to the motivation behind the current work and the objective to

develop the metamodel and the model transformation between Simulink and Scicos was

explained in Chapter 1.

In this chapter a survey on prior art has been carried out and the findings are

discussed. Several transformations have been carried out between different kinds of

models and technologies.

Di Natale et al [5] have worked on the model transformation between SysML and

Simulink. SysML follows the Model Driven Architecture (MDA) approach while

Simulink follows the MBD approach. The authors have tried to make use of the benefits

of both the approaches in their work in order to leverage the strengths of the both. They

have realized the transformation using the TOPCASED modelling tool Acceleo. Using

Acceleo they have transformed SysML model to text. The transformation automatically

generates Simulink subsystems from a SysML model in a top down flow or it can also

generate a SysML model of a Simulink Subsystem in a bottom up flow. The authors

have initially felt that the use OMG QVT [6] language would be suitable candidate for

the transformation. However, QVT assumes that both the source model and the target

model conforms to the respective metamodels expressed by Meta Object Facility (MOF).

Though this holds for SysML model, it is not so for the Simulink model. There is no

openly available MOF description or metamodel for Simulink. Hence, in [5], model-to-

text transformation has been performed, wherein the SysML model is translated into

Matlab model generation script. This output Matlab script is then processed by the

Matlab engine to obtain Simulink model with the same expressiveness of the source

Simulink model. In the reverse transformation the Matlab script is used to parse the

Simulink model and generate an XML model description that then transformed into

XMI, which is the standard input for the SysML and is supported be TOPCASED.

Some work has also been carried out on the transformation of UML model into

Multidimensional model [7]. Arrassen, I. et al [7] have worked on the transformation of

CHAPTER 2. STATE OF THE ART

Abhishek Mallikarjuna Kappattanavar 7 www.tu-chemnitz.de

the UML model into Multidimensional (MD) model. The authors have developed MOF

based metamodels for the UML Model and MD model. They have developed the

transformation using the model transformation language SmartQVT, which is an Eclipse

plugin and is based on the OMGs QVT Operational specifications. Their source

metamodel is the metamodel of UML and their target metamodel is the MD metamodel.

They have represented their source model using file format XMI 2.0. This file is

provided as input of the QVT transformation, which automatically generates another file

in XMI format. This file represents the target model conforming to the metamodel

corresponding to the MD model.

Zhang, L. et al [8] presents a framework which enables the transformation of

Matlab/Simulink model into an actor oriented design language (SysteMoC)

automatically, that enables Design Space Exploration (DSE). This is a vertical

transformation for code generation.

Peng G. et al [9] presents a model transformation between UML and Simulink.

UML, being a semi-formal modeling language lacks accurate semantics and cannot be

used for validation of correctness of embedded software development. Model

transformation has been used by the authors to solve this problem. They have

transformed UML design model into Simulink simulation model as a solution. The

source metamodel used is UML StateMachine metamodel and the target metamodel used

is the Simulink/Stateflow metamodel. A set of mapping rules have been formed for the

transformation. Their implementation claims to improve the efficiency of the embedded

software. The work has included development of metamodels using KM3 language,

which is a lightweight text metamodel development language developed by INRIA. The

language used in the transformation is ATL (Atlas Transformation Language), also

developed by INRIA.

Dae-Kyoo Kim et al [10] have used metamodel based transformation approach is for

unifying the IEC 61850 and IEC 61970 core standards of smart-grid domain for

substation automation and power operation management. There are significant data

exchanges between these two standards, requiring high levels of compatibility. These

standards having different perspectives and independent evolution, are not much

compatible with each other. Due to this reason the practitioners come with their own data

mapping in an ad-hoc way, which results in issues with inter-operability and data

CHAPTER 2. STATE OF THE ART

Abhishek Mallikarjuna Kappattanavar 8 www.tu-chemnitz.de

consistency. To solve this issue, the authors have found a solution by defining a common

semantic model of the standards and then provide a semantic transformation method to

transform the model of standards into common semantic model. The authors have

presented a metamodel based approach for unifying the standards and then

transformation using QVT. Metamodels are developed for the each of the standards and

also for the Unified Model.

Meedeniya, D et al [11] have developed model transformation tool called SD2CPN.

It is scenario-based and having analysis capabilities. It models scenarios in UML2

sequence diagrams (SDs), and this is transformed into coloured Petri nets (CPN), which

enables analysis of the synthesised models. The work claims to facilitate the software

engineers to design and develop software and also perform verification of the software.

Ben Younes, A et al [12] and Achouri, A et al [13] include model transformation

from UML Activity Diagram (UML AD) into Event-B model. The works proposes the

transformation tool for transforming the UML AD model into Event-B model for

verification using the B-prover.

The present work proposes a triangular transformation as presented in figure 2.1. The

ultimate goal comprises of transformation between SysML and Scicos, Simulink and

Scicos, and SysML and Simulink. It can be divided into three different parts:

a. Transformation between SysML and Scicos

b. Transformation between Simulink and Scicos

c. Transformation between SysML and Simulink

It can further be divided into Forward transformation and Reverse transformation.

The current work on this thesis focuses mainly on the forward transformation from

Simulink to Scicos along with an attempt on reverse transformation. This will complete a

cycle of transformation. The transformations of the other two are out of the scope of the

current thesis.

CHAPTER 2. STATE OF THE ART

Abhishek Mallikarjuna Kappattanavar 9 www.tu-chemnitz.de

Figure 2.1: Proposed triangular transformation

Several attempts have been made in bringing about transformations for other types of

models. As seen in the literature survey, transformation between UML and Simulink,

SysML and Simulink, Sequence Diagram to Coloured Petri Nets model, UML to

Multidimensional model and other types of models have been attempted. However, this

triangular transformation has not been attempted in the previous works. Also, no

transformation attempt has been made to complete the cycle of transformation between

Simulink and Scicos. Hence, the current work is a novel work.

Summary

This chapter presents the literature survey carried out to understand the latest work

on the model transformation between different kinds of models and technology. Model

transformation has been carried for Simulink and UML, UML to MD model, Sequence

diagrams to Coloured Petri-nets and for many more different kinds of models. The

survey has shown that Metamodels are being used for the development of the

transformation definition. Metamodels have been used in the current work also. The

SysML

Simulink Scicos

Transformations

QVT

CHAPTER 2. STATE OF THE ART

Abhishek Mallikarjuna Kappattanavar 10 www.tu-chemnitz.de

work distinguishes itself with the proposal of triangular transformation. It also attempts

both the forward and reverse transformation to complete a round-trip transformation.

Abhishek Mallikarjuna Kappattanavar 11 www.tu-chemnitz.de

Chapter 3

Background Concepts

A literature survey on model transformation was carried out in chapter 2. The prior

art on model transformation between different types of models were discussed. The

findings of the literature survey were presented in the previous chapter. In this chapter,

Model Driven Engineering, a concept related to model transformation is discussed.

Model Driven Architecture and Model Based Design are later explained.

3.1 Model Driven Engineering

Models are increasingly playing an important role in the development of embedded

system and software development. The term used to define the methodology of using

models is Model Driven Engineering (MDE). MDE is a term that focuses on creating and

exploiting models in the field of Software Engineering. Its main purpose is to increase or

maximise compatibility between, and among various systems by including reusability of

the model components. It helps in simplifying process and also promotes communication

within and among various teams by standardizing terminologies and best practices.

In order to understand Model Driven Engineering, an idea of a model has to be

known clearly. A model is a representation of a system. It is an abstraction of reality. It

must be able to reflect the original system for which it is developed, even if the system is

yet to be built or even if it is just an imaginary system. The model even if it is a simple

representation of a system, must be able to represent at least some of the properties. A

model must be usable, which means that the model developed must be able to be used in

place of the actual system for some purposes. A model may be in the form of a graphical

representation or in the form of text. Usage of the models in system development

constitutes Model Driven Engineering.

There can be many different models for a given system. The details may vary and

they may be described or may not be. There exist a relationship between two models of

the same system.

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 12 www.tu-chemnitz.de

Figure 3.1: Model Driven Engineering Overview [14]

An overview of Model Driven Engineering is presented in figure 3.1. A model of a

system describes the functional specifications of that system. It is specified using a

Domain Specific Language (DSL) such as Simulink or Scicos. This is in turn specified

using a Metalanguage. The model is used as an input to a Generator which generates a

code for any specified application. The code conforms to some Framework and is

produced in a high level language such as C, C++, Java etc. It also conforms to a certain

architecture and complies with certain standards. The standards depend on the

application. For example, ISO 26262 is a safety standard for automotive applications and

DO-178B is a safety standard for aerospace applications. The Generator uses certain

transformation rules to generate the application code. These rules are specified using a

transformation language such as QVTo.

In MDE two major trends can be identified[5]. One is the Model Driven Architecture

(MDA) and the other Model Based Design (MBD). Both these trends have common

objectives and principles; they show differences in their approaches and practices

including the technologies and languages they use.

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 13 www.tu-chemnitz.de

3.2 Model Driven Architecture (MDA)

Model Driven Architecture (MDA) is an approach for developing software systems.

It gives a set of rules or guidelines for modeling a system. MDA[15] is a standard

developed in 2001 by Object Management Group (OMG) in order to define reference

architecture for the development of software systems based on models. MDA is a

registered trademark of OMG. As per MDA, it will be able to generate code using

requirement models.

A model is first developed as a Platform Independent Model (PIM) using a Platform

Independent Modeling language. This Platform Independent Model is then transformed

into Platform Specific Model (PSM) making use of transformations and mappings of

formal rules. Some important standards related to the concept of MDA include Unified

Modeling Language (UML), SysML, Meta-Object Facility (MOF), XML Metadata

Interchange (XMI) and Metamodels, which are also defined by OMG. An important

aspect of MDA approach is that the system specifications are independent of the

implementation platform or technology.

3.3 Model Based Design (MBD)

Model Based Design (MBD), though similar to MDA, has a different approach.

While MDA is mostly oriented towards software design, MBD is more popular in

control and systems engineering domain. In MBD, the syntax and semantics are

restricted. The popular tools such as Simulink and SCADE [25] come under the MBD

category of tools. The models can generally be simulated and also code can be generated

in an automated way using these tools. They have an underlying Model of Computation

based on mathematical rules, using which the process of verification can also be

achieved.

The steps in the development of a system in Model Based Design approach are as

follows:

1. Modeling a system: The requirements of the system are gathered in the first step.

Using these requirements a model is developed using a modeling tool. This model

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 14 www.tu-chemnitz.de

consists of connected network of blocks. Each block represents a physical elements

of the system being modeled. The connections represents the flow of signals and

data.

2. Analysis and synthesis: The previously conceived system model is analysed and

the dynamic characteristics of the model are identified from the model. A control

system is synthesised based on these characteristics.

3. Simulation: The model thus developed is simulated off-line first, which helps in

identifying errors immediately in specification, requirements and modeling. Then a

real-time simulation is carried out. The code for the model is generated and

deployed on to a prototyping hardware. Using this hardware, a real-time simulation

is carried out and tested.

4. Integration and deployment: The model and the components of the model

developed are integrated and code generation is done automatically. The code thus

generated is deployed onto the hardware.

3.3.1 V-Model

V-Model [26] which is supported by Model Based Design is presented in figure 3.2.

V-model stands for Verification and Validation model. It is a sequential path of

execution of processes. Each phase must be completed before the next phase begins.

Testing of the model is planned in parallel with the corresponding development phase.

Requirements Engineering:

The first phase of the V-model is the Requirements Engineering. The requirement

specification of a system is collected. For example, in a window control system of an

automotive, the specifications would include the basic functions of opening and closing

the window. Further, based on different laws and safety regulations, the window should

have a child lock system. Again, based on market requirements or geographical

requirements, the window should have an emergency/express closing system or during

winter it must have a de-freezing facility. These requirements have to be captured in the

requirement specification of the system. The captured specifications must be developed

into a conceptual model of the system. This process from capturing the specifications to

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 15 www.tu-chemnitz.de

Figure 3.2: Model Based Design which supports V-Model

the development of the conceptual model of the system form the Requirements

Engineering phase. The resultant output of this block is the conceptual model of the

system. The basic functionality of a system is conveyed by a conceptual model. The

users should be able to understand the system with ease using the conceptual model. The

essential purpose of a conceptual model is as follows:

a. To improve the understanding of the system

b. To convey the details of the system specification efficiently

c. To form a reference model for the system designers and developers

d. To assist in the communication and collaboration for the development of

components

e. To provide documentation for future reference and enhancement

System Architecture and Design

The conceptual model obtained as a result of the requirement engineering phase is

used for the development of the system architecture and design. A system architecture is

the high level description of the system. In Model Based Design, the system architecture

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 16 www.tu-chemnitz.de

is developed as an interconnected network of blocks. Each of the blocks represent a

component of the system. It describes the relationship between the interfaces, its

architecture, dependencies and the details of the technology. This results in the system

model. The system model provides top level description of the system.

Component Design:

The obtained system model which is the design of the system is then divided into its

component systems. These component systems include the details of every component

that forms the system. It provides the functional logic, details of inputs, outputs and the

events of the components. The result of this component design is the component model.

Implementation and Code Generation:

The component model developed during the component design phase is used by the

developer to develop and implement the components. Then code is generated

automatically using automatic code generators for these components at this step. The

generated code may be in the form of Java, C, C++, Ada or any high level languages.

Unit Testing:

The unit testing is done along with related control data and determines if the module

functions as designed. In the V-model, the generated code is deployed onto a virtual or a

prototype hardware. Then unit testing is performed on the system, then the validation and

verification is carried out against each component model. Unit tests are designed based

on the internal module designs.

Integration and System Testing:

The integration testing ensures reliability and functional performance of each block

in a system after the components are integrated into a system. After the integrated system

passes the integration test, the system test is performed on a complete system.

It is conducted to check if the system is working as per the requirements specification. It

is verified and validated against the System Design.

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 17 www.tu-chemnitz.de

Acceptance Testing:

Acceptance testing is conducted to check if the system has implemented and meets

all the requirement specification provided by the user. At this stage the system is verified

and validated against the requirement specification.

3.3.2 Advantages of Model Based Design

The advantages of the Model Based Design include:

1. Simplified Communication due to the use of models. The models form the

graphical representation of the system and can be easily understood by different

stakeholders of the system.

2. The functional model of the system can be simulated early during the

development of the system. This helps to identify and correct the errors in the

design phase.

3. Code generation is done in an automated way. This reduces the possible errors

that gets introduced otherwise and makes the generated code highly consistent

with the model designed. It also reduce the time, costs and effort need to develop

the system, thereby making the system development more efficient.

4. Model Based Design helps in the design and development of the highly complex

system with ease unlike the design of the same system using classical software

development methods.

3.4 Metamodels

A conceptual model of a modeling technique is a metal model [16]. A metamodel is a

model of a model. It describes the model. It provides a formal definition for a modeling

language. A metamodel captures or describes several information of an application

domain like syntactic and semantic information. It provides a definition for the family of

models that can be developed in the modelling environment that results from it.

.

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 18 www.tu-chemnitz.de

It describes the entities, attributes and the relationship between them, in a modeling

environment. A metamodel can also be called a modeling paradigm. A metamodel may

be described using textual format or in the form of graphs via diagrams or even in the

form of tree structure. For example, the certain eclipse extension tool allows developers

to define a metamodel using textual syntax, while EMF Ecore tools allows developers to

develop a metamodel using tree structure, or class diagrams or even in the format of an

XML file.

A metamodel has to be written in a well-defined language called metalanguage. It is

a specialised language to describe modeling languages. In the MDA framework different

symbols are used for a metalanguage. There is an infinite number of layers of model-

language-metalanguage relationships[15][17]. There are four layers defined by OMG

standards. These layers are called M0, M1, M2 and M3. This is presented in the

following paragraphs.

The Meta Layers of MDA

Layer M0: M0 layers forms the bottom layer in the hierarchy of the OMG Standard of

the Meta layers. The Layer M0 depicts the instances of the model elements defined in a

model. It represents the real world objects.

Layer M1: M1 layer contains models, which describe a system. M1 layer elements are

classes, attributes and other model elements. An example for M1 layers is UML model.

The model elements of the M1 layer are generalized classes of instances at the M0 layer.

Also, every element of the M0 layer is an instance of the elements present in the M1

layer. The relationship between the layers M0 and M1 are presented in figure 3.3

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 19 www.tu-chemnitz.de

Figure 3.3: Overview of Layers M0 to M3 [17]

Layer M2: The metamodel, which is a model of a model lies in the level M2. This

metamodel describes the language using which the model (in Layer M1) is developed. It

describes the semantics of the modeling language.

Layer M3: The Metametamodel is a model of metamodel. The OMG standard level of

metametamodel is M3. Meta Object Facility (MOF) is a metametamodeling language

and is situated at this level. MOF describes how a metamodel is developed and is

situated at the top of the hierarchy of the layers.

The overview of the layers M0 to M3 are presented in the figure 3.3.

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 20 www.tu-chemnitz.de

3.5 Model Transformation

Model Transformation is a process of transforming a model from a given model into

a desired model or working software or a schema, generally in an automated way. A

program takes a model as an input and based on the transformation rules specified in it, it

provides an output model which is consistent with the input model. A transformation

may be direct or may involve intermediate transformations and intermediate models.

A transformation definition specifies how a model is to be transformed. It is a set of

transformation rules which describes how a model conforming to a given metamodel is

transformed into another model which conforms to a different metamodel. The

transformation rules describes how the elements and constructs of the source model are

to be mapped to the elements of the target model and also their relationship.

The process of Model Transformation is presented in the figure 3.4. At the input of

the transformation is the source model shown in figure as Model A. The Model A

conforms to a metamodel named Meta Model 1. Based on the transformation rules

specified, the transformation programme transforms the source Model A into a target

model which is shown as Model B. Model B conforms to metamodel named Meta Model

2. The resultant target model is consistent with the corresponding source model after the

transformation is performed.

Two kinds of Model transformation are defined. One is model to model

transformation and the other is the model to text transformation.

Figure 3.4: Model Transformation

Meta

Model 1

Model A

Meta

Model 2

Model B

Transformation

Conforms
to

Conforms
to

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 21 www.tu-chemnitz.de

Mens et al. [18] provides taxonomy for model transformation: Based on the

languages of the source and the target models, it can be classified as endogenous or

exogenous. If source and target models are expressed using the same language or in other

words the source and the target metamodels are the same (in-place transformation), then

it is endogenous transformation. If the source and target models are expressed using

different languages, or in other words the source and target metamodels are distinct, then

it is exogenous transformation.

A transformation can be classified as a horizontal or vertical based level of

abstraction the models reside at. When the source and the target models reside at the

same abstraction level then it is a horizontal transformation, when they are residing at

different levels of abstraction then it is a vertical transformation.

3.5.1 Model to Model Transformation (M2M)

Model to Model transformation involves transformation of an input model into a

target or an output model. The model elements of an input model are mapped with the

model elements of the output model to generate an output/ a target model.

3.5.2 Model to Text Transformation (M2T)

In model to text transformation a model is transformed into a text form, mainly for

code generation or for the purpose of documentation. When a working software is

required or a schema is required, then Model to Text Transformation would be more

suitable. Typically, in a M2T transformation, the model is transformed into some

general-purpose programming language like Java, html, C, C++ etc. There are many

code generators available which use M2T Transformation

In the present work model to model transformation is being carried out. This

transformation can be classified as a horizontal transformation. This facilitates the inter-

operability between Simulink and Scicos. The results are discussed in Chapter 8.

CHAPTER 3. BACKGROUND CONCEPTS

Abhishek Mallikarjuna Kappattanavar 22 www.tu-chemnitz.de

3.6 Summary

The concepts behind Model transformation have been elaborated. An overview of

Model Driven Engineering, Model Driven Architecture and Model Based Design has

been presented in this chapter. Model Driven Engineering is a methodology of

development of Systems. Systems are designed using models. It uses models for

representing units or modules of a system. Model Driven Architecture is an approach of

MDE defined by OMG. It focuses on development of Software Systems. Model Based

Design is an approach of MDE to develop Embedded and Control Systems. It presents

the popular V-model in context of Model Based Design.

The concept of metamodel is introduced. A metamodel is a model of a model. It

describes the language which is used to develop a model. It can be expressed in many

different ways. OMG defines different Metalayers of MDA. A metamodel lies at the M2

layer in the metalayer hierarchy.

An overview of the process of model transformation using the metamodel are

presented. The terms related to transformation are discussed.

Abhishek Mallikarjuna Kappattanavar 23 www.tu-chemnitz.de

Chapter 4

Tools and Technologies

The related concepts behind model transformation were discussed in chapter 3. The

concepts of Model Driven Engineering, Model Driven Architecture, Model Based

Design, the meta-layers of MDA were presented in the previous chapter. The concepts of

Metamodels and the Model Transformation were also presented there.

This chapter introduces some of the tools, technologies and languages that are used

for the development of metamodels and model transformation.

4.1 Tools used in the development of candidate model

The current work on transformation is carried out between models developed in

Scicos and Simulink. These model are called as candidate models. These models can be

developed and viewed using their corresponding tools. The following sections provide an

overview of these tools that are necessary for developing the candidate models.

4.1.1 Scilab/Scicos

Scilab is an open source software for scientific numerical computation [19]. Scicos is

an important toolbox which comes along with Scilab. It provides a block-diagram based

graphical editor for development and simulation of dynamical systems.

Scicos

Scicos is an open source, graphical system modeler and simulator, developed in the

Metalau projects by INRIA. It is an important toolbox which comes along with Scilab

[19]. It provides a block-diagram based graphical editor for development and simulation

of dynamical systems. Scicos is considered to be an open source alternative for Simulink.

Scicos allows simulation, compilation and debugging, and code generation. It has

several advantages. It provides a means and an environment to develop systems in a

modular fashion. It provides several elementary and complex blocks needed for

development of a model. It allows users to develop their own reusable blocks if needed.

This is useful when a large system is designed as different modules by different teams

CHAPTER 4. TOOLS AND TECHNOLOGIES

Abhishek Mallikarjuna Kappattanavar 24 www.tu-chemnitz.de

working on it. A large number of built-in blocks are available in the Palette. These

blocks provide the basic operations that are required to construct models of the systems.

Users rarely need to build new blocks from scratch.

Code Generation is an important part of Embedded System Design. There is an

internal code generator for Scicos, which generates code in C. There are several external

code generators too available for generating codes into different languages.

In the present work, during the forward transformation a Scicos model acts as the

target model. Scilab/Scicos tool is used to view and to modify the target model. During

the reverse transformation the Scicos model acts as the source model and is developed

using Scilab/Scicos tool.

4.1.2 Matlab/Simulink

Matlab is a high level, multi paradigm, fourth generation language for numerical

computation, visualization, and development of applications [20]. It is a proprietary

programming language developed by MathWorks. It provides an interactive environment

for iterative exploration, design and problem solving. It has several mathematical

functions for several operations including for linear algebra, Fourier analysis, filtering,

optimization, numerical integration, and for solving ordinary differential equations (ode).

It provides means to visualize data using built in graphics and tools for creation of plots

including custom plots. It provides functions for integrating Matlab algorithms with

other external applications. It provides several toolboxes for the use of several

applications from different engineering backgrounds. Simulink is one such tool provided

by Matlab for model based design, which provides an environment for modelling and

simulation. The installation of Matlab is a pre-requisite for the use of Simulink.

Simulink tool

Simulink is a model based design tool which allows modelling and simulation of

systems [21]. It is highly integrated with MATLAB and enables the use of MATLABs

algorithms in it. It also allows the exporting of Simulation results to MATLAB. Along

with modelling and simulation of the embedded systems, it also supports automatic code

generation, testing and verification.

In the present work, the source model is a Simulink model during the forward

transformation and is developed using Simulink tool of Matlab. In the reverse

CHAPTER 4. TOOLS AND TECHNOLOGIES

Abhishek Mallikarjuna Kappattanavar 25 www.tu-chemnitz.de

transformation the Simulink model acts as the target model. The Matlab/Simulink tool is

required to view and modify the target model.

4.2 Tools and technologies for the transformation

The process of model transformations entails the use of several tools, technologies

and languages. The following sections introduces the language of QVT, the tools such as

Eclipse and other technologies such as EMF Ecore which have been used in the current

work. QVT comes under the elements of the MDA framework defined by OMG. The

other elements used in the work are MOF and OCL.

4.2.1 Object Constraint Language (OCL)

Object Constraint Language (OCL)[27] is a key component of the QVT and is an

expression language. OCL can be used for MOF and UML models. OCL can be

translated to programming languages. OCL is helpful to specify initial attribute values, to

get the derivation rules for the attribute or the associations, to get query operations for

the body, to specify the targets for messages being sent, to describe the guard conditions

on state charts, to specify end user queries on a UML model, to give added precision and

expressiveness to the developers and to specify constraints on operation.

4.2.2 Meta Object Facility (MOF)

Meta Object Facility (MOF)[22] is an OMG Standard that defines the language to

define modeling languages and also enables the building of tools for defining it. MOF is

also used to define a stream or file based interchange format for M1 models. The

interchange format is based on XML and is called XMI (XML Metadata interchange).

MOF is defined using itself, and hence to generate standard interchange formats for

metamodels, XMI can be used.

4.2.3 Query, View, Transform (QVT)

QVT or Query, View, Transform is a language used for transformation of models

[6][23]. It is a language which operates on models based on metamodels conforming to

Meta- Object facility (MOF) 2.0. QVT is defined by the OMG.
.

CHAPTER 4. TOOLS AND TECHNOLOGIES

Abhishek Mallikarjuna Kappattanavar 26 www.tu-chemnitz.de

Figure 4.1: QVT language and the relationship between their metamodels [6]

There are three parts in QVT as the name itself suggests. The first being named Query,

as queries can be applied on source model, which is an instance of a source metamodel.

The second is View which describes the way the output or the target model should look

like. The third one is Transform, wherein the results of the queries are projected on the

views to obtain a target model. The QVT specifications are based on the MOF and OCL

(Object Constraint Language) Specifications.

There are different domain specific languages defined in QVT. The first category

belongs to the declarative languages and includes QVT Relations and QVT Core. In

addition to QVT Relations and QVT Core, there are mechanisms for invoking imperative

implementation of transformation from QVT Relations or QVT Core. There are two such

mechanisms and includes one standard language QVT Operational Mappings and the

other non-standard Black-box MOF Operation implementation. Each of these, i.e. QVT

Relations, QVT Core and QVT Operational Mappings (QVTo) can be combined along

with a black-box operation. QVT-Relations and Core permits both unidirectional and

bidirectional model transformations to be written while QVT Operational Mappings is

designed for writing unidirectional transformations.

QVT Relations

In QVT Relations, a set of relations are specified between the models that are being

transformed. These relations must hold for having a successful transformation. Here, a

transformation is invoked either to modify one model to enforce model consistency or to

check the two models for the consistency.

CHAPTER 4. TOOLS AND TECHNOLOGIES

Abhishek Mallikarjuna Kappattanavar 27 www.tu-chemnitz.de

QVT Core

The QVT Core language is a simpler language but as powerful as the QVT Relations.

In QVT Core conditions are evaluated over a flat set of variables against a set of models

and pattern matching is supported over these flat set of variables. It can be implemented

directly for transformation or may be used as a reference to the QVT Relations.

QVT Operational Mappings (QVTo)

QVT Operational Mapping (QVTo) provides an implementation of imperative

language of QVT. It populates the same trace models as the Relations language. It

provides OCL extensions allowing a procedural style, and a concrete syntax which looks

similar to the procedural languages familiar to programmers. Operational Mappings can

be transformed to Relations and Core.

Black Box implementation

Many algorithms are very difficult to implement using OCL and some cannot be

expressed at all. In order to overcome this a black box implementation is provided in

QVT. A Blackbox allows programmers to code complex algorithms using any supported

programming languages.

4.2.4 Eclipse Modeling Framework (EMF)

Eclipse Modeling Framework (EMF)[24] is a modeling framework and code

generation facility. It is a framework for building tools and other applications based on a

structured data model. Models can be created using EMF in many different ways. It

provides the user with an editor (tree structure with properties), it also allows user to

import annotated Java classes. If the XSD component is installed, one can import an

XSD file. Models can be created using UML or Ecore diagram editor may be used to

develop a model. Certain plugins allow user to model using textual syntax as well.

Whatever the method being used to work with the domain model, a file with an

extension .ecore is present in the workspace i.e., the model is saved with this

extension. This file can be opened using a text editor, wherein the model can be viewed

in XMI serialized format. EMF allows user to work with this model file using a basic

tree editor with Properties view.

CHAPTER 4. TOOLS AND TECHNOLOGIES

Abhishek Mallikarjuna Kappattanavar 28 www.tu-chemnitz.de

Ecore

EMF Core or Ecore is the model that is used in representing models. It is itself an

EMF model, and hence its own metamodel. Hence, it can be called as a meta-metamodel.

Ecore forms the central picture of the EMF world. An Ecore model can be created by a

UML model, or an XML Schema, or even an annotated Java interface. Different forms of

model can be generated, including Java implementation code using an Ecore model. An

XMI serialization can be generated using an Ecore model.

4.3 Summary

Scilab is an open source software for scientific numerical computation. Scicos is an

important toolbox which comes along with Scilab. It provides a block-diagram based

graphical editor for development and simulation of dynamical systems. Simulink is a

model based design tool which allows modelling and simulation of systems. It is highly

integrated with MATLAB and enables the use of MATLABs algorithms in it. The model

developed using Scicos and Simulink are candidate models for the model transformation.

Object Constraint Language (OCL) is a key component of the QVT and is an

expression language. It is used for MOF and UML models. It helps to create models

which are more extensive and precise.

QVT or Query, View, Transform is a language used for transformation of models. It

is a language which operates on models based on metamodels conforming to Meta-

Object facility (MOF) 2.0, which is a standard set by the OMG (QVTr, QVTo, QVTc).

Eclipse Modeling Framework (EMF) is a modeling framework and code generation

facility. EMF Core or Ecore is the model that is used in representing models. Ecore

forms the central picture of the EMF world.

Abhishek Mallikarjuna Kappattanavar 29 www.tu-chemnitz.de

Chapter 5

Metamodel Development

Different tools, technologies and languages used in the transformation between

Simulink and Scicos was discussed in chapter 4. A brief description of Scicos, Simulink,

QVT and EMF was also presented in the previous chapter.

As mentioned in the Chapter 1, the first objective of the current work is to develop

the metamodels for Simulink and Scicos. This chapter introduces the development of

metamodels. A metamodel defines the elements and, also the relation and the

interactions between the elements of a model. Since, a metamodel is also a model, it has

to be well defined using a language. The language used in developing a metamodel is

called a metalanguage. The metalanguage used in the present work is EMF Ecore’s

Graphical Modeling Language. The relationship between a model, its language and the

metalanguage is as presented in figure 5.1.

Figure 5.1: Relationship between a language and its metalanguage [17]

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 30 www.tu-chemnitz.de

Here, the transformation is being done between Simulink and Scicos. This

necessitates metamodels for Simulink and Scicos to be used. The following sub-sections

explains more on these metamodels.

5.1 Requirement of metamodel development

Metamodel development or metamodeling, is developing a model of a modeling

language in order to define that language. Modeling a metamodel has two important

utility.

1. A modeling language is unambiguously defined

2. The transformation rules describe how a model in a source language can be

transformed into a model in a target language.

In the current work the modeling languages are already present. Hence, this work

does not define any new language. The metamodels of Scicos and Simulink are required

for the transformation of the models, but these are unavailable in the public domain

especially the metamodel of Simulink. The Scicos metamodel required for the

transformation using QVTo should be MOF based metamodel. This requires the

development of both the metamodels i.e. metamodel for Scicos and Simulink.

5.2 Metamodeling

A metamodel can be represented in many different forms. It can be represented using

textual syntax using certain existing tools. It can also be represented as a set of

Annotated Java classes or using UML2 or using EMF’s Graphical Modeling Tool. There

are several tools that are available in the market for the development of metamodels.

Most of these tools provide a means of representing the metamodels in a graphical form.

Eclipse Modeling Framework (EMF), which is introduced in chapter 4, is one of the

frameworks that is used in the development of a metamodel. As explained, the

metamodel developed using EMF is saved in the Ecore format with file extension of

.ecore. It can be further retrieved in different formats supported by EMF. A pre-requisite

for model transformation using QVTo is the availability of the MOF based metamodels

for the source and also the target models. In the present work, metamodels are developed

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 31 www.tu-chemnitz.de

using the graphical editor provided by EMF, which has similar construct as that of class

diagrams. The metamodels developed using EMF are MOF based metamodels.

A metamodel representation developed using EMF’s Graphical Modeling Tool is

presented in the figure 5.2. This is a class diagram representation and makes it easier for

the developer to visualize a model. It shows different elements of a metamodel designed

as classes such as ScicosModel, Object, Block, Link, Graphics, Diagram, SuperBlock and

Properties. The properties of the elements are modeled as attributes. For e.g. the property

of the element ScicoModel is Version, the property of Block is Name and that of the

Properties are Name and Value. On similar lines the other properties are modeled. It also

shows the relationship between the elements. The elements ScicosModel and Object have

the Composition relationship, which means that the ScicosModel composes the element

Object within it. This relationship is called as Containment reference. The element

SuperBlock inherits the element ScicosModel. This relationship is called Inheritance.

Other kinds of relationship includes uni-directional and bi-directional references.

The ecore metamodel developed using the graphical modeling tool can be viewed

and modified using a text or an XML file editor. The figure 5.3 shows a screen shot of

the ecore metamodel in XML format.

There are several tools that are available in the market for the development of

metamodel. Most of these tools provide a means of representing the metamodels in a

diagrammatic form.

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 32 www.tu-chemnitz.de

Figure 5.2: Representation of a metamodel using EMF Graphical Modeling Tool

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 33 www.tu-chemnitz.de

Figure 5.3: Representation of a metamodel viewed as an XML file

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 34 www.tu-chemnitz.de

Figure 5.4: Steps to develop metamodel by reverse engineering a model

Metamodel in the present work is developed by reverse engineering a model. The

simple steps followed for the development of metamodel are as presented in figure 5.4.

First a model is developed. This model is then analysed for the elements, their properties,

their constraints and the relationships. The analysed results are collected. This result is

then used in the development of the metamodel.

Using the result of
the analysis

Develop
Metamodel

Collect the result of

Analysis

Develop a Model

Analyse the Model

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 35 www.tu-chemnitz.de

Figure 5.5: Scicos Metamodel Development

Develop Scicos model

Save the model as xml file

Inspect all the elements and list the properties for

each element

Open the XML file

Examine the relations between the elements

Map the constraints and the relations between each

element

Model every property of each element as attributes

of the respective class

Model each element as a class

Scicos Metamodel

developed

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 36 www.tu-chemnitz.de

5.3 Scicos Metamodel

Scicos metamodel is required for transformation. Scicos metamodel is developed

here by reverse engineering a Scicos model. Scicos model is developed using the Scicos

tool. In the current transformation a Simulink model forms the input to the forward

transformation and a Scicos model is obtained as result of this transformation. Similarly,

Scicos model forms the input and Simulink model is obtained as a result of reverse

transformation. For the transformation definition, the language QVTo requires MOF

based metamodels. The metamodel of Scicos model forms the target metamodel for the

transformation definition during the forward transformation. During reverse

transformation, the Scicos metamodel acts as the source metamodel. Since, the

metamodel required has to be MOF based, it has been developed separately from the

beginning.

Flowchart for the development of Scicos metamodel

Steps involved in the development of the Scicos metamodel is presented in the

flowchart as depicted in the figure 5.5. Each step is clearly defined and the flowchart is

self-explanatory.

5.4 Development of Scicos metamodel

The first step to develop a Scicos metamodel is to develop a model using the Scicos

tool. Then the model is studied and the constructs, the elements, the relationship between

the elements and the constraints are analysed. Scicos tool provides the option of saving

the Scicos models either as a model in Scicos format with .cos extension or as an xml

file. The .cos is a binary file and cannot be opened in a text editor and needs the Scicos

tool, but a Scicos model saved as an xml file can be opened in a text editor. These xml

files can be studied and analysed to develop a metamodel for Scicos. The Scicos model

saved as .cos file can be studied and analysed using the Scicos tool. However, using the

xml file would be advantageous as it would make the intermediate transformation easier.

In the present work a simple model was developed for the purpose of analysis, using

Scicos. This model is saved as an xml file. The saved xml file is then opened in a text

editor. Every element of the file was inspected. For a reconstruction of a model all the

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 37 www.tu-chemnitz.de

details necessary for the model are to be included in the metamodel. Hence, each element

was analysed to see if the model could be reconstructed without the element. After the

analysis, the elements of the model necessary for the reconstruction was listed. The

relationship between these elements and the constraints were also noted. This

information obtained as a result of the analysis is used in development of the MOF based

metamodel as required by QVTo for the transformation definition.

5.4.1 Scicos Model Analysis

The analysis of the Scicos model resulted in the identification of the elements of the

model that are necessary for reconstructing the model. After an initial analysis it was

found that certain information of the file was not necessary for the reconstruction of the

model and some information in the model were constant or had no effect on the

functioning of the model if their values changed. The elements necessary are used to

develop the Scicos metamodel which is later used in the transformation definition

developed using QVTo. It is used for both the forward and reverse transformation.

Among the most important elements identified includes ScicosModel, Object, Block and

Link. The other elements required to reconstruct the model are CodeGeneration,

Parameters and Options. The elements of the model contained several properties. Some

of the properties of these elements are constant values, while the values of many other

properties had no effect on the working of the models when they were changed. Any

effect seen would be related to graphical display without affecting the functioning of the

model.

The results of the analysis are mentioned in the following points:

1. The root element of the model is ScicosModel.

2. This root element ScicosModel contains one element called Object, one element

called CodeGeneration and one element called Parameters.

3. An Object contains at least one Block and may contain Link.

4. A Block may contain another element similar to ScicosModel in its structure.

Such Blocks are called SuperBlock.

5. A SuperBlock may contain several Blocks, Lines and all such elements as in

ScicosModel.

6. Each element has several properties.

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 38 www.tu-chemnitz.de

7. The number of properties for a given element are fixed

Scicos is an open source tool and the structure of the Scicos model is simpler to

understand. By analysing a Scicos model it can be understood that there are limited

number of attributes in the model elements required for reconstructing a model. Hence, it

becomes easier to develop a metamodel for Scicos.

5.4.2 Modeling the elements into the metamodel

This analysis is used in the development of the metamodel. The metamodel

development is done using the graphical modeling tool of Ecore, which uses UML based

graphical development environment. Each element in Scicos is modeled as a class.

Hence, the elements ScicosModel, Object, Block, Link, CodeGeneration, Parameters

and Options are modeled as classes. The elements and their corresponding classes in the

metamodel are summarised in the table 5.1

Scicos Element
Class name in the

metamodel

ScicosModel ScicosModel

Object Object

Block Blocks

Link Links

CodeGeneration CodeGen

Parameters Parameters

Options Options

Table 5.1: Scicos elements and corresponding classes in the metamodel

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 39 www.tu-chemnitz.de

5.4.3 Modeling the properties into the metamodel

The root element ScicosModel contains Object, Parameters, and CodeGeneration as

its child elements. The root element ScicosModel contains two properties including

Name, and Version. The property Name corresponds to the name of the model and

Version corresponds to the Scicos version used to build the model which is constant for a

given version of a tool. The element ScicosModel is modeled as the class ScicosModel in

the metamodel. The properties Name and Version are modeled as the attributes of this

class.

As mentioned above the root element ScicosModel contains the element Object. The

element Object does not contain any properties but the child elements Block and Link.

The Object contains one or several instances of Blocks and Links depending the model.

The element Object is modeled as the class Object. Each of the Blocks and Links are

assigned a unique number by which they can be identified. This number forms a part of

the attribute Name. The value of the attribute Name always starts with ‘OBJ_’ followed

the unique number assigned to it.

The element Block contained in the Object is modeled as class Blocks and may have

several properties. These properties have the same names for different instances of a

Block. These properties are modeled as attributes of the class Blocks. The attributes are

gui, orig, sz, exprs, pin, pout, pein, peout, gr_i, in_implicit, out_implicit, flip, theta, id

and Name. These attributes are explained as below:

 Name: As already mentioned above the value of Name starts with ‘OBJ_’

followed by the unique value assigned to it. An instance of the Block can be

identified against other instances using this attribute.

 gui: The attribute gui gives the name of the type of Block it represents.

 orig: The attribute orig provides the information related to the position where

the Block is situated.

 sz: The attribute sz provides size with the length and the width of the Block.

 in_implicit: The number of input pins of a block are represented by the

attribute in_implicit.

 out_implicit: Similarly, the number of output pins are represented by the

attribute out_implicit.

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 40 www.tu-chemnitz.de

 pin and pout: There can be several Links that form the input and output to a

Block. All the unique numbers assigned to the input Links are included in the

attribute pin, and those which are assigned to the output of the Block are

included in the attribute pout.

 id: The user name specified, if any, by the user to a Block, forms the value of

the attribute id.

 flip: The attribute flip indicates if the Block is flipped.

 theta: The attribute theta gives the information regarding the angle of rotation

of the Block.

 exprs: The attribute exprs contains the details specific to a given instance of a

Block. For example, if the Block, as indicated by the attribute gui, is

summation unit, then the attribute exprs gives the number of inputs that the

block requires and the number of outputs it provides. It also contains the

information of each of these inputs, including whether they are negative or

positive inputs. However, a user can change these based on his requirements.

 gr_i: The attribute gr_i is unique to each type of Block. It provides the

information of the function of the Block. It also gives the information of the

display aspects of the Block. The information is used by the Scicos tool for

processing and may not be changed by the user. For a given type of Block,

this information remains unchanged.

 pein and peout: There can be several Links of the type event that form the

input and output to a Block containing an event port. All the unique numbers

assigned to the input event Links are included in the attribute pein, and those

which are assigned to the output event Links of the Block are included in the

attribute peout.

Similar to the element Block, the element Link too is contained in the element Object

and modeled as the class Links in the metamodel. It also has fixed number of properties.

The properties are modeled as the attributes of the class Links. The attributes of the class

Links include xx, yy, id, thick, ct, from, to and Name. An instance of the Link can be

identified by the attribute Name. The attributes of the Link are explained as below:

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 41 www.tu-chemnitz.de

 Name: As already mentioned above the value of Name starts with ‘OBJ_’

followed by the unique value assigned to it. An instance of the Link can be

identified against other instances using this attribute.

 xx: It contains an array of values in x-axis. The first value represents the

starting point of the Link in the x-axis and the last value provides the end

point. The starting point is always from the Block from where the Link

originates and the end point is the Block where the Link ends. The other

values in the array represent the intermediate points where the path of the

Link changes its direction.

 yy: Similar to the attribute xx, It contains an array of values in y-axis. The first

value represents the starting point of the Link in the y-axis and the last value

provides the end point. The starting point is from the Block from where the

Link originates and the end point is the Block where the Link ends. The other

values in the array represent the intermediate points where the path of the

Link changes its direction. The number of values in the array of xx and that of

yy are equal. Together with the array of values in xx, the array of values in yy

provides the exact coordinates of the Link.

 id: The name specified, if any, by the user to a Link, forms the value of the

attribute id.

 thick: The attribute thick provides graphic related information about the

thickness and the type of the line representing the Link.

 ct: The attribute ct provides the graphic related information on the colour of

the line representing the Link.

A Link is a connection between two Blocks. It facilitates the flow of information,

signal, event or data from one Block to another Block.

 from: The attribute from contains the unique identifier assigned to the Block

and also the port number from where the Link gets the flow of data, signal or

information.

 to: Similar to the attribute from, the attribute to contains the unique identifier

assigned to the Block and also the port number to where the Link provides

the flow of data, signal or information.

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 42 www.tu-chemnitz.de

The elements CodeGeneration and Parameters are modeled as classes CodeGen and

Parameters respectively. The class CodeGen have the following attributes: silent, cblock,

rdnom, rpat, libs, opt, enable_debug, scopes, remove and replace. These attributes have

very less effect on the functioning of the model. Hence, their values are kept constant or

null.

The element Parameters is modeled as class Parameters and has wpar, title, tol, tf,

context, void1, void2 and void3 as its attributes. The change in the values of these

attributes have very less effect in the functioning of the model as most of these

corresponds to the values needed to display the model on the screen.

The element Parameters contains the element Options with the attributes 3D,

Background, Link, ID and Cmap. Similar to Parameters, the values of the attributes of

Options also are used for the display of the model and have no influence on the

functioning of the model.

The results of the development of the Scicos metamodels are discussed in the next

chapter.

5.5 Simulink Metamodel

In the current work Simulink model is a model that is being transformed into Scicos

model during the forward transformation. Simulink model forms the input for the

forward transformation. The transformation definitions are developed using QVTo.

Along with the Scicos metamodel, Simulink metamodel is also required by QVTo for the

development of transformation definition. There are no publicly available metamodels

for Simulink [5]. Therefore, a metamodel has to be developed for successfully

developing the transformation rules. To develop a Simulink metamodel, the design

details of Simulink is required. Since, Simulink is a proprietary tool, the details of the

Simulink design is also unavailable publicly. This is a challenge posed by most

proprietary tools. In order to overcome this challenge a metamodel is developed by

reverse engineering a Simulink model.

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 43 www.tu-chemnitz.de

Figure 5.6: Simulink Metamodel Development

Develop Simulink model

Save the model

Inspect all the elements and list the properties for

each element

Open the model in a text editor

Examine the relations between the elements

Map the constraints and the relations between each

element

Model every property of each element as attributes

of the respective class

Model each element as a class

Simulink

Metamodel

developed

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 44 www.tu-chemnitz.de

5.6 Development of Simulink Metamodel

The first step in developing a metamodel for Simulink is to develop a Simulink

model. In order to develop a Simulink model, a system or a model is designed. The

requirement specifications of this system are gathered. Based on the specifications, a

model is developed. Then a study and an analysis of the Simulink model performed. The

Simulink model file is saved as an .mdl file. When using certain versions of Simulink,

the file can also be saved as an xml file. The .mdl file can be opened in any text editor

for analysis. The xml file can also be opened using any text editor. This xml file

basically contains the same information as in .mdl file but in a different format. Hence,

the analysis of any one of these files is sufficient to develop a metamodel. A Simulink

model in xml format would be more advantageous as it would later help in using xml file

for intermediate transformation.

A simple model is being developed for the purpose of analysis using Simulink. This

model is saved as an .mdl file, which is then opened using a text editor. Once the

Simulink model is opened in a text editor, detailed analysis can be performed for each

and every element of the model. The elements present in the model are identified. Every

element of the file is inspected for their properties.

Here, a language is not being defined. Hence, the metamodel being developed is not

a metamodel for defining a language. Therefore, only those elements of the Simulink

model could be considered that would be useful in the model transformation underway.

Since, the Scicos metamodel was already developed, only those elements and properties

were being considered initially that would be useful in the forward transformation. The

other elements and their attributes are being ignored.

Later, further analysis is performed and many more elements and their properties

were considered for developing the metamodel required for reverse transformation.

During this analysis, each element is again analysed to see if it is required for the

reconstruction of the model from the metamodel. It is found that certain information of

the file is unnecessary for the reconstruction of the model from the metamodel. Such

information is ignored. The result of the analysis of the Simulink model is explained in

the next section.

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 45 www.tu-chemnitz.de

5.6.1 Simulink Model Analysis

The analysis of the Simulink results in the identification of the elements of the

Simulink model which are necessary for developing a metamodel. In the first step the

elements required for forward transformation were listed and used in the metamodel

development.

The elements identified include Model, System, Block, Line and Branch. Later the

other elements required for the reconstruction of the model were identified which

includes GraphicalInterface, Outport and Inport. Each element may contain from a few

properties to several properties.

The results of the analysis are mentioned in the following points:

1. The root element of the model is Model.

2. This root element Model contains at least one element called System.

3. A System contains at least one Block and may contain Lines.

4. A System contains one element called GraphicalInterface.

5. A Line may contain Branches.

6. A Block may contain a System. Such a System in a Block is called a Subsystem.

7. The GraphicalInterface contains zero to many Outport and Inport

8. Each element may have several properties.

This analysis is used in the development of the Simulink metamodel. The metamodel

development is done using the graphical modeling tool of Ecore, which uses UML based

graphical development environment. Each element in Simulink is modeled as a class.

Hence, the elements Model, System, Block, Line, Branch, GraphicalInterface, Outport

and Inport are modeled as classes. The required Simulink elements and their

corresponding classes in the metamodel are summarised in the table 5.2.

As mentioned above each element may have several properties or attributes. Some of

the properties are common to different instances of the same type of element. When such

elements exist, then these common properties are modeled as attributes of the class

corresponding to the elements. Also, only those properties that are required, in the

transformation of Simulink and Scicos, are modeled as attributes of the metamodel

classes.

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 46 www.tu-chemnitz.de

Simulink Element
Class name in the

metamodel

Model Model

System system

Block blocks

Line lines

Branch branches

GraphicalInterface graphicalInterface

Outport outport

Inport inport

Table 5.2: Subset of Simulink element and corresponding classes

5.6.2 Modeling the elements into the metamodel

The root element Model contains several child elements including the element

System. All other children elements like ConfigManagerSettings, EditorSettings, etc. are

ignored as these elements are not required for the transformation. The root element

Model also contains several properties including Name, Version,

SavedCharacterEncoding, ScopeRefreshTime and several others. However, only Name

and Version are used in the current work. As explained earlier, the element Model

corresponds to the class Model in the metamodel. The properties Name and Version are

modeled as the attributes of this class.

As mentioned above the root element Model contains the element System. The

element System contains several properties and child elements. The elements contained

in the System are several instances of Lines and Blocks and several properties including

Location, ModelBrowserWidth, TiledPageScale, ZoomFactor and many more. The

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 47 www.tu-chemnitz.de

element System is modeled as the class system and the required properties Name and

Location as the attributes.

The element Block contained in the System is modeled as class blocks and may have

several properties. These properties vary for different instances of a Block. However,

there are several properties common over several instances of the Block and these

properties are modeled as attributes of the class blocks. They include BlockType, Name,

SID, Ports, Position and BlockMirror. Generally with one or a combination of these

attributes, an instance of the Block can be identified against other instances.

The common properties of the Block are explained as below:

 BlockType: The attribute BlockType tells the type of the Block.

 Name: It is the name of the Block specified by the user.

 SID: SID stands for Simulink Identifier. It is a unique identifier which is

automatically assigned by Simulink to the Block. It can be used to identify the

Block against the other instances of the Block. Even if the Name of the Block

changes, SID remains unchanged. An SID may not be modified by the user.

 Ports: The attributes Ports indicates the number of input ports and the number of

output ports the Block has. If a Block has either only input port or only output

port then only a single value is present. If the Block has both input and the output

ports then it has an array with two values. The first one indicates the number of

input ports and the second value indicates the number of output ports present in

the Block.

 Position: The attribute Position is an array or vector containing four values. The

values provide the information of the pixel position of the model from the origin.

The first two values provide the top-left pixel position and the next two provide

the bottom right position of the pixel. The origin is located at the top-left position

in a Simulink window

 BlockMirror: When the value of this attribute is ‘on’, then it indicates that the

Block is flipped

There were several other properties of the Block that have not been modeled as

attributes of the class block and hence not listed here. One such property is Value, which

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 48 www.tu-chemnitz.de

provide the value information of certain kinds of Block like the BlockType ‘Constant’.

However, these were modeled using a separate class which is explained later.

Similar to the element Block, the element Line is also contained in the element

System and modeled as the class lines in the metamodel. It may also have several

properties and include several common properties over many instances of the element

Line. These common properties are modeled as the attributes of the class lines. The

attributes of the class lines include SrcBlock, SrcPort, Points, DstBlock and DstPort.

Again, an instance of the Line can be identified using a combination of these attributes.

The properties modeled as attributes in the class lines are explained below:

Line is an element in the Simulink which is used to connect two Blocks to facilitate

the flow of signal, data or information

 SrcBlock: The attribute SrcBlock contains the Name of the Block from where the

Line originates.

 SrcPort: The attribute SrcPort identifies the port number of the output port in a

Block from where the Line originates.

 Points: The attribute Points give the relative pixel coordinates of the Line with

respect to the SrcBlock and the DstBlock.

 DstBlock: The attribute DstBlock contains the Name of the Block where the Line

ends.

 DstPort: The attribute DstPort identifies the port number of the input port in a

Block where the Line ends.

On similar lines, the element Branch is modeled as the class branches. The

instance(s) of this element if present is contained in the element Line. The common and

required properties of this element are DstBlock and DstPort and are modeled as the

attributes of the metamodel class branches. The attributes DstBlock and DstPort have the

same meaning as that of the element Line.

There are several properties of the elements Block, Line and Branch which are

specific to certain instances of its type. These properties are also needed for the

transformation and have to be modeled in the metamodel. For example the property

Value is present only for certain instance of the element Block, like the Block instance

with the BlockType as ‘Constant’. However these properties are not modeled as attributes

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 49 www.tu-chemnitz.de

of the class. In order to model such properties in the metamodel a separate class in the

metamodel was designed. This class is named as properties. The class properties has

only two attributes Name and Value. The attribute Name is designed to contain the

Name of the property and the attribute Value is designed to contain the value of the

property.

The elements of the model described above are sufficient for developing the

transformation definition for the forward transformation from Simulink to Scicos.

However, for reconstructing a Simulink model from its metamodel requires many other

elements to be present in the metamodel, such as GraphicalInterface, Outport and

Inport. These elements are also modeled as classes in the metamodel. The

GraphicalInterface is modeled as the class graphicalInterface. The properties which are

required include

 NumRootInports

 NumRootOutports

 ParameterArgumentNames

 ComputedModelVersion

 NumModelReferences

 NumTestPointedSignals

These properties are modeled as attributes of the class graphicalInterface.

The element GraphicalInterface contains the elements Outport and Inport. The

number of instances of elements Outport and the number instances of elements Intport

present is mentioned in the properties NumRootInports and NumRootOutports

respectively.

The element Outport is modeled as class outport. It has the porperties BusObject,

BusObjectAsStruct and SignalName modeled as its attributes. The element Inport is

modeled as class inport. It has the properties BusObject and SignalName modeled as its

attributes.

Attribute names have a value which may be text, int or any kind of datatype

corresponding to the EMF datatypes.

The results of the metamodeling are discussed in the next chapter.

CHAPTER 5. METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 50 www.tu-chemnitz.de

5.7 Summary

In this chapter, the process of development of MOF based metamodels has been

discussed. First a Scicos model is developed. Based on this model a metamodel for

Scicos is developed. The transformation definition requires a metamodel for Simulink

which is not available publicly. Here, a Simulink model is developed. This Simulink

model is analysed and a metamodel for Simulink is developed. The language used for the

development of metamodel is EMF Ecore. The tool used for the metamodel development

is Ecore’s Graphical Modeling Tool. The flow charts for the development of the

metamodels are presented. These developed MOF based metamodels are proposed for

the use in the transformation definition of the current work. The results are discussed in

the chapter 6.

Abhishek Mallikarjuna Kappattanavar 51 www.tu-chemnitz.de

Chapter 6

Results of Metamodel Development

A detailed process of the development of the metamodels for Scicos and Simulink

was discussed in chapter 5. This chapter discusses the results of the development of

metamodels of Scicos and Simulink.

6.1 Results of the development of Scicos metamodel

The result of the analysis of the Scicos model has resulted in retrieval of the

information required for the development of an EMF based metamodel for Scicos. Based

on the analysis, the classes ScicosModel, Object, Blocks, Links, CodeGen, Parameters,

Options and SuperBlock are modeled. The relationships between them are shown using

the containment references and inheritance. The class ScicosModel contains the classes

Parameters, CodeGen and Object. The class Parameter contains the class Option. The

class Object contains the classes Blocks and Links. The class Blocks contains the class

SuperBlock which inherits the properties from the class ScicosModel. The EMF based

metamodel developed for Scicos is presented in Figure 6.1.

6.2 Results of the development of Simulink metamodel

The result of the analysis of Simulink is used in the development of the metamodel.

The Simulink metamodel starts with the root element, Model. This root element has a

composition reference System to the class system. The system in turn has composition

references GraphicalInterface, Block, and Line to the classes graphicalInterface, blocks

and lines respectively. The class graphicalInterface contains the classes outport and

inport. The class blocks has references to system and properties. The classes lines and

branches have composition references to the class properties. The class branches has

composition reference to itself. The metamodel developed is presented in Figure 6.2. The

figure shows the Graphical representation of the MOF based metamodel for Simulink.

Figure 6.1: Scicos Metamodel

Figure 6.2: Simulink Metamodel

CHAPTER 6. RESULTS OF METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 54 www.tu-chemnitz.de

6.3 Verification and Validation of the metamodels

The metamodels developed here are for the purpose of developing a transformation

definition. Hence, the validation of the metamodels can be done only after verifying a

transformation of model. However, the metamodels are verified against the

specifications using which the metamodel is developed. In order to verify the

metamodels, a model is created using the tools Simulink and Scicos. Similarly, the

model instances are created from the metamodels. The model developed using Simulink

is compared against the instance created using the Simulink metamodel and the model

developed using the Scicos tool is compared against the instance created using the Scicos

metamodel. If the model instances are able to reflect all the elements, their properties and

the relationships, then the metamodel can be assumed to be correct and verified.

6.3.1 Simulink Metamodel

A model of a subsystem of the cross wind assistance system is used in the

verification of the metamodel. The figure 6.3 presents a Simulink model which has been

used in the verification of the Simulink metamodel. The instance model developed using

the metamodel developed is presented in the figure 6.4.

Figure 6.3: A subsystem designed using Simulink

CHAPTER 6. RESULTS OF METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 55 www.tu-chemnitz.de

Figure 6.4: Model instance created using the developed Simulink metamodel

Comparison with the instance model

The metamodel instance presented in the figure 6.4 reflects all the properties of the

model presented in the figure 6.3, which is required for performing the transformations.

This verifies the Simulink metamodel developed. The metamodel can be validated with a

successful transformation of the Simulink metamodel instance into a Scicos metamodel

instance.

CHAPTER 6. RESULTS OF METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 56 www.tu-chemnitz.de

6.3.2 Scicos metamodel

Figure 6.5: A subsystem designed using Scicos

Figure 6.6: Model instance created using Scicos metamodel

A model of a subsystem is used in the verification of the metamodel. The figure 6.5

presents a Scicos model which has been used in the verification of the Scicos metamodel.

The instance developed using the metamodel developed is presented in the figure 6.6.

CHAPTER 6. RESULTS OF METAMODEL DEVELOPMENT

Abhishek Mallikarjuna Kappattanavar 57 www.tu-chemnitz.de

Comparison with the instance

The metamodel instance presented in the figure 6.6 reflects all the properties of the

model presented in the figure 6.5, which is required for performing the transformations.

This verifies the Scicos metamodel developed. The metamodel can be validated by

reconstructing a Scicos model using an instance of the metamodel. This has been

discussed along with results of the transformation in next chapters.

6.4 Summary

In this chapter the results of metamodel development for Simulink and Scicos have

been discussed. The instances of the model are developed using the metamodel. The

results are verified by comparing the instance against the models developed using the

respective tools. Thus, verifying the metamodels.

Abhishek Mallikarjuna Kappattanavar 58 www.tu-chemnitz.de

Chapter 7

Implementation of Transformation

A detailed process of the development of the metamodels for Scicos and Simulink

were discussed in chapter 5 and their results were discussed in chapter 6. A Scicos

metamodel was constructed based on the developed Scicos model. A Simulink

metamodel was constructed using reverse engineering a Simulink model. This

metamodel was developed using EMF Ecore tools. This chapter gives an insight into the

implementation of the transformation.

Transforming a model from another model is same as generating a model by using

information from the other model. In order to perform the transformation the elements in

the source model must be mapped to the elements in the target model. This mapping can

be done using the metamodels of the source and the target models. The metaclass of the

source model elements must be related to the metaclass of the elements in the target

model.

7.1 Transformation rule requirements

A transformation definition provides the rules for the transformation. It has to contain

all the information needed for the transformation and requires:

 A source metamodel conforming to the source language

 A target metamodel conforming to the target language

 A set of elements from the source metamodel having names

 A set of elements from the target metamodel having names

 Conditions that must hold in the source metamodel without which the

transformation rule will not be applied

 Conditions that must hold in the target metamodel without which the

transformation rule will not be applied

 A rule for mapping the elements in the source model to the elements in the target

model

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 59 www.tu-chemnitz.de

7.2 Development of Forward Transformation

In the present work, the transformation from Simulink to Scicos forms the forward

transformation. The definition of the transformation is written using QVTo. QVTo

requires MOF based source and target metamodels. The metamodels were developed as

explained in the previous chapter and it is being used here for the transformation.

The process of forward transformation carried out is as explained in this section.

7.2.1 Analysis

In order to develop the transformation definition and to understand the rule for

transformation, further analysis was carried out. These analyses were especially required

to understand the mapping relationship between the elements of the target metamodel

and the source metamodel. The analysis was extended for the transformation as well.

Some points useful for the transformation are listed below:

 A Simulink model can have only one element called ‘Model’. It implies that a

transformation rule must restrict the transformation to those models having only

one ‘Model’.

 A ‘Model’ of the Simulink model is mapped to a ‘ScicosModel’ of the Scicos

model.

 A ‘System’ is mapped to an ‘Object’

 There can be only one element ‘System’ as an immediate child element of

‘Model’. However, a model may contain many systems called Subsystems within

the ‘Block’s. Also it can be noted that only one Subsystem may be present in a

given ‘Block’.

 A ‘Block’ in a Simulink model can be mapped to a ‘Block’ in a Scicos model.

 A ‘Line’ of a Simulink is mapped to a ‘Link’ of a Scicos model.

 The element ‘Branch’ of the Simulink model has no equivalent element of the

Scicos model. However, a Scicos model has a ‘Block’ called ‘Split’ which can be

used for branching. Hence, a ‘Branch’ can be mapped to a ‘Split’ ‘Block’ and two

‘Link’s.

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 60 www.tu-chemnitz.de

 A ‘Block’ of type subsystem is mapped to a ‘Block’ of Scicos containing a

‘SuperBlock’.

In order to reconstruct a model in Scicos, all the required attributes of a class

representing the class have to be mapped. While mapping or assigning values to the

attributes it may be noted that Simulink has more attribute values than that would be

required by the Scicos model. Hence, it would be helpful to consider the attributes of the

classes in Scicos metamodel first. Based on these attributes the attributes of the Simulink

metamodel may be mapped/ assigned to the attributes of the Scicos metamodel.

The root class of the Scicos metamodel is ScicosModel. It has attributes Name and

Version. Name is name of the model and the name of the Simulink model may be

assigned during the transformation. Version being the version of the Scicos model using

which the model was developed. Since, in the development of the current transformation

rule, Scicos version 4.4 is used, the value of the Version is set as ‘Scicos4.4’.

The attributes of the Scicos ‘Block’ are extracted using the analysis and processing of

the source model. Some of the attributes can be deduced from the attribute values of the

source model, but many others have to be matched with the corresponding block

instances of the source and target models. gui can be obtained from the BlockType

attribute of the Simulink model which has to be mapped based on corresponding block

instances. As mentioned in the previous chapter orig is the position of the Block from the

origin and can be obtained by using the attribute Position. The attribute sz denotes the

size of the Block. The values for the attribute sz can be calculated using Position. The

attributes pein, peout, pin and pout references the Links which were mapped from the

Line and Branch elements of the Simulink. The in_implicit and out_implicit indicates the

number of input and the output ports a Block contains and can be obtained using the

attribute Ports of the Simulink Block.

The attribute Name of the Simulink Block provides the value for id. The value for id

may be left blank if it has no Name given by the user. The attribute flip, indicates if the

Block is flipped, this can be obtained by checking the BlockMirror. If the BlockMirror is

set to on, then it indicates that the Block is flipped, otherwise it is not flipped. The

attribute theta provide the angle of rotation of the Block, and in the current work it has

been set to zero for all instances of the Blocks. The attributes exprs and gr_i are specific

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 61 www.tu-chemnitz.de

to the type of Block. The information on the type of Scicos Block can be obtained by

using its own attribute gui or the value of the attribute BlockType from Simulink.

However, value of gr_i is specific and defined by Scicos. Hence using the information

on the type of the Block, the value of gr_i has to be obtained or matched. The value of

exprs is specific to the type of the Block and also to the specific instance of the type of

the Block. The format of exprs is used from the definition of the specific instance

provided by Scicos tool and the value has to be obtained from different other attributes of

the Block. These attributes are designed as the class Properties in the metamodel.

Some attributes of the Class Link are obtained from the source model, some others

are defined in the target model itself. The Name attribute is generated during the

transformation. The attributes xx and yy are calculated based on the SrcBlock and

DstBlock attributes of the source metamodel, the position and size of the Blocks which

the Link connects, the port number which it connects and the number of ports in the

Blocks it connects. The attributes to and from are constructed using the attributes

DstBlock, DstPort, SrcBlock and SrcPort. The attributes thick and ct are kept constant at

(0,0) and (1,1) respectively.

7.2.2 Transformation Mappings using QVTo

As mentioned above the mappings form the most important part of the

transformation in QVTo. In the following paragraphs, the QVTo mappings developed for

the current transformation is explained.

transformation SL2SCTransformation(in Source: SLM, out Target: SCM);

modeltype SLM uses simulink2('com.example.simulink2') where {

self.objectsOfType(Model)->size() = 1 };

modeltype SCM uses "com.example.scimmC";

The declaration for the forward transformation is as presented above. The declaration

modeltype declares the metamodel references that are used in the transformation. The

first statement declares a transformation and has the name provided as

SL2SCTransformation. The keywords in and out are used to indicate which of the

metamodel declared are the source and target metamodels.

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 62 www.tu-chemnitz.de

The transformation begins with the main() function and is presented below. This

function is used to set the environment variables and the first mapping of the

transformation is called here. The rootObjects() selects the root of the Source

metamodel. However, by using [SLM::Model], only objects called Model are selected

as the root object.

main()

{

 Source.rootObjects()[SLM::Model] -> map ModelToSciMod();

}

The first mapping in the current transformation is between the root objects Model and

ScicosModel of the respective metamodels. A mapping declaration consists of a name of

the mapping, class name of the element being transformed and the class name of the

element of the resulting target model. While declaring a mapping it should be noted that

the name of the mapping should be uniquely declared.

mapping Model::ModelToSciMod(): ScicosModel {...}

A mapping may have conditions using the key words where and when. This is

followed by the body of the mapping. It may contain three sections init, population

and end. The population section contains all the actual mappings needed for the

transformation.

mapping Model::ModelToSciMod(): ScicosModel

{

 Name := self.Name;

 Version:= "scicos4.4";

 var NameString="OBJ";

 result.Objects:=self.System -> map Object2System(NameString);

}

In the mapping ModelToSciMod(), between the root objects, Model and

ScicosModel, the attribute Name of the source object is copied into the attribute Name of

the target object. As mentioned previously, the attribute Version is assigned a constant

value “scicos4.4”. The mapping of the child elements is done here using the

Composition Relation. It maps the System in Simulink to Object in Scicos. It may be

noted here that the Blocks and Links have unique identifier in the Scicos model. This

unique identifier is a number and always starts from one and increments sequentially. In

QVTo a string can be associated to an increment counter called

incrStrCounter(String) for generating a sequence of numbers. This counter can be

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 63 www.tu-chemnitz.de

used to generate the unique identifier. A unique identifier once allotted cannot be used

again which means that if an identifier is allotted to an instance of a Block, then that

identifier cannot be assigned to any other instances of Block or Link. The String variable

NameString shown in the code snippet is used to associate the increment counter so that

the identifier is not duplicated. While mapping the System to Object, the variable

NameString is passed as a parameter along with the mapping.

The mapping of Object2System contains calls for the mappings for Block to Block,

Line to Link, Branch to Block and Branch to Link. The first among these mappings is

from Block to Block declared Block2Block(NameString).

Mapping Block to Block

The mapping Block2Block(NameString)maps the Simulink Block to Scicos Block.

The first attribute is the Name which uses the unique identifier. The string parameter

NameString is used to invoke the function incrStrCounter(NameString) which

increments the value associated with the parameter and returns an integer. This value is

concatenated with the String to form the vale for the attribute. The attribute theta is set

to "0". While assigning or reading the values of any attributes from the source model,

the keyword self has to be used to indicate that the attribute value being accessed

belongs to the source model. The statements shown below demonstrate the use of self.

id:= self.Name;

 var btype := self.BlockType;

The values for the attributes in_implicit and out_implicit are constructed using

the attribute Ports of the Simulink Block. Since every Simulink block has a Name

provided by the user. This name is allocated to the attribute id of the Scicos Block. The

attribute Position is used to calculate the attributes orig and sz. If the attribute

BlockMirror is set to “on” then flip is set to “%f” else to “%t”. The values of the

attributes pin and pout can only be determined after the Line is mapped to the Link.

Hence, setting the values to these attributes is explained later along with the mapping of

Line to Link.

The attributes gui, exprs and gr_i are dependent on the type of the instance of

Block being transformed. Since there are several different types of Blocks, these

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 64 www.tu-chemnitz.de

attributes have to be mapped on a case to case basis. Hence, a switch statement is used to

assign values to such attributes. The attribute BlockType tells us the type of Block being

transformed. This directly corresponds to the information of gui and has to be mapped

to the corresponding value for Scicos. The following points provide information on the

transformation of the subset of the Blocks:

 Outport and Inport : The Outport and Inport corresponds to OUT_F and

IN_F of the Scicos model. The value of the exprs is constructed based on the

number of output ports in an Outport Block and on the number of input ports in

an Inport Block.

 Sum: The Sum corresponds to the addition block SUMMATION of the Scicos

model. The value of the gui is SUMMATION. A summation block may be two input

block or multi input block. The inputs some may be positive or negative. All

these information is available in different properties of the Simulink block which

are mapped to the Properties class of the Simulink metamodel. These are

accessed using the containment reference from the class Block. The

transformation traverses through the instances of the Properties and checks if

there is any property with the Name “Inputs”. On the presence of this property, the

value for the attribute exprs is set. If there is no such property present then the

default value is used, which is set as two positive inputs.

 Product: The Product corresponds to the multiplication block of the Scicos

model. The value of the gui is MATMUL.

 Constant: The Constant corresponds to the Constant block of the Scicos model.

The value of the gui is CONST_m. As explained for the addition block, the value

for the constant block is also present as an attribute of the Properties class with

the attribute called Name having the value “Value” and the attribute Value

contains value for the constant block. Hence, the attributes of the Properties have

to be traversed to find this value. Based on this, the value for the attribute exprs

is constructed.

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 65 www.tu-chemnitz.de

 Bus Creator: The Bus Creator corresponds to the BusCreator block of the

Scicos model. The attribute id is set to “BUS”. The value of the exprs is set based

on the number of inputs the bus creator has which is obtained from the attributes

of Property. If the value of the attribute Name is “Inputs” then the corresponding

value of the attribute Value gives the number of inputs.

 Bus Selector: The Bus Selector corresponds to the Bus Selector block of

the Scicos model. The attribute id is set to “DEBUS”. The value of the exprs is

set based on the number of outputs the bus selector has which is obtained from

the attributes of Property. If the value of the attribute Name is “Outputs” then the

corresponding value of the attribute Value, provides the number of outputs.

 SubSystem: The SubSystem corresponds to the Super Block of the Scicos model.

The value of the exprs is not set and left blank. A super block may contain many

Blocks and Links within it. Since these elements belong to the Super Block, their

unique identifiers within the Super Block are also unique. They have the

identifier of the Super Block as their prefix. In order to generate this unique

identifier, the Name of the SuperBlock is used as the reference string. In order to

map the Blocks and Links within the Super Block another mapping map

Subsystem2SuperBlock(blockName) is called and the reference string is passed

as the parameter to the mapping.

 UnitDelay: The UnitDelay corresponds to the Delay block of the Scicos model.

Similar to the other Blocks mentioned above, the attributes of this block are also

populated.

Mapping Line to Link

The mapping Line2Link(NameString)maps the Simulink Line to Scicos Link. As

explained for the Block, even Link has a unique identifier and is associated to the same

string NameString. Hence, the counter associated to NameString provides the unique

identifier, using which the value for the attribute Name is formed. The attributes thick is

set to “0,0” and ct to “1,1” as they are only needed for display purposes.

The Simulink Line has attributes SrcBlock and SrcPort. They contain the Name and

the Port details of the Simulink Block from where this Line originates. This is used to

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 66 www.tu-chemnitz.de

identify the Scicos Block, from which the Link originates. Similarly, the Line also has the

attributes DstBlock and DstPort that provide information regarding the destination

Blocks. The process of identification of the Scicos Block is by using resolve constructs.

 In order to identify a Scicos Block, it needs to be first accessed from the mapping

and then resolve constructs can be used in the retrieval of the Blocks. The access to the

Scicos Blocks can be made only by accessing the mappings that created the Blocks.

Hence, the function container() is used to traverse to the parent class which is a

Simulink system here. The Simulink Blocks are first accessed via system. These Simulink

Blocks are used by the resolveIn construct to retrieve the Scicos Blocks already

mapped. These Scicos Blocks are then compared using the attribute id with the SrcBlock

for source and DstBlock for the destination Blocks, to identify and obtain the relevant

Scicos Block.

var tempBlocks :=

self.container().oclAsType(system).Block.resolveIn(SLM::blocks::Block2B

lock, SCM:Blocks);

 tempBlocks->forEach(blkObjects){

 if(blkObjects.id=self.SrcBlock) then{

 log("sourceModel: " + blkObjects.id);

 sourceMode:=blkObjects;

 }endif;

if(blkObjects.id=self.DstBlock) then{

 log("targetModel: " + blkObjects.id);

 targetMode:=blkObjects;

}endif;

};

The attributes xx, yy, to and from are calculated and obtained using the Scicos

Blocks identified as the source and the destination blocks. The attribute orig and sz of

both the source and the destination Blocks in addition to the SrcPort are used to

determine the xx and yy. The unique identifier of theses blocks and their port numbers

are used to formulate the values of the attributes to and from.

The attributes pin and pout of the Scicos Blocks were not populated during the

mappings of the Blocks. Since, the Link is created in the mapping Line to Link, these

Links have to be now mapped to the attributes pin and pout.

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 67 www.tu-chemnitz.de

Mapping a Branch

The elements Line and Block of Simulink have corresponding elements in the Scicos

block and have a direct mapping between the classes. However, a branch which is

contained in a line in a Simulink model has no corresponding class in the Scicos model.

Hence, it has to be mapped to a class that can substitute it in the Scicos model. During

the analysis, it has been found that Scicos uses a block called Split for branching its

links. Hence, a branch in a Simulink model has to be mapped to this Split. Also, a split

can have two or three outputs, but in the present work splits with only two outputs have

been used for mapping branches. Hence, a branch should also be mapped to two links

which are connected to the output port of the split. The mappings of the branch to block

and branch to the links have been explained in the following paragraphs.

A branch is contained in a line and also, every line is mapped to a link which

contains a reference to the unique id of the block from where it originates and to where it

terminates. Hence, during the mapping of a line to link, the unique id of the block

mapped from the branch is required. Hence, a mapping from branch to block is invoked

within the mapping from line to link. This creates a split block for each branch and all

those attributes are also mapped for which information is available. The remaining are

mapped when the mapping is invoked from the containment reference.

Mapping Branch to Block

As explained above, a branch is mapped to a block. The attribute Name of the Split

block also uses the unique identifier sequence. Hence, the same string counter as used for

the other elements is used to obtain it. Most of the attributes for a split block are constant

for all the instances. Among them are exprs which has a blank value, gui has the value

SPLIT_f, the attribute sz which denotes the size is set to [0.33331, 0.33331], flip to “%t”

and theta to 0. Since, the number of inputs is only one, and in the current transformation

split of only two outputs is used, the in_implicit and out_implicit are assigned a value to

denote one input and two outputs respectively. The attribute gr_i is also assigned a fixed

value.

The attributes pin and pout refers to the incoming links and the outgoing links in the

split block. Since the Line which contains the Branch is already mapped, its

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 68 www.tu-chemnitz.de

corresponding unique id of the Scicos link is used to populate the attribute pin. The

challenge is to populate the attribute pout which contains the references to the outgoing

links. A variable is used to extract the mapping information of the Branch2link as

presented below.

var pin1:=self.map Branch2Link(NameString);

The actual working of the statement presented above is to retrieve the mapping of the

Branch to Link. However, if the mapping is not present then a mapping is done at that

point from Branch to Link, with possible attributes populated. The remaining attributes

are populated later when the same mapping is attempted again.

Mapping Branch to Link

The mapping from Branch to Link involves two mappings. A split requires two Links

as outputs and hence two Links for every Branch is being mapped. The attributes ct and

thick are kept constant at “1,1” and “0,0” respectively. These are line display attributes

as mentioned previously. Again the attribute Name uses the unique identifier and the

namestring. This mapping is in sequence to the Block from where the two Links

originate. The unique identifier number preceeding this, will be the source block. Using

this information the attribute from is constructed. The attribute DstBlock of the branch

is used along with the resolve construct to retrieve the destination Scicos block, which

is used to construct the value for the to attribute. The attributes orig and sz of the

Scicos block and the DstPort of the Simulink branch is used in the calculation of the xx

and yy coordinate values. This mapping is done twice for every branch.

Mapping Subsystem to SuperBlock

SuperBlock is an inherited subclass of the ScicosModel, hence mapping a Subsystem

to a SuperBlock becomes a challenge. The solution is to map the Subsystem in line with

the parent class ScicosModel. Here, a Subsystem is actually the element system of the

Simulink model. Hence, to map the subsystem to superblock, a mapping is actually done

on system to Superblock. The contained classes are then mapped as per the superclass

references.

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 69 www.tu-chemnitz.de

7.3 Development of Reverse Transformation

The transformation of model from Scicos to Simulink constitutes the reverse

transformation. In the reverse transformation, a Simulink model has to be constructed

using the information from Scicos model. This transformation as in forward

transformation is also performed using their respective MOF based metamodels

developed using EMF Ecore in this work.

In order to perform reverse transformation, the information required to reconstruct a

Simulink model has to be present in the Simulink metamodel. There were many classes

in the Simulink metamodel that were not used in the forward transformation as the

required information was already present in other elements of the metamodel. These

classes are graphicalInterface, outport and inport. Hence, these classes also need to be

mapped from the Scicos model in order to perform the transformation.

7.3.1 Transformation Mappings using QVTo

Similar to the forward transformation the reverse transformation also starts from the

declaration of the transformation and modeltype. This is followed by the main() function

from where the mapping begins. In the Scicos model, the element ScicosModel is the

root element. Hence, the mapping is started from the mapping this root element of Scicos

model to the root element of the Simulink model.

Mapping ScicosModel to Model

The mapping SciModToModel(), which maps the ScicosModel to Model is invoked

in the main() function. The attributes Name of the Model is assigned the value of the

attribute Name of the ScicosModel. The current work has been carried out using the

Simulink version 7.8. Hence, the attribute Version is assigned the value 7.8. In

Simulink every Block has a unique name. A string is used along with the function

incrStrCounter() to generate unique number for each Block. This unique number is

appended to the BlockType of the Block to generate a unique name for each. There are

two other mappings which are invoked within this mapping. One is the

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 70 www.tu-chemnitz.de

Object2graphicalInterface() and the other is Object2System(). The mapping

Object2graphicalInterface() maps class Object to class graphicalInterface.

Mapping Object to graphicalInterface

Mapping of class Object to class graphicalInterface involves assigning the values of

all the required attributes of the class graphicalInterface. Many of the attributes of the

graphicalInterface remains unchanged for most instances of Simulink models. Hence,

they are given a fixed value. The attributes NumRootInports and NumRootOutports

contain the count of the number of Blocks of type Inport and Outport, which are

accessible from the external environment. Each of these Inport and Outport are contained

in the class graphicalInterface. Hence, another mapping operation is performed for each

these Inports and Outports. The mappings Object2Inport and Object2Outport map

the Object to Inports and Outports respectively, passing the id of the blocks as

parameters. Within these mappings the attributes of the classes are populated.

Mapping Object to System

Mapping of Object to system contains the mappings from Block to blocks and the

mappings from Link to lines. These mappings form the core of the reverse

transformation.

Mapping Block to Block

The mapping from Block to blocks contains, the assignment of values to the attributes

of the Simulink Block using that of the Scicos Block. The attributes that are populated

first include Name, SID, Ports, BlockType, Position and BlockMirror. The name is

the unique name of the Block. It is constructed using the unique identifier number

appended to the id, if any given by the user, for the Scicos Block. If no id is specified

then the BlockType is appended. SID is the unique identifier of the Simulink Block.

Hence, the unique number generated is assigned to the Block. The attributes

in_implicit and out_implicit are used for constructing the value for the attribute

Ports. For every port a letter ‘E’ is used in the in_implicit and out_implicit.

Counting the number of ‘E’ provides the number of input and output ports of a block.

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 71 www.tu-chemnitz.de

This is used for populating the attribute Ports. The attribute BlockType is dependent on

the type of Block. The attribute gui of the Scicos Block is used to determine the

BlockType. The value of this attribute is defined by Simulink. Hence, gui must be

mapped to the possible values of the Simulink model and then assigned to the attribute.

The Position provides the co-ordinate values of the element in the Simulink model. The

attributes orig and sz are used in the calculation of the values for the attribute

Position. If the flip attribute of the Scicos model is “%f”, then the BlockMirror is set

to “on”. The attributes required for the Simulink model are also mapped based on the

individual elements using the case statement, which uses the BlockType as its parameter.

Mapping Link to Line

In the mapping from Link to lines, the attributes SrcBlock, SrcPort, DstBlock,

DstPort and Points have to be populated. The attributes, from and to contain the

information of the source and destination blocks respectively. The values for the

SrcPort and DstPort can be directly extracted. The attribute SrcBlock and DstBlock

require the name of the block. All the blocks are retrieved and the values in the attribute

from and to are compared with the respective attributes of the blocks. The matching

Scicos block is then used in identifying the Simulink block with the help of the

resolveoneIn construct. The attribute Points is calculated using the Position attribute

of the source and the destination blocks.

The results of the above transformation are presented in the next chapter.

7.4 Intermediate transformation

A model was developed using the Simulink tool. The Simulink model was saved as

an xml file using the save save_system() function. The format of the obtained xml file

is as defined by the Simulink tool. However, the current transformation definition

requires the xml file in form defined by the metamodel of Simulink. Hence, an

intermediate transformation was developed using the language python. The Simulink

xml file was provided as input to the intermediate transformation program, which

converts it into the format of the metamodel instance.

CHAPTER 7. IMPLEMENTATION OF TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 72 www.tu-chemnitz.de

The obtained metamodel instance is used as the input for the forward transformation

definition. The output of this transformation is a model instance conforming to the

Scicos metamodel. Again this model instance cannot be accessed directly by the Scicos

tool. It again requires an intermediate transformation to obtain the Scicos model. An

intermediate transformation was developed using python to obtain the Scicos model from

the intermediate model instance. This model obtained after the intermediate

transformation can be accessed using the Scicos tool.

7.5 Summary

This chapter presents in detail the development of the transformation between Scicos

and Simulink. The Metamodels developed in the previous chapter are used to develop

the transformation definitions. The tools and languages mentioned in chapter 4 have been

used in the development of the transformation. The transformation from the Simulink to

Scicos is the forward transformation. The transformation from the Scicos to Simulink is

the reverse transformation. The transformation definition is developed using QVT

operational mappings. The elements of the source model are mapped to the elements of

the target model. The constraints and the relationships are also mapped.

Abhishek Mallikarjuna Kappattanavar 73 www.tu-chemnitz.de

Chapter 8

Results of Model Transformation

An implementation of the transformation between the model instances of Simulink

metamodel and Scicos metamodel was presented in chapter 7. The forward

transformation from Simulink to Scicos was carried out using a few models in Simulink.

The results obtained after the transformation are discussed in this chapter.

8.1 Results of Forward Transformation

The results of the forward transformation for the Simulink models, presented in

figure 8.1 and figure 8.5, into Scicos models are discussed in the following sections.

Example 1: The transformations was applied on a Simulink model presented in figure

8.1

This model was developed using Simulink tool and was saved as an XML file using

the MATLAB command save_system(). The file obtained is a Simulink model in XML

format. This is used as an input for the intermediate transformation. The intermediate

transformation is basically a restructuring of the XML tags, so that the model conforms

to the Simulink metamodel. The output of the intermediate transformation is another

XML file. This is called as intermediate model IM1 and is presented in figure 8.2.

Figure 8.1: A Simulink model

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 74 www.tu-chemnitz.de

The intermediate model IM1 conforms to the Simulink metamodel. IM1 is used as input

to the transformation definition. When the transformation rule is applied to this model

IM1, we get an output, which is another model. This model conforms to the Scicos

metamodel and is named as Intermediate model IM2 here. IM2 is presented in the figure

8.3. The model IM2 is also in the form of XML file. But, it cannot be directly accessed

by the Scicos tool as the IM2 does not have the exact formatting as required by the

Scicos tool. Hence, another intermediate transformation is performed on IM2. The output

of this intermediate transformation is a model file. This model file is an XML file in the

format readable by the Scicos tool. The obtained Scicos model is presented in figure 8.4.

The correctness of the model and the transformation is discussed in the section

Validation and Verification.

Figure 8.2: Intermediate model IM1

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 75 www.tu-chemnitz.de

The intermediate model IM1 represented as an XML file is presented below:

<?xml version="1.0" encoding="UTF-8"?>

<simulink2:Model xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:simulink2="com.example.simulink2" Version="2" Name="prod_add">

 <System Name="prod_add" Location="">

 <Block BlockType="Sum" Name="Add" SID="3" Ports="2,1"

Position="[330, 112, 360, 143]">

 <P Name="ZOrder" Value="3"/>

 <P Name="InputSameDT" Value="off"/>

 <P Name="OutDataTypeStr" Value=""Inherit: Inherit via

internal rule""/>

 <P Name="SaturateOnIntegerOverflow" Value="off"/>

 </Block>

 <Block BlockType="Constant" Name="Constant" SID="8" Ports=""

Position="[65, 80, 95, 110]">

 <P Name="ZOrder" Value="8"/>

 <P Name="Value" Value="3"/>

 </Block>

 <Block BlockType="Constant" Name="Constant1" SID="9" Ports=""

Position="[65, 135, 95, 165]">

 <P Name="ZOrder" Value="9"/>

 <P Name="Value" Value="2"/>

 </Block>

 <Block BlockType="Constant" Name="Constant2" SID="10" Ports=""

Position="[170, 165, 200, 195]">

 <P Name="ZOrder" Value="10"/>

 <P Name="Value" Value="2"/>

 </Block>

 <Block BlockType="Product" Name="Product" SID="1" Ports="[2, 1]"

Position="[215, 87, 245, 118]">

 <P Name="ZOrder" Value="1"/>

 <P Name="InputSameDT" Value="off"/>

 <P Name="OutDataTypeStr" Value=""Inherit: Inherit via

internal rule""/>

 <P Name="RndMeth" Value="Floor"/>

 <P Name="SaturateOnIntegerOverflow" Value="off"/>

 </Block>

 <Block BlockType="Outport" Name="D" SID="13" Position="[455, 123,

485, 137]">

 <P Name="ZOrder" Value="13"/>

 <P Name="IconDisplay" Value="Port number"/>

 </Block>

 <Line SrcBlock="Constant" SrcPort="1" Points="" DstBlock="Product"

DstPort="1">

 <P Name="ZOrder" Value="6"/>

 </Line>

 <Line SrcBlock="Product" SrcPort="1" Points="" DstBlock="Add"

DstPort="1">

 <P Name="ZOrder" Value="4"/>

 </Line>

 <Line SrcBlock="Constant1" SrcPort="1" Points="" DstBlock="Product"

DstPort="2">

 <P Name="ZOrder" Value="10"/>

 </Line>

 <Line SrcBlock="Constant2" SrcPort="1" Points="" DstBlock="Add"

DstPort="2">

 <P Name="ZOrder" Value="11"/>

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 76 www.tu-chemnitz.de

 </Line>

 <Line SrcBlock="Add" SrcPort="1" Points="" DstBlock="D"

DstPort="1">

 <P Name="ZOrder" Value="12"/>

 </Line>

 </System>

</simulink2:Model>

Figure 8.3: Intermediate model IM2

Figure 8.4: Resultant Scicos Model

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 77 www.tu-chemnitz.de

Figure 8.5: A subsystem of cross wind assistance system

Example 2: Simulink model of a subsystem of cross wind assistance system:

The model presented in figure 8.5 is a subsystem, part of cross wind assistance

system, which is a driver assistance system. This model represents subsystem which is

used to round off the offset added to the Electric Power Steering Angle. The input is the

offset stored in memory. This offset value is obtained as a process of learning. The

Steering Angle would be converted to integer during further processing. This introduces

a round-off error. Hence, this subsystem is used to reduce the round off error by half its

scale. The original offset before round off is applied as input to Simulink model. The

output from the model represents the offset rounded off with error less than or equal to

half the scale. Without a round off, the error would be upto one full scale. This value

obtained is used for further processing in cross wind assistance system.

The transformation of the model is then carried out. First an intermediate model

IMSubSystem1 is obtained. IMsubSystem1 is presented in figure 8.6. The transformation

rule is then applied to the model IMSubSystem1. The resulting model is IMSubsystem2

and is presented in figure 8.7. Then the intermediate transformation is performed on

IMSubSystem2 to obtain a Scicos model. The resultant Scicos model for the subsystem

of cross wind assistance system is presented in figure 8.8.

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 78 www.tu-chemnitz.de

Figure 8.6: Intermediate model IMSubSystem1

The XML representation of the Intermediate model IMSubSystem1 is presented below:

<?xml version="1.0" encoding="UTF-8"?>

<simulink2:Model xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:simulink2="platform:/resource/SLM2/model/Simulink.ecore"

Version="8.2" Name="round_to_nearest_EpsAnglOffs">

 <System Name="round_to_nearest_EpsAnglOffs" Location="[92, 69, 908,

608]">

 <Block BlockType="Inport" Name="EpsAnglOffsEESwa" SID="1" Ports=""

Position="[135, 113, 165, 127]" BlockMirror=""/>

 <Block BlockType="Abs" Name="Abs" SID="2" Ports="" Position="[365,

100, 405, 140]">

 <P Name="ZeroCross" Value="off"/>

 </Block>

 <Block BlockType="Constant" Name="Constant" SID="3" Position="[465,

141, 505, 179]">

 <P Name="Value" Value="2^-7"/>

 </Block>

 <Block BlockType="Product" Name="Product" SID="4" Ports="[2, 1]"

Position="[780, 130, 820, 170]"/>

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 79 www.tu-chemnitz.de

 <Block BlockType="Signum" Name="Signum" SID="6" Position="[540,

230, 580, 270]">

 <P Name="ZeroCross"/>

 </Block>

 <Block BlockType="Sum" Name="Sum" SID="7" Ports="[2, 1]"

Position="[540, 102, 580, 178]"/>

 <Block BlockType="Outport" Name="EpsAnglOffsEESwa_rnd" SID="8"

Position="[1005, 143, 1035, 157]"/>

 <Line SrcBlock="EpsAnglOffsEESwa" SrcPort="1" Points="[160, 0]"

DstBlock="Abs" DstPort="1">

 <Branch DstBlock="Signum" DstPort="1"/>

 </Line>

 <Line SrcBlock="Product" SrcPort="1"

DstBlock="EpsAnglOffsEESwa_rnd" DstPort="1"/>

 <Line SrcBlock="Signum" SrcPort="1" Points="[120, 0; 0, -90]"

DstBlock="Product" DstPort="2"/>

 <Line SrcBlock="Abs" SrcPort="1" DstBlock="Sum" DstPort="1"/>

 <Line SrcBlock="Sum" SrcPort="1" DstBlock="Product" DstPort="1"/>

 <Line SrcBlock="Constant" SrcPort="1" DstBlock="Sum" DstPort="2"/>

 </System>

</simulink2:Model>

Figure 8.7: Intermediate model IMSubSystem2

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 80 www.tu-chemnitz.de

The XML representation of the Intermediate model IMSubSystem2 is presented below:

<?xml version="1.0" encoding="UTF-8"?>

<scimmC:ScicosModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:scimmC="com.example.scimmC"

xsi:schemaLocation="com.example.scimmC model/Scicos.ecore"

Name="round_to_nearest_EpsAnglOffs">

 <Objects>

 <Block gui="IN_f" orig="[135,113]" sz="[30.0,14.0]"

exprs="[&quot;1&quot;;&quot;-1&quot;;&quot;-

1&quot;]" pout="8" gr_i="list(&quot; &quot;,8)"

out_implicit="&quot;E&quot;" id="OffsetIn" Name="OBJ1"/>

 <Block gui="ABS_VALUEi" orig="[365,100]" sz="[40.0,40.0]"

exprs="&quot;0&quot;" pin="11" pout="14"

gr_i="list([&quot;txt=[&apos;&apos; |u|

&apos;&apos;];&quot;;&quot;xstringb(orig(1),orig(2),txt

,sz(1),sz(2),&apos;&apos;fill&apos;&apos;)&quot;],8

)" in_implicit="&quot;E&quot;"

out_implicit="&quot;E&quot;" id="Abs" Name="OBJ2"/>

 <Block gui="CONST_m" orig="[465,141]" sz="[40.0,38.0]"

exprs="&quot;2^-7&quot;" pout="16"

gr_i="list([&quot;dx=sz(1)/5;dy=sz(2)/10;&quot;;&quot;w=sz(

1)-2*dx;h=sz(2)-

2*dy;&quot;;&quot;txt=C;&quot;;&quot;xstringb(orig(1)+d

x,orig(2)+dy,txt,w,h,&apos;&apos;fill&apos;&apos;);&

;quot;],8)" out_implicit="&quot;E&quot;" id="Constant"

Name="OBJ3"/>

 <Block gui="MATMUL" orig="[780,130]" sz="[40.0,40.0]"

exprs="[&quot;1&quot;;&quot;2&quot;;&quot;1&quo

t;]" pin="13,15" pout="12"

gr_i="list(&quot;xstringb(orig(1),orig(2),[&apos;&apos;MATM

UL&apos;&apos;],sz(1),sz(2),&apos;&apos;fill&apos;&

amp;apos;);&quot;,8)"

in_implicit="[&quot;E&quot;;&quot;E&quot;]"

out_implicit="[&quot;E&quot;]" id="Product" Name="OBJ4"/>

 <Block gui="SIGNUM" orig="[540,230]" sz="[40.0,40.0]"

exprs="&quot;1&quot;" pin="10" pout="13"

gr_i="list([&quot;txt=[&apos;&apos;Sign&apos;&apos;

];&quot;;&quot;xstringb(orig(1),orig(2),txt,sz(1),sz(2),&ap

os;&apos;fill&apos;&apos;)&quot;],8)"

in_implicit="&quot;E&quot;"

out_implicit="&quot;E&quot;" id="Signum" Name="OBJ5"/>

 <Block gui="SUMMATION" orig="[540,102]" sz="[40.0,76.0]"

exprs="[&quot;1&quot;;&quot;[1,1]&quot;;&quot;0&

;quot;]" pin="14,16" pout="15"

gr_i="list([&quot;[x,y,typ]=standard_inputs(o)

&quot;;&quot;dd=sz(1)/8,de=0,&quot;;&quot;if

~arg1.graphics.flip then dd=6*sz(1)/8,de=-

sz(1)/8,end&quot;;&quot;for

k=1:size(x,&apos;&apos;*&apos;&apos;)&quot;;&qu

ot;if size(sgn,1)&gt;1 then&quot;;&quot; if

sgn(k)&gt;0 then&quot;;&quot; xstring(orig(1)+dd,y(k)-

4,&apos;&apos;+&apos;&apos;)&quot;;&quot;

else&quot;;&quot; xstring(orig(1)+dd,y(k)-

4,&apos;&apos;-&apos;&apos;)&quot;;&quot;

end&quot;;&quot;end&quot;;&quot;end&quot;;&quot

;xx=sz(1)*[.8 .4 0.75 .4

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 81 www.tu-chemnitz.de

.8]+orig(1)+de&quot;;&quot;yy=sz(2)*[.8 .8 .5 .2

.2]+orig(2)&quot;;&quot;xpoly(xx,yy,&apos;&apos;lines&a

mp;apos;&apos;)&quot;],8)"

in_implicit="[&quot;E&quot;;&quot;E&quot;]"

out_implicit="[&quot;E&quot;]" id="Sum" Name="OBJ6"/>

 <Block gui="OUT_f" orig="[1005,143]" sz="[30.0,14.0]"

exprs="&quot;1&quot;" pin="12" gr_i="list(&quot;

&quot;,8)" in_implicit="&quot;E&quot;" id="OffsetRnd"

Name="OBJ7"/>

 <Block gui="SPLIT_f" orig="[235.0,113]"

sz="[0.33333333333333331,0.33333333333333331]" exprs="[]" pin="8"

pout="10;11" gr_i="list([],8)" in_implicit="&quot;E&quot;"

out_implicit="[&quot;E&quot;;&quot;E&quot;]"

Name="OBJ9"/>

 <Link

xx="[165.0;260.7142857142857;260.7142857142857;356.42857142857144]"

yy="[120.0;120.0;120.0;120.0]" from="[1,1,0]" to="[9,1,0]"

Name="OBJ8"/>

 <Link

xx="[820.0;908.2142857142858;908.2142857142858;996.4285714285714]"

yy="[150.0;150.0;150.0;150.0]" from="[4,1,0]" to="[7,1,0]"

Name="OBJ12"/>

 <Link

xx="[580.0;675.7142857142858;675.7142857142858;771.4285714285714]"

yy="[250.0;250.0;143.33333333333334;143.33333333333334]" from="[5,1,0]"

to="[4,2,0]" Name="OBJ13"/>

 <Link

xx="[405.0;468.2142857142857;468.2142857142857;531.4285714285714]"

yy="[120.0;120.0;152.66666666666666;152.66666666666666]" from="[2,1,0]"

to="[6,1,0]" Name="OBJ14"/>

 <Link

xx="[580.0;675.7142857142858;675.7142857142858;771.4285714285714]"

yy="[140.0;140.0;156.66666666666666;156.66666666666666]" from="[6,1,0]"

to="[4,1,0]" Name="OBJ15"/>

 <Link

xx="[505.0;518.2142857142858;518.2142857142858;531.4285714285714]"

yy="[160.0;160.0;127.33333333333334;127.33333333333334]" from="[3,1,0]"

to="[6,2,0]" Name="OBJ16"/>

 <Link

xx="[235.0;383.2142857142857;383.2142857142857;531.4285714285714]"

yy="[113.0;113.0;250.0;250.0]" id="b2l_1_10" from="[9,1,0]"

to="[5,1,0]" Name="OBJ10"/>

 <Link

xx="[235.0;295.7142857142857;295.7142857142857;356.42857142857144]"

yy="[113.0;113.0;120.0;120.0]" id="b2l_2_11" from="[9,2,0]"

to="[2,1,0]" Name="OBJ11"/>

 </Objects>

</scimmC:ScicosModel>

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 82 www.tu-chemnitz.de

Figure 8.8: Resultant Scicos model for the subsystem of cross wind assistance

system

8.2 Results of Reverse Transformation

The aim of the project was to develop metamodels for Scicos and Simulink and also

to develop forward transformation between Simulink and Scicos. However, an attempt

has been made to achieve reverse transformation also.

Figure 8.9: Intermediate model IMR1

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 83 www.tu-chemnitz.de

Figure 8.10: Intermediate model IMR2

The results of the reverse transformation from Scicos model to Simulink model is

discussed as follows.

The reverse transformation is developed using QVTo for the intermediate models.

The intermediate model IMR1 is presented in figure 8.9. It is a model of a subsystem

VehicleLoadInfo of the Cross Wind Assistance System. The model IMR1 is provided as

the input to the transformation definition. The output of the transformation is the

intermediate model IMR2 which conforms to the Simulink metamodel and it is presented

in figure 8.10. The model IMR2 was verified by using the XML file of the model. It

represented all the characteristics of the Simulink model that was used for developing the

model IMR1.

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 84 www.tu-chemnitz.de

8.3 Verification and Validation

Verification of a model is essential for ensuring the correct functioning of a model.

Here, verification and validation has been carried out as a process wherein the models

are executed to ensure that the desired behaviour is produced by them.

The Simulink model presented in figure 8.2 is considered for validation. It is given a

set of values as inputs and certain output obtained. This model is transformed into a

Scicos model as presented in figure 8.4. The same inputs that were given to the Simulink

model, are provided to the resultant Scicos model. The output obtained by Simulink

model is compared with the output obtained from Scicos model. It is observed that the

outputs of both the models match, thus verifying the transformation.

Another example, a subsystem of a cross wind assistance system as presented in the

figure 8.5 is also subjected to transformation and the resultant Scicos model is presented

in figure 8.6. Here again, the outputs obtained by both the models are compared. The

outputs of both the models match. Hence, the transformation is verified.

In the above figure, blocks of constants, product and sum were used. Constants

values, Constant, Constant1 and Constant2 are given various values. The intermediate

results and the final results are first recorded for the Simulink model itself. After

verifying the results, the same inputs are applied to the Scicos model.

Input

Parameters
Constant Constant1 Constant2

Output of

Product

block

Sum(Final

Output

D)

Test 1 2.5 2 2 5 7

Test 2 1 2 3 2 5

Test 3 -0.7 17 3 -11.9 -8.9

Test 4 -0.9 25 -5 -22.5 -27.5

Table 8.1: Range of Input values and corresponding output values for Example 1

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 85 www.tu-chemnitz.de

Input

Param

eters

EPSAngOFFsEESwa
|u|

Signum Sum

Product

(Final Output at

Port D)

Test 1 0 0 0 0.0078 0

Test 2 0.5 0.5 1 0.5078 0.5078

Test 3 -0.5 0.5 -1 0.5078 -0.5078

Test 4 1 1 1 1.0078 1.0078

Test 5 -1 1 -1 1.0078 -1.0078

Test 6 -0. 0312 0. 0312 -1 0.039012 -0. 039012

Test 7 0.0312 0.0312 1 0.039012 0. 039012

Test 8 0.0156 0.0156 1 0.023412 0.023412

Test 9 -0.0156 0.0156 -1 0.023412 -0.023412

Table 8.2: Range of Input values and corresponding output values for Example 2

A range of values were provided as inputs for example 1. Example 1 corresponds to

figure 8.1 and figure 8.4. The input and output values are presented in table 8.1. The

same is followed for example 2, which corresponds to figure 8.5 and figure 8.8. The

input and corresponding output values for the same are presented in the table 8.2. For

different ranges of inputs, it is observed that the resultant Scicos model provides the

same output as that of Simulink model.

The various input parameters Constant, Constant1, Constant2 have been provided.

The output of the product block and the sum block are checked. The final output at the

output port D is also verified for different test values and found to be same as that for

Simulink model.

Similarly, input parameter OffsetIn is varied and the output at the OffsetRnd is

recorded. This input-output combination provided to the Scicos model is compared with

the results of the Simulink model and is found to be same. Hence, validating the

transformation.

CHAPTER 8. RESULTS OF MODEL TRANSFORMATION

Abhishek Mallikarjuna Kappattanavar 86 www.tu-chemnitz.de

8.4 Summary

The results of both the forward and the reverse transformations are discussed in this

chapter. A simple Simulink model was first developed and its forward transformation

was verified. Then a Simulink subsystem of a cross wind assistance system was

subjected to forward transformation. The outputs of the model before transformation and

that after transformation were compared. They were found to give the same output as

desired. Thus, verifying and validating the transformation definition.

An attempt was made to achieve reverse transformation. A subsystem in Scicos was

considered for reverse transformation. After subjecting it to transformation, an

intermediate model conforming to Simulink metamodel was obtained. This verifies the

reverse transformation. Further, intermediate transformation for the reverse

transformation can be taken up for future work.

Abhishek Mallikarjuna Kappattanavar 87 www.tu-chemnitz.de

Chapter 9

Conclusion and Future Work

Model transformation has been carried out for the interoperability between Simulink

model and Scicos model. To bring about model transformation, the following has been

achieved in the present work:

1. Development of metamodel for Simulink

2. Development of metamodel for Scicos

3. Development of Forward Transformation Definition, including the intermediate

transformations

The metamodels for Simulink and Scicos are developed based on OMGs MOF

Standards, using the EMF Ecore’s Graphical Modeling Tool. As a part of the solution for

the interoperability, a forward Transformation Definition from Simulink to Scicos has

been developed for a subset of the Simulink blocks. The development of the

transformation definition is carried out using QVT Operational Mappings (QVTo). The

forward transformation has been applied to a subsystem of cross wind assistance system.

Further, an attempt has been made to bring about a reverse transformation from

Scicos to Simulink. The transformation definition developed transforms an intermediate

model which conforms to the Scicos metamodel into another intermediate model which

conforms to the Simulink metamodel. This can further be carried forward to develop an

intermediate transformations for reverse transformation.

Further, enhancement include the following:

1. Extension of the transformation to more blocks

2. Implementation of intermediate transformation for Reverse transformation

3. Improvement of the intermediate transformation for forward transformation

4. Improvement of the Simulink metamodel for reverse transformation

Abhishek Mallikarjuna Kappattanavar 88 www.tu-chemnitz.de

References

[1] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, "Translating discrete-time

simulink to lustre". ACM Trans. Embed. Comput. Syst. 4, 4, November

2005, pp. 779-818

[2] http://nicolas.thiery.name/CalculFormelLibre/Scilab.pdf as on 16 December

2015

[3] Nah Soo Hoe, “Free/Open Source Software Open Standards”, Asia-Pacific

Development Information Programme, 2006

[4] http://perens.com/OpenStandards/Definition.html as on 16 December 2015

[5] A. Sindico, M. Di Natale, and G. Panci, “Integrating SysML with Simulink

using Open-source Model Transformations”. SIMULTECH, SciTePress,

2011, pp. 45-56

[6] http://www.omg.org/spec/QVT/ last accessed on 16 December 2015

[7] I. Arrassen, R. Esbai, A. Meziane and M. Erramdani, "QVT transformation

by modeling: From UML model to MD model," 6th International

Conference on, Sousse Sciences of Electronics, Technologies of

Information and Telecommunications, 2012, pp. 86-91

[8] L. Zhang, M. Glab, N. Ballmann and J. Teich, "Bridging algorithm and

ESL design: Matlab/Simulink model transformation and validation," Forum

on Specification & Design Languages, Paris, France, 2013, pp. 1-8

[9] P. Guo, Y. Li, P. Li, S. Liu and D. Sun, "A UML Model to Simulink Model

Transformation Method in the Design of Embedded Software," Tenth

REFERENCES

Abhishek Mallikarjuna Kappattanavar 89 www.tu-chemnitz.de

International Conference on Computational Intelligence and Security,

Kunming, 2014, pp. 583-587

[10] Dae-Kyoo Kim et al., "QVT-Based Model Transformation to Support

Unification of IEC 61850 and IEC 61970," in IEEE Transactions on Power

Delivery, April 2014, vol. 29, no. 2, pp. 598-606

[11] D. Meedeniya, J. Bowles and I. Perera, "SD2CPN: A model transformation

tool for software design models," International Computer Science and

Engineering Conference, Khon Kaen, 2014, pp. 354-359

[12] A. B. Younes, Y. B. Hlaoui and L. J. B. Ayed, "A Meta-model

Transformation from UML Activity Diagrams to Event-B Models," IEEE

38th International Computer Software and Applications Conference

Workshops, Vasteras, 2014, pp. 740-745

[13] A. Achouri and L. J. Ben Ayed, "UML activity diagram to event-B: A

model transformation approach based on the institution theory," IEEE 15th

International Conference on Information Reuse and Integration, Redwood

City, CA, 2014, pp. 823-829

[14] http://www.theenterprisearchitect.eu/blog/2009/02/18/model-driven-

engineering-tools-compared-on-user-activities/ as on 20 October 2015

[15] http://www.omg.org/mda/ as on 24 December 2015

[16] M. Snoeck, "Enterprise Information Systems Engineering: The MERODE

Approach", Springer, 2014

[17] A. G. Kleppe, W. Bast and J. B. Warmer, "MDA Explained: The Model

Driven Architecture : Practice and Promise", Boston: Addison-Wesley,

2003

REFERENCES

Abhishek Mallikarjuna Kappattanavar 90 www.tu-chemnitz.de

[18] T. Mens and P. Van Gorp, "A Taxonomy of Model Transformation",

Electronic Notes in Theoretical Computer Science, March 2006, 152 (1-2),

pp.125-142

[19] S. L. Campbell, J. P. Chancelier and R. Nikoukhah, "Modeling and

Simulation in Scilab/Scicos", Springer 2006

[20] http://in.mathworks.com/products/matlab/ as on 20 December 2015

[21] http://in.mathworks.com/products/simulink/ as on 20 December 2015

[22] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,

Feb 2015, ver1.2

[23] P. J. Barendrecht, "Modeling transformations using QVT Operational

Mappings", April 2010

[24] R. C. Gronback, "ECLIPSE MODELING PROJECT", Addison-Wesley

2009

[25] http://www.esterel-technologies.com/products/scade-suite/ as on 20

December 2015

[26] http://www.softwaretestinghelp.com/what-is-stlc-v-model/ as on 20

December 2015

[27] OMG Specification Document, “Object Constraint Language”, Feb 2014,

ver 2.4

	Introduction
	State of the Art
	Background Concepts
	Tools and Technologies
	Metamodel Development
	Results of Metamodel Development
	Implementation of Transformation
	Results of Model Transformation
	Conclusion and Future Work
	References

